Powered by Deep Web Technologies
Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIS-0249: Medical Isotopes Production Project | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

49: Medical Isotopes Production Project EIS-0249: Medical Isotopes Production Project Summary This EIS evaluates the potential environmental impacts of a proposal to establish a...

2

Isotopes: Isotope Production, Medical IsotopesOffice of Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Managers Put a short description of the graphic or its primary message here Isotope Production and Applications The Los Alamos National Laboratory has produced radioactive...

3

Small-Scale Reactor for the Production of Medical Isotopes  

Small-Scale Reactor for the Production of Medical Isotopes IP Home; Search/Browse Technology ... Drawing upon proven technology with minimal research effort required;

4

Domestic production of medical isotope Mo-99 moves a step closer  

NLE Websites -- All DOE Office Websites (Extended Search)

Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 moves a step closer Irradiated uranium fuel has been recycled and reused for molybdenum-99...

5

Small-Scale Reactor for the Production of Medical Isotopes ...  

Currently, there is a severe worldwide shortage of medical isotopes-specifically Molybdenum 99 (Mo-99) which is essential in cancer treatment, ...

6

NNSA Works to Minimize the use of HEU in Medical Isotope Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Works to Minimize the use of HEU in Medical Isotope Production | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

7

Scoping assessment on medical isotope production at the Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

The Scoping Assessment addresses the need for medical isotope production and the capability of the Fast Flux Test Facility to provide such isotopes. Included in the discussion are types of isotopes used in radiopharmaceuticals, which types of cancers are targets, and in what way isotopes provide treatment and/or pain relief for patients.

Scott, S.W.

1997-08-29T23:59:59.000Z

8

Feasibility study of medical isotope production at Sandia National Laboratories  

Science Conference Proceedings (OSTI)

In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for {sup 99}Mo, the parent of {sup 99m}Tc, in the event of an interruption in the current Canadian supply. {sup 99m}Tc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for {sup 99}Mo and to identify and examine all issues with potential for environmental impact.

Massey, C.D.; Miller, D.L.; Carson, S.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Regulatory Assessment Dept.] [and others

1995-12-01T23:59:59.000Z

9

Domestic production of medical isotope Mo-99 moves a step closer  

NLE Websites -- All DOE Office Websites (Extended Search)

Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 moves a step closer Irradiated uranium fuel has been recycled and reused for molybdenum-99 (Mo-99) production, with virtually no losses in Mo-99 yields or uranium recovery. May 13, 2013 From left, Los Alamos scientists Roy Copping, Sean Reilly, and Daniel Rios. Copping examines the Buchi Multivapor P-12 Evaporator, and Reilly and Rios are at the Agilent Technologies Cary 60 UV-Vis Spectrometer. From left, Los Alamos scientists Sean Reilly, Roy Copping, and Daniel Rios. Sean is looking at the Buchi Multivapor P-12 Evaporator, and Roy and Daniel are at the Agilent Technologies Cary 60 UV-Vis Spectrometer. Contact Nancy Ambrosiano Communications Office (505) 667-0471

10

Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility.  

SciTech Connect

Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,{gamma}), (n,2n), (n,p), and ({gamma},n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. For the nuclides with a very high capture microscopic cross section, such as iridium, rhenium, and samarium, their specific activities are reduced by a factor of 30 when the self-shielding effect is included. Four irradiation locations were considered in the analyses to maximize the medical isotope production rate. The results show the self-shield effect reduces the specific activity values and changes the irradiation location for obtaining the maximum possible specific activity. The axial and radial distributions of the specific activity were used to define the irradiation sample size for producing each isotope.

Talamo, A.; Gohar, Y.; Nuclear Engineering Division

2007-05-15T23:59:59.000Z

11

Maximum Reasonable Radioxenon Releases from Medical Isotope Production Facilities and Their Effect on Monitoring Nuclear Explosions  

SciTech Connect

Fission gases such as 133Xe are used extensively for monitoring the world for signs of nuclear testing in systems such as the International Monitoring System (IMS). These gases are also produced by nuclear reactors and by fission production of 99Mo for medical use. Recently, medical isotope production facilities have been identified as the major contributor to the background of radioactive xenon isotopes (radioxenon) in the atmosphere (Saey, et al., 2009). These releases pose a potential future problem for monitoring nuclear explosions if not addressed. As a starting point, a maximum acceptable daily xenon emission rate was calculated, that is both scientifically defendable as not adversely affecting the IMS, but also consistent with what is possible to achieve in an operational environment. This study concludes that an emission of 5×109 Bq/day from a medical isotope production facility would be both an acceptable upper limit from the perspective of minimal impact to monitoring stations, but also appears to be an achievable limit for large isotope producers.

Bowyer, Ted W.; Kephart, Rosara F.; Eslinger, Paul W.; Friese, Judah I.; Miley, Harry S.; Saey, Paul R.

2013-01-01T23:59:59.000Z

12

Medical Isotope Production Using A 60 MeV Linear Electron Accelerator , R.C. Block1  

E-Print Network (OSTI)

Medical Isotope Production Using A 60 MeV Linear Electron Accelerator Y. Danon1 , R.C. Block1 , R@rpi.edu) 2 AlphaMed Inc, 20 Juniper Ridge Road, Acton, MA 01720 INTRODUCTION Medical isotopes can be produced

Danon, Yaron

13

A CYCLOTRON CONCEPT TO SUPPORT ISOTOPE PRODUCTION FOR SCIENCE AND MEDICAL APPLICATIONS  

Science Conference Proceedings (OSTI)

In August of 2009, the Nuclear Science Advisory Committee (NSAC) recommended a variable-energy, high-current multi-particle accelerator for the production of medical radioisotopes. The Oak Ridge National Laboratory is developing a technical concept for a 70 MeV dual-extraction multi-particle cyclotron that will meet the needs identified in the NSAC report. The cyclotron, which will be located at the Holifield Radioactive Ion Beam Facility (HRIBF), will operate on a 24/7 basis and will provide approximately 6000 hours per year of quality beam time for both the production R&D and production of medical and industrial radioisotopes. The proposed cyclotron will be capable of accelerating dual beams of 30 to 70 MeV H at up to 750 A, and up to 50 A of 15-35 MeV D , 35 MeV H2, and 70 MeV -particles. In dual-extraction H mode, a total of 750 A of 70 MeV protons will be provided simultaneously to both HRIBF and Isotope Production Facility. The isotope facility will consist of two target stations: a 2 water-cooled station and a 4 water-cooled high-energy-beam research station. The multi-particle capability and high beam power will enable research into new regimes of accelerator-produced radioisotopes, such as 225Ac, 211At, 68Ge, and 7B. The capabilities of the accelerator will enable the measurement of excitation functions, thick target yield measurements, research in high-power-target design, and will support fundamental research in nuclear and radiochemistry.

Egle, Brian [ORNL; Mirzadeh, Saed [ORNL; Tatum, B Alan [ORNL; Varma, Venugopal Koikal [Oak Ridge National Laboratory (ORNL); Bradley, Eric Craig [ORNL; Burgess, Thomas W [ORNL; Aaron, W Scott [ORNL; Binder, Jeffrey L [ORNL; Beene, James R [ORNL; Saltmarsh, Michael John [ORNL

2013-01-01T23:59:59.000Z

14

AVLIS enrichment of medical isotopes  

SciTech Connect

Under the Sponsorship of the United states Enrichment Corporation (USEC), we are currently investigating the large scale separation of several isotopes of medical interest using atomic vapor isotope separation (AVLIS). This work includes analysis and experiments in the enrichment of thallium 203 as a precursor to the production of thallium 201 used in cardiac imaging following heart attacks, on the stripping of strontium 84 from natural strontium as precursor to the production of strontium 89, and on the stripping of lead 210 from lead used in integrated circuits to reduce the number of alpha particle induced logic errors.

Haynam, C.A.; Scheibner, K.F.; Stern, R.C.; Worden, E.F. [Lawrence Livermore National Laboratory, CA (United States)

1996-12-31T23:59:59.000Z

15

from Isotope Production Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium - 2 - 2:32 Isotope cancer...

16

Isotope Development & Production | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Radioisotope Radiochemical Separation & Processing Strategic Isotope Production Super Heavy Element Discovery Nuclear Security Science & Technology Nuclear Systems...

17

Isotope production facility produces cancer-fighting actinium  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major...

18

DOE/EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory (12/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

88 88 FINAL Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee December 2004 U. S. Department of Energy Oak Ridge Operations 04-049(doc)/120204 04-049(doc)/120204 SCIENCE APPLICATIONS INTERNATIONAL CORPORATION contributed to the preparation of this document and should not be considered an eligible contractor for its review. Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee Date Issued-December 2004 U. S. Department of Energy Oak Ridge Operations 04-049(doc)/120204 CONTENTS

19

WOSMIP II- Workshop on Signatures of Medical and Industrial Isotope Production  

Science Conference Proceedings (OSTI)

Medical and industrial fadioisotopes are fundamental tools used in science, medicine and industry with an ever expanding usage in medical practice where their availability is vital. Very sensitive environmental radionuclide monitoring networks have been developed for nuclear-security-related monitoring [particularly Comprehensive Test-Ban-Treaty (CTBT) compliance verification] and are now operational.

Matthews, Murray; Achim, Pascal; Auer, M.; Bell, Randy; Bowyer, Ted W.; Braekers, Damien; Bradley, Ed; Briyatmoko, Budi; Berglund, Helena; Camps, Johan; Carranza, Eduardo C.; Carty, Fitz; DeCaire, Richard; Deconninck, Benoit; DeGeer, Lars E.; Druce, Michael; Friese, Judah I.; Hague, Robert; Hoffman, Ian; Khrustalev, Kirill; Lucas, John C.; Mattassi, G.; Mattila, Aleski; Nava, Elisabetta; Nikkinin, Mika; Papastefanou, Constantin; Piefer, Gregory R.; Quintana, Eduardo; Ross, Ole; Rotty, Michel; Sabzian, Mohammad; Saey, Paul R.; Sameh, A. A.; Safari, M.; Schoppner, Michael; Siebert, Petra; Unger, Klaus K.; Vargas, Albert

2011-11-01T23:59:59.000Z

20

Sandia National Laboratories Medical Isotope Reactor concept.  

SciTech Connect

This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Laser Isotope Enrichment for Medical and Industrial Applications  

SciTech Connect

Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation repression. In this scheme a gas, of the selected isotopes for enrichment, is irradiated with a laser at a particular wavelength that would excite only one of the isotopes. The entire gas is subject to low temperatures sufficient to cause condensation on a cold surface. Those molecules in the gas that the laser excited are not as likely to condense as are the unexcited molecules. Hence the gas drawn out of the system will be enriched in the isotope that was excited by the laser. We have evaluated the relative energy required in this process if applied on a commercial scale. We estimate the energy required for laser isotope enrichment is about 20% of that required in centrifuge separations, and 2% of that required by use of "calutrons".

Leonard Bond

2006-07-01T23:59:59.000Z

22

Strategic Isotope Production | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Isotope Production SHARE Strategic Isotope Production ORNL's unique facilities at the High Flux Isotope Reactor (HFIR), Radiochemical Engineering Development Center...

23

Cancer-fighting treatment gets boost from Isotope Production Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Cancer-fighting treatment gets boost from Isotope Production Facility Cancer-fighting treatment gets boost from Isotope Production Facility New capability expands existing program, creates treatment product in quantity. April 13, 2012 Medical Isotope Work Moves Cancer Treatment Agent Forward Medical Isotope Work Moves Cancer Treatment Agent Forward - Los Alamos scientist Meiring Nortier holds a thorium foil test target for the proof-of-concept production experiments. Research indicates that it will be possible to match current annual, worldwide production of Ac-225 in just two to five days of operations using the accelerator at Los Alamos and analogous facilities at Brookhaven. Alpha particles are energetic enough to destroy cancer cells but are unlikely to move beyond a tightly controlled target region and destroy

24

Research and Medical Isotope Reactor Supply | Y-12 National Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Medical ... Research and Medical Isotope Reactor Supply Our goal is to fuel research and test reactors with low-enriched uranium. Y-12 tops the short list of the...

25

Expert Panel: Forecast Future Demand for Medical Isotopes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expert Panel: Expert Panel: Forecast Future Demand for Medical Isotopes March 1999 Expert Panel: Forecast Future Demand for Medical Isotopes September 25-26, 1998 Arlington, Virginia The Expert Panel ............................................................................................. Page 1 Charge To The Expert Panel........................................................................... Page 2 Executive Summary......................................................................................... Page 3 Introduction ...................................................................................................... Page 4 Rationale.......................................................................................................... Page 6 Economic Analysis...........................................................................................

26

Global Security, Medical Isotopes, and Nuclear Science  

Science Conference Proceedings (OSTI)

Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

Ahle, L E

2007-09-17T23:59:59.000Z

27

NIDC: Online Catalog of Isotope Products Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalog of Isotope Products Please select an option below. PRODUCTS VIEWING Select using PERIODIC TABLE or NUCLIDE CHART or LIST SEARCHING SEARCH for a Product REQUESTING REQUEST a...

28

Expert Panel: Forecast Future Demand for Medical Isotopes | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes The Expert Panel has concluded that the Department of Energy and National Institutes of Health must develop the capability to produce a diverse supply of radioisotopes for medical use in quantities sufficient to support research and clinical activities. Such a capability would prevent shortages of isotopes, reduce American dependence on foreign radionuclide sources and stimulate biomedical research. The expert panel recommends that the U.S. government build this capability around either a reactor, an accelerator or a combination of both technologies as long as isotopes for clinical and research applications can be supplied reliably, with diversity in adequate

29

DOE/EA-1488: Finding of No Significant Impact U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory (12/10/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT FINDING OF NO SIGNIFICANT IMPACT U-233 DISPOSITION, MEDICAL ISOTOPE PRODUCTION, AND BUILDING 3019 COMPLEX SHUTDOWN AT THE OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE AGENCY: U. S. Department of Energy ACTION: Finding of No Significant Impact. SUMMARY: The U. S. Department of Energy (DOE) has completed an Environmental Assessment (EA) [DOE/EA-1488] that evaluates the processing of uranium-233 ( 233 U) stored at the Oak Ridge National Laboratory (ORNL) and other small quantities of similar material currently stored at other DOE sites in order to render it suitable for safe, long-term, economical storage. The 233 U is stored within Bldg. 3019A, which is part of the Bldg. 3019 Complex. Additionally, the proposed action would increase the availability of medical

30

EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: NorthStar Medical Technologies LLC, Commercial Domestic 9: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 SUMMARY This EA evaluates the potential environmental impacts of a proposal to use federal funds to support and accelerate Northstar Medical Radioisotopes' project to develop domestic, commercial production capability for the medical isotope Molybdenum-99 without the use of highly enriched uranium. PUBLIC COMMENT OPPORTUNITIES None available this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 24, 2012 EA-1929: Finding of No Significant Impact NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99

31

EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29: NorthStar Medical Technologies LLC, Commercial Domestic 29: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 SUMMARY This EA evaluates the potential environmental impacts of a proposal to use federal funds to support and accelerate Northstar Medical Radioisotopes' project to develop domestic, commercial production capability for the medical isotope Molybdenum-99 without the use of highly enriched uranium. PUBLIC COMMENT OPPORTUNITIES None available this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 24, 2012 EA-1929: Finding of No Significant Impact NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99

32

HEU Minimization and the Reliable Supply of Medical Isotopes Nuclear  

National Nuclear Security Administration (NNSA)

HEU Minimization and the Reliable Supply of Medical Isotopes Nuclear HEU Minimization and the Reliable Supply of Medical Isotopes Nuclear Security Summit: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > HEU Minimization and the Reliable Supply of ... Fact Sheet HEU Minimization and the Reliable Supply of Medical Isotopes Nuclear

33

Strategic Isotope Production | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Isotope Strategic Isotope Production SHARE Strategic Isotope Production Typical capsules used in the transport of 252Cf source material inside heavily shielded shipping casks. ORNL's unique facilities at the High Flux Isotope Reactor (HFIR), Radiochemical Engineering Development Center (REDC), Irradiated Fuels Examination Laboratory (IFEL), and Irradiated Materials Examination Testing facility (IMET) are routinely used in the production, purification, packaging, and shipping of a number of isotopes of national importance, including: 75Se, 63Ni, 238Pu, 252Cf, and others. The intense neutron flux of the HFIR (2.0 x 1015 neutrons/cm²·s) permits the rapid formation of such isotopes. These highly irradiated materials are then processed and packaged for shipping using the facilities at the REDC, IFEL, and IMET.

34

Medical ice slurry production device  

DOE Patents (OSTI)

The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

Kasza, Kenneth E. (Palos Park, IL); Oras, John (Des Plaines, IL); Son, HyunJin (Naperville, IL)

2008-06-24T23:59:59.000Z

35

NIDC: Online Catalog of Isotope Products | Product List  

NLE Websites -- All DOE Office Websites (Extended Search)

List List Please select an available isotope product from the lists below. If you would like an isotope product that is not listed, you can make a request by clicking here. Stable Isotope Products Radio-Isotope Products Antimony Argon (Alt) Barium Bromine Bromine (Alt) Cadmium Calcium Carbon (Alt) Cerium Chlorine Chlorine (Alt) Chromium Copper Dysprosium Erbium Europium Gadolinium Gallium Germanium Hafnium Helium (Alt) Indium Iridium Iron Krypton (Alt) Lanthanum Lead Lithium Lutetium Magnesium Mercury Molybdenum Neodymium Neon (Alt) Nickel Nitrogen (Alt) Osmium Oxygen (Alt) Palladium Platinum Potassium Rhenium Rubidium Ruthenium Samarium Selenium Silicon Silver Strontium Sulfur Sulfur (Alt) Tantalum Tellurium Thallium Tin Titanium Tungsten Vanadium Xenon (Alt) Ytterbium Zinc Zirconium Actinium-225 Aluminum-26 Americium-241

36

Oak Ridge Isotope Production Cyclotron Facility and Target Handling  

SciTech Connect

Abstract The Nuclear Science Advisory Committee issued in August 2009 an Isotopes Subcommittee report that recommended the construction and operation of a variable-energy, high-current, multiparticle accelerator for producing medical radioisotopes. To meet the needs identified in the report, Oak Ridge National Laboratory is developing a technical concept for a commercial 70 MeV dual-port-extraction, multiparticle cyclotron to be located at the Holifield Radioactive Ion Beam Facility. The conceptual design of the isotope production facility as envisioned would provide two types of targets for use with this new cyclotron. One is a high-power target cooled by water circulating on both sides, and the other is a commercial target cooled only on one side. The isotope facility concept includes an isotope target vault for target irradiation and a shielded transfer station for radioactive target handling. The targets are irradiated in the isotope target vault. The irradiated targets are removed from the target vault and packaged in an adjoining shielded transfer station before being sent out for postprocessing. This paper describes the conceptual design of the target-handling capabilities required for dealing with these radioactive targets and for minimizing the contamination potential during operations.

Bradley, Eric Craig [ORNL; Varma, Venugopal Koikal [ORNL; Egle, Brian [ORNL; Binder, Jeffrey L [ORNL; Mirzadeh, Saed [ORNL; Tatum, B Alan [ORNL; Burgess, Thomas W [ORNL; Devore, Joe [Oak Ridge National Laboratory (ORNL); Rennich, Mark [Oak Ridge National Laboratory (ORNL); Saltmarsh, Michael John [ORNL; Caldwell, Benjamin Cale [Oak Ridge National Laboratory (ORNL)

2011-01-01T23:59:59.000Z

37

ISOTOPES  

E-Print Network (OSTI)

Theory of Isotope Separation as Applied to the Large~scale Production of 235 u National Nuclear Energy

Lederer, C. Michael

2013-01-01T23:59:59.000Z

38

DOE and NNSA labs work with CTBTO to reduce medical isotope emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

NNSA labs work with CTBTO to reduce medical isotope emissions, enhance the effectiveness of nuclear explosion monitoring | National Nuclear Security Administration Our Mission...

