Powered by Deep Web Technologies
Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

CMVRTC: Medium Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

medium truck duty cycle (MTdc) project medium truck duty cycle (MTdc) project OVERVIEW The Medium Truck Duty Cycle (MTDC) project involves efforts to collect, analyze and archive data related to medium-truck operations in real-world driving environments. Such data and information will be useful to support technology evaluation efforts and to provide a means of accounting for real-world driving performance within medium-class truck analyses. The project involves private industry partners from various truck vocations. The MTDC project is unique in that there currently does not exist a national database of characteristic duty cycles for medium trucks. This project involves the collection of data from multiple vocations (four vocations) and multiple vehicles within these vocations (three vehicles per

2

Medium Truck Duty Cycle (MTDC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Routes Data Acquisition System Setup Routes Data Acquisition System Setup Medium Truck Duty Cycle (MTDC) Objective This Department of Energy project focuses on the collection and analysis medium truck (Class-6 and -7) duty cycle data from real-world operations. Analysis of this data will provide information pertaining to the fuel efficiencies and performance of medium trucks in several vocations. Outcomes Rich source of data and information that can contribute to the development of new tools Sound basis upon which DOE can make technology investment decisions A national archive of real-world-based medium-truck operational data that will support medium-duty vehicle energy efficiency research Collected Data Speed & Acceleration Fuel Consumption GPS Location Road Grade

3

Procedures for Passenger Cars, Light-Duty Trucks and Medium-Duty  

E-Print Network (OSTI)

2001 and subsequent model-year passenger cars, light-duty trucks, and medium-duty trucks for which non-methane organic gas (NMOG) exhaust emission reduction credit is requested as a result of the use of a DOR technology on a motor vehicle radiator, air conditioning assembly, or other appropriate substrate. REFERENCES:

unknown authors

1999-01-01T23:59:59.000Z

4

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck  

E-Print Network (OSTI)

03TB-45 Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck and vehicle test results for a medium-duty hybrid electric truck are reported in this paper. The design the benchmark vehicle. INTRODUCTION Hybrid powertrain is among the most visible transportation technology

Grizzle, Jessy W.

5

Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks  

DOE Green Energy (OSTI)

With a variety of hybrid vehicles available in the passenger car market, electric technologies and components of that scale are becoming readily available. Commercial vehicle segments have lagged behind passenger car markets, leaving opportunities for component and system development. Escalating fuel prices impact all markets and provide motivation for OEMs, suppliers, customers, and end-users to seek new techniques and technologies to deliver reduced fuel consumption. The research presented here specifically targets the medium-duty (MD), Class 4-7, truck market with technologies aimed at reducing fuel consumption. These technologies could facilitate not only idle, but also parasitic load reductions. The development efforts here build upon the success of the More Electric Truck (MET) demonstration program at Caterpillar Inc. Employing a variety of electric accessories, the MET demonstrated the improvement seen with such technologies on a Class 8 truck. The Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks (TEPS) team scaled the concepts and successes of MET to a MD chassis. The team designed an integrated starter/generator (ISG) package and energy storage system (ESS), explored ways to replace belt and gear-driven accessory systems, and developed supervisory control algorithms to direct the usage of the generated electricity and system behavior on the vehicle. All of these systems needed to fit within the footprint of a MD vehicle and be compatible with the existing conventional systems to the largest extent possible. The overall goal of this effort was to demonstrate a reduction in fuel consumption across the drive cycle, including during idle periods, through truck electrification. Furthermore, the team sought to evaluate the benefits of charging the energy storage system during vehicle braking. The vehicle features an array of electric accessories facilitating on-demand, variable actuation. Removal of these accessories from the belt or geartrain of the engine yields efficiency improvements for the engine while freeing those accessories to perform at their individual peak efficiencies to meet instantaneous demand. The net result is a systems approach to fuel usage optimization. Unique control algorithms were specifically developed to capitalize on the flexibility afforded by the TEPS architecture. Moreover, the TEPS truck technology mixture exhibits a means to supplant current accessory power sources such as on-board or trailer-mounted gasoline-powered generators or air compressors. Such functionality further enhances the value of the electric systems beyond the fuel savings alone. To demonstrate the fuel economy improvement wrought via the TEPS components, vehicle fuel economy testing was performed on the nearly stock (baseline) truck and the TEPS truck. Table 1 illustrates the fuel economy gains produced by the TEPS truck electrification. While the fuel economy results shown in Table 1 do reflect specific test conditions, they show that electrification of accessory hardware can yield significant fuel savings. In this case, the savings equated to a 15 percent reduction in fuel consumption during controlled on-road testing. Truck electrification allows engine shutdown during idle conditions as well as independent on-demand actuation of accessory systems. In some cases, independent actuation may even include lack of operation, a feature not always present in mechanically driven components. This combination of attributes allows significant improvements in system efficiency and the fuel economy improvements demonstrated by the TEPS team.

Larry Slone; Jeffery Birkel

2007-12-31T23:59:59.000Z

6

Medium Truck Duty Cycle Data from Real-World Driving Environments: Final Report  

SciTech Connect

Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At present, nearly 80% of US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle research and is leading the 21st Century Truck Partnership and the SuperTruck development effort. Both of these efforts have the common goal of decreasing the fuel consumption of heavy vehicles. In the case of SuperTruck, a goal of improving the overall freight efficiency of a combination tractor-trailer has been established. This Medium Truck Duty Cycle (MTDC) project is a critical element in DOE s vision for improved heavy vehicle energy efficiency; it is unique in that there is no other existing national database of characteristic duty cycles for medium trucks based on collecting data from Class 6 and 7 vehicles. It involves the collection of real-world data on medium trucks for various situational characteristics (e.g., rural/urban, freeway/arterial, congested/free-flowing, good/bad weather) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips). This research provides a rich source of data that can contribute to the development of new tools for FE and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support energy efficiency research. The MTDC project involved a two-part field operational test (FOT). For the Part-1 FOT, three vehicles each from two vocations (urban transit and dry-box delivery) were instrumented for the collection of one year of operational data. The Part-2 FOT involved the towing and recovery and utility vocations for a second year of data collection. The vehicles that participated in the MTDC project did so through gratis partnerships in return for early access to the results of this study. Partnerships such as these are critical to FOTs in which real-world data is being collected. In Part 1 of the project, Oak Ridge National Laboratory (ORNL) established partnerships with the H.T. Hackney Company (HTH), one of the largest wholesale distributors in the country, distributing products to 21 states; and with Knoxville Area Transit (KAT), the city of Knoxville s transit system, which operates across Knoxville and parts of Knox County. These partnerships and agreements provided ORNL access to three Class-7 day-cab tractors that regularly haul 28 ft pup trailers (HTH) and three Class-7 buses for the collection of duty cycle data. In addition, ORNL collaborated with the Federal Motor Carrier Safety Administration (FMCSA) to determine if there were possible synergies between this duty cycle data collection effort and FMCSA s need to learn more about the operation and duty cycles of medium trucks. FMCSA s primary interest was in collecting safety data relative to the driver, carrier, and vehicle. In Part 2 of the project, ORNL partnered with the Knoxville Utilities Board, which made available three Class-8 trucks. Fountain City Wrecker Service was also a Part 2 partner, providing three Class-6 rollback trucks. In order to collect the duty cycle and safety-related data, ORNL developed a data acquisition system (DAS) that was placed on each test vehicle. Each signal recorded in this FOT was collected by means of one of the instruments incorporated into each DAS. Other signals were obtained directly from the vehicle s J1939 and J1708 data buses. A VBOX II Lite collected information available from a global positioning system (GPS), including speed, acceleration, and spatial location information at a rate of 5 Hz for the Part 1

Lascurain, Mary Beth [ORNL; Franzese, Oscar [ORNL; Capps, Gary J [ORNL; Siekmann, Adam [ORNL; Thomas, Neil [ORNL; LaClair, Tim J [ORNL; Barker, Alan M [ORNL; Knee, Helmut E [ORNL

2012-11-01T23:59:59.000Z

7

Medium Truck Duty Cycle Data from Real-World Driving Environments: Project Interim Report  

SciTech Connect

Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At the present time, nearly 80% of the US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle truck research, and is leading the 21st Century Truck Partnership whose stretch goals involve a reduction by 50% of the fuel consumption of heavy vehicles on a ton-mile basis. This Medium Truck Duty Cycle (MTDC) Project is a critical element in DOE s vision for improved heavy vehicle energy efficiency and is unique in that there is no other national database of characteristic duty cycles for medium trucks. It involves the collection of real-world data for various situational characteristics (rural/urban, freeway/arterial, congested/free-flowing, good/bad weather, etc.) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips), to provide a rich source of data that can contribute to the development of new tools for fuel efficiency and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support heavy vehicle energy efficiency research. The MTDC project involves a two-part field operational test (FOT). For the Part-1 FOT, three vehicles, each from two vocations (urban transit and dry-box delivery) were instrumented for one year of data collection. The Part-2 FOT will involve the towing/recovery and utility vocations. The vehicles participating in the MTDC project are doing so through gratis partnerships in return for early access to the results of this study. Partnerships such as these are critical to FOTs in which real-world data is being collected. In Part 1 of the project, Oak Ridge National Laboratory(ORNL) established partnerships with the H.T. Hackney Company, one of the largest wholesale distributors in the country, distributing products to 21 states; and with the Knoxville Area Transit (KAT), the City of Knoxville s transit system, operating services across the city of Knoxville and parts of Knox co. These partnerships and agreements provided ORNL access to three Class-7 2005/2007 International day-cab tractors, model 8600, which regularly haul 28 ft pup trailers (H.T. Hackney Co) and three Class-7 2005 Optima LF-34 buses (KAT), for collection of duty cycle data. In addition, ORNL has collaborated with the Federal Motor Carrier Safety Administration (FMCSA) to determine if there were possible synergies between this duty cycle data collection effort and FMCSA s need to learn more about the operation and duty cycles of the second-largest fuel consuming commercial vehicle category in the US. FMCSA s primary interest was in collecting safety data relative to the driver, carrier, and vehicle. In order to collect the duty cycle and safety-related data, ORNL developed a data acquisition and wireless communication system that was placed on each test vehicle. Each signal recorded in this FOT was collected by means of one of the instruments incorporated into each data acquisition system (DAS). Native signals were obtained directly from the vehicle s J1939 and J1708 data buses. A VBOX II Lite collected Global Positioning System related information including speed, acceleration, and spatial location information at a rate of 5 Hz, and communicated this data via the CAN (J1939) protocol. The Air-Weigh LoadMaxx, a self-weighing system which determines the vehicle s gross weight by means of pressure transducers and posts the weight to the vehicle s J1939 data bus, was used to collect vehicle payload information. A cellular modem, the Raven X

Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL

2011-01-01T23:59:59.000Z

8

CMVRTC: Heavy Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

heavy truck duty cycle (HTDC) project heavy truck duty cycle (HTDC) project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project was initiated in 2004 and is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies Program. ORNL designed the research program to generate real-world-based duty cycle data from trucks operating in long-haul operations and was designed to be conducted in three phases: identification of parameters to be collected, instrumentation and pilot testing, identification of a real-world fleet, design of the data collection suite and fleet instrumentation, and data collection, analysis, and development of a duty cycle generation tool (DCGT). ANL logo dana logo michelin logo Schrader logo This type of data will be useful for supporting energy efficiency

9

Light Duty Truck Aftertreatment - Experience and Challenges  

DOE Green Energy (OSTI)

Detroit Diesel's test experience on light duty truck PM aftertreatment technology development will be presented. The Tier-II extremely low emissions standards combined with the light-duty test cycle impose a significant challenge for the development of production-viable emissions technologies. A robust general path to achieve these emissions targets will be outlined.

Redon, Fabien

2000-08-20T23:59:59.000Z

10

Large Scale Truck Duty Cycle.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Truck Duty Cycle Evaluation and Truck Duty Cycle Evaluation and Assessment of Fuel Efficiency and Emission Reduction Technologies Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief T he Oak Ridge National Laboratory (ORNL) is conducting research to better understand truck fuel economy and emissions in normal everyday use, as part of a study sponsored by the Department of Energy (DOE) Vehicle Technologies Program (VTP). By collecting duty cycle data (velocity, acceleration and elevation) during normal operations of literally thousands of vehicles for an

11

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

12

Heavy Truck Duty Cycle (HTDC) Project OVERVIEW The Heavy Truck Duty Cycle (HTDC)  

NLE Websites -- All DOE Office Websites (Extended Search)

(HTDC) Project (HTDC) Project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies. The project involves efforts to collect, analyze and archive data and information related to class -8 truck operation in real-world environments. Such data and information will be useful for supporting: energy efficiency technology evaluation efforts, the

13

Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Truck Stop Truck Stop Electrification for Heavy-Duty Trucks to someone by E-mail Share Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Facebook Tweet about Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Twitter Bookmark Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Google Bookmark Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Delicious Rank Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Digg Find More places to share Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles

14

Evaluations of 1997 Fuel Consumption Patterns of Heavy Duty Trucks  

DOE Green Energy (OSTI)

The proposed 21st Century Truck program selected three truck classes for focused analysis. On the basis of gross vehicle weight (GVW) classification, these were Class 8 (representing heavy), Class 6 (representing medium), and Class 2b (representing light). To develop and verify these selections, an evaluation of fuel use of commercial trucks was conducted, using data from the 1997 Vehicle Inventory and Use Survey (VIUS). Truck fuel use was analyzed by registered GVW class, and by body type.

Santini, Danilo

2001-08-05T23:59:59.000Z

15

Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Truck Idle Heavy-Duty Truck Idle Reduction Technologies to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Onboard Equipment Truck Stop Electrification

16

Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Truck Idle Heavy-Duty Truck Idle Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Truck Idle Reduction Requirements

17

Vehicle Technologies Office: 21st Century Truck  

NLE Websites -- All DOE Office Websites (Extended Search)

for 21st Century Truck Partnership. Partial outline of three various size medium to heavy-duty trucks followed by the words, 21st Century Truck Partnership. Medium-duty and...

18

Heavy Duty Truck Engine Advancement Adoption  

NLE Websites -- All DOE Office Websites (Extended Search)

petroleum consumption. According to the DOE Energy Information Administration's Annual Energy Outlook (AEO) 2009, U.S. heavy truck fuel consumption will increase 23 percent between...

19

Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus * Shuttle Bus * Transit Bus * Refuse Truck * Tractor * Van * Vocational Truck School Bus * Shuttle Bus * Transit Bus * Refuse Truck * Tractor * Van * Vocational Truck Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles 2 Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles 3 Table of Contents About the Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Heavy-Duty Vehicle Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Heavy-Duty Emission Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Multiple-Stage Construction of Medium- and Heavy-Duty Vehicles . . . . . . . . . . . . . . . . . . 6 Chassis Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

Heavy-duty truck population, activity and usage patterns. Final report  

SciTech Connect

The objective of the study was to update the heavy-duty truck (HDT) population, activity (e.g., vehicle miles traveled (VMT), numbers of starts and trips, trip duration, etc.), and usage patterns type of service/business (e.g., delivery, construction, etc.), area of operation (i.e., local, short-haul, long-haul) for HDT`s registered and/or operated in California. The population and activity estimates were done on a weight-class-specific basis light-heavy-duty, medium-heavy-duty and heavy-heavy-duty. Population, activity and usage estimates were based primarily on Department of Motor Vehicles (DMV) registration data and Truck Inventory and Usage Survey (TIUS) data. In addition to the analysis of existing data (i.e., DMV and TIUS), 42 HDTs were fitted with on-board data loggers that recorded numbers of trips and starts, daily VMT and travel by time-of-day.

Fischer, M.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The ethanol heavy-duty truck fleet demonstration project  

DOE Green Energy (OSTI)

This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

NONE

1997-06-01T23:59:59.000Z

22

Feature - Fuel Economy for Medium- and Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

New Report Looks at Fuel Economy for Medium- and Heavy-Duty Vehicles New Report Looks at Fuel Economy for Medium- and Heavy-Duty Vehicles heavy duty trucks Argonne researcher Aymeric Rousseau was part of a National Academy of Science (NAS) committee established to make recommendations on improving and regulating fuel consumption for medium- and heavy-duty vehicles. On March 31, the committee issued a report that evaluates various technologies and methods that could improve the fuel economy of these vehicles. As a system analysis engineer at Argonne's Center for Transportation Research, Rousseau contributed his expertise on vehicle modeling and simulation to the committee, which was comprised of 19 members from industry, research organizations and academia. Rousseau, who leads the development of Argonne's PSAT and Autonomie software tools, helped the committee determine how modeling and simulation tools can be used to:

23

Vehicle Technologies Office: 21st Century Truck Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Truck Partnership is an industry-government collaboration among heavy-duty engine manufacturers, medium-duty and heavy-duty truck and bus manufacturers, heavy-duty hybrid...

24

Fuel Sulfur Effects on a Medium-Duty Diesel Pick-Up with a NOx Adsorber, Diesel Particle Filter Emissions Control System: 2000-Hour Aging Results  

DOE Green Energy (OSTI)

Discusses the emission results of a nitrogen oxide adsorber catalyst and a diesel particle filter in a medium-duty, diesel pick-up truck.

Thornton, M.; Webb, C. C.; Weber, P. A.; Orban, J.; Slone, E.

2006-05-01T23:59:59.000Z

25

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

2003 City of Los Angeles Bureau of Sanitation Advanced Technology Vehicles in Service: LNG Heavy-Duty Trucks Coca-Cola Hybrid Electric Delivery Trucks Coca-Cola Refreshments...

26

Heavy Truck Duty Cycle (HTDC) Project The Heavy Truck Duty Cycle (HTDC)  

E-Print Network (OSTI)

is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies with standard dual tires. The trailers are of various manufacturers and are 53 foot dry-box vans. Five-trailer (Truck#1) had its engine running while the vehicle was not moving. Over a period of one year

27

On-Road Remote Sensing of Heavy-duty Diesel Truck  

E-Print Network (OSTI)

On-Road Remote Sensing of Heavy-duty Diesel Truck Emissions in the Austin- San Marcos Area: August Denver, CO 80208 November 1998 UNIVERSITY Of DENVER #12;Remote Sensing of Heavy-duty Trucks in Austin be observed by probing the exhaust. In the process of measuring the ratios, the remote sensing unit results

Denver, University of

28

Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Medium-Duty Vehicle Medium-Duty Vehicle Idle Reduction Strategies to someone by E-mail Share Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction Strategies on Facebook Tweet about Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction Strategies on Twitter Bookmark Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction Strategies on Google Bookmark Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction Strategies on Delicious Rank Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction Strategies on Digg Find More places to share Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction Strategies on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Medium-Duty Vehicles

29

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

Science Conference Proceedings (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL; LaClair, Tim J [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

30

Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles  

NLE Websites -- All DOE Office Websites (Extended Search)

9: April 25, 9: April 25, 2005 Medium-Truck Miles by Age to someone by E-mail Share Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Facebook Tweet about Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Twitter Bookmark Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Google Bookmark Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Delicious Rank Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Digg Find More places to share Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on AddThis.com... Fact #369: April 25, 2005 Medium-Truck Miles by Age Medium trucks (class 3-6) were driven an average of 14,439 miles in 2002.

31

U.S. DRIVE Highlights of Technical Accomplishments 2011: Super Duty Diesel Truck with NOx Aftertreatment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 U.S. DRIVE Highlight Advanced Combustion and Emission Control 2011 Super Duty Diesel Truck with NO x Aftertreatment Diesel engine aftertreatment: Minimizing NO x emissions with SCR. Ford's 2011 Super Duty diesel truck-which utilizes aftertreatment technology jointly developed by Ford and the U.S. Department of Energy (DOE)-deliv- ered a multitude of firsts for the company. It was the first Ford diesel engine developed entirely in-house, the first to operate on B20 (a blend of 20% biofuel, 80% petroleum diesel), and the first to comply with

32

Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.  

Science Conference Proceedings (OSTI)

The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

2003-01-01T23:59:59.000Z

33

NOx Adsorbers for Heavy Duty Truck Engines-Testing and Simulation  

DOE Green Energy (OSTI)

This feasibility study of NOx adsorbers in heavy-duty diesel engines examined three configurations (dual-leg, single-leg and single-leg-bypass) in an integrated experimental setup, composed of a Detroit Diesel Class-8 truck engine, a catalyzed diesel particulate filter and the NOx absorber system. The setup also employed a reductant injection concept, sensors and advanced control strategies.

Hakim, N; Hoelzer, J.; Liu, Y.

2002-08-25T23:59:59.000Z

34

Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update  

DOE Green Energy (OSTI)

The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

Freese, Charlie

2000-08-20T23:59:59.000Z

35

Advanced Vehicle Testing Activity - Medium and Heavy Duty Hybrid...  

NLE Websites -- All DOE Office Websites (Extended Search)

an electric vehicle. Medium and heavy duty HEV testing results to date are posted below. Vehicle Testing Reports INL Hybrid Shuttle Busses INL Hybrid Shuttle Busses INL Hybrid...

36

Remote Sensing of In-Use Heavy-Duty Diesel Trucks  

E-Print Network (OSTI)

Remote Sensing of In-Use Heavy-Duty Diesel Trucks D A N I E L A . B U R G A R D , G A R Y A . B I this study suggest that on-road remote sensing can detect illegal, high sulfur fuel use from individual heavy,HDDvehiclesemissionshavereceivedgrowing attentioninavarietyofstudiessuchaschassisdynamometers (5, 6), in a tunnel (7), and remote sensing (8-10) as well as one critical review (4

Denver, University of

37

Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks  

Science Conference Proceedings (OSTI)

The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger

D. Magnetto; G. Vidiella

2012-01-01T23:59:59.000Z

38

Investigation of Class 2b Trucks (Vehicles of 8,500 to 10,000...  

NLE Websites -- All DOE Office Websites (Extended Search)

weight rating HD heavy-duty lbs pounds LDT light-duty trucks LEV low-emission vehicle LNG liquefied natural gas LPG liquefied petroleum gas MDPV medium-duty passenger vehicle MY...

39

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

DOE Green Energy (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

40

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

Science Conference Proceedings (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests  

DOE Green Energy (OSTI)

An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

Zhang, Houshun

2000-08-20T23:59:59.000Z

42

Combustion Commonality and Differences Between HSDI and Heavy Duty Truck Engines  

DOE Green Energy (OSTI)

Experimental understanding of the diesel spray and combustion process at the fundamental level has helped advance the virtual lab simulation tools. The computational fluid dynamics (CFD)-based simulation has been globally verified in many engines, providing substantial credibility to the use of this technology in advanced engine development. This paper highlights the common aspects and differences between the smallbore HSDI and the larger displacement heavy-duty truck engine spray and combustion processes. Implications for combustion system strategies will be delineated. Detroit Diesel integrated ''Wired'' approach will be explained with pointers towards future tool enhancements.

Chen, Rong

2000-08-20T23:59:59.000Z

43

In-Use Performance Results of Medium Duty Electric Vehicles (Presentation)  

DOE Green Energy (OSTI)

This presentation describes a DOE program to monitor and report on vehicle performance and energy utilization of medium-duty and heavy-duty electric vehicles.

Walkowicz, K.

2012-07-01T23:59:59.000Z

44

SCR SYSTEMS FOR HEAVY DUTY TRUCKS: PROGRESS TOWARDS MEETING EURO 4 EMISSION STANDARDS IN 2005  

DOE Green Energy (OSTI)

Emissions of diesel engines contain some components, which support the generation of smog and which are classified hazardous. Exhaust gas aftertreatment is a powerful tool to reduce the NOx and Particulate emissions. The NOx-emission can be reduced by the SCR technology. SCR stands for Selective Catalytic Reduction. A reduction agent has to be injected into the exhaust upstream of a catalyst. On the catalyst the NOx is reduced to N2 (Nitrogen) and H2O (Water). This catalytic process was developed in Japan about 30 years ago to reduce the NOx emission of coal-fired power plants. The first reduction agent used was anhydrous ammonia (NH3). SCR technology was used with diesel engines starting mid of the 80s. First applications were stationary operating generator-sets. In 1991 a joint development between DaimlerChrysler, MAN, IVECO and Siemens was started to use SCR technology for the reduction of heavy duty trucks. Several fleet tests demonstrated the durability of the systems. To day, SCR technology is the most promising technology to fulfill the new European Regulations EURO 4 and EURO 5 being effective Oct. 2005 and Oct. 2008. The efficient NOx reduction of the catalyst allows an engine calibration for low fuel consumption. DaimlerChrysler decided to use the SCR technology on every heavy duty truck and bus in Europe and many other truck manufacturers will introduce SCR technology to fulfill the 2005 emission regulation. The truck manufacturers in Europe agreed to use aqueous solution of Urea as reducing agent. The product is called AdBlue. AdBlue is a non toxic, non smelling liquid. The consumption is about 5% of the diesel fuel consumption to reduce the NOx emissions. A small AdBlue tank has to be installed to the vehicle. With an electronically controlled dosing system the AdBlue is injected into the exhaust. The dosing system is simple and durable. It has proven its durability during winter and summer testing as well as in fleet tests. The infrastructure for AdBlue is under evaluation in Europe by Urea Producers and Mineral Oil companies to be readily available in time. Urea is one of the most common chemical products in the world and the production and the distribution very much experienced. However, a pure grade is needed for automotive application and requires special attention.

Frank, W; Huethwohl, G; Maurer, B

2003-08-24T23:59:59.000Z

45

Heavy-Duty Truck Idle Reduction Technology Demonstations - 2005 Status Report  

NLE Websites -- All DOE Office Websites (Extended Search)

June 30, 2006 June 30, 2006 Heavy-Duty Truck Idle Reduction Technology Demonstrations 2005 Status Report Fred Wagner Energetics Incorporated NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

46

Outdoor Electric Heavy-Duty Lift Truck Demonstration at Progress Energy Florida  

Science Conference Proceedings (OSTI)

Electric lift trucks now represent well over 50% of the U.S. lift truck market, their sales propelled by improved performance, life-cycle cost savings, and operational, health, and environmental benefits. In fact, research shows that electric lift trucks over their lifetime cost approximately $1 per operating hour less per unit than internal combustion trucks due to lower fuel and maintenance costs. Despite these market successes, however, some users perceive that electric lift trucks do not perform ...

2012-08-23T23:59:59.000Z

47

Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations  

DOE Green Energy (OSTI)

This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.

LaClair, Tim J [ORNL

2011-05-01T23:59:59.000Z

48

Clean Cities' Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Brochure)  

DOE Green Energy (OSTI)

Guide describes the alternative fuel and advanced medium- and heavy-duty vehicles available on the market, including buses, vans, refuse haulers, and more.

Not Available

2010-09-01T23:59:59.000Z

49

Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck  

Science Conference Proceedings (OSTI)

We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

Daw, C Stuart [ORNL; Gao, Zhiming [ORNL; Smith, David E [ORNL; LaClair, Tim J [ORNL; Pihl, Josh A [ORNL; Edwards, Kevin Dean [ORNL

2013-01-01T23:59:59.000Z

50

Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling  

DOE Green Energy (OSTI)

In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.

Detroit Diesel Corporation; Trucking Research Institute

1998-12-03T23:59:59.000Z

51

WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE TECHNOLOGIES OFFICE VEHICLE TECHNOLOGIES OFFICE WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials February 2013 FINAL REPORT This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

52

Emission and Performance Comparison of the Natural Gas C-Gas Plus Engine in Heavy-Duty Trucks: Final Report  

DOE Green Energy (OSTI)

Subcontractor report details results of on-road development and emissions characteristics of C-Gas Plus natural gas engine in Viking Freight heavy duty trucks. The objective of this project was to develop, on road and in service, a natural gas truck/bus engine (the C-Gas Plus) with higher horsepower, lower cost, and better performance and diagnostics than the previous C8.3G natural gas engine. The engine was to have an advanced engine management control system to enable implementation of proven technologies that improve engine performance and power density (hp/L). The C-Gas Plus engine was designed to meet the following objectives: (1) Higher engine ratings (280 hp and 850 ft-lb torque for the C-Gas Plus) than the C8.3G natural gas engine; (2) Lower capital cost than the C8.3G engine; and (3) Low emission standards: California Air Resources Board (CARB) low-NO{sub x} (oxides of nitrogen) (2.0 g/bhp-h) and U.S. Environmental Protection Agency (EPA) Clean Fuel Fleet Program ultra-low emission vehicle (ULEV) emission certifications.

Lyford-Pike, E. J.

2003-04-01T23:59:59.000Z

53

Six Manufacturers to Offer Natural-Gas-Powered Trucks in 1996  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

ix truck manufacturers will offer ix truck manufacturers will offer natural-gas-powered versions of their medium- and heavy-duty trucks in 1996, according to the Gas Research Institute (GRI). The trucks will be the first fully dedicated natural gas vehicles (NGVs) offered in U.S. medium- and heavy-duty markets by original equipment manufacturers (OEMs). Four manufacturers will design trucks to operate on liquefied natural gas (LNG), and one manufacturer will design trucks to run on compressed natural gas (CNG). These manufacturers will join Volvo GM Heavy Truck Corporation, which has announced plans to manufacture an NGV refuse hauler, the Xpeditor. The refuse hauler will be available in LNG and CNG versions. "The availability of OEM- produced trucks is a significant development for GRI and the gas

54

DEVELOPMENT OF UREA-SCR FOR HEAVY-DUTY TRUCKS DEMONSTRATION UPDATE  

DOE Green Energy (OSTI)

This study included engine cell and vehicle tests. The engine cell tests are aimed at determining NOX reduction using the US transient and OICA emissions test cycles. These cycles will be included in future US HD emissions standards. The vehicle tests will show urea-SCR system performance during real-world operation. These tests will prove that the technology can be successfully implemented and demonstrated over-the-road. The program objectives are to: (a) apply urea-SCR to a US HD diesel engine; (b) determine engine cell emissions reduction during US-transient and OICA cycles; (c) apply urea-SCR to a US HD diesel truck; and (d) determine NOX reduction and urea consumption during over-the-road operation.

