Sample records for medium-duty passenger vehicles

  1. In-Use Performance Results of Medium Duty Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2012-07-01T23:59:59.000Z

    This presentation describes a DOE program to monitor and report on vehicle performance and energy utilization of medium-duty and heavy-duty electric vehicles.

  2. Questions, Answers and Clarifications Used MediumDuty Electric Vehicle Repower Demonstration

    E-Print Network [OSTI]

    Questions, Answers and Clarifications Used MediumDuty Electric Vehicle Repower Demonstration PON). Q5. A plug-in hybrid electric vehicle repower could provide some electric drive with an engine for extended range. Would a plug-in hybrid electric vehicle with an internal combustion engine be considered

  3. Statistical Characterization of Medium-Duty Electric Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new EVs. Within the medium- and heavy-duty commercial vehicle segment, both the Smith Electric Newton and Navistar eStar vehicles qualified for such funding opportunities....

  4. Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulaseFuels and Vehicles

  5. Vehicle Technologies Office Merit Review 2015: Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about plug-in hybrid medium-duty truck...

  6. Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint

    SciTech Connect (OSTI)

    Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

    2014-11-01T23:59:59.000Z

    The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

  7. Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

    2010-12-01T23:59:59.000Z

    Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

  8. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    SciTech Connect (OSTI)

    Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

    2013-10-01T23:59:59.000Z

    Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

  9. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  10. Vehicle Technologies Office Merit Review 2014: Medium Duty ARRA Data Reporting and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about medium...

  11. Vehicle Technologies Office Merit Review 2015: Medium Duty ARRA Data Reporting and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about medium...

  12. Vehicle Technologies Office Merit Review 2015: Polyalkylene Glycol (PAG) Based Lubricant for Light & Medium Duty Axles

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about polyalkylene glycol (PAG)...

  13. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  14. Vehicle Technologies Office Merit Review 2014: SCAQMD: Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  15. Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J.; Brooker, A.

    2012-09-01T23:59:59.000Z

    The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

  16. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    SciTech Connect (OSTI)

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

    2005-08-25T23:59:59.000Z

    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

  17. Vehicle Technologies Office Merit Review 2015: Multi-Speed Transmission for Commercial Delivery Medium Duty Plug-In Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Eaton at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-speed transmission for commercial...

  18. Vehicle hydraulic system that provides heat for passenger compartment

    DOE Patents [OSTI]

    Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

    2001-01-01T23:59:59.000Z

    A vehicle includes a vehicle housing which defines a passenger compartment. Attached to the vehicle housing is a hydraulic system, that includes a hydraulic fluid which flows through at least one passageway within the hydraulic system. Also attached to the vehicle housing is a passenger compartment heating system. The passenger compartment heating system includes a heat exchanger, wherein a portion of the heat exchanger is a segment of the at least one passageway of the hydraulic system.

  19. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation 2011 DOE...

  20. Multi-Materials Vehicle R&D Initiative Lightweight 7+ Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Vehicle R&D Initiative Lightweight 7+ Passenger Vehicle Multi-Materials Vehicle R&D Initiative Lightweight 7+ Passenger Vehicle 2011 DOE Hydrogen and Fuel Cells Program,...

  1. Medium Duty ARRA Data Reporting and Analysis (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2014-06-01T23:59:59.000Z

    This project compiles medium-duty (MD) aggregated deployment data and provides the compiled detailed analyses to industry. The U.S. Department of Energy's (DOE's) American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles, electrified accessories, and electric charging infrastructure. Over 3.2 million miles of in-service all-electric MD truck data from 560 different vehicles have been collected since 2011, and usage data from over 1,000 truck electrification sites have been collected since 2013. Through the DOE's Vehicle Technologies Office, NREL is working to analyze real-time data from these deployment and demonstration projects to quantify the benefits: results and summary statistics are made available through the NREL website as quarterly and annual reports; 23 aggregated reports have been published on the performance and operation of these vehicles; and detailed data are being extracted to help further understand battery use and performance.

  2. Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden

    E-Print Network [OSTI]

    Klier, Thomas

    France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

  3. Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks

    SciTech Connect (OSTI)

    Larry Slone; Jeffery Birkel

    2007-12-31T23:59:59.000Z

    With a variety of hybrid vehicles available in the passenger car market, electric technologies and components of that scale are becoming readily available. Commercial vehicle segments have lagged behind passenger car markets, leaving opportunities for component and system development. Escalating fuel prices impact all markets and provide motivation for OEMs, suppliers, customers, and end-users to seek new techniques and technologies to deliver reduced fuel consumption. The research presented here specifically targets the medium-duty (MD), Class 4-7, truck market with technologies aimed at reducing fuel consumption. These technologies could facilitate not only idle, but also parasitic load reductions. The development efforts here build upon the success of the More Electric Truck (MET) demonstration program at Caterpillar Inc. Employing a variety of electric accessories, the MET demonstrated the improvement seen with such technologies on a Class 8 truck. The Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks (TEPS) team scaled the concepts and successes of MET to a MD chassis. The team designed an integrated starter/generator (ISG) package and energy storage system (ESS), explored ways to replace belt and gear-driven accessory systems, and developed supervisory control algorithms to direct the usage of the generated electricity and system behavior on the vehicle. All of these systems needed to fit within the footprint of a MD vehicle and be compatible with the existing conventional systems to the largest extent possible. The overall goal of this effort was to demonstrate a reduction in fuel consumption across the drive cycle, including during idle periods, through truck electrification. Furthermore, the team sought to evaluate the benefits of charging the energy storage system during vehicle braking. The vehicle features an array of electric accessories facilitating on-demand, variable actuation. Removal of these accessories from the belt or geartrain of the engine yields efficiency improvements for the engine while freeing those accessories to perform at their individual peak efficiencies to meet instantaneous demand. The net result is a systems approach to fuel usage optimization. Unique control algorithms were specifically developed to capitalize on the flexibility afforded by the TEPS architecture. Moreover, the TEPS truck technology mixture exhibits a means to supplant current accessory power sources such as on-board or trailer-mounted gasoline-powered generators or air compressors. Such functionality further enhances the value of the electric systems beyond the fuel savings alone. To demonstrate the fuel economy improvement wrought via the TEPS components, vehicle fuel economy testing was performed on the nearly stock (baseline) truck and the TEPS truck. Table 1 illustrates the fuel economy gains produced by the TEPS truck electrification. While the fuel economy results shown in Table 1 do reflect specific test conditions, they show that electrification of accessory hardware can yield significant fuel savings. In this case, the savings equated to a 15 percent reduction in fuel consumption during controlled on-road testing. Truck electrification allows engine shutdown during idle conditions as well as independent on-demand actuation of accessory systems. In some cases, independent actuation may even include lack of operation, a feature not always present in mechanically driven components. This combination of attributes allows significant improvements in system efficiency and the fuel economy improvements demonstrated by the TEPS team.

  4. Kansas Consortium Plug-in Hybrid Medium Duty

    SciTech Connect (OSTI)

    None, None

    2012-03-31T23:59:59.000Z

    On September 30, 2008, the US Department of Energy (DoE), issued a cooperative agreement award, DE-FC26-08NT01914, to the Metropolitan Energy Center (MEC), for a project known as “Kansas Consortium Plug-in Hybrid Medium Duty Certification” project. The cooperative agreement was awarded pursuant to H15915 in reference to H. R. 2764 Congressionally Directed Projects. The original agreement provided funding for The Consortium to implement the established project objectives as follows: (1) to understand the current state of the development of a test protocol for PHEV configurations; (2) to work with industry stakeholders to recommend a medium duty vehicle test protocol; (3) to utilize the Phase 1 Eaton PHEV F550 Chassis or other appropriate PHEV configurations to conduct emissions testing; (4) and to make an industry PHEV certification test protocol recommendation for medium duty trucks. Subsequent amendments to the initial agreement were made, the most significant being a revised Scope of Project Objectives (SOPO) that did not address actual field data since it was not available as originally expected. This project was mated by DOE with a parallel project award given to the South Coast Air Quality Management District (SCAQMD) in California. The SCAQMD project involved designing, building and testing of five medium duty plug-in hybrid electric trucks. SCAQMD had contracted with the Electric Power Research Institute (EPRI) to manage the project. EPRI provided the required match to the federal grant funds to both the SCAQMD project and the Kansas Consortium project. The rational for linking the two projects was that the data derived from the SCAQMD project could be used to validate the protocols developed by the Kansas Consortium team. At the same time, the consortium team would be a useful resource to SCAQMD in designating their test procedures for emissions and operating parameters and determining vehicle mileage. The years between award of the cooperative agreements and their completion were problematic for the US and world economies. This resulted in the President and Congress implementing the American Recovery and Reinvestment Act of 2009, abbreviated ARRA (Pub.L. 111-5), commonly referred to as the Stimulus or The Recovery Act. The stimulus money available for transportation projects encouraged the SCAQMD to seek additional funds. In August of 2009, they eventually were awarded an additional $45.5 M, and the scope of their project was expanded to 378 vehicles. However, as a consequence of the stimulus money and the inundation of DOE with applications for new project under the ARRA, the expected time table for producing and testing vehicles was significantly delayed. As a result, these vehicles were not available for validating the protocols developed by the Kansas Consortium. Therefore, in April of 2011, the Scope of Project Objectives (SOPO) for the project was revised, and limited to producing the draft protocol for PHEV certification as its deliverable.

  5. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    arravt068vssmiyasato2011o .pdf More Documents & Publications SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid...

  6. A unified framework for trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles

    E-Print Network [OSTI]

    Anderson, Sterling J., Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    This thesis describes the design of an active safety framework that performs trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles in hazard avoidance scenarios. The vehicle navigation ...

  7. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington D.C. vssarravt068miyasato2010p.pdf More Documents & Publications Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation SCAQMD:Plug-In...

  8. A unified approach to semi-autonomous control of passenger vehicles in hazard avoidance scenarios

    E-Print Network [OSTI]

    Iagnemma, Karl

    This paper describes the design of unified active safety framework that combines trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles into a single constrained-optimal-control-based ...

  9. Optimal Design of Power-Split Transmissions for Hydraulic Hybrid Passenger Vehicles

    E-Print Network [OSTI]

    Li, Perry Y.

    Optimal Design of Power-Split Transmissions for Hydraulic Hybrid Passenger Vehicles Kai Loon Cheong, Perry Y. Li and Thomas R. Chase Abstract-- Hydraulic hybrid vehicles are inherently power dense. Power and input coupled power-split configurations. Keywords: Hybrid vehicles, hydraulics, power-split, engine

  10. Cars on a diet : the material and energy impacts of passenger vehicle weight reduction in the U.S.

    E-Print Network [OSTI]

    Cheah, Lynette W. (Lynette Wan Ting)

    2010-01-01T23:59:59.000Z

    Vehicle weight reduction is a known strategy to address growing concerns about greenhouse gas emissions and fuel use by passenger vehicles. We find that every 10% reduction in vehicle weight can cut fuel consumption by ...

  11. System-Response Issues Imposed by Biodiesel in a Medium-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine The objective of the current...

  12. Supplement for "Secondary organic aerosol1 formation from idling gasoline passenger vehicle2

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    Supplement for "Secondary organic aerosol1 formation from idling gasoline passenger vehicle2.O. Box 503, FIN-00101 Helsinki, Finland}14 [5]{Department of Chemistry, Atmospheric Science, University experiment show a total concentration of light aromatics of less than 1 ppb.6 Vehicles7 In total six gasoline

  13. Optimization and Control of a Hydro-Mechanical Transmission based Hybrid Hydraulic Passenger Vehicle

    E-Print Network [OSTI]

    Li, Perry Y.

    Optimization and Control of a Hydro-Mechanical Transmission based Hybrid Hydraulic Passenger Vehicle Perry Y. Li Felicitas Mensing Center for Compact and Efficient Fluid Power, University of Minnesota, Minneapolis, USA ABSTRACT Hydro-mechanical transmission (HMT) based hybrid hydraulic vehicle

  14. Low Floor Americans with Disabilities Compliant Alternate Fuel Vehicle Project

    SciTech Connect (OSTI)

    James Bartel

    2004-11-26T23:59:59.000Z

    This project developed a low emission, cost effective, fuel efficient, medium-duty community/transit shuttle bus that meets American's with Disabilities Act (ADA) requirements and meets National Energy Policy Act requirements (uses alternative fuel). The Low Profile chassis, which is the basis of this vehicle is configured to be fuel neutral to accommodate various alternative fuels. Demonstration of the vehicle in Yellowstone Park in summer (wheeled operation) and winter (track operation) demonstrated the feasibility and flexibility for this vehicle to provide year around operation throughout the Parks system as well as normal transit operation. The unique configuration of the chassis which provides ADA access with a simple ramp and a flat floor throughout the passenger compartment, provides maximum access for all passengers as well as maximum flexibility to configure the vehicle for each application. Because this product is derived from an existing medium duty truck chassis, the completed bus is 40-50% less expensive than existing low floor transit buses, with the reliability and durability of OEM a medium duty truck.

  15. Tri-Met's Experience With Automatic Passenger Counter and Automatic Vehicle Location Systems

    E-Print Network [OSTI]

    Bertini, Robert L.

    on an earlier draft. #12;Introduction The Tri-County Metropolitan Transportation District of Oregon (TriTri-Met's Experience With Automatic Passenger Counter and Automatic Vehicle Location Systems James State University Portland, OR 97207 This report is benefited from interviews of Tri-Met staff involved

  16. ANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE

    E-Print Network [OSTI]

    Li, Perry Y.

    for optimal engine management. The hydro-mechanical drive train splits the engine power through two pathsANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE Teck Ping, Sim Minneapolis, Minnesota 55455 Email: tpsim@me.umn.edu Perry Y. Li Center for Compact and Efficient Fluid Power

  17. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    10% Phase 5 Objectives Improve cylindrical TEG prototype manufacture with improved tooling and subassembly component manufacture Integrate TEGs into BMW and Ford vehicles for...

  19. Climate and energy policy for U.S. passenger vehicles : a technology-rich economic modeling and policy analysis

    E-Print Network [OSTI]

    Karplus, Valerie J

    2011-01-01T23:59:59.000Z

    Climate and energy security concerns have prompted policy action in the United States and abroad to reduce petroleum use and greenhouse gas (GHG) emissions from passenger vehicles. Policy affects the decisions of firms and ...

  20. ALTERNATIVE FUEL VEHICLE (AFV) INFORMATION Over 98% of the U-M auto passenger fleet is flex fuel vehicles (FFV). A FFV is capable of operating on

    E-Print Network [OSTI]

    Kirschner, Denise

    ALTERNATIVE FUEL VEHICLE (AFV) INFORMATION Over 98% of the U-M auto passenger fleet is flex fuel of both. FFV's are equipped with an engine and fuel system designed specifically to be compatible with ethanol's chemical properties. FFV's qualify as alternative fuel vehicles under the Energy Policy Act

  1. Near term hybrid passenger vehicle development program. Phase I. Appendices A and B. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    In this report vehicle use patterns or missions are defined and studied. The three most promising missions were found to be: all-purpose city driving which has the maximum potential market penetration; commuting which requires mainly a two-passenger car; and family and civic business driving which have minimal range requirements. The mission selection process was based principally on an analysis of the travel patterns found in the Nationwide Transportation Survey and on the Los Angeles and Washington, DC origin-destination studies data presented by General Research Corporation in Volume II of this report. Travel patterns in turn were converted to fuel requirements for 1985 conventional and hybrid cars. By this means the potential fuel savings for each mission were estimated, and preliminary design requirements for hybrid vehicles were derived.

  2. Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duty Cycle and Performance Data Collection and Analysis Program Vehicle Technologies Office Merit Review 2014: Powertrain Controls Optimization for Heavy Duty Line Haul Trucks...

  3. Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by GenTherm at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermoelectric waste heat recovery...

  4. NREL Uses Fuel Cells to Increase the Range of Battery Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01T23:59:59.000Z

    NREL analysis identifies potential cost-effective scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles.

  5. Advances in Diesel Engine Technologies for European Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG...

  6. Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels 

    E-Print Network [OSTI]

    Esquivel, Jason

    2010-01-16T23:59:59.000Z

    characterizes the performance of a medium-duty diesel engine fuelled with biodiesel and conventional diesel. The objective is accomplished by taking measurements of manifold pressure and temperature, fuel flow, air flow, and torque. The study first characterizes...