39

Final Report, NEAC Subcommittee for Isotope Research & Production Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report, NEAC Subcommittee for Isotope Research & Production Final Report, NEAC Subcommittee for Isotope Research & Production Planning Final Report, NEAC Subcommittee for Isotope Research & Production Planning Isotopes, including both radioactive and stable isotopes, make important contributions to research, medicine, and industry in the United States and throughout the world. For nearly fifty years, the Department of Energy (DOE) has actively promoted the use of isotopes by funding (a) production of isotopes at a number of national laboratories with unique nuclear reactors or particle accelerators, (b) nuclear medicine research at the laboratories and in academia, (c) research into industrial applications of isotopes, and (d) research into isotope production and processing methods. The radio- pharmaceutical and radiopharmacy industries have their origin in

40

Isotope Development & Production for Research and Applications (IDPRA) |  

NLE Websites -- All DOE Office Websites (Extended Search)

Research » Isotope Research » Isotope Development & Production for Research and Applications (IDPRA) Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Research Isotope Development & Production for Research and Applications (IDPRA) Print Text Size: A A A RSS Feeds FeedbackShare Page The Isotope subprogram supports the production, and the development of production techniques of radioactive and stable isotopes that are in short supply for research and applications. Isotopes are high-priority

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE and NNSA labs work with CTBTO to reduce medical isotope emissions,  

National Nuclear Security Administration (NNSA)

and NNSA labs work with CTBTO to reduce medical isotope emissions, and NNSA labs work with CTBTO to reduce medical isotope emissions, enhance the effectiveness of nuclear explosion monitoring | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > DOE and NNSA labs work with CTBTO ... DOE and NNSA labs work with CTBTO to reduce medical isotope emissions,

42

HEU Minimization and the Reliable Supply of Medical Isotopes...  

NLE Websites -- All DOE Office Websites (Extended Search)

100,000 diagnostic medical procedures globally every day. Today, Mo-99 is produced at aging facilities in Europe, Canada and South Africa primarily using highly-enriched uranium...

43

Former Worker Medical Screening Program - Mound Former Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Workers Former Worker Medical Screening Program (FWP) Project Name: Worker Health Protection Program Covered DOE Site: Mound Worker Population Served: Production Workers...

44

Production capabilities in US nuclear reactors for medical radioisotopes  

SciTech Connect

The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. [Oak Ridge National Lab., TN (United States); Schenter, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

1992-11-01T23:59:59.000Z

45

Former Worker Medical Screening Program - Pinellas Former Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Workers Former Worker Medical Screening Program (FWP) Project Name: National Supplemental Screening Program Covered DOE Site: Pinellas Worker Population Served:...

46

Flexible Medical Radioisotope Production | U.S. DOE Office of...  

Office of Science (SC) Website

Flexible Medical Radioisotope Production Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory...

47

Quantitative Modeling of Cerenkov Light Production Efficiency from Medical Radionuclides  

E-Print Network (OSTI)

Quantitative Modeling of Cerenkov Light Production Efficiency from Medical Radionuclides Bradley J There has been recent and growing interest in applying Cerenkov radiation (CR) for biological applications) Quantitative Modeling of Cerenkov Light Production Efficiency from Medical Radionuclides. PLoS ONE 7(2): e31402

Hielscher, Andreas

48

Computer Study of Isotope Production in High Power Accelerators  

E-Print Network (OSTI)

Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

Van Riper, K A; Wilson, W B

1999-01-01T23:59:59.000Z

49

Computer Study of Isotope Production in High Power Accelerators  

E-Print Network (OSTI)

Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

K. A. Van Riper; S. G. Mashnik; W. B. Wilson

1999-01-25T23:59:59.000Z

50

NorthStar Medical Technologies LLC  

National Nuclear Security Administration (NNSA)

Environmental Assessment for Environmental Assessment for NorthStar Medical Technologies LLC Commercial Domestic Production of the Medical Isotope Molybdenum-99 (DOE/EA-1929) Prepared for U.S. Department of Energy National Nuclear Security Administration Defense Nuclear Nonproliferation/ Global Threat Reduction Initiative August 2012 EA for NorthStar Medical Technologies LLC Commercial Domestic Production of the Medical Isotope Mo-99 i COVER SHEET ENVIRONMENTAL ASSESSMENT FOR NORTHSTAR MEDICAL TECHNOLOGIES LLC COMMERCIAL DOMESTIC PRODUCTION OF THE MEDICAL ISOTOPE MOLYBDENUM-99 Proposed Action: The Department of Energy (DOE) National Nuclear Security Administration (NNSA) proposes to provide funding to NorthStar to accelerate the establishment of the commercial production of

51

Isotope Production and Distribution Program`s Fiscal Year 1997 financial statement audit  

SciTech Connect

The Department of Energy Isotope Production and Distribution Program mission is to serve the national need for a reliable supply of isotope products and services for medicine, industry and research. The program produces and sells hundreds of stable and radioactive isotopes that are widely utilized by domestic and international customers. Isotopes are produced only where there is no U.S. private sector capability or other production capacity is insufficient to meet U.S. needs. The Department encourages private sector investment in new isotope production ventures and will sell or lease its existing facilities and inventories for commercial purposes. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund established by the Fiscal Year (FY) 1990 Energy and Water Appropriations Act and maintains financial viability by earning revenues from the sale of isotopes and services and through annual appropriations. The FY 1995 Energy and Water Appropriations Act modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Although the Isotope Program functions as a business, prices set for small-volume, high-cost isotopes that are needed for research purposes may not achieve full-cost recovery. As a result, isotopes produced by the Isotope Program for research and development are priced to provide a reasonable return to the U.S. Government without discouraging their use. Commercial isotopes are sold on a cost-recovery basis. Because of its pricing structure, when selecting isotopes for production, the Isotope Program must constantly balance current isotope demand, market conditions, and societal benefits with its determination to operate at the lowest possible cost to U.S. taxpayers. Thus, this report provides a financial analysis of this situation.

1998-03-27T23:59:59.000Z

52

NIDC: Online Catalog of Isotope Products | Request a New Product  

NLE Websites -- All DOE Office Websites (Extended Search)

Request a New Product Request a New Product Step 1 - Enter the new product's criteria below. Element Name Actinium Aluminum Americium Antimony Argon Arsenic Astatine Barium Berkelium Beryllium Bismuth Bohrium Boron Bromine Cadmium Caesium Calcium Californium Carbon Cerium Chlorine Chromium Cobalt Copernicium Copper Curium Darmstadtium Dubnium Dysprosium Einsteinium Erbium Europium Fermium Fluorine Francium Gadolinium Gallium Germanium Gold Hafnium Hassium Helium Holmium Hydrogen Indium Iodine Iridium Iron Krypton Lanthanum Lawrencium Lead Lithium Lutetium Magnesium Manganese Meitnerium Mendelevium Mercury Molybdenum Neodymium Neon Neptunium Nickel Niobium Nitrogen Nobelium Osmium Oxygen Palladium Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Promethium Protactinium Radium Radon Rhenium Rhodium Roentgenium Rubidium Ruthenium Rutherfordium Samarium Scandium Seaborgium Selenium Silicon Silver Sodium Strontium Sulfur Tantalum Technetium Tellurium Terbium Thallium Thorium Thulium Tin Titanium Tungsten Ununhexium Ununoctium Ununpentium Ununquadium Ununseptium Ununtrium Uranium Vanadium Xenon Ytterbium Yttrium Zinc Zirconium

53

NIDC: Online Catalog of Isotope Products | Product Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Product Search Product Search Step 1 - Enter your search criteria below. Element Name Actinium Aluminum Americium Antimony Argon Arsenic Astatine Barium Berkelium Beryllium Bismuth Bohrium Boron Bromine Cadmium Caesium Calcium Californium Carbon Cerium Chlorine Chromium Cobalt Copernicium Copper Curium Darmstadtium Dubnium Dysprosium Einsteinium Erbium Europium Fermium Fluorine Francium Gadolinium Gallium Germanium Gold Hafnium Hassium Helium Holmium Hydrogen Indium Iodine Iridium Iron Krypton Lanthanum Lawrencium Lead Lithium Lutetium Magnesium Manganese Meitnerium Mendelevium Mercury Molybdenum Neodymium Neon Neptunium Nickel Niobium Nitrogen Nobelium Osmium Oxygen Palladium Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Promethium Protactinium Radium Radon Rhenium Rhodium Roentgenium Rubidium Ruthenium Rutherfordium Samarium Scandium Seaborgium Selenium Silicon Silver Sodium Strontium Sulfur Tantalum Technetium Tellurium Terbium Thallium Thorium Thulium Tin Titanium Tungsten Ununhexium Ununoctium Ununpentium Ununquadium Ununseptium Ununtrium Uranium Vanadium Xenon Ytterbium Yttrium Zinc Zirconium

54

Method for production of an isotopically enriched compound  

Science Conference Proceedings (OSTI)

A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.

Watrous, Matthew G.

2012-12-11T23:59:59.000Z

55

Isotope production and distribution Programs Fiscal Year (FY) 1995 Financial Statement Audit (ER-FC-96-01)  

SciTech Connect

The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium and deuterium, and related isotope services. Services provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund, as established by the Fiscal Year 1990 Energy and Water Appropriations Act (Public Law 101-101). The Fiscal Year 1995 Appropriations Act (Public Law 103-316) modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Prices set for small-volume, high-cost isotopes that are needed for research may not achieve full-cost recovery. Isotope Program costs are financed by revenues from the sale of isotopes and associated services and through payments from the isotope support decision unit, which was established in the DOE fiscal year 1995 Energy, Supply, Research, and Development appropriation. The isotope decision unit finances the production and processing of unprofitable isotopes that are vital to the national interest.

1996-02-12T23:59:59.000Z

56

Isotope Production and Distribution Program. Financial statements, September 30, 1994 and 1993  

SciTech Connect

The attached report presents the results of the independent certified public accountants` audit of the Isotope Production and Distribution (IP&D) Program`s financial statements as of September 30, 1994. The auditors have expressed an unqualified opinion on IP&D`s 1994 statements. Their reports on IP&D`s internal control structure and on compliance with laws,and regulations are also provided. The charter of the Isotope Program covers the production and sale of radioactive and stable isotopes, byproducts, and related isotope services. Prior to October 1, 1989, the Program was subsidized by the Department of Energy through a combination of appropriated funds and isotope sales revenue. The Fiscal Year 1990 Appropriations Act, Public Law 101-101, authorized a separate Isotope Revolving Fund account for the Program, which was to support itself solely from the proceeds of isotope sales. The initial capitalization was about $16 million plus the value of the isotope assets in inventory or on loan for research and the unexpended appropriation available at the close of FY 1989. During late FY 1994, Public Law 103--316 restructured the Program to provide for supplemental appropriations to cover costs which are impractical to incorporate into the selling price of isotopes. Additional information about the Program is provided in the notes to the financial statements.

Marwick, P.

1994-11-30T23:59:59.000Z

57

Record of Decision for the Medical Isotopes Production Project: Molybdenum-99 and Related Isotopes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21 21 Federal Register / Vol. 61, No. 181 / Tuesday, September 17, 1996 / Notices property at Fort Ord, California. The FSEIS also analyzes impacts on a range of potential reuse alternatives. Copies of the FSEIS have been forwarded to various federal, state and local agencies, and predetermined interested organizations and individuals. DATES: This FSEIS will be available to the public for 30 days, after which the Army will prepare a Record of Decision for the Army action. ADDRESSES: Copies of the Final Supplemental Environmental Impact Statement can be obtained by writing or calling Mr. Bob Verkade, Sacramento District, U.S. Army Corps of Engineers, 1325 J Street, Sacramento, California 95814-2922, telephone (916) 557-7423, fax (916) 557-5307. Raymond J. Fatz, Deputy Assistant Secretary of the Army

58

Medical  

E-Print Network (OSTI)

he Australian medical education system is at a critical juncture in relation to what and how it delivers for Aboriginal and Torres Strait Islander health. The recent work of three key organisations concerned with medical education provides a toolkit for implementation of sustainable reform within medical schools.

Tamara Mackean; Romlie Mokak; Allan Carmichael; Gregory L Phillips; David Prideaux; Theanne R Walters

2007-01-01T23:59:59.000Z

59

Medical Radioisotope | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Medical Radioisotope SHARE Medical Radioisotope Staff members preparing Ac-225 in glove boxes for shipment to hospitals to support radiotherapy cancer clinical trials in multiple locations around the world. ORNL's Medical Radioisotope Program is focused on the development of improved reactor production and processing methods to provide medical radioisotopes, the development of new radionuclide generator systems, the design and evaluation of new radiopharmaceuticals for applications in nuclear medicine and oncology, and association with Medical Cooperative Programs throughout the world for further preclinical testing and clinical evaluation of agents developed at ORNL. The collective resources of ORNL, including access to the enriched stable isotope inventory, a High Flux

60

Production system improvement at a medical devices company : floor layout reduction and manpower analysis  

E-Print Network (OSTI)

Due to the low demand and the need to introduce other production lines in the floor, the medical devices company wants to optimize the utilization of space and manpower for the occlusion system product. This thesis shows ...

AlEisa, Abdulaziz A. (Abdulaziz Asaad)

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2009 Balance Sheet Audit, OAS-FS-12-08  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy's Isotope Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2009 Balance Sheet OAS-FS-12-08 March 2012 ISOTOPE DEVELOPMENT AND PRODUCTION FOR RESEARCH AND APPLICATIONS PROGRAM Fiscal Year 2009 Annual Report and Balance Sheet September 30, 2009 i UNITED STATES DEPARTMENT OF ENERGY ISOTOPE DEVELOPMENT AND PRODUCTION FOR RESEARCH AND APPLICATIONS PROGRAM Fiscal Year 2009 Annual Report and Balance Sheet Table of Contents Page Management's Discussion and Analysis 1 Isotope Program Overview 2 Isotope Program Funding 4 Isotope Program Performance 5 Financial Performance 6 Management Challenges and Significant Issues 7 Balance Sheet Limitations 7

62

Homogeneous fast-flux isotope-production reactor  

DOE Patents (OSTI)

A method is described for producing tritium in a liquid metal fast breeder reactor. Lithium target material is dissolved in the liquid metal coolant in order to facilitate the production and removal of tritium.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

63

Strontium Isotope Study of Coal Untilization By-products Interacting with Environmental Waters  

SciTech Connect

Sequential leaching experiments on coal utilization by-products (CUB) were coupled with chemical and strontium (Sr) isotopic analyses to better understand the influence of coal type and combustion processes on CUB properties and the release of elements during interaction with environmental waters during disposal. Class C fly ash tended to release the highest quantity of minor and trace elements—including alkaline earth elements, sodium, chromium, copper, manganese, lead, titanium, and zinc—during sequential extraction, with bottom ash yielding the lowest. Strontium isotope ratios ({sup 87}Sr/{sup 86}Sr) in bulk-CUB samples (total dissolution of CUB) are generally higher in class F ash than in class C ash. Bulk-CUB ratios appear to be controlled by the geologic source of the mineral matter in the feed coal, and by Sr added during desulfurization treatments. Leachates of the CUB generally have Sr isotope ratios that are different than the bulk value, demonstrating that Sr was not isotopically homogenized during combustion. Variations in the Sr isotopic composition of CUB leachates were correlated with mobility of several major and trace elements; the data suggest that arsenic and lead are held in phases that contain the more radiogenic (high-{sup 87}Sr/{sup 86}Sr) component. A changing Sr isotope ratio of CUB-interacting waters in a disposal environment could forecast the release of certain strongly bound elements of environmental concern. This study lays the groundwork for the application of Sr isotopes as an environmental tracer for CUB–water interaction.

Spivak-Birndorf, Lev J; Stewart, Brian W; Capo, Rosemary C; Chapman, Elizabeth C; Schroeder, Karl T; Brubaker, Tonya M

2011-09-01T23:59:59.000Z

64

METHOD OF AND APPARATUS FOR WITHDRAWING LIGHT ISOTOPIC PRODUCT FROM A LIQUID THERMAL DIFFUSION PLANT  

DOE Patents (OSTI)

An improved process and apparatus are described for removing enriched product from the columns of a thermal diffusion plant for separation of isotopes. In the removal cycle, light product at the top cf the diffusion columns is circulated through the column tops and a shipping cylinder connected thereto unttl the concertation of enriched product in the cylinder reaches the desired point. During the removal, circulation through the bottoms is blocked bv freezing. in the diffusion cycle, the bottom portion is unfrozen, fresh feed is distributed to the bottoms of the columns, ard heavy product is withdrawn from the bottoms, while the tops of the columns are blocked by freezing.

Dole, M.

1959-09-22T23:59:59.000Z

65

Neutron-Rich Isotope Production Using a Uranium Carbide Carbon Nanotubes SPES Target Prototype  

SciTech Connect

The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.

Corradetti, Stefano [ORNL; Biasetto, Lisa [INFN, Laboratori Nazionali di Legnaro, Italy; Manzolaro, Mattia [INFN, Laboratori Nazionali di Legnaro, Italy; Scarpa, Daniele [ORNL; Carturan, S. [INFN, Laboratori Nazionali di Legnaro, Italy; Andrighetto, Alberto [INFN, Laboratori Nazionali di Legnaro, Italy; Prete, Gianfranco [ORNL; Vasquez, Jose L [ORNL; Zanonato, P. [Dipartimento di Scienze Chimiche, Padova, Italy; Colombo, P. [Dipartimento di Ingegneria Meccanica, Padova, Italy; Jost, Carola [University of Tennessee, Knoxville (UTK); Stracener, Daniel W [ORNL

2013-01-01T23:59:59.000Z

66

The Effects of Flux Spectrum Perturbation on Transmutation of Actinides: Optimizing the Production of Transcurium Isotopes  

SciTech Connect

This research presented herein involves the optimization of transcurium production in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Due to the dependence of isotope cross sections on incoming neutron energy, the efficiency with which an isotope is transmuted is highly dependent upon the flux spectrum. There are certain energy bands in which the rate of fission of transcurium production feedstock materials is minimized, relative to the rate of non-fission absorptions. It is proposed that by perturbing the flux spectrum, it is possible to increase the amount of key isotopes, such as 249Bk and 252Cf, that are produced during a transmutation cycle, relative to the consumption of feedstock material. This optimization process is carried out by developing an iterative objective framework involving problem definition, flux spectrum and cross section analysis, simulated transmutation, and analysis of final yields and transmutation parameters. It is shown that it is possible to perturb the local flux spectrum in the transcurium target by perturbing the composition of the target. It is further shown that these perturbations are able to alter the target yields in a non-negligible way. Future work is necessary to develop the optimization framework, and identify the necessary algorithms to update the problem definition based upon progress towards the optimization goals.