Miller, William

2000-08-20T23:59:59.000Z

55

International Truck & Bus Meeting & Exhibition, Fort Worth, TX, November 2003. 2003-01-3369  

E-Print Network (OSTI)

System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck Chan-Chiao Lin, Huei Peng for a hybrid electric vehicle (HEV). The hybrid electric truck that employs this control system features a "Direct Hybrid" powertrain system [1], which integrates an advanced diesel engine, an electric traction

Peng, Huei

56

Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)  

DOE Green Energy (OSTI)

Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

Not Available

2013-08-01T23:59:59.000Z

57

Raley's LNG Truck Site Final Data Report  

DOE Green Energy (OSTI)

Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

Battelle

1999-07-01T23:59:59.000Z

58

Heavy Vehicle Systems, Int. J. of Vehicle Design, Vol. 11, Nos. 3/4, 2004 349 Modelling and control of a medium-duty hybrid  

E-Print Network (OSTI)

engine. Keywords: electric vehicles, electric-vehicle simulation, hybrid electric vehicles, hybrid-duty hybrid electric truck', Int. J. of Heavy Vehicle Systems, Vol. 11, Nos. 3/4, pp. 349­370. 1 Introduction. Hybrid-electric vehicles (HEV) appear to be one of the most viable technologies with significant

Peng, Huei

59

Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

DOE Green Energy (OSTI)

Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

2010-12-01T23:59:59.000Z

60

Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.  

SciTech Connect

The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

2010-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Waste Management's LNG Truck Fleet: Final Results  

DOE Green Energy (OSTI)

Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Laboratory (US); Clark, N. [West Virginia University (US)

2001-01-25T23:59:59.000Z

62

APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform  

DOE Green Energy (OSTI)

The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT) or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002 MY Federal heavy-duty and 2002 MY California medium-duty emission standards. The stock vehicle included cooled air charge (CAC), turbocharger (TC), direct fuel injection (DFI), oxidation catalyst (OC), and exhaust gas recirculation (EGR)

Webb, C; Weber, P; Thornton,M

2003-08-24T23:59:59.000Z

63

Light Duty Vehicle Pathways  

NLE Websites -- All DOE Office Websites (Extended Search)

in 2030 0 5 10 15 20 25 30 Million BarrelsDay IMPORTS DOMESTIC OIL SUPPLY OIL DEMAND ELECTRICITY RES. & COM. INDUSTRY MISC. TRANSPORT AIR TRUCKS LIGHT DUTY VEHICLES ETHANOL...

64

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells  

DOE Green Energy (OSTI)

Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

2013-10-01T23:59:59.000Z

65

Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)  

DOE Green Energy (OSTI)

Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

2005-08-25T23:59:59.000Z

66

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO MACK TRUCKS, INC. UNDER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MACK TRUCKS, INC. UNDER MACK TRUCKS, INC. UNDER NREL SUBCONTRACT NO. ZCI-4-32050, UNDER DOE PRIME CONTRACT NO. DE-AC36-98GO10337 FOR DEVELOPMENT OF THE NEXT GENERATION NATURAL GAS VEHICLE, PHASE II; CH-1182; W(A)-04-012 Mack Trucks, Inc. (Mack) has petitioned for an advance waiver of domestic and foreign patent rights to inventions conceived or first actually reduced to practice under DOE Contract No. NREL-ZCI-4-32050-01. This advance waiver is intended to apply to all subject inventions of Mack's employees and those of its subcontractors, regardless of tier except subcontractors eligible to obtain title pursuant to P.L. 96-517 as amended, and National Laboratories. As brought out in its waiver petition, the long term objective of this contract is to develop one medium duty compressed natural gas (CGN) prototype engine or one hi:avy duty liquified

67

STATEMENT OF CONSIDERATIONS REQUEST BY MACK TRUCKS, INC. FOR...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for all subject inventions made under the above subject cooperative agreement: "Very High Fuel Economy, Heavy Duty, Constant Speed, Truck, Engine Optimized Via Unique Energy...

68

Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

2013-04-01T23:59:59.000Z

69

Cost-Effective Fabrication Routes for the Production of Quantum Well Structures and Recovery of Waste Heat from Heavy Duty Trucks  

Science Conference Proceedings (OSTI)

The primary objectives of Phase I were: (a) carry out cost, performance and system level models, (b) quantify the cost benefits of cathodic arc and heterogeneous nanocomposites over sputtered material, (c) evaluate the expected power output of the proposed thermoelectric materials and predict the efficiency and power output of an integrated TE module, (d) define market acceptance criteria by engaging Caterpillar's truck OEMs, potential customers and dealers and identify high-level criteria for a waste heat thermoelectric generator (TEG), (e) identify potential TEG concepts, and (f) establish cost/kWatt targets as well as a breakdown of subsystem component cost targets for the commercially viable TEG.

Willigan, Rhonda

2009-09-30T23:59:59.000Z

70

UPS CNG Truck Fleet Final Results: Alternative Fuel Truck Evaluation Project (Brochure)  

Science Conference Proceedings (OSTI)

This report provides transportation professionals with quantitative, unbiased information on the cost, maintenance, operational and emissions characteristics of CNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

Not Available

2002-08-01T23:59:59.000Z

71

Research and Development Opportunities for Heavy Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

1] 1] Introduction Heavy-duty long-haul trucks are critical to the movement of the Nation's freight. These vehicles, which currently consume about 10 percent of the Nation's oil, are characterized by high fuel consumption, fast market turnover, and rapid uptake of new technologies. Improving the fuel economy of Class 8 trucks will dramatically impact both fuel and cost savings. This paper describes the importance of heavy trucks to the Nation's economy, and its potential for fuel efficiency gains. Why Focus on Heavy Trucks? Large and Immediate Impact Investments in improving the fuel economy of heavy Class 8 trucks will result in large reduction in petroleum consumption within a short timeframe. While heavy-duty vehicles make up only 4% of the

72

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels  

E-Print Network (OSTI)

In the wake of global warming and fossil fuel depletion, renewed attention has been paid to shifting away from the use of petroleum based fuels. The world?s energy demand is commencing its dependency on alternative fuels. Such alternative fuels in use today consist of bio-alcohols (such as ethanol), hydrogen, biomass, and natural oil/fat derived fuels. However, in this study, the focus will be on the alternative fuel derived from natural oils and fats, namely biodiesel. The following study characterizes the performance of a medium-duty diesel engine fuelled with biodiesel and conventional diesel. The objective is accomplished by taking measurements of manifold pressure and temperature, fuel flow, air flow, and torque. The study first characterizes a John Deere 4.5 liter 4 cylinder direct injection engine with exhaust gas recirculation (EGR), common rail fuel injection, and variable turbo-charging with conventional petroleum diesel to set a reference for comparison. The study then proceeds to characterize the differences in engine performance as a result of using biodiesel relative to conventional diesel. The results show that torque decreases with the use of biodiesel by about 10%. The evaluation of engine performance parameters shows that torque is decreased because of the lower heating value of biodiesel compared to conventional diesel. The insignificant difference between the other performance parameters shows that the ECM demands the same performance of the engine regardless of the fuel being combusted by the engine.

Esquivel, Jason

2008-12-01T23:59:59.000Z

73

Fabrication and testing of an enhanced ignition system to reduce cold-start emissions in an ethanol (E85) light-duty truck engine  

DOE Green Energy (OSTI)

This report describes an experimental investigation of the potential for an enhanced ignition system to lower the cold-start emissions of a light-duty vehicle engine using fuel ethanol (commonly referred to as E85). Plasma jet ignition and conventional inductive ignition were compared for a General Motors 4-cylinder, alcohol-compatible engine. Emission and combustion stability measurements were made over a range of air/fuel ratios and spark timing settings using a steady-state, cold-idle experimental technique in which the engine coolant was maintained at 25 C to simulate cold-running conditions. These tests were aimed at identifying the degree to which calibration strategies such as mixture enleanment and retarded spark timing could lower engine-out hydrocarbon emissions and raise exhaust temperatures, as well as determining how such calibration changes would affect the combustion stability of the engine (as quantified by the coefficient of variation, or COV, of indicated mean effective pressure calculated from successive cylinder pressure measurements). 44 refs., 39 figs.

Gardiner, D.; Mallory, R.; Todesco, M. [Nexum Research Corp., Kingston, Ontario (Canada). Thermotech Engineering Div.

1997-09-01T23:59:59.000Z

74

Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine  

E-Print Network (OSTI)

Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the barrier for potential growth of the biodiesel fuel. In general, NOx formation is dominated by flame temperature. Interestingly, soot can play a role as a heat sink as well as a heat transfer media to high temperature gases. Thus, the cooling effect of soot may change the flame temperature and therefore, NOx emissions. In this study, emphasis is placed on the relationship between soot and NO (Nitric oxide) formation. For the experimental study, a metallic fuel additive is used since barium is known to be effective to suppress soot formation during combustion. The barium additive is applied to #2D (Number 2 diesel fuel) by volume basis: 0.1, 0.25 and 0.5 %-v, and to the palm olein oil by 0.25 %-v. All the tests are carried out in a four-cylinder medium duty diesel engine, 4045 DI diesel engine, manufactured by John Deere. For the analysis, an analytical model is used to estimate combustion temperature, NO concentration and soot emissivity. The results show that NO concentration does not have the expected trade-off relation with soot. Rather, NO concentration is found to be more strongly affected by ambient temperature and combustion characteristics than by soot. The results of the analytical model show the reasonable NO estimation and the improvement on temperature calculation. However, the model is not able to explain the detailed changes of soot emissivity by the different fuels since the emissivity correlation is developed empirically for diesel fuel.

Song, Hoseok

2012-05-01T23:59:59.000Z

75

Raley's LNG Truck Fleet: Final Results  

DOE Green Energy (OSTI)

Raley's, a large retail grocery company based in Northern California, began operating heavy-duty trucks powered by liquefied natural gas (LNG) in 1997, in cooperation with the Sacramento Metropolitan Air Quality Management District (SMAQMD). The US Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) sponsored a research project to collect and analyze data on the performance and operation costs of eight of Raley's LNG trucks in the field. Their performance was compared with that of three diesel trucks operating in comparable commercial service. The objective of the DOE research project, which was managed by the National Renewable Energy Laboratory (NREL), was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

Chandler, K. (Battelle); Norton, P. (NREL); Clark, N. (West Virginia University)

2000-05-03T23:59:59.000Z

76

Truck Thermoacoustic Generator and Chiller  

DOE Green Energy (OSTI)

This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to be tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.

Robert Keolian

2011-03-31T23:59:59.000Z

77

NREL: Fleet Test and Evaluation - Truck Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Efficiency The Fleet Test and Evaluation team is working with industry partners to evaluate truck efficiency technologies in long-haul truck cabs. To keep their cabs at a comfortable temperature, heavy-duty truck drivers idle their engines an average of 1,400 hours annually, using more than 800 million gallons of fuel each year. With diesel prices at an all-time high, carrier companies are looking into ways to incorporate truck efficiency technologies to eliminate engine idling. By doing so, they not only save money on fuel but reduce tailpipe emissions. To find ways trucks can be more efficient without idling, the Fleet Test and Evaluation team is researching: Thermal Load Reduction Idle Reduction Printable Version Fleet Test and Evaluation Home Research & Development

78

Model curriculum outline for Alternatively Fueled Vehicle (AFV) automotive technician training in light and medium duty CNG and LPG  

DOE Green Energy (OSTI)

This model curriculum outline was developed using a turbo-DACUM (Developing a Curriculum) process which utilizes practicing experts to undertake a comprehensive job and task analysis. The job and task analysis serves to establish current baseline data accurately and to improve both the process and the product of the job through constant and continuous improvement of training. The DACUM process is based on the following assumptions: (1) Expert workers are the best source for task analysis. (2) Any occupation can be described effectively in terms of tasks. (3) All tasks imply knowledge, skills, and attitudes/values. A DACUM panel, comprised of six experienced and knowledgeable technicians who are presently working in the field, was given an orientation to the DACUM process. The panel then identified, verified, and sequenced all the necessary job duty areas and tasks. The broad duty categories were rated according to relative importance and assigned percentage ratings in priority order. The panel then rated every task for each of the duties on a scale of 1 to 3. A rating of 3 indicates an {open_quotes}essential{close_quotes} task, a rating of 2 indicates an {open_quotes}important{close_quotes} task, and a rating of 1 indicates a {open_quotes}desirable{close_quotes} task.

NONE

1997-04-01T23:59:59.000Z

79

Super Duty Diesel Truck with NOx Aftertreatment  

Energy.gov (U.S. Department of Energy (DOE))

A profile of a Ford-Energy Department program to develop a three-stage aftertreatment technology, which cleans the vehicle exhaust emissions.

80

Occult Trucking and Storage  

E-Print Network (OSTI)

At least we used to. We are Occult Trucking and Storage andNOTHING. FLASHBACK -- OCCULT TRUCKING AND STORAGE DEPOT --I saw him. FLASHBACK - OCCULT TRUCKING AND STORAGE DEPOT -

Eyres, Jeffrey Paul

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Heavy Truck Engine Program  

DOE Green Energy (OSTI)

The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine system was capable of meeting 2010 emissions requirements through the application of NOx and particulate matter reduction techniques proven earlier in the program.

Nelson, Christopher

2009-01-08T23:59:59.000Z

82

Lift truck safety review  

SciTech Connect

This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

Cadwallader, L.C.

1997-03-01T23:59:59.000Z

83

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

Science Conference Proceedings (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

84

Caterpillar Light Truck Clean Diesel Program  

DOE Green Energy (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

85

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

82 Application: Tractor Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISL G 8.9L Additional Description: A heavy-duty truck designed for regional-haul applications....

86

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

T660 Tractor Application: Tractor Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISX12 G Additional Description: A Class 8 heavy-duty truck designed for on-highway...

87

Duty Cycle Analysis & Tools: Maximizing Vehicle Performance (Presentation)  

DOE Green Energy (OSTI)

Shows that the benefits of using hybrid vehicle trucks in fleets depends on the duty cycle, or how the vehicles will be driven (e.g., stop and go) over a particular route (e.g., urban or rural).

Walkowicz, K.

2009-10-28T23:59:59.000Z

88

Improving Energy Use in Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

advances in consumer automobiles may dominate the headlines, but heavy-duty trucks and trains also have challenges that need to be addressed. From excessive idling to engine wear,...

89

Dual-Fuel Truck Fleet: Start-Up Experience  

DOE Green Energy (OSTI)

Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

NREL

1998-09-30T23:59:59.000Z

90

Heavy Truck Clean Diesel Cooperative Research Program  

DOE Green Energy (OSTI)

This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

Milam, David

2006-12-31T23:59:59.000Z

91

TO: ALL PASSENGER CAR MANUFACTURERS ALL LIGHT-DUTY TRUCK MANUFACTURERS ALL MEDIUM-DUTY VEHICLE MANUFACTURERS ALL DIRECT IMPORTERS ALL OTHER INTERESTED PARTIES SUBJECT: Submission of Certification Data Demonstrating  

E-Print Network (OSTI)

This letter transmits the attached Manufacturers Advisory Correspondence (MAC) which informs vehicle manufacturers of the need to submit demonstrations of compliance with the Inspection and Maintenance (I/M) idle mode and Acceleration Simulation Mode (ASM) loaded mode emission standards, for all 2000 and subsequent model-year emission-data vehicles (EDVs) at the time of certification. If you have any questions or comments, please contact

John D. Dunlap; Pete Wilson; R. B. Summerfield

1998-01-01T23:59:59.000Z

92

Volvo Truck Headquarters in North Carolina to Host Event With Acting Under  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volvo Truck Headquarters in North Carolina to Host Event With Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar January 26, 2012 - 2:00pm Addthis Washington, D.C. - Tomorrow, Friday, January 27, Acting Under Secretary of Energy Arun Majumdar and North Carolina Congressman Howard Coble will visit the Volvo Group's truck headquarters in Greensboro, North Carolina. Through the Department of Energy's Super Truck project, the Volvo Group, which includes Mack Trucks and Volvo Trucks, received $19 million in federal funding to improve the freight-moving efficiency of heavy-duty trucks, an example of the Obama Administration's strong commitment to reviving the U.S. auto industry through investments in more efficient

93

Truck Stop Electrification: Codes and Standards Ensure Safety for The Trucking Industry  

Science Conference Proceedings (OSTI)

Every day in the United States as many as 677,600 heavy-duty trucks are on the road; and, at some point during that day, they are idling. Over the course of a year, long-duration idling of truck and locomotive engines consumes more than 1 billion gallons of diesel fuel and emits 11 million tons of carbon dioxide. Drivers often idle their main engines during the U.S. Department of Transportation mandated rest time of 10 hours after driving for 11 hours, to power heating, air conditioning, lighting, and ap...

2009-05-08T23:59:59.000Z

94

An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2000-2007 Light-Duty Vehicles-Preliminary report  

E-Print Network (OSTI)

variables, on 13-state casualty risk per crash, lightvariables, on 13-state casualty risk per crash, lighton crashes with heavier light-duty trucks, by case vehicle

Wenzel, Tom

2013-01-01T23:59:59.000Z

95

Light truck forecasts  

SciTech Connect

The recent dramatic increase in the number of light trucks (109% between 1963 and 1974) has prompted concern about the energy consequences of the growing popularity of the light truck. An estimate of the future number of light trucks is considered to be a reasonable first step in assessing the energy impact of these vehicles. The monograph contains forecasts based on two models and six scenarios. The coefficients for the models have been derived by ordinary least squares regression of national level time series data. The first model is a two stage model. The first stage estimates the number of light trucks and cars (together), and the second stage applies a share's submodel to determine the number of light trucks. The second model is a simultaneous equation model. The two models track one another remarkably well, within about 2%. The scenarios were chosen to be consistent with those used in the Lindsey-Kaufman study Projection of Light Truck Population to Year 2025. Except in the case of the most dismal economic scenario, the number of light trucks is expected to increase from the 1974 level of 0.09 light truck per person to about 0.12 light truck per person in 1995.

Liepins, G.E.

1979-09-01T23:59:59.000Z

96

Empty WIPP truck overturns  

NLE Websites -- All DOE Office Websites (Extended Search)

Office reports that a Waste Isolation Pilot Plant (WIPP) truck carrying three empty TRUPACT-II shipping containers overturned on Interstate 15 near Blackfoot, Idaho, at...

97

Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)  

Reports and Publications (EIA)

The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the CAFE standards set by NHTSA. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

Information Center

2005-02-01T23:59:59.000Z

98

International Truck | Open Energy Information  

Open Energy Info (EERE)

Truck Truck Jump to: navigation, search Name International Truck Place Atlanta, GA Website http://www.internationaltruck. References International Truck[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2007 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! International Truck is a company located in Atlanta, GA. References ↑ "International Truck" Retrieved from "http://en.openei.org/w/index.php?title=International_Truck&oldid=381698" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link

99

On-Road Development of the C-Gas Plus Engine in Heavy-Duty Vehicles  

Science Conference Proceedings (OSTI)

Fact sheet details on-road development of C-Gas Plus natural gas engine in Viking Freight heavy-duty trucks, including emissions, fuel costs, and petroleum displacement.

Not Available

2003-06-01T23:59:59.000Z

100

Advanced Vehicle Testing Activity: Truck Testing Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Adobe Reader. Norcal Waste Systems, Inc. Liquefied Natural Gas Trucks Norcal Prototype LNG Truck Fleet: Final Data Report, February 2005 (PDF 806 KB) Norcal Prototype LNG Truck...

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Natural Gas as a Future Fuel for Heavy-Duty Vehicles  

DOE Green Energy (OSTI)

In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications.

Wai-Lin Litzke; James Wegrzyn

2001-05-14T23:59:59.000Z

102

Anti-Idling Battery for Truck Applications  

DOE Green Energy (OSTI)

In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

Keith Kelly

2011-09-30T23:59:59.000Z

103

Diesel Engine Light Truck Application  

DOE Green Energy (OSTI)

The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

None

2007-12-31T23:59:59.000Z

104

Transportable Heavy Duty Emissions Testing Laboratory and Research Program  

DOE Green Energy (OSTI)

The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also quantified during selected studies. A laboratory was established at WVU to provide for studies which supported and augmented the Translab research, and to provide for development of superior emissions measurement systems. This laboratory research focused on engine control and fuel sulfur issues. In recent years, as engine and aftertreatment technologies advanced, emissions levels were reduced such that they were at or below the Translab detectable limits, and in the same time frame the US Environmental Protection Agency required improved measurement methodologies for engine emissions certification. To remain current and relevant, the researchers designed a new Translab analytic system, housed in a container which can be transported on a semi-trailer. The new system's dilution tunnel flow was designed to use a subsonic venturi with closed loop control of blower speed, and the secondary dilution and particulate matter filter capture were designed to follow new EPA engine certification procedures. A further contribution of the program has been the development of techniques for creating heavy-duty vehicle test schedules, and the creation of schedules to mimic a variety of truck and bus vocations.

David Lyons

2008-03-31T23:59:59.000Z

105

Truckstop -- and Truck!-- Electrification  

SciTech Connect

The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet participation/ lead; and A gallon saved is a gallon earned-- start NOW, not later.

Skip Yeakel

2001-12-13T23:59:59.000Z

106

Truckstop -- and Truck!-- Electrification  

DOE Green Energy (OSTI)

The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet participation/ lead; and A gallon saved is a gallon earned-- start NOW, not later.

Skip Yeakel

2001-12-13T23:59:59.000Z

107

Vehicle Technologies Office: Fact #229: August 12, 2002 Medium and Heavy  

NLE Websites -- All DOE Office Websites (Extended Search)

9: August 12, 9: August 12, 2002 Medium and Heavy Truck Sales to someone by E-mail Share Vehicle Technologies Office: Fact #229: August 12, 2002 Medium and Heavy Truck Sales on Facebook Tweet about Vehicle Technologies Office: Fact #229: August 12, 2002 Medium and Heavy Truck Sales on Twitter Bookmark Vehicle Technologies Office: Fact #229: August 12, 2002 Medium and Heavy Truck Sales on Google Bookmark Vehicle Technologies Office: Fact #229: August 12, 2002 Medium and Heavy Truck Sales on Delicious Rank Vehicle Technologies Office: Fact #229: August 12, 2002 Medium and Heavy Truck Sales on Digg Find More places to share Vehicle Technologies Office: Fact #229: August 12, 2002 Medium and Heavy Truck Sales on AddThis.com... Fact #229: August 12, 2002 Medium and Heavy Truck Sales

108

Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration  

DOE Green Energy (OSTI)

In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

NONE

1995-06-01T23:59:59.000Z

109

Hennepin County`s experience with heavy-duty ethanol vehicles  

DOE Green Energy (OSTI)

From November 1993 to October 1996, Hennepin County, which includes Minneapolis, field-tested two heavy-duty snowplow/road maintenance trucks fueled by ethanol. The overall objective of this program was to collect data from original equipment manufacturer alternative fuel heavy-duty trucks, along with comparable data from a similarly configured diesel-powered vehicle, to establish economic, emissions, performance, and durability data for the alternative fuel technology. These ethanol trucks, along with an identical third truck equipped with a diesel engine, were operated year round to maintain the Hennepin county roads. In winter, the trucks were run in 8-hour shifts plowing and hauling snow from urban and suburban roads. For the rest of the year, the three trucks were used to repair and maintain these same roads. As a result of this project, a considerable amount of data was collected on E95 fuel use, as well as maintenance, repair, emissions, and operational characteristics. Maintenance and repair costs of the E95 trucks were considerably higher primarily due to fuel filter and fuel pump issues. From an emissions standpoint, the E95 trucks emitted less particulate matter and fewer oxides of nitrogen but more carbon monoxide and hydrocarbons. Overall, the E95 trucks operated as well as the diesel, as long as the fuel filters were changed frequently. This project was a success in that E95, a domestically produced fuel from a renewable energy source, was used in a heavy-duty truck application and performed the same rigorous tasks as the diesel counterparts. The drawbacks to E95 as a heavy-duty fuel take the form of higher operational costs, higher fuel costs, shorter range, and the lack of over-the-road infrastructure.

NONE

1998-01-01T23:59:59.000Z

110

Heavy-Duty Truck Idle Reduction Technology Demonstrations 2007...  

NLE Websites -- All DOE Office Websites (Extended Search)

that include Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Puerto Rico, Rhode Island, the U.S. Virgin Islands and Vermont; and Tribal lands belonging...

111

Heavy-Duty Truck Idle Reduction Technology Demonstrations - 2006...  

NLE Websites -- All DOE Office Websites (Extended Search)

use. All projects must benefit the air quality in the geographic regions that include Puerto Rico and the Virgin Islands. (http:www.eere.energy.govcleancitiesprogsafdc...

112

DOE Hydrogen and Fuel Cells Program Record 9010: Benefits of Fuel Cell APU on Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Date: November 3, 2009 0 Date: November 3, 2009 Title: Benefits of Fuel Cell APU on Trucks Originator: Tien D. Nguyen and Fred Joseck Approved by: Sunita Satyapal Date: November 25, 2009 Item: Approximately 700 million gallons of diesel can be saved annually through the use of fuel cell auxiliary power units (APUs) in the trucking industry, resulting in a reduction of 8.9 million metric tons of CO 2 per year. Data and Assumptions 1. Total number of trucks with sleeper berths is estimated to be 931,000 in 2030: The total number of heavy-duty freight trucks forecasted in EIA's Annual Energy Outlook 2009 is 5.21 millions in 2010, increasing to 6.93 millions in 2030. In a survey published in 2006, the American Transportation Research Institute (ATRI) received responses from

113

Secretary of Energy Bodman Remarks for 21st Century Truck Event |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary of Energy Bodman Remarks for 21st Century Truck Event Secretary of Energy Bodman Remarks for 21st Century Truck Event Secretary of Energy Bodman Remarks for 21st Century Truck Event May 10, 2005 - 12:46pm Addthis I am delighted to be here. The technologies on exhibit today represent one very promising avenue for meeting our growing energy needs while maintaining good stewardship of the environment. As many of you know, U.S. highway transportation is over 97 percent dependent on petroleum for its energy, with about one-quarter consumed by heavy-duty vehicles. Over half of our petroleum is imported, which impacts our security and balance of payments deficit. Without significant technology development, our Department is forecasting that heavy truck petroleum use will increase by 40 percent by 2020 and will double by 2050

114

Secretary of Energy Bodman Remarks for 21st Century Truck Event |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman Remarks for 21st Century Truck Event Bodman Remarks for 21st Century Truck Event Secretary of Energy Bodman Remarks for 21st Century Truck Event May 10, 2005 - 12:46pm Addthis I am delighted to be here. The technologies on exhibit today represent one very promising avenue for meeting our growing energy needs while maintaining good stewardship of the environment. As many of you know, U.S. highway transportation is over 97 percent dependent on petroleum for its energy, with about one-quarter consumed by heavy-duty vehicles. Over half of our petroleum is imported, which impacts our security and balance of payments deficit. Without significant technology development, our Department is forecasting that heavy truck petroleum use will increase by 40 percent by 2020 and will double by 2050 relative to today.

115

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

116

Demonstrating and evaluating heavy-duty alternative fuel operations  

DOE Green Energy (OSTI)

The principal objectives of this project was to understand the effects of using an alternative fuel on a truck operating fleet through actual operation of trucks. Information to be gathered was expected to be anecdotal, as opposed to statistically viable, because the Trucking Research institute (TRI) recognized that projects could not attract enough trucks to produce statistically credible volumes of data. TRI was to collect operational data, and provide them to NREL, who would enter the data into the alternative fuels database being constructed for heavy-duty trucks at the time. NREL would also perform data analysis, with the understanding that the demonstrations were generally pre-production model engines and vehicles. Other objectives included providing information to the trucking industry on the availability of alternative fuels, developing the alternative fuels marketplace, and providing information on experience with alternative fuels. In addition to providing information to the trucking industry, an objective was for TRI to inform NREL and DOE about the industry, and give feedback on the response of the industry to developments in alternative fuels in trucking. At the outset, only small numbers of vehicles participated in most of the projects. Therefore, they had to be considered demonstrations of feasibility, rather than data gathering tests from which statistically significant conclusions might be drawn. Consequently, data gathered were expected to be useful for making estimates and obtaining valuable practical lessons. Project data and lessons learned are the subjects of separate project reports. This report concerns itself with the work of TRI in meeting the overall objectives of the TRI-NREL partnership.

Peerenboom, W. [Trucking Research Inst., Alexandria, VA (United States)] [Trucking Research Inst., Alexandria, VA (United States)

1998-02-01T23:59:59.000Z

117

Using LNG as a Fuel in Heavy-Duty Tractors  

DOE Green Energy (OSTI)

Recognizing the lack of operational data on alternative fuel heavy-truck trucks, NREL contracted with the Trucking Research Institute (TRI) in 1994 to obtain a cooperative agreement with Liquid Carbonic. The purpose of this agreement was to (1) purchase and operate liquid natural gas- (LNG-) powered heavy-duty tractor-trailers with prototype Detroit Diesel Corporation (DDC) Series 60 natural gas (S60G) engines in over-the-road commercial service applications; and (2) collect and provide operational data to DDC to facilitate the on-road prototype development of the engine and to NREL for the Alternative Fuels Data Center. The vehicles operated from August 1994 through April of 1997 and led to a commercially available, emissions-certified S60G in 1998. This report briefly documents the engine development, the operational characteristics of LNG, and the lessons learned during the project.

Liquid Carbonic, Inc. and Trucking Research Institute

1999-08-09T23:59:59.000Z

118

Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Light-Duty Vehicle Light-Duty Vehicle Idle Reduction Strategies to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Medium-Duty Vehicles

119

Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report  

Science Conference Proceedings (OSTI)

Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

Not Available

2007-03-01T23:59:59.000Z

120

Emissions from Trucks using Fischer-Tropsch Diesel Fuel  

DOE Green Energy (OSTI)

The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

1998-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Department, Volvo Partnership Builds More Efficient Trucks...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the United States. Volvo Truck Corporation is one of the leading heavy truck and engine manufacturers in the world. Volvo Trucks manufactures a line of Class 8 trucks, and is...

122

Norcal Prototype LNG Truck Fleet: Final Results  

SciTech Connect

U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

Not Available

2004-07-01T23:59:59.000Z

123

Duty Cycle Software  

Duty cycles capture the influence of one variable in relations to the whole system. This allows for analysis in determining the impact of new ...