  7. Yosemite Waters Vehicle Evaluation Report: Final Results

    SciTech Connect (OSTI)

    Eudy, L.; Barnitt, R.; Alleman, T. L.

    2005-08-01T23:59:59.000Z

    Document details the evaluation of Fischer-Tropsch diesel, a gas-to-liquid fuel, in medium-duty delivery vehicles at Yosemite Waters. The study was conducted by NREL at the company's Fullerton, California, bottling headquarters.

  8. Towards Ridesharing with Passenger Transfers (Extended Abstract)

    E-Print Network [OSTI]

    Veloso, Manuela M.

    through the use of smart phones. Drivers offer transport to passengers in exchange for sharing fuel costs. There are currently over 600 ridesharing services [2]. A ridesharing problem is defined by a set of vehicles, a set of passengers, and a map. Each vehicle and passenger has a starting and ending location. Vehicles have

  9. Intermodal passenger flows on London's public transport network : automated inference of full passenger journeys using fare-transaction and vehicle-location data

    E-Print Network [OSTI]

    Gordon, Jason B. (Jason Benjamin)

    2012-01-01T23:59:59.000Z

    Urban public transport providers have historically planned and managed their networks and services with limited knowledge of their customers' travel patterns. While ticket gates and bus fareboxes yield counts of passenger ...

  10. Vehicle Technologies Office Merit Review 2015: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  11. THE FUTURE DEMAND FOR ALTERNATIVE FUEL PASSENGER VEHICLES: A DIFFUSION OF INNOVATION APPROACH

    E-Print Network [OSTI]

    Levinson, David M.

    Davis ­ Caltrans Air Quality Project http://aqp.engr.ucdavis.edu Task Order No. 31 Final Report June 30 ....................................................................23 3 MARKET DEVELOPMENT OF ALTERNATIVE FUEL VEHICLES ............................ 26 3.1 SUPPLY ..........................................................................................................26 3.1.1 Liquefied Petroleum Gas Vehicles

  12. Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    Heat engine/electric hybrid vehicles offer the potential of greatly reduced petroleum consumption, compared to conventional vehicles, without the disadvantages of limited performance and operating range associated with purely electric vehicles. This report documents a hybrid-vehicle design approach which is aimed at the development of the technology required to achieve this potential - in such a way that it is transferable to the auto industry in the near term. The development of this design approach constituted Phase I of the Near-Term Hybrid-Vehicle Program. The major tasks in this program were: (1) Mission Analysis and Performance Specification Studies; (2) Design Tradeoff Studies; and (3) Preliminary Design. Detailed reports covering each of these tasks are included as appendices to this report and issued under separate cover; a fourth task, Sensitivity Studies, is also included in the report on the Design Tradeoff Studies. Because of the detail with which these appendices cover methodology and both interim and final results, the body of this report was prepared as a brief executive summary of the program activities and results, with appropriate references to the detailed material in the appendices.

  13. Smith Newton Vehicle Performance Evaluation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. Through this project, Smith Electric Vehicles will build and deploy 500 all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  14. Near term hybrid passenger vehicle development program. Phase I. Appendices C and D. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The derivation of and actual preliminary design of the Near Term Hybrid Vehicle (NTHV) are presented. The NTHV uses a modified GM Citation body, a VW Rabbit turbocharged diesel engine, a 24KW compound dc electric motor, a modified GM automatic transmission, and an on-board computer for transmission control. The following NTHV information is presented: the results of the trade-off studies are summarized; the overall vehicle design; the selection of the design concept and the base vehicle (the Chevrolet Citation), the battery pack configuration, structural modifications, occupant protection, vehicle dynamics, and aerodynamics; the powertrain design, including the transmission, coupling devices, engine, motor, accessory drive, and powertrain integration; the motor controller; the battery type, duty cycle, charger, and thermal requirements; the control system (electronics); the identification of requirements, software algorithm requirements, processor selection and system design, sensor and actuator characteristics, displays, diagnostics, and other topics; environmental system including heating, air conditioning, and compressor drive; the specifications, weight breakdown, and energy consumption measures; advanced technology components, and the data sources and assumptions used. (LCL)

  15. SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Smith Newton Vehicle Performance Evaluation - 3rd Quarter 2012 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. Through this project, Smith Electric Vehicles will build and deploy 500 all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  17. Smith Newton Vehicle Performance Evaluation - Cumulative (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  18. Materials Flow Analysis and Dynamic Life-cycle Assessment of Lightweight Automotive Materials in the US Passenger Vehicle Fleet

    E-Print Network [OSTI]

    Cheah, Lynette Wan Ting

    To achieve better fuel economy, automakers are seriously considering vehicle weight and size reduction. This is achieved by using lighter-weight materials like high-strength steel and aluminum, better vehicle design, and ...

  19. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and Biofuels BiomassOutstanding-Long-Term-Liabilities

  20. Climate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Policy Analysis

    E-Print Network [OSTI]

    response to gasoline prices by investigating whether or not U.S. households alter their reliance on higher fuel economy vehicles in response to gasoline price changes. Using micro-level household vehicle usage data collected during a period of gasoline price fluctuations in 2008 to 2009, the econometric analysis

  1. Vehicle Technologies Office Merit Review 2014: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines 2012 FOA 648 Topic 3a

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  2. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    SciTech Connect (OSTI)

    Jeff Wishart; Matthew Shirk

    2012-12-01T23:59:59.000Z

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.

  3. Smith Newton Vehicle Performance Evaluation - 1st Quarter 2014 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  4. Smith Newton Vehicle Performance Evaluation - Gen2 - 2013 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  5. Smith Newton Vehicle Performance Evaluation - Gen 2 - Cumulative (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  6. A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification

    E-Print Network [OSTI]

    McGaughey, Alan

    September 2014 Keywords: Electric vehicle Lithium-ion battery Battery design Production cost Electrode in addressing oil dependency, global warming, and air pollution in the United States. We investigate the role for minimum cost. Economies of scale are reached quickly at ~200e300 MWh annual production. Small-pack PHEV

  7. Navistar eStar Vehicle Performance Evaluation - Cumulative (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  8. Smith Newton Vehicle Performance Evaluation - Gen2 - 1Q2014 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  9. Heavy Vehicle Systems, Int. J. of Vehicle Design, Vol. 11, Nos. 3/4, 2004 349 Modelling and control of a medium-duty hybrid

    E-Print Network [OSTI]

    Peng, Huei

    Growing environmental concerns, coupled with the complex issue of global crude oil supplies, stimulate potential to reduce fuel consumption within realistic economic, infrastructural and customer acceptance

  10. Optimal planning and control for hazard avoidance of front-wheel steered ground vehicles

    E-Print Network [OSTI]

    Peters, Steven C. (Steven Conrad)

    2012-01-01T23:59:59.000Z

    Hazard avoidance is an important capability for safe operation of robotic vehicles at high speed. It is also an important consideration for passenger vehicle safety, as thousands are killed each year in passenger vehicle ...

  11. Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report

    SciTech Connect (OSTI)

    NONE

    1995-01-31T23:59:59.000Z

    This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

  12. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    passenger cars using the ultracapacitors in micro-hybrid,passenger car using both carbon/carbon and hybrid carbonhybrid vehicle designs and operating strategies are shown in Table 1 for a mid-size passenger car.

  13. Blog Feed: Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    more about how he's descibing the structure and dynamics of biological materials through neutron scattering. May 2, 2011 A123 battery in passenger vehicle application | Photo...

  14. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31T23:59:59.000Z

    The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

  15. Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual...

    Energy Savers [EERE]

    the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions...

  16. Thermoelectric Generator Performance for Passenger Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    modeling and architecture evaluation * Phase 2: Subsystem design, build and bench test * Phase 3: System integration. Planar configuration TEG with primary HEX and secondary...

  17. Development and Demonstration of a Low Cost Hybrid Drive Train for Medium and Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Strangas, Elias; Schock, Harold; Zhu, Guoming; Moran, Kevin; Ruckle, Trevor; Foster, Shanelle; Cintron-Rivera, Jorge; Tariq, Abdul; Nino-Baron, Carlos

    2011-04-30T23:59:59.000Z

    The DOE sponsored effort is part of a larger effort to quantify the efficiency of hybrid powertrain systems through testing and modeling. The focus of the DOE sponsored activity was the design, development and testing of hardware to evaluate the efficiency of the electrical motors relevant to medium duty vehicles. Medium duty hybrid powertrain motors and generators were designed, fabricated, setup and tested. The motors were a permanent magnet configuration, constructed at Electric Apparatus Corporation in Howell, Michigan. The purpose of this was to identify the potential gains in terms of fuel cost savings that could be realized by implementation of such a configuration. As the electric motors constructed were prototype designs, the scope of the project did not include calculation of the costs of mass production of the subject electrical motors or generator.

  18. Project Information Form Project Title White Paper on Strategies for Transitioning to Zero-Emission Vehicles--

    E-Print Network [OSTI]

    California at Davis, University of

    fuel-cell-electric vehicles (HFCVs). These technologies can be used in passenger cars, trucks (ZEVs) include battery-electric vehicles (BEVs), plug-in hybrid-electric vehicles (PHEVs), and hydrogen

  19. Exploratory Study: Vehicle Mileage Fees in Texas

    E-Print Network [OSTI]

    Powered Vehicles in Texas Estimated Fleetwide Fuel Efficiency of Gasoline Powered Vehicles in Texas 20 25 gy, gy f , gy 90% 100% Other (EV, Plugin 70% 80% Hybrid, CNG, LPG, Fuel Cell) Electric Gasoline 10% 20% Conventional Passenger Vehicles 0% 2010 2015 2020 2025 2030 2035 #12;Projected Fuel Tax

  20. NETPLAN Passenger Network Modeling and Simulation

    E-Print Network [OSTI]

    Daniels, Thomas E.

    Fuel (M Gallon) -62.76 -3.89 Electricity (GWh) 2.51 0.34 4 #12;CO2 Emission ­ Passenger Transportation.31 times existing fleet availability of passengers cars and trucks (in PCE) · Air - No investments ­ 1

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    fuel. Eligible alternative fuels include electricity, propane, natural gas, or hydrogen fuel. Medium-duty hybrid electric vehicles also qualify. Eligible medium-duty AFVs...

  2. Study Pinpoints Sources of Polluting Vehicle Emissions (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    Unburned lubricant produces 60%-90% of organic carbon emissions. While diesel fuel is often viewed as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more significantly degrade air quality. Gasoline exhaust is at least as toxic on a per-unit-mass basis as diesel exhaust, and contributes up to 10 times more particulate matter (PM) to the emission inventory. Because emissions from both fuels can gravely impact health and the environment, researchers at the National Renewable Energy Laboratory (NREL) launched a study to understand how these pollutants relate to fuels, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE) project tested a variety of vehicles over different drive cycles at moderate (72 F) and cold (20 F) temperatures. Testing included: (1) Normal and high-emitting light-, medium-, and heavy-duty vehicles; (2) Gasoline, diesel, and compressed natural gas (CNG)-powered vehicles; (3) New and aged lubricants representative of those currently on the market; and (4) Gasoline containing no ethanol, E10, Texas-mandated low-emission diesel fuel, biodiesel, and CNG. The study confirmed that normally functioning emission control systems for gasoline light-duty vehicles are very effective at controlling organic carbon (OC) emissions. Diesel vehicles without aftertreatment emission control systems exhibited OC emissions approximately one order of magnitude higher than gasoline vehicles. High-emitter gasoline vehicles produced OC emissions similar to diesel vehicles without exhaust aftertreatment emission control. Exhaust catalysts combusted or converted more than 75% of lubricating oil components in the exhaust gases. Unburned crankcase lubricant made up 60%-90% of OC emissions. This OC represented 20%-50% of emitted PM in all but two of the vehicles. Three-way catalysts proved effective at reducing most of the OC. With high PM emitters or vehicles with deteriorated aftertreatment, high-molecular-weight fuel components and unburned lubricant were emitted at higher rates than in vehicles in good repair, with functioning emissions systems. Light-duty gasoline, medium-duty diesel, and heavy-duty natural gas vehicles produced more particles with fresh oil than with aged oil. The opposite trend was observed in light- and medium-duty high PM emitters. This effect was not readily apparent with heavy-duty diesel vehicles, perhaps because the lubricant represented a much smaller fraction of the total PM in those trucks.

  3. Medium and Heavy Duty Vehicle Field Evaluations (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2014-06-01T23:59:59.000Z

    This presentation discusses field evaluations of medium- and heavy-duty vehicles performed by NREL. The project provides medium-duty (MD) and heavy-duty (HD) test results, aggregated data, and detailed analysis, including 3rd party unbiased data (data that would not normally be shared by industry in an aggregated and detailed manner). Over 5.6 million miles of advanced technology MD and HD truck data have been collected, documented, and analyzed on over 240 different vehicles since 2002. Data, analysis, and reports are shared within DOE, national laboratory partners, and industry for R&D planning and strategy. The results help guide R&D for new technology development, help define intelligent usage of newly developed technology, and help fleets/users understand all aspects of advanced technology.

  4. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01T23:59:59.000Z

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  5. Association of automobile passenger transportation and economic growth in Japan

    E-Print Network [OSTI]

    Horie, Teruhiko

    1969-01-01T23:59:59.000Z

    . , 1910-1940 38 14 Changes in Traveling Time Between Tokyo and Osaka (330 miles), 1903-1935 15 Registered Vehicles in Japan, 1933, 1935, and 1938 48 LIST OF TABLES (continued) Table Page 16 Passengers Carried in Millions by National and Private... 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 874, 589 840, 030 798, 476 786, 432 707, 987 599, 227 480, 718 434, 848 452, 176 448, 059 492, 493 499, 688 454, 508 454, 032 456, 088 35, 672. 7 33, 797. 8 31, 717. 6...

  6. Ignition Performance of New and Used Motor Vehicle Upholstery Fabrics 

    E-Print Network [OSTI]

    Spearpoint, Michael; Olenick, Stephen M; Torero, Jose L; Steinhaus, Thomas

    2005-01-01T23:59:59.000Z

    This paper examines the standards for fire safety in transport systems and in particular the test method for the flammability of materials within passenger compartments of motor vehicles. The paper compares data from ...

  7. Texas A&M Veterinary Medical Diagnostic Laboratory Procedures 21.01.08.V0.04 Vehicle Compulsory Inspection

    E-Print Network [OSTI]

    of vehicles and a compulsory emission testing program of vehicles in non­attainment areas. REASON years for a passenger car or light truck that is sold in this state; has not been previously registered

  8. Texas A&M AgriLife Research Procedures 21.01.08.A0.04 Vehicle Compulsory Inspection

    E-Print Network [OSTI]

    of vehicles and a compulsory emission testing program of vehicles in non­attainment areas. REASON years for a passenger car or light truck that is sold in this state; has not been previously registered

  9. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31T23:59:59.000Z

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  10. Optimization Online - Passenger Name Record Data Mining Based ...

    E-Print Network [OSTI]

    Dolores Romero Morales

    2008-04-16T23:59:59.000Z

    Apr 16, 2008 ... Passenger Name Record Data Mining Based Cancellation Forecasting for Revenue Management. Dolores Romero ...

  11. Thermal Analysis and Test Program to Evaluate Passenger Compartment Thermal Load Reduction and Improve: Cooperative Research and Development Final Report, CRADA number CRD-07-00231

    SciTech Connect (OSTI)

    Rugh, J.

    2011-05-01T23:59:59.000Z

    This activity supported a GM and NREL collaborative exploration of strategies to minimize and alleviate the temperature rise in the passenger compartment of an automobile during prolonged exposure to solar radiation in hot climates. It developed and exercised math-based models to simulate the air flow and thermal environment in the passenger compartment in order to compare the effectiveness of the strategies. This activity also assessed the strategies using vehicle tests.