Hogle, Susan L [ORNL; Maldonado, G Ivan [ORNL; Alexander, Charles W [ORNL

2012-01-01T23:59:59.000Z

67

New routes for production of proton-rich Tc isotopes  

Science Conference Proceedings (OSTI)

Proton-rich Tc radionuclides have been identified as potential candidates for specific clinical and biological applications in the last decade. So far, these radionuclides have been produced either by proton-induced reaction on Mo targets or {alpha}-particle-induced reaction on Nb targets. This article lightens two heavy-ion-induced production routes of {sup 93,94,95,96}Tc radionuclides through {sup 7}Li+{sup nat}Zr and {sup 9}Be+{sup nat}Y reactions and provides important cross-sectional information in the projectile energy ranges 37-45 MeV and 30-48 MeV, respectively. Excitation functions of those reactions have been measured using the stacked-foil technique followed by the off-line {gamma}-spectrometric studies. Measured cross-sectional data have been interpreted comparing theoretical predictions of the two nuclear reaction model codes PACE-II and ALICE91. Experimental cross sections agreed with the theory. Measured production cross sections of {sup 94,95}Tc have been compared with those produced from the {alpha}+{sup 93}Nb reaction.

Maiti, Moumita; Lahiri, Susanta [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064 (India)

2010-02-15T23:59:59.000Z

68

Former Worker Medical Screening Program - Hanford Former Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Covered DOE Site: Hanford Worker Population Served: Production Workers Principal Investigator: Donna Cragle, PhD Toll-free Telephone: (866) 812-6703 Website: http:...

69

United States Department of Energy Office of Nuclear Energy, Isotope Production and Distribution Program financial statements, September 30, 1996 and 1995  

Science Conference Proceedings (OSTI)

The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium, and related isotope services. Service provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. This report presents the results of the independent certified public accountants` audit of the Isotope Production and Distribution Program`s (Isotope) financial statements as of September 30, 1996.

NONE

1997-04-01T23:59:59.000Z

70

Use case-driven component specification: a medical applications perspective to product line development  

Science Conference Proceedings (OSTI)

Modular and flexible software components can be useful for reuse across a class of domain-specific applications or product lines. By varying the composition of components suited to a particular product line, an assortment of applications can be developed ... Keywords: component specifications, generation of component-based systems, medical domain, software lifecycle

M. Brian Blake; Kevin Cleary; Sohan R. Ranjan; Luis Ibanez; Kevin Gary

2005-03-01T23:59:59.000Z

71

Silver isotopic anomalies in iron meteorites: cosmic-ray production and other possible sources  

Science Conference Proceedings (OSTI)

The sources of excess /sup 107/Ag observed in iron meteorites by Kaiser, Kelly, and Wasserburg (1980) are examined, with emphasis on the reactions of cosmic-ray particles with palladium. The cross sections for the production of the silver isotopes from palladium by energetic cosmic-ray particles are evaluated or estimated and used to calculate spallogenic production rates relative to that of /sup 53/Mn from iron. The upper limit for the production rate of excess /sup 107/Ag by galactic-cosmic-ray particles is 400 atoms/min/kg(Pd) which, over an exposure age of 10/sup 9/ years, would make only 1% of the observed excesses of /sup 107/Ag. Neutron-capture reactions with Pd isotopes produce mainly /sup 109/Ag. Binary fission of a siderophilic superheavy element would be expected to yield more /sup 109/Ag than /sup 107/Ag. An intense proton irradiation in the early solar system probably would produce a lower ratio of (/sup 107/Pd//sup 108/Pd) to (/sup 26/Al//sup 27/Al) than observed in meteorites. Therefore the presence of excess /sup 107/Ag in iron meteorites with large Pd/Ag ratios very likely is due to the incorporation of 6.5 x 10/sup 6/-year /sup 107/Pd of nucleosynthetic origin in these meteorites.

Reedy, R.C.

1980-04-18T23:59:59.000Z

72

Stable Isotope Enrichment Capabilities at ORNL  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

Egle, Brian [ORNL; Aaron, W Scott [ORNL; Hart, Kevin J [ORNL

2013-01-01T23:59:59.000Z

73

Product development of a device for manufacturing medical equipment for use in low-resource settings  

E-Print Network (OSTI)

The objective of this paper is to describe the product design of a device that can be used to create medical supplies on-site in clinics in low-resource settings. The machine uses purely mechanical elements to cut and fold ...

Schlecht, Lisa (Lisa Anne)

2010-01-01T23:59:59.000Z

74

Continuous production of tritium in an isotope-production reactor with a separate circulation system  

DOE Patents (OSTI)

A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium is allowed to flow through the reactor in separate loops in order to facilitate the production and removal of tritium.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

75

METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS  

DOE Patents (OSTI)

A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.

Hoffman, J.D.; Ballou, J.K.

1957-11-19T23:59:59.000Z

76

Studies of Plutonium-238 Production at the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) is a versatile 85 MW{sub th}, pressurized, light water-cooled and -moderated research reactor. The core consists of two fuel elements, an inner fuel element (IFE) and an outer fuel element (OFE), each constructed of involute fuel plates containing high-enriched-uranium (HEU) fuel ({approx}93 wt% {sup 235}U/U) in the form of U{sub 3}O{sub 8} in an Al matrix and encapsulated in Al-6061 clad. An over-moderated flux trap is located in the center of the core, a large beryllium reflector is located on the outside of the core, and two control elements (CE) are located between the fuel and the reflector. The flux trap and reflector house numerous experimental facilities which are used for isotope production, material irradiation, and cold/thermal neutron scattering. Over the past five decades, the US Department of Energy (DOE) and its agencies have been producing radioisotope power systems used by the National Aeronautics and Space Administration (NASA) for unmanned, long-term space exploration missions. Plutonium-238 is used to power Radioisotope Thermoelectric Generators (RTG) because it has a very long half-life (t{sub 1/2} {approx} 89 yr.) and it generates about 0.5 watts/gram when it decays via alpha emission. Due to the recent shortage and uncertainty of future production, the DOE has proposed a plan to the US Congress to produce {sup 238}Pu by irradiating {sup 237}Np as early as in fiscal year 2011. An annual production rate of 1.5 to 2.0 kg of {sup 238}Pu is expected to satisfy these needs and could be produced in existing national nuclear facilities like HFIR and the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Reactors at the Savannah River Site were used in the past for {sup 238}Pu production but were shut down after the last production in 1988. The nation's {sup 237}Np inventory is currently stored at INL. A plan for producing {sup 238}Pu at US research reactor facilities such as the High Flux Isotope Reactor at ORNL has been initiated by the US DOE and NASA for space exploration needs. Two Monte Carlo-based depletion codes, TRITON (ORNL) and VESTA (IRSN), were used to study the {sup 238}Pu production rates with varying target configurations in a typical HFIR fuel cycle. Preliminary studies have shown that approximately 11 grams and within 15 to 17 grams of {sup 238}Pu could be produced in the first irradiation cycle in one small and one large VXF facility, respectively, when irradiating fresh target arrays as those herein described. Important to note is that in this study we discovered that small differences in assumptions could affect the production rates of Pu-238 observed. The exact flux at a specific target location can have a significant impact upon production, so any differences in how the control elements are modeled as a function of exposure, will also cause differences in production rates. In fact, the surface plot of the large VXF target Pu-238 production shown in Figure 3 illustrates that the pins closest to the core can potentially have production rates as high as 3 times those of pins away from the core, thus implying that a cycle-to-cycle rotation of the targets may be well advised. A methodology for generating spatially-dependent, multi-group self-shielded cross sections and flux files with the KENO and CENTRM codes has been created so that standalone ORIGEN-S inputs can be quickly constructed to perform a variety of {sup 238}Pu production scenarios, i.e. combinations of the number of arrays loaded and the number of irradiation cycles. The studies herein shown with VESTA and TRITON/KENO will be used to benchmark the standalone ORIGEN.

Lastres, Oscar [University of Tennessee, Knoxville (UTK); Chandler, David [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Jarrell, Joshua J [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

77

CRC Handbook of Medical Physics, vol. 3  

Science Conference Proceedings (OSTI)

In this work, the care and testing of measurement and diagnostic instruments are described in detail. Difficulties encountered with therapeutic and diagnostic calibrations are explored and solutions are suggested. VOLUME III Physics Teaching for Radiologic Technologists, Physics Teaching for Diagnostic Radiology Residents, Physics Teaching for Nuclear Medicine Residents, Physics Teaching for Radiotherapy Residents, Degree Programs in Medical Physics, Radiobiology Teaching, Non-Degree Medical Physics Training and American Board of Radiology Certifications, Radioactivity and Production of Medical Isotopes, Practical Medical Physics Consulting, Radiologic Terminology, Nuclear Medicine Imaging Techniques, Description of Radiotherapy Procedures, Medical Applications of Ultrasonography and Thermography, Glossary of Medical and Anatomical Terms Used in Medical Physics, Equipment List for Medical Physics and Acquisition Priority. Bibliography of Reference Materials. Index.

Waggener, R.G.; Kereiakes, J.G.; Shalek, R.J.

1984-01-01T23:59:59.000Z

78

Off-label use of medical products in radiation therapy: Summary of the Report of AAPM Task Group No. 121  

Science Conference Proceedings (OSTI)

Medical products (devices, drugs, or biologics) contain information in their labeling regarding the manner in which the manufacturer has determined that the products can be used in a safe and effective manner. The Food and Drug Administration (FDA) approves medical products for use for these specific indications which are part of the medical product's labeling. When medical products are used in a manner not specified in the labeling, it is commonly referred to as off-label use. The practice of medicine allows for this off-label use to treat individual patients, but the ethical and legal implications for such unapproved use can be confusing. Although the responsibility and, ultimately, the liability for off-label use often rests with the prescribing physician, medical physicists and others are also responsible for the safe and proper use of the medical products. When these products are used for purposes other than which they were approved, it is important for medical physicists to understand their responsibilities. In the United States, medical products can only be marketed if officially cleared, approved, or licensed by the FDA; they can be used if they are not subject to or specifically exempt from FDA regulations, or if they are being used in research with the appropriate regulatory safeguards. Medical devices are either cleared or approved by FDA's Center for Devices and Radiological Health. Drugs are approved by FDA's Center for Drug Evaluation and Research, and biological products such as vaccines or blood are licensed under a biologics license agreement by FDA's Center for Biologics Evaluation and Research. For the purpose of this report, the process by which the FDA eventually clears, approves, or licenses such products for marketing in the United States will be referred to as approval. This report summarizes the various ways medical products, primarily medical devices, can legally be brought to market in the United States, and includes a discussion of the approval process, along with manufacturers' responsibilities, labeling, marketing and promotion, and off-label use. This is an educational and descriptive report and does not contain prescriptive recommendations. This report addresses the role of the medical physicist in clinical situations involving off-label use. Case studies in radiation therapy are presented. Any mention of commercial products is for identification only; it does not imply recommendations or endorsements of any of the authors or the AAPM. The full report, containing extensive background on off-label use with several appendices, is available on the AAPM website (http://www.aapm.org/pubs/reports/).

Thomadsen, Bruce R.; Thompson, Heaton H. II; Jani, Shirish K. [Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 (United States); Hagerstown, Maryland 21740 (United States); and others

2010-05-15T23:59:59.000Z

79

MECHANICAL ALLOYING AND THERMAL TREATMENT FOR PRODUCTION OF ZIRCONIUM IRON HYDROGEN ISOTOPE GETTERS  

DOE Green Energy (OSTI)

The objective of this task was to demonstrate that metal hydrides could be produced by mechanical alloying in the quantities needed to support production-scale hydrogen isotope separations. Three starting compositions (ratios of elemental Zr and Fe powders) were selected and attritor milled under argon for times of 8 to 60 hours. In general, milling times of at least 24 hours were required to form the desired Zr{sub 2}Fe and Zr{sub 3}Fe phases, although a considerable amount of unalloyed Zr and Fe remained. Milling in liquid nitrogen does not appear to provide any advantages over milling in hexane, particularly due to the formation of ZrN after longer milling times. Carbides of Zr formed during some of the milling experiments in hexane. Elemental Zr was present in the as-milled material but not detected after annealing for milling times of 48 and 60 hours. It may be that after intimate mixing of the powders in the attritor mill the annealing temperature was sufficient to allow for the formation of a Zr-Fe alloy. Further investigation of this conversion is necessary, and could provide an opportunity for reducing the amount of unreacted metal powder after milling.

Fox, K.

2008-02-20T23:59:59.000Z

80

Audit Report - Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit, OAS-FS-13-09  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audits and Inspections Audits and Inspections Audit Report Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit OAS-FS-13-09 January 2013 MEMORANDUM FOR THE DIRECTOR, OFFICE OF SCIENCE FROM: Daniel M. Weeber Assistant Inspector General for Office of Inspector General SUBJECT: INFORMATION Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit The attached report presents the results of the independent certified public accountants' audit of the Department of Energy's Isotope Development and Production for Research and Applications Program's (Isotope Program) and 2009. The Office of Inspector General (OIG) engaged the independent public accounting firm of

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Discovery of the Mercury Isotopes  

E-Print Network (OSTI)

Forty mercury isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

D. Meierfrankenfeld; M. Thoennessen

2009-12-01T23:59:59.000Z

82

An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Isotopic Composition Predictions  

SciTech Connect

The expanded use of burnup credit in the United States (U.S.) for storage and transport casks, particularly in the acceptance of credit for fission products, has been constrained by the availability of experimental fission product data to support code validation. The U.S. Nuclear Regulatory Commission (NRC) staff has noted that the rationale for restricting the Interim Staff Guidance on burnup credit for storage and transportation casks (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issues of burnup credit criticality validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the isotopic composition (depletion) validation approach and resulting observations and recommendations. Validation of the criticality calculations is addressed in a companion paper at this conference. For isotopic composition validation, the approach is to determine burnup-dependent bias and uncertainty in the effective neutron multiplication factor (keff) due to bias and uncertainty in isotopic predictions, via comparisons of isotopic composition predictions (calculated) and measured isotopic compositions from destructive radiochemical assay utilizing as much assay data as is available, and a best-estimate Monte Carlo based method. This paper (1) provides a detailed description of the burnup credit isotopic validation approach and its technical bases, (2) describes the application of the approach for representative pressurized water reactor and boiling water reactor safety analysis models to demonstrate its usage and applicability, (3) provides reference bias and uncertainty results based on a quality-assurance-controlled prerelease version of the Scale 6.1 code package and the ENDF/B-VII nuclear cross section data.

Radulescu, Georgeta [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Wagner, John C [ORNL

2011-01-01T23:59:59.000Z

83

Distributed Production of Radionuclide Mo-99 Charles A. Gentile...  

NLE Websites -- All DOE Office Websites (Extended Search)

A. Gentile, Adam B. Cohen and George Ascione This invention is for the production of Technetium-99m (Tc-99m), a widely used medical isotope in a distributed and in-situ fashion....

84

Short-lived isotopes and 23Na production in low mass AGB Stars  

E-Print Network (OSTI)

We discuss the synthesis of some short-lived isotopes and of 23Na in thermally pulsing AGB stars with initial mass of 2 Msun and two different metallicities (Z=1.5e-2, corresponding to the metal amount in the Sun, and Z=1e-4), representative of disk and halo stars, respectively. The different nucleosynthesis channels are illustrated in some details. As previously found, the 13C formed after each third dredge up episode is usually completely consumed by alpha captures before the onset of the subsequent thermal pulse, releasing neutrons. This is the most efficient neutron source in low mass AGB stars and the resulting s-process nucleosynthesis is at the origin of the solar main component. However, in the solar metallicity model, we find that the temperature of the first formed 13C pocket remains too low during the interpulse and the 13C is not completely burnt, being partially engulfed in the convective zone generated by the following thermal pulse. Due to the rapid convective mixing in this zone, the 13C is exposed to a larger temperature and a nucleosynthesis characterized by a relatively high neutron density develops. The main effect is the strong enhancement of isotopes located beyond some critical branching in the neutron-capture path, like 60Fe, otherwise only marginally produced during a standard s-process nucleosynthesis.

S. Cristallo; R. Gallino; O. Straniero; L. Piersanti; I. Dominguez

2006-06-15T23:59:59.000Z

85

The laser ion source trap for highest isobaric selectivity in online exotic isotope production  

Science Conference Proceedings (OSTI)

The improvement in the performance of a conventional laser ion source in the laser ion source and trap (LIST) project is presented, which envisages installation of a repeller electrode and a linear Paul trap/ion guide structure. This approach promises highest isobaric purity and optimum temporal and spatial control of the radioactive ion beam produced at an online isotope separator facility. The functionality of the LIST was explored at the offline test separators of University of Mainz (UMz) and ISOLDE/CERN, using the UMz solid state laser system. Ionization efficiency and selectivity as well as time structure and transversal emittance of the produced ion beam was determined. Next step after complete characterization is the construction and installation of the radiation-hard final trap structure and its first online application.

Schwellnus, F.; Gottwald, T.; Mattolat, C.; Wendt, K. [Institut fuer Physik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Blaum, K. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Catherall, R.; Crepieux, B.; Fedosseev, V.; Marsh, B.; Rothe, S.; Stora, T. [CERN, CH-1211 Geneva 23 (Switzerland); Kluge, H.-J. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany)

2010-02-15T23:59:59.000Z

86

Method for separating boron isotopes  

SciTech Connect

A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

Rockwood, Stephen D. (Los Alamos, NM)

1978-01-01T23:59:59.000Z

87

Short-lived isotopes and 23Na production in low mass AGB Stars  

E-Print Network (OSTI)

We discuss the synthesis of some short-lived isotopes and of 23Na in thermally pulsing AGB stars with initial mass of 2 Msun and two different metallicities (Z=1.5e-2, corresponding to the metal amount in the Sun, and Z=1e-4), representative of disk and halo stars, respectively. The different nucleosynthesis channels are illustrated in some details. As previously found, the 13C formed after each third dredge up episode is usually completely consumed by alpha captures before the onset of the subsequent thermal pulse, releasing neutrons. This is the most efficient neutron source in low mass AGB stars and the resulting s-process nucleosynthesis is at the origin of the solar main component. However, in the solar metallicity model, we find that the temperature of the first formed 13C pocket remains too low during the interpulse and the 13C is not completely burnt, being partially engulfed in the convective zone generated by the following thermal pulse. Due to the rapid convective mixing in this zone, the 13C is ex...

Cristallo, S; Straniero, O; Piersanti, L; Dominguez, I

2006-01-01T23:59:59.000Z

88

Assemblies with both target and fuel pins in an isotope-production reactor  

DOE Patents (OSTI)

A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins adjacent to fuel pins in order to increase the tritium production rate.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

89

Fuel pins with both target and fuel pellets in an isotope-production reactor  

DOE Patents (OSTI)

A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

90

Automated product recovery in a HG-196 photochemical isotope separation process  

DOE Patents (OSTI)

A method of removing deposited product from a photochemical reactor used in the enrichment of .sup.196 Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

1992-01-01T23:59:59.000Z

91

Isotope ratio analysis of actinides, fission products, and geolocators by high-efficiency multi-collector thermal ionization mass spectrometry  

SciTech Connect

A ThermoFisher 'Triton' multi-collector thermal ionization mass spectrometer (MC-TIMS) was evaluated for trace and ultra-trace level isotoperatioanalysis of actinides (uranium, plutonium, and americium), fission products and geolocators (strontium, cesium, and neodymium). Total efficiencies (atoms loaded to ions detected) of up to 0.5-2% for U, Pu, and Am, and 1-30% for Sr, Cs, and Nd can be reported employing resin bead load techniques onto flat ribbon Re filaments or resin beads loaded into a millimeter-sized cavity drilled into a Re rod. This results in detection limits of <0.1 fg (10{sup 4} atoms to 10{sup 5} atoms) for {sup 239-242+244}Pu, {sup 233+236}U, {sup 241-243}Am, {sup 89,90}Sr, and {sup 134,135,137}Cs, and {le} 1 pg for natural Nd isotopes (limited by the chemical processing blank) using a secondary electron multiplier (SEM) or multiple-ion counters (MICs). Relative standard deviations (RSD) as small as 0.1% and abundance sensitivities of 1 x 10{sup 6} or better using a SEM are reported here. Precisions of RSD {approx} 0.01-0.001% using a multi-collector Faraday cup array can be achieved at sub-nanogram concentrations for strontium and neodymium and are suitable to gain crucial geolocation information. The analytical protocols reported herein are of particular value for nuclear forensic and nuclear safeguard applications.