124

ORNL light-duty vehicles PC system  

Science Conference Proceedings (OSTI)

This data system, designed by the Oak Ridge National Laboratory (ORNL) and funded by the US Department of Energy (DOE), monitors information on every light-duty vehicle (automobiles and light-duty trucks) sold in the United States since model year 1976. The data are specified in two days. One way is on a model basis (i.e, engine and transmission combinations) and includes data on city, highway, and combined fuel economies; engine size; drive-train; fuel type (gasoline or diesel); interior volume; body type; and other vehicle attributes. The other way is on a make basis (e.g., Ford Escort, Oldsmobile 98) and includes data on sales; Environmental Protection Agency (EPA) size class; the sales-weighted fuel economy; sales-weighted interior volume; sales-weighted engine displacement (cid); curb weight; and other attributes. A unique identification number is assigned to a specific vehicle category. This identification number contains information on the manufacturer, the location of the manufacturer (domestic or import), and the sponsorship of the vehicle (domestic or import). Fuel economies, model year sales and various vehicle characteristics for every make of the 164 million light-duty vehicles sold in the US since model year 1976 can be obtained from this data system. 2 figs., 4 tabs.

Hu, P.S.; Patterson, P.D. (Oak Ridge National Lab., TN (USA))

1989-01-01T23:59:59.000Z

125

Vehicle Technologies Office: Fact #382: July 25, 2005 New Medium and Heavy  

NLE Websites -- All DOE Office Websites (Extended Search)

2: July 25, 2005 2: July 25, 2005 New Medium and Heavy Truck Registrations by Fuel Type, 2004 to someone by E-mail Share Vehicle Technologies Office: Fact #382: July 25, 2005 New Medium and Heavy Truck Registrations by Fuel Type, 2004 on Facebook Tweet about Vehicle Technologies Office: Fact #382: July 25, 2005 New Medium and Heavy Truck Registrations by Fuel Type, 2004 on Twitter Bookmark Vehicle Technologies Office: Fact #382: July 25, 2005 New Medium and Heavy Truck Registrations by Fuel Type, 2004 on Google Bookmark Vehicle Technologies Office: Fact #382: July 25, 2005 New Medium and Heavy Truck Registrations by Fuel Type, 2004 on Delicious Rank Vehicle Technologies Office: Fact #382: July 25, 2005 New Medium and Heavy Truck Registrations by Fuel Type, 2004 on Digg Find More places to share Vehicle Technologies Office: Fact #382:

126

Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks  

DOE Green Energy (OSTI)

Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on fuel economy was determined, either through on-road testing or full-size wind tunnel testing. All of the manufacturers worked with devices and systems that offer practical solutions to reduce aerodynamic drag, accounting for functionality, durability, cost effectiveness, reliability, and maintainability. The project team members and their roles and responsibilities are shown in Figure 2-1. Figure 2-2 shows the Phase I and II project schedules for all four projects and associated management activities.

Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

2007-04-30T23:59:59.000Z

127

Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency November 22, 2013 - 5:37pm Addthis As part of the 21st Century Truck Partnership, the Army will demonstrate technology that converts waste heat from an exhaust system to electricity used in its Stryker vehicle. | Photo courtesy of courtesy of U.S. Army As part of the 21st Century Truck Partnership, the Army will demonstrate technology that converts waste heat from an exhaust system to electricity used in its Stryker vehicle. | Photo courtesy of courtesy of U.S. Army Natalie Committee Communications Specialist, Office of Energy Efficiency and Renewable Energy Detroit, the hub of America's automotive industry hosted a gathering of

128

Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator  

SciTech Connect

Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR??s test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

N.B. Elsner; J.C. Bass; S. Ghamaty; D. Krommenhoek; A. Kushch; D. Snowden; S. Marchetti

2005-03-31T23:59:59.000Z

129

EIA - AEO2010 - Naturall gas as a fuel for heavy trucks: Issues and  

Gasoline and Diesel Fuel Update (EIA)

gas as a fuel for heavy trucks: Issues and incentives gas as a fuel for heavy trucks: Issues and incentives Annual Energy Outlook 2010 with Projections to 2035 Natural gas as a fuel for heavy trucks: Issues and incentives Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks. In 2008, U.S. freight trucks used more than 2 million barrels of petroleum-based diesel fuel per day. In the AEO2010 Reference case, they are projected to use 2.7 million barrels per day in 2035. Petroleum-based diesel use by freight trucks in 2008 accounted for 15 percent of total petroleum consumption (excluding biofuels and other non-petroleum-based products) in the transportation sector (13.2 million barrels per day) and 12 percent of the U.S. total for all sectors (18.7 million barrels per day). In the Reference case, oil use by freight trucks grows to 20 percent of total transportation use (13.7 million barrels per day) and 14 percent of the U.S. total (19.0 million barrels per day) by 2035. The following analysis examines the potential impacts of policies aimed at increasing sales of heavy-duty natural gas vehicles (HDNGVs) and the use of natural gas fuels, and key factors that lead to uncertainty in these estimates.

130

Trucking | OpenEI Community  

Open Energy Info (EERE)

36 36 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235336 Varnish cache server Trucking Home Jessi3bl's picture Submitted by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation Partnerships Technology Innovation & Solutions Transportation Trucking Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

131

Interim Results from Alternative Fuel Truck Evaluation Project  

DOE Green Energy (OSTI)

The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. Currently, the project has four sites: Raley's in Sacramento, CA (Kenworth, Cummins LlO-300G, liquefied natural gas - LNG); Pima Gro Systems, Inc. in Fontana, CA (White/GMC, Caterpillar 31768 Dual-Fuel, compressed natural gas - CNG); Waste Management in Washington, PA (Mack, Mack E7G, LNG); and United Parcel Service in Hartford, CT (Freightliner Custom Chassis, Cummins B5.9G, CNG). This paper summarizes current data collection and evaluation results from this project.

Kevin L. Chandler; Paul Norton; Nigel Clark

1999-05-03T23:59:59.000Z

132

Accretion-of-Duties  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

JAN 0 7 2010 JAN 0 7 2010 MEMORANDUM FOR HUMAN RESOURCES DIRECTORS FROM: SARAH J. B -&- LLA, DIRECTOR SUBJECT: GUIDANCE MEMORANDUM #5: Accretion-of-Duties Promotions This memorandum provides policy guidance on how to consistently address accretion-of-duties promotions within the Department and is effective immediately. The Department of Energy's Merit Promotion Plan permits the use of accretion-of-duties promotions as an exception to competitive procedures. The ability to effect noncompetitive promotions based on accretion-of-duties is an important stafEing tool available to supervisors. Whenever possible, supervisors and servicing Human Resources Offices will ensure that a reasonable and accurate career ladder is established before a position is filled. Following good

133

Emission Changes Resulting from the San Pedro Bay, California Ports Truck Retirement Program  

SciTech Connect

Recent U.S. Environmental Protection Agency emissions regulations have resulted in lower emissions of particulate matter and oxides of nitrogen from heavy-duty diesel trucks. To accelerate fleet turnover the State of California in 2008 along with the Ports of Los Angeles and Long Beach (San Pedro Bay Ports) in 2006 passed regulations establishing timelines forcing the retirement of older diesel trucks. On-road emissions measurements of heavy-duty diesel trucks were collected over a three-year period, beginning in 2008, at a Port of Los Angeles location and an inland weigh station on the Riverside freeway (CA SR91). At the Port location the mean fleet age decreased from 12.7 years in April of 2008 to 2.5 years in May of 2010 with significant reductions in carbon monoxide (30%), oxides of nitrogen (48%) and infrared opacity (a measure of particulate matter, 54%). We also observed a 20-fold increase in ammonia emissions as a result of new, stoichiometrically combusted, liquefied natural gas powered trucks. These results compare with changes at our inland site where the average ages were 7.9 years in April of 2008 and 8.3 years in April of 2010, with only small reductions in oxides of nitrogen (10%) being statistically significant. Both locations have experienced significant increases in nitrogen dioxide emissions from new trucks equipped with diesel particle filters; raising the mean nitrogen dioxide to oxides of nitrogen ratios from less than 10% to more than 30% at the Riverside freeway location.

Bishop, G. A.; Schuchmann, B. G.; Stedman, D. H.; Lawson, D. R.

2012-01-03T23:59:59.000Z

134

Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving  

E-Print Network (OSTI)

and found to work satisfactorily. Keywords / Hybrid Electric Vehicles, Powertrain Control, Heavy DutyProceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving Pattern Recognition Chan-Chiao Lin, Huei Peng Soonil

Peng, Huei

135

DOE SuperTruck Program Benefits Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

in the project's technical scope development, information collection, and analysis. He also served as the key technical contact point for the SuperTruck development...

136

Reducing Bodybuilder Waste on SCANIA Trucks.  

E-Print Network (OSTI)

?? In a world of fierce competition that is the reality for heavy truck manufacturers, it is important to optimize every step of production to (more)

Dahlberg, Carl

2011-01-01T23:59:59.000Z

137

DOE/VTP Light-Duty Diesel Engine Commercialization  

NLE Websites -- All DOE Office Websites (Extended Search)

VTP Light-Duty Diesel Engine Commercialization VTP Light-Duty Diesel Engine Commercialization Vehicle Technologies Program (VTP) spearheaded the development of clean diesel engine technologies for passenger vehicles in the 1990s, spurring the current reintroduction of highly efficient diesel vehicles into the passenger market. Cummins partnered with VTP to develop a diesel engine that meets the 50-state 2010 emissions standards while boosting vehicle fuel economy by 30% over comparable gasoline-powered vehicles. The Cummins engine is scheduled to debut in 2010 Chrysler sport utility vehicles and pickup trucks. VTP-sponsored research demonstrated the ability of diesel passenger vehicles with advanced aftertreatment to meet EPA's stringent Tier II Bin 5 standards, representing an 83% reduction in NOx and more than 87% reduction in

138

Alternative Fuels Data Center: Commercial Electric Truck Vouchers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Electric Truck Vouchers to someone by E-mail Share Alternative Fuels Data Center: Commercial Electric Truck Vouchers on Facebook Tweet about Alternative Fuels Data...

139

Vehicle Technologies Office: 21st Century Truck Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Inc. BAE Systems plc Caterpillar Inc. Cummins Inc. Daimler Trucks North America LLC Detroit Diesel Corporation Eaton Honeywell International Mack Trucks Meritor, Inc. Navistar,...

140

Manhattan Project truck unearthed at landfill cleanup site  

NLE Websites -- All DOE Office Websites (Extended Search)

Phonebook Calendar Video Newsroom News Releases News Releases - 2011 April Manhattan project truck Manhattan Project truck unearthed at landfill cleanup site A LANL...

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Oak Ridge Leadership Computing Facility User Update: SmartTruck...  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Computing Facility User Update: SmartTruck Systems Startup zooms to success improving fuel efficiency of long-haul trucks by more than 10 percent Supercomputing...

142

UPS CNG Truck Fleet Final Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

® ® ® ® ® ® ® ® Clean Air Natural Gas Vehicle This is a Clean Air Natural Gas Vehicle This is a UPS CNG Truck Fleet UPS CNG Truck Fleet UPS CNG Truck Fleet Final results Final Results Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a DOE national laboratory Alternative Fuel Trucks DOE/NREL Truck Evaluation Project By Kevin Chandler, Battelle Kevin Walkowicz, National Renewable Energy Laboratory Nigel Clark, West Virginia University Acknowledgments This evaluation would not have been possible without the cooperation, support, and responsiveness of the staff at UPS in Hartford and Atlanta. Thanks are due to the following UPS personnel: On-Site Headquarters Tom Robinson Ken Henrie Bill Jacob Rick Rufolo

143

POST 10/Truck Inspection Station (Map 3  

NLE Websites -- All DOE Office Websites (Extended Search)

POST 10/Truck Inspection Station (Map 3) POST 10/Truck Inspection Station (Map 3) Changes Effective January 11, 2010 Pajarito Corridor Deliveries: Drivers of commercial delivery trucks headed to the Pajarito Corridor (Pajarito Road bounded by NM Highway 4 and Diamond Drive) must stop at Post 10 for truck inspections. Drivers will then need to present time-stamped inspection passes from Post 10 to protective force officers stationed at the Pajarito Corridor. (Drivers exiting Post 10 should (1) turn right and proceed west on the Truck Route; (2) turn left onto West Jemez Road; (3) proceed to Lane 7; (4) STOP and present the inspection pass to the protective force officer; (5) turn left onto Diamond

144

Developing and evaluating pit truck safety devices  

SciTech Connect

Describes an electromagnetic system whereby smaller vehicles transmit a signal to haulage truck operators, to alert them to their presence. Driver visibility is restricted in large, rear-dump haulage trucks used in open-pit mining. Analysis shows the need for an alarm in the truck, to warn of vehicles in blind spots. As open-pit haulage truck size has increased, so has the size of the blind areas. Parameters for a prototype system included high- and low-frequency electromagnetic noise rejection, system sensitivity, ease of distance calibration, box size, mounting ease, power needs, and an internal system to continuously self-test all electronic fault-detection circuits. The prototype haulage truck cabmounted receiver had 2 channels. The system has been field-tested at the Twin Buttes open-pit mine near Tucson, AZ.

Yates, W.C.

1982-07-01T23:59:59.000Z

145

STATEMENT OF CONSIDERATIONS REQUEST BY MACK TRUCKS, INC. FOR AN ADVANCE WAIVER OF PATENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INC. FOR AN ADVANCE WAIVER OF PATENT INC. FOR AN ADVANCE WAIVER OF PATENT RIGHTS TO INVENTIONS MADE UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-05NT42421; W(A)-05-041; CH-1323 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Mack Trucks, Inc (Mack) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above subject cooperative agreement: "Very High Fuel Economy, Heavy Duty, Constant Speed, Truck, Engine Optimized Via Unique Energy Recovery Turbines and Facilitated by High Efficiency Continuously Variable Drivetrain". The waiver will apply to inventions made by Mack employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible

146

Current DUTY STATEMENT  

E-Print Network (OSTI)

Office of Chief Counsel Date Prepared June 15, 2009 Division KEY: (E) IS ESSENTIAL, (M) IS MARGINAL Under. WORKING CONDITIONS: Work is performed indoors in an office setting and occasionally in facilities near THE ASSISTANCE OF A REASONABLE ACCACCOMMODATION, THE ESSENTIAL JOB DUTIES OF THIS POSITION. Signatures Name

147

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMERCIAL TRUCKS COMMERCIAL TRUCKS AVIATION MARINE MODES RAILROADS PIPELINES OFF-ROAD EQUIPMENT Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector TRANSPORTATION ENERGY FUTURES SERIES: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy February 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

148

Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications  

Science Conference Proceedings (OSTI)

Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

Daniel T. Hennessy

2010-06-15T23:59:59.000Z

149

Fuel Economy Standards for New Light Trucks (released in AEO2007)  

Reports and Publications (EIA)

In March 2006, NHTSA finalized CAFE standards requiring higher fuel economy performance for light-duty trucks in MY 2008 through 2011. Unlike the proposed CAFE standards discussed in AEO2006 [13], which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

Information Center

2007-02-22T23:59:59.000Z

150

Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles  

DOE Green Energy (OSTI)

On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissions regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.

None

2005-12-15T23:59:59.000Z

151

Optimal power management for a hydraulic hybrid delivery truck  

E-Print Network (OSTI)

Hydraulic hybrid propulsion and energy storage components demonstrate characteristics that are very different from their electric counterparts, thus requiring unique control strategies. This paper presents a methodology for developing a power management strategy tailored specifically to a parallel Hydraulic Hybrid Vehicle (HHV) configured for a medium-size delivery truck. The Hydraulic Hybrid Vehicle is modelled in the MATLAB/SIMULINK environment to facilitate system integration and control studies. A Dynamic Programming (DP) algorithm is used to obtain optimal control actions for gear shifting and power splitting bet ween the engine and the hydraulic motor over a representative urban driving schedule. Features of optimal trajectories are then studied to derive i mplementable rules. System behaviour demonstrates that the new control strategy takes advantage of high power density and efficiency characteristics of hydraulic components, and minimizes disadvantages of low energy density, to achieve enhanced overall efficiency. Simulation results indicate that the potential for fuel economy improvement of medium trucks with hydraulic hybrid propulsion can be as high as 48 %. 1

Bin Wu; Chan-chiao Lin; Zoran Filipi; Huei Peng

2004-01-01T23:59:59.000Z

152

Truck Stop Electrification: A Cost-Effective Solution to Reducing Truck Idling  

Science Conference Proceedings (OSTI)

Truck stop electrification (TSE) allows truckers to "plug in" their vehicles while stopped, in order to operate air conditioning, heating, and appliances without any engine idling. Truck stop electrification technologies fall into two major categories: "off-board" and "on-board" systems. Off-board systems are fixed, stand-alone units installed at the truck parking space. These systems provide heating, ventilating, and air conditioning (HVAC), and may also include AC electrical power and entertainment, co...

2004-12-27T23:59:59.000Z

153

Alternative fuel trucks case studies: Running line-haul trucks on ethanol  

DOE Green Energy (OSTI)

This bulletin describes case studies of trucks operating on ethanol fuel. Cost, maintenance and repair, as well as fuel economy are discussed.

Norton, P.; Kelly, K.J.; Marek, N.J.

1996-10-01T23:59:59.000Z

154

TRUCK ROLL STABILITY DATA COLLECTION AND ANALYSIS  

NLE Websites -- All DOE Office Websites (Extended Search)

16 TRUCK ROLL STABILITY DATA COLLECTION AND ANALYSIS S. S. Stevens, Principal Investigator S. M. Chin K. A. Hake H. L. Hwang J. P. Rollow L. F. Truett July 2001 Prepared for the...

155

Water by truck in Mexico City  

E-Print Network (OSTI)

Supply of water to urban households by tanker truck in developing and advanced developing countries is often associated with early stages of urbanization or with the private markets on which water vendors serve households ...

Pike, Jill (Jill Susan)

2005-01-01T23:59:59.000Z

156

Mobile Truck Stop Electrification Site Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Truck Stop Electrification Site Locator Location Enter a city, postal code, or address Search Caution: The AFDC recommends that users verify that sites are open prior to making a...

157

Truckstop Electrification Implementation Plan: A Diesel Engine Idle Reduction in Class 8 Trucks Using On-Vehicle Shore-Power Nationa l Demonstration Project  

Science Conference Proceedings (OSTI)

During any hour of the day in the United States, over 100,000 heavy-duty truck engines may be idling to provide heating or air conditioning for their resting drivers. During nighttime hours, this number might climb to 200,000 idling engines. Heating or air conditioning loads typically served by these idling engines only amount to one or two horsepower per truck. Because the parasitic loads required to keep these engines idling are typically from ten to thirty horsepower, exhaust emissions attributable to...

2003-01-13T23:59:59.000Z

158

Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Trucks Electric Trucks Deliver at Kansas City Schools to someone by E-mail Share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Facebook Tweet about Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Twitter Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Google Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Delicious Rank Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Digg Find More places to share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on AddThis.com... Sept. 17, 2011 Electric Trucks Deliver at Kansas City Schools F ind out how the Lee's Summit R-7 School District in Missouri uses electric

159

Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Truck Biodiesel Truck Transports Capitol Christmas Tree to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Google Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Delicious Rank Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on AddThis.com... Dec. 31, 2009 Biodiesel Truck Transports Capitol Christmas Tree F ollow the Capitol Christmas Tree from Arizona to Washington, D.C., aboard

160

Advanced Technologies for Light-Duty Vehicles (released in AEO2006)  

Reports and Publications (EIA)

A fundamental concern in projecting the future attributes of light-duty vehiclespassenger cars, sport utility vehicles, pickup trucks, and minivans is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in NEMS; however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

Information Center

2006-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

STATE OF CALIFORNIA DUTY STATEMENT  

E-Print Network (OSTI)

Prepared: September 9, 2013 Division: Executive KEY: (E) IS ESSENTIAL, (M) IS MARGINAL Under general in an office setting and occasionally in public facilities near proposed power plant sites. DUTIES, The Essential Job Duties Of This Position Employee Date Supervisor Date #12;

162

Running Line-Haul Trucks on Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

I I magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our petroleum supply, the price and supply of ethanol is not subject to the whims of potentially unstable foreign governments. And domestic production translates into domestic jobs. In addition, ethanol has the potential to reduce harmful emissions, such as particulate matter and oxides of nitrogen

163

Alternative Fuels Data Center: Delaware Reduces Truck Idling With  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Reduces Truck Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Delicious Rank Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Digg Find More places to share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on AddThis.com...

164

Vehicle Technologies Office: Fact #372: May 16, 2005 Truck Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2005 Truck Fuel Economy by Size Class to someone by E-mail Share Vehicle Technologies Office: Fact 372: May 16, 2005 Truck Fuel Economy by Size Class on Facebook Tweet about...

165

Norcal Prototype LNG Truck Fleet: Final Data Report  

SciTech Connect

U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final data.

Chandler, K.; Proc, K.

2005-02-01T23:59:59.000Z

166

Fire Department Gets New Trucks, Saves Money | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fire Department Gets New Trucks, Saves Money Fire Department Gets New Trucks, Saves Money August 27, 2013 - 12:00pm Addthis Hanford firefighters stand next to the 31-year-old...

167

Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Natural Gas Liquefied Natural Gas Powers Trucks in Connecticut to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Delicious Rank Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Digg Find More places to share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on AddThis.com... June 4, 2011 Liquefied Natural Gas Powers Trucks in Connecticut

168

Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop  

NLE Websites -- All DOE Office Websites (Extended Search)

8: June 21, 2010 8: June 21, 2010 Truck Stop Electrification Sites to someone by E-mail Share Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Facebook Tweet about Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Twitter Bookmark Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Google Bookmark Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Delicious Rank Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Digg Find More places to share Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on AddThis.com... Fact #628: June 21, 2010 Truck Stop Electrification Sites

169

Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maryland Conserves Maryland Conserves Fuel With Hybrid Trucks to someone by E-mail Share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Facebook Tweet about Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Twitter Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Google Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Delicious Rank Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Digg Find More places to share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on AddThis.com... March 5, 2011 Maryland Conserves Fuel With Hybrid Trucks L earn how Maryland is reducing fuel consumption, engine noise, and

170

Fire Department Gets New Trucks, Saves Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fire Department Gets New Trucks, Saves Money Fire Department Gets New Trucks, Saves Money Fire Department Gets New Trucks, Saves Money August 27, 2013 - 12:00pm Addthis Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas. Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas. One of two of the Hanford Fire Department’s new chemical trucks. One of two of the Hanford Fire Department's new chemical trucks. Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas.

171

Curbside eating : mobilizing food trucks to activate public space  

E-Print Network (OSTI)

In the past 5 years, cities across the United States have seen the rise of a new form of street vending: the modern food truck. Nearly overnight, food trucks have become an expected and anticipated occurrence in many ...

Sheppard, Alison Marguerite

2013-01-01T23:59:59.000Z

172

Vehicle Technologies Office: Fact #787: July 8, 2013 Truck Stop...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption to someone by E-mail Share Vehicle Technologies Office: Fact 787: July 8, 2013 Truck Stop Electrification...

173

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

trucks. This amount of battery capacity can supply a 100 Wshowed that the stock battery capacity of the truck couldCapacity Table 14 - Tank Specifications L psi kg Hawker Genesis Batteries The Genesis battery

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

174

Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions  

E-Print Network (OSTI)

railandtruckfreighttransportation. TransportationResearchrail?truckfreighttransportliterature. TransportationResearch

Sathaye, Nakul; Horvath, Arpad; Madanat, Samer

2009-01-01T23:59:59.000Z

175

Ralphs Grocery EC-Diesel Truck Fleet: Final Results  

DOE Green Energy (OSTI)

DOE's Office of Heavy Vehicle Technologies sponsored a research project with Ralphs Grocery Company to collect and analyze data on the performance and operation of 15 diesel trucks fueled with EC-Diesel in commercial service. These trucks were compared to 5 diesel trucks fueled with CARB diesel and operating on similar routes. This document reports this evaluation.

Not Available

2003-02-01T23:59:59.000Z

176

Truck Driver Scheduling in the European Union  

Science Conference Proceedings (OSTI)

Since April 2007 working hours of truck drivers in the European Union are controlled by regulation (EC) No. 561/2006. According to the new regulation, road transport undertakings must organise the work of drivers in a way that drivers are able to comply ... Keywords: drivers' working hours, regulation (EC) No. 561/2006, vehicle scheduling

Asvin Goel

2010-11-01T23:59:59.000Z

177

Heavy-Duty Trucks Poised to Accelerate Growth of American Alternative Transportation Fuels Market  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Background Background Since 1988, federal and state legislation has mandated the adoption of alternative transportation fuels, primarily because of environmental and energy security concerns. Recently, however, much of the alternative fuels activity has shifted. With the electoral revolution of 1992, Congress is rethinking environmental regulation and cutting federal appro- priations for alternative fueled vehi- cles (AFVs). The U.S. Enviromental Protection Agency (EPA) may delay implementation of stringent emission standards, and the U.S. Department of Energy (DOE) has delayed requirements for alternative fuel adoption that were set to go into effect on September 1, 1995. In the late 1980s and early 1990s, as federal and state legislation was being crafted across the country,

178

Cycles and weight effects on emissions and development of predictive emissions models for heavy duty trucks.  

E-Print Network (OSTI)

??NOX and PM emissions data from the 5-mode CARB HHDDT Schedule, UDDS, and AC5080 were reviewed, with reference to each other. Next, two-dimensional correlations were (more)

Vora, Kuntal A.

2006-01-01T23:59:59.000Z

179

ORNL/TM-2008/122 Class-8 Heavy Truck Duty Cycle  

E-Print Network (OSTI)

in a number of projects using High Voltage DC Transmission (HVDC) lines, but it would require a fairly large wave power conversion scheme to make it economically attractive. A typical example of a HVDC subsea

180

Heavy-Duty Truck Idling Characteristics: Results from a Nationwide Survey  

E-Print Network (OSTI)

and 51 % for oil and maintenance costs. Companies' policiesmaintenance and oil change costs. These percentagesreported

Lutsey, Nicholas P.; Brodrick, Christie-Joy; Sperling, Dan; Oglesby, Carollyn

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Study of Fuel Property Effects Using Future Low Emissions Heavy Duty Truck Engine Hardware  

DOE Green Energy (OSTI)

Fuel properties have had substantial impact on engine emissions. Fuel impact varies with engine technology. An assessment of fuel impact on future low emission designs was needed as part of an EMAEPA-API study effort

Li, Sharon

2000-08-20T23:59:59.000Z

182

Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I  

DOE Green Energy (OSTI)

This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

NONE

1997-12-01T23:59:59.000Z

183

Sulfur Management of NOx Adsorber Technology for Diesel Light-Duty Vehicle and Truck Applications  

DOE Green Energy (OSTI)

Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure. With the use of a disposable SOx trap to remove large portion of the sulfur poisons from the exhaust, the NOx adsorber catalyst can be protected and the numbers of de-sulfation events can be greatly reduced. Spectroscopic techniques, such as DRIFTS and Raman, have been used to monitor the underlying chemical reactions during NOx trapping/ regeneration and de-sulfation periods, and provide a fundamental understanding of NOx storage capacity and catalyst degradation mechanism using model catalysts. This paper examines the sulfur effect on two model NOx adsorber catalysts. The chemistry of SOx/base metal oxides and the sulfation product pathways and their corresponding spectroscopic data are discussed. SAE Paper SAE-2003-01-3245 {copyright} 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

Fang, Howard L.; Wang, Jerry C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

2003-10-01T23:59:59.000Z

184

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network (OSTI)

J. , Gottesfeld, S. , 1999. Direct methanol fuel cells.Fuel cells for transportation. 1999 Annual Progress Report.Auxiliary power units; Fuel cells 1. Introduction A large

2002-01-01T23:59:59.000Z

185

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network (OSTI)

Fuel cells for transportation. 1999 Annual Progress Report.J. , Gottesfeld, S. , 1999. Direct methanol fuel cells.Auxiliary power units; Fuel cells 1. Introduction A large

2002-01-01T23:59:59.000Z

186

Assessment of Out-of-State Heavy-Duty Truck Activity Trends In California  

E-Print Network (OSTI)

communication. California Department of Transportation.Mex_2004_eng.pdf. California Air Resources Board (CARB),documents/rrpapp4.pdf. California Air Resources Board (

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

187

A Fuel-Based Inventory for Heavy-Duty Diesel Truck Emissions  

E-Print Network (OSTI)

Air Resources Board, Sacramento, CA, 1996. Harvey, G.W. ;of Transportation, Sacramento, CA. Personal Communication,Board, Mobile Source Division, Sacramento, CA, 1993.

Dreher, David B.; Harley, Robert A.

1998-01-01T23:59:59.000Z

188

Long Haul Truck Idling at Public Facilities in Key States  

Science Conference Proceedings (OSTI)

Idling the main truck engine to provide for the relatively small power requirements needed during rest stops is inefficient and highly polluting. An alternative is to supply power from the grid or some form of distributed generation, and a national effort is underway to electrify truck stops. Not all idling occurs at truck stops, however. The purpose of this project was to quantify the major truck idling that takes place at public facilities other than truck stops. The study focused on public rest areas,...