  12. Texas A&M AgriLife Extension Service Procedures 21.01.08.X0.04 Vehicle Compulsory Inspection

    E-Print Network [OSTI]

    for compulsory inspections of vehicles and a compulsory emission testing program of vehicles in non. The initial inspection period is two years for a passenger car or light truck that is sold in this state; has

  13. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    SciTech Connect (OSTI)

    Not Available

    2007-03-01T23:59:59.000Z

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  14. austrian passenger vehicle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and efficiency can be observed depending on the size of compressors. Typically, a larger compressor results in higher fuel cell power density at the cost of fuel cell efficiency...

  15. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    for SKU from Caltech Scale up TE material and cartridge fabrication methods, including tooling and process development, for commercialization quantities 18 FUTURE WORK - DOE...

  16. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    WORK Material level work: Complete development of net shape manufacturing process and tooling. Define long term material stability. TEG cartridge level work: Produce 200-300...

  17. Organic Rankine Cycle for Light Duty Passenger Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8Organic Photovoltaics

  18. The Path to Low Carbon Passenger Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector, January 2000 | DepartmentRegulatory2

  19. Thermoelectric Generator Performance for Passenger Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department of EnergytheDepartment ofEnergy

  20. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department ofDepartment of

  1. Advances in Diesel Engine Technologies for European Passenger Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment2 DOE

  2. An automated vehicle arrival notification system for paratransit customers at Texas A&M University

    E-Print Network [OSTI]

    Donovan, Rachel A

    2000-01-01T23:59:59.000Z

    For paratransit passengers, not knowing when their ride (the paratransit vehicle) will be arriving to pick them up is a major concern. The objectives of this research included designing, implementing, and evaluating a system for automatically...

  3. Vehicle routing and scheduling for the ultra short haul transportation system

    E-Print Network [OSTI]

    Smith, Barry C.

    1979-01-01T23:59:59.000Z

    A method of vehicle routing and scheduling for an air based intraurban transportation system is developed. The maximization of level of service to passengers in a system operating under time varying demand is considered ...

  4. Valuing innovative technology R&D as a real option : application to fuel cell vehicles

    E-Print Network [OSTI]

    Tsui, Maggie

    2005-01-01T23:59:59.000Z

    This thesis aims to elucidate real option thinking and real option valuation techniques for innovative technology investment. Treating the fuel cell R&D investment as a real option for General Motor's light passenger vehicle ...

  5. Regulatory Control of Vehicle and Power Plant Emissions: How Effective and at What Cost?

    E-Print Network [OSTI]

    Paltsev, S.

    Passenger vehicles and power plants are major sources of greenhouse gas emissions. While economic analyses generally indicate that a broader market-based approach to greenhouse gas reduction would be less costly and more ...

  6. robust passenger oriented airline scheduling - Optimization Online

    E-Print Network [OSTI]

    Luis

    2010-10-29T23:59:59.000Z

    have historically been separated and optimized in a sequential manner. ... objectives are passengers' satisfaction and operator costs. We try to .... a computerized schedule construction system that begins by generating demand using a ...... Environmental Engineering and the Engineering Systems, Massachusetts Institute of.

  7. Vehicle Cooling Systems: Improvements to efficiently, safely, and inexpensively cool vehicles during prolonged sun exposure

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2010-07-02T23:59:59.000Z

    Vehicles left in sunny areas can quickly heat up to temperatures as high as 50-70 degrees C (122-158 degrees F) or even up to 121 degrees C (250 degrees F) in certain geographical areas. The windows and windshields of vehicles cause this greenhouse effect. Excess heat damages instrument panels (dash boards) and electronic equipment, causes passenger thermal discomfort, and increases fuel consumption and emissions with heavy air conditioning loads. Scientists at NREL have designed efficient,...

  8. Quantification of evaporative running loss emissions from gasoline-powered passenger cars in California. Final report

    SciTech Connect (OSTI)

    McClement, D.

    1992-01-01T23:59:59.000Z

    The purpose of the study was to collect evaporative running emissions data from a cross section of in-use, light-duty passenger cars. Forty vehicles were procured and tested using the 'LA-4' cycle (the EPA Urban Dynamometer Driving Cycle (UDDS)) and the New York City Cycle (NYCC). The LA-4 cycle was run three times with a two minute idle period between the first two runs. The NYCC was run six times with a two minute idle between the first five runs of the cycle. Tests were performed at 95 and 105 degrees Farenheit, and using 7.5 and 9.0 Reid Vapor Pressure (RVP) fuel. The report describes two types of running losses - Type 1 where emissions are emitted at a constant, low level (typical of late model, properly operating vehicles), and Type II emissions, where there is a high rate of emissions (typical in uncontrolled vehicles).

  9. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect (OSTI)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01T23:59:59.000Z

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  10. Testimony to the United States Senate Committee on Energy and Natural Resources POLICIES TO INCREASE PASSENGER CAR AND LIGHT TRUCK FUEL

    E-Print Network [OSTI]

    TO INCREASE PASSENGER CAR AND LIGHT TRUCK FUEL ECONOMY 2:30 pm, Tuesday, January 30, 2007 Dirksen Senate to formulate effective policies to significantly increase motor vehicle fuel economy. The views I express today to supply the world's growing demand for liquid fuels. Why do we need fuel economy policy? For too long we

  11. Comparative analysis of selected fuel cell vehicles

    SciTech Connect (OSTI)

    NONE

    1993-05-07T23:59:59.000Z

    Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

  12. The Economic, Energy, and GHG Emissions Impacts of Proposed 2017–2025 Vehicle Fuel Economy Standards in the United States

    E-Print Network [OSTI]

    Karplus, Valerie

    2012-07-31T23:59:59.000Z

    Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

  13. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect (OSTI)

    Wang, Q. [Argonne National Lab., IL (United States); Sperling, D.; Olmstead, J. [California Univ., Davis, CA (United States). Inst. of Transportation Studies

    1993-06-14T23:59:59.000Z

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  14. The Normal/Bloomington Amtrak passenger station

    SciTech Connect (OSTI)

    Francis, C.E. [Illinois State Univ., Normal, IL (United States)

    1995-11-01T23:59:59.000Z

    The new Normal/Bloomington, Illinois Amtrak railroad passenger station was completed in 1990. A number of energy conservation technologies have been combined to provide for efficient railroad operations, passenger comfort, and a pleasing atmosphere. Passive solar heating, shading, and the building`s thermal efficiency have substantially reduced the amount of energy required for space conditions. The use of daylighting high efficiency fluorescent and high pressure sodium lighting as well as electronic load management have reduced energy requirements for lighting more than 70%. A stand-alone PV system provides energy for a portion of the building`s electrical requirement. An average monthly output of 147 kWh accounts for approximately 7.5% of the total electrical load. Overall, this station requires less than 25% of the energy required by a recently built `typical` station of similar size in a similar climate.

  15. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    SciTech Connect (OSTI)

    Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

    2009-04-10T23:59:59.000Z

    Average particle number concentrations and size distributions from {approx}61,000 light-duty (LD) vehicles and {approx}2500 medium-duty (MD) and heavy-duty (HD) trucks were measured during the summer of 2006 in a San Francisco Bay area traffic tunnel. One of the traffic bores contained only LD vehicles, and the other contained mixed traffic, allowing pollutants to be apportioned between LD vehicles and diesel trucks. Particle number emission factors (particle diameter D{sub p} > 3 nm) were found to be (3.9 {+-} 1.4) x 10{sup 14} and (3.3 {+-} 1.3) x 10{sup 15} kg{sup -1} fuel burned for LD vehicles and diesel trucks, respectively. Size distribution measurements showed that diesel trucks emitted at least an order of magnitude more particles for all measured sizes (10 < D{sub p} < 290 nm) per unit mass of fuel burned. The relative importance of LD vehicles as a source of particles increased as D{sub p} decreased. Comparing the results from this study to previous measurements at the same site showed that particle number emission factors have decreased for both LD vehicles and diesel trucks since 1997. Integrating size distributions with a volume weighting showed that diesel trucks emitted 28 {+-} 11 times more particles by volume than LD vehicles, consistent with the diesel/gasoline emission factor ratio for PM{sub 2.5} mass measured using gravimetric analysis of Teflon filters, reported in a companion paper.

  16. Natural Gas as a Future Fuel for Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    Wai-Lin Litzke; James Wegrzyn

    2001-05-14T23:59:59.000Z

    In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications.

  17. An Optimization Model for Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

  18. QUANTIFYING THE EXTERNAL COSTS OF VEHICLE USE: EVIDENCE FROM AMERICA'S TOP SELLING LIGHT-DUTY MODELS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    -selling passenger cars and light-duty trucks in the U.S. Among these external costs, those associated with crashes estimated for several other vehicles of particular interest, including GM's Hummer and several hybrid drive: small cars, mid-sized cars, large cars, luxury cars, crossover utility vehicles (CUVs), sport

  19. EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

    E-Print Network [OSTI]

    Kammen, Daniel M.

    EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES fuel passenger cars, light-duty trucks, and heavy-duty vehicles. 1. Introduction The use of energy/electric hybrid and fuel cell/electric hybrid drivetrain technologies offers the potential for significant

  20. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  1. Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic Impact in the United States

    E-Print Network [OSTI]

    Karplus, V.J.

    The United States has adopted fuel economy standards that require increases in the on-road efficiency of new passenger vehicles, with the goal of reducing petroleum use, as well as (more recently) greenhouse gas (GHG) ...

  2. A generalized and efficient algorithm for estimating transit route ODs from passenger counts

    E-Print Network [OSTI]

    Li, Yuwei

    2007-01-01T23:59:59.000Z

    direct sampling of passenger ODs is costly, especially sincefor estimating transit route ODs from passenger counts Yuweibetter suited for predicting ODs in future transit trips.

  3. Diesel Passenger Car Technology for Low Emissions and CO2 Compliance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Passenger Car Technology for Low Emissions and CO2 Compliance Diesel Passenger Car Technology for Low Emissions and CO2 Compliance Cost effective reduction of legislated emissions...

  4. AIR QUALITY IMPACTS OF ELECTRIC VEHICLE ADOPTION IN TEXAS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    by anticipating battery-charging decisions and power plant energy sources across Texas. Life-cycle impacts conventional passenger cars in Texas, after recognizing the emissions and energy impacts of battery provision-duty vehicles. Use of coal for electricity production is a primary concern for PEV growth, but the energy

  5. Operability and Emissions from a Medium-Duty Fleet Operating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyzed DPFs 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Shell Global Solutions (US) Inc. 2004deercherrillo.pdf More Documents & Publications...

  6. Cell Cycle . Author manuscript Aurora B kinase, an immobile passenger!

    E-Print Network [OSTI]

    Boyer, Edmond

    Cell Cycle . Author manuscript Page /1 2 Aurora B kinase, an immobile passenger! Marl ne Delacour Keywords Chromosomal passenger complex ; Aurora kinase ; Survivin ; INCENP ; Borealin ; FRAP ; Microtubule composed of Aurora B kinase, Survivin, Borealin and INCENP. The centromeric complex is involved

  7. Multi-Materials Vehicle R&D Initiative Lightweight 7+ Passenger Vehicle |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProductsUptake andUserBattelle for theDepartment of

  8. Vehicle Technologies Office: 21st Century Truck Partners

    Broader source: Energy.gov [DOE]

    The 21st Century Truck Partnership is an industry-government collaboration among heavy-duty engine manufacturers, medium-duty and heavy-duty truck and bus manufacturers, heavy-duty hybrid...

  9. Comparative costs and benefits of hydrogen vehicles

    SciTech Connect (OSTI)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01T23:59:59.000Z

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  10. Energy Star Concepts for Highway Vehicles

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-06-24T23:59:59.000Z

    The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

  11. Productivity performance of US passenger airlines since deregulation

    E-Print Network [OSTI]

    Powell, Robert A., II (Robert Andre)

    2012-01-01T23:59:59.000Z

    To evaluate US passenger airlines' productivity performance since the airline deregulation in 1978, this research measures and compares productivity at both the US airline industry and individual carrier levels. Productivity ...

  12. Evaluating passenger delays in the US domestic air transportation system

    E-Print Network [OSTI]

    Umang, Nitish

    2010-01-01T23:59:59.000Z

    A fundamental component of any National Airspace System (NAS) performance evaluation is the cost impact of air traffic delays, and more generally capacity limitations, on the traveling passengers. In previous research it ...

  13. An analysis of casual carpool passenger behavior in Houston, Texas

    E-Print Network [OSTI]

    Winn, Justin Ray

    2005-08-29T23:59:59.000Z

    as ??slugging??). Casual carpools are impromptu carpools formed among strangers in order to meet the occupancy requirements of HOV lanes. In this research, survey respondent data from Houston, Texas were used to evaluate the behavior of casual carpool passengers...

  14. Transfer passenger needs at airports : human factors in terminal design

    E-Print Network [OSTI]

    Brillembourg, Marie-Claire

    1982-01-01T23:59:59.000Z

    This thesis analyzes the needs of particular users of airport: transfer passengers. The object of this work has been to produce a set of design guidelines for terminals. these guidelines are framed upon a user-need survey ...

  15. Route guidance information for elderly passengers: route naming methods

    E-Print Network [OSTI]

    Higgins, Laura Lynne

    1993-01-01T23:59:59.000Z

    ROUTE GUIDANCE INFORMATION FOR ELDERLY PASSENGERS: ROUTE NAMING METHODS A Thesis by LAURA LYNNE HIGGINS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1993 Major Subject: Industrial Engineering ROUTE GUIDANCE INFORMATION FOR ELDERLY BUS PASSENGERS: ROUTE NAMING METHODS A Thesis by LAURA LYNNE HIGGINS Submitted to Texas A&M University in partial fulfillment of the requirements...

  16. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    cars and light-duty trucks, medium-duty vehicles, and heavy-duty vehicles and engines sold and registered in Massachusetts to meet California emission and compliance...

  18. Armored Vehicle 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    This research is focused on designing a new generation of CAD tools that could help a ”hybrid vehicle” designer with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

  19. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01T23:59:59.000Z

    Area, Chicago, and New York City  are  evaluated  capturing  passenger  transportation  life?cycle  energy Area, Chicago, and New York City are evaluated capturing passenger trans- portation life-cycle energy

  20. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  1. Distributed Embedded Real-Time Systems and Beyond: A Vision of Future Road Vehicle Management1

    E-Print Network [OSTI]

    Wedde, Horst F.

    different objectives: passenger cars or motorcycles as battery-driven Electric Vehicles (EVs) and traffic, renewable pow- er sources. Under these challenges most car manufac- turers have started R&D into electric the door to bring the vision of efficient and adequate battery - driven electric cars to reality: lithium

  2. Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.

    SciTech Connect (OSTI)

    Burnham, A.; Wang, M. Q.; Wu, Y.

    2006-12-20T23:59:59.000Z

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

  3. Vehicle Technologies Office: 2014 Lightweight Materials R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles. This report describes the progress made on the research and development projects funded by the Lightweight Materials area. Past years' reports are listed on the Annual Progress Reports page.

  4. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  5. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  6. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Savers [EERE]

    Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as...

  7. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis...

  8. Commercial Vehicle Classification using Vehicle Signature Data

    E-Print Network [OSTI]

    Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

    2008-01-01T23:59:59.000Z

    Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

  9. Taiwan High Speed Rail Keeping passenger safety at the forefront

    E-Print Network [OSTI]

    Benefits Increased safety and reliability of the Taiwan High Speed Rail network through conditionTaiwan High Speed Rail Keeping passenger safety at the forefront Overview The Need Taiwan High Speed Rail Corporation (THSRC) needed a highly reliable, cost- effective and proactive means

  10. Appendix 5-Ba 12-Passenger Van Operators Checklist

    E-Print Network [OSTI]

    Swaddle, John

    as a maximum load. 2. Wear seat belts/shoulder harnesses as provided in the vehicle. 3. Drivers of College vehicles are required to operate vehicles in a safe manner and to obey all State laws. In many states, the use of a handheld cell phone while driving a vehicle is prohibited by State law except for emergency

  11. Simulation to assess the efficacy of US airport entry scrreening of passengers for pandemic influenza

    SciTech Connect (OSTI)

    Mcmahon, Benjamin [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    We present our methodology and stochastic discrete-event simulation developed to model the screening of passengers for pandemic influenza at the US port-of-entry airports. Our model uniquely combines epidemiology modelling, evolving infected states and conditions of passengers over time, and operational considerations of screening in a single simulation. The simulation begins with international aircraft arrivals to the US. Passengers are then randomly assigned to one of three states -- not infected, infected with pandemic influenza and infected with other respiratory illness. Passengers then pass through various screening layers (i.e. pre-departure screening, en route screening, primary screening and secondary screening) and ultimately exit the system. We track the status of each passenger over time, with a special emphasis on false negatives (i.e. passengers infected with pandemic influenza, but are not identified as such) as these passengers pose a significant threat as they could unknowingly spread the pandemic influenza virus throughout our nation.