Bürger, Stefan [New Brunswick Laboratory, Argonne, IL; Riciputi, Lee R [Los Alamos National Laboratory (LANL); Bostick, Debra A [ORNL; Turgeon, Steven [University of Alberta, Edmondton, Canada; McBay, Eddie H [ORNL; Lavelle, Mark [ORNL

2009-01-01T23:59:59.000Z

92

Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit, OAS-FS-13-11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit OAS-FS-13-11 February 2013 January 31, 2013 Mr. Gregory Friedman, Inspector General Dr. Jehanne Gillo, Director, Facilities and Project Management Division, Office of Nuclear Physics U.S. Department of Energy Washington, DC 20585 Dear Mr. Friedman and Dr. Gillo: We have audited the balance sheet of the United States Department of Energy's (Department or DOE) Isotope Development and Production for Research and Applications Program (the Program) (a component of the Department) as of September 30, 2010, and have issued our report thereon dated December 21, 2012. In planning and performing our audit of the balance sheet, in accordance with auditing standards

93

Isotopes facilities deactivation project at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

The production and distribution of radioisotopes for medical, scientific, and industrial applications has been a major activity at Oak Ridge National Laboratory (ORNL) since the late 1940s. As the demand for many of these isotopes grew and their sale became profitable, the technology for the production of the isotopes was transferred to private industry, and thus, many of the production facilities at ORNL became underutilized. In 1989, the U.S. Department of Energy (DOE) instructed ORNL to identify and prepare various isotopes production facilities for safe shutdown. In response, ORNL identified 19 candidate facilities for shutdown and established the Isotopes Facilities Shutdown Program. In 1993, responsibility for the program was transitioned from the DOE Office of Nuclear Energy to the DOE Office of Environmental Management and Uranium Enrichment Operation`s Office of Facility Transition and Management. The program was retitled the Isotopes Facilities Deactivation Project (IFDP), and implementation responsibility was transferred from ORNL to the Lockheed Martin Energy Systems, Inc. (LMES), Environmental Restoration (ER) Program.

Eversole, R.E.

1997-05-01T23:59:59.000Z

94

Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

Freels, James D [ORNL; Jain, Prashant K [ORNL; Hobbs, Randy W [ORNL

2012-01-01T23:59:59.000Z

95

THE ROLE OF THE CYCLOTRON IN MEDICAL RESEARCH  

E-Print Network (OSTI)

925 THE ROLE OF CYCLOTRON IN MEDICAL RESEARCH By Joseph G.1950 TEE ROLE OF CYCLOTRON IN MEDICAL RESEARCH By Joseph G.of radioactive isotopes in medical research can be conven-

Hamilton, Joseph G.

2011-01-01T23:59:59.000Z

96

EA-1488: Environmental Assessment for the U-233 Disposition, Medical  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

488: Environmental Assessment for the U-233 Disposition, 488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee The purpose of the proposed action evaluated in this environmental assessment (EA) is the processing of uranium-233 (233U) stored at the Oak Ridge National Laboratory (ORNL) and other small quantities of similar material currently stored at other U. S. Department of Energy (DOE) sites in order to render it suitable for safe, long-term, economical storage. The 233U is stored within Bldg. 3019A, which is part of the Bldg. 3019

97

Oxygen Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of...

98

Medical Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Plans Retiree Medical Insurance Blue Cross Blue Shield of New Mexico (BCBSNM) is the provider of medical benefits. Contact Retiree Insurance Providers Medical plan options...

99

Accelerator Production Options for 99MO  

SciTech Connect

Shortages of {sup 99}Mo, the most commonly used diagnostic medical isotope, have caused great concern and have prompted numerous suggestions for alternate production methods. A wide variety of accelerator-based approaches have been suggested. In this paper we survey and compare the various accelerator-based approaches.

Bertsche, Kirk; /SLAC

2010-08-25T23:59:59.000Z

100

Design, construction, and operation of a laboratory scale reactorfor the production of high-purity, isotopically enriched bulksilicon  

DOE Green Energy (OSTI)

The design and operation of a recirculating flow reactor designed to convert isotopically enriched silane to polycrystalline Si with high efficiency and chemical purity is described. The starting material is SiF{sub 4}, which is enriched in the desired isotope by a centrifuge method and subsequently converted to silane. In the reactor, the silane is decomposed to silicon on the surface of a graphite starter rod (3 mm diameter) heated to 700-750 C. Flow and gas composition (0.3-0.5% silane in hydrogen) are chosen to minimize the generation of particles by homogeneous nucleation of silane and to attain uniform deposition along the length of the rod. Growth rates are 5 {micro}m/min, and the conversion efficiency is greater than 95%. A typical run produces 35 gm of polycrystalline Si deposited along a 150 mm length of the rod. After removal of the starter rod, dislocation-free single crystals are formed by the floating zone method. Crystals enriched in all 3 stable isotopes of Si have been made: {sup 28}Si (99.92%), {sup 29}Si (91.37%), and {sup 30}Si (88.25%). Concentrations of electrically active impurities (P and B) are as low as mid-10{sup 13} cm{sup -3}. Concentrations of C and O lie below 10{sup 16} and 10{sup 15} cm{sup -3}, respectively.

Ager III, J.W.; Beeman, J.W.; Hansen, W.L.; Haller, E.E.

2004-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site  

Science Conference Proceedings (OSTI)

Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)

1991-09-01T23:59:59.000Z

102

The Uncertainties in the 22Ne + alpha-capture Reaction Rates and the Production of the Heavy Magnesium Isotopes in Asymptotic Giant Branch Stars of Intermediate Mass  

E-Print Network (OSTI)

We present new rates for the 22Ne(alpha, n)25Mg and 22Ne(alpha,gamma)26Mg reactions, with uncertainties that have been considerably reduced compared to previous estimates, and we study how these new rates affect the production of the heavy magnesium isotopes in models of intermediate mass Asymptotic Giant Branch (AGB) stars of different initial compositions. All the models have deep third dredge-up, hot bottom burning and mass loss. Calculations have been performed using the two most commonly used estimates of the 22Ne + alpha rates as well as the new recommended rates, and with combinations of their upper and lower limits. The main result of the present study is that with the new rates, uncertainties on the production of isotopes from Mg to P coming from the 22Ne + alpha-capture rates have been considerably reduced. We have therefore removed one of the important sources of uncertainty to effect models of AGB stars. We have studied the effects of varying the mass-loss rate on nucleosynthesis and discuss other uncertainties related to the physics employed in the computation of stellar structure, such as the modeling of convection, the inclusion of a partial mixing zone and the definition of convective borders. These uncertainties are found to be much larger than those coming from 22Ne + alpha-capture rates, when using our new estimates. Much effort is needed to improve the situation for AGB models.

A. Karakas; M. Lugaro; M. Wiescher; J. Goerres; C. Ugalde

2006-01-27T23:59:59.000Z

103

Carbon Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Carbon Isotopes Atmospheric Trace Gases » Carbon Isotopes Carbon Isotopes Gateway Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of Various Isotopic Species from Ice Cores Carbon-13 13C in CO Measurements from Niwot Ridge, Colorado and Montana de Oro, California (Tyler) 13C in CO2 NOAA/CMDL Flask Network (White and Vaughn) CSIRO GASLAB Flask Network (Allison, Francey, and Krummel) CSIRO in situ measurements at Cape Grim, Tasmania (Francey and Allison) Scripps Institution of Oceanography (Keeling et al.) 13C in CH4 NOAA/CMDL Flask Network (Miller and White) Northern & Southern Hemisphere Sites (Quay and Stutsman) Northern & Southern Hemisphere Sites (Stevens)

104

Heavy isotope production by multinucleon transfer reactions with /sup 254/Es. [101 MeV /sup 16/O, 98 MeV /sup 18/O, 127 MeV /sup 22/Ne  

Science Conference Proceedings (OSTI)

Fast automated on-line and quasi-on-line radiochemical techniques were applied to search for new isotopes, to measure their decay characteristics, and to study the cross sections of the heaviest, most neutron-rich actinide isotopes in reactions of /sup 16,18/O and /sup 22/Ne projectiles with /sup 254/Es as a target. The measured yields for isotopes up to Lr-260 are three or more orders of magnitude higher than in any other reaction used so far. A comparison with data for similar transfers from /sup 248/Cm targets is made. Transfer cross sections are extrapolated for the production of unknown, neutron-rich isotopes of elements 101 through 105, and the unique potential of /sup 254/Es as a target to make these exoctic nuclei accessible is demonstrated. 18 refs., 2 figs., 1 tab.

Schaedel, M.; Bruechle, W.; Bruegger, M.; Gaeggeler, H.; Moody, K.J.; Schardt, D.; Suemmerer, K.; Hulet, E.K.; Douran, A.D.; Dougan, R.J.

1985-01-01T23:59:59.000Z

105

Nuclear Energy Protocol for Research Isotopes Owen Lowe  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protocol for Protocol for Research Isotopes Owen Lowe Office of Isotopes for Medicine and Science Office of Nuclear Energy, Science and Technology April 16, 2002 Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology Lowe/April16_02 NEPRI to NERAC.ppt (2) Nuclear Energy Protocol For Research Isotopes Nuclear Energy Protocol For Research Isotopes Why NEPRI? 6 NEPRI implements DOE funding priorities for fiscal year 2003 6 NEPRI will * Bring order to DOE's responses to requests for research isotopes * Introduce a high-quality peer review to the selection of research isotopes * Enable DOE to concentrate on operating its unique isotope production facilities Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology

106

Management Letter on the Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2009 Balance Sheet Audit, OAS-FS-12-09  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Balance 09 Balance Sheet Audit OAS-FS-12-09 June 2012 January 30, 2012 Mr. Gregory Friedman, Inspector General Dr. Jehanne Gillo, Director, Facilities and Project Management Division, Office of Nuclear Physics U.S. Department of Energy Washington, DC 20585 Dear Mr. Friedman and Dr. Gillo: We have audited the balance sheet of the United States Department of Energy's (Department or DOE) Isotope Development and Production for Research and Applications Program (the Program) (a component of the Department) as of September 30, 2009, and have issued our report thereon dated January 30, 2012. In planning and performing our audit of the balance sheet, in accordance with auditing standards generally accepted in the United States of America, we considered the Program's internal control over financial

107

Supplement Analysis for the Programmatic Environmental Impact Statement (PEIS) for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, (DOE/EIS-0310-SA-01) (08/05/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0-SA-01 0-SA-01 Supplement Analysis for the Programmatic Environmental Impact Statement (PEIS) for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility Introduction and Background The Department of Energy (DOE), pursuant to the National Environmental Policy Act (NEPA), issued the Final PEIS for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility (Nuclear Infrastructure (NI) PEIS, DOE/EIS-0310) in December 2000. Under the Authority of the Atomic Energy Act of 1954, the DOE's missions include: (1) producing isotopes for research and applications

108

Radiochemistry Student, Postdoc and Invited Speaker Support for New Directions in Isotope Production, Nuclear Forensics and Radiochemistry Supported by the DOE  

SciTech Connect

The Division of Nuclear Chemistry and Technology (NUCL) of the American Chemistry Society (ACS) is sponsoring a symposium entitled "New Directions in Isotope Production, Nuclear Forensics and Radiochemistry Supported by the DOE" at the 240th ACS National Meeting in Boston, MA 22-26 August 2010. Radiochemistry and nuclear science is a critical area of research and funding for which the DOE has provided support over the years. Radiochemistry is undergoing a renaissance in interdisciplinary areas including medicine, materials, nanotechnology, nuclear forensics and energy. For example, interest in nuclear energy is growing in response to global warming. The field of nuclear forensics has grown significantly since 9/11 in response to potential terror threats and homeland security. Radioactive molecular imaging agents and targeted radiotherapy are revolutionizing molecular medicine. The need for radiochemists is growing, critical, and global. The NUCL Division of the ACS has been involved in various areas of radiochemistry and nuclear chemistry for many years, and is the host of the DOE supported Nuclear Chemistry Summer Schools. This Symposium is dedicated to three of the critical areas of nuclear science, namely isotope production, nuclear forensics and radiochemistry. An important facet of this meeting is to provide support for young radiochemistry students/postdoctoral fellows to attend this Symposium as participants and contributors. The funding requested from DOE in this application will be used to provide bursaries for U.S. students/postdoctoral fellows to enable them to participate in this symposium at the 240th ACS National Meeting, and for invited scientists to speak on the important issues in these areas.

Jurisson, Silvia, S.

2011-04-11T23:59:59.000Z

109

Progress in the Use of Isotopes: The Atomic Triad - Reactors, Radioisotopes and Radiation  

DOE R&D Accomplishments (OSTI)

Recent years have seen a substantial growth in the use of isotopes in medicine, agriculture, and industry: up to the minute information on the production and use of isotopes in the U.S. is presented. The application of radioisotopes to industrial processes and manufacturing operations has expanded more rapidly than any one except its most ardent advocates expected. New uses and new users are numerous. The adoption by industry of low level counting techniques which make possible the use of carbon-14 and tritium in the control of industrial processes and in certain exploratory and research problems is perhaps most promising of current developments. The latest information on savings to industry will be presented. The medical application of isotopes has continued to develop at a rapid pace. The current trend appears to be in the direction of improvements in technique and the substitution of more effective isotopes for those presently in use. Potential and actual benefits accruing from the use of isotopes in agriculture are reviewed. The various methods of production of radioisotopes are discussed. Not only the present methods but also interesting new possibilities are covered. Although isotopes are but one of the many peaceful uses of the atom, it is the first to pay its way. (auth)

Libby, W. F.

1958-08-04T23:59:59.000Z

110

I. Nuclear Production Reaction and Chemical Isolation Procedure for 240Am II. New Superheavy Element Isotopes: 242Pu(48Ca,5n)285-114  

E-Print Network (OSTI)

Plot of radioactivity in plutonium-isopropanol solutions asion-induced reac- tions in plutonium isotopes. Phys. Rev. ,uranium, neptunium, and plutonium – An updating. Tech. Rep.

Ellison, Paul Andrew

2011-01-01T23:59:59.000Z

111

Compelling Research Opportunities using Isotopes  

SciTech Connect

Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.

None

2009-04-23T23:59:59.000Z

112

ISOTOPE SEPARATORS  

DOE Patents (OSTI)

An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

Bacon, C.G.

1958-08-26T23:59:59.000Z

113

Perspective for Female Medical Physicists  

Science Conference Proceedings (OSTI)

Due to cultural and religious reasons, Pakistani women can be reluctant to seek medical attention for disorders affecting their genitals or breasts. As a result, in the case of cervical and breast cancers, oncological treatment is often not received until the diseases are in the late stages. Once a cancer is classified and the tumor marked, the role of the medical physicist begins. Medical physicists' responsibilities include treatment planning, supervising treatment through radiation, dosimetry, contouring, training, equipment selection, education, research, and supervising radiotherapy facilities. In brachytherapy, isotopes are placed at the tumor site in the form of wires or seeds. There are very few female medical physicists in Pakistan. This leads to further hesitation on the part of many women to seek treatment. To help female patients obtain needed medical care, female physics students should be encouraged to pursue the emerging field of medical physics. This would provide a new professional opportunity for female physics students and give comfort to female patients.

Naqvi, Syed Mansoor [Department of Radiology, Aga Khan University Hospital, Karachi (Pakistan); Hasnain, Aziz Fatima [Center for Physics Education, Karachi (Pakistan)

2009-04-19T23:59:59.000Z

114

Medical and Medical Related Questions  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Related Questions We do not have any medical experts in our volunteer expert pool. We recommend that you contact your health care professional regarding your question, if...

115

Final Report on Isotope Ratio Techniques for Light Water Reactors  

SciTech Connect

The Isotope Ratio Method (IRM) is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods.

Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Mitchell, Mark R.; Meriwether, George H.; Reid, Bruce D.

2009-07-01T23:59:59.000Z

116

Hanford Isotope Project strategic business analysis Cesium-137 (Cs-137)  

SciTech Connect

The purpose of this business analysis is to address the beneficial reuse of Cesium 137 (Cs-137) in order to utilize a valuable national asset and possibly save millions of tax dollars. Food irradiation is the front runner application along with other uses. This business analysis supports the objectives of the Department of Energy National Isotope Strategy distributed in August 1994 which describes the DOE plans for the production and distribution of isotope products and services. As part of the Department`s mission as stated in that document. ``The Department of Energy will also continue to produce and distribute other radioisotopes and enriched stable isotopes for medical diagnostics and therapeutics, industrial, agricultural, and other useful applications on a businesslike basis. This is consistent with the goals and objectives of the National Performance Review. The Department will endeavor to look at opportunities for private sector to co-fund or invest in new ventures. Also, the Department will seek to divest from ventures that can more profitably or reliably be operated by the private sector.``

NONE

1995-10-01T23:59:59.000Z

117

SPIE Medical Imaging Medical Imaging  

E-Print Network (OSTI)

1 SPIE Medical Imaging 2006 1 Medical Imaging Fundamentals Kenneth H. Wong, Ph.D. Division of Computer Assisted Interventions and Medical Robotics (CAIMR) Imaging Science and Information Systems (ISIS) Center Department of Radiology Georgetown University SPIE Medical Imaging 2006 2 Main Themes · Describe

Miga, Michael I.

118

Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site  

Science Conference Proceedings (OSTI)

In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

Not Available

1991-09-01T23:59:59.000Z

119

Assessment of Non-traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities: Annual Report Year 2  

Science Conference Proceedings (OSTI)

The objective of this work is to identify isotopic ratios suitable for analysis via mass spectrometry that distinguish between commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium, and products from nuclear weapons explosions. Methods will also be determined to distinguish the above from medical and industrial radionuclide sources. Mass spectrometry systems will be identified that are suitable for field measurement of such isotopes in an expedient manner. Significant progress has been made with this project within the past year: (1) Isotope production from commercial nuclear fuel cycles and nuclear weapons fuel cycles have been modeled with the ORIGEN and MCNPX codes. (2) MCNPX has been utilized to calculate isotopic inventories produced in a short burst fast bare sphere reactor (to approximate the signature of a nuclear weapon). (3) Isotopic ratios have been identified that are good for distinguishing between commercial and military fuel cycles as well as between nuclear weapons and commercial nuclear fuel cycles. (4) Mass spectrometry systems have been assessed for analysis of the fission products of interest. (5) A short-list of forensic ratios have been identified that are well suited for use in portable mass spectrometry systems.