2008-03-31T23:59:59.000Z

189

2014 Best and Worst MPG Trucks, Vans and SUVs  

NLE Websites -- All DOE Office Websites (Extended Search)

Trucks Trucks 2014 Most Efficient Trucks by EPA Size Class 2014 Least Efficient Trucks by EPA Size Class 2014 Most Fuel Efficient Trucks, Vans and SUVs EPA Class Vehicle Description Fuel Economy Combined Small Pickup Trucks Toyota Tacoma Toyota Tacoma 2WD 4 cyl, 2.7 L, Manual (5), Regular Gasoline 23 Standard Pickup Trucks Ram 1500 HFE 2WD Ram 1500 HFE 2WD 6 cyl, 3.6 L, Automatic (8), Regular Gasoline 21 Small Sport Utility Vehicles Toyota RAV4 EV Toyota RAV4 EV Automatic (variable gear ratios), 115 kW AC Induction, Electricity 76* Subaru XV Crosstrek Hybrid AWD Subaru XV Crosstrek Hybrid AWD 4 cyl, 2.0 L, Automatic (CVT), Regular Gasoline 31 Standard Sport Utility Vehicles Infiniti QX60 Hybrid AWD Infiniti QX60 Hybrid AWD 4 cyl, 2.5 L, AV-S7, Regular Gasoline Infiniti QX60 Hybrid FWD

190

Alternative Fuels Data Center: Truck Stop Electrification Site Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels & Vehicles » Tools Fuels & Vehicles » Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Google Bookmark Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Delicious Rank Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Digg Find More places to share Alternative Fuels Data Center: Truck Stop

191

STATEMENT OF CONSIDERATIONS REQUEST BY MACK TRUCKS, INC FOR AN ADVANCE WAIVER OF DOMESTIC AND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INC FOR AN ADVANCE WAIVER OF DOMESTIC AND INC FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE- FC26-05NT42417 W(A)-05-042, CH-1324 The Petitioner, Mack Trucks, Inc. (Mack), was awarded a cooperative agreement for the performance of work entitled, "Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Applications." The purpose of the cooperative agreement is to demonstrate a minimum of 15% fuel economy improvement with emissions meeting the 2010 EPA regulation. Mack Tracks will be establishing the base engine, developing engine management system for air-power-assist engine and ensuring the conduction of steady-state engine tests. Mack will also evaluate the commercial viability of variable valve

192

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

T370 hybrid truck Application: Vocational truck Fuel Type: Hybrid - Diesel Electric Maximum Seating: 2 Hybrid System(s): Eaton - Diesel Electric Hybrid Additional Description:...

193

Manhattan Project Truck Unearthed in Recovery Act Cleanup | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup A Los Alamos National Laboratory (LANL) excavation crew working on an American Recovery and Reinvestment Act cleanup project has uncovered the remnants of a 1940s military truck buried in a Manhattan Project landfill. The truck was unearthed inside a sealed building where digging is taking place at Material Disposal Area B (MDA-B), the Lab's first hazardous and radioactive waste landfill. MDA-B was used from 1944 to 1948. Manhattan Project Truck Unearthed in Recovery Act Cleanup More Documents & Publications Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the 1940s Protecting Recovery Act Cleanup Site During Massive Wildfire

194

Boondocks Truck Stop Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Boondocks Truck Stop Wind Farm Boondocks Truck Stop Wind Farm Jump to: navigation, search Name Boondocks Truck Stop Wind Farm Facility Boondocks Truck Stop Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Boondocks Truck Stop Energy Purchaser Boondocks Truck Stop Location IA Coordinates 42.4703°, -93.5624° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4703,"lon":-93.5624,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

Estimation of Fuel Use by Idling Commercial Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimation of Fuel Use Estimation of Fuel Use by Idling Commercial Trucks Estimation of Fuel Use by Idling Commercial Trucks TRB 85 th Annual Meeting Washington, DC January 22-26, 2006 Linda Gaines, Anant Vyas, and John L. Anderson 2 Trucks are classified into 8 classes Based on gross vehicle weight (GVW) - Includes empty vehicle plus cargo - Classes formulated >50 years ago Classes 1 and 2 include commercial and personal vehicles - Our analysis removes personal vehicles - Commercial uses include service and retail, construction, agriculture, manufacturing - Class 2 is divided into 2A and 2B (>8,500 lbs.) Single unit (SU) trucks cover classes 1-8 - Flatbed, pickup, dump, van dominate Combination (C) trucks are in classes 6-8 - About half have sleepers * Travel long distances * Driver often sleeps in truck

196

The Role of Batteries in Auxiliary Power for Heavy Trucks  

DOE Green Energy (OSTI)

The problem that this paper deals with is that Heavy trucks leave their engines on while they are stopped and the driver is sleeping, eating, etc.

D. Crouch

2001-12-12T23:59:59.000Z

197

Refinery receipts of crude oil by rail, truck, and barge ...  

U.S. Energy Information Administration (EIA)

While refinery receipts of crude by truck, rail, and barge remain a small percentage of total receipts, EIA's recently released Refinery Capacity ...

198

STATEMENT OF CONSIDERATIONS REQUEST BY OSHKOSH TRUCK CORPORATION...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of advanced, next generation heavy hybrid truck and bus propulsion technologies and hybrid vehicle systems. This two phase technology development program is intended to...

199

Demonstration Project 111 ITS/CVO Technology Truck Final Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

1277 Demonstration Project 111 ITSCVO Technology Truck Final Project Report December 2001 Prepared by G. J. Capps, ORNL Project Manager K. P. Gambrell, Technical Associate K. L....

200

Heavy-Duty Waste Hauler with Chemically Correct Natural Gas Engine Diluted with EGR and Using a Three-Way Catalyst: Final Report, 24 February 2004 -- 23 February 2006  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Waste Hauler with Heavy-Duty Waste Hauler with Chemically Correct Natural Gas Engine Diluted with EGR and Using a Three-Way Catalyst Final Report February 24, 2004 - February 23, 2006 T. Reppert Mack Trucks, Inc. Allentown, Pennsylvania J. Chiu Southwest Research Institute San Antonio, Texas Subcontract Report NREL/SR-540-38222 September 2005 Heavy-Duty Waste Hauler with Chemically Correct Natural Gas Engine Diluted with EGR and Using a Three-Way Catalyst Final Report February 24, 2004 - February 23, 2006 T. Reppert Mack Trucks, Inc. Allentown, Pennsylvania J. Chiu Southwest Research Institute San Antonio, Texas NREL Technical Monitor: R. Parish Prepared under Subcontract No. ZCI-4-32049-01 Subcontract Report NREL/SR-540-38222 September 2005 National Renewable Energy Laboratory

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project  

DOE Green Energy (OSTI)

UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies.

Walkowicz, K.

2001-08-14T23:59:59.000Z

202

External costs of intercity truck freight transportation  

E-Print Network (OSTI)

From a societal perspective, it is desirable for all transportation users to pay their full social (private and external) costs. We estimate four general types of external costs for intercity freight trucking and compare them with the private costs incurred by carriers. Estimated external costs include: accidents (fatalities, injuries, and property damage); emissions (air pollution and greenhouse gases); noise; and unrecovered costs associated with the provision, operation, and maintenance of public facilities. The analysis reveals that external costs are equal to 13.2 % of private costs and user fees would need to be increased about

David J. Forkenbrock

1999-01-01T23:59:59.000Z

203

In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks  

SciTech Connect

This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

2013-10-01T23:59:59.000Z

204

STATE OF CALIFORNIA DUTY STATEMENT  

E-Print Network (OSTI)

that arise from market and legislative developments, technical analyses conducted to inform the Energy Commission and coordination with other agencies on transportation energy topics, analysis and impactsSTATE OF CALIFORNIA DUTY STATEMENT CEC-004 (Revised 04/07) CALIFORNIA ENERGY COMMISSION VACANT

205

STATE OF CALIFORNIA DUTY STATEMENT  

E-Print Network (OSTI)

STATE OF CALIFORNIA DUTY STATEMENT CEC-004 (Revised 04/07) CALIFORNIA ENERGY COMMISSION consumption by specific building and industrial types within in various California climate zones historic and forecast energy consumption information for various California regions for use in models

206

STATE OF CALIFORNIA DUTY STATEMENT  

E-Print Network (OSTI)

STATE OF CALIFORNIA DUTY STATEMENT CEC-004 (Revised 04/07) CALIFORNIA ENERGY COMMISSION impacts of electricity supply in California. In this capacity, the incumbent will serve as a prime subject to inform California energy policies as formulated in the Integrated Energy Policy Report. This work

207

CNG Exports by Truck out of the U.S. Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PDF Version of CNG Exports by Truck out of the U.S. Form More Documents & Publications LNG Exports by Truck out of the U.S. Form LNG Imports by Truck into the U.S. Form Complete...

208

Assessing the impact of regulation and deregulation on the rail and trucking industries  

E-Print Network (OSTI)

(cont.) Many Class I railroads disappeared and severe competition bankrupted many small carriers in the trucking industry. Larger trucking carriers gained market dominance. Real wages in the trucking industry fell. The ...

Lowtan, Donavan M. (Donavan Mahees), 1975-

2004-01-01T23:59:59.000Z

209

Fuel Cell Technologies Office: Past Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

used. Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells Fuel Cell Hybrid Electric Medium Duty Trucks, Roof-top Backup Power, and Advanced Hydrogen...

210

Rail versus truck fuel efficiency: The relative fuel efficiency of truck-competitive rail freight and truck operations compared in a range of corridors. Final report  

SciTech Connect

The report summarizes the findings of a study to evaluate the fuel efficiency of rail freight operations relative to competing truckload service. The objective of the study was to identify the circumstances in which rail freight service offers a fuel efficiency advantage over alternative truckload options, and to estimate the fuel savings associated with using rail service. The findings are based on computer simulations of rail and truck freight movements between the same origins and destinations. The simulation input assumptions and data are based on actual rail and truck operations. Input data was provided by U.S. regional and Class I railroads and by large truck fleet operators.

Not Available

1991-04-01T23:59:59.000Z

211

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Freightliner - M2 106 Hybrid Applications: Tractor, Vocational truck Fuel Type: Hybrid - Diesel Electric...

212

Hybrid Control of a Truck and Trailer Vehicle  

Science Conference Proceedings (OSTI)

A hybrid control scheme is proposed for the stabilization of backward driving along simple paths for a miniature vehicle composed of a truck and a two-axle trailer. When reversing, the truck and trailer can be modelled as an unstable nonlinear system ...

Claudio Altafini; Alberto Speranzon; Karl Henrik Johansson

2002-03-01T23:59:59.000Z

213

Studies Of The Adoption And Use Of Location And Communication Technologies By The Trucking Industry  

E-Print Network (OSTI)

of Location and Communication Technologies by the TruckingOF LOCATION AND COMMUNICATION TECHNOLOGIES BY THE TRUCKINGpositioning and communication technologies by the trucking

Scapinakis, Dimitris A.; Garrison, William Louis

1991-01-01T23:59:59.000Z

214

Energy Department, Volvo Partnership Builds More Efficient Trucks and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department, Volvo Partnership Builds More Efficient Trucks Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants Energy Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants January 27, 2012 - 3:00pm Addthis Washington, D.C. -Today, Acting Under Secretary of Energy Arun Majumdar joined with North Carolina Congressman Howard Coble (NC-6) to tour the Volvo Group's truck headquarters in Greensboro, North Carolina, and highlight the blueprint for an America built to last laid out by President Obama in his State of the Union address earlier this week. The Department of Energy is partnering with companies like the Volvo Group to help harness American ingenuity to commercialize and deploy cutting-edge trucking technologies that will help boost the competitiveness of the U.S. auto and

215

Supercomputers, Semi Trucks and America's Clean Energy Future |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future February 8, 2011 - 5:44pm Addthis BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain

216

Accretion-of-Duties | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accretion-of-Duties Accretion-of-Duties Accretion-of-Duties This memorandum provides policy guidance on how to consistently address accretion-of-duties promotions within the Department and is effective immediately. The Department of Energy's Merit Promotion Plan permits the use of accretion-of-duties promotions as an exception to competitive procedures. The ability to effect noncompetitive promotions based on accretion-of-duties is an important staffing tool available to supervisors. Whenever possible, supervisors and servicing Human Resources Offices will ensure that a reasonable and accurate career ladder is established before a position is filled. Following good management practices, supervisors should be aware of the duties assigned or assumed by their staff, and exercise

217

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

division, emailjohn.ganz@netl.doe.gov, cUS Date: 2011.09.22 15:28:43 -04'00' 16 CNG vehicles in Kansas City, MO, Omaha, NE purchase of 1 dump truck, 6 medium duty trucks,...

218

Cummins Light Truck Diesel Engine Progress Report  

DOE Green Energy (OSTI)

Cummins has studied requirements of the Light Truck Automotive market in the United States and believes that the proposed V-family of engines meets those needs. Design and development of the V-family engine system continues and has expanded. The engine system is a difficult one, since the combined requirements of a very fuel-efficient commercial diesel, and the performance and sociability requirements of a gasoline engine are needed. Results of testing show that the engine can meet requirements for fuel economy and emissions in the Tier 2 interim period from 2004 to 2008. Advanced results show that the full Tier 2 results for 2008 and beyond can be achieved on a laboratory basis.

John H. Stang; David E. Koeberlein; Michael J. Ruth

2001-05-14T23:59:59.000Z

219

Solar Energy for Charging Fork Truck Batteries  

E-Print Network (OSTI)

The demand for renewable energy sources has stimulated technological advances in solar cell development. Initially, development and fabrication were extremely costly and no encouragement for use in industrial applications was made. Today, evidence exists that new technological advances and mass-production techniques have lowered the costs considerably. The U.S. Department of Energy has indicated that by the year 1990 the price per peak watt would be less than fifty U.S. cents. This paper keeps this price decrease in mind and does an economic study on the feasibility of using photovoltaic cells to charge electric fork lift trucks, at different costs per peak watt. This particular idea could be used as a measure of energy conservation for industrial material handling. Two evaluation methods were used; namely, the Payback Method, and the Modified Energy Inflation Rate Method. Neither of the methods proved to be economically favorable, but some interesting results were obtained.

Viljoen, T. A.; Turner, W. C.

1980-01-01T23:59:59.000Z

220

Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks  

DOE Green Energy (OSTI)

In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel efficiency slightly. Fuel efficiency also decreases significantly with speed, but only for light and medium loads. For medium-heavy and heavy, FE is almost constant for speeds ranging from 57 to about 66 mph. For speeds higher than 66 mph, the FE decreases with speed, but at a lower rate than for light and medium loads. Statistical analyses that compared the fuel efficiencies obtained when the vehicles were traveling at 59 mph vs. those achieved when they were traveling at 65 mph or 70 mph indicated that the former were, on average, higher than the latter. This result was statistically significant at the 99.9% confidence level (note: the Type II error i.e., the probability of failing to reject the null hypothesis when the alternative hypothesis is true was 18% and 6%, respectively).

Franzese, Oscar [ORNL; Davidson, Diane [ORNL

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Projection of light-truck population to year 2025  

SciTech Connect

The recent growth in the number of light trucks is a matter of considerable interest in that it may have far-reaching implications for gasoline consumption. This paper forecasts the number of light trucks in the years to 2025. The forecast is based on economic scenarios developed by SRI International. Except for the case of the most-dismal economic forecast, the number of light trucks is predicted to increase monotonically and to show the greatest rate of increase between 1973 and 1980.

1978-10-01T23:59:59.000Z

222

LNG Imports by Truck into the U.S. Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Truck into the U.S. Form LNG Imports by Truck into the U.S. Form Excel Version of LNG Imports by Truck into the U.S. Form.xlsx PDF Version of LNG Imports by Truck into the U.S....

223

LNG Exports by Truck out of the U.S. Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Truck out of the U.S. Form LNG Exports by Truck out of the U.S. Form Excel Version of LNG Exports by Truck out of the U.S. Form.xlsx PDF Version of LNG Exports by Truck out of the...

224

light-duty | OpenEI  

Open Energy Info (EERE)

Login | Sign Up Wiki Apps Datasets Browse Upload data GDR Community Linked Data Search Share this page on Facebook icon Twitter icon light-duty Dataset Summary Description...

225

Light Duty Efficient, Clean Combustion  

SciTech Connect

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

Donald Stanton

2010-12-31T23:59:59.000Z

226

Light Duty Efficient, Clean Combustion  

DOE Green Energy (OSTI)

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

Donald Stanton

2010-12-31T23:59:59.000Z

227

Light Duty Efficient, Clean Combustion  

SciTech Connect

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energys Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over todays state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

Stanton, Donald W

2011-06-03T23:59:59.000Z

228

Analytical Framework to Evaluate Emission Control Systems for Marine Engines  

E-Print Network (OSTI)

of Hybrid Electric Vehicles 1999. http://www.imo.org/Safety/Electric Vehicles, In the Passenger Car, Light-Duty Truck and Medium-Duty Vehicle Classes http://www.imo.org/Safety/

Jayaram, Varalakshmi

2010-01-01T23:59:59.000Z

229

DOE Seeks Trucking Services for Transuranic Waste Shipments | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trucking Services for Transuranic Waste Shipments Trucking Services for Transuranic Waste Shipments DOE Seeks Trucking Services for Transuranic Waste Shipments March 30, 2011 - 12:00pm Addthis Media Contact Bill Taylor 513-246-0539 william.taylor@emcbc.doe.gov Cincinnati -- The Department of Energy (DOE) today will issue a Request for Proposals for the continuation of carrier services to transport transuranic waste (TRU) between DOE sites and the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. The transportation of TRU waste is accomplished by contracted trucking carriers that ship the waste via public highways on custom designed trailers. The contract will be an Indefinite Delivery/ Indefinite Quantity (ID/IQ) contract using firm-fixed- price delivery task orders. The estimated contract cost is $80-$100 million over a five-year contract

230

NREL: Fleet Test and Evaluation - Truck Stop Electrification  

NLE Websites -- All DOE Office Websites (Extended Search)

Stop Electrification Stop Electrification NREL's Fleet Test and Evaluation Team is evaluating and documenting the use of 50 truck stop electrification (TSE) sites along the busiest transportation corridors in the United States. Truck drivers typically idle their vehicles during mandated rest periods to maintain access to air conditioning, heat, and electricity. TSE sites allow truckers to enjoy these auxiliary systems by plugging into the electric grid instead of running their engines. The American Recovery and Reinvestment Act (ARRA) provided funding for these TSE sites-which feature electric power pedestals at 1,250 truck parking spaces-and for rebates to upgrade 5,000 long-haul trucks for drivers who agreed to use the facilities. Site usage will be monitored for three years to study patterns across the

231

DOE Expands International Effort to Develop Fuel-Efficient Trucks |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expands International Effort to Develop Fuel-Efficient Trucks Expands International Effort to Develop Fuel-Efficient Trucks DOE Expands International Effort to Develop Fuel-Efficient Trucks June 30, 2008 - 2:15pm Addthis GOTHENBURG, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Volvo Group CEO Leif Johansson today agreed to expand cooperation to develop more fuel-efficient trucks. Once contractual negotiations are complete later this year, the cooperative program will be extended for three more years. An additional $9 million over three years in DOE funds will be matched by $9 million in Swedish government funds and $18 million from Volvo Group. When added with the existing $12 million commitment from the United States, Sweden and the Volvo Group the overall value of the cooperation will be $48

232

Unemployed Truck Driver Trains for New Career in Weatherization |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Truck Driver Trains for New Career in Weatherization Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization November 5, 2010 - 2:46pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this mean for me? Workers across the country are being retrained for careers in the new clean energy economy. Tyrone Bailey had been out of work for 14 months when an unemployment office staffer told him about a home-weatherization training program offered by the state of New Jersey. The former truck driver and construction worker jumped at the opportunity to acquire new skills and began training January 19. He graduated April 1 and won a position with GreenLight Solutions, a Montclair, New Jersey-based residential home improvement company just two weeks later.

233

Sysco Deploys Hydrogen Powered Pallet Trucks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks July 12, 2010 - 2:50pm Addthis Food service distribution company Sysco celebrated the grand opening of its highly efficient distribution center in June in Houston. As part of Sysco's efforts to reduce its carbon footprint, the company deployed almost 100 pallet trucks powered by fuel cells that create only water and heat as by-products. The hydrogen fuel cell project's cost was partially covered by funding from a $1.2 million grant provided by the American Recovery and Reinvestment Act through the U.S. Department of Energy's Fuel Cell Technologies Program. The total project cost was $3.3 million. The 98 new Raymond Corporation pallet lifts are powered by Plug Power

234

Unemployed Truck Driver Trains for New Career in Weatherization |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unemployed Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization November 5, 2010 - 2:46pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this mean for me? Workers across the country are being retrained for careers in the new clean energy economy. Tyrone Bailey had been out of work for 14 months when an unemployment office staffer told him about a home-weatherization training program offered by the state of New Jersey. The former truck driver and construction worker jumped at the opportunity to acquire new skills and began training January 19. He graduated April 1 and won a position with GreenLight Solutions, a Montclair, New Jersey-based residential home improvement company just two weeks later.

235

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report R. Barnitt Technical Report NRELTP-5400-48896 January 2011 NREL is a national laboratory of the...

236

Manhattan Project Truck Unearthed in Recovery Act Cleanup  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

www.em.doe.govemrecovery April 20, 2011 Remnants of 1940s military truck buried in a Manhattan Project-era landfill LOS ALAMOS, N.M. - A Los Alamos National Laboratory (LANL)...

237

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

Design of a Truck- mounted Fuel Cell APU System. Society ofEngine Idling Versus Fuel Cell APUs. Society of AutomotiveJr; 2003. Evaluation of Fuel Cell Auxiliary Power Units for

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

238

STATEMENT OF CONSIDERATIONS REQUEST BY MACK TRUCKS, INC FOR AN...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Applications." The purpose of the cooperative agreement...

239

Industrial Lift Truck Battery Charger Demand Response Impact Study  

Science Conference Proceedings (OSTI)

Demand response and load shifting are two common energy management strategies used by lift truck fleet operators to mitigate on-peak energy consumption, reduce electricity costs, and react to electric system emergency curtailment requests. When customers elect to participate in demand response programs, they are contacted and asked to reduce load during power shortage situations. Alternatively, customers may implement longer-term economic load shifting strategies by reducing power to their lift truck bat...

2008-04-03T23:59:59.000Z

240

Liquefied Natural Gas for Trucks and Buses  

DOE Green Energy (OSTI)

Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

James Wegrzyn; Michael Gurevich

2000-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Application of the New City-Suburban Heavy Vehicle Route (CSHVR) to Truck Emissions Characterization  

DOE Green Energy (OSTI)

Speed-time and video data were tractor-trailers performing local deliveries in logged for Akron, OH. and Richmond, VA. in order to develop an emissions test schedule that represented real truck use. The data bank developed using these logging techniques was used to create a Yard cycle, a Freeway cycle and a City-Suburban cycle by the concatenation of microtrips. The City-Suburban driving cycle was converted to a driving route, in which the truck under test would perform at maximum acceleration during certain portions of the test schedule. This new route was used to characterize the emissions of a 1982 Ford tractor with a Cummins 14 liter, 350 hp engine and a 1998 International tractor with a Cummins 14 liter, 435 hp engine. Emissions levels were found to be repeatable with one driver and the drier-to-driver variation of NO{sub x} was under 4%, although the driver-to driver variations of CO and PM were higher. Emissions levels of NO{sub x} for the Ford tractor at a test weight of 46,400 lb. u sing the CSHVR were comparable with values obtained using the WVU 5 mile route and the EPA Urban Dynamometer Driving Schedule for Heavy Duty Vehicles (''Test D''). The PM missions were slightly higher for the CSHVR than the 5 mile route and Test D. The effect of test weight on emissions, in units of mass/distance, was assessed using the International tractor with the CSHVR at 26,000, 36,000 and 46,400 lb. test weights. Variation of all regulated exhaust emissions was small between test weights, although the CO{sub 2} level reflected the additional energy used at higher weights. The small variation in regulated emissions may be attributed to the fact that in all three cases, the route called for full power operation of the vehicle, and that PM puff associated with gear shifting would be similar. It is concluded that the CSHVR represents a useful and realistic test schedule for truck emissions characterization.

Nigel N. Clark; James J. Daley; Ralph D. Nine; Christopher M. Atkinson

1999-05-03T23:59:59.000Z

242

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Light Duty Vehicle Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Facebook Tweet about Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Twitter Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Google Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Delicious Rank Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Digg Find More places to share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

243

Energy Department Excepted Personnel, by duty station | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Excepted Personnel, by duty station In the event of a lapse of appropriations, the Energy Department excepted personnel by duty station as of December 14, 2011....

244

Table 37. Light-Duty Vehicle Energy Consumption by Technology ...  

U.S. Energy Information Administration (EIA)

Table 37. Light-Duty Vehicle Energy Consumption by Technology Type and Fuel Type (trillion Btu) Light-Duty Consumption by Technology Type Conventional Vehicles 1/

245

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Kenworth - W900S Application: Vocational truck Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISX12 G...

246

Federal Alternative Fuel Program Light Duty Vehicle Operations. Second annual report to Congress for fiscal year 1992  

DOE Green Energy (OSTI)

This annual report to Congress details the second year of the Federal light duty vehicle operations as required by Section 400AA(b)(1)(B) of the Energy Policy and Conservation Act as amended by the Alternative Motor Fuels Act of 1988, Public Law 100-494. In 1992, the Federal alternative fuel vehicle fleet expanded significantly, from the 65 M85 (85 percent methanol and 15 percent unleaded gasoline) vehicles acquired in 1991 to an anticipated total of 3,267 light duty vehicles. Operating data are being collected from slightly over 20 percent, or 666, of these vehicles. The 601 additional vehicles that were added to the data collection program in 1992 include 75 compressed natural gas Dodge full-size (8-passenger) vans, 25 E85 (85 percent denatured ethanol and 15 percent unleaded gasoline) Chevrolet Lumina sedans, 250 M85 Dodge Spirit sedans (planned to begin operation in fiscal year 1993), and 251 compressed natural gas Chevrolet C-20 pickup trucks. Figure ES-1 illustrates the locations where the Federal light duty alternative fuel vehicles that are participating in the data collection program are operating. The primary criteria for placement of vehicles will continue to include air quality attainment status and the availability of an alternative fuel infrastructure to support the vehicles. This report details the second year of the Federal light duty vehicle operations, from October 1991 through September 1992.

Not Available

1993-07-01T23:59:59.000Z

247

Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Frito-Lay Delivers Frito-Lay Delivers With Electric Truck Fleet to someone by E-mail Share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Facebook Tweet about Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Twitter Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Google Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Delicious Rank Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Digg Find More places to share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on AddThis.com... Sept. 22, 2012 Frito-Lay Delivers With Electric Truck Fleet D iscover how Frito-Lay provides service with electric trucks in Columbus,

248

Howard Gruenspecht Deputy Administrator Duties  

Gasoline and Diesel Fuel Update (EIA)

Howard Gruenspecht Howard Gruenspecht Deputy Administrator Duties Howard Gruenspecht was named Deputy Administrator of the U.S. Energy Information Administration (EIA) in March 2003. As the EIA Deputy Administrator, Howard assists the Administrator in collecting, analyzing, and disseminating independent and impartial energy information to promote sound policy-making, efficient markets, and public understanding of energy and its interaction with the econo- my and the environment. EIA provides a wide range of information and data products covering energy production, stocks, demand, imports, exports, and prices. EIA also prepares analyses and special reports on topics of current interest. Howard works closely with the Administra- tor to provide overall leadership, planning, and policy direction for the

249

Kernridge project does double duty  

SciTech Connect

The huge volume of steam that Kernridge Oil Co. generates to increase production of heavy crude oil from California's South Belridge field may do double duty. The company, a subsidiary of Shell Oil Co., is in the planning stages with a cogeneration project that would produce enough electricity to meet the electric needs of a community of more than 200,000 people. Meanwhile, Kernridge continues to exceed projections used in the acquisition assessment for the former Belridge Oil Co. properties which the Kernridge parent, Shell, bought in December 1979. The company formed Kernridge early in 1980 to operate the former Belridge properties. Since taking over, Kernridge has pursued development aggressively and has increased production to 65,000 bopd from the previous owner's 42,000 bopd.

Not Available

1981-10-01T23:59:59.000Z

250

Fuel savings and emissions reductions from light duty fuel cell vehicles  

DOE Green Energy (OSTI)

Fuel cell vehicles (FCVs) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCVs has the potential to lessen US dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCVs and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCVs will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCVs, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

Mark, J.; Ohi, J.M.; Hudson, D.V. Jr.

1994-04-01T23:59:59.000Z

251

Heavy-Duty Emissions Control: Plasma-Facilitated vs Reformer-Assisted Lean NOx Catalysis  

DOE Green Energy (OSTI)

Progress has been made in the control of combustion processes to limit the formation of environmentally harmful species, but lean burn vehicles, such as those powered by diesel engines used for the majority of commercial trucking and off-road applications, remain a major source of nitrogen oxides (NOx) and particulate matter (PM) emissions. Tighter control of the combustion process coupled with exhaust gas recirculation has brought emissions in line with 2004 targets worldwide. Additional modifications to the engine control system, somewhat limited NOx control, and PM filters will likely allow the 2007 limits to be met for the on-highway regulations for heavy-duty engines in the United States. Concern arises when the NOx emission limit of 0.2 g/bhphr set for the year 2010 is considered.

(1)Aardahl, C; (1)Rozmiarek, R; (1)Rappe, K; (1)Mendoza, D (2)Park, P

2003-08-24T23:59:59.000Z

252

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman Showcases Advanced Clean Diesel and Hybrid Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press conference in Washington, D.C. Secretary Bodman also underscored the need to pass an energy bill that encourages the use of renewable fuels and new technologies to provide the United States with greater energy independence. "Industry and government are working hand-in-hand to develop technologies

253

alternative fuel light-duty vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Light-Duty Vehicles Fuel Light-Duty Vehicles T O F E N E R G Y D E P A R T M E N U E N I T E D S T A T S O F A E R I C A M SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS Alternative Fuel Light-Duty Vehicles SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS PEG WHALEN KENNETH KELLY ROB MOTTA JOHN BRODERICK MAY 1996 N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Light-Duty Vehicles in the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

254

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Light-Duty Vehicle Light-Duty Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Search on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Search on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Search on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Search on AddThis.com... Light-Duty Vehicle Search Search our light-duty alternative fuel vehicle database to find and compare alternative fuel vehicles and generate printable reports to aid in decision-making. These vehicles might not qualify for vehicle-acquisition

255

Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Idle Heavy-Duty Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Idle Reduction Requirement Heavy-duty vehicles with a gross vehicle weight rating greater than 8,500

256

Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Powers Natural Gas Powers Milk Delivery Trucks in Indiana to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Google Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Delicious Rank Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on AddThis.com... Aug. 20, 2011 Natural Gas Powers Milk Delivery Trucks in Indiana

257

Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds  

NLE Websites -- All DOE Office Websites (Extended Search)

1: April 18, 1: April 18, 2011 Average Truck Speeds to someone by E-mail Share Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Facebook Tweet about Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Twitter Bookmark Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Google Bookmark Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Delicious Rank Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Digg Find More places to share Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on AddThis.com... Fact #671: April 18, 2011 Average Truck Speeds The Federal Highway Administration studies traffic volume and flow on major

258

Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conserve Fuel Conserve Fuel Printable Version Share this resource Send a link to Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations to someone by E-mail Share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Facebook Tweet about Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Twitter Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Google Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Delicious Rank Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Digg Find More places to share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on AddThis.com... U.S. Truck Stop Electrification Locations

259

Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Truck Truck Technical Goals and Teams to someone by E-mail Share Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Facebook Tweet about Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Twitter Bookmark Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Google Bookmark Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Delicious Rank Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Digg Find More places to share Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget

260

Analysis of Major Trends in U.S. Commercial Trucking, 1977-2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Further, since single-unit trucks operate usually at part cargo load, the extra mass of CNG tanks is acceptable. For Class 8 combination trucks, the energy storage limitations of...