  12. Near-term electric test vehicle ETV-2. Phase II. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    A unique battery-powered passenger vehicle has been developed that provides a significant improvement over conventional electric vehicle performance, particularly during stop-and-go driving. The vehicle is unique in two major respects: (1) the power system incorporates a flywheel that stores energy during regenerative braking and makes possible the acceleration capability needed to keep up with traffic without reducing range to unacceptable values; and (2) lightweight plastic materials are used for the vehicle unibody to minimize weight and increase range. These features were analyzed and demonstrated in an electric test vehicle, ETV-2. Characteristics of this vehicle are summarized. Information is presented on: vehicle design, fabrication, safety testing, and performance testing; power system design and operation; flywheel; battery pack performance; and controls and electronic equipment. (LCL)

  13. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect (OSTI)

    Malikopoulos, Andreas [ORNL

    2013-01-01T23:59:59.000Z

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  14. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    SciTech Connect (OSTI)

    Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

    2012-10-01T23:59:59.000Z

    In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

  15. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  16. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  17. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11T23:59:59.000Z

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  18. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11T23:59:59.000Z

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  19. Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

  20. Modeling the interaction between passenger cars and trucks

    E-Print Network [OSTI]

    Jenkins, Jacqueline Marie

    2004-11-15T23:59:59.000Z

    an easier way to create calibrated traffic flows in driving simulations and to capture vehicle behavior within microscopic traffic simulations. The original design for the prototype was to establish a two-way, real time exchange of vehicle data, however...

  1. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  2. Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

  3. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

    1996-08-01T23:59:59.000Z

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  4. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect (OSTI)

    Das, Sujit [ORNL

    2014-01-01T23:59:59.000Z

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  5. Applying Engineering and Fleet Detail to Represent Passenger Vehicle Transport in a Computable General Equilibrium Model

    E-Print Network [OSTI]

    Karplus, V.J.

    A well-known challenge in computable general equilibrium (CGE) models is to maintain correspondence between the forecasted economic and physical quantities over time. Maintaining such a correspondence is necessary to ...

  6. A Near-Infrared Fusion Scheme for Automatic Detection of Vehicle Passengers I. Pavlidis1

    E-Print Network [OSTI]

    1 B. Fritz1 N. Papanikolopoulos2 1 Honeywell Technology Center 2 University of Minnesota 3660 55455 (pavlidis, symosek, fritz)@htc.honeywell.com npapas@cs.umn.edu Fax 612 951-7438 Fax 612 625

  7. Automatic Passenger Counting in the High Occupancy Vehicle (HOV) I. Pavlidis P. Symosek B. Fritz

    E-Print Network [OSTI]

    . Fritz Honeywell Technology Center 3660 Technology Drive MN65-2500 Minneapolis, MN 55418 Tel. (612) 951-7338 Fax (612) 951-7438 (pavlidis, symosek, fritz)@htc.honeywell.com R. Sfarzo N. P. Papanikolopoulos phenomenology and arrangement for the task and our plans for the future. Introduction The Honeywell Technology

  8. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    vehicles except the methanol/fuel cell vehicle and the BPEVe estimates for the methanol/fuel cell vehicle are based onbiomass-derived methanol used in fuel cell vehicles. Several

  9. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (115 Newhaven Rd., Oak Ridge, TN 37830)

    1994-01-01T23:59:59.000Z

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  11. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12T23:59:59.000Z

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  12. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15T23:59:59.000Z

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  13. Full Useful Life (120,000 miles) Exhaust Emission Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with...

  14. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies...

  15. Aurora B kinase, an immobile passenger! Marlne Delacour-Larose, Hong-Lien Vu, Annie Molla*

    E-Print Network [OSTI]

    Boyer, Edmond

    Aurora B kinase, an immobile passenger! Marlène Delacour-Larose, Hong-Lien Vu, Annie Molla* INSERM words: Chromosomal passenger complex, Aurora kinase, Survivin, INCENP, Borealin, FRAP, Microtubule, Centromere, Kinetochore, Tension. Running title: Aurora B kinase inserm-00438121,version1-2Dec2009 Author

  16. Page 1 of 16 The reform of passenger rail in Switzerland: more performance

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Page 1 of 16 The reform of passenger rail in Switzerland: more performance without competition: christian.desmaris@sciencespo-lyon.fr Keywords: Swiss railway reform Regulation Regionalization Railway of ongoing institutional reform. This article strives to shed light on passenger traffic reform, and more

  17. NASA Green Flight Challenge: Conceptual Design Approaches and Technologies to Enable 200 Passenger Miles

    E-Print Network [OSTI]

    Waliser, Duane E.

    Miles per Gallon Douglas P. Wells* NASA Langley Research Center, Hampton, Virginia 23681 The Green 50 passenger-miles per gallon and this competition will push teams to greater than 200 passenger-miles per gallon. The aircraft must also fly at least 100 miles per hour for 200 miles. The total prize

  18. Rebound 2007: Analysis of U.S. Light-Duty Vehicle Travel Statistics

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2010-01-01T23:59:59.000Z

    U.S. national time series data on vehicle travel by passenger cars and light trucks covering the period 1966 2007 are used to test for the existence, size and stability of the rebound effect for motor vehicle fuel efficiency on vehicle travel. The data show a statistically significant effect of gasoline price on vehicle travel but do not support the existence of a direct impact of fuel efficiency on vehicle travel. Additional tests indicate that fuel price effects have not been constant over time, although the hypothesis of symmetry with respect to price increases and decreases is not rejected. Small and Van Dender (2007) model of a declining rebound effect with income is tested and similar results are obtained.

  19. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview1.p...

  20. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

  1. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

  2. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Energy Savers [EERE]

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  3. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing...

  4. Thermal management concepts for higher efficiency heavy vehicles.

    SciTech Connect (OSTI)

    Wambsganss, M. W.

    1999-05-19T23:59:59.000Z

    Thermal management is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, aerodynamics, driver/passenger comfort, materials selection, emissions, maintenance, and component life. This review paper provides an assessment of thermal management for large trucks, particularly as it impacts these features. Observations arrived at from a review of the state of the art for thermal management for over-the-road trucks are highlighted and commented on. Trends in the large truck industry, pertinent engine truck design and performance objectives, and the implications of these relative to thermal management, are presented. Finally, new thermal management concepts for high efficiency vehicles are described.

  5. Cell division control by the Chromosomal Passenger Complex

    SciTech Connect (OSTI)

    Waal, Maike S. van der; Hengeveld, Rutger C.C.; Horst, Armando van der; Lens, Susanne M.A., E-mail: s.m.a.lens@umcutrecht.nl

    2012-07-15T23:59:59.000Z

    The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.

  6. Development of turbocharger for improving passenger car acceleration

    SciTech Connect (OSTI)

    Watanabe, Tsuyoshi; Koike, Takaaki; Furukawa, Hiromu; Ikeya, Nobuyuki; Sakakida, Masaru

    1996-09-01T23:59:59.000Z

    Recently, passenger cars require better acceleration from low engine speed including starting-up in order to decrease the amount of particulate matter (PM) of diesel engines or to improve the driver`s feeling. However, turbocharged cars generally have worse response than the non turbo cars because it takes a few seconds to get the turbocharger rotate up to high speed, usually called Turbo-lag. In order to solve this, various technologies have been developed for a turbocharger itself as well as for charging system such as the sequential system. Here in this paper, the authors focus on the development of the following turbocharger technology to reduce Turbo-lag and to achieve better transient response.

  7. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  8. Advances in Diesel Engine Technologies for European Passenger...

    Broader source: Energy.gov (indexed) [DOE]

    forces of vehicle development 1990 1995 2000 2005 2010 2015 2020 2025 Energy Greenhouse effect CO 2 Exhaust gas emissions CO, NO x , HC, PM Importance European Status European...

  9. Modeling the interaction between passenger cars and trucks 

    E-Print Network [OSTI]

    Jenkins, Jacqueline Marie

    2004-11-15T23:59:59.000Z

    simulation programs with driving simulator programs, and the application of a prototype distributed traffic simulation to study the impact of the length of an impeding vehicle on passing behavior. The methodology was motivated by the need to provide...

  10. Assessing vehicle detection utilizing video image processing technology

    E-Print Network [OSTI]

    Hartmann, Duane E

    1996-01-01T23:59:59.000Z

    processing system's ability and limitations in accurately detecting passenger cars with and without passenger cars traveling in the adjacent travel lane. This study also analvzes a video image processing system's ability to determine passenger car speeds...

  11. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Accelerated Reliability Test Battery Electric Vehicle Fast Charge Test Battery Energy Storage Performance Test For DC Fast Charge Demand Reduction...

  12. Vehicle Modeling and Simulation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Modeling and Simulation Vehicle Modeling and Simulation Matthew Thornton National Renewable Energy Laboratory matthewthornton@nrel.gov phone: 303.275.4273 Principal...

  13. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect (OSTI)

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01T23:59:59.000Z

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  14. The evolution of passenger accessibility in the US airline industry, 1980-2010

    E-Print Network [OSTI]

    Jenkins, James Joseph, M.C.P. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Since deregulation, passenger air travel and the airline industry as a whole have changed dramatically. While most previous research has focused on the changes experienced by the airlines, this thesis seeks to understand ...

  15. Developing an integrated transit schedule with improved passenger level of service measures

    E-Print Network [OSTI]

    Blume, Kelly Lyn

    2002-01-01T23:59:59.000Z

    -route transit services. Complementary paratransit services are expensive to provide, however, so it is important that they be provided in as cost-effective a manner as possible without reducing the level of service provided to passengers. One strategy...

  16. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy,

    E-Print Network [OSTI]

    California at Berkeley, University of

    Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy and Environmental Engineering Civil Systems Program mchester@cal.berkeley.edu Project Director: Arpad Horvath, Associate Professor University of California, Berkeley Department of Civil and Environmental Engineering

  17. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01T23:59:59.000Z

    The parallel hybrid passenger car (VW Golf) combined an EDLCpassenger cars using the ultracapacitors in micro-hybrid,passenger car using both carbon/carbon and hybrid carbon

  18. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  19. Crystal Structure of the Passenger Domain of the Escherichia coli Autotransporter EspP

    SciTech Connect (OSTI)

    Khan, Shekeb; Mian, Hira S.; Sandercock, Linda E.; Chirgadze, Nickolay Y.; Pai, Emil F. (Toronto); (OCI)

    2013-03-07T23:59:59.000Z

    Autotransporters represent a large superfamily of known and putative virulence factors produced by Gram-negative bacteria. They consist of an N-terminal 'passenger domain' responsible for the specific effector functions of the molecule and a C-terminal '{beta}-domain' responsible for translocation of the passenger across the bacterial outer membrane. Here, we present the 2.5-{angstrom} crystal structure of the passenger domain of the extracellular serine protease EspP, produced by the pathogen Escherichia coli O157:H7 and a member of the serine protease autotransporters of Enterobacteriaceae (SPATEs). Like the previously structurally characterized SPATE passenger domains, the EspP passenger domain contains an extended right-handed parallel {beta}-helix preceded by an N-terminal globular domain housing the catalytic function of the protease. Of note, however, is the absence of a second globular domain protruding from this {beta}-helix. We describe the structure of the EspP passenger domain in the context of previous results and provide an alternative hypothesis for the function of the {beta}-helix within SPATEs.

  20. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

  1. > 070131-073Vehicle

    E-Print Network [OSTI]

    Marques, Eduardo R. B.

    on collaborative control ofAutonomous Underwater Vehicles (AUV), Unmanned Aerial Vehicles (UAV) and Autonomous. In another configuration, Swordfish mounts a docking station for the autonomous underwater vehicle Isurus Terms-Autonomous Surface Vehicles, ocean robotics, marine science operations, unmanned survey vessels. I

  2. Alternative Fuel Vehicle Data

    Reports and Publications (EIA)

    2013-01-01T23:59:59.000Z

    Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

  3. AGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO-

    E-Print Network [OSTI]

    Miller, Jeffrey A.

    -to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2V) and vehicle proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicle-to-infrastructure (VAGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO- INFRASTRUCTURE (V2V2I) INTELLIGENT

  4. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2005-01-01T23:59:59.000Z

    The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

  5. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  6. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Energy Savers [EERE]

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  7. Sustainable Passenger Transportation: Dynamic Ride-Sharing Niels Agatz

    E-Print Network [OSTI]

    Erera, Alan

    #12;Private car occupancy rates (the number of travelers per vehicle trip) are relatively low; average community in this exciting, emerging area of public transportation. 1 Introduction Finite oil supplies certificates, or retail sales discounts to participants. Ride-sharing has generated much interest, and recent

  8. Child Passenger Safety http://passengersafety.tamu.edu

    E-Print Network [OSTI]

    in the United States in motor vehicle crashes during 2011. · Minority children are more likely to be fatally injured in car crashes than white children. · Rural areas have a higher crash incidence and death rate Safety Project at the Texas A&M AgriLife Extension Service works to reduce deaths and injuries from motor

  9. Inhalation of primary motor vehicle emissions: Effects of urbanpopulation and land area

    SciTech Connect (OSTI)

    Marshall, Julian D.; McKone, Thomas E.; Nazaroff, William W.

    2004-06-14T23:59:59.000Z

    Urban population density can influence transportation demand, as expressed through average daily vehicle-kilometers traveled per capita (VKT). In turn, changes in transportation demand influence total passenger vehicle emissions. Population density can also influence the fraction of total emissions that are inhaled by the exposed urban population. Equations are presented that describe these relationships for an idealized representation of an urban area. Using analytic solutions to these equations, we investigate the effect of three changes in urban population and urban land area (infill, sprawl, and constant-density growth) on per capita inhalation intake of primary pollutants from passenger vehicles. The magnitude of these effects depends on density-emissions elasticity ({var_epsilon}{sub e}), a normalized derivative relating change in population density to change in vehicle emissions. For example, if urban population increases, per capita intake is less with infill development than with constant-density growth if {var_epsilon}{sub e} is less than -0.5, while for {var_epsilon}{sub e} greater than -0.5 the reverse is true.

  10. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. richmondevinitiative....

  11. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Broader source: Energy.gov (indexed) [DOE]

    to maximize usage, educating the public and coordinating with utilities. The Vehicle Technologies Office is partnering with city governments, local organizations, and...

  12. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    reflect those of the United States Government or any agency thereof. Richmond Electric Vehicle Initiative Readiness Plan | 1 Table of Contents Executive Summary...

  13. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

  14. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Environmental Management (EM)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

  15. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300...

  16. Vehicle Technologies Office: AVTA - Diesel Internal Combusion...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

  17. The Case for Electric Vehicles

    E-Print Network [OSTI]

    Sperling, Daniel

    2001-01-01T23:59:59.000Z

    land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

  18. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01T23:59:59.000Z

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  19. Coordinating Automated Vehicles via Communication

    E-Print Network [OSTI]

    Bana, Soheila Vahdati

    2001-01-01T23:59:59.000Z

    1.1 Vehicle Automation . . . . . . . . . . . 1.1.1 Controlareas of technology in vehicle automation and communicationChapter 1 Introduction Vehicle Automation Automation is an

  20. Sandia National Laboratories: Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EfficiencyVehicle Technologies Vehicle Technologies Combustion Research Facility (CRF) Vehicle Technology programs at Sandia share a common goal: reducing dependence on...

  1. Emissions comparison between petroleum diesel and biodiesel in a medium-duty diesel engine 

    E-Print Network [OSTI]

    Tompkins, Brandon T.

    2009-05-15T23:59:59.000Z

    oils, or animal fats. It has become increasingly popular and is looked at as a diesel replacement. This research characterizes the emissions of the new John Deere PowerTech Plus 4045HF285 in the Advance Engine Research Laboratory at Texas A&M University...