Biegalski, S; Buchholz, B

2009-08-26T23:59:59.000Z

120

Record of Decision for the Programmatic Environmental Impact Statement for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the U.S. (DOE/EIS-0310) (1/26/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

77 77 Federal Register / Vol. 66, No. 18 / Friday, January 26, 2001 / Notices DEPARTMENT OF ENERGY Record of Decision for the Programmatic Environmental Impact Statement for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility AGENCY: Department of Energy (the Department). ACTION: Record of Decision (ROD). SUMMARY: Under the authority of the Atomic Energy Act of 1954, the Department's missions include: (1) Producing isotopes for research and applications in medicine and industry; (2) meeting nuclear material needs of other Federal agencies; and (3) conducting research and development activities for civilian use of nuclear power. The Department has evaluated

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The use of post detonation analysis of stable isotope ratios to determine the type and production process of the explosive involved  

SciTech Connect

The detonation of a series of explosives was performed in a controlled manner to collect the resulting, solid residue or {open_quotes}soot.{close_quotes} This residue was examined to determine the ratios of the stable carbon, hydrogen, and nitrogen isotopes. The goal of the experiment was to determine if these ratios could be used to indicate, from the post detonation residues, the type and origin of the detonated explosive. The ratios of the stated stable isotopes in the undetonated explosive were also determined. Despite some reservations in the quality of the data resulting from contamination by nonexplosive components, certain trends can be discerned. (1) Carbon isotopes allow aromatic explosives to be distinguished from nonaromatic explosives. This trend seems to carry through the detonation so that the distinction might be made after the fact. (2) The amination process for TATB can be detected through the hydrogen and, to some extent, the nitrogen isotope ratios. Unfortunately, the data are not sufficiently good to determine if this differential carries through the detonation. (3) The relative magnitude and sign of the nitrogen isotope ratio seems to carry through the detonation: some exchange with atmospheric nitrogen is probable. Even though this set of experiments must also be viewed as preliminary, there is a definite indication that certain qualitative characteristics of explosives can be detected after the detonation. This {open_quotes}signature{close_quotes} could have application to both intelligence and counter terrorism.

McGuire, R.R.; Velsko, C.A.; Lee, C.G.; Raber, E.

1993-03-05T23:59:59.000Z

122

Glossary Term - Isotope  

NLE Websites -- All DOE Office Websites (Extended Search)

Helios Previous Term (Helios) Glossary Main Index Next Term (Joule) Joule Isotope The Three Isotopes of Hydrogen - Protium, Deuterium and Tritium Atoms that have the same number of...

123

Discovery of Scandium, Titanium, Mercury, and Einsteinium Isotopes  

E-Print Network (OSTI)

Currently, twenty-three scandium, twenty-five titanium, forty mercury and seventeen einsteinium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

D. Meierfrankenfeld; A. Bury; M. Thoennessen

2010-03-26T23:59:59.000Z

124

Stable isotope studies  

SciTech Connect

The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

Ishida, T.

1992-01-01T23:59:59.000Z

125

Method for separating isotopes  

DOE Patents (OSTI)

Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

Jepson, B.E.

1975-10-21T23:59:59.000Z

126

Medical Technologies Innovation Training 2014 BIOINNOVATE FELLOWSHIP  

E-Print Network (OSTI)

Medical Technologies Innovation Training 2014 BIOINNOVATE FELLOWSHIP BioInnovate Ireland is now medical technology companies and for the development of innovative medical device products. Ireland's medical technology sector consists of over 250 companies, over 25,000 employees, and 13 of the world's top

Prinz, Friedrich B.

127

Isotope separation by photochromatography  

DOE Patents (OSTI)

An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

Suslick, Kenneth S. (Stanford, CA)

1977-01-01T23:59:59.000Z

128

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

Stevens, C.G.

1978-08-29T23:59:59.000Z

129

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

Stevens, Charles G. (Pleasanton, CA)

1978-01-01T23:59:59.000Z

130

Medical Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Sites Name: Jenielle Location: NA Country: NA Date: NA Question: I started itching Aug. 1999. Diagnosed with ITP Oct.1999. I am in remission With a platelet count in...

131

I. Nuclear Production Reaction and Chemical Isolation Procedure for 240Am II. New Superheavy Element Isotopes: 242Pu(48Ca,5n)285-114  

E-Print Network (OSTI)

material and common nuclear fission products in the 1 eV –of destroying long-lived nuclear fission products by neutronFlerov Laboratory of Nuclear Reactions Fission product Focal

Ellison, Paul Andrew

2011-01-01T23:59:59.000Z

132

Isotope Enrichment Calculator  

Science Conference Proceedings (OSTI)

... incremental isotopic percentages which are compared with an input experimentally derived profile. The theoretical profile of 15 N percentage which ...

2012-10-09T23:59:59.000Z

133

Isotopic Generation and Confirmation of the PWR Application Model   

SciTech Connect

The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from pressurized water reactors (PWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000). The isotopic database consists of the set of 14 actinides and 15 fission products presented in Section 3.5.2.1.1 of YMP 2000 for use in CSNF burnup credit. This set of 29 isotopes is referred to as the principal isotopes. The oxygen isotope from the UO{sub 2} fuel is also included in the database. The isotopic database covers enrichments of {sup 235}U ranging from 1.5 to 5.5 weight percent (wt%) and burnups ranging from approximately zero to 75 GWd per metric ton of uranium (mtU). The choice of fuel assembly and operating history values used in generating the isotopic database are provided is Section 5. Tables of isotopic concentrations for the 29 principal isotopes (plus oxygen) as a function of enrichment and burnup are provided in Section 6.1. Results of the confirmation of the conservatism with respect to criticality in the isotopic concentration values are provided in Section 6.2.

L.B. Wimmer

2003-11-10T23:59:59.000Z

134

Production and supply of radioisotopes with high-energy particle accelerators current status and future directions  

Science Conference Proceedings (OSTI)

Although the production of radioisotopes in reactors or in low to medium energy cyclotrons appears to be relatively well established, especially for those isotopes that are routinely used and have a commercial market, certain isotopes can either be made only in high-energy particle accelerators or their production is more cost effective when made this way. These facilities are extremely expensive to build and operate, and isotope production is, in general, either not cost-effective or is in conflict with their primary mandate or missions which involve physics research. Isotope production using high-energy accelerators in the US, therefore, has been only an intermittent and parasitic activity. However, since a number of isotopes produced at higher energies are emerging as being potentially useful for medical and other applications, there is a renewed concern about their availability in a continuous and reliable fashion. In the US, in particular, the various aspects of the prediction and availability of radioisotopes from high-energy accelerators are presently undergoing a detailed scrutiny and review by various scientific and professional organizations as well as the Government. A number of new factors has complicated the supply/demand equation. These include considerations of cost versus needs, reliability factors, mission orientation, research and educational components, and commercial viability. This paper will focus on the present status and projected needs of radioisotope production with high-energy accelerators in the US, and will compare and examine the existing infrastructure in other countries for this purpose.

Srivastava, S.C.; Mausner, L.F.

1994-03-01T23:59:59.000Z

135

Isotopically controlled semiconductors  

SciTech Connect

Semiconductor bulk crystals and multilayer structures with controlled isotopic composition have attracted much scientific and technical interest in the past few years. Isotopic composition affects a large number of physical properties, including phonon energies and lifetimes, bandgaps, the thermal conductivity and expansion coefficient and spin-related effects. Isotope superlattices are ideal media for self-diffusion studies. In combination with neutron transmutation doping, isotope control offers a novel approach to metal-insulator transition studies. Spintronics, quantum computing and nanoparticle science are emerging fields using isotope control.

Haller, Eugene E.

2001-12-21T23:59:59.000Z

136

ISOTOPE CONVERSION DEVICE  

DOE Patents (OSTI)

This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

1957-12-01T23:59:59.000Z

137

ARM - Measurement - Isotope ratio  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsIsotope ratio govMeasurementsIsotope ratio ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Isotope ratio Ratio of stable isotope concentrations. Categories Atmospheric Carbon, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes Field Campaign Instruments FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes Datastreams FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes

138

Medical Discoveries Inc | Open Energy Information  

Open Energy Info (EERE)

Discoveries Inc Jump to: navigation, search Name Medical Discoveries Inc. Place Los Angeles, California Zip 90045 Product Los Angeles-based listed firm that terminated its prior...

139

Sources, production et transfert du carbone organique dissous dans les bassins versants élémentaires sur socle : apports des isotopes stables du carbone.  

E-Print Network (OSTI)

??En dépit de son importance pour les écosystčmes aquatiques, l'origine et les mécanismes de production du carbone organique dissous (COD) sont toujours sujets ŕ discussion.… (more)

Lambert, Thibault

2013-01-01T23:59:59.000Z

140

EA-1929: Final Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE))

NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Laser Isotope Separation Employing Condensation Repression  

SciTech Connect

Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

Eerkens, Jeff W.; Miller, William H.

2004-09-15T23:59:59.000Z

142

Medical Signal Searching  

E-Print Network (OSTI)

Heart Failure. Journal of Medical Systems (JOMS), June 2011.heartbeat classification. ” Medical engineering & physics, [M. Gerla. “Opportunistic medical monitoring using bluetooth

Woodbridge, Jonathan Scott

2012-01-01T23:59:59.000Z

143

Measurement of Trace Uranium Isotopes  

Science Conference Proceedings (OSTI)

The extent to which thermal ionization mass spectrometry (TIMS) can measure trace quantities of 233U and 236U in the presence of a huge excess of natural uranium is evaluated. This is an important nuclear non-proliferation measurement. Four ion production methods were evaluated with three mass spectrometer combinations. The most favorable combinations are not limited by abundance sensitivity; rather, the limitations are the ability to generate a uranium ion beam of sufficient intensity to obtain the required number of counts on the minor isotopes in relationship to detector background. The most favorable situations can measure isotope ratios in the range of E10 if sufficient sample intensity is available. These are the triple sector mass spectrometer with porous ion emitters (PIE) and the single sector mass spectrometer with energy filtering.

Matthew G. Watrous; James E. Delmore

2011-05-01T23:59:59.000Z

144

Cold Fusion Production and Decay of Neutron-Deficient Isotopes of Dubnium and Development of Extraction Systems for Group V Elements  

E-Print Network (OSTI)

separator for the study of fusion reaction products."by heavy-ion induced fusion?" Zeitschrift Fur Physik a-J. Wilczy?ski (2003). "Fusion by Diffusion." Acta Physica

Gates, Jacklyn M.

2008-01-01T23:59:59.000Z

145

Cold Fusion Production and Decay of Neutron-Deficient Isotopes of Dubnium and Development of Extraction Systems for Group V Elements  

E-Print Network (OSTI)

of transfermium elements in cold fusion reactions." Physical1. Introduction Part I: Cold Fusion Production and Decay of1.2. Hot versus Cold Fusion 1.3. Excitation Functions 1.3.1.

Gates, Jacklyn M.

2008-01-01T23:59:59.000Z

146

I. Nuclear Production Reaction and Chemical Isolation Procedure for 240Am II. New Superheavy Element Isotopes: 242Pu(48Ca,5n)285-114  

E-Print Network (OSTI)

48 Ca, 5n) 285 114 nuclear reaction cross section. . . . .240 Am(n, f ) cross section 1.4 Nuclear properties of 2401.5 Nuclear reactions for the production of 240 Am . 2

Ellison, Paul Andrew

2011-01-01T23:59:59.000Z

147

Hybrid isotope separation scheme  

DOE Patents (OSTI)

A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

Maya, Jakob (Brookline, MA)

1991-01-01T23:59:59.000Z

148

HYDROGEN ISOTOPE TARGETS  

DOE Patents (OSTI)

The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

Ashley, R.W.

1958-08-12T23:59:59.000Z

149

Former Worker Medical Screening Program - Savannah River Site...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Workers Former Worker Medical Screening Program (FWP) Project Name: National Supplemental Screening Program Covered DOE Site: SRS Worker Population Served: Production...

150

Medical (visual) information retrieval  

Science Conference Proceedings (OSTI)

This text gives a broad overview of the domain of visual medical information retrieval and medical information analysis/search in general. The goal is to describe the specifics of medical information analysis and more specifically of medical visual information ... Keywords: content-based image retrieval, medical information retrieval, medical visual information retrieval

Henning Müller

2012-01-01T23:59:59.000Z

151

Thinking About Medical School?  

E-Print Network (OSTI)

Thinking About Medical School? Explore the DO Difference! Osteopathic Medical Education Training's Osteopathic Medical Schools · Meet with Medical School Admission Officers · Learn about osteopathic medicine and medical schools · Discover the best ways to prepare for medical school When Where Pre-Health Advisor

de Lijser, Peter

152

PRE-MEDICAL PROFESSIONS Medical professional schools  

E-Print Network (OSTI)

PRE-MEDICAL PROFESSIONS Medical professional schools encourage students to develop the broadest requirements required for application to the following medical professional schools include: chiropractic medicine programs, as well as other programs in the medical field. A Bachelor's degree is required

153

Stable Isotope Enrichment by Thermal Diffusion, Chemical Exchange, and Distillation  

SciTech Connect

Applications of stable isotopes in medicine are becoming more widespread. This has resulted from the increased availability and reduced cost of these isotopes and the improved reliability and sensitivity of detection techniques such as carbon-13 nuclear magnetic resonance. Isotopes are used in compounds labeled with either the stable isotope itself, such as carbon-13 and oxygen-18, or with the radioactive isotope that can be produced by irradiating the stable isotope, such as the irradiation of xenon-124 to produce iodine-125. As the demand for stable isotopes increases, larger scale production facilities will be justifiable. The increased size of production facilities should result in yet lower unit selling prices. A large number of methods has been suggested for the separation of stable isotopes. This paper concerns itself with four methods which have proven extremely useful for the separation of the isotopes of low and medium atomic weight elements. The four processes discussed are gas phase thermal diffusion, liquid phase thermal diffusion, chemical exchange, and distillation.

Schwind, Dr. Roger A.; Rutherford, Dr. William M.

1973-03-01T23:59:59.000Z

154

Fuel Cycle and Isotopes Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Divisions Fuel Cycle and Isotopes Division Jeffrey Binder, Division Director Jeffrey Binder, Division Director The Fuel Cycle and Isotopes Division (FCID) of the Nuclear Science...

155

Isotopic Analysis | Open Energy Information  

Open Energy Info (EERE)

Structural: Hydrological: Source of fluids, circulation, andor mixing. Thermal: Heat source and general reservoir temperatures Dictionary.png Isotopic Analysis: Isotopes...

156

Isotope Enrichment | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern electromagnetic isotope separator developed and being scaled-up to replace the Manhattan Project-era Calutrons used for stable isotope enrichment. Since 1945, ORNL has...

157

Laser isotope separation  

DOE Patents (OSTI)

A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

1975-11-26T23:59:59.000Z

158

Isotope GeochemistryIsotope Geochemistry Isotopes do not fractionate during partial  

E-Print Network (OSTI)

/204Pb, 207Pb/204Pb, due to U and Th decay The isotope geology of PbThe isotope geology of Pb #12;The isotope geology of PbThe isotope geology of Pb µ = 238U/204Pb Primeval lead (Isotope ratios of Pb tT t eea Pb Pb -µ+= 30.90 204 206 == a Pb Pb i 29.100 204 207 == b Pb Pb i #12;The isotope geology

Siebel, Wolfgang

159

Isotope Shift Measurements of Stable and Short-Lived Lithium Isotopes for Nuclear Charge Radii Determination  

E-Print Network (OSTI)

Changes in the mean-square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a new laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8 ms lifetime isotope with production rates on the order of only 10,000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope Li-11 at the on-line isotope separators at GSI, Darmstadt, Germany and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results.

Nörtershäuser, W; Ewald, G; Dax, A; Behr, J; Bricault, P; Bushaw, B A; Dilling, J; Dombsky, M; Drake, G W F; Götte, S; Kluge, H -J; Kühl, Th; Lassen, J; Levy, C D P; Pachucki, K; Pearson, M; Puchalski, M; Wojtaszek, A; Yan, Z -C; Zimmermann, C

2010-01-01T23:59:59.000Z

160

The HIgh Flux Isotope Reactor: Past, Present, and Future  

Science Conference Proceedings (OSTI)

HFIR construction began in 1965 and completed in 1966. During the first 15 years of operation, the heavy actinide isotope production mission was dominant. HFIR is now positioned as one of the most versataile research reactors in the world.

Beierschmitt, Kelly J [ORNL; Farrar, Mike B [ORNL

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Isotopically controlled semiconductors  

SciTech Connect

The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

Haller, Eugene E.

2006-06-19T23:59:59.000Z

162

Medical tourism: Outsourcing surgery  

Science Conference Proceedings (OSTI)

A trend emerging in recent years has been travel from industrialized nations to developing countries such as India and Thailand for purposes of undergoing medical procedures, a phenomenon we call medical tourism. Medical tourism offers the prospect of ... Keywords: ANP models, Medical outsourcing, Medical tourism

William Bies; Lefteris Zacharia

2007-10-01T23:59:59.000Z

163

The rare isotope accelerator (RIA) facility project  

DOE Green Energy (OSTI)

The envisioned Rare-Isotope Accelerator (RIA) facility would add substantially to research opportunities for nuclear physics and astrophysics by combining increased intensities with a greatly expanded variety of high-quality rare-isotope beams. A flexible superconducting driver linac would provide 100 kW, 400 MeV/nucleon beams of any stable isotope from hydrogen to uranium onto production targets. Combinations of projectile fragmentation, target fragmentation, fission, and spallation would produce the needed broad assortment of short-lived secondary beams. This paper describes the project's background, purpose, and status, the envisioned facility, and the key subsystem, the driver linac. RIA's scientific purposes are to advance current theoretical models, reveal new manifestations of nuclear behavior, and probe the limits of nuclear existence [3]. Figures 1 and 2 show, respectively, examples of RIA research opportunities and the yields projected for pursuing them. Figure 3 outlines a conceptual approach for delivering the needed beams.

Christoph Leemann

2000-08-01T23:59:59.000Z

164

Medical Humanities Introduction  

E-Print Network (OSTI)

in the making: Memoirs and medical education. Iowa City, IA:shoes: empathy and othering in medical students' education.through the thread of medical humanities 1 . The essay by

Shapiro, Johanna

2009-01-01T23:59:59.000Z

165

Scientists develop affordable way to generate medical isotopes...  

NLE Websites -- All DOE Office Websites (Extended Search)

affordability could help meet the growing demand for an already at-risk supply of technetium-99m (Tc-99m), Noonan said. The global supply of Tc-99m has been limited in recent...

166

Brookhaven Medical Research Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Research Reactor BMRR The last of the Lab's reactors, the Brookhaven Medical Research Reactor (BMRR), was shut down in December 2000. The BMRR was a three megawatt...

167

Isotopes as Environmental Tracers in Archived Biological ...  

Science Conference Proceedings (OSTI)

... Tissue Archival and Monitoring Program (STAMP ... and isotopes) and carbon/nitrogen (isotopes). The carbon/nitrogen isotope data provide valuable ...

2012-10-02T23:59:59.000Z

168

Production  

E-Print Network (OSTI)

There are serious concerns about the greenhouse gas (GHG) emissions, energy and nutrient and water use efficiency of large-scale, first generation bio-energy feedstocks currently in use. A major question is whether biofuels obtained from these feedstocks are effective in combating climate change and what impact they will have on soil and water resources. Another fundamental issue relates to the magnitude and nature of their impact on food prices and ultimately on the livelihoods of the poor. A possible solution to overcome the current potentially large negative effects of large-scale biofuel production is developing second and third generation conversion techniques from agricultural residues and wastes and step up the scientific research efforts to achieve sustainable biofuel production practices. Until such sustainable techniques are available governments should scale back their support for and promotion of biofuels. Multipurpose feedstocks should be investigated making use of the bio-refinery concept (bio-based economy). At the same time, the further development of non-commercial, small scale

Science Council Secretariat

2008-01-01T23:59:59.000Z

169

Separation of sulfur isotopes  

DOE Patents (OSTI)

Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

DeWitt, Robert (Centerville, OH); Jepson, Bernhart E. (Dayton, OH); Schwind, Roger A. (Centerville, OH)

1976-06-22T23:59:59.000Z

170

Stable Isotopes in Hailstones. Part I: The Isotopic Cloud Model  

Science Conference Proceedings (OSTI)

Equations describing the isotopic balance between five water species (vapor, cloud water, rainwater, cloud ice and graupel)have been incorporated into a one-dimensional steady-state cloud model. The isotope contents of the various water ...