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric Delivery Trucks (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet describing the project startup for evaluating Coca-Cola's Class 8 hybrid-electric delivery trucks.

Not Available

2011-03-01T23:59:59.000Z

262

Firm Uses DOE?s Fastest Supercomputer to Streamline Long-Haul Trucks  

DOE R&D Accomplishments (OSTI)

Sophisticated simulation on the world?s fastest computer for science makes trucks more aerodynamic, saves fuel, helps environment.

2011-03-28T23:59:59.000Z

263

The transportable heavy-duty engine emissions testing laboratory  

DOE Green Energy (OSTI)

West Virginia University has designed and constructed a Transportable Emissions Testing Laboratory for measuring emissions from heavy duty vehicles, such as buses and trucks operating on conventional and alternative fuels. The laboratory facility can be transported to a test site located at, or nearby, the home base of the vehicles to be tested. The laboratory has the capability of measuring vehicle emissions as the vehicle is operated under either transient or steady state loads and speeds. The exhaust emissions from the vehicle is sampled and the levels of the constituents of the emission are measured. The laboratory consists of two major units; a power absorber unit and an emissions measurement unit. A power absorber unit allows for the connection of a dynamic load to the drive train of the vehicle so that the vehicle can be driven'' through a test cycle while actually mounted on a stationary test bed. The emissions unit contains instrumentation and equipment which allows for the dilution of the vehicle's exhaust with air. The diluteed exhaust is sampled and analyzed to measure the level of concentration of those constituents which have been identified to have impact on the clean environment. Sampling probes withdraw diluted exhaust which is supplied to a number of different exhaust gas analysis instruments. The exhaust gas analysis instruments have the capability to measure the levels of the following exhaust gas constituents: carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), unburned hydrocarbons (HC), formaldehyde (HCHO), methane and particulate matter. Additional instruments or sampling devices can be installed whenever measurements of additional constituents are desired. A computer based, data acquisition system is used to continuously monitor a wide range of parameters important to the operation of the test and to record the test results.

Not Available

1991-05-01T23:59:59.000Z

264

The transportable heavy-duty engine emissions testing laboratory  

SciTech Connect

West Virginia University has designed and constructed a Transportable Emissions Testing Laboratory for measuring emissions from heavy duty vehicles, such as buses and trucks operating on conventional and alternative fuels. The laboratory facility can be transported to a test site located at, or nearby, the home base of the vehicles to be tested. The laboratory has the capability of measuring vehicle emissions as the vehicle is operated under either transient or steady state loads and speeds. The exhaust emissions from the vehicle is sampled and the levels of the constituents of the emission are measured. The laboratory consists of two major units; a power absorber unit and an emissions measurement unit. A power absorber unit allows for the connection of a dynamic load to the drive train of the vehicle so that the vehicle can be driven'' through a test cycle while actually mounted on a stationary test bed. The emissions unit contains instrumentation and equipment which allows for the dilution of the vehicle's exhaust with air. The diluteed exhaust is sampled and analyzed to measure the level of concentration of those constituents which have been identified to have impact on the clean environment. Sampling probes withdraw diluted exhaust which is supplied to a number of different exhaust gas analysis instruments. The exhaust gas analysis instruments have the capability to measure the levels of the following exhaust gas constituents: carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), unburned hydrocarbons (HC), formaldehyde (HCHO), methane and particulate matter. Additional instruments or sampling devices can be installed whenever measurements of additional constituents are desired. A computer based, data acquisition system is used to continuously monitor a wide range of parameters important to the operation of the test and to record the test results.

1991-05-01T23:59:59.000Z

265

Assessment of heavy-duty gasoline and diesel vehicles in California: population and use patterns. Final report, June 1983-March 1985  

Science Conference Proceedings (OSTI)

The report presents an inventory of Vehicle Miles Travelled (VMT) in California by heavy-duty vehicles (HDV) in each of the 58 counties and 14 air basins. To compile the inventory, PES used data generated by two California Department of Transportation (CAL TRANS) annual studies. These data were supplemented by several types of auxiliary data compiled by a literature search, a special truck traffic survey on 21 different routes selected from city and county roads, and an owner/operator telephone questionnaire on vehicle usage of 622 randomly selected HDV's. Out-of-state truck activities in California were estimated by analyzing data from the 1976 Interstate Transportation and Traffic Engineering Survey and the 1971 Institute of Transportation and Traffic Engineering Survey.

Horie, Y.; Rapoport, R.; Pantalone, J.

1985-07-01T23:59:59.000Z

266

Cost Effectiveness of On-Site Chlorine Generation for Chlorine Truck Attack Prevention  

Science Conference Proceedings (OSTI)

A chlorine tank truck attack could cause thousands of fatalities. As a means of preventing chlorine truck attacks, I consider the on-site generation of chlorine or hypochlorite at all U.S. facilities currently receiving chlorine by truck. I develop and ... Keywords: applications, cost-effectiveness, public policy, risk analysis, terrorism, uncertainty

Anthony M. Barrett

2010-12-01T23:59:59.000Z

267

CoolCab: Reducing Thermal Loads in Long-Haul Trucks (Fact Sheet)  

SciTech Connect

This fact sheet describes how the National Renewable Energy Laboratory's CoolCab project tested and modeled the effects of several thermal-load reduction strategies applied to long-haul truck cabs. NREL partnered with two major truck manufacturers to evaluate three long-haul trucks at NREL's outdoor test facility in Golden, Colorado.

Not Available

2010-02-01T23:59:59.000Z

268

DOE Light Truck Clean Diesel (LTCD) Program Final Caterpillar Public Report Light Truck Clean Diesel Program  

DOE Green Energy (OSTI)

The US Department of Energy and Caterpillar entered a Cooperative Agreement to develop compression ignition engine technology suitable for the light truck/SUV market. Caterpillar, in collaboration with a suitable commercialization partner, developed a new Compression Ignition Direct Injection (CIDI) engine technology to dramatically improve the emissions and performance of light truck engines. The overall program objective was to demonstrate engine prototypes by 2004, with an order of magnitude emission reduction while meeting challenging fuel consumption goals. Program emphasis was placed on developing and incorporating cutting edge technologies that could remove the current impediments to commercialization of CIDI power sources in light truck applications. The major obstacle to commercialization is emissions regulations with secondary concerns of driveability and NVH (noise, vibration and harshness). The target emissions levels were 0.05 g/mile NOx and 0.01 g/mile PM to be compliant with the EPA Tier 2 fleet average requirements of 0.07 g/mile and the CARB LEV 2 of 0.05 g/mile for NOx, both have a PM requirement of 0.01 g/mile. The program team developed a combustion process that fundamentally shifted the classic NOx vs. PM behavior of CIDI engines. The NOx vs. PM shift was accomplished with a form of Homogeneous Charge Compression Ignition (HCCI). The HCCI concept centers on appropriate mixing of air and fuel in the compression process and controlling the inception and rate of combustion through various means such as variable valve timing, inlet charge temperature and pressure control. Caterpillar has adapted an existing Caterpillar design of a single injector that: (1) creates the appropriate fuel and air mixture for HCCI, (2) is capable of a more conventional injection to overcome the low power density problems of current HCCI implementations, (3) provides a mixed mode where both the HCCI and conventional combustion are functioning in the same combustion cycle. Figure 1 illustrates the mixed mode injection system. Under the LTCD program Caterpillar developed a mixed mode injector for a multi-cylinder engine system. The mixed mode injection system represents a critical enabling technology for the implementation of HCCI. In addition, Caterpillar implemented variable valve system technology and air system technology on the multi-cylinder engine platform. The valve and air system technology were critical to system control. Caterpillar developed the combustion system to achieve a 93% reduction in NOx emissions. The resulting NOx emissions were 0.12 gm/mile NOx. The demonstrated emissions level meets the stringent Tier 2 Bin 8 requirement without NOx aftertreatment! However, combustion development alone was not adequate to meet the program goal of 0.05gm/mile NOx. To meet the program goals, an additional 60% NOx reduction technology will be required. Caterpillar evaluated a number of NOx reduction technologies to quantify and understand the NOx reduction potential and system performance implications. The NOx adsorber was the most attractive NOx aftertreatment option based on fuel consumption and NOx reduction potential. In spite of the breakthrough technology development conducted under the LTCD program there remains many significant challenges associated with the technology configuration. For HCCI, additional effort is needed to develop a robust control strategy, reduce the hydrocarbon emissions at light load condition, and develop a more production viable fuel system. Furthermore, the NOx adsorber suffers from cost, packaging, and durability challenges that must be addressed.

Eric Fluga

2004-09-30T23:59:59.000Z

269

Satellite Detec*on of Truck & Rail NO2  

E-Print Network (OSTI)

Satellite Detec*on of Truck & Rail NO2 Erica Bickford Tracey Holloway Environment (SAGE) University of Wisconsin Madison #12;Freight and Air Quality 2 · Transporta*on is the largest source of NOx emissions. · Freight accounts for 33

Jacob, Daniel J.

270

Smith Newton Vehicle Performance Evaluation (Brochure)  

DOE Green Energy (OSTI)

The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. Through this project, Smith Electric Vehicles will build and deploy 500 all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

Not Available

2012-08-01T23:59:59.000Z

271

Smith Newton Vehicle Performance Evaluation - 3rd Quarter 2012 (Brochure)  

SciTech Connect

The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. Through this project, Smith Electric Vehicles will build and deploy 500 all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

Not Available

2013-03-01T23:59:59.000Z

272

Improved performance of railcar/rail truck interface components  

E-Print Network (OSTI)

The objective of this research is to improve the railcar/rail truck interface by developing a low maintenance bearing interface with a favorable friction coefficient. Friction and wear at the center bowl/center plate bearing interface cause high turning moments around curved track, wear of truck components, and increased detrimental dynamic effects. The recommended improvement of the rail truck interface is a set of two steel inserts, one concave and one convex, that can be retrofit to center bowls/center plates. The insert geometry addresses concerns about maintaining favorable pressure distribution on existing components, minimizing overall height increase to accommodate existing infrastructure, and retaining railcar stability. The stability of the railcar upon the design inserts has been ensured when the instantaneous center of rotation of the railcar body is above the railcar center of gravity. The damping ratio provided by the frictional moment within center bowl is 240 and eliminates the possibility of dynamic amplification. Using a 90 inch radius of curvature ensures stability and requires a 0.5 inch diameter reduction of the existing center plate for a gap of 1/16 inch. The increase in railcar height for the specific design is 0.71 inches which can be absorbed by either grinding of the center plate or new manufacturing dimensions. The design is feasible for small travel values corresponding to small vertical gaps at the side bearings. In addition to geometry alterations, the bearing surfaces are coated with a protective metallic layer. The literature suggests that optimum friction coefficients between bearing elements in the center bowl/center plate interface may reduce turning moments of the truck, wear of truck components, and detrimental dynamic effects such as hunting. Axial-torsional tests determined friction coefficient estimates and wear properties for a matrix of various metallic protective coatings and steel. Tungsten carbide-cobalt-chrome has a favorable coefficient of 0.3 under standard center bowl/center plate contact conditions.

Story, Brett Alan

2007-08-01T23:59:59.000Z

273

Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Vehicle Heavy-Duty Vehicle Emissions Reduction Grants to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Vehicle Emissions Reduction Grants

274

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

275

Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and Zero Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Google Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Delicious Rank Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on AddThis.com...

276

Oak Ridge Leadership Computing Facility User Update: SmartTruck Systems |  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Computing Facility User Update: SmartTruck Systems Leadership Computing Facility User Update: SmartTruck Systems Startup zooms to success improving fuel efficiency of long-haul trucks by more than 10 percent Supercomputing simulations at Oak Ridge National Laboratory enabled SmartTruck Systems engineers to develop the UnderTray System, some components of which are shown here. The system dramatically reduces drag-and increases fuel mileage-in long-haul trucks. Image: Michael Matheson, Oak Ridge National Laboratory Supercomputing simulations at Oak Ridge National Laboratory enabled SmartTruck Systems engineers to develop the UnderTray System, some components of which are shown here. The system dramatically reduces drag-and increases fuel mileage-in long-haul trucks. Image: Michael Matheson, Oak Ridge National Laboratory (hi-res image)

277

Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move  

NLE Websites -- All DOE Office Websites (Extended Search)

1: April 2, 2012 1: April 2, 2012 Heavy Trucks Move Freight Efficiently to someone by E-mail Share Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Facebook Tweet about Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Twitter Bookmark Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Google Bookmark Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Delicious Rank Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Digg Find More places to share Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on AddThis.com...

278

Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Saving Fuel in the Saving Fuel in the Garden State with Truck Stop Electrification to someone by E-mail Share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Facebook Tweet about Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Twitter Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Google Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Delicious Rank Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Digg Find More places to share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on AddThis.com...

279

Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE  

NLE Websites -- All DOE Office Websites (Extended Search)

1: May 18, 2009 1: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation to someone by E-mail Share Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Facebook Tweet about Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Twitter Bookmark Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Google Bookmark Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Delicious Rank Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Digg Find More places to share Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on

280

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Freightliner - Business Class M2 112 Applications: Tractor, Vocational truck Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISL G 8.9L...

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

114SD Application: Vocational truck Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISL G 8.9L Cummins Westport - ISX12 G...

282

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Capacity Trucks - TJ5000TJ7000 General Motors - 8.0L V8 Fuel Type: Propane Displacement: 8.0 liters...

283

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles International - EVI-MD Application: Vocational truck Fuel Type: Electricity Power Source(s): Electric Vehicles International - 260-hp AC permanent magnet motor...

284

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mule M150 Application: Vocational truck Fuel Type: Electricity Power Source(s): Balqon - 200-hp AC induction motor with lithium...

285

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Boulder Electric Vehicle - DV-500 Delivery Truck Application: Van Fuel Type: Electricity Power Source(s): Boulder Electric Vehicle - AC brushless induction motor with lithium-ion...

286

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Boulder Electric Vehicle - DV-500 Delivery Truck Boulder Electric Vehicle - AC brushless induction motor with lithium-ion batteries Fuel Type: Electricity...

287

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hino - 195h Application: Vocational truck Fuel Type: Hybrid - Diesel Electric Power Source(s): Hino - Hino 5L Hybrid System(s): Hino - Hino Hybrid Drive...

288

Overview of Light-Duty Vehicle Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Light-Duty Vehicle Studies Overview of Light-Duty Vehicle Studies Washington, DC Workshop Sponsored by EERE Transportation Cluster July 26, 2010 Energy Efficiency & Renewable Energy eere.energy.gov 2 * This workshop is intended to be a working meeting for analysts to discuss findings and assumptions because a number of key studies on light-duty vehicles (LDVs) and biofuels have been completed in the past 5 years and the insight gained from their findings would be valuable. * Outcomes: - common understanding of the effects of differing assumptions (today); - agreement on standard assumptions for future studies, where applicable (agreement on some assumptions today, follow-up discussions/meeting may be needed for others); - list of data/information gaps and needed research and studies (a

289

Technology Assessment Report: Duty Cycling Controllers Revisited  

SciTech Connect

This report covers an assessment of two brands of energy management controllers that are currently being offered that utilize the principle of duty cycling to purportedly save energy for unitary air conditioners and heat pumps, gas furnaces, and gas fired boilers. The results of an extensive review of past research on this subject as well as a review of vendor sponsored field testing of these controllers compares these newer controllers to those of the past. Included also is a discussion of how the duty cycling principle is prone to misinterpretation as to its potential to save energy.

Webster, Tom; Benenson, Peter

1998-05-01T23:59:59.000Z

290

Carports with Solar Panels do Double Duty for Navy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carports with Solar Panels do Double Duty for Navy Carports with Solar Panels do Double Duty for Navy May 14, 2010 - 12:22pm Addthis Joshua DeLung What does this project do? In...

291

Which idling reduction system is most economical for truck owners?  

NLE Websites -- All DOE Office Websites (Extended Search)

Which idling reduction system is Which idling reduction system is most economical for truck owners? Linda Gaines Center for Transportation Research Argonne National Laboratory Commercial Vehicle Engineering Congress and Exposition Rosemont, Il October 7-9, 2008 The price of diesel is high *Idling a Class 8 truck uses 0.6-1.2 gallons per hour *That can total over $50 a night! *So even without regulations, there's an incentive to reduce idling *Even if the price goes down more, idling reduction makes sense 2 Why do sleepers idle overnight? For services to resting driver and friend y Heating, ventilation, and air conditioning (HVAC) y Power for appliances 8TV, microwave, refrigerator, computer, hair drier To keep fuel and engine warm To mask out noises and smells Because other drivers do it

292

Upgrades for truck transportation of SNM in the Russian Federation  

Science Conference Proceedings (OSTI)

The goal of this project is the rapid reduction of risk to truck transportation of SNM in Russia. Enhanced protection is being accomplished by cooperation between the US Department of Energy, MINATOM of Russia, the Russian Ministry of Defense, and various Russian Institutes. This program provides an integrated program of specialized trucks that are equipped with hardened overpack (SNM vault) containers, alarm and communications systems, and armored cabs. Armored escort vehicles are also provided to increase the survivability of the guards escorting convoys. Only indigenous Russian equipment, modified and/or manufactured by Designing Bureau for Motor Vehicle Transport Equipment (KBATO), is provided under this program. The US will not provide assistance in the truck transportation arena without a commitment from the Russian facility to provide heavily armed escorts for SNM movement. Each site conducts a detailed transportation needs assessment study that is used as the basis for prioritizing assistance. The Siberian Chemical Combine (Tomsk-7) was the initial site of cooperation. The designs used at Tomsk-7 are serving as the baseline for all future vehicles modified under this program. In FY98, many vehicles systems have been ordered for various institutes. Many additional systems will be ordered in FY99.

Gardner, B.H. [Sandia National Labs., Albuquerque, NM (United States); Kornilovich, E. [Construction Bureau for Motor Vehicle Transport Equipment, Mytischy (Russian Federation)

1998-08-01T23:59:59.000Z

293

Experimental Measurement of the Flow Field of Heavy Trucks  

SciTech Connect

Flat flaps that enclose the trailer base on the sides and top are known to reduce truck drag and reduce fuel consumption. Such flapped-truck geometries have been studied in laboratory wind tunnels and in field tests. A recent review of wind tunnel data for a variety of truck geometries and flow Reynolds numbers show roughly similar values of peak drag reduction, but differ in the determination of the optimum flap angle. Optimum angles lie in the range 12 degrees-20 degrees, and may be sensitive to Reynolds number and truck geometry. The present field test is undertaken to provide additional estimates of the magnitude of the savings to be expected on a typical truck for five flap angles 10, 13, 16, 19, and 22 degrees. The flaps are constructed from a fiberglass-epoxy-matrix material and are one-quarter of the base width in length (about 61 cm, or 2 feet). They are attached along the rear door hinge lines on either side of the trailer, so that no gap appears at the joint between the flap and the side of the trailer The flap angle is adjusted by means of two aluminum supports. The present test is performed on the NASA Crows Landing Flight Facility at the northern end of the San Joaquin valley in California. The main runway is approximately 2400 meters in length, and is aligned approximately in a north-south direction The test procedure is to make a series of runs starting at either end of the runway. All runs are initiated under computer control to accelerate the truck to a target speed of 60 mph (96 6 km/hr), to proceed at the target speed for a fixed distance, and to decelerate at the far end of the runway. During a run, the broadcast fuel rate, the engine rpm, forward speed, elapsed time--as well as several other parameters (10 in all)--are digitized at a rate of 100 digitizations per second. Various flapped-conditions are interspersed with the ''no flaps'' control, and are sequenced in a different order on different days. Approximately 310 runs are accumulated over the 5-day test period, May 17-21, 2004. The runway slopes rather uniformly upward from north-to-south. Over the distance of 2424 meters between our two ''start'' markers at either end of the runway, the net change in elevation is a little over ten meters. Test results clearly show the greater fuel consumption required to lift the truck against gravity in the southbound direction For this reason, it is important that the tests be averaged over a round trip circuit--that is, a run in both directions over the identical portion of the roadway. Northbound-southbound averages require an overlap segment of the runway (near the middle of the runway) where the truck--starting from either end--has achieved its target speed. For the target truck speed of 60 mph, this overlap region is approximately 700 meters in length. Typically a run and the return run are accomplished within a time interval of 6 minutes. Analysis of the data show fuel consumption savings at all flap angle settings tested, when compared to the ''no flaps'' condition. The most beneficial flap angle appears to be 13 degrees, for which the fuel consumption is 0.3778 {+-} 0.0025 liters/km compared to the ''no flaps'' control of 0.3941 {+-} 0.0034 liters/km. The error bounds expressed above mark the 99% confidence interval in the mean values given. That is, additional estimates of the mean fuel consumption would be expected to lie within the bounds given, approximately 99% of the time. The fuel consumption saving is--to reasonable accuracy--about 1.63 liters/100 kilometers. These savings represent the increment associated only with the change in drag due to the presence or absence of flaps. The result will hold for any truck of similar size and shape and engine performance regardless of the loading of the truck or the rolling resistance. The economy achieved by use of base flaps can be compared to the economy resulting from driving two trucks in a tandem configuration. In December 2003, such fuel consumption tests were performe

Fred Browand; Charles Radovich

2005-05-31T23:59:59.000Z

294

STATE OF CALIFORNIA DUTY STATEMENT PROPOSED  

E-Print Network (OSTI)

, and technology innovators and markets regarding RD&D objectives, opportunities and impacts. The incumbent informs for program analysis and planning activities. Research economic, market and technology issues. ServeSTATE OF CALIFORNIA DUTY STATEMENT PROPOSED CEC-004 (Revised 04/07) CALIFORNIA ENERGY COMMISSION

295

Light duty utility arm startup plan  

SciTech Connect

This plan details the methods and procedures necessary to ensure a safe transition in the operation of the Light Duty Utility Arm (LDUA) System. The steps identified here outline the work scope and identify responsibilities to complete startup, and turnover of the LDUA to Characterization Project Operations (CPO).

Barnes, G.A.

1998-09-01T23:59:59.000Z

296

Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.  

DOE Green Energy (OSTI)

The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

Plotkin, S.

1999-01-01T23:59:59.000Z

297

NETL: News Release - Solid Oxide Fuel Cell Successfully Powers Truck Cab  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2009 9, 2009 Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test DOE, Delphi, Peterbilt Join to Test Auxiliary Power Unit for Commercial Trucks Washington, DC -In a test sponsored by the U.S. Department of Energy (DOE), a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours. The device provides an alternative to running a truck's main diesel engine, or using a truck's batteries, to power auxiliary electrical loads during rest periods, thereby lowering emissions, reducing noise, and saving fuel. Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test

298

Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test March 19, 2009 - 1:00pm Addthis Washington, DC --In a test sponsored by the U.S. Department of Energy (DOE), a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours. The device provides an alternative to running a truck's main diesel engine, or using a truck's batteries, to power auxiliary electrical loads during rest periods, thereby lowering emissions, reducing noise, and saving fuel. In testing at Peterbilt Motors Company Texas head-quarters, a Delphi

299

Company Adds Commercial Trucks to List of Hybrids | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company Adds Commercial Trucks to List of Hybrids Company Adds Commercial Trucks to List of Hybrids Company Adds Commercial Trucks to List of Hybrids August 30, 2010 - 10:00am Addthis Allison’s bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system. | Photo courtesy of Allison Transmission Allison's bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system. | Photo courtesy of Allison Transmission Lindsay Gsell Allison Transmission uses $62.8 million in Recovery Act funding for commercial truck hybrid system Project will create or retain close to 100 manufacturing-related jobs in Indiana Hybrid systems could reduce diesel consumption by 35 percent in

300

Fuel Cell Lift Trucks: A Grocer's Best Friend | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend December 1, 2011 - 3:21pm Addthis Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What are the key facts? Fuel Cell Lift Trucks can operate twice as long as their battery powered counterparts. They also avoid deep discharges, which effectively extends their

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities August 18, 2010 - 2:22pm Addthis Peterbilt Model 320 Hybrid HLAs are being put to use in Ann Arbor, MI, where they will serve as recycling trucks. | Photo Courtesy of Peterbilt Motors Company Peterbilt Model 320 Hybrid HLAs are being put to use in Ann Arbor, MI, where they will serve as recycling trucks. | Photo Courtesy of Peterbilt Motors Company Joshua DeLung Hydraulics in vehicles - best known for bouncing cars and kneeling buses - are getting a serious look in Ann Arbor, Mich. The reasons - saving fuel and increasing the life of heavy-use vehicles. With the support of a $120,000 Recovery Act grant, Ann Arbor, Mich., deployed four recycling trucks with hydraulic hybrid power systems

302

Energy Efficiency and Performance Testing of Non-Road Electric Vehicles: Forklift Truck Evaluation Status Report  

Science Conference Proceedings (OSTI)

Forklift trucks play an integral role in the industrial economy, and the majority of those trucks in service in the United States are electric. The benefits of such non-road electric vehicles include lower life cycle costs, improved worker health and safety, and reduced maintenance. However, large numbers of electric lift trucks can become a concern to the electric utility industry if the vehicles are inefficient or cause power quality problems. Southern California Edison (SCE) has evaluated the energy e...

2003-12-31T23:59:59.000Z

303

Business Case for Fast Charging of Industrial Lift Truck Fleets: Life Cycle Cost Model  

Science Conference Proceedings (OSTI)

In industrial settings, up to three battery packs are required per electric industrial lift truck: one in use, another being charged, and a third being cooled. Many industry experts see this as a financial barrier in selling electric over internal combustion (IC) industrial lift trucks. EPRI sponsored this study to provide a thorough evaluation of the economics in support of a business case for fast charging lift truck fleets.

2000-09-18T23:59:59.000Z

304

FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month...  

NLE Websites -- All DOE Office Websites (Extended Search)

7693 May 2010 FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report R. Barnitt National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado...

305

Definition and Evaluation of Bus and Truck Automation Operations Concepts: Final Report  

E-Print Network (OSTI)

trucks Intermodal Rail 2.2 RELATED RESEARCH Research andrail) and the proponents of a more efficient freight system for national defense purposes. Research

Taso, H. S. Jacob; Botha, Jan L.

2003-01-01T23:59:59.000Z

306

Implications to Heavy-Duty Diesel Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL/TM-200015 ORNL/TM-200015 MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY A Vector Approach to Regression Analysis and Its Implications to Heavy-Duty Diesel Emissions November 2000 Prepared by H. 1. McAdams AccaMath Services Carrolton, Illinois R. W. Crawford R.W. Crawford Energy Systems Tucson, Arizona G. R. Hadder Oak Ridge National Laboratory Oak Ridge, Tennessee - UT-BATTELLE -. ORNL-27 (4.00) II ORNL/TM-200015 A VECTOR APPROACH TO REGRESSION ANALYSIS AND ITS APPLICATION TO HEAVY-DUTY DIESEL EMISSIONS H. T. McAdams AccaMath Services Carrollton, Illinois R. W. Crawford RWCrawford Energy Systems Tucson, Arizona G. R. Hadder Oak Ridge National Laboratory Oak Ridge, Tennessee November 2000 Prepared for Office of Energy Effkiency and Renewable Energy

307

Forecast of California car and truck fuel demand  

Science Conference Proceedings (OSTI)

The purpose of this work is to forecast likely future car and truck fuel demand in California in light of recent and possible additional improvements in vehicle efficiency. Forecasts of gasoline and diesel fuel demand are made based on projections of primary economic, demographic, and transportation technology variables. Projections of car and light truck stock and new sales are based on regression equations developed from historical data. Feasible future vehicle fuel economies are determined from technical improvements possible with existing technology. Several different cases of market-induced efficiency improvement are presented. Anticipated fuel economy improvements induced by federal mileage standards and rising fuel costs will cause lower future fuel demand, even though vehicle miles traveled will continue to increase both on a per capita and total basis. If only relatively low-cost fuel economy improvements are adopted after about 1985, when federal standards require no further improvements, fuel demand will decrease from the 1982 level of 11.7 billion gallons (gasoline equivalent) to 10.6 billion gallons in 2002, about a 9% reduction. Higher fuel economy levels, based on further refinements in existing technology, can produce an additional 7% reduction in fuel demand by 2002.

Stamets, L.

1983-01-01T23:59:59.000Z

308

F2001-01-2793 Design of an Advanced Heavy Tactical Truck  

E-Print Network (OSTI)

response of both a series hybrid and an electric-driven truck at the top (vehicle) level, and the response is applied to the design of an advanced heavy tactical truck. Novel technologies (e.g., series hybrid for both series hybrid and series electric drive propulsion systems; results are presented for two sets

Michelena, Nestor

309

Opportunities for Low Cost Titanium in Reduced Fuel Consumption, Improved Emissions, and Enhanced Durability Heavy Duty Vehicles  

DOE Green Energy (OSTI)

The purpose of this study was to determine which components of heavy-duty highway vehicles are candidates for the substitution of titanium materials for current materials if the cost of those Ti components is very significantly reduced from current levels. The processes which could be used to produce those low cost components were also investigated. Heavy-duty highway vehicles are defined as all trucks and busses included in Classes 2C through 8. These include heavy pickups and vans above 8,500 lbs. GVWR, through highway tractor trailers. Class 8 is characterized as being a very cyclic market, with ''normal'' year volume, such as in 2000, of approximately 240,000 new vehicles. Classes 3-7 are less cyclic, with ''normal'' i.e., year 2000, volume totaling approximately 325,000 new vehicles. Classes 3-8 are powered about 88.5% by diesel engines, and Class 2C at very roughly 83% diesel. The engine portion of the study therefore focused on diesels. Vehicle production volumes were used in estimates of the market size for candidate components.