  2. Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    Chan-Chiao Lin, Huei Peng and J. W. Grizzle University of Michigan Jason Liu and Matt Busdiecker Eaton Corporation Copyright © 2003 SAE International ABSTRACT The power management control system development management control system for the prototype truck produced by the Eaton Innovation Center

  3. Emissions comparison between petroleum diesel and biodiesel in a medium-duty diesel engine

    E-Print Network [OSTI]

    Tompkins, Brandon T.

    2009-05-15T23:59:59.000Z

    Biofuels have become very important topics over the past decade due to the rise in crude oil prices, fear of running out of crude oil, and environmental impact of emissions. Biodiesel is a biofuel that is made from plant seed oils, waste cooking...

  4. Investigation of NO2 Oxidation Kinetics and Burning Mode for Medium Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002 InvestigationFuel Cell PerformanceDiesel

  5. Operability and Emissions from a Medium-Duty Fleet Operating with GTL Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil's Impact onDepartmentDepartment ofDepartmentand

  6. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlanned

  7. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation | Department of

  8. The Impact of Lubricant on Emissions from a Medium-Duty Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartmentTheEnergy TheCleanTheCatalysts |Department

  9. Syngas Generator Use for Retrofit DPF Active Regeneration on a Medium Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic SafetyGeothermal/Ground-Source HeatSwept AwaytoSynergiesTruck |

  10. System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic SafetyGeothermal/Ground-Sourcepnnl.gov CodesSystem for| Department

  11. Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson HazleRyan Gist,HeatApplications

  12. ASE Certification for Light/Medium Duty CNG/LPG Training Programs

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onConversions toE15 and Infrastructure

  13. DOE Hybrid Electric Vehicle Test Platform

    SciTech Connect (OSTI)

    Gao, Yimin

    2012-03-31T23:59:59.000Z

    Based on the contract NT-42790 to the Department of Energy, “Plug-in Hybrid Ethanol Research Platform”, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS, and then generates motor torque command (traction or braking) to the motor controller based on the control algorithm software embedded in the vehicle controller ECU. The vehicle controller ECU is a re-programmable electronic control unit. Any control algorithm software developed can be easily downloaded to vehicle controller ECU to test any newly developed control strategy. The flexibility of the control system significantly enhances the practical applicability of the LabRAT. A new test methodology has been developed for the LabRAT simulating any vehicles running on road with different weights from compact passenger car to light duty truck on an AC or eddy current dynamometers without much effort for modification of the system. LabRAT is equipped with a fully functional data acquisition system supplied by CyberMetrix. The measurement points along the drive train are DC electric power between battery pack and motor controller input, AC electric power between motor controller and electric motor, mechanical power between motor and rear axle. The data acquisition system is designed with more capability than current requirements in order to meet the requirements for phase II.

  14. VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________

    E-Print Network [OSTI]

    Yang, Zong-Liang

    VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________ Door #____________ License Plate ____________________ Vehicle/Supplies (Enter Description such as grade sheets, artifacts, money, etc.) 6. Taking vehicle to Automotive Shop

  15. Social networking in vehicles

    E-Print Network [OSTI]

    Liang, Philip Angus

    2006-01-01T23:59:59.000Z

    In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

  16. Automated Vehicle-to-Vehicle Collision Avoidance at Intersections

    E-Print Network [OSTI]

    Del Vecchio, Domitilla

    Automated Vehicle-to-Vehicle Collision Avoidance at Intersections M. R. Hafner1 , D. Cunningham2 on modified Lexus IS250 test vehicles. The system utilizes vehicle-to-vehicle (V2V) Dedicated Short the velocities of both vehicles with automatic brake and throttle commands. Automatic commands can never cause

  17. Motor Vehicle Record Procedure Objective

    E-Print Network [OSTI]

    Kirschner, Denise

    Motor Vehicle Record Procedure Objective Outline the procedure for obtaining motor vehicle record (MVR) through Fleet Services. Vehicle Operator Policy 3. Operators with 7 or more points on their motor vehicle record

  18. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  19. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  20. Automotive vehicle sensors

    SciTech Connect (OSTI)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01T23:59:59.000Z

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  1. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Powertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced Research Fellow A vehicles powertrain is a complex combination of interacting sub-systems which include complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task

  2. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Powertrain & Vehicle Research Centre Low Carbon Powertrain Development S Akehurst, EPSRC Advanced Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    cars, light-duty trucks, medium-duty vehicles, and heavy-duty diesel vehicles and engines. Manufacturers must meet the greenhouse gas emissions standard and the zero emissions...

  4. Making the case for direct hydrogen storage in fuel cell vehicles

    SciTech Connect (OSTI)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31T23:59:59.000Z

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  5. William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies

    E-Print Network [OSTI]

    Swaddle, John

    William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

  6. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01T23:59:59.000Z

    CO),  and  electricity  generation  in  fuel  production (SOelectricity generation in vehicle manufacturing, infrastructure construction, and fuelelectricity generation in  vehicle manufacturing, infrastructure construction, and fuel 

  7. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  8. An investigation of the information needs of air passengers traveling to the airport

    E-Print Network [OSTI]

    Burdette, Debra Arlene

    2000-01-01T23:59:59.000Z

    , 1998). As the popularity of air travel continues to increase, the number of trips to and from the airport will inevitably rise also. Passengers will need accurate information about all modes on a total trip basis. This includes the modes of access...

  9. Potential for meeting the EU new passenger car CO? emissions targets

    E-Print Network [OSTI]

    Bhatt, Kandarp

    2011-01-01T23:59:59.000Z

    In 2009, the European Parliament agreed to limit the CO2 emissions from new passenger cars sold in the European Union to an average of 130g/km by 2015. Further, a probable longer-term CO2 emissions target of 95g/km is ...

  10. The Passenger Steamboat Phoenix: An Archaeological Study of Early Steam Propulsion in North America 

    E-Print Network [OSTI]

    Schwarz, George 1977-

    2012-08-31T23:59:59.000Z

    passenger steamer between 1815 and 1819, when she caught fire and sank in the lake. The intention of this study is to advance our knowledge of early steamboat design and use in the United States through the archaeological investigation of the country’s...

  11. An investigation of the information needs of air passengers traveling to the airport 

    E-Print Network [OSTI]

    Burdette, Debra Arlene

    2000-01-01T23:59:59.000Z

    , 1998). As the popularity of air travel continues to increase, the number of trips to and from the airport will inevitably rise also. Passengers will need accurate information about all modes on a total trip basis. This includes the modes of access...

  12. Mobile Journey Planning for Bus Passengers Desmond Rainsford and William A Mackaness

    E-Print Network [OSTI]

    . Developments in mobile technology offer new ways of supporting mobile decision making. One application domain1 Mobile Journey Planning for Bus Passengers Desmond Rainsford and William A Mackaness Geography in the area of Location Based Services (LBS) is the delivery of journey plans to a mobile device. Few journey

  13. Development of Improved Traveler Survey Methods for High-Speed Intercity Passenger Rail Planning

    E-Print Network [OSTI]

    Sperry, Benjamin

    2012-07-16T23:59:59.000Z

    High-speed passenger rail is seen by many in the U.S. transportation policy and planning communities as an ideal solution for fast, safe, and resource-efficient mobility in high-demand intercity corridors. To expand the body of knowledge for high...

  14. General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications

    E-Print Network [OSTI]

    Gilbes, Fernando

    General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications Vehicle Characteristics Specification Maximum Depth 700m with 1.5 safety factor Vehicle power 2kWHr Li Ion Rechargeable Transducer 700m rated Paroscientific Depth Sensor will be integrated into the vehicle navigation stream

  15. VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION

    E-Print Network [OSTI]

    Watson, Craig A.

    VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION Date Origin/Destination Purpose Time Out Time) Accuracy of Information (b) Valid Driver's License VEHICLE # TAG # VEHICLE MAKE, MODEL, AND YEAR NOTE: Vehicle logs must be maintained for audit purposes. It is important that all of the required information

  16. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  17. Vehicle underbody fairing

    DOE Patents [OSTI]

    Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

    2010-11-09T23:59:59.000Z

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  18. Accomodating Electric Vehicles

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01T23:59:59.000Z

    Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

  19. Accomodating Electric Vehicles 

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01T23:59:59.000Z

    Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

  20. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  1. Vehicle Technologies Office: AVTA - Evaluating Military Bases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

  2. Energy 101: Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  3. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

  4. Flex Fuel Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flex Fuel Vehicle Systems * Bosch FFV Project Structure and Partners * Purpose of Work - Project Highlights * Barriers - Existing Flex Fuel Systems and Problems * Approach - Bosch...

  5. Georgia Tech Vehicle Acquisition and

    E-Print Network [OSTI]

    1 2012 Georgia Tech 10/10/2012 Vehicle Acquisition and Disposition Manual #12;2 Vehicle Procedures Regardless of value, all vehicles should be included in this process. Acquisition of a Vehicle 1. Contact Fleet Coordinator to guide the departments in the purchasing process for all vehicles. 2. Fill out

  6. Study of long term options for electric vehicle air conditioning

    SciTech Connect (OSTI)

    Dieckmann, J.; Mallory, D. [Little (Arthur D.), Inc., Cambridge, MA (United States)

    1991-07-01T23:59:59.000Z

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an {open_quotes}upsized{close_quotes} condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  7. Study of long term options for electric vehicle air conditioning

    SciTech Connect (OSTI)

    Dieckmann, J.; Mallory, D. (Little (Arthur D.), Inc., Cambridge, MA (United States))

    1991-07-01T23:59:59.000Z

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an [open quotes]upsized[close quotes] condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  8. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and...

  9. Laboratory to change vehicle traffic-screening regimen at vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  10. Zero emission passenger vehicles in tyhhe [sic] United States, anticipating future automobile industry trends based on stakeholder interview analysis

    E-Print Network [OSTI]

    German, Thomas M

    2012-01-01T23:59:59.000Z

    My personal interest in automobile evolution is the primary motivation for this thesis. My engineering education and a fifteen year career in professional automobile racing were also inspired by personal passion for ...

  11. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  12. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

  13. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  14. MKV Carrier Vehicle Sensor Calibration

    E-Print Network [OSTI]

    Plotnik, Aaron M.

    The Multiple Kill Vehicle (MKV) system, which is being developed by the US Missile Defense Agency (MDA), is a midcourse payload that includes a carrier vehicle and a number of small kill vehicles. During the mission, the ...

  15. The Vehicle Technologies Market Report

    E-Print Network [OSTI]

    The Vehicle Technologies Market Report Center for Transportation Analysis 2360 Cherahala Boulevard Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Oak Ridge National Laboratory's Center for Transportation Analysis developed and published the first Vehicle Technologies Market

  16. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  17. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    Strategy Phase 2 Demonstrator Vehicle (GDCI) 2011 Sonata 6MT, 2.0L GDI Theta Turbo Technologies on Vehicle: Stop start EMS Control Algorithms Calibration GDi pump...

  18. Sandia National Laboratories: Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Technologies Energy Efficiency On November 11, 2010, in Solid-State Lighting Vehicle Technologies Energy Efficiency News Energy Frontier Research Center for Solid-State...

  19. Assessment of the potential diversion of air passengers to high-speed rail in the northeast corridor

    E-Print Network [OSTI]

    Clarke, Michael D. D.

    1994-01-01T23:59:59.000Z

    The high level of intercity passenger travel in the Northeast Corridor is supported by densely populated metropolitan city-centers, the suitable distance between the urban areas, and the extent to which economic and social ...

  20. Bus passenger origin-destination estimation and travel behavior using automated data collection systems in London, UK

    E-Print Network [OSTI]

    Wang, Wei, S.M. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    This research explores the application of archived data from Automatic Data Collection Systems (ADCS) to transportation planning with a focus on bus passenger Origin-Destination (OD) inferences at the bus-route level and ...

  1. A Verified Hybrid Controller For Automated Vehicles

    E-Print Network [OSTI]

    Lygeros, J.; Godbole, D. N.; Sastry, S.

    1997-01-01T23:59:59.000Z

    con- trollers for vehicle automation," in American ControlTomizuka, Vehicle lateral control for highway automation,"

  2. The Lelystad Karveel: reconstruction of a seventeenth-century Dutch passenger ferry

    E-Print Network [OSTI]

    Saul, Melissa Dianne

    1994-01-01T23:59:59.000Z

    T H E L E L Y S T A D K A R V E E L : RECONSTRUCTION OF A SEVENTEENTH-CENTURY D U T C H PASSENGER F E R R Y A Thesis by MELISSA DIANNE S A U L Submitted to the Office of Graduate Studies of Texas A & M University in partial fulfillment... of the requirements for the degree of M A S T E R OF SCIENCE August 1994 Major Subject: Visualization Sciences THE L E L Y S T A D K A R V E E L : RECONSTRUCTION OF A SEVENTEENTH-CENTURY D U T C H PASSENGER F E R R Y MELISSA DIANNE S A U L Submitted to Texas A...

  3. Application for certification, 1991 model-year light-duty vehicles - Sterling

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems or exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  4. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  5. Renting Vehicles Renting Vehicles from MSU Motor Pool

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Renting Vehicles Renting Vehicles from MSU Motor Pool Motor Pool/Transportation Services Motor Pool vehicles may ONLY be used for club-related travel). 2) Valid U.S. driver's license in good standing; 3) Completed Vehicle Use Authorization form for all drivers; and 4) Personal medical insurance

  6. ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS

    E-Print Network [OSTI]

    Brennan, Sean

    - 1 - ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne and spatial re-parameterization of the linear vehicle Bicycle Model is presented utilizing non-dimensional ratios of vehicle parameters called -groups. Investigation of the -groups using compiled data from 44

  7. ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS

    E-Print Network [OSTI]

    Brennan, Sean

    ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne Dept, IL 61801 ABSTRACT A temporal and spatial re-parameterization of the well- known linear vehicle Bicycle Model is presented. This parameterization utilizes non-dimensional ratios of vehicle parameters

  8. Blast resistant vehicle seat

    DOE Patents [OSTI]

    Ripley, Edward B

    2013-02-12T23:59:59.000Z

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  9. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  10. Vehicle Technologies Office Merit Review 2014: Smith Electric...

    Office of Environmental Management (EM)

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced...

  11. Electric-Drive Vehicle engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-driveVehicleEngineering engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

  12. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01T23:59:59.000Z

    VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

  13. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  14. Director, Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    This position is located within the Vehicle Technologies Office (VTO), within the Office of Energy Efficiency and Renewable Energy (EERE). The Office reports to the Deputy Assistant Secretary for...

  15. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Rechargeable Zinc-Air Battery System for Electric Vehicles,"hthium/polymer* Zinc-air battery (Electric Fuel)* NickelThe discharge rate for the zinc/air battery was 5 hours at a

  16. Vehicle Repair Policy Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles.

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Repair Policy Objective Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles. Policy 1. All vehicle repairs performed on U-M vehicles must be coordinated facility to repair their fleet vehicles. 2. U-M vehicles leased through Fleet Services include routine

  17. AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  18. Apparatus for stopping a vehicle

    DOE Patents [OSTI]

    Wattenburg, Willard H. (Walnut Creek, CA); McCallen, David B. (Livermore, CA)

    2007-03-20T23:59:59.000Z

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  19. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, Richard S. (Deephaven, MN); Allen, Larry N. (Excelsior, MN)

    1989-04-25T23:59:59.000Z

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  20. Vehicle Technologies Office - AVTA: All Electric USPS Long Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing...

  1. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  2. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    waste heat recovery devices for vehicles Vehicle Technologies Office Merit Review 2014: Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling...

  3. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2010 DOE Vehicle Technologies and Hydrogen...

  4. Vehicle Technologies Office: AVTA - Evaluating National Parks...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Evaluating National Parks and Forest Service Fleets for Plug-in Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating National Parks...

  5. Advanced Vehicle Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities that provide data critical to the development and commercialization of next-generation vehicles Vehicle Electrification Advancing the future of electric vehicles...