B. Federer; N. Brichet; J. Jouzel

1982-06-01T23:59:59.000Z

171

Emergency Medical Treatment Required  

E-Print Network (OSTI)

Emergency Medical Treatment Required Non-Emergency Medical Treatment Required If possible, get help present if possible OptaComp will complete the "First Report of Injury or Illness" and authorize medical Investigation Report" to Environmental Health & Safety within 48 hours Emergency Medical Treatment Required

Weston, Ken

172

Medicine and Medical Center  

E-Print Network (OSTI)

Faculty of Medicine and Medical Center (FM/AUBMC) #12;370 Faculty of Medicine and Medical Center (FM/AUBMC) Graduate Catalogue 2013­14 Faculty of Medicine and Medical Center (FM/AUBMC) Officers Vice President for Medical Affairs and the Raja N. Khuri Dean of the Faculty of Medicine Ziyad Ghazzal

173

ISOTOPE SEPARATION AND ISOTOPE EXCHANGE. A Bibliography with Abstracts  

SciTech Connect

The unclassified literature covering 2498 reports from 1907 through 1957 has been searched for isotopic exchange and isotepic separation reactions involving U and the lighter elements of the periodic chart through atomic number 30. From 1953 to 1957, all elements were included Numerous references to isotope properties, isotopic ratios, and kinetic isotope effects were included. This is a complete revision of TID-3036 (Revised) issued June 4, 1954. An author index is included. (auth)

Begun, G.M.

1959-10-28T23:59:59.000Z

174

Laser-induced separation of hydrogen isotopes in the liquid phase  

DOE Patents (OSTI)

Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

Freund, Samuel M. (Los Alamos, NM); Maier, II, William B. (Los Alamos, NM); Beattie, Willard H. (Los Alamos, NM); Holland, Redus F. (Los Alamos, NM)

1980-01-01T23:59:59.000Z

175

Medical Applications of Non-Medical Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications Applications Medical Applications of Non of Non - - Medical Research Medical Research Applications Derived from Applications Derived from BES BES - - Supported Research Supported Research and Research at BES Facilities and Research at BES Facilities Office of Basic Energy Sciences Office of Energy Research * U.S. Department of Energy July 1998 i Table of Contents The Office of Basic Energy Sciences ..............................................................................................1 1. DISEASE DIAGNOSIS.............................................................................................................1 Thin-Film Lithium Batteries for Biomedical Applications (ORNL)......................................1 Positron Emission Tomography (BNL)

176

Isotope and Nuclear Chemistry Division annual report, FY 1983  

Science Conference Proceedings (OSTI)

This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

Heiken, J.H.; Lindberg, H.A. (eds.)

1984-05-01T23:59:59.000Z

177

Isotope Development & Production | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

palliation Ni-62 Precursor for Ni-63 radioisotope for drug and explosive detection, beta battery power sources Ni-64 Precursor for Cu-64 radioisotope for cancer PET imaging and...

178

DEEP WATER ISOTOPIC CURRENT ANALYZER  

DOE Patents (OSTI)

A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

Johnston, W.H.

1964-04-21T23:59:59.000Z

179

Atomic vapor laser isotope separation  

SciTech Connect

Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

Stern, R.C.; Paisner, J.A.

1985-11-08T23:59:59.000Z

180

Radioisotopes for Medical Diagnostics and Cancer Therapy at BNL...  

Office of Science (SC) Website

Excess pulses (90%) are diverted to BLIP for medical radioisotope research and production. Major current projects include large scale distribution of Sr-82 for heart scans,...

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Former Worker Medical Screening Program - Oak Ridge Y-12 and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Y-12 and Oak Ridge National Laboratory Former Production Workers Former Worker Medical Screening Program (FWP) Project Name: Worker Health Protection Program Covered DOE Site: Y-12...

182

Development of monoclonal-antibody-based products for medical research and diagnostic imaging. Technical report, 28 January 1987-31 December 1988 (Final)  

SciTech Connect

Two major areas of application of monoclonal antibodies were examined: the development of products to support the 'Antibody Delivery System', a parent-specific and variable antibody formula drug system for use in imaging and treatment of cancer, and the development of an antibody-based radiopharmaceutical for imaging occult abscesses and other conditions involving high concentrations of white blood cells. In development of the Antibody Delivery System components, methods for characterization and purification of monoclonal antibodies were developed and validated; a dot immunoassay test, under the name RhoDot (TM) Immunoassay, was developed for matching antibodies to putative tumor specimen: a radioimmunoassay, under the name PhoChek (TM) Quality Control Test Kit for Radiolabeled Antibodies, was developed and commercialized for measuring the immunoreactive fraction of radiolabeled antibodies specific to colorecal cancer; and a patient-specific quality control test was developed. In development of the antibody-based radiopharmaceutical for imaging occult abscesses, a candidate antibody was identified and produced under U.S. Food and Drug Administration standards preparatory to human clinical trials.

Rhodes, B.A.; Pant, K.D.; Chauhan, N.; Buckelew, J.; Budd, P.

1989-04-01T23:59:59.000Z

183

Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area (1982) | Open  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area (1982) Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area (1982) Exploration Activity Details Location Steamboat Springs Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Notes Helium isotope ratios have been measured in geothermal fluids. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, Ra; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering

184

Medical Device Reliability  

Science Conference Proceedings (OSTI)

... failure rates of implanted electric leads has ... from the International Electronics Manufacturing Initiative ... for medical-grade electronic components and ...

2013-01-30T23:59:59.000Z

185

Animal Testing Medical Research  

E-Print Network (OSTI)

Animal Testing In Medical Research Past, present and future. Marte Thomassen Ellen Trolid Tonje Arondsen Marit Gystøl #12;ZO-8091 Forsøksdyrlære Animal experiments in medical research NTNU ­ Norges ................................................................................................................................................ 9 7. THE FUTURE OF ANIMALS IN MEDICAL RESEARCH.21

Bech, Claus

186

Candidate processes for diluting the {sup 235}U isotope in weapons-capable highly enriched uranium  

SciTech Connect

The United States Department of Energy (DOE) is evaluating options for rendering its surplus inventories of highly enriched uranium (HEU) incapable of being used to produce nuclear weapons. Weapons-capable HEU was earlier produced by enriching uranium in the fissile {sup 235}U isotope from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by diluting its concentration of the fissile {sup 235}U isotope in a uranium blending process, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel.

Snider, J.D.

1996-02-01T23:59:59.000Z

187

Isotope Related Reports | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Isotope Isotope Related Reports Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Isotope Development & Production for Research and Applications (IDPRA) Isotope Related Reports Print Text Size: A A A RSS Feeds FeedbackShare Page REPORT MATERIALS Isotope Research & Production Planning .pdf file (1.6MB), Nuclear Energy Research Advisory Committee (NERAC), April 2000. Mark J. Rivard, Leo M. Bobek, Ralph A. Butler, marc A. Garland, David J. Hill, Jeanne K. Krieger, James B. Muckerheide, Brad D. Patton, Edward B. Silberstein, The U.S. National Isotope Program: Current Status and Strategy for Future Success, .pdf file (442KB) February 2005.

188

Laser-assisted isotope separation of tritium  

DOE Patents (OSTI)

Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.

Herman, Irving P. (Castro Valley, CA); Marling, Jack B. (Livermore, CA)

1983-01-01T23:59:59.000Z

189

DEDICATED HEAVY ION MEDICAL ACCELERATORS  

E-Print Network (OSTI)

et al. , ,8iolog·ical and Medical Research with Acceleratedet al. , "Biological and Medical Research with J\\cceleratedic Heavy Ions in Medical and Scientific Research, Edmonton,

Gough, R.A.

2013-01-01T23:59:59.000Z

190

Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination  

Science Conference Proceedings (OSTI)

Changes in the mean square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8-ms-lifetime isotope with production rates on the order of only 10 000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope {sup 11}Li at the on-line isotope separators at GSI, Darmstadt, Germany, and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results.

Noertershaeuser, W.; Sanchez, R. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Institut fuer Kernchemie, Universitaet Mainz, D-55099 Mainz (Germany); Ewald, G.; Dax, A.; Goette, S.; Kluge, H.-J.; Kuehl, Th.; Wojtaszek, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Behr, J.; Bricault, P.; Dilling, J.; Dombsky, M.; Lassen, J.; Levy, C. D. P.; Pearson, M. [TRIUMF, Vancouver, British Columbia, V6T 2A3 (Canada); Bushaw, B. A. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Drake, G. W. F. [Department of Physics, University of Windsor, Windsor, Ontario, N9B 3P4 (Canada); Pachucki, K. [Faculty of Physics, University of Warsaw, PL-00-681 Warsaw (Poland); Puchalski, M. [Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, PL-60-780 Poznan (Poland); Yan, Z.-C. [Department of Physics, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 (Canada)

2011-01-15T23:59:59.000Z

191

High Flux Isotope Reactor (HFIR) | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

High Flux Isotope Reactor High Flux Isotope Reactor May 30, 2013 The High Flux Isotope Reactor (HFIR) first achieved criticality on August 25, 1965, and achieved full power in August 1966. It is a versatile 85-MW isotope production, research, and test reactor with the capability and facilities for performing a wide variety of irradiation experiments and a world-class neutron scattering science program. HFIR is a beryllium-reflected, light water-cooled and moderated flux-trap type swimming pool reactor that uses highly enriched uranium-235 as fuel. HFIR typically operates seven 23-to-27 day cycles per year. Irradiation facility capabilities include Flux trap positions: Peak thermal flux of 2.5X1015 n/cm2/s with similar epithermal and fast fluxes (Highest thermal flux available in the

192

Metal hydride based isotope separation: Large-scale operations  

DOE Green Energy (OSTI)

A program to develop a metal hydride based hydrogen isotope separation process began at the Savannah River Laboratory in 1980. This semi-continuous gas chromatographic separation process will be used in new tritium facilities at the Savannah River Site. A tritium production unit is scheduled to start operation in 1993. An experimental, large-scale unit is currently being tested using protium and deuterium. Operation of the large-scale unit has demonstrated separation of mixed hydrogen isotopes (55% protium and 45% deuterium), resulting in protium and deuterium product streams with purities better than 99.5%. 3 refs., 4 figs.

Horen, A.S.; Lee, Myung W.

1991-01-01T23:59:59.000Z

193

Metal hydride based isotope separation: Large-scale operations  

DOE Green Energy (OSTI)

A program to develop a metal hydride based hydrogen isotope separation process began at the Savannah River Laboratory in 1980. This semi-continuous gas chromatographic separation process will be used in new tritium facilities at the Savannah River Site. A tritium production unit is scheduled to start operation in 1993. An experimental, large-scale unit is currently being tested using protium and deuterium. Operation of the large-scale unit has demonstrated separation of mixed hydrogen isotopes (55% protium and 45% deuterium), resulting in protium and deuterium product streams with purities better than 99.5%. 3 refs., 4 figs.

Horen, A.S.; Lee, Myung W.

1991-12-31T23:59:59.000Z

194

Method and Apparatus for Production of 213Bi from a High ...  

automated generator system would enable highly reproducible and error-free production of 213Bi isotope; Related Links.

195

Isotopically labeled compositions and method  

DOE Patents (OSTI)

Compounds having stable isotopes .sup.13C and/or .sup.2H were synthesized from precursor compositions having solid phase supports or affinity tags.

Schmidt, Jurgen G. (Los Alamos, NM); Kimball, David B. (Los Alamos, NM); Alvarez, Marc A. (Santa Fe, NM); Williams, Robert F. (Los Alamos, NM); Martinez, Rudolfo A. (Santa Fe, NM)

2011-07-12T23:59:59.000Z

196

Medical Radioisotopes & Applications| U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Isotope Isotope Related Reports » Medical Radioisotopes & Applications Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Isotope Related Reports Medical Radioisotopes & Applications Print Text Size: A A A RSS Feeds FeedbackShare Page ISOTOPE HALF- LIFE APPLICATIONS Ac-225 10.0d Monoclonal antibody attachment used for cancer treatment (RIT), also parent of Bi-213. Ac-227 21.8y Parent of Ra-223 (Monoclonal antibody attachment used for cancer treatment (RIT).

197

Selection of Isotopes and Elements for Fuel Cycle Analysis  

Science Conference Proceedings (OSTI)

Fuel cycle system analysis simulations examine how the selection among fuel cycle options for reactors, fuel, separation, and waste management impact uranium ore utilization, waste masses and volumes, radiotoxicity, heat to geologic repositories, isotope-dependent proliferation resistance measures, and so forth. Previously, such simulations have tended to track only a few actinide and fission product isotopes, those that have been identified as important to a few criteria from the standpoint of recycled material or waste, taken as a whole. After accounting for such isotopes, the residual mass is often characterized as “fission product other” or “actinide other”. However, detailed assessment of separation and waste management options now require identification of key isotopes and residual mass for Group 1A/2A elements (Rb, Cs, Sr, Ba), inert gases (Kr, Xe), halogens (Br, I), lanthanides, transition metals, transuranic (TRU), uranium, actinide decay products. The paper explains the rationale for a list of 81 isotopes and chemical elements to better support separation and waste management assessment in dynamic system analysis models such as Verifiable Fuel Cycle Simulation (VISION)

Steven J. Piet

2009-04-01T23:59:59.000Z

198

Medical School AdmissionsMedical School AdmissionsMedical School AdmissionsMedical School Admissions Monday, April 23rd  

E-Print Network (OSTI)

Medical School AdmissionsMedical School AdmissionsMedical School AdmissionsMedical School Part 1: Admissions Presentations and Upcoming Changes in Medical Education, 6:30 ­ 8:00 pm · Greg. of Admissions: The Medical College of Wisconsin · Kurt Hansen Asst. Dean of Admissions: UW School of Medicine

Sheridan, Jennifer

199

ISOTOPE FRACTIONATION PROCESS  

DOE Patents (OSTI)

A new method is described for isotopic enrichment of uranium. It has been found that when an aqueous acidic solution of ionic tetravalent uraniunn is contacted with chelate complexed tetravalent uranium, the U/sup 238/ preferentially concentrates in the complexed phase while U/sup 235/ concentrates in the ionic phase. The effect is enhanced when the chelate compound is water insoluble and is dissolved in a water-immiscible organic solvent. Cupferron is one of a number of sultable complexing agents, and chloroform is a suitable organic solvent.

Clewett, G.H.; Lee, DeW.A.

1958-05-20T23:59:59.000Z

200

Chromatographic hydrogen isotope separation  

DOE Patents (OSTI)

Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

Aldridge, Frederick T. (Livermore, CA)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Medical Device Interoperability  

Science Conference Proceedings (OSTI)

... The research effort includes a gap analysis of the medical device communication standard IEEE 11073 versus use case scenarios outlined in ...

2011-03-14T23:59:59.000Z

202

Isotope correlation studies relative to high enrichment test reactor fuels  

SciTech Connect

Several correlations of fission product isotopic ratios with atom percent fission and neutron flux, for highly enriched /sup 235/U fuel irradiated in two different water moderated thermal reactors, have been evaluated. In general, excellent correlations were indicated for samples irradiated in the same neutron spectrum; however, significant differences in the correlations were noted with the change in neutron spectrum. For highly enriched /sup 235/U fuel, the correlation of the isotopic ratio /sup 143/Nd//sup 145 +146/Nd with atom percent fission has wider applicability than the other fission product isotopic ratio evaluated. The /sup 137/Cs//sup 135/Cs atom ratio shows promise for correlation with neutron flux. Correlations involving heavy element ratios are very sensitive to the neutron spectrum.

Maeck, W.J.; Tromp, R.L.; Duce, F.A.; Emel, W.A.

1978-06-01T23:59:59.000Z

203

Method of separating boron isotopes  

SciTech Connect

A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

Jensen, Reed J. (Los Alamos, NM); Thorne, James M. (Provo, UT); Cluff, Coran L. (Provo, UT); Hayes, John K. (Salt Lake City, UT)

1984-01-01T23:59:59.000Z

204

Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Fluid Isotopic Analysis- Fluid Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Fluid Details Activities (61) Areas (32) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Origin of hydrothermal fluids; Mixing of hydrothermal fluids Thermal: Isotopic ratios can be used to characterize and locate subsurface thermal anomalies. Dictionary.png Isotopic Analysis- Fluid: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in

205

It's Elemental - Isotopes of the Element Neptunium  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Previous Element (Uranium) The Periodic Table of Elements Next Element (Plutonium) Plutonium Isotopes of the Element Neptunium Click for Main Data Most of the isotope...

206

It's Elemental - Isotopes of the Element Sulfur  

NLE Websites -- All DOE Office Websites (Extended Search)

Phosphorus Previous Element (Phosphorus) The Periodic Table of Elements Next Element (Chlorine) Chlorine Isotopes of the Element Sulfur Click for Main Data Most of the isotope...

207

It's Elemental - Isotopes of the Element Argon  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorine Previous Element (Chlorine) The Periodic Table of Elements Next Element (Potassium) Potassium Isotopes of the Element Argon Click for Main Data Most of the isotope data...

208

The marine biogeochemistry of zinc isotopes  

E-Print Network (OSTI)

Zinc (Zn) stable isotopes can record information about important oceanographic processes. This thesis presents data on Zn isotopes in anthropogenic materials, hydrothermal fluids and minerals, cultured marine phytoplankton, ...

John, Seth G

2007-01-01T23:59:59.000Z

209

It's Elemental - Isotopes of the Element Ruthenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Technetium Previous Element (Technetium) The Periodic Table of Elements Next Element (Rhodium) Rhodium Isotopes of the Element Ruthenium Click for Main Data Most of the isotope...

210

It's Elemental - Isotopes of the Element Molybdenum  

NLE Websites -- All DOE Office Websites (Extended Search)

Niobium Previous Element (Niobium) The Periodic Table of Elements Next Element (Technetium) Technetium Isotopes of the Element Molybdenum Click for Main Data Most of the isotope...

211

It's Elemental - Isotopes of the Element Thorium  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Elements Next Element (Protactinium) Protactinium Isotopes of the Element Thorium Click for Main Data Most of the isotope data on this site has been obtained from...

212

It's Elemental - Isotopes of the Element Protactinium  

NLE Websites -- All DOE Office Websites (Extended Search)

Thorium Previous Element (Thorium) The Periodic Table of Elements Next Element (Uranium) Uranium Isotopes of the Element Protactinium Click for Main Data Most of the isotope data...

213

High-Precision Isotopic Reference Materials  

Science Conference Proceedings (OSTI)

... sources, is now capable of measuring isotope ratios with ... revolution in the use of isotopes by revealing ... This program will have an impact in several ...

2012-10-22T23:59:59.000Z

214

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and  

Open Energy Info (EERE)

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Details Activities (3) Areas (3) Regions (0) Abstract: Helium isotope ratios have been measured in geothermal fluids from Iceland, The Geysers, Raft River, Steamboat Springs and Hawaii. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, R,sub>a; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering release of crustal He, magma aging and

215

The US Consumer Product Safety Commission's Conformity ...  

Science Conference Proceedings (OSTI)

... Foods, drugs, cosmetics, medical devices (FDA) ? Pesticides, rodenticides (EPA) ? Tobacco products (FDA) ? Firearms (BATF) Page 4. China ...