Kraft, E.H.

2002-07-22T23:59:59.000Z

310

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO INTERNATIONAL TRUCK AND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INTERNATIONAL TRUCK AND INTERNATIONAL TRUCK AND ENGINE CORPORATION (ITEC) UNDER DOE PRIME CONTRACT NO. DE-FC26- 06NT42791 FOR "NATIONAL HYBRID TRUCK MANUFACTURING PROGRAM"; CH-1412; W(A)-07-024 International Truck and Engine Corporation (ITEC) has petitioned for an advanced waiver of domestic and foreign patent rights to inventions conceived or first actually reduced to practice under DOE Contract No. DE-FC26-06NT42891. ITEC is a subcontractor of WESTSTART- CALSTART. This advanced waiver is intended to apply to all subject inventions of International Truck and Engine's employees and those of its subcontractors, regardless of tier, except subcontractors eligible to obtain title pursuant to P. L. 96-517 as amended, and National Laboratories. As brought out in its waiver petition, ITEC will research and develop electrical subsystems

311

EM Awards Two Large Contracts to Small Businesses for Trucking Services |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards Two Large Contracts to Small Businesses for Trucking Awards Two Large Contracts to Small Businesses for Trucking Services EM Awards Two Large Contracts to Small Businesses for Trucking Services June 1, 2012 - 12:00pm Addthis A Waste Isolation Pilot Plant (WIPP) truck approaches the WIPP facility near Carlsbad, N.M. Since opening in 1999, WIPP has established an impressive record. In addition to transporting more than 10,500 shipments safely, WIPP drivers have logged more than 12.6 million safe loaded miles — equivalent to 26 roundtrips to the moon — without a serious accident or injury. Their work has helped DOE clean up 22 transuranic waste sites around the nation. A Waste Isolation Pilot Plant (WIPP) truck approaches the WIPP facility near Carlsbad, N.M. Since opening in 1999, WIPP has established an

312

VP 100: Producing Electric Truck Vehicles with a Little Something Extra |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VP 100: Producing Electric Truck Vehicles with a Little Something VP 100: Producing Electric Truck Vehicles with a Little Something Extra VP 100: Producing Electric Truck Vehicles with a Little Something Extra August 6, 2010 - 10:31am Addthis VP 100: Producing Electric Truck Vehicles with a Little Something Extra Kevin Craft What does this mean for me? Smith Electric Vehicles included in Vice President's report on 100 Recovery Act Projects That Are Changing America. Smith plans to hire at least 50 employees by the end of the year. Through a Recovery Act grant, that company - Smith Electric Vehicles (SEV) - is taking a different tact that could lay the foundation for the industry's future. Not only is the company manufacturing all-electric, zero-emission commercial trucks, it's collecting data on how these commercial EVs are used. In Kansas City, Mo., an 80-year old company is on

313

Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership  

DOE Green Energy (OSTI)

The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

None

2000-12-01T23:59:59.000Z

314

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CrosswindEaglePelican Applications: Street sweeper, Vocational truck Fuel Types: CNG, LNG, Propane Power Source(s): Cummins Westport - ISL G 8.9L Ford Motor Co. - 2.5L Propane...

315

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

T440 Tractor Application: Tractor Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISL G 8.9L Additional Description: Can be a Class 7 or a Class 8 truck...

316

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Kenworth - T470 Tractor Application: Tractor Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISL G 8.9L Additional Description: Can be a Class 7 or a Class 8 truck...

317

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

T270 hybrid Applications: Tractor, Vocational truck Fuel Type: Hybrid - Diesel Electric Power Source(s): Paccar - PX-6 6.7L Hybrid System(s): Eaton - Diesel Electric Hybrid...

318

Analysis of parasitic losses in heavy duty diesel engines  

E-Print Network (OSTI)

Fuel economy of large, on-road diesel engines has become even more critical in recent years for engine manufactures, vehicle OEMs, and truck operators, in view of pending CO2 emission regulations. Demands for increased ...

James, Christopher Joseph

2012-01-01T23:59:59.000Z

319

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Capacity Trucks - TJ5000TJ7000 Application: Tractor Fuel Type: Propane Power Source(s): Ford Motor Co. - 6.8L V-10 General Motors - 8.0L V8...

320

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cutaway and Stripped Chassis Application: Vocational truck Fuel Types: CNG, Propane, Ethanol Power Source(s): Ford Motor Co. - 6.8L V-10 Ford Motor Co. - 5.4L V-8 Additional...

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compatible Vehicles: StarTrans - Senator Turtle Top - Odyssey XL Turtle Top - Odyssey Goshen Coach - GCIIG-Force Turtle Top - Van Terra Capacity Trucks - TJ5000TJ7000 Ford Motor...

322

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Peterbilt Motors - 386HE Kenworth - T370 hybrid truck Kenworth - T270 hybrid IC Bus - HC Hybrid Series Turtle Top - Odyssey XLT Kenworth - T370 diesel electric tractor Thomas Built...

323

Analysis of major trends in U.S. commercial trucking, 1977-2002.  

DOE Green Energy (OSTI)

This report focuses on various major long-range (1977-2002) and intermediate-range (1982-2002) U.S. commercial trucking trends. The primary sources of data for this period were the U.S. Bureau of the Census Vehicle Inventory and Use Survey and Truck Inventory and Use Survey. In addition, selected 1977-2002 data from the U.S. Department of Energy/Energy Information Administration and from the U.S. Department of Transportation/Federal Highway Administration's Highway Statistics were used. The report analyzes (1) overall gasoline and diesel fuel consumption patterns by passenger vehicles and trucks and (2) the population changes and fuels used by all commercial truck classes by selected truck type (single unit or combination), during specified time periods, with cargo-hauling commercial trucks given special emphasis. It also assesses trends in selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-mile traveled, as well as the effect of cargo tons per truck on fuel consumption. In addition, the report examines long-range trends for related factors (e.g., long-haul mileages driven by heavy trucks) and their impacts on reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes. It identifies the effects of these trends on U.S. petroleum consumption. The report also discusses basic engineering design and performance, national legislation on interstate highway construction, national demographic trends (e.g., suburbanization), and changes in U.S. corporate operations requirements, and it highlights their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry.

Bertram, K. M.; Santini, D .J.; Vyas, A. D.

2009-06-10T23:59:59.000Z

324

American Recovery and Reinvestment Act (ARRA) - Light-Duty Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

American Recovery and Reinvestment Act (ARRA) Light-Duty Electric Drive Vehicle and Charging Infrastructure Testing What's New Chevrolet Volt Vehicle Demonstration: Project to...

325

American Recovery and Reinvestment Act (ARRA) - Light-Duty Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

American Recovery and Reinvestment Act (ARRA) Light-Duty Electric Drive Vehicle and Charging Infrastructure Testing What's New EV Project Overview Report: Project to date...

326

The Road Ahead for Light Duty Vehicle Fuel Demand  

U.S. Energy Information Administration (EIA)

The Road Ahead for Light Duty Vehicle Fuel Demand Joanne Shore Energy Information Administration July 7, 2005 Refining Capacity Surplus Shrank As Demand Grew ...

327

A Distributed Framework for Coordinated Heavy-duty Vehicle ...  

E-Print Network (OSTI)

Dec 28, 2013 ... Abstract: Heavy-duty vehicles traveling in a single file with small intervehicle distances experience a reduced aerodynamic drag and therefore...

328

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

NLE Websites -- All DOE Office Websites (Extended Search)

Hawaii (2007-2009) Hawaii (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : Hawaii (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet

329

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware (2007-2009) Delaware (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : Delaware (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness

330

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

NLE Websites -- All DOE Office Websites (Extended Search)

District of Columbia (2007-2009) District of Columbia (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : District of Columbia (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility

331

Alternative Fuels in Trucking Volume 5, Number 3  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

lmost 50% of the petroleum lmost 50% of the petroleum consumed in the United States is imported. By the year 2000, 73% of total petroleum demand will be imported, making America vulnerable to a cutoff in our energy lifeline. Transportation, which is 98% dependent on petroleum, uses two-thirds of the oil consumed in the United States. If we instead used American-produced natural gas to power our vehicles, we could become energy independent. Natural gas could also solve some of our toughest environmental prob- lems. Gasoline- and diesel-fueled cars, trucks, and buses produce half of all air pollution in the United States. Natural gas would cut emis- sions to zero. Congress has recognized the opportunity and enacted legislation to provide incentives for or mandate the production of alternative fuel

332

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

NLE Websites -- All DOE Office Websites (Extended Search)

Indiana (2007-2009) Indiana (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : Indiana (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness

333

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho (2007-2009) Idaho (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : Idaho (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet

334

Microsoft Word - 2011sr10-fire truck donation.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Monday, August 8, 2011 Monday, August 8, 2011 james-r.giusti@srs.gov Rick McLeod, SRSCRO, (803) 593-9954, Ext. 1411 rick.mcleod@srscro.org DOE's Excess Property Donation Protects Lives, Property and the Environment AIKEN, SC - The recent purchase of new fire engines at Savannah River Site resulted in the availability of two excess fire trucks under the SRS Community Reuse Organization's (SRS CRO) Asset Transition Program. The primary goal of the Department of Energy's (DOE) Asset Transition Program is to utilize excess personal property derived from the Savannah River Site to enhance economic development and job opportunities within a five-county region surrounding the Site. In addition to job creation, assets may also be used to improve the "quality

335

Modeling the interaction between passenger cars and trucks  

E-Print Network (OSTI)

The topic of this dissertation was the use of distributed computing to improve the modeling of the interaction between passenger cars and trucks. The two main focus areas were the development of a methodology to combine microscopic traffic simulation programs with driving simulator programs, and the application of a prototype distributed traffic simulation to study the impact of the length of an impeding vehicle on passing behavior. The methodology was motivated by the need to provide an easier way to create calibrated traffic flows in driving simulations and to capture vehicle behavior within microscopic traffic simulations. The original design for the prototype was to establish a two-way, real time exchange of vehicle data, however problems were encountered that imposed limitations on its development and use. The passing study was motivated by the possible changes in federal truck size and weight regulations and the current inconsistency between the passing sight distance criteria for the design of two lane highways and the marking of no-passing zones. Test drivers made passing maneuvers around impeding vehicles that differed in length and speed. The main effects of the impeding vehicle length were found to be significant for the time and distance in the left lane, and the start and end gap distances. Passing equations were formulated based on the mechanics of the passing maneuver and included behavior variables for calibration. Through a sensitivity analysis, it was shown that increases in vehicle speeds, vehicle length, and gap distance increased the distance traveled in the left lane, while increases in the speed difference and speed gain decreased the distance traveled in the left lane. The passing equations were calibrated using the current AASHTO values and used to predict the impact of increased vehicle lengths on the time and distance in the left lane. The passing equations are valuable for evaluating passing sight distance criteria and observed passing behavior.

Jenkins, Jacqueline Marie

2004-08-01T23:59:59.000Z

336

William J. Clinton, 2000  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fuels in light, medium, and heavy-duty vehicles; the acquisition of vehicles with higher fuel economy, including hybrid vehicles; the sub- stitution of cars for light trucks; an...

337

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

under Clean Cities FOA-DE-PS26-09NT01236, AOI4. Activities include purchase of 2 CNG vehicles, single axle medium duty trucks. 05 24 2011 Kay L. Kelly Digitally signed by...

338

Improvement in LNG storage tanks  

SciTech Connect

To develop and produce natural gas fuel tanks for medium duty truck and transit bus end-use to overcome the weight and range problems inherent in current fuel systems.

NONE

1999-11-20T23:59:59.000Z

339

STATE-OF-THE-ART AND EMERGING TRUCK ENGINE TECHNOLOGIES FOR OPTIMIZED PERFORMANCE, EMISSIONS AND LIFE CYCLE COSTS  

DOE Green Energy (OSTI)

The challenge for truck engine product engineering is not only to fulfill increasingly stringent emission requirements, but also to improve the engine's economical viability in its role as the backbone of our global economy. While societal impact and therefore emission limit values are to be reduced in big steps, continuous improvement is not enough but technological quantum leaps are necessary. The introduction and refinement of electronic control of all major engine systems has already been a quantum leap forward. Maximizing the benefits of these technologies to customers and society requires full use of parameter optimization and other enabling technologies. The next big step forward will be widespread use of exhaust aftertreatment on all transportation related diesel engines. While exhaust gas aftertreatment has been successfully established on gasoline (Otto cycle) engines, the introduction of exhaust aftertreatment especially for heavy-duty diesel engines will be much mo re demanding. Implementing exhaust gas aftertreatment into commercial vehicle applications is a challenging task but the emission requirements to be met starting in Europe, the USA and Japan in the 2005-2007 timeframe require this step. The engine industry will be able to implement the new technology if all stakeholders support the necessary decisions. One decision has already been taken: the reduction of sulfur in diesel fuel being comparable with the elimination of lead in gasoline as a prerequisite for the three-way catalyst. Now we have the chance to optimize ecology and economy of the Diesel engine simultaneously by taking the decision to provide an additional infrastructure for a NOx reduction agent needed for the introduction of the Selective Catalytic Reduction (SCR) technology that is already implemented in the electric power generation industry. This requires some effort, but the resulting societal benefits, fuel economy and vehicle life cycle costs are significantly better when compared to other competitive technologies. After long discussions this decision for SCR has been made in Europe and is supported by all truck and engine manufacturers. The necessary logistic support will be in place when it will be needed commercially in 2005. For the US the decision has to be taken this year in order to have the infrastructure available in 2007. It will enable the global engine industry to focus their R & D resources in one direction not only for 2007, but for the years beyond 2010 with the best benefit for the environment, the customers and the industry.

Schittler, M

2003-08-24T23:59:59.000Z

340

UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA  

NLE Websites -- All DOE Office Websites (Extended Search)

36 36 UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA Stacy C. Davis November 2000 Prepared for the Energy Information Administration U.S. Department of Energy Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6073 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 Updating the FTSAM: 1997 VIUS Data iii TABLE OF CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 OBJECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 VIUS DATA PREPARATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 1. Share of Trucks by Fuel Type and Truck Size -

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Workshop Light Duty Vehicle Workshop On July 26, 2010, the U.S. Department of Energy (DOE) sponsored a Light Duty Vehicle Workshop in Washington, D.C. Presentations from this workshop appear below as Adobe Acrobat PDFs. Download Adobe Reader. Presentations Overview of Light-Duty Vehicle Studies (PDF 562 KB), Sam Baldwin, Chief Technology Officer, Office of Energy Efficiency and Renewable Energy (EERE), DOE Light Duty Vehicle Pathways (PDF 404 KB), Tien Nguyen, Fuel Cell Technologies Office, EERE, DOE Hydrogen Transition Study (PDF 2.6 MB), Paul N. Leiby, David Greene, Zhenhong Lin, David Bowman, and Sujit Das, Oak Ridge National Laboratory Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles (PDF 123 KB), Joan Ogden and Mike Ramage, National Research Council

342

Emissions comparison between petroleum diesel and biodiesel in a medium-duty diesel engine  

E-Print Network (OSTI)

Biofuels have become very important topics over the past decade due to the rise in crude oil prices, fear of running out of crude oil, and environmental impact of emissions. Biodiesel is a biofuel that is made from plant seed oils, waste cooking oils, or animal fats. It has become increasingly popular and is looked at as a diesel replacement. This research characterizes the emissions of the new John Deere PowerTech Plus 4045HF285 in the Advance Engine Research Laboratory at Texas A&M University and compares the emissions of a 100 percent blended feed stock biodiesel to an ultra low sulfur diesel certification fuel. The steady state tests were conducted while holding engine speed constant at three different speeds and three different loads. The gaseous emissions, exhaust gas recirculation, fuel flow rate, and torque were monitored and recorded for 300 points per test. Four tests were performed and the results were averaged per each fuel. Carbon monoxide, carbon dioxide, oxygen, and oxides of nitrogen emissions were analyzed. The biodiesel averaged up to 12% lower torque, 5.4% more fuel, 7.5% less carbon dioxide, 29% more oxygen, and 29% more oxides of nitrogen. Overall the biodiesel produced less torque and carbon dioxide emissions, while emitting more oxygen and oxides of nitrogen.

Tompkins, Brandon T.

2008-12-01T23:59:59.000Z

343

Development of the next generation medium-duty natural gas engine  

DOE Green Energy (OSTI)

This report summarizes the work done under this subcontract in the areas of System Design, System Fabrication, and Experimental Program. The report contains the details of the engine development process for achieving throttleless stratified charge spark ignition (SI) engine operation as well as advanced turbocharging strategies. Engine test results showing the potential of the direct-injection stratified charge combustion strategy for increasing part-load engine efficiency on a John Deere 8.1-liter natural gas engine are also included in this report. In addition, steady state and step transient engine data are presented that quantify the performance of a variable geometry turbocharger (VGT) as well as a modified waste-gated turbocharger on the engine. The benefits of the technologies investigated during this project will be realized in the form of increased drive-cycle efficiency to diesel-like levels, while retaining the low emissions characteristics of a lean-burn natural gas engine.

Podnar, D.J.; Kubesh, J.T.

2000-02-28T23:59:59.000Z

344

Argonne CNM Highlight: Nanofluids Could Make Cool Work of Hot Truck Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanofluids Could Make Cool Work of Hot Truck Engines Nanofluids Could Make Cool Work of Hot Truck Engines What the work is about Truck engines are hot places, and new emission reduction technologies such as exhaust gas recirculation (EGR) can make them even hotter. The coolants, lubricants, oils, and other heat transfer fluids used in today's conventional truck thermal systems (including radiators, engines, and HVAC equipment) have inherently poor heat transfer properties. And conventional working fluids that contain millimeter- or micrometer-sized particles do not work with newly emerging "miniaturized" technologies because they can clog in microchannels. Why Nanoparticles Are Better than Microparticles Argonne National Laboratory has developed metal nanofluids that can dramatically enhance the thermal conductivity of conventional heat transfer fluids and flow smoothly in microchannel passages. These "nanocoolants," as they're known, can enhance heat transfer more than several times better than the best competing fluid.

345

DOE Selects Two Small Businesses to Truck Transuranic Waste to New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Two Small Businesses to Truck Transuranic Waste to New Two Small Businesses to Truck Transuranic Waste to New Mexico Waste Isolation Pilot Plant DOE Selects Two Small Businesses to Truck Transuranic Waste to New Mexico Waste Isolation Pilot Plant January 9, 2012 - 12:00pm Addthis Media Contact Bill Taylor 803-952-8564 bill.taylor@srs.gov Cincinnati - The Department of Energy (DOE) today awarded two small-business contracts to CAST Specialty Transportation, Inc. and Visionary Solutions, LLC, to provide trucking services to transport transuranic (TRU) waste, from DOE and other defense-related TRU waste generator sites to the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. The contracts are firmfixed-price with cost-reimbursable expenses over five years. CAST Specialty Transportation, Inc. of Henderson, Colorado, will begin

346

Assessment of the risk of transporting plutonium oxide and liquid plutonium nitrate by truck  

SciTech Connect

A methodology for assessing the risk in transporting radioactive materials and the results of the initial application of the methodology to shipment of plutonium by truck are presented. (LK)

1975-08-01T23:59:59.000Z

347

Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)  

Reports and Publications (EIA)

In August 2005, NHTSA published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck CAFE standards for model years 2008 through 2011 [8]. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

Information Center

2006-02-01T23:59:59.000Z

348

Trucking country : food politics and the transformation of rural life in Postwar America  

E-Print Network (OSTI)

Trucking replaced railroads as the primary link between rural producers and urban consumers in the mid-twentieth century. With this technological change came a fundamental transformation of the defining features of rural ...

Hamilton, Shane, 1976-

2005-01-01T23:59:59.000Z

349

Engineering Task Plan for Water Supply for Spray Washers on the Support Trucks  

SciTech Connect

This Engineering Task Plan (ETP) defines the task and deliverables associated with the design, fabrication and testing of an improved spray wash system for the Rotary Mode Core Sampling (RMCS) System Support Trucks.

BOGER, R.M.

2000-02-03T23:59:59.000Z

350

Investigation of the low temperature performance of trucks operating on low cetane diesel fuel  

Science Conference Proceedings (OSTI)

An anticipated increase in diesel fuel demand prompted a study by Energy, Mines and Resources Canada, to assess the effect of synthetic and cracked fuel components on truck cold weather performance. Subsequently, a two-year contract was awarded to Esso Petroleum Canada Research to evaluate the effect of fuel composition on combustion using a 310 hp modern HD engine, and the effect on startup and driveability down to -30/sup 0/C in four Class 8 trucks.

Cartwright, S.J.; Gilbert, J.B

1988-01-01T23:59:59.000Z

351

Effect of Wide-Based Single Tires on Fuel Efficiency of Class 8 Combination Trucks  

SciTech Connect

In 2007 and 2008, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class- 8 trucks from a fleet engaged in normal freight operations. Such data and information is useful to support Class-8 modeling of heavy-truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within heavy-truck research and analyses. This paper presents some general statistics, including distribution of idling times during long-haul trucking operations. However, the main focus is on the analysis of some of the extensive real-world information collected in this project, specifically on the assessment of the effect that different types of tires (i.e., dual tires vs. new generation single wide-based tires or NGSWBTs) have on the fuel efficiency of Class-8 trucks. The tire effect is also evaluated as a function of the vehicle load level. In all cases analyzed, the statistical tests performed strongly suggest that fuel efficiencies achieved when using all NGSWBTs or combinations of duals and NGSWBTs are higher than in the case of a truck equipped with all dual tires.

Franzese, Oscar [ORNL; Knee, Helmut E [ORNL; Slezak, Lee [U.S. Department of Energy

2010-01-01T23:59:59.000Z

352

Near and long term efficiency improvements to natural gas heavy duty engines. Quarterly technical progress report, July 1, 1997--September 30, 1997  

DOE Green Energy (OSTI)

Trucking Research Institute (TRI) in cooperation with the Department of Energy Office of Heavy Vehicle Technologies (DOE), South Coast Air Quality Management District (SCAQMD), and Gas Research Institute (GRI), requests proposals designed to support the Natural Gas Engine Enhanced Efficiency Program. This effort, which contains Programs A & B, is designed to fund projects that advance both the part and full load fuel efficiency of heavy-duty (250 hp plus) natural gas engines. Approximately $1.2 million will be available in Program A to fund up to three projects. These projects may target either or both near-term, and longer-term engine efficiency goals in addition, it is possible that one of the projects funded under Program A will be selected for additional funding for up to 42 months under Program B funding amounts are to be determined.

NONE

1997-10-10T23:59:59.000Z

353

Engineering Design of a Continuous Duty $\\gamma$ -Production Proton Target for the Contraband Detection System  

E-Print Network (OSTI)

Engineering Design of a Continuous Duty $\\gamma$ -Production Proton Target for the Contraband Detection System

Rathke, J; Klein, J

1999-01-01T23:59:59.000Z

354

Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards  

SciTech Connect

I appreciate the opportunity to provide comments on the joint rulemaking to establish greenhouse gas emission and fuel economy standards for light-duty vehicles. My comments are directed at the choice of vehicle footprint as the attribute by which to vary fuel economy and greenhouse gas emission standards, in the interest of protecting vehicle occupants from death or serious injury. I have made several of these points before when commenting on previous NHTSA rulemakings regarding CAFE standards and safety. The comments today are mine alone, and do not necessarily represent the views of the US Department of Energy, Lawrence Berkeley National Laboratory, or the University of California. My comments can be summarized as follows: (1) My updated analysis of casualty risk finds that, after accounting for drivers and crash location, there is a wide range in casualty risk for vehicles with the same weight or footprint. This suggests that reducing vehicle weight or footprint will not necessarily result in increased fatalities or serious injuries. (2) Indeed, the recent safety record of crossover SUVs indicates that weight reduction in this class of vehicles resulted in a reduction in fatality risks. (3) Computer crash simulations can pinpoint the effect of specific design changes on vehicle safety; these analyses are preferable to regression analyses, which rely on historical vehicle designs, and cannot fully isolate the effect of specific design changes, such as weight reduction, on crash outcomes. (4) There is evidence that automakers planned to build more large light trucks in response to the footprint-based light truck CAFE standards. Such an increase in the number of large light trucks on the road may decrease, rather than increase, overall safety.

Wenzel, Thomas P

2009-10-27T23:59:59.000Z

355

The Road Ahead for Light Duty Vehicle Fuel Demand  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration Logo. If you need assistance viewing this page, please call (202) 586-8800 The Road Ahead for Light Duty Vehicle Fuel Demand Click here to start...

356

Antidumping and Countervailing Duty Federal Register Notices and Decision  

NLE Websites -- All DOE Office Websites (Extended Search)

Antidumping and Countervailing Duty Federal Register Notices and Decision Antidumping and Countervailing Duty Federal Register Notices and Decision Memoranda Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing » Data Antidumping and Countervailing Duty Federal Register Notices and Decision Memoranda Dataset Summary Description Antidumping and Countervailing Duty decision published in the Federal Register and their accompanying unpublished issues and decision memoranda. Tags {imports,"manufactured goods","trade law","unfair trade",dumping,subsidies} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet Ease of Access 0 No votes yet Dataset Additional Information Last Updated 02/15/2000

357

DOE Hydrogen Analysis Repository: Biofuels in Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels in Light-Duty Vehicles Biofuels in Light-Duty Vehicles Project Summary Full Title: Mobility Chains Analysis of Technologies for Passenger Cars and Light-Duty Vehicles Fueled with Biofuels: Application of the GREET Model to the Role of Biomass in America's Energy Future (RBAEF) Project Project ID: 82 Principal Investigator: Michael Wang Brief Description: The mobility chains analysis estimated the energy consumption and emissions associated with the use of various biofuels in light-duty vehicles. Keywords: Well-to-wheels (WTW); ethanol; biofuels; Fischer Tropsch diesel; hybrid electric vehicles (HEV) Purpose The project was a multi-organization, multi-sponsor project to examine the potential of biofuels in the U.S. Argonne was responsible for the well-to-wheels analysis of biofuel production and use.

358

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601,...

359

Light-Duty Vehicle Energy Consumption by Technology Type from...  

Open Energy Info (EERE)

Light-Duty Vehicle Energy Consumption by Technology Type from EIA AEO 2011 Early Release Supplemental Table 47 of EIA AEO 2011 Early Release
2011-02-23T15:57:46Z...

360

Building aggressively duty-cycled platforms to achieve energy efficiency  

E-Print Network (OSTI)

by each wireless card in three di?erent states of operation.cient operation. Furthermore, since the wireless is a sharedoperation, Awake Mode(AM), and the Power Save Mode (PSM), achieved by duty cycling the wireless

Agarwal, Yuvraj

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Nuclear power and prima facie duties towards future people  

Science Conference Proceedings (OSTI)

Before assessing the desirability of nuclear power we first need to narrow down the focus on its potential and its impediments. Within the technological possibilities of nuclear power production, I shall formulate two prima facie duties for safeguarding ...

Behnam Taebi

2009-05-01T23:59:59.000Z

362

NGV and FCV Light Duty Transportation Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

G G presentation slides: Natural Gas and Fuel Cell Vehicle Light-Duty transportation perspectives Matt Fronk, Matt Fronk & Associates, LLC 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 2 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 3 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 4 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 5 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 6 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 7 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G

363

Demonstration Project 111, ITS/CVO Technology Truck, Final Project Report  

DOE Green Energy (OSTI)

In 1995, the planning and building processes began to design and develop a mobile demonstration unit that could travel across the nation and be used as an effective outreach tool. In 1997, the unit was completed; and from June 1997 until December 2000, the Federal Highway Administration (FHWA)/Federal Motor Carrier Safety Administration (FMCSA) mobilized the Technology Truck, also known as Demonstration Project No. 111, ''Advanced Motor Carrier Operations and Safety Technologies.'' The project featured the latest available state-of-the-practice intelligent transportation systems (ITS) technologies designed to improve both the efficiency and safety of commercial vehicle operations (CVO). The Technology Truck was designed to inform and educate the motor carrier community and other stakeholders regarding ITS technologies, thus gaining support and buy-in for participation in the ITS program. The primary objective of the project was to demonstrate new and emerging ITS/CVO technologies and programs, showing their impact on motor carrier safety and productivity. In order to meet the objectives of the Technology Truck project, the FHWA/FMCSA formed public/private partnerships with industry and with Oak Ridge National Laboratory to demonstrate and display available ITS/CVO technologies in a cooperative effort. The mobile demonstration unit was showcased at national and regional conferences, symposiums, universities, truck shows and other venues, in an effort to reach as many potential users and decision makers as possible. By the end of the touring phase, the ITS/CVO Technology Truck had been demonstrated in 38 states, 4 Canadian provinces, 88 cities, and 114 events; been toured by 18,099 people; and traveled 115,233 miles. The market penetration for the Technology Truck exceeded 4,000,000, and the website received more than 25,000 hits. In addition to the Truck's visits, the portable ITS/CVO kiosk was demonstrated at 31 events in 23 cites in 15 states.

Gambrell, KP

2002-01-11T23:59:59.000Z

364

THERMOELECTRICAL ENERGY RECOVERY FROM THE EXHAUST OF A LIGHT TRUCK  

DOE Green Energy (OSTI)

A team formed by Clarkson University is engaged in a project to design, build, model, test, and develop a plan to commercialize a thermoelectric generator (TEG) system for recovering energy from the exhaust of light trucks and passenger cars. Clarkson University is responsible for project management, vehicle interface design, system modeling, and commercialization plan. Hi-Z Technology, Inc. (sub-contractor to Clarkson) is responsible for TEG design and construction. Delphi Corporation is responsible for testing services and engineering consultation and General Motors Corporation is responsible for providing the test vehicle and information about its systems. Funds were supplied by a grant from the Transportation Research Program of the New York State Energy Research and Development Authority (NYSERDA), through Joseph R. Wagner. Members of the team and John Fairbanks (Project Manager, Office of Heavy Vehicle Technology). Currently, the design of TEG has been completed and initial construction of the TEG has been initiated by Hi-Z. The TEG system consists of heat exchangers, thermoelectric modules and a power conditioning unit. The heat source for the TEG is the exhaust gas from the engine and the heat sink is the engine coolant. A model has been developed to simulate the performance of the TEG under varying operating conditions. Preliminary results from the model predict that up to 330 watts can be generated by the TEG which would increase fuel economy by 5 percent. This number could possibly increase to 20 percent with quantum-well technology. To assess the performance of the TEG and improve the accuracy of the modeling, experimental testing will be performed at Delphi Corporation. A preliminary experimental test plan is given. To determine the economic and commercial viability, a business study has been conducted and results from the study showing potential areas for TEG commercialization are discussed.