  6. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    a future in which vehicle automation technologies are ableto support the heavy vehicle automation including PrecisionCommittee on Vehicle-Highway Automation, and the attendees

  7. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    Propulsion Systems for Hybrid Vehicles. The Institution ofA.B. (1996). Ultralight-Hybrid Vehicle Design: OvercomingLightweight Electric/Hybrid Vehicle Design. Reel Educational

  8. Vehicle Technologies Office: Power Electronics and Electrical...

    Broader source: Energy.gov (indexed) [DOE]

    overview of electric drive vehicles, see the Alternative Fuels Data Center's pages on Hybrid and Plug-in Electric Vehicles. The Vehicle Technologies Office (VTO) supports...

  9. Vehicle-Grid Interoperability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle-Grid Interoperability Charging a test vehicle using the laboratory's solar-powered charging station. Charging a test vehicle using the laboratory's solar-powered charging...

  10. Specialty Vehicles and Material Handling Equipment

    Broader source: Energy.gov (indexed) [DOE]

    Benefits Environmental Benefits "Well-to-Tank" Greenhouse Gas Factors Hydrogen fuel cell vehicles Hydrogen fuel cell vehicles Hydrogen fuel cell vehicles Hydrogen fuel cell...

  11. Commercial Motor Vehicle Brake-Related Research

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

  12. Vehicle Technologies Office: Annual Progress Reports | Department...

    Energy Savers [EERE]

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research...

  13. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  14. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy  at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Vehicle...

  15. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  16. Vehicle brake testing system

    DOE Patents [OSTI]

    Stevens, Samuel S. (Harriman, TN); Hodgson, Jeffrey W. (Lenoir City, TN)

    2002-11-19T23:59:59.000Z

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  17. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Vehicle Technologies Office: AVTA- Start-Stop (Micro) Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the stop-start hybrid versions of the following vehicles is available: 2010 Smart Fortwo, 2010 Volkswagen Golf Diesel, and 2010 Mazda3 Hatchback.

  20. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  1. Advanced Technologies for Light-Duty Vehicles (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    A fundamental concern in projecting the future attributes of light-duty vehicles-passenger cars, sport utility vehicles, pickup trucks, and minivans-is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in the National Energy Modeling System (NEMS); however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

  2. Electric and Hybrid Vehicles Program 18th annual report to Congress for Fiscal Year 1994

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Department remains focused on the technologies that are critical to making electric and hybrid vehicles commercially viable and competitive with current production gasoline-fueled vehicles in performance, reliability, and affordability. During Fiscal Year 1994, significant progress was made toward fulfilling the intent of Congress. The Department and the United States Advanced Battery Consortium (a partnership of the three major domestic automobile manufacturers) continued to work together and to focus the efforts of battery developers on the battery technologies that are most likely to be commercialized in the near term. Progress was made in industry cost-shared contracts toward demonstrating the technical feasibility of fuel cells for passenger bus and light duty vehicle applications. Two industry teams which will develop hybrid vehicle propulsion technologies have been selected through competitive procurement and have initiated work, in Fiscal Year 1994. In addition, technical studies and program planning continue, as required by the Energy Policy Act of 1992, to achieve the goals of reducing the transportation sector dependence on imported oil, reducing the level of environmentally harmful emissions, and enhancing industrial productivity and competitiveness.

  3. Blog Feed: Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    16, 2010 This image shows how a thermoelectric generator would be placed in a passenger car. | Photo courtesy of BMW Could TEG Improve Your Car's Efficiency? Did you know that...

  4. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01T23:59:59.000Z

    maintenance,  and  petroleum  production.   The  inclusion vehicle maintenance.   Petroleum Production  As  discussed maintenance, and petroleum production.   Cold Starts  As 

  5. Real-World Emissions from Model Year 1993, 2000, and 2010 Passenger Cars

    E-Print Network [OSTI]

    Ross, M.

    2010-01-01T23:59:59.000Z

    emissions. To control running loss emissions, CARBhas established a running loss emission standard of 0.05during vehicle operation. 3) Running losses, the evaporative

  6. Parametrized maneuvers for autonomous vehicles

    E-Print Network [OSTI]

    Dever, Christopher W. (Christopher Walden), 1972-

    2004-01-01T23:59:59.000Z

    This thesis presents a method for creating continuously parametrized maneuver classes for autonomous vehicles. These classes provide useful tools for motion planners, bundling sets of related vehicle motions based on a ...

  7. VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE

    E-Print Network [OSTI]

    Ronquist, Fredrik

    VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE GENERAL INFORMATION Vehicles resposniblity and disciplinary action. Vehicles may be used by faculty or staff from other departments complete the vehicle usage agreement form certifying that they have a valid driver's license

  8. Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC)

    E-Print Network [OSTI]

    Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC) Oak Ridge National Laboratory Safety Security Vehicle Technologies Research Brief T he Commercial Motor Vehicle Roadside Technology in Tennessee to demonstrate, test, evaluation, and showcase innovative commercial motor vehicle (CMV) safety

  9. Utility vehicle safety Operator training program

    E-Print Network [OSTI]

    Minnesota, University of

    Utility vehicle safety Operator training program #12;Permissible use Utility Vehicles may only Utility Vehicle operator · When equipped with the "Required Equipment" · On public roadways within Drivers" · Obey all traffic regulations · Trained; update training every two years · Operate vehicles

  10. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Heavy Vehicle Systems

    SciTech Connect (OSTI)

    Sid Diamond; Richard Wares; Jules Routbort

    2000-04-11T23:59:59.000Z

    Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

  12. Commercial Vehicles Collaboration for

    E-Print Network [OSTI]

    Waliser, Duane E.

    events (level derived from integrated design and safety analysis) · Protection against fire, depress Vehicle Transition Concepts Astronaut Office letter (June, 2010) describes position on crew suit as a resource to expedite this transition to the commercial market The current astronaut corps can be used

  13. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  14. Vehicle Operation and Parking Policy

    E-Print Network [OSTI]

    Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration in this policy. 2.0 POLICY STATEMENT This policy is intended to promote safe driving by operators of all vehicles are in effect at all times and apply to all persons and vehicles physically present on the CSM campus

  15. UWO Vehicle ACCIDENT REPORTING FORM

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    UWO Vehicle ­ ACCIDENT REPORTING FORM To be completed at the scene. (Important: Do not admit liability or discuss any settlement.) If there are personal injuries or severe damage to the vehicle, call 911. If vehicle is drivable and if it's safe to do so, pull to the side of road away from traffic. Put

  16. VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION

    E-Print Network [OSTI]

    VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION MADALENA CHAVES, ROBERT DAY, LUCIA GOMEZ a network of vehicles exchanging information among themselves with the intention of achieving a specified the performance of the vehicle network. A stochastic model for information flow is also considered, allowing

  17. Vehicle Operation and Parking Policy

    E-Print Network [OSTI]

    Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration STATEMENT This policy is intended to promote safe driving by operators of all vehicles utilizing streets and apply to all persons and vehicles physically present on the CSM campus. For the purpose of this policy

  18. Vehicle Management Driver Safety Program

    E-Print Network [OSTI]

    Machel, Hans

    Vehicle Management and Driver Safety Program Manual Facilities & Operations / Finance & Administration Version 2 April 2012 #12;© 2012 University of Alberta. #12;The Vehicle Management and Driver of employment. Driver Acknowledgement I have received the University of Alberta, Vehicle Management and Driver

  19. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2009 DOE Hydrogen Program and Vehicle Technologies...

  20. Quadrennial Technology Review Vehicle Efficiency and Electrification...

    Energy Savers [EERE]

    Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR...

  1. Vehicle Technologies Office: Workforce Development and Professional...

    Office of Environmental Management (EM)

    Education & Workforce Development Vehicle Technologies Office: Workforce Development and Professional Education Vehicle Technologies Office: Workforce Development and...

  2. 2012 U.S. Vehicle Analysis

    E-Print Network [OSTI]

    Lam, Ho Yeung Michael

    2012-01-01T23:59:59.000Z

    Vehicles …………………………………………………………….. Ethanol Fuel Mixturesperformance of ethanol fuel mixtures vehicles ……….. Summaryon diesel, electricity, and ethanol fuel mixtures (ethanol/

  3. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  4. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, R.S.; Allen, L.N.

    1989-04-25T23:59:59.000Z

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

  5. Miniature Autonomous Robotic Vehicle (MARV)

    SciTech Connect (OSTI)

    Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

    1996-12-31T23:59:59.000Z

    Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

  6. The Transportation Greenhouse Gas Inventory: A First Step Toward City-Driven Emissions Rationalization

    E-Print Network [OSTI]

    Ganson, Chris

    2008-01-01T23:59:59.000Z

    Passenger vehicles Residential Natural Gas ResidentialNatural Gas Residential Electricity Passenger vehiclesEnd Attribution, Vehicle Life Cycle Commercial Natural Gas

  7. ITS Technologies in Military Wheeled Tactical Vehicles: Status Quo and the Future

    SciTech Connect (OSTI)

    Knee, H.E.

    2001-07-02T23:59:59.000Z

    The U.S. Army operates and maintains the largest trucking fleet in the United States. Its fleet consists of over 246,000 trucks, and it is responsible for buying and developing trucks for all branches of the armed forces. The Army's tactical wheeled vehicle fleet is the logistical backbone of the Army, and annually, the fleet logs about 823 million miles. The fleet consists of a number of types of vehicles. They include eight different families of trucks from the High Mobility Multi-Purpose Wheeled Vehicles to M900 series line haul tractors and special bodies. The average age of all the trucks within the Army fleet is 15 years, and very few have more than traditional driving instrumentation on-board. Over the past decade, the Department of Transportation's (DOT's) Intelligent Transportation Systems (ITS) Program has conducted research and deployment activities in a number of areas including in-vehicle systems, communication and telematics technologies. Many current model passenger vehicles have demonstrated the assimilation of these technologies to enhance safety and trip quality. Commercial vehicles are also demonstrating many new electronic devices that are assisting in making them safer and more efficient. Moreover, a plethora of new technologies are about to be introduced to drivers that promise greater safety, enhanced efficiency, congestion avoidance, fuel usage reduction, and enhanced trip quality. The U.S. Army has special needs with regard to fleet management, logistics, sustainability, reliability, survivability, and fuel consumption that goes beyond similar requirements within the private industry. In order to effectively apply emerging ITS technologies to the special needs of the U.S. Army, planning for the conduct of the Army's Vehicle Intelligence Program (AVIP) has now commenced. The AVIP will be focused on the conduct of research that: (1) will apply ITS technologies to the special needs of the Army, and (2) will conduct research for special needs wi th regard to vehicle control, driver assistance, integration of vehicle intelligence and robotic technologies, managing effectively the information flow to drivers, enhanced logistics capabilities and sustainability of the Army's fleet during battlefield conditions. This paper will highlight the special needs of the Army, briefly describe two programs, which are embracing ITS technologies to a limited extent, will outline the AVIP, and will provide some insight into future Army vehicle intelligence efforts.

  8. Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.

    SciTech Connect (OSTI)

    Wang, M.; Huo, H.; Johnson, L.; He, D.

    2006-12-20T23:59:59.000Z

    As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

  9. Hydrogen vehicle fueling station

    SciTech Connect (OSTI)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

    1995-09-01T23:59:59.000Z

    The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

  10. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1998-01-01T23:59:59.000Z

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  11. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, L.M.

    1998-05-05T23:59:59.000Z

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

  12. Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels

    E-Print Network [OSTI]

    Esquivel, Jason

    2010-01-16T23:59:59.000Z

    and help with course materials. Second I would like to Dr. Anand and Dr. Lau for helping me when I had academic troubles and seeing me through. Last but not least, I would like to thank Dr. Alvarado for sitting in on my committee on such short notice... but you are always in my heart, thanks to everyone for their support. vii ABBREVIATIONS/NOMENCLATURE AERL Advanced Engine Research Laboratory BSFC Brake Specific Fuel Consumption CO Carbon Monoxide CO 2 Carbon Dioxide CPO Compressor...

  13. Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine 

    E-Print Network [OSTI]

    Song, Hoseok

    2012-07-16T23:59:59.000Z

    Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the barrier for potential growth...

  14. Development of Low Temperature Combustion Modes to Reduce Overall Emissions from a Medium-Duty, Four Cylinder Diesel Engine

    E-Print Network [OSTI]

    Breen, Jonathan Robert

    2011-10-21T23:59:59.000Z

    generation. This engine system is used more commonly in the ground transportation, the maritime transportation, and the base-load power generation industries over the spark-ignition (i.e. gasoline) engine due to its improved fuel efficiency. The diesel... (LTC) engine systems are a very current topic of research inside the automotive industry. This novel combustion mode is heavily present in current literature due to its probable application in next generation diesel engines. Industry and academic...

  15. Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine

    E-Print Network [OSTI]

    Song, Hoseok

    2012-07-16T23:59:59.000Z

    Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the barrier for potential growth...

  16. automated vehicle control for ground vehicles: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

  17. Vehicle Technologies Office: AVTA- All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the all-electric versions of the following vehicles is available: 2014 Smart Electric Drive Coupe, 2013 Ford Focus, 2013 Nissan Leaf, 2012 Mitsubishi i-MiEV, 2012 Nissan Leaf, 2011 Nissan Leaf, 2010 USPS eLLV Conversions, and 2009 BMW Mini-E.

  18. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  19. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  20. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  1. Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Testing Activity (AVTA) Non-PHEV Evaluations and Data Collection AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Benchmarking of Advanced HEVs and...

  2. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    capacity. Furthermore they were interested to see the effect of driving intensity on energy consumption differs for vehicle EV capability. Overall they feel this task is...

  3. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Energy Savers [EERE]

    & Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  4. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Grid Integration

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  5. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle into an electric power source. Although electricity production may contribute to air pollution, the U.S. Environmental Protection Agency (EPA) considers EVs Hybrid and...

  6. Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  7. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    21st Century Truck Partnership, the Army will demonstrate technology that converts waste heat from an exhaust system to electricity used in its Stryker vehicle. | Photo courtesy...

  8. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01T23:59:59.000Z

    analysis shows that hybrid and electric cars perform bettercar (4-5 passengers) Fuels Gasoline, CNG, diesel, FT50, methanol, H2 Powertrains ICE, hybrid,

  9. Vehicle Technologies Office: 21st Century Truck | Department...

    Energy Savers [EERE]

    a vital role in moving freight and passengers, serving as the backbone of America's economy. These trucks also play essential roles in other parts of society, such as...

  10. Application of advanced composites for efficient on-board storage of fuel in natural gas vehicles

    SciTech Connect (OSTI)

    Sirosh, S.N. [EDO Canada Ltd., Calgary, Alberta (Canada)

    1995-11-01T23:59:59.000Z

    The following outlines the performance requirements for high pressure containers for on-board storage of fuel in Natural Gas Vehicles. The construction of state-of-the-art carbon-fiber reinforced all-composite cylinders is described and the validation testing and key advantages are discussed. Carbon-fiber reinforced advanced composite technology offers a number of key advantages to the NGV industry, by providing: improved range, including up to 30% more fuel storage for a given storage envelope and up to 300% more fuel storage for a given weight allowance; life-cycle cost advantages, including savings in non-recurring costs (installation), savings in recurring costs (fuel and maintenance), and increased revenues from more passengers/payload; and uncompromising safety, namely, superior resistance to degradation from fatigue or stress rupture and inherent resistance to corrosion; proven toughness/impact resistance.

  11. Driving and passengering: notes on the ordinary organisation of car travel 

    E-Print Network [OSTI]

    Laurier, Eric; Lorimer, Hayden; Brown, Barry; Jones, Owain; Juhlin, Oskar; Noble, Allyson; Perry, Mark; Pica, Daniele; Sormani, Philippe; Strebel, Ignaz; Swan, Laurel; Taylor, Alex S; Watts, Laura; Weilenmann, Alexandra

    2008-01-01T23:59:59.000Z

    We spend ever increasing periods of our lives travelling in cars, yet quite what it is we do while travelling, aside from driving the vehicle itself, is largely overlooked. Drawing on analyses of video records of a series ...

  12. Passenger transport in China under climate constraints : general equilibrium analysis, uncertainty, and policy

    E-Print Network [OSTI]

    Kishimoto, Paul N

    2012-01-01T23:59:59.000Z

    Vehicle sales and road travel volume in China have grown rapidly in recent years, and with them energy demand, greenhouse gas emissions and local air pollution. Aviation and rail travel have also grown, while ceding a large ...