2013-06-12T23:59:59.000Z

216

MEDICAL SCIENCES DIVISION SENIOR CLERICAL OFFICER (OXFORD MEDICAL ALUMNI)  

E-Print Network (OSTI)

1 MEDICAL SCIENCES DIVISION SENIOR CLERICAL OFFICER (OXFORD MEDICAL ALUMNI) Grade 4 , Salary. Oxford Medical Alumni exists to advance the cause of medical education by promoting the interests to establish a mutually beneficial relationship between the Medical Sciences and its alumni and to promote

Oxford, University of

217

Production system improvement : floor area reduction and inventory optimization  

E-Print Network (OSTI)

This thesis shows improvements of a medical device production system. The demand at the Medical Device Manufacturing Company (MDMCą) is low for the occlusion system product and there is a need to introduce other production ...

Yang, Tianying, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

218

MEDICAL CENTRE Welfare W tch  

E-Print Network (OSTI)

UNIVERSITY MEDICAL CENTRE Welfare W tch Medical Centre Health Check Patient Participation THE RESPONSE. #12;INTRODUCTION The University Medical Centre is a GP Practice on the campus of the University Medical Centre and our practice population is made up of approximately 75% 16-24 year olds. The Medical

Derrick, John

219

UCL MEDICAL SCHOOL world class  

E-Print Network (OSTI)

UCL MEDICAL SCHOOL world class medicine in the heart of London Guide for prospective students 2012/2013 #12;Vice Provost (Health), Head of UCL School of Life and Medical Sciences and Head of UCL Medical School Professor Sir John Tooke Vice Dean, Director of Medical Education and the Division of Medical

Saunders, Mark

220

Participant's Name _______________________________ MEDICAL HISTORY AND CONSENT FOR EMERGENCY MEDICAL TREATMENT  

E-Print Network (OSTI)

Participant's Name _______________________________ MEDICAL HISTORY AND CONSENT FOR EMERGENCY MEDICAL TREATMENT Directions: Parents of minors must complete this form for program staff to provide routine health care and seek emergency medical treatment. Please answer all questions. Please type

Moore, Paul A.

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Large-scale User Facility Imaging and Scattering Techniques to Facilitate Basic Medical Research  

Science Conference Proceedings (OSTI)

Conceptually, modern medical imaging can be traced back to the late 1960's and into the early 1970's with the advent of computed tomography . This pioneering work was done by 1979 Nobel Prize winners Godfrey Hounsfield and Allan McLeod Cormack which evolved into the first prototype Computed Tomography (CT) scanner in 1971 and became commercially available in 1972. Unique to the CT scanner was the ability to utilize X-ray projections taken at regular angular increments from which reconstructed three-dimensional (3D) images could be produced. It is interesting to note that the mathematics to realize tomographic images was developed in 1917 by the Austrian mathematician Johann Radon who produced the mathematical relationships to derive 3D images from projections - known today as the Radon Transform . The confluence of newly advancing technologies, particularly in the areas of detectors, X-ray tubes, and computers combined with the earlier derived mathematical concepts ushered in a new era in diagnostic medicine via medical imaging (Beckmann, 2006). Occurring separately but at a similar time as the development of the CT scanner were efforts at the national level within the United States to produce user facilities to support scientific discovery based upon experimentation. Basic Energy Sciences within the United States Department of Energy currently supports 9 major user facilities along with 5 nanoscale science research centers dedicated to measurement sciences and experimental techniques supporting a very broad range of scientific disciplines. Tracing back the active user facilities, the Stanford Synchrotron Radiation Lightsource (SSRL) a SLAC National Accelerator Laboratory was built in 1974 and it was realized that its intense x-ray beam could be used to study protein molecular structure. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was commissioned in 1982 and currently has 60 x-ray beamlines optimized for a number of different measurement techniques including imaging and tomography. The next generation NSLS-II facility is now under construction. The Advanced Light Source (ALS) commissioned in 1993 has one of the world's brightest sources of coherent long wavelength x-rays suitable for probing biological samples in 3D. The Advanced Photon Source at Argonne National Laboratory also has a number of x-ray beamlines dedicated to imaging and tomography suitable for biological and medical imaging research. The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) also has a number of beamlines suitable for studying the structure and dynamics of proteins and other biological systems. A neutron imaging and tomography beamline is currently being planned for SNS. Similarly, the High Flux Isotope Reactor (HFIR) also at ORNL has beamlines suitable for examining biological matter and has an operational imaging beamline. In addition, the production of medical isotopes is another important HFIR function. These user facilities have been intended to facilitate basic and applied research and were not explicitly designed with the intention to scan patients the same way a commercial medical imaging scanner does. Oftentimes the beam power is significantly more powerful than those produced by medical scanners. Thus the ionizing radiation effects of these beams must be considered when contemplating how these facilities can contribute to medical research. Suitable research areas involving user facilities include the study of proteins, human and animal tissue sample scanning, and in some cases, the study of non-human vertebrate animals such as various rodent species. The process for scanning biological and animal specimens must be approved by the facility biosafety review board. The national laboratories provide a number of imaging and scattering instruments which can be used to facilitate basic medical research. These resources are available competitively via the scientific peer review process for proposals submitted through the user programs operated by each facility. Imaging human and animal

Miller, Stephen D [ORNL; Bilheux, Jean-Christophe [ORNL; Gleason, Shaun Scott [ORNL; Nichols, Trent L [ORNL; Bingham, Philip R [ORNL; Green, Mark L [ORNL

2011-01-01T23:59:59.000Z

222

Development of Medical Simulation Computer Models: Medical Ice...  

NLE Websites -- All DOE Office Websites (Extended Search)

Application in Advanced Laparoscopic Procedures Application in Emergency Response Current Research on Medical Slurry Cooling Development of Medical Simulation Computer Models...

223

MEDICAL LABORATORY SCIENCES The role of the medical laboratory  

E-Print Network (OSTI)

in Medical Laboratory Sciences and are eligible to sit for national certification examinations. Admission website, wichita.edu/chp under Medical Laboratory Sciences. The application requires a completed

224

Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Rock Details Activities (13) Areas (11) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Isotopic Analysis- Rock: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.

225

Medical Treatment Authorization Form _____________________________________________________________________ DOB___/____/____  

E-Print Network (OSTI)

Medical Treatment Authorization Form if they are in excess of other valid and collectible insurance. 1. List any medical conditions that camp personnel): _____________________________________________________________________________________ _____________________________________________________________________________________ 2. List any medications currently taking

226

Quick-release medical tape  

E-Print Network (OSTI)

Medical tape that provides secure fixation of life-sustaining and -monitoring devices with quick, easy, damage-free removal represents a longstanding unmet medical need in neonatal care. During removal of current medical ...

Laulicht, Bryan E.

227

Studies in Photosynthesis with Isotopes  

E-Print Network (OSTI)

chlorophyll) SCHEMATIC DIAGRAM OF PHOTOSYNTHESIS Fig, P Fig.2 Time of photosynthesis 60c.f M U 1646 Fig. 5 Fig. 8 Fig. 94705-eng-48 STUDIES IN PHOTOSYNTHESIS WITH ISOTOPES M Calvin

Calvin, M.; Bassham, J.A.

1952-01-01T23:59:59.000Z

228

Novel hybrid isotope separation scheme and apparatus  

DOE Patents (OSTI)

A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means.

Maya, Jakob (Brookline, MA)

1991-01-01T23:59:59.000Z

229

Contractor Employee Pension medical benifits | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor Employee Pension medical benifits Contractor Employee Pension medical benifits Contractor Employee Pension medical benifits, FRComment5820071.pdf Contractor Employee...

230

Retiree Medical Insurance for 2014  

NLE Websites -- All DOE Office Websites (Extended Search)

Plans Retiree Medical Insurance for 2014 Blue Cross Blue Shield of New Mexico (BCBSNM) is the provider of medical benefits. Contact Retiree Insurance Providers For the 2014...

231

Isotope separation apparatus and method  

DOE Patents (OSTI)

The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

Feldman, Barry J. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

232

Simple, rapid method for the preparation of isotopically labeled formaldehyde  

Science Conference Proceedings (OSTI)

Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

Hooker, Jacob Matthew (Port Jefferson, NY); Schonberger, Matthias (Mains, DE); Schieferstein, Hanno (Aabergen, DE); Fowler, Joanna S. (Bellport, NY)

2011-10-04T23:59:59.000Z

233

TEPP-Medical Messages | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TEPP-Medical Messages TEPP-Medical Messages Medical Messages Index Medical Messages More Documents & Publications TEPP - Exercise Evaluation Forms Transuranic Waste Tabletop...

234

TEPP-Medical Messages | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TEPP-Medical Messages TEPP-Medical Messages Medical Messages Index Medical Messages More Documents & Publications TEPP Training Brochure 508 Compliant Version - TEPP Training...

235

UW Medicine Harborview Medical Center UW Medical Center  

E-Print Network (OSTI)

PT.NO NAME DOB UW Medicine Harborview Medical Center ­ UW Medical Center Northwest Hospital & Medical Center ­ University of Washington Physicians Seattle, Washington REQUEST AMENDMENT OF MED RECORD *U2078* *U2078* WHITE ­ MEDICAL RECORD UH2078 REV JUN 12 CANARY - PATIENT Request for Correction

Borenstein, Elhanan

236

Medical Device Interoperability The lack of interoperability between medical devices  

E-Print Network (OSTI)

Medical Device Interoperability The lack of interoperability between medical devices can lead to preventable medical errors and potentially serious inefficiencies that could otherwise be avoided. Overview an accurate diagnostic and treatment discipline, medical devices are playing an ever-increasing role

237

DOD MEDICAL EXAMINATION REVIEW BOARD (DODMERB) REPORT OF MEDICAL HISTORY  

E-Print Network (OSTI)

DOD MEDICAL EXAMINATION REVIEW BOARD (DODMERB) REPORT OF MEDICAL HISTORY (This information is for official and medically confidential use only and will not be released to unauthorized persons.) SECTION I in the REMARKS section. Mark and explain each item to the best of your ability. Be perfectly honest! Your medical

de Lijser, Peter

238

Participatory design in emergency medical service: designing for future practice  

Science Conference Proceedings (OSTI)

We describe our research-its approach, results and products-on Danish emergency medical service (EMS) field or "pre-hospital" work in minor and major incidents. We discuss how commitments to participatory design and attention to the qualitative differences ... Keywords: Future Lab, emergency response, major incidents, medical response, minor incidents, participatory design, technology design, victim as boundary object, wireless biomonitor

Margit Kristensen; Morten Kyng; Leysia Palen

2006-04-01T23:59:59.000Z

239

Carbon Isotope Separation and Molecular Formation in Laser-Induced...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Isotope Separation and Molecular Formation in Laser-Induced Plasmas by Laser Ablation Molecular Isotopic Spectrometry Title Carbon Isotope Separation and Molecular Formation...

240

Definition: Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Isotopic Analysis- Fluid Jump to: navigation, search Dictionary.png Isotopic Analysis- Fluid Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable. Fluid isotopes are used to characterize a fluids origin, age, and/or interaction with rocks or other fluids based on unique isotopic ratios or concentrations.[1] View on Wikipedia Wikipedia Definition Isotope geochemistry is an aspect of geology based upon study of the relative and absolute concentrations of the elements and their isotopes in

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Definition: Isotopic Analysis | Open Energy Information  

Open Energy Info (EERE)

Analysis Analysis Jump to: navigation, search Dictionary.png Isotopic Analysis Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.[1] View on Wikipedia Wikipedia Definition Isotope analysis is the identification of isotopic signature, the distribution of certain stable isotopes and chemical elements within chemical compounds. This can be applied to a food web to make it possible to draw direct inferences regarding diet, trophic level, and subsistence. Isotope ratios are measured using mass spectrometry, which separates the different isotopes of an element on the basis of their mass-to-charge

242

MEDICAL IMAGE CONVERSION Peter Stanchev  

E-Print Network (OSTI)

MEDICAL IMAGE CONVERSION Peter Stanchev Institute of Mathematics, Bulgarian Academy of Sciences with the problem of converting medical images from one format to another. In solving it the structure of the most commonly used medical image formats are studied and analysed. A mechanism for medical image file conversion

Stanchev, Peter

243

Isotopic Analysis-Fluid At Geysers Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

82) 82) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Geysers Geothermal Area (1982) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Notes Helium isotope ratios have been measured in geothermal fluids. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, Ra; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering release of crustal He, magma aging and tritiugenic addition of 3He). Raft

244

Isotope separation apparatus and method  

DOE Patents (OSTI)

The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

Cotter, Theodore P. (Los Alamos, NM)

1982-12-28T23:59:59.000Z

245

Medical Application Studies at ELI-NP  

E-Print Network (OSTI)

We study the production of radioisotopes for nuclear medicine in (gamma,gamma') photoexcitation reactions or (gamma,xn + yp) photonuclear reactions for the examples of ^195mPt, ^117mSn and ^44Ti with high flux [(10^13 - 10^15) gamma/s], small beam diameter and small energy band width (Delta E/E ~ 10^-3 -10^-4) gamma beams. In order to realize an optimum gamma-focal spot, a refractive gamma-lens consisting of a stack of many concave micro-lenses will be used. It allows for the production of a high specific activity and the use of enriched isotopes. For photonuclear reactions with a narrow gamma beam, the energy deposition in the target can be reduced by using a stack of thin target wires, hence avoiding direct stopping of the Compton electrons and e^+e^- pairs. The well-defined initial excitation energy of the compound nucleus leads to a small number of reaction channels and enables new combinations of target isotope and final radioisotope. The narrow-bandwidth gamma excitation may make use of collective resonances in gamma-width, leading to increased cross sections. (gamma,gamma') isomer production via specially selected gamma cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground state occurs. The produced isotopes will open the way for completely new clinical applications of radioisotopes. For example ^195mPt could be used to verify the patient's response to chemotherapy with platinum compounds before a complete treatment is performed. In targeted radionuclide therapy the short-range Auger and conversion electrons of ^195mPt and ^117mSn enable a very local treatment. The generator ^44Ti allows for a PET with an additional gamma-quantum (gamma-PET), resulting in a reduced dose or better spatial resolution.

D. Habs; P. G. Thirolf; C. Lang; M. Jentschel; U. Köster; F. Negoita; V. Zamfir

2012-02-10T23:59:59.000Z

246

Hydrogen isotope separation  

DOE Patents (OSTI)

A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

Bartlit, John R. (Los Alamos, NM); Denton, William H. (Abingdon, GB3); Sherman, Robert H. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

247

Environmental assessment for the relocation and storage of isotopic heat sources, Hanford Site, Richland, Washington  

SciTech Connect

As part of a bilateral agreement between the Federal Minister for Research and Technology of the Federal Republic of Germany (FRG) and the DOE, Pacific Northwest National Laboratory (PNNL) developed processes for the treatment and immobilization of high-level radioactive waste. One element of this bilateral agreement was the production of sealed isotopic heat sources. During the mid-1980s, 30 sealed isotopic heat sources were manufactured. The sources contain a total of approximately 8.3 million curies consisting predominantly of cesium-137 and strontium-90 with trace amounts of transuranic contamination. Currently, the sources are stored in A-Cell of the 324 Building. Intense radiation fields from the sources are causing the cell windows and equipment to deteriorate. Originally, it was not intended to store the isotopic heat sources for this length of time in A-cell. The 34 isotopic heat sources are classified as remote handled transuranic wastes. Thirty-one of the isotopic heat sources are sealed, and seals on the three remaining isotopic heat sources have not been verified. However, a decision has been made to place the remaining three isotopic heat sources in the CASTOR cask(s). The Washington State Department of Health (WDOH) has concurred that isotopic heat sources with verified seals or those placed into CASTOR cask(s) can be considered sealed (no potential to emit radioactive air emissions) and are exempt from WAC Chapter 246-247, Radiation Protection-Air Emissions.

NONE

1997-06-01T23:59:59.000Z

248

Medical imaging systems  

Science Conference Proceedings (OSTI)

A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

Frangioni, John V

2013-06-25T23:59:59.000Z

249

Medical School Biomedical Waste  

E-Print Network (OSTI)

Medical School Biomedical Waste Labware, gloves, pipets, pipet tips Stock cultures, bacterial with or without needles, razor blades, scalpel blades) Key: Pathological waste BL1 & BL2 waste (low risk ­ LR) BL2 waste (moderate risk - MR)/BL3 waste Blood Blood Autoclave Needle box Metal Cart Must either bleach

Cooley, Lynn

250

It's Elemental - Isotopes of the Element Mendelevium  

NLE Websites -- All DOE Office Websites (Extended Search)

The Periodic Table of Elements Next Element (Nobelium) Nobelium Isotopes of the Element Mendelevium Click for Main Data Most of the isotope data on this site has been obtained...

251

It's Elemental - Isotopes of the Element Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Periodic Table of Elements Next Element (Neptunium) Neptunium Isotopes of the Element Uranium Click for Main Data Most of the isotope data on this site has been obtained from...

252

It's Elemental - Isotopes of the Element Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

Periodic Table of Elements Next Element (Beryllium) Beryllium Isotopes of the Element Lithium Click for Main Data Most of the isotope data on this site has been obtained from...

253

It's Elemental - Isotopes of the Element Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

The Periodic Table of Elements Next Element (Helium) Helium Isotopes of the Element Hydrogen Click for Main Data Most of the isotope data on this site has been obtained from...

254

Isotope GeoloGy1 Unlike physics or chemistry, teaching isotope  

E-Print Network (OSTI)

Isotope GeoloGy1 Unlike physics or chemistry, teaching isotope geochemistry is difficult because. Writing an effective book on geochemistry is thus even more difficult. Claude Allègre's Isotope Geology geochemistry book, given how effective the texts by Faure and Dickin are. However, Allègre's Isotope Geology

Lee, Cin-Ty Aeolus

255

ISOTOPE FRACTIONATION Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. The  

E-Print Network (OSTI)

for the utilization of stable isotopes in geology, geochemistry, biogeochemistry, paleoceanography and elsewhere____________________________ ISOTOPE FRACTIONATION ____________________________ Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. The term `isotope

Zeebe, Richard E.

256

TRImP - A new facility to produce and trap radioactive isotopes  

E-Print Network (OSTI)

At the Kernfysisch Vensneller Institiutr (KVI) in Groningen, NL, a new facility (TRImP) is under development. It aims for producing, slowing down, and trapping of radioactive isotopes in order to perform accurate measurements on fundamental symmetries and interactions. A production target station and a dual magnetic separator installed and commissioned. We will slow down the isotopes of interest using an ion catcher and in a further stage a radiofrequency quadropole gas cooler (RFQ). The isotopes will finally be trapped in an atomic trap for precision studies.

Sohani, M

2006-01-01T23:59:59.000Z

257

TRImP - A new facility to produce and trap radioactive isotopes  

E-Print Network (OSTI)

At the Kernfysisch Vensneller Institiutr (KVI) in Groningen, NL, a new facility (TRImP) is under development. It aims for producing, slowing down, and trapping of radioactive isotopes in order to perform accurate measurements on fundamental symmetries and interactions. A production target station and a dual magnetic separator installed and commissioned. We will slow down the isotopes of interest using an ion catcher and in a further stage a radiofrequency quadropole gas cooler (RFQ). The isotopes will finally be trapped in an atomic trap for precision studies.

M. Sohani

2006-01-17T23:59:59.000Z

258

Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986  

Science Conference Proceedings (OSTI)

This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

Heiken, J.H. (ed.)