Karri, M; Thacher, E; Helenbrook, B; Compeau, M; Kushch, A; Elsner, N; Bhatti, M; O' Brien, J; Stabler, F

2003-08-24T23:59:59.000Z

365

Synthetic laser medium  

DOE Patents (OSTI)

A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chromium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

Stokowski, S.E.

1987-10-20T23:59:59.000Z

366

The transportable heavy-duty engine emissions testing laboratory. Annual progress report, April 1990--April 1991  

SciTech Connect

West Virginia University has designed and constructed a Transportable Emissions Testing Laboratory for measuring emissions from heavy duty vehicles, such as buses and trucks operating on conventional and alternative fuels. The laboratory facility can be transported to a test site located at, or nearby, the home base of the vehicles to be tested. The laboratory has the capability of measuring vehicle emissions as the vehicle is operated under either transient or steady state loads and speeds. The exhaust emissions from the vehicle is sampled and the levels of the constituents of the emission are measured. The laboratory consists of two major units; a power absorber unit and an emissions measurement unit. A power absorber unit allows for the connection of a dynamic load to the drive train of the vehicle so that the vehicle can be ``driven`` through a test cycle while actually mounted on a stationary test bed. The emissions unit contains instrumentation and equipment which allows for the dilution of the vehicle`s exhaust with air. The diluteed exhaust is sampled and analyzed to measure the level of concentration of those constituents which have been identified to have impact on the clean environment. Sampling probes withdraw diluted exhaust which is supplied to a number of different exhaust gas analysis instruments. The exhaust gas analysis instruments have the capability to measure the levels of the following exhaust gas constituents: carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), unburned hydrocarbons (HC), formaldehyde (HCHO), methane and particulate matter. Additional instruments or sampling devices can be installed whenever measurements of additional constituents are desired. A computer based, data acquisition system is used to continuously monitor a wide range of parameters important to the operation of the test and to record the test results.

1991-05-01T23:59:59.000Z

367

Hybrid options for light-duty vehicles.  

DOE Green Energy (OSTI)

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

368

Light duty utility arm walkdown report  

Science Conference Proceedings (OSTI)

This document is a report of the Light Duty Utility Arm (LDUA) drawing walkdown. The purpose of this walkdown was to validate the essential configuration of the LDUA in preparation of deploying the equipment in a Hanford waste tank. The LDUA system has, over the course of its development, caused the generation of a considerable number of design drawings. The number of drawings is estimated to be well over 1,000. A large number consist of vendor type drawings, furnished by both Pacific Northwest National Laboratory (PNNL) and SPAR Aerospace Limited (SPAR). A smaller number, approximately 200, are H-6 type drawing sheets in the Project Hanford Management Contract (PHMC) document control system. A preliminary inspection of the drawings showed that the physical configuration of the LDUA did not match the documented configuration. As a result of these findings, a scoping walkdown of 20 critical drawing sheets was performed to determine if a problem existed in configuration management of the LDUA system. The results of this activity showed that 18 of the 20 drawing sheets were found to contain errors or omissions of varying concern. Given this, Characterization Engineering determined that a walkdown of the drawings necessary and sufficient to enable safe operation and maintenance of the LDUA should be performed. A review team was assembled to perform a review of all of the drawings and determine the set which would need to be verified through an engineering walkdown. The team determined that approximately 150 H-6 type drawing sheets would need to be verified, 12 SPAR/PNNL drawing sheets would need to be verified and converted to H-6 drawings, and three to six new drawings would be created (see Appendix A). This report documents the results of that walkdown.

Smalley, J.L.

1998-09-25T23:59:59.000Z

369

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Vehicle and Heavy-Duty Vehicle and Engine Search to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search on AddThis.com... Heavy-Duty Vehicle and Engine Search Search our database to find and compare specific vehicles, engines, or hybrid propulsion systems and generate printable reports.

370

Alternative Fuels Data Center: Heavy-Duty Emissions Reduction Grant Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Emissions Heavy-Duty Emissions Reduction Grant Program to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Emissions Reduction Grant Program on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Emissions Reduction Grant Program on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Emissions Reduction Grant Program on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Emissions Reduction Grant Program on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Emissions Reduction Grant Program on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Emissions Reduction Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Emissions Reduction Grant Program

371

Norcal Prototype LNG Truck Fleet: Final Data Report. Advanced Technology Vehicle Evaluation: Advanced Vehicle Testing Activity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Report Data Report Norcal Prototype LNG Truck Fleet: Final Data Report By Kevin Chandler, Battelle Ken Proc, National Renewable Energy Laboratory February 2005 This report provides detailed data and analyses from the U.S. Department of Energy's evaluation of prototype liquefied natural gas (LNG) waste transfer trucks operated by Norcal Waste Systems, Inc. The final report for this evaluation, published in July 2004, is available from the Alternative Fuels Data Center at www.eere.energy.gov/afdc or by calling the National Alternative Fuels Hotline at 1-800-423-1363. Request Norcal Prototype LNG Truck Fleet: Final Results, document number DOE/GO-102004-1920. i NOTICE This report was prepared as an account of work sponsored by an agency of the United States

372

STATEMENT OF CONSIDERATIONS REQUEST BY OSHKOSH TRUCK CORPORATION FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OSHKOSH TRUCK CORPORATION FOR AN ADVANCE OSHKOSH TRUCK CORPORATION FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER NREL SUBCONTRACT NO. ZCL-3-32060-03 UNDER CONTRACT NO. DE-AC36-98G010337; W(A)-04-007; CH-1178 The Petitioner, Oshkosh Truck Corporation (OTC), has requested a waiver of domestic and foreign patent rights for all subject inventions made by its employees under the above- identified subcontract entitled "Advanced Heavy Hybrid Propulsion Systems for Increased Fuel Efficiency and Decreased Emissions". OTC is leading a teaming arrangement including Rockwell Automation, Inc. (Rockwell), and the National Renewable Energy Laboratory (NREL) to develop heavy hybrid propulsion systems. Rockwell has petitioned separately for a waiver of patent rights for all subject inventions its employees may make under Rockwell's lower tier

373

FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report  

SciTech Connect

This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

Barnitt, R.

2010-05-01T23:59:59.000Z

374

THE EFFECTS OF BIODIESEL BLENDS AND ARCO EC-DIESEL ON EMISSIONS from LIGHT HEAVY-DUTY DIESEL VEHICLES  

DOE Green Energy (OSTI)

Chassis dynamometer tests were performed on 7 light heavy-duty diesel trucks comparing the emissions of a California diesel fuel with emissions from 4 other fuels: ARCO EC-diesel (EC-D) and three 20% biodiesel blends (1 yellow grease and 2 soy-based). The EC-D and the yellow grease biodiesel blend both showed significant reductions in THC and CO emissions over the test vehicle fleet. EC-D also showed reductions in PM emission rates. NOx emissions were comparable for the different fuel types over the range of vehicles tested. The soy-based biodiesel blends did not show significant or consistent emissions differences over all test vehicles. Total carbon accounted for more than 70% of the PM mass for 4 of the 5 sampled vehicles. Elemental and organic carbon ratios varied significantly from vehicle-to-vehicle but showed very little fuel dependence. Inorganic species represented a smaller portion of the composite total, ranging from 0.2 to 3.3% of the total PM. Total PAH emissions ranged from approximately 1.8 mg/mi to 67.8 mg/mi over the different vehicle/fuel combinations representing between 1.6 and 3.8% of the total PM mass.

Durbin, Thomas

2001-08-05T23:59:59.000Z

375

Roadmap and Technical White Papers for 21st Century Truck Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

hours that are accumulated by type of heavy-duty vehicle. Analyze data from the EPA SmartWay Transport Partnership to measure fuel savings and emissions reductions associated...

376

Development of Design Guidelines for Soil Embedded Post Systems Using Wide-flange I-beam to Contain Truck Impact  

E-Print Network (OSTI)

Anti ram perimeter barriers are part of the protection of important facilities such as power plants, air ports and embassies against unrestricted vehicle access. Many different systems can be used to achieve the containment goal. One of these systems makes use of soil embedded posts either single posts if the soil is hard enough or groups of soil embedded posts tied together by beams if the soil is not hard enough for a single post to stop the in-coming truck. The design of these soil embedded posts needs to take account a number of influencing factors which include the soil strength and stiffness, the post strength and stiffness, the mass of the vehicle and its approach velocity. This dissertation describes the work done to develop a set of design recommendations to select the embedment of a single post or group of posts. The post is a steel beam with an H shape cross section: W14X109 for the single post system and W14X90 for the group system with a double beam made of square hollow steel section HSS8X8X1/2. The spacing of the posts for the group includes 2.44 m, 4.88 m, and 7.32 m. The soil strength varies from loose sand and soft clay to very dense sand and very hard clay. The vehicle has a mass of 6800 kg and the velocities include 80 km/h, 65 km/h, and 50 km/h. The design guidelines presented here are based on 10 medium scale pendulum impact tests, 2 medium scale bogie impact tests, 1 full scale impact test on a single post, 1 full scale impact test on a group of 8 side by side posts with a 5.2 m spacing and connected with two beams, approximately 150 4-D numerical simulations of full scale impact tests using LS-DYNA, as well as fundamental theoretical concepts.

Lim, Seok Gyu

2011-05-01T23:59:59.000Z

377

Light-duty diesel engine development status and engine needs  

DOE Green Energy (OSTI)

This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

Not Available

1980-08-01T23:59:59.000Z

378

Alternative Fuels Data Center: Clean Fuel Contracts for Heavy-Duty  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Fuel Contracts Clean Fuel Contracts for Heavy-Duty Equipment to someone by E-mail Share Alternative Fuels Data Center: Clean Fuel Contracts for Heavy-Duty Equipment on Facebook Tweet about Alternative Fuels Data Center: Clean Fuel Contracts for Heavy-Duty Equipment on Twitter Bookmark Alternative Fuels Data Center: Clean Fuel Contracts for Heavy-Duty Equipment on Google Bookmark Alternative Fuels Data Center: Clean Fuel Contracts for Heavy-Duty Equipment on Delicious Rank Alternative Fuels Data Center: Clean Fuel Contracts for Heavy-Duty Equipment on Digg Find More places to share Alternative Fuels Data Center: Clean Fuel Contracts for Heavy-Duty Equipment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Fuel Contracts for Heavy-Duty Equipment

379

Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Collection Methods to someone by E-mail Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on AddThis.com... Light-Duty Vehicle Data Collection Methods To maintain the Light-Duty Vehicle Search tool, the National Renewable Energy Laboratory (NREL) gathers vehicle specifications, photos, and

380

Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Diesel Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on AddThis.com... More in this section... Federal

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Vehicle Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on AddThis.com... More in this section... Federal

382

Alternative Fuels Data Center: Heavy-Duty Alternative Fuel and Advanced  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Alternative Heavy-Duty Alternative Fuel and Advanced Vehicle Purchase Vouchers to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Alternative Fuel and Advanced Vehicle Purchase Vouchers on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Alternative Fuel and Advanced Vehicle Purchase Vouchers on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Alternative Fuel and Advanced Vehicle Purchase Vouchers on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Alternative Fuel and Advanced Vehicle Purchase Vouchers on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Alternative Fuel and Advanced Vehicle Purchase Vouchers on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Alternative Fuel and Advanced Vehicle Purchase Vouchers on AddThis.com...

383

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Collection Methods to someone by E-mail Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Data Collection Methods on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Data Collection Methods on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Data Collection Methods on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Data Collection Methods on AddThis.com... Heavy-Duty Vehicle and Engine Data Collection Methods To maintain the Heavy-Duty Vehicle and Engine Search tool, the National

384

GPRS Based Remote Monitoring and Controlling System for Oil Delivery Truck  

Science Conference Proceedings (OSTI)

In the oil retail market, to participate into the whole oil sale process is an urgent demand for oil retail company. As a respond to this situation, a GPRS based remote monitoring and controlling system for oil delivery truck is proposed in this paper. ... Keywords: GPRS, oil delivery, ATmega16

Yang Jia-zhi; Shen Xian-hao

2010-10-01T23:59:59.000Z

385

Decomposition of a complex fuzzy controller for the truck-and-trailer reverse parking problem  

Science Conference Proceedings (OSTI)

The use of fuzzy logic has, in the last twenty years, become standard practice in the field of control. The reason lies in the fuzzy logic's ability to relatively quickly transfer uncertain experience and knowledge about the observed object's behaviour ... Keywords: Decomposition, Fuzzy control, Fuzzy systems, Hierarchical fuzzy controller, Truck-and-trailer parking

Nikolaj Zimic; Miha Mraz

2006-03-01T23:59:59.000Z

386

Electric Lift Truck Fast Charge Demonstration at the Port of Galveston, Texas  

Science Conference Proceedings (OSTI)

A recent review of cargo handling equipment at the Port of Galveston determined that changes needed to be made in order to improve air quality through reduced emissions, while at the same time enhancing efficiencies and realizing cost reductions. This demonstration showed that electric lift trucks using fast charging are a viable way to meet these goals.

2007-07-06T23:59:59.000Z

387

CoolCalc: A Long-Haul Truck Thermal Load Estimation Tool: Preprint  

DOE Green Energy (OSTI)

In the United States, intercity long-haul trucks idle approximately 1,800 hrs annually for sleeper cab hotel loads, consuming 838 million gallons of diesel fuel per year. The objective of the CoolCab project is to work closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling. Truck engine idling is primarily done to heat or cool the cab/sleeper, keep the fuel warm in cold weather, and keep the engine warm for cold temperature startup. Reducing the thermal load on the cab/sleeper will decrease air conditioning system requirements, improve efficiency, and help reduce fuel use. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches. It is intended for rapid trade-off studies, technology impact estimation, and preliminary HVAC sizing design and to complement more detailed and expensive CAE tools by exploring and identifying regions of interest in the design space. This paper describes the CoolCalc tool, provides outdoor long-haul truck thermal testing results, shows validation using these test results, and discusses future applications of the tool.

Lustbader, J. A.; Rugh, J. P.; Rister, B. R.; Venson, T. S.

2011-05-01T23:59:59.000Z

388

Natural Gas as a Fuel for Heavy Trucks: Issues and Incentives (released in AEO2010)  

Reports and Publications (EIA)

Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks.

Information Center

2010-05-11T23:59:59.000Z

389

Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks  

SciTech Connect

Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

F. Stodolsky; L. Gaines; A. Vyas

2000-06-01T23:59:59.000Z

390

Design/Operations review of core sampling trucks and associated equipment  

SciTech Connect

A systematic review of the design and operations of the core sampling trucks was commissioned by Characterization Equipment Engineering of the Westinghouse Hanford Company in October 1995. The review team reviewed the design documents, specifications, operating procedure, training manuals and safety analysis reports. The review process, findings and corrective actions are summarized in this supporting document.

Shrivastava, H.P.

1996-03-11T23:59:59.000Z

391

Operability test report for core sample truck {number_sign}1 flammable gas modifications  

SciTech Connect

This report primarily consists of the original test procedure used for the Operability Testing of the flammable gas modifications to Core Sample Truck No. One. Included are exceptions, resolutions, comments, and test results. This report consists of the original, completed, test procedure used for the Operability Testing of the flammable gas modifications to the Push Mode Core Sample Truck No. 1. Prior to the Acceptance/Operability test the truck No. 1 operations procedure (TO-080-503) was revised to be more consistent with the other core sample truck procedures and to include operational steps/instructions for the SR weather cover pressurization system. A draft copy of the operations procedure was used to perform the Operability Test Procedure (OTP). A Document Acceptance Review Form is included with this report (last page) indicating the draft status of the operations procedure during the OTP. During the OTP 11 test exceptions were encountered. Of these exceptions four were determined to affect Acceptance Criteria as listed in the OTP, Section 4.7 ACCEPTANCE CRITERIA.

Akers, J.C.

1997-09-15T23:59:59.000Z

392

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas  

E-Print Network (OSTI)

The energy consumption throughout the world has increased substantially over the past few years and the trend is projected to continue indefinitely. The primary sources of energy are conventional fuels such as oil, natural gas and coal. The most apparent negative impacts of these conventional fuels are global warming, poor air-quality, and adverse health effects. Considering these negative impacts, it is necessary to develop and use non-conventional sources of energy. Landfill gas (LFG) generated at landfills can serve as a source of cleaner energy. LFG has substantial energy generation potential and, if cleaned of certain impurities, can be used for several applications such as electricity generation and conversion to high Btu gas. This thesis considers another application of LFG, which consists of using it as a vehicular fuel for refuse trucks. Currently, limited research has been performed on the development of such a methodology to evaluate the application of LFG as a vehicular fuel for refuse truck operations. The purpose of this thesis is to develop a methodology that can be used to evaluate the use of LFG generated at landfills as a Liquefied Natural Gas (LNG) fuel source for refuse trucks in Texas. The methodology simulates the gas generation process at a landfill by using standard models developed by the Environmental Protection Agency. The operations of a refuse truck fleet are replicated by using generic drive cycles developed as part of this research. The economic feasibility is evaluated by estimating the costs required for cleaning the LFG and converting the truck fleet from diesel to LNG as well as quantifying the benefits obtained due to change in fuel consumption and emission generation by the refuse trucks. The methodology was applied to a potential landfill in Texas. The results show that the methodology offers an innovative tool that allows the stakeholders to evaluate the economic feasibility of using LFG for refuse truck operations. The methodology also provides a flexible framework wherein each component can be changed or tailored to meet the specific needs of the stakeholders.

Gokhale, Bhushan

2006-12-01T23:59:59.000Z

393

Durability Evaluation of Urea SCR Catalysts for Heavy Duty Diesel Engines  

DOE Green Energy (OSTI)

Assess the potential long-term durability of various SCR catalyst formulations for mobile heavy duty diesel application.

Koshkarian, Kent

2000-08-20T23:59:59.000Z

394

The Neutral Medium  

E-Print Network (OSTI)

We consider the physical conditions of the neutral medium within, and in the environments of, galaxies. The basic physical and morphological properties of the neutral medium within galaxy disks are now quite well-constrained. Systematic variations in temperature and phase-balance (of cool versus warm neutral gas) are indicated as a function of both radius and z-height. Interestingly, the cool medium line-widths are observed to be dominated by turbulent energy injection within cells of 10 pc to 1 kpc size. Deep new observations reveal that 5-10% of the neutral medium is associated within an extended halo which rotates more slowly and experiences radial inflow. Much of this component is likely to be associated with a ``galactic fountain'' type of phenomenon. However, compelling evidence is also accumulating for the importance of tidal disruption of satellites as well as continuous accretion (of both diffuse and discrete components) in fueling galaxy halos and disks. Continued fueling is even observed on scales of 100's of kpc in galaxy environments, where the neutral component is likely to be merely a trace constituent of a highly ionized plasma.

Robert Braun

2005-01-17T23:59:59.000Z

395

Electric Boosting System for Light Truck/SUV Application  

DOE Green Energy (OSTI)

Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assisted turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-TurboTM consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration in slightly better. It was shown that in order to make full use of additional capabilities of e-TurboTM wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-TurboTM designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-TurboTM are to be developed in a future project. There is concern about high power demands (even though momentary) of e-TurboTM. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-TurboTM designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-TurboTM. Designs and hardware combining IBT and e-TurboTM are to be developed in a future project. e-TurboTM provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-TurboTM performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.

Steve Arnold, Craig Balis, Pierre Barthelet, Etienne Poix, Tariq Samad, Greg Hampson, S.M. Shahed

2005-06-22T23:59:59.000Z

396

Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility  

E-Print Network (OSTI)

Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility, hydrocarbons and carbon dioxide from transit buses and heavy-duty vehicles when they are tested on simulated includes a heavy-duty chassis dynamometer, required for conducting these tests, as well as a heavy

Lee, Dongwon

397

Road Ahead for Light Duty Vehicle Fuel Demand, The  

Reports and Publications (EIA)

Explores some potential variations in light-duty vehicle demand to illustrate both the magnitude of demand changes and the length of time that it can take to affect demand when different levels of new-vehicle efficiencies and penetrations are assumed

Information Center

2005-07-11T23:59:59.000Z

398

3M heavy duty roto peen: Baseline report; Greenbook (chapter)  

SciTech Connect

The heavy-duty roto peen technology is being evaluated at Florida International University (FIU) as a baseline technology. It is a commercially available technology and has been used for various projects at locations throughout the country. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the human factors assessment for safety and health issues. The heavy-duty roto peen allows for the selective removal of concrete substrates. The peen is a tungsten carbide shot brazed to a hardened steel rivet that is supported by a heavy-duty flexible flap. The shot rivet is kept captive to the tool by mounting the roto peen in a slotted hub. The heavy-duty roto peen is designed to be used with several commercially available pieces of equipment. The equipment being used will determine the width of each pass. The equipment being used with the roto peen is then connected to a vacuum system for dust collection during scabbling. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

NONE

1997-07-31T23:59:59.000Z

399

3M heavy duty roto peen: Baseline report  

SciTech Connect

The heavy-duty roto peen technology was being evaluated at Florida International University (FIU) as a baseline technology. It is a commercially available technology and has been used for various projects at locations throughout the country. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the human factors assessment for safety and health issues. The heavy-duty roto peen allows for the selective removal of concrete substrates. The peen is a tungsten carbide shot brazed to a hardened steel rivet that is supported by a heavy-duty flexible flap. The shot rivet is kept captive to the tool by mounting the roto peen in a slotted hub. The heavy-duty roto peen is designed to be used with several commercially available pieces of equipment. The equipment being used will determine the width of each pass. The equipment being used with the roto peen is then connected to a vacuum system for dust collection during scabbling. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

NONE

1997-07-31T23:59:59.000Z

400

Impact of Heavy Duty Vehicle Emissions Reductions on Global Climate  

Science Conference Proceedings (OSTI)

The impact of a specified set of emissions reductions from heavy duty vehicles on climate change is calculated using the MAGICC 5.3 climate model. The integrated impact of the following emissions changes are considered: CO2, CH4, N2O, VOC, NOx, and SO2. This brief summarizes the assumptions and methods used for this calculation.

Calvin, Katherine V.; Thomson, Allison M.

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural Gas-optimized Advanced Heavy-duty Engine  

E-Print Network (OSTI)

Natural Gas-optimized Advanced Heavy-duty Engine Transportation Research PIER Transportation of natural gas vehicles as a clean alternative is currently limited to smaller engine displacements and spark ignition, which results in lower performance. A large displacement natural gas engine has

402

Event-driven adaptive duty-cycling in sensor networks  

Science Conference Proceedings (OSTI)

Energy conservation is a major issue in the management of sensor networks. In this paper, we consider the problem of optimising the performance of energy-constrained sensor networks in the context of event-detection applications, with the performance ... Keywords: MDP, Markov decision process, adaptive duty-cycling, energy conservation, energy consumption, environment monitoring, event clustering, sensor networks, simulation

Srikanth Sundaresan; Israel Koren; Zahava Koren; C. Mani Krishna

2009-10-01T23:59:59.000Z

403

HEAVY-DUTY VEHICLE IN USE EMISSION PERFORMANCE  

DOE Green Energy (OSTI)

Engines for heavy-duty vehicles are emission certified by running engines according to specified load pattern or duty cycle. In the US, the US Heavy-Duty Transient cycle has been in use already for a number of years, and Europe is, according to the requirements of the Directive 1999/96/EC gradually switching to transient-type testing. Evaluating the in-use emission performance of heavy-duty vehicles presents a problem. Taking engines out of vehicles for engine dynamometer testing is difficult and costly. In addition, engine dynamometer testing does not take into account the properties of the vehicle itself (i.e. mass, transmission etc.). It is also debatable, how well the standardized duty cycles reflect real-life -driving patterns. VTT Processes has recently commissioned a new emission laboratory for heavy-duty vehicles. The facility comprises both engine test stand and a fully transient heavy-duty chassis dynamometer. The roller diameter of the dynamometer is 2.5 meters. Regulated emissions are measured using a full-flow CVS system. The HD vehicle chassis dynamometer measurements (emissions, fuel consumption) has been granted accreditation by the Centre of Metrology and Accreditation (MIKES, Finland). A national program to generate emission data on buses has been set up for the years 2002-2004. The target is to generate emission factors for some 50 different buses representing different degree of sophistication (Euro 1 to Euro5/EEV, with and without exhaust gas aftertreatment), different fuel technologies (diesel, natural gas) and different ages (the effect of aging). The work is funded by the Metropolitan Council of Helsinki, Helsinki City Transport, The Ministry of Transport and Communications Finland and the gas company Gasum Oy. The International Association for Natural Gas Vehicles (IANGV) has opted to buy into the project. For IANGV, VTT will deliver comprehensive emission data (including particle size distribution and chemical and biological characterization of particles) for up-to-date diesel and natural gas vehicles. The paper describes the methodology used for the measurements on buses, the test matrix and some preliminary emission data on both regulated and unregulated emissions.

Nylund, N; Ikonen, M; Laurikko, J

2003-08-24T23:59:59.000Z

404

Liquid chromatographic extraction medium  

DOE Patents (OSTI)

A method and apparatus are disclosed for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water. 1 fig.

Horwitz, E.P.; Dietz, M.L.

1994-09-13T23:59:59.000Z

405

Liquid chromatographic extraction medium  

DOE Patents (OSTI)

A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

Horwitz, E. Philip (Naperville, IL); Dietz, Mark L. (Evanston, IL)

1994-01-01T23:59:59.000Z

406

Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid and Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on AddThis.com...

407

Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 7, DOE/AL68080-TSR07  

DOE Green Energy (OSTI)

Analysis and results show hybrid system weight and efficiency affect productivity and fuel usage. Analysis shows equivalent hybrid benefits for adjacent size classes of mine truck. Preparations are ongoing for full power test. The battery cycling test protocol was modified.

Lembit Salasoo

2004-08-25T23:59:59.000Z

408

Nuclear medium effects in $\  

E-Print Network (OSTI)

We study the nuclear medium effects in the weak structure functions $F_2(x,Q^2)$ and $F_3(x,Q^2)$ in the deep inelastic neutrino/antineutrino reactions in nuclei. We use a theoretical model for the nuclear spectral functions which incorporates the conventional nuclear effects, such as Fermi motion, binding and nucleon correlations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. The calculations have been performed using relativistic nuclear spectral functions which include nucleon correlations. Our results are compared with the experimental data of NuTeV and CDHSW.

Haider, H; Athar, M Sajjad; Vacas, M J Vicente

2011-01-01T23:59:59.000Z

409

Assessment of the risk of transporting spent nuclear fuel by truck  

SciTech Connect

The assessment includes the risks from release of spent fuel materials and radioactive cask cavity cooling water due to transportation accidents. The contribution to the risk of package misclosure and degradation during normal transport was also considered. The results of the risk assessment have been related to a time in the mid-1980's, when it is projected that nuclear plants with an electrical generating capacity of 100 GW will be operating in the U.S. For shipments from reactors to interim storage facilities, it is estimated that a truck carrying spent fuel will be involved in an accident that would not be severe enough to result in a release of spent fuel material about once in 1.1 years. It was estimated that an accident that could result in a small release of radioactive material (primarily contaminated cooling water) would occur once in about 40 years. The frequency of an accident resulting in one or more latent cancer fatalities from release of radioactive materials during a truck shipment of spent fuel to interim storage was estimated to be once in 41,000 years. No accidents were found that would result in acute fatalities from releases of radioactive material. The risk for spent fuel shipments from reactors to reprocessing plants was found to be about 20% less than the risk for shipments to interim storage. Although the average shipment distance for the reprocessing case is larger, the risk is somewhat lower because the shipping routes, on average, are through less populated sections of the country. The total risk from transporting 180-day cooled spent fuel by truck in the reference year is 4.5 x 10/sup -5/ fatalities. An individual in the population at risk would have one chance in 6 x 10/sup 11/ of suffering a latent cancer fatality from a release of radioactive material from a truck carrying spent fuel in the reference year. (DLC)

Elder, H.K.

1978-11-01T23:59:59.000Z

410

Assessment of the risk of transporting propane by truck and train  

SciTech Connect

The risk of shipping propane is discussed and the risk assessment methodology is summarized. The risk assessment model has been constructed as a series of separate analysis steps to allow the risk to be readily reevaluated as additional data becomes available or as postulated system characteristics change. The transportation system and accident environment, the responses of the shipping system to forces in transportation accidents, and release sequences are evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a comparison with other reports in this series. Based on the information presented, accidents involving tank truck shipments of propane will be expected to occur at a rate of 320 every year; accidents involving bobtails would be expected at a rate of 250 every year. Train accidents involving propane shipments would be expected to occur at a rate of about 60 every year. A release of any amount of material from propane trucks, under both normal transportation and transport accident conditions, is to be expected at a rate of about 110 per year. Releases from propane rail tank cars would occur about 40 times a year. However, only those releases that occur during a transportation accident or involve a major tank defect will include sufficient propane to present the potential for danger to the public. These significant releases can be expected at the lower rate of about fourteen events per year for truck transport and about one event every two years for rail tank car transport. The estimated number of public fatalities resulting from these significant releases in 1985 is fifteen. About eleven fatalities per year result from tank truck operation, and approximately half a death per year stems from the movement of propane in rail tank cars.

Geffen, C.A.