  13. Potential shift from transit to single occupancy vehicle due to adaptation of a high occupancy vehicle lane to a high occupancy toll lane

    E-Print Network [OSTI]

    Chum, Geoffrey Linus

    2009-05-15T23:59:59.000Z

    distributed to park-and-ride bus passengers on the Katy Freeway and Northwest Freeway corridors in Houston. Passengers’ responses to questions regarding their trip characteristics, their socioeconomic characteristics, and stated preference scenarios were used...

  14. Baseline Suppression of Vehicle Portal Monitor Gamma Count Profiles: A Characterization Study

    SciTech Connect (OSTI)

    Lopresti, Charles A.; Weier, Dennis R.; Kouzes, Richard T.; Schweppe, John E.

    2006-06-15T23:59:59.000Z

    Radiation portal monitor (RPM) systems based upon polyvinyl toluene scintillator (PVT) gamma ray detectors have been deployed to detect illicit trafficking in radioactive materials at border crossings. This report sets forth a characterization of the baseline suppression effect in gross-count gamma ray profiles due to shadow shielding by vehicles entering radiation portal monitors. Shadow shielding is of interest because it reduces the alarm sensitivity of portal monitors. This observational study investigated three types of PVT based commercial RPM systems currently deployed at selected ports of entry in terms of spatial effects relative to detector panel orientation - driver versus passenger side, top versus bottom, and narrow lanes versus wide lanes - as observed for a large number of vehicles. Each portal site appears to have a distinctive baseline suppression signature, based on percent maximum suppression relative to measured background. Results suggest that alarm algorithms based on gross-counts may be further refined through attention to individual site characteristics. In addition, longer vehicle transit times were often correlated with stronger baseline suppression, suggesting that baseline suppression studies should take into account duration (length) of transit. (PIET-43741-TM-333-NIM)

  15. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  16. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  17. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel...

    Energy Savers [EERE]

    Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data The Vehicle Technologies...

  18. Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I

    E-Print Network [OSTI]

    Gris, Arturo E.

    1991-01-01T23:59:59.000Z

    Vehicle Symposium, "The Hybrid Vehicle Revisited", OctoberBus Hv REFERENCES “Hybrid Vehicle Assessment, Phase I,Laboratory, March 1984 “Hybrid Vehicle Engineering Task”

  19. Water Emissions from Fuel Cell Vehicles | Department of Energy

    Energy Savers [EERE]

    Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles...

  20. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption...

    Broader source: Energy.gov (indexed) [DOE]

    recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single-unit work vehicle over 8,500 lbs...

  1. Vehicle Technologies Office: Information Resources

    Broader source: Energy.gov [DOE]

    From here you can access additional information on advanced transportation technologies; view programmatic publications and technical information; learn the basics of hybrid vehicle technology;...

  2. Hybrid Vehicle Program. Final report

    SciTech Connect (OSTI)

    None

    1984-06-01T23:59:59.000Z

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  3. Hybrid vehicle motor alignment

    DOE Patents [OSTI]

    Levin, Michael Benjamin (Ann Arbor, MI)

    2001-07-03T23:59:59.000Z

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  4. Vehicle Cost Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilize Available Resources PrintValVaporRunningVehicle

  5. Vehicles | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSite MapScience AcceleratorSurvey>Vehicles

  6. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling EfficientState Electric Vehicle Workplace

  7. Intelligent Systems Software for Unmanned Air Vehicles

    E-Print Network [OSTI]

    classes of vehicles including autonomous underwater vehicles, autonomous ground vehicles, and unmanned airIntelligent Systems Software for Unmanned Air Vehicles Gregory L. Sinsley , Lyle N. Long , Albert F describes a software architecture for mission-level control of autonomous unmanned air vehicles (UAVs

  8. Vehicle Technologies Office: AVTA- Compressed Natural Gas Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the 2012 Honda Civic CNG is available in downloadable form.

  9. Superpressure stratospheric vehicle

    SciTech Connect (OSTI)

    Chocol, C.; Robinson, W.; Epley, L.

    1990-09-15T23:59:59.000Z

    Our need for wide-band global communications, earth imaging and sensing, atmospheric measurements and military reconnaissance is extensive, but growing dependence on space-based systems raises concerns about vulnerability. Military commanders require space assets that are more accessible and under local control. As a result, a robust and low cost access to space-like capability has become a national priority. Free floating buoyant vehicles in the middle stratosphere can provide the kind of cost effective access to space-like capability needed for a variety of missions. These vehicles are inexpensive, invisible, and easily launched. Developments in payload electronics, atmospheric modeling, and materials combined with improving communications and navigation infrastructure are making balloon-borne concepts more attractive. The important milestone accomplished by this project was the planned test flight over the continental United States. This document is specifically intended to review the technology development and preparations leading up to the test flight. Although the test flight experienced a payload failure just before entering its assent altitude, significant data were gathered. The results of the test flight are presented here. Important factors included in this report include quality assurance testing of the balloon, payload definition and characteristics, systems integration, preflight testing procedures, range operations, data collection, and post-flight analysis. 41 figs., 5 tabs.

  10. WHERE ARE THE ELECTRIC VEHICLES?1 A SPATIAL MODEL FOR VEHICLE-CHOICE COUNT DATA2

    E-Print Network [OSTI]

    Kockelman, Kara M.

    1 WHERE ARE THE ELECTRIC VEHICLES?1 A SPATIAL MODEL FOR VEHICLE-CHOICE COUNT DATA2 3 T. Donna Chen4 ABSTRACT29 30 Electric vehicles (EVs) are predicted to increase in market share as auto manufacturers: Electric vehicles, spatial count modeling, vehicle choice, vehicle ownership,1 consumer behavior

  11. A technoregulatory analysis of government regulation and oversight in the United States for the protection of passenger safety in commercial human spaceflight

    E-Print Network [OSTI]

    Leybovich, Michael Elliot

    2009-01-01T23:59:59.000Z

    Commercial human spaceflight looks ready to take off as an industry, with "space tourism" as its first application. Paying passengers are likely to begin taking suborbital spaceflights within the next several years, both ...

  12. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01T23:59:59.000Z

    M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re- koebensteinthan both. Solar-hydrogen and fuel-cell vehicles wouldberegulation. Solar-Hydrogen Fuel-Cell Vehicles MarkA. DeLuchi

  13. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01T23:59:59.000Z

    The Emergence of Hybrid Vehicles: Ending oil’s strangleholdthe benefits of hybrid vehicles Dr. Thomas Turrentine Dr.the benefits of hybrid vehicles Report prepared for CSAA Dr.

  14. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01T23:59:59.000Z

    nosulfur. fA methanol/fuel-cell vehicle wouldhaveno tailpipeanalysis of fuel cell vehicles using methanol and hy- drogenused fuel-cell vehicles and (d) biomass-derived methanol

  15. COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT

    E-Print Network [OSTI]

    Pilyugin, Sergei S.

    COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT _________________________________________________________ Applicants for positions involving the operation of a commercial motor vehicle must comply with Title 49 CFR: _______________ Please list the following information for each unexpired commercial motor vehicle operator license

  16. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01T23:59:59.000Z

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  17. Anonymous vehicle reidentification using heterogeneous detection systems

    E-Print Network [OSTI]

    Oh, Cheol; Jeng, Shin-Ting; Ritchie, Stephen G.

    2007-01-01T23:59:59.000Z

    C. A. MacCarley, Video-Based Vehicle Signature Analysis andRamachandran, and S. Ritchie, “Vehicle reidenti?cation usingand R. Jayakrishnan, “Use of vehicle signature analysis and

  18. 2012 U.S. Vehicle Analysis

    E-Print Network [OSTI]

    Lam, Ho Yeung Michael

    2012-01-01T23:59:59.000Z

    and Air Quality. Green Vehicle Guide. Web. May 2012. 2. "Los Angeles 2012 U.S. Vehicle Analysis A thesis submitted inOF THE THESIS 2012 U.S. Vehicle Analysis by Ho Yeung Michael

  19. Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

  20. 2012 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2013-03-01T23:59:59.000Z

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  1. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27T23:59:59.000Z

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  2. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01T23:59:59.000Z

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  3. An optimized international vehicle monitor

    SciTech Connect (OSTI)

    York, R.L.; Close, D.A.; Fehlau, P.E.

    1997-03-01T23:59:59.000Z

    The security plans for many DOE facilities require the monitoring of pedestrians and vehicles to control the movement of special nuclear material (SNM). Vehicle monitors often provide the outer-most barrier against the theft of SNM. Automatic monitors determine the presence of SNM by comparing the gamma-ray and neutron intensity while occupied, to the continuously updated background radiation level which is measured while the unit is unoccupied. The most important factors in choosing automatic vehicle monitors are sensitivity, cost and in high traffic applications total monitoring time. The two types of automatic vehicle monitors presently in use are the vehicle monitoring station and the drive-through vehicle monitor. These two types have dramatically different cost and sensitivities. The vehicle monitoring station has a worst-case detection sensitivity of 40 g of highly enriched uranium, HEU, and a cost approximately $180k. This type of monitor is very difficult to install and can only be used in low traffic flow locations. The drive-through vehicle portal has a worst-case detection sensitivity of 1 kg of HEU and a cost approximately $20k. The world`s political situation has created a pressing need to prevent the diversion of SNM from FSU nuclear facilities and across international borders. Drive-through vehicle monitors would be an effective and practical nuclear material proliferation deterrent if their sensitivity can be improved to a sufficient level. The goal of this project is to evaluate different detector configurations as a means of improving the sensitivity of these instruments to achieve a vehicle monitor that is economical, practical to install, and has adequate sensitivity to be an effective barrier to illegal transportation of SNM.

  4. Vehicle Technologies Office | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Efficient Vehicle Technologies Secretary Moniz Announces 55 M to Advance Fuel Efficient Vehicle Technologies Energy Secretary Moniz spoke at the Washington Auto Show,...

  5. Advanced Technology Vehicles Manufacturing Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

  6. Vehicle Technologies Office: Transitioning the Transportation...

    Energy Savers [EERE]

    Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles Vehicle Technologies Office: Transitioning the Transportation Sector -...

  7. Sandia National Laboratories: fuel cell vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel cell vehicle ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy, Energy...

  8. Modeling And Control Of Articulated Vehicles

    E-Print Network [OSTI]

    Chen, Chieh; Tomizuka, Masayoshi

    1997-01-01T23:59:59.000Z

    Modeling, Advanced Vehicle Control Systems, Lateral control, SteeringSteering and Braking Control of Heavy Duty Vehicles. Under this project, dynamic modeling

  9. Vehicle Technologies Office Merit Review 2014: Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    for High Efficiency, Low Emissions Vehicle Applications Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  10. Vehicle Technologies Office Recognizes Outstanding Researchers...

    Energy Savers [EERE]

    Vehicle Technologies Office Recognizes Outstanding Researchers and Projects Vehicle Technologies Office Recognizes Outstanding Researchers and Projects June 24, 2015 - 11:51am...

  11. Vehicle Technologies Office: Advanced Battery Development, System...

    Broader source: Energy.gov (indexed) [DOE]

    materials and applied battery research into full battery systems for vehicles. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and...

  12. Security enhanced with increased vehicle inspections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security enhanced with increased vehicle inspections Security measures increase as of March: vehicle inspections won't delay traffic New increased security procedures meet LANL's...

  13. Codes and Standards to Support Vehicle Electrification

    Broader source: Energy.gov (indexed) [DOE]

    Methods J29311 Digital Communications for Plug-in Electric Vehicles J29314 Broadband PLC Communication for Plug-in Electric Vehicles J29315 Telematics Smart Grid...

  14. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Broader source: Energy.gov (indexed) [DOE]

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April...

  15. Advanced Vehicle Testing Activity (AVTA) ? PHEV Evaluations...

    Broader source: Energy.gov (indexed) [DOE]

    1.pdf More Documents & Publications Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities AVTA PHEV Demonstrations and Testing Argonne...

  16. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems (VTMS) AnalysisModeling Integrated Vehicle Thermal Management Systems (VTMS) AnalysisModeling 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

  17. Vehicle-to-Vehicle-to-Infrastructure (V2V2I) Intelligent Transportation System Architecture

    E-Print Network [OSTI]

    Miller, Jeffrey A.

    is a hybrid of the vehicle-to-vehicle (V2V) and vehicle-to- infrastructure (V2I) architectures. The V2V2I I am proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicleVehicle-to-Vehicle-to-Infrastructure (V2V2I) Intelligent Transportation System Architecture Jeffrey

  18. Smog Check II Evaluation Part II: Overview of Vehicle

    E-Print Network [OSTI]

    Denver, University of

    Smog Check II Evaluation Part II: Overview of Vehicle Emissions . . . . . . . . . . . . Prepared in Later Sections ____________________ 1 3. Older Vehicles Have Higher Emissions on Average _____________ 3 4. The Vehicle Fleet Is Dominated by Newer Vehicles______________ 8 5. More Recent Vehicle Models

  19. MD PHEV/EV ARRA Project Data Collection and Reporting (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.; Ramroth, L.; Duran, A.; Rosen, B.

    2012-01-01T23:59:59.000Z

    This presentation describes a National Renewable Energy Laboratory project to collect and analyze commercial fleet deployment data from medium-duty plug-in hybrid electric and all-electric vehicles that were deployed using funds from the American Recovery and Reinvestment Act. This work supports the Department of Energy's Vehicle Technologies Program and its Advanced Vehicle Testing Activity.

  20. Optical guidance system for industrial vehicles

    DOE Patents [OSTI]

    Dyer, Robert D. (Richland, WA); Eschbach, Eugene A. (Richland, WA); Griffin, Jeffrey W. (Kennewick, WA); Lind, Michael A. (Durham, OR); Buck, Erville C. (Eugene, OR); Buck, Roger L. (Springfield, OR)

    1990-01-01T23:59:59.000Z

    An automatically guided vehicle system for steering a vehicle. Optical sensing detects an image of a segment of track mounted above the path of the vehicle. Electrical signals corresponding to the position of the track are generated. A control circuit then converts these signals into movements for the steering of the vehicle.