1980-03-01T23:59:59.000Z

411

The relationship between truck accidents and geometric design of road sections: Poisson versus negative binomial regressions  

SciTech Connect

This paper evaluates the performance of Poisson and negative binomial (NB) regression models in establishing the relationship between truck accidents and geometric design of road sections. Three types of models are considered. Poisson regression, zero-inflated Poisson (ZIP) regression, and NB regression. Maximum likelihood (ML) method is used to estimate the unknown parameters of these models. Two other feasible estimators for estimating the dispersion parameter in the NB regression model are also examined: a moment estimator and a regression-based estimator. These models and estimators are evaluated based on their (1) estimated regression parameters, (2) overall goodness-of-fit, (3) estimated relative frequency of truck accident involvements across road sections, (4) sensitivity to the inclusion of short mad sections, and (5) estimated total number of truck accident involvements. Data from the highway Safety Information System (HSIS) are employed to examine the performance of these models in developing such relationships. The evaluation results suggest that the NB regression model estimated using the moment and regression-based methods should be used with caution. Also, under the ML method, the estimated regression parameters from all three models are quite consistent and no particular model outperforms the other two models in terms of the estimated relative frequencies of truck accident involvements across road sections. It is recommended that the Poisson regression model be used as an initial model for developing the relationship. If the overdispersion of accident data is found to be moderate or high, both the NB and ZIP regression model could be explored. Overall, the ZIP regression model appears to be a serious candidate model when data exhibit excess zeros due, e.g., to underreporting.

Miaou, Shaw-Pin

1993-07-01T23:59:59.000Z

412

Ethics - Impartiality in Performing Official Duties | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impartiality in Impartiality in Performing Official Duties Ethics - Impartiality in Performing Official Duties What is meant by "improper appearances" and "a lack of impartiality?" Think of it as a question of fairness. Suppose you went to a baseball game and you found out that the umpire was the uncle of a player on one of the teams. Most people would say that the umpire should not work that game, because there would be a strong appearance that he might not make the calls fairly and impartially. A similar rule applies to you when you are doing your job. You should not act on a matter if a reasonable person who knew the circumstances of the situation could legitimately question your fairness. For example, your fairness might reasonably be questioned if you were to work on a project

413

Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks  

DOE Green Energy (OSTI)

Each intercity long-haul truck in the U.S. idles approximately 1,800 hrs per year, primarily for sleeper cab hotel loads. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling. NREL's CoolCab project works closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling and fuel use. The impact of thermal load reduction technologies on idle reduction systems were characterized by conducting thermal soak tests, overall heat transfer tests, and 10-hour rest period A/C tests. Technologies evaluated include advanced insulation packages, a solar reflective film applied to the vehicle's opaque exterior surfaces, a truck featuring both film and insulation, and a battery-powered A/C system. Opportunities were identified to reduce heating and cooling loads for long-haul truck idling by 36% and 34%, respectively, which yielded a 23% reduction in battery pack capacity of the idle-reduction system. Data were also collected for development and validation of a CoolCalc HVAC truck cab model. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches.

Lustbader, J. A.; Venson, T.; Adelman, S.; Dehart, C.; Yeakel, S.; Castillo, M. S.

2012-10-01T23:59:59.000Z

414

Correlating Cycle Duty with Cost at Fossil Fuel Power Plants  

Science Conference Proceedings (OSTI)

The work described in this report is part of the ongoing EPRI Cycling Impacts Program to develop a range of analysis and simulation-capable planning tools. The objectives are to better determine cycling impacts (including incremental costs), reliability impact, component level effects, and impacts and other elements needed to better plan and manage operational and financial aspects of power generation. This report documents early efforts to establish strong correlations between the cycle duty of a produc...

2001-09-14T23:59:59.000Z

415

American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks  

Science Conference Proceedings (OSTI)

HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells PowerEdge units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuveras PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-Bs facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

Block, Gus

2011-07-31T23:59:59.000Z

416

Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site  

SciTech Connect

This study has shown that, based upon measurements from industry standard radiation detection instruments, such as the RS model RSS-131 PICs in a controlled configuration, a person may be exposed to gamma radiation above background when in close proximity to some LLW trucks. However, in approximately half (47.7 percent) the population of trucks measured in this study, a person would receive no exposure above background at a distance of 1.0 m (3.3 ft) away from a LLW truck. An additional 206 trucks had net exposures greater than zero, but equal to or less than 1 {micro}R/h. Finally, nearly 80 percent of the population of trucks (802 of 1,012) had net exposures less than or equal to 10 {micro}R/h. Although there are no shipping or exposure standards at 1.0 m (3.3 ft) distance, one relevant point of comparison is the DOT shipping standard of 10 mrem/h at 2.0 m (6.6 ft) distance. Assuming a one-to-one correspondence between Roentgens and Rems, then 903 trucks (89.2 percent of the trucks measured) were no greater than one percent of the DOT standard at 1.0 m (3.3 ft). Had the distance at which the trucks been measured increased to 2.0 m (6.6 ft), the net exposure would be even less because of the increase in distance between the truck and the receptor. However, based on the empirical data from this study, the rate of decrease may be slower than for either a point or line source as was done for previous studies (Gertz, 2001; Davis et al., 2001). The highest net exposure value at 1.0 m (3.3 ft) distance, 11.9 mR/h, came from the only truck with a value greater than 10 mR/h at 1.0 m (3.3 ft) distance.

J. Miller; D. Shafer; K. Gray; B. Church; S.Campbell; B. Holz

2005-08-15T23:59:59.000Z

417

Engineering task plan for upgrades to the leveling jacks on core sample trucks number 3 and 4  

Science Conference Proceedings (OSTI)

Characterizing the waste in underground storage tanks at the Hanford Site is accomplished by obtaining a representative core sample for analysis. Core sampling is one of the numerous techniques that have been developed for use given the environmental and field conditions at the Hanford Site. Core sampling is currently accomplished using either Push Mode Core Sample Truck No.1 or; Rotary Mode Core Sample Trucks No.2, 3 or 4. Past analysis (WHC 1994) has indicated that the Core Sample Truck (CST) leveling jacks are structurally inadequate when lateral loads are applied. WHC 1994 identifies many areas where failure could occur. All these failures are based on exceeding the allowable stresses listed in the American Institute of Steel Construction (AISC) code. The mode of failure is for the outrigger attachments to the truck frame to fail resulting in dropping of the CST and possible overturning (Ref. Ziada and Hundal, 1996). Out of level deployment of the truck can exceed the code allowable stresses in the structure. Calculations have been performed to establish limits for maintaining the truck level when lifting. The calculations and the associated limits are included in appendix A. The need for future operations of the CSTS is limited. Sampling is expected to be complete in FY-2001. Since there is limited time at risk for continued use of the CSTS with the leveling controls without correcting the structural problems, there are several design changes that could give incremental improvements to the operational safety of the CSTS with limited impact on available operating time. The improvements focus on making the truck easier to control during lifting and leveling. Not all of the tasks identified in this ETP need to be performed. Each task alone can improve the safety. This engineering task plan is the management plan document for implementing the necessary additional structural analysis. Any additional changes to meet requirements of standing orders shall require a Letter of Instruction from Numatec Hanford Company (NHC).

KOSTELNIK, A.J.

1999-02-24T23:59:59.000Z

418

Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System  

DOE Green Energy (OSTI)

Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

2006-05-01T23:59:59.000Z

419

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty ...  

U.S. Energy Information Administration (EIA)

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty Vehicles? ... the automobile manufacturers probably face the largest diesel-vehicle challenges in the ...

420

Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO...  

Open Energy Info (EERE)

Linked Data Search Share this page on Facebook icon Twitter icon Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO 2011 Early Release Dataset Summary...

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles  

Science Conference Proceedings (OSTI)

An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

2007-12-01T23:59:59.000Z

422

Truck and rail charges for shipping spent fuel and nuclear waste  

SciTech Connect

The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials.

McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

1986-06-01T23:59:59.000Z

423

21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS The 21 st Century Truck Partnership would like to acknowledge the time and resource investment that all our partners have made in developing this roadmap and technical white paper document, and in remaining committed to the goals and objectives outlined herein. We would also like to extend our appreciation to the industry and government teams that produced the individual technical white papers, and the leaders of those teams who are listed below. Engines: Ron Graves (Oak Ridge National Laboratory) with Dennis Siebers (Sandia National Laboratories) Hybrids: Terry Penney (National Renewable Energy Laboratory) Parasitic Losses: Jud Virden (Pacific Northwest National Laboratory) Idle Reduction: Glenn Keller (Argonne National Laboratory)

424

Statistical description of heavy truck accidents on representative segments of interstate highway  

SciTech Connect

Any quantitative analysis of the risk of transportation accidents requires the use of many different statistical distributions. Included among these are the types of accidents which occur and the severity of these when they do occur. Several previous studies have derived this type of information for truck traffic over U. S. highways in general; these data are not necessarily applicable for the anticipated LMFBR spent fuel cask routes. This report presents data for highway segments representative of the specific LMFBR cask routes which are anticipated. These data are based upon a detailed record-by-record review of filed reports for accidents which occurred along the specified route segments.

Hartman, W.F.; Davidson, C.A.; Foley, J.T.

1977-01-01T23:59:59.000Z

425

Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1  

DOE Green Energy (OSTI)

This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

Chan, A.K.

2000-02-23T23:59:59.000Z

426

Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

Science Conference Proceedings (OSTI)

The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

Ramroth, L. A.; Gonder, J.; Brooker, A.

2012-09-01T23:59:59.000Z

427

Development of Low Temperature Combustion Modes to Reduce Overall Emissions from a Medium-Duty, Four Cylinder Diesel Engine  

E-Print Network (OSTI)

Low temperature combustion (LTC) is an appealing new method of combustion that promises low nitric oxides and soot emissions while maintaining or improving on engine performance. The three main points of this study were to develop and validate an engine model in GT-Power capable of implementing LTC, to study parametrically exhaust gas recirculation (EGR) and injection timing effects on performance and emissions, and to investigate methods to decrease pressure rise rates during LTC operation. The model was validated at nine different operating points, 3 speeds and 3 loads, while the parametric studies were conducted on 6 of the 9 operating points, 3 speeds and 2 loads. The model consists of sections that include: cylinders, ports, intake and exhaust manifolds, EGR system, and turbocharger. For this model, GT-Power calculates the combustion using a multi-zone, quasi-dimensional model and a knock-induced combustion model. The main difference between them is that the multi-zone model is directly injected while the knock model is port injected. A variety of sub models calculate the fluid flow and heat transfer. A parametric study varying the EGR and the injection timing to determine the optimal combination was conducted using the multi-zone model while a parametric study that just varies EGR is carried out using the knock model. The first parametric study showed that the optimal EGR and injection timing combination for the low loads occurred at high levels of EGR (60 percent) and advanced injection timings (30 to 40 crank angle degrees before top dead center). The optimal EGR and injection timing combination for the high loads occurred at low levels of EGR (30 percent to 40 percent) and retarded injection timings (7.5 to 5 crank angle degrees before top dead center). The knock model determined that the ideal EGR ratio for homogeneous charge compression ignition (HCCI) operation varied from 30 percent to 45 percent, depending on the operating condition. Three methods were investigated as possible ways to reduce pressure rise rates during LTC operation. The only feasible method was the multiple injection strategy which provided dramatically reduced pressure rise rates across all EGR levels and injection timings.

Breen, Jonathan Robert

2010-08-01T23:59:59.000Z

428

PON-10-603 Advanced Medium-and Heavy-Duty Vehicle Technologies Pre-Commercial Demonstrations Questions and Answers  

E-Print Network (OSTI)

for emissions if a carbon tax policy is implemented. What combination of policy and vehicle pricing with alternate vehicle technologies such as electric hybrids. The various scenarios show the effects of natural percent less than the operating cost of a gasoline vehicle, but unless there are government incentives

429

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

430

Characterization of Fuel Cell Vehicle Duty Cycle Elements  

DOE Green Energy (OSTI)

This report covers research done as part of US Department of Energy contract DE-PS26-99FT14299 with the Fuel Cell Propulsion Institute on the fuel cell RATLER{trademark} vehicle, Lurch, as well as work done on the fuel cells designed for the vehicle. All work contained within this report was conducted at the Robotic Vehicle Range at Sandia National Laboratories in Albuquerque New Mexico. The research conducted includes characterization of the duty cycle of the robotic vehicle. This covers characterization of its various abilities such as hill climbing and descending, spin-turns, and driving on level ground. This was accomplished with the use of current sensors placed in the vehicle in conjunction with a Data Acquisition System (DAS), which was also created at Sandia Labs. Characterization of the two fuel cells was accomplished using various measuring instruments and techniques that will be discussed later in the report. A Statement of Work for this effort is included in Appendix A. This effort was able to complete characterization of vehicle duty cycle elements using battery power, but problems with the fuel cell control systems prevented completion of the characterization of the fuel cell operation on the benchtop and in the vehicle. Some data was obtained characterizing the fuel cell current-voltage performance and thermal rise rate by bypassing elements of the control system.

MAISH, ALEXANDER B.; NILAN, ERIC J.; BACA, PAUL M.

2002-12-01T23:59:59.000Z

431

Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks  

DOE Green Energy (OSTI)

The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

2008-12-31T23:59:59.000Z

432

Poolside Examination Data on High-Duty BWR Fuel Exposed to 52 GWd/MTU:  

Science Conference Proceedings (OSTI)

Poolside examinations conducted on boiling water reactor (BWR) fuel exposed to 52 GWd/MTU under high-duty operating conditions are providing data needed to justify extending allowable burnup limits. The good condition of the examined fuel assemblies allowed four of them to be reinserted for an additional 2-year duty cycle to provide data at even higher burnup levels.

1999-09-07T23:59:59.000Z

433

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO MACK TRUCKS, INC. UNDER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 2006 14:16 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/03 4 2006 14:16 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/03 * 0 STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO MACK TRUCKS, INC. UNDER NREL SUBCONTRACT NO. ZCI-4-32049-01, UNDER DOE PRIME CONTRACT NO. DE-AC36-98GO10337 FOR DEVELOPMENT OF THE NEXT GENERATION NATURAL GAS VEHICLE, PHASE II; CH-1185; W(A)-04-016 Mack Trucks, Inc. (Mack) has petitioned for an advance waiver of domestic and foreign patent rights to inventions conceived or first actually reduced to practice under DOE Contract No. NREL-ZC:-4-32049-01. This advance waiver is intended to apply to all subject inventions of Mack's employees and those of its subcontractors, regardless of tier except subcontractors eligible to obtain title pursuant to P.L. 96-517 as amended, and National Laboratories.

434

Analysis of the risk of transporting uranium ore concentrates by truck  

SciTech Connect

This report evaluates the risks involved with shipping uranium ore concentrates by truck in an attempt to provide some perspective on the system safety issues. The basic probabilistic risk evaluation methodology used in this study is similar to that employed by Pacific Northwest Laboratory (PNL) in a series of risk analyses on the transportation of potentially hazardous energy materials. The risk model has been constructed as a series of separate analysis steps to allow the system risk to be readily reevaluated as additional data become available or as postulated system characteristics change. The reslts of this analysis show that the risks to the public health and safety from yellowcake releases during a transportation accident are insignificant. Accidents involving truck shipments of yellowcake are expected to occur at a rate of about ten a year. However, only one-fifth of these accidents, or about two a year, are expected to cause a release of yellowcake to the environment. None of these accidents was estimated to produce any potential fatalities. The low concentration of radioactivity distributed throughout the material resulted in no significant increase in radiation doses above normal background levels to members of the general public.

Geffen, C.A.

1981-07-01T23:59:59.000Z

435

Energy-Optimal Scheduling in Low Duty Cycle Sensor Networks  

E-Print Network (OSTI)

Energy consumption of a wireless sensor node mainly depends on the amount of time the node spends in each of the high power active (e.g., transmit, receive) and low power sleep modes. It has been well established that in order to prolong node's lifetime the duty-cycle of the node should be low. However, low power sleep modes usually have low current draw but high energy cost while switching to the active mode with a higher current draw. In this work, we investigate a MaxWeightlike opportunistic sleep-active scheduling algorithm that takes into account time- varying channel and traffic conditions. We show that our algorithm is energy optimal in the sense that the proposed ESS algorithm can achieve an energy consumption which is arbitrarily close to the global minimum solution. Simulation studies are provided to confirm the theoretical results.

Aydin, Nursen; Ercetin, Ozgur

2011-01-01T23:59:59.000Z

436

Crack Width Analysis of Floor Slabs from Hyster 550 FS Lift Truck with 55 Kip Pay Load  

Science Conference Proceedings (OSTI)

This calculation determines the probable crack width experienced by the slab on grade floor at Building 2404WA from a Hyster 550 FS lift truck having tire pressures of 124 psi while moving and placing Standard Waste Disposal Boxes within the building.

BLACK, D.G.

2003-06-05T23:59:59.000Z

437

Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site  

Science Conference Proceedings (OSTI)

Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a member of the public (Turner, 1995) might experience if a truck were to pass while the person was on the side of the road, or if a truck were to come to a stop at a stoplight in one of the smaller towns along the transportation routes. The 1.0-m (3.3-ft) distance also allowed for comparison with gamma readings of trucks taken with portable, hand-held instruments at the two LLW disposal sites at the NTS: the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS). The purpose in automating the system was to provide the most objective and consistent measurement and calculation of radiation exposure from the trucks possible. The array was set up in November 2002 and equipment was tested and calibrated over the next two months. Data collection on trucks began on February 13, 2003, and continued to the end of December 2003. In all, external gamma readings were collected from 1,012 of the 2,260 trucks that delivered LLW to the NTS during this period. Because DOE could not contractually require waste generators to participate in the study, the database is biased toward voluntary participants; however, data were collected from the 10 generators that represented 92 percent of the LLW shipments to the NTS during the study period, with another eight generators accounting for the balance of the shipments. Because of the voluntary nature of the participation, the identity of the waste generators is not used in the report. Previous studies on potential exposure to the public from transporting LLW to the NTS either relied on calculated exposures (Davis et al., 2002) or was based on a small population of trucks (e.g., 88) where a relatively high-background value of 50 microRoentgens per hour (R/h) (background value measured at the LLW disposal sites) were subtracted from the gross reading of the truck trailer as measured by portable, handheld instruments (Gertz, 2001). The dataset that resulted from the DRI study is the largest collection of measurements of LLW trucks in transit of which the authors are aware.

J. Miller; D. Shafer; K. Gray; B. Church; S. Campbell; B. Holz

2005-08-01T23:59:59.000Z

438

Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site  

Science Conference Proceedings (OSTI)

Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a member of the public (Turner, 1995) might experience if a truck were to pass while the person was on the side of the road, or if a truck were to come to a stop at a stoplight in one of the smaller towns along the transportation routes. The 1.0-m (3.3-ft) distance also allowed for comparison with gamma readings of trucks taken with portable, hand-held instruments at the two LLW disposal sites at the NTS: the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS). The purpose in automating the system was to provide the most objective and consistent measurement and calculation of radiation exposure from the trucks possible. The array was set up in November 2002 and equipment was tested and calibrated over the next two months. Data collection on trucks began on February 13, 2003, and continued to the end of December 2003. In all, external gamma readings were collected from 1,012 of the 2,260 trucks that delivered LLW to the NTS during this period. Because DOE could not contractually require waste generators to participate in the study, the database is biased toward voluntary participants; however, data were collected from the 10 generators that represented 92 percent of the LLW shipments to the NTS during the study period, with another eight generators accounting for the balance of the shipments. Because of the voluntary nature of the participation, the identity of the waste generators is not used in the report. Previous studies on potential exposure to the public from transporting LLW to the NTS either relied on calculated exposures (Davis et al., 2002) or was based on a small population of trucks (e.g., 88) where a relatively high-background value of 50 microRoentgens per hour ({micro}R/h) (background value measured at the LLW disposal sites) were subtracted from the gross reading of the truck trailer as measured by portable, handheld instruments (Gertz, 2001). The dataset that resulted from the DRI study is the largest collection of measurements of LLW trucks in transit of which the authors are aware.

Miller, J; Shafer, D; Gray, K; Church, B; Campbell, S; Holtz, B.

2005-08-15T23:59:59.000Z

439

EFFECT OF IMPACT LIMITER MATERIAL DEGRATION ON STRUCTURAL INTEGRITY OF 9975 PACKAGE SUBJECTED TO TWO FORKLIFT TRUCK IMPACT  

SciTech Connect

This paper evaluates the effect of the impact limiter material degradation on the structural integrity of the 9975 package containment vessel during a postulated accident event of forklift truck collision. The analytical results show that the primary and secondary containment vessels remain structurally intact for Celotex material degraded to 20% of the baseline value.

Wu, T

2007-07-09T23:59:59.000Z

440

Evaluation of three catalysts formulated for methane oxidation on a cng-fueled pickup truck. Technical report  

Science Conference Proceedings (OSTI)

The report describes the exhaust emission results obtained from the evaluation of three specialized methane catalytic converters supplied by three different catalysts manufacturers. The catalytic converters were evaluated using a compressed natural gas-fueled Dodge Dakota pickup truck. The report includes a description of the catalytic converters, the test vehicle, test facilities and test procedures.

Piotrowski, G.K.; Schaefer, R.M.

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "medium truck duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A Set of Comparable Carbon Footprints for Auto, Truck and Transit Travel in Metropolitan America  

NLE Websites -- All DOE Office Websites (Extended Search)

Set of Comparable Carbon Footprints for Highway Travel in Set of Comparable Carbon Footprints for Highway Travel in Metropolitan America by Frank Southworth* and Anthon Sonnenberg** August 31, 2009 *Corresponding author: Senior R&D Staff, Oak Ridge National Laboratory and Principal Research Scientist Georgia Institute of Technology 790 Atlantic Drive SEB Building, Room 324 Atlanta, GA 30332-0355 E-mail: frank.southworth@ce.gatech.edu ** PhD Student, Georgia Institute of Technology School of Civil and Environmental Engineering Georgia Institute of Technology 1 Abstract The authors describe the development of a set of carbon dioxide emissions estimates for highway travel by automobile, truck, bus and other public transit vehicle movements within the nation's 100 largest metropolitan areas, in calendar year 2005. Considerable variability is found to exist

442

RadEducationPosterTrucks_11-7-13_final_print-ready  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOT Maximum Dose Limit: Service Attendants DOT Maximum Dose Limit: Service Attendants U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office Protecting Against Radiation Exposure All U.S. Department of Energy activities are performed in a manner that protects workers and the public from harmful exposure to radiation. In addition, packaging and transportation of all radioactive materials must be conducted in accordance with U.S. Department of Transportation (DOT) regulations.* *10 CFR Part 71 and 49 CFR 1910 DOT Maximum Dose Limits: "Closed" Exclusive-Use Vehicle At contact - Waste package inside trailer (Direct contact prohibited) 1,000 mrem/hour Driver in cab 2 mrem/hour At 2 meters (6.6 feet) 10 mrem/hour At contact - Truck 200 mrem/hour For 15 minutes of exposure

443

Stress Analysis of Floor Slab from Hyster 550 FS Lift Truck with 55 Kip Pay Load  

Science Conference Proceedings (OSTI)

The objective of this calculation is to determine the probable moments and stresses that will be induced into the slab on grade floor at building 2404WA from operation of a Hyster 550 FS lift truck having tire pressures of 124 psi while moving and placing SWDB boxes within building 2404WA. It was found that the probable reinforcing steel stress induced in the grade 60 reinforcing steel for the 124 psi tire pressure is about 35.55 ksi and the factor of safety against yield is about 1.7:l. The probable maximum concrete compression stress is expected to be about 2.21 ksi resulting in a factor of safety of about 2.04:1 against concrete compression failure. Slab on grade design is not subject to building code factors of safety requirements.

BLACK, D.G.

2003-06-05T23:59:59.000Z

444

Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power  

DOE Green Energy (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

2010-03-31T23:59:59.000Z

445

Evaluation of the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses  

E-Print Network (OSTI)

This study evaluated the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses. The National Cooperative Highway Research Program (NCHRP) Report 350 recommended the use of a 3/4-ton (approximately 2000 kg) pickup as the surrogate for all light truck subclasses. This standard test vehicle, the 3/4-ton pick-up truck (designated as the 2000P test vehicle in NCHRP Report 350) replaced the 2040 kg (4500 lb) passenger car which till its replacement in 1993, was the standard test vehicle of that weight class for all formal vehicle crash testing procedures. The study approach consisted of the following main tasks:, 1. Identification and comparison of key vehicle parameters. 2.literature review. 3.Statistical study 4. Simulation study. 5.Synthesize results. 6.Prepare thesis. In the initial part of the study key vehicle parameters were identified and used in a preliminary assessment of the 2000P test vehicle. These parameters were then used as statistical variables in the statistical study undertaken. The HVOSM computer simulation program was then used to evaluate representatives of the larger light truck subclasses and the 2000P test vehicle on impact with selected roadside features. A comparison scheme developed using NCHRP Report 350 was then utilized in the evaluation of simulation results. Results were then synthesized and a thesis prepared on the surrogate sufficiency of the 2000P test vehicle. Drawbacks and limitations experienced during tasks were outlined as well as the contribution and significance of the entire study. A six year ceiling was recommended by the NCHRP Report 350 by Ross et al. (1993) for the purpose of vehicle selection for crash testing purposes. Hence this study focuses on the modern light truck fleet, model years 1990 through present.

Titus-Glover, Cyril James

1996-01-01T23:59:59.000Z

446

DESIGN & DEVELOPMENT OF E-TURBO FOR SUV AND LIGHT TRUCK APPLICATIONS  

DOE Green Energy (OSTI)

The purpose of the project is to develop an electronically controlled, electrically assisted turbocharging system, e-Turbo, for application to SUV and light truck class of passenger vehicles. Earlier simulation work had shown the benefits of e-Turbo system on increasing low-end torque and improving fuel economy. This paper will present further data from the literature to show that advanced turbocharging can enable diesel engine downsizing of 10-30% with 6-17% improvement in fuel economy. This is in addition to the fuel economy benefit that a turbocharged diesel engine offers over conventional gasoline engines. E-Turbo is necessary to get acceptable driving characteristics with downsized diesel engines. As a first step towards the development of this technology for SUV/light truck sized diesel engines (4-6 litre displacement), design concepts and hardware were evaluated for a smaller engine (2 litre displacement). It was felt that design and developments issues could be minimized, the concept proven progressively on the bench, on a small engine and then applied to a large Vee engine (one on each bank). After successful demonstration of the concept, large turbomachinery could be designed and built specifically for larger SUV sized diesel engines. This paper presents the results of development of e-Turbo for a 2 litre diesel engine. A detailed comparison of several electric assist technologies including permanent magnet, six-phase induction and conventional induction motor/generator technology was done. A comparison of switched reluctance motor technology was also done although detailed design was not carried out.

Balis, C; Middlemass, C; Shahed, SM

2003-08-24T23:59:59.000Z

447

Trends in the size distribution, highway use, and consumption of gasoline and diesel fuels of the U.S. Commercial Truck Fleet, 1977-2002.  

SciTech Connect

This paper focuses on various major long-range (1977-2002, 1982-2002) U.S. commercial trucking trends by using U.S. Department of Commerce, Bureau of the Census Vehicle/Truck Inventory and Use Survey (VIUS/TIUS) data from this period, as well as selected 1977-2002 data from the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA) and the U.S. Department of Transportation, Federal Highway Administration's (FHWA's) Highway Statistics. Analyses are made of (1) overall passenger vehicle versus truck consumption patterns of gasoline and diesel fuel and (2) the population growth and fuels used by all commercial truck classes and selected truck types (single unit and combination). Selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-miles traveled trends, as well as the effect of cargo tons per truck on fuel consumption, are also assessed. In addition, long-range trends of related factors (such as long-haul mileages driven by heavy trucks) and their impacts on both reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes were examined. Results of these trends on U.S. petroleum consumption are identified. The effects of basic engineering design and performance, national Interstate highway construction legislation, national demographic trends (such as suburbanization), and changes in U.S. corporate operational requirements are discussed. Their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry are highlighted.

Bertram, K. M.; Santini, D. J.; Anderson, J. L.; Vyas, A. D.

2008-01-01T23:59:59.000Z

448

Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

LIGHT-DUTY VEHICLES LIGHT-DUTY VEHICLES Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies TRANSPORTATION ENERGY FUTURES SERIES: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, Illinois 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

449

Figure 71. Average fuel economy of new light-duty vehicles, 1980 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 71. Average fuel economy of new light-duty vehicles, 1980-2040 (miles per gallon, CAFE compliance values) History Reference case

450

Increasing the Fuel Economy and Safety of New Light-Duty Vehicles  

E-Print Network (OSTI)

Automotive Technology and Fuel Economy Trends: 1975 Through2004. The effect of fuel economy on automobile safety: aM. , 2002. Near-term fuel economy potential for light-duty

Wenzel, Tom; Ross, Marc

2006-01-01T23:59:59.000Z

451

Not going home: Army changes program for active duty Stop Loss, Stop Movement  

E-Print Network (OSTI)

WASHINGTON Active-duty Soldiers nearing the end of their service contract may not be getting out of the Army as soon as they might have expected. Army officials announced June 1 the latest Active Army

Story Karla; L. Gonzalez

2004-01-01T23:59:59.000Z

452

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty Vehicles?  

Reports and Publications (EIA)

The presentation explores if diesel-fueled light-duty vehicle growth in the U.S. might be large enough to create refinery constraints that would hinder that growth.

Information Center

2005-10-12T23:59:59.000Z

453

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network (OSTI)

43 McCormick, 2005 (Canola-1) McCormick,2005 (Soy-1)A: Animal-based; C: Canola; S: Soy-based; H-D: Heavy-Duty H-

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

454

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty ...  

U.S. Energy Information Administration (EIA)

The presentation explores if diesel-fueled light-duty vehicle growth in the U.S. might be large enough to create refinery constraints that would hinder that growth.

455

Utilization of Fuel Consumption Data in an Ecodriving Incentive System for Heavy-Duty Vehicle Drivers  

Science Conference Proceedings (OSTI)

Driver behavior is one of the greatest factors determining fuel consumption and, thus, carbon dioxide emissions from a heavy-duty vehicle. The difference in fuel consumption can be up to 30%, depending on the driver. Education, monitoring, and feedback ...

Heikki Liimatainen

2011-12-01T23:59:59.000Z

456

Design of an instrumented multifunctional foot for application to a heavy duty mobile robot manufacturing system  

E-Print Network (OSTI)

The design of a multifunctional foot for application to a mobile robotic system for heavy duty manufacturing is presented. The requirements for a target manufacturing task are presented and translated into requirements for ...

Menon, Manas Chandran

2008-01-01T23:59:59.000Z

<