  1. Explosion proof vehicle for tank inspection

    DOE Patents [OSTI]

    Zollinger, William T. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Bauer, Scott G. (Idaho Falls, ID)

    2012-02-28T23:59:59.000Z

    An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

  2. VEHICLE USAGE AGREEMENT DEPARTMENT OF BIOLOGICAL SCIENCE

    E-Print Network [OSTI]

    Ronquist, Fredrik

    VEHICLE USAGE AGREEMENT DEPARTMENT OF BIOLOGICAL SCIENCE All drivers of vehicles must certify to the following: 1. I certify that I have a valid driver's license appropriate for the vehicle type and will abide belts. 2. I have read and understand the vehicle operating policies and procedures as defined

  3. Method and system for vehicle refueling

    SciTech Connect (OSTI)

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Agarwal, Apoorv; Hinds, Brett Stanley

    2014-06-10T23:59:59.000Z

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  4. Method and system for vehicle refueling

    SciTech Connect (OSTI)

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Argarwal, Apoorv; Hinds, Brett Stanley

    2012-11-20T23:59:59.000Z

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  5. Electric Vehicle Charging as an Enabling Technology

    E-Print Network [OSTI]

    Electric Vehicle Charging as an Enabling Technology Prepared for the U.S. Department of Energy technologies, electric vehicles and the appurtenant charging infrastructure, is explored in detail to determine regarding system load profiles, vehicle charging strategies, electric vehicle adoption rates, and storage

  6. Feasible Path Synthesis for Automated Guided Vehicles

    E-Print Network [OSTI]

    Vuik, Kees

    Feasible Path Synthesis for Automated Guided Vehicles Reijer Idema 2005 TU Delft FROG Navigation for Automated Guided Vehicles Author: Reijer Idema Supervisors: prof.dr.ir. P. Wesseling (TU Delft) dr.ir. Kees is a manufacturer of Automated Guided Vehicles. They have developed a multitude of vehicles that transport products

  7. Planning for Autonomous Underwater Vehicles Zeyn Saigol

    E-Print Network [OSTI]

    Yao, Xin

    , 2007 4 / 25 #12;Autonomous Underwater Vehicles Unmanned, untethered submersibles Autosub, developedPlanning for Autonomous Underwater Vehicles Zeyn Saigol Intelligent Robotics Lab meeting July 31 in Southampton Cheaper than manned vehicles Can get to places tethered vehicles can't No need for human

  8. Nonlinear Dynamics of Longitudinal Ground Vehicle Traction

    E-Print Network [OSTI]

    Shaw, Steven W.

    asphalt b) Wet asphalt c) Gravel d) Packed Snow Nonlinear Dynamics of Longitudinal Ground Vehicle Traction

  9. Plugging Vehicles into Clean Energy October, 2012

    E-Print Network [OSTI]

    California at Davis, University of

    Plugging Vehicles into Clean Energy 1 October, 2012 Plugging Vehicles into Clean Energy Max-in electric vehicles and clean energy. Giving consumers options to offset energy and emissions associated briefly summarizes the relationship between clean energy and vehicle electrification and describes five

  10. Electric and Hydrogen Vehicles Past and Progress

    E-Print Network [OSTI]

    Kammen, Daniel M.

    status and TSRC research ­ Future? · Hydrogen Fuel Cell Vehicles ­ 20 years ago ­ 10 years ago ­ Current · Transportation Propulsion, Fuels, & Emissions ­ Electric-drive vehicles (including plug-in hybrid and fuel-cell Electric and Fuel Cell Vehicles?Why Electric and Fuel Cell Vehicles? · Transportation accounts for about 33

  11. VEHICLE RESERVATION DO NOT WRITE IN

    E-Print Network [OSTI]

    Kirschner, Denise

    VEHICLE RESERVATION DO NOT WRITE IN SHADED AREAS For Information Call 764-2485 FAX # (76)3-1470 Vehicle No. License OK VEHICLE DAMAGE INSPECTION Circle area of damage and/or describe below: OUTGOING for Rules & Regulations for Vehicle Rentals Reference Number 5 digit # Date Department Short code Requestor

  12. Master Thesis Proposal: Simulation of Vehicle

    E-Print Network [OSTI]

    Zhao, Yuxiao

    Master Thesis Proposal: Simulation of Vehicle Driving Behavior Based on External Excitations Background For vehicle manufacturers it is important to know how their vehicles are used during the components and also for designing the controls of the vehicle. For example, the load characteristics

  13. VEHICLE SERVICES POLICY Table of Contents

    E-Print Network [OSTI]

    Shihadeh, Alan

    VEHICLE SERVICES POLICY Table of Contents 1. Policy 2. Procedures a. Vehicle Services Oversight b. Vehicle Maintenance and Inspection c. Authorized Drivers d. Responsibilities Back to Top (To download requirements for AUB's vehicles, the University has adopted a policy of centralizing these activities under one

  14. VEHICLE RENTAL FACT SHEET January 20, 2012

    E-Print Network [OSTI]

    VEHICLE RENTAL FACT SHEET January 20, 2012 When Smithsonian travelers rent a vehicle during official travel, the vehicle should be rented using an individual travel card (if available) and using are not reimbursable so the rental car company CDW should be declined if the vehicle is rented under the government

  15. Electric Vehicles Global Climate Change

    E-Print Network [OSTI]

    Sóbester, András

    Hot Topics Electric Vehicles Global Climate Change Green Building Hydraulic Fracturing Nuclear to global warming. The UKgovernment has just announced it is investing $1 billion in their development Green Living Industry Regulation Remediation Research and Technology Sustainability Waste Water Products

  16. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    at Wayne State University May 18, 2012 Slide 13 2011 Sonata 6MT, 2.0L GDI Theta Turbo Technologies on Vehicle: EMS Control Algorithms Calibration GDi Pump ECM...

  17. Adaptive control of hypersonic vehicles

    E-Print Network [OSTI]

    Gibson, Travis Eli

    2008-01-01T23:59:59.000Z

    The guidance, navigation and control of hypersonic vehicles are highly challenging tasks due to the fact that the dynamics of the airframe, propulsion system and structure are integrated and highly interactive. Such a ...

  18. Light Duty Vehicle CNG Tanks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite...

  19. Riverside, CA Vehicle Purchase Incentives

    Broader source: Energy.gov [DOE]

    City of Riverside residents and employees are eligible to receive a rebate toward the purchase of qualified natural gas or hybrid electric vehicles purchased from a City of Riverside automobile...

  20. Protection against malevolent use of vehicles at Nuclear Power Plants. Vehicle barrier system selection guidance

    SciTech Connect (OSTI)

    Nebuda, D.T.

    1994-08-01T23:59:59.000Z

    This manual provides a simplified procedure for selecting land vehicle barriers that will stop the design basis vehicle threat adopted by the U.S. Nuclear Regulatory Commission. Proper selection and construction of vehicle barriers should prevent intrusion of the design basis vehicle. In addition, vital safety related equipment should survive a design basis vehicle bomb attack when vehicle barriers are properly selected, sited, and constructed. This manual addresses passive vehicle barriers, active vehicle barriers, and site design features that can be used to reduce vehicle impact velocity.

  1. Prediction of vehicle impact forces

    E-Print Network [OSTI]

    Kaderka, Darrell Laine

    1990-01-01T23:59:59.000Z

    PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject...: Civil Engineering PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Approved as to style and content by: C. Eugene Buth (Chair of Committee) W. ynn Beason (Member) I? D n E. B ay (Member) es T. P. Yao (Departmen Head) May...

  2. Prediction of vehicle impact forces 

    E-Print Network [OSTI]

    Kaderka, Darrell Laine

    1990-01-01T23:59:59.000Z

    PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject...: Civil Engineering PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Approved as to style and content by: C. Eugene Buth (Chair of Committee) W. ynn Beason (Member) I? D n E. B ay (Member) es T. P. Yao (Departmen Head) May...

  3. Multi-lane Vehicle-to-Vehicle Networks with Time-Varying Radio Ranges

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Multi-lane Vehicle-to-Vehicle Networks with Time-Varying Radio Ranges: Information Propagation propagation speed in multi-lane vehicle-to-vehicle networks such as roads or highways. We focus on the impact of time-varying radio ranges and of multiple lanes of vehicles, varying in speed and in density. We assess

  4. Vehicle Signage Policy Outline the policy regarding signage on University of Michigan (U-M) vehicles.

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Signage Policy Objective Outline the policy regarding signage on University of Michigan (U-M) vehicles. Policy 1. All vehicles owned by U-M will be identified by a vehicle number, U-M decal and special municipal license plate issued by Fleet Services. 2. All signage on vehicles owned by U-M must be approved

  5. CEOAS VEHICLE POLICY CEOAS has 4 vehicles for use by CEOAS personnel.

    E-Print Network [OSTI]

    Kurapov, Alexander

    CEOAS VEHICLE POLICY CEOAS has 4 vehicles for use by CEOAS personnel. 1) A Dodge ľ ton cargo van; vehicle # 096813, located on Orchard Street in a reserved parking space, south of Burt Hall. This cargo/log book. OSU approves charging vehicle use to grants. If logs show the vehicle to be underutilized (thus

  6. A Paired-Vehicle Recourse Strategy for the Vehicle Routing Problem with Stochastic Demands

    E-Print Network [OSTI]

    Erera, Alan

    A Paired-Vehicle Recourse Strategy for the Vehicle Routing Problem with Stochastic Demands Aykagan Institute of Technology Abstract This paper presents a paired-vehicle recourse strategy for the vehicle vehicles is dispatched from a terminal to serve single-period customer demands which are known

  7. Vehicle Maintenance Policy Outline the policy regarding vehicle maintenance at University of Michigan (U-M).

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Maintenance Policy Objective Outline the policy regarding vehicle maintenance at University of Michigan (U-M). Policy 1. All maintenance performed on U-M vehicles must be coordinated through Garage to repair their fleet vehicles. 2. U-M vehicles leased through Fleet Services include routine maintenance

  8. Vehicle Maintenance Procedure Outline the procedure for vehicle maintenance at University of Michigan (U-M).

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Maintenance Procedure Objective Outline the procedure for vehicle maintenance at University of Michigan (U-M). Procedure 1. Your U-M vehicle has a mechanical and/or safety issue. 2. Contact Garage of the vehicle or if needed, have the vehicle towed to the maintenance facility. 4. If a loaner is needed while

  9. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01T23:59:59.000Z

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  10. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01T23:59:59.000Z

    of the Canadian Natural Gas Vehicles Survey,” SAE 892067,2000. Gushee, David E, “Natural Gas Vehicles Stall on Way toWelfare Costs of Natural Gas Vehicles,” Resources for the

  11. Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers

    E-Print Network [OSTI]

    Heffner, Reid R.

    2007-01-01T23:59:59.000Z

    Would You Buy a Hybrid Vehicle? Study #715238, conducted forcars/high-cost-of-hybrid-vehicles- 406/overview.htm ConsumerRelease. (2005) Most Hybrid Vehicles Not as Cost-Effective

  12. Analysis of the AirTouch automatic vehicle location system's ability to locate moving vehicles 

    E-Print Network [OSTI]

    Henry, Tracy Lynn

    1995-01-01T23:59:59.000Z

    Automatic vehicle location systems are becoming more prevalent in diverse transportation applications. Their ability to locate vehicles can assist in locating emergency and public transit vehicles for better real-time dispatching as well...

  13. Analysis of the AirTouch automatic vehicle location system's ability to locate moving vehicles

    E-Print Network [OSTI]

    Henry, Tracy Lynn

    1995-01-01T23:59:59.000Z

    Automatic vehicle location systems are becoming more prevalent in diverse transportation applications. Their ability to locate vehicles can assist in locating emergency and public transit vehicles for better real-time dispatching as well...

  14. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  15. Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system

    SciTech Connect (OSTI)

    Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

    1989-04-01T23:59:59.000Z

    This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

  16. 2011 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

    2012-02-01T23:59:59.000Z

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 58 through 61) and fuel use (Figures 64 through 66). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 68 through 77), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Cash for Clunkers program (Figures 87 and 88) and the Corporate Automotive Fuel Economy standard (Figures 90 through 99) and. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  17. Vehicle Technologies Office Merit Review 2014: Vehicle Communications and Charging Control

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  18. Vehicle Technologies Office Merit Review 2015: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  19. Vehicle Technologies Office Merit Review 2014: Vehicle to Grid Communications and Field Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  20. Vehicle Technologies Office Merit Review 2014: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  1. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Test Procedure Development: Hybrid System Power Rating

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle...

  2. PASSIVE DETECTION OF VEHICLE LOADING

    SciTech Connect (OSTI)

    Garrett, A.

    2012-01-03T23:59:59.000Z

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  3. Vehicle security apparatus and method

    DOE Patents [OSTI]

    Veligdan, J.T.

    1996-02-13T23:59:59.000Z

    A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

  4. Consumer Vehicle Choice Model Documentation

    SciTech Connect (OSTI)

    Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

    2012-08-01T23:59:59.000Z

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  5. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidationAdvanced VehicleFilm

  6. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01T23:59:59.000Z

    of Energy for hydrogen and fuel cell vehicle markethybrid, electric and hydrogen fuel cell vehicles, Journal ofof the Transition to Hydrogen Fuel Cell Vehicles & the

  7. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

  8. Complex System Method to Assess Commercial Vehicle Fuel Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Consumption Complex System Method to Assess Commercial Vehicle Fuel Consumption Two case studies for commercial vehicle applications compare a baseline, contemporary vehicle...

  9. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards...

  10. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  11. Advanced Powertrain Research Facility Vehicle Test Cell Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

  12. Vehicle Technologies Office Issues Notice of Intent for Medium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Technologies Office Issues Notice of Intent for Medium and Heavy-Duty Vehicle Demonstration Funding Opportunity Vehicle Technologies Office Issues Notice of Intent for...

  13. Vehicle Technologies Office Merit Review 2015: DOE's Effort to...

    Office of Environmental Management (EM)

    DOE's Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics Vehicle Technologies Office Merit Review 2015: DOE's Effort to Improve Heavy Vehicle Fuel...

  14. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  15. Interested but unsure: Public attitudes toward electric vehicles in China

    E-Print Network [OSTI]

    Lo, Kevin

    2013-01-01T23:59:59.000Z

    to pay for electric vehicles and their attributes. Resourceownership and use of electric vehicles–a review ofenvironmental effects of electric vehicles versus compressed

  16. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01T23:59:59.000Z

    Moderate Hybrid-electric Vehicles. ESScap06, Switzerland,GH. SIMPLEV: A Simple Electric Vehicle Simulation Program-20 th International Electric Vehicle Symposium, Long Beach,

  17. Vehicle Technologies Office Merit Review 2014: GATE: Energy Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GATE: Energy Efficient Vehicles for Sustainable Mobility Vehicle Technologies Office Merit Review 2014: GATE: Energy Efficient Vehicles for Sustainable Mobility Presentation given...

  18. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationsand performance. Hybrid vehicles utilizing a load leveling

  19. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

  20. taking charge : optimizing urban charging infrastructure for shared electric vehicles

    E-Print Network [OSTI]

    Subramani, Praveen

    2012-01-01T23:59:59.000Z

    This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

  1. 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  2. 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  3. 2008 Annual Merit Review Results Summary - 14. Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4. Vehicle Systems and Simulation 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation DOE Vehicle Technologies Annual Merit Review 2008meritreview14.pd...

  4. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Energy Savers [EERE]

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations...

  5. automated vehicle control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

  6. advanced vehicle control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

  7. advanced vehicle control systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

  8. Real-time Vehicle Reidentification System for Freeway Performance Measurements

    E-Print Network [OSTI]

    Jeng, Shin-Ting

    2007-01-01T23:59:59.000Z

    Tok, A. (2005). “Anonymous Vehicle Tracking for Real-timeField Investigation of Advanced Vehicle Reidentificationvariance, land changing, and vehicle heterogeneity. In:

  9. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    49 Table 13. Vehicle and fuel efficiency and electricity14. Timing profiles and vehicle and fuel pathways includedand generation, Table 18. Vehicle demand and system load

  10. Commercial Vehicle Classification System using Advanced Inductive Loop Technology

    E-Print Network [OSTI]

    Tok, Yeow Chern Andre

    2008-01-01T23:59:59.000Z

    Measurement Based on Vehicle Reidentification In proceedingsof Service Based on Anonymous Vehicle Reidentification InInvestigation of Anonymous Vehicle Tracking for Real-Time

  11. Will China's Vehicle Population Grow Even Faster than Forecasted?

    E-Print Network [OSTI]

    Wang, Yunshi; Teter, Jacob; Sperling, Daniel

    2012-01-01T23:59:59.000Z

    2011. “China’s Soaring Vehicle Population: Even Greater Thanversion, “China’s Soaring Vehicle Population: Even Greater2012. “Modeling Future Vehicle Sales and Stock in China,”

  12. Robust Vehicle State Estimation for Improved Traffic Sensing and Management

    E-Print Network [OSTI]

    Vu, Anh Quoc

    2011-01-01T23:59:59.000Z

    31 3. Vehicle Segmentation from Monocular Video38 3.2.2. Vehicle40 3.2.3. Extraction of Vehicle Structure and

  13. 2008 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, J.; Davis, S.

    2009-07-01T23:59:59.000Z

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  14. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01T23:59:59.000Z

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  15. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01T23:59:59.000Z

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  16. 2010 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, Jacob [U.S. Department of Energy; Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

    2011-06-01T23:59:59.000Z

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  17. Vehicle to Grid Demonstration Project

    SciTech Connect (OSTI)

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31T23:59:59.000Z

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  18. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect (OSTI)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01T23:59:59.000Z

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

  19. An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles

    E-Print Network [OSTI]

    Yeh, Sonia

    2007-01-01T23:59:59.000Z

    579–594. IANGV, 1997. Natural Gas Vehicle Industry Positionmarket penetration of natural gas vehicles in Switzerland.Exhaust emissions from natural gas vehicles: issues related

  20. New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax

    E-Print Network [OSTI]

    Martin, Elliot William

    2009-01-01T23:59:59.000Z

    7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in