1987-06-01T23:59:59.000Z

259

SIGNIFICANCE OF ISOTOPICALLY LABILE ORGANIC HYDROGEN IN THERMAL MATURATION OF ORGANIC MATTER  

DOE Green Energy (OSTI)

Isotopically labile organic hydrogen in organic matter occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation. We monitor and interpret changes in the H-isotopic exchangeability and D/H ratio in maturing kerogens in order to evaluate the diagenetic and/or paleoenvironmental significance of OD values in different types of kerogen, and in the maturation products oil and fractions of oil. We investigate the utility of FTIR, NMR, and Raman Spectroscopy as proxies for thermal maturation, and the paleoenvironmental significance of an apparent correlation between hydrogen exchangeability and the O15N values in kerogens in stratigraphic sequences.

Schimmelmann, Arndt; Mastalerz, Maria

2002-09-11T23:59:59.000Z

260

Isotope separation of {sup 17}O by photodissociation of ozone with near-infrared laser irradiation  

Science Conference Proceedings (OSTI)

Oxygen-17 is a stable oxygen isotope useful for various diagnostics in both engineering and medical applications. Enrichment of {sup 17}O, however, has been very costly due to the lack of appropriate methods that enable efficient production of {sup 17}O on an industrial level. In this paper, we report the first {sup 17}O-selective photodissociation of ozone at a relatively high pressure, which has been achieved by irradiating a gas mixture of 10 vol% O{sub 3}-90 vol% CF{sub 4} with narrowband laser. The experiment was conducted on a pilot-plant scale. A total laser power of 1.6 W was generated by external-cavity diode lasers with all the laser wavelengths fixed at the peak of an absorption line of {sup 16}O{sup 16}O{sup 17}O around 1 {mu}m. The beams were introduced into a 25 -m long photoreaction cell under the sealed-off condition with a total pressure of 20 kPa. Lower cell temperature reduced the background decomposition of ozone, and at the temperature of 158 K, an {sup 17}O enrichment factor of 2.2 was attained.

Hayashida, Shigeru; Kambe, Takashi; Sato, Tetsuya; Igarashi, Takehiro [Tsukuba Laboratories, Taiyo Nippon Sanso Corporation, 10 Okubo Tsukuba-shi, Ibaraki 300-2611 (Japan); Kuze, Hiroaki [Center for Environmental Remote Sensing, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522 (Japan)

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Isotopic Abundance in Atom Trap Trace Analysis  

isotopes for climate change and nuclear proliferation interests. The Invention Argonne scientists have created a novel method and system for

262

Medical Screening Former Worker Medical Screening Program (FWP)  

Energy.gov (U.S. Department of Energy (DOE))

Medical Screening: Provide medical screening exams that are designed to check for health conditions related to occupational exposures to former workers who choose to participate in the program, including a re-screen exam every three years.

263

"Environmental Isotope Geochemistry": Past, Present Mark Baskaran  

E-Print Network (OSTI)

Chapter 1 "Environmental Isotope Geochemistry": Past, Present and Future Mark Baskaran 1.1 Introduction and Early History A large number of radioactive and stable isotopes of the first 95 elements unraveling many secrets of our Earth and its environmental health. These isotopes, because of their suitable

Baskaran, Mark

264

Current Research on Medical Slurry Cooling: Medical Ice Slurry...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications Homeland Security Applications Biomedical Applications Medical Ice Slurry Coolants for Inducing Targeted-OrganTissue Protective Cooling Technology...

265

PRODUCTION OF TRITIUM  

DOE Patents (OSTI)

This invention relates to a process for the production of tritium by subjecting comminuted solid lithium fluoride containing the lithium isotope of atomic mass number 6 to neutron radiation in a self-sustaining neutronic reactor. The lithium fiuoride is heated to above 450 deg C. in an evacuated vacuum-tight container during radiation. Gaseous radiation products are withdrawn and passed through a palladium barrier to recover tritium. (AEC)

Jenks, G.H.; Shapiro, E.M.; Elliott, N.; Cannon, C.V.

1963-02-26T23:59:59.000Z

266

Radioactive isotopes on the Moon  

SciTech Connect

A limited review of experiments and studies of radioactivity and isotope ratios in lunar materials is given. Observations made on the first few millimeters of the surface where the effects of solar flare particles are important, some measurements on individual rocks, and some studies of radioactivities produced deep in the lunar soil by galactic cosmic rays, are among the experiments discussed. (GHT)

Davis, R. Jr.

1975-01-01T23:59:59.000Z

267

HIGH FLUX ISOTOPE REACTOR PRELIMINARY DESIGN STUDY  

SciTech Connect

A comparison of possible types of research reactors for the production of transplutonium elements and other isotopes indicates that a flux-trap reactor consisting of a beryllium-reflecteds light-water-cooled annular fuel region surrounding a light-water island provides the required thermal neutron fluxes at minimum cost. The preliminary desigu of such a reactor was carried out on the basis of a parametric study of the effect of dimensions of the island and fuel regions heat removal rates, and fuel loading on the achievable thermal neutmn fluxes in the island and reflector. The results indicate that a 12- to 14-cm- diam. island provides the maximum flux for a given power density. This is in good agreement with the US8R critical experiments. Heat removal calculations indicate that average power densities up to 3.9 Mw/liter are achievable with H/ sub 2/O-cooled, platetype fuel elements if the system is pressurized to 650 psi to prevent surface boiling. On this basis, 100 Mw of heat can be removed from a 14-cm-ID x 36-cm-OD x 30.5-cm-long fuel regions resulting in a thermal neutron flux of 3 x 10/sup 15/ in the island after insertion of 100 g of Cm/sup 244/ or equivalent. The resulting production of Cf/sup 252/ amounts to 65 mg for a 1 1/2- year irradiation. Operation of the reactor at the more conservative level of 67 Mw, providing an irradiation flux of 2 x 10/sup 15/ in the islands will result in the production of 35 mg of Cf/sup 252/ per 18 months from 100 g of Cm/sup 244/. A development program is proposed to answer the question of the feasibility of the higher power operation. In addition to the central irradiation facility for heavyelement productions the HFIR contains ten hydraulic rabbit tubes passing through the beryllium reflector for isotope production and four beam holes for basic research, Preliminary estimates indicate that the cost of the facility, designed for an operating power level of 100 Mw, will be approximately 2 million. (auth)

Lane, J.A.; Cheverton, R.D.; Claiborne, G.C.; Cole, T.E.; Gambill, W.R.; Gill, J.P.; Hilvety, N.; McWherther, J.R.; Vroom, D.W.

1959-03-20T23:59:59.000Z

268

Former Worker Medical Screening Program  

Energy.gov (U.S. Department of Energy (DOE))

The Former Worker Medical Screening Program (FWP) provides ongoing medical screening examinations, at no cost, to all former DOE Federal, contractor, and subcontractor workers who may be at risk for occupational diseases.

269

Process for preparing a chemical compound enriched in isotope content  

DOE Patents (OSTI)

A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

Michaels, Edward D. (Spring Valley, OH)

1982-01-01T23:59:59.000Z

270

Medical Devices Metrology and Standards  

Science Conference Proceedings (OSTI)

... Medical Devices Metrology and Standards Needs (Download the flyer in pdf ... Standard and Metrology Needs for Surgical Robotics, presented by ...

2013-07-18T23:59:59.000Z

271

Definition: Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search Dictionary.png Isotopic Analysis- Rock Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.[1] View on Wikipedia Wikipedia Definition References ↑ http://wwwrcamnl.wr.usgs.gov/isoig/isopubs/itchch2.html Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Isotopic_Analysis-_Rock&oldid=687702" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties

272

Furman University OPEN ACCESS PLUS MEDICAL  

E-Print Network (OSTI)

Furman University OPEN ACCESS PLUS MEDICAL BENEFITS ­ Core Plan OPEN ACCESS PLUS MEDICAL BENEFITS ............................................................................................................................................11 Open Access Plus Medical Benefits

273

Medical Surveillance and Nanotechnology Workers.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Workers Peter D. Lichty, MD MOH FACOEM July 2008 Outline * Principles of Medical Surveillance * Sensitivity and Specificity of Medical Tests * Variability of Medical...

274

ENERGY STAR Score for Medical Offices  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Offices in the United States Page 1 ENERGY STAR Score for Medical Offices in the United States Technical Reference OVERVIEW The ENERGY STAR Score for Medical Offices...

275

Management of Heavy Isotope in the DOE Complex  

Science Conference Proceedings (OSTI)

Currently each Department Of Energy (DOE) Program office manages its own nuclear materials through activities such as production, processing, storage, transportation, and disposition. However, recognizing the need to strengthen its strategic approach to the integrated life-cycle management of nuclear materials, DOE established the Nuclear Materials Management Stewardship Initiative (NMMSI) in January 2000. The NMMSI's first visible product was the Integrated Nuclear Material Management Plan in which it was generally recommended that DOE take a cross-cutting look at managing its nuclear materials, and specifically recommended that four Nuclear Material Management Groups (NMMGs) be formed. These groups were established to facilitate management of nuclear materials for which DOE has or may have responsibility, including many presently not in DOE's direct control. One of these NMMGs, the Heavy Isotope Management Group (HIMG) was established at Oak Ridge National Laboratory in Dec ember 2000, to facilitate management of (a) actinide and their decay products (except sealed sources) and (b) isotopically enriched stable and radioactive isotopes except uranium and lithium, but excluding thorium, uranium, spent fuel, and weapons or reactor grade plutonium which are addressed by other NMMGs. Despite its short duration and relatively limited funding, the HIMG has facilitated the disposition of heavy isotopes from Lawrence Berkeley National Laboratory (LBNL), Rocky Flats Environmental Technology Site (RFETS), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL), and Idaho National Engineering and Environmental Laboratory (INEEL). The primary disposition options have been to facilitate reuse of valuable heavy isotopes by matching custodians of unwanted materials with other users that seek such materials for new applications. This approach has the dual advantages of avoiding custodian disposal costs plus cost to the user of obtaining newly produced material. The HIMG has also prepared issue papers on neptunium and americium/curium that identify the resources, potential uses, and disposal pathways for the materials across the DOE Complex. In the future the HIMG expects to comprehensively identify the status of the U.S. heavy isotope inventory, prepare additional issue papers and plans charting the future of this inventory, and to facilitate execution of the plan.

Canon, R.; Croff, A.; Boyd, L.

2002-02-27T23:59:59.000Z

276

Features of MCNP6 Relevant to Medical Radiation Physics  

SciTech Connect

MCNP (Monte Carlo N-Particle) is a general-purpose Monte Carlo code for simulating the transport of neutrons, photons, electrons, positrons, and more recently other fundamental particles and heavy ions. Over many years MCNP has found a wide range of applications in many different fields, including medical radiation physics. In this presentation we will describe and illustrate a number of significant recently-developed features in the current version of the code, MCNP6, having particular utility for medical physics. Among these are major extensions of the ability to simulate large, complex geometries, improvement in memory requirements and speed for large lattices, introduction of mesh-based isotopic reaction tallies, advances in radiography simulation, expanded variance-reduction capabilities, especially for pulse-height tallies, and a large number of enhancements in photon/electron transport.

Hughes, H. Grady III [Los Alamos National Laboratory; Goorley, John T. [Los Alamos National Laboratory

2012-08-29T23:59:59.000Z

277

Implantable medical sensor system  

DOE Patents (OSTI)

An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

Darrow, Christopher B. (Pleasanton, CA); Satcher, Jr., Joe H. (Modesto, CA); Lane, Stephen M. (Oakland, CA); Lee, Abraham P. (Walnut Creek, CA); Wang, Amy W. (Berkeley, CA)

2001-01-01T23:59:59.000Z

278

Medical Screening | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program Implementation » Medical Screening Medical Screening Medical Screening: Provide medical screening exams that are designed to check for health conditions related to occupational exposures to former workers who choose to participate in the program, including a re-screen exam every three years. Conventional Medical Screening Program Medical screening is a strategy used to identify diseases or conditions in a select population at an early stage, often before signs and symptoms develop, and to refer individuals with suspicious findings to their personal physician or a specialist for further testing, diagnosis, and treatment. The program is not intended to serve as a substitute for routine medical exams through an individual's personal physician. Early Lung Cancer Detection Program

279

Analysis of hydrogen isotope mixtures  

DOE Patents (OSTI)

Disclosed are an apparatus and a method for determining concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, E.

1992-12-31T23:59:59.000Z

280

Analysis of hydrogen isotope mixtures  

DOE Patents (OSTI)

An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, Eliel (Aiken, SC)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

METHOD FOR PRODUCING ISOTOPIC METHANES FROM LITHIUM CARBONATE AND LITHIUM HYDRIDE  

DOE Patents (OSTI)

A process is descrlbed for the production of methane and for the production of methane containing isotopes of hydrogen and/or carbon. Finely divided lithium hydrlde and litldum carbonate reactants are mixed in intimate contact and subsequently compacted under pressures of from 5000 to 60,000 psl. The compacted lithium hydride and lithium carbenate reactunts are dispised in a gas collecting apparatus. Subsequently, the compact is heated to a temperature in the range 350 to 400 deg C whereupon a solid-solid reaction takes place and gaseous methane is evolved. The evolved methane is contaminated with gaseous hydrogen and a very small amount of CO/sub 2/; however, the desired methane product is separated from sald impurities by well known chemical processes, e.g., condensation in a cold trap. The product methane contalns isotopes of carbon and hydrogen, the Isotopic composition being determined by the carbon isotopes originally present In the lithium carbonate and the hydrogen isotopes originally present in the lithium hydride.

Frazer, J.W.

1959-10-27T23:59:59.000Z

282

Preventive maintenance scheduling based on failure data in a medical device manufacturing facility  

E-Print Network (OSTI)

This study was conducted at a medical device production facility where analysis was done on the reliability of Product S barrel molds for the purpose of predicting preventive maintenance (PM) schedule. Pareto Rule was ...

Mohd Fauzi, Mohammed Faizal B

2009-01-01T23:59:59.000Z

283

Furman University OPEN ACCESS PLUS MEDICAL  

E-Print Network (OSTI)

8:54 AM Furman University OPEN ACCESS PLUS MEDICAL BENEFITS ­ Basic Plan OPEN ACCESS PLUS MEDICAL ...................................................................................................................................................10 Open Access Plus Medical Benefits Basic Plan ...............................................................................................................................................................12 Open Access Plus Medical Benefits Core Plan

284

Medical Knowledge Morphing: Towards Case-Specific Integration of Heterogeneous Medical Knowledge Resources  

E-Print Network (OSTI)

Medical Knowledge Morphing: Towards Case-Specific Integration of Heterogeneous Medical Knowledge interplay between various medical knowledge modalities--the spectrum of medical knowledge modalities morphing--a knowledge modeling task that allows the integration of heterogeneous medical knowledge

Abidi, Syed Sibte Raza

285

Medical Assisting Medical Assistants perform routine administrative and clinical tasks to keep the offices of physi-  

E-Print Network (OSTI)

Medical Assisting Medical Assistants perform routine administrative and clinical tasks to keep. Medical assis- patients for x-rays, take electrocardiograms, remove sutures, and change dressings. Medical Description: Medical Assisting Associate of Applied Science (4 semesters after prerequisites are complet

Crone, Elizabeth

286

Available Technologies: Biological Production of Cinnamoyl ...  

The JBEI method opens the door for eco-friendly, inexpensive production of a group of chemicals useful in medical therapy and life sciences research.

287

Cu isotope fractionation during bornite dissolution: An in situ X-ray diffraction analysis  

Science Conference Proceedings (OSTI)

Low-temperature ore deposits exhibit a large variation in {delta}{sup 65}Cu ({approx}12{per_thousand}), and this range has been attributed, in part, to isotope fractionation during weathering reactions of primary minerals such as chalcocite and chalcopyrite. Here, we examine the fractionation of Cu isotopes during dissolution of another important Cu ore mineral, bornite, using a novel approach that combines time-resolved X-ray diffraction (XRD) and isotope analysis of reaction products. During the initial stages of bornite oxidative dissolution by ferric sulfate ( 20 mol% Cu was leached from the solid, the difference between the Cu isotope composition of the aqueous and mineral phases approached zero, with {Delta}{sub aq - min}{sup 0} values ranging from - 0.21 {+-} 0.61{per_thousand} to 0.92 {+-} 0.25{per_thousand}. XRD analysis allowed us to correlate changes in the atomic structure of bornite with the apparent isotope fractionation as the dissolution reaction progressed. These data revealed that the greatest degree of apparent fractionation is accompanied by a steep contraction in the unit-cell volume, which we identified as a transition from stoichiometric to non-stoichiometric bornite. We propose that the initially high {Delta}{sub aq - min} values result from isotopically heavy Cu ({sup 65}Cu) concentrating within Cu{sup 2+} during dissolution. The decrease in the apparent isotope fractionation as the reaction progresses occurs from the distillation of isotopically heavy Cu ({sup 65}Cu) during dissolution or kinetic isotope effects associated with the depletion of Cu from the surfaces of bornite particles.

Wall, Andrew J.; Mathur, Ryan; Post, Jeffrey E.; Heaney, Peter J. (Juniata); (Smithsonian); (Penn)

2012-10-24T23:59:59.000Z

288

BMC Medical Education BioMed Central  

E-Print Network (OSTI)

Research article Evaluation of the medical student research programme in Norwegian medical schools. A survey of students and supervisors

Steinar Hunskaar; Jarle Breivik; Maje Siebke; Karin Třmmerĺs; Kristian Figenschau; John-bjarne Hansen

2009-01-01T23:59:59.000Z

289

Pulsed CO laser for isotope separation of uranium  

SciTech Connect

This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

Baranov, Igor Y.; Koptev, Andrey V. [Rocket-Space Technics Department, Baltic State Technical University, 1, 1st Krasnoarmeyskaya st.,St. Petersburg, 190005 (Russian Federation)

2012-07-30T23:59:59.000Z

290

Electromagnetic Isotope Separation Lab (EMIS) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Electromagnetic Isotope Separation Lab Electromagnetic Isotope Separation Lab May 30, 2013 ORNL established the Stable Isotope Enrichment Laboratory (SIEL) as part of a project funded by the DOE Office of Science, Nuclear Physics Program to develop a modernized electromagnetic isotope separator (EMIS), optimized for separation of a wide range of stable isotopes. The SIEL is located in the Building 6010 Shield Test Station, space formerly allocated to the Oak Ridge Electron Linear Accelerator, on the main campus of ORNL. ORNL staff have designed and built a nominal 10 mA ion current EMIS (sum of all isotopes at the collector) in the SIEL. This EMIS is currently being tested to determine basic performance metrics such as throughput and enrichment factor per pass. This EMIS unit and space will be used to

291

METHOD AND APPARATUS FOR COLLECTING ISOTOPES  

DOE Patents (OSTI)

A method and apparatus for collecting isotopes having a high vapor pressure, such as isotopes of mercury, in a calutron are described. Heretofore, the collected material would vaporize and escape from the ion receiver as fast as it was received. By making the receiver of pure silver, the mercury isotopes form a nonvolatile amalgam with the silver at the water cooled temperature of the receiver, and the mercury is thus retained.

Leyshon, W.E.

1957-08-01T23:59:59.000Z

292

Isotopic Analysis (Not Available) | Open Energy Information  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown Notes Meeting proceedings - large list of papers and presentations dealing mostly with various isotopic analyses and their applications...

293

It's Elemental - Isotopes of the Element Nobelium  

NLE Websites -- All DOE Office Websites (Extended Search)

Mendelevium Previous Element (Mendelevium) The Periodic Table of Elements Next Element (Lawrencium) Lawrencium Isotopes of the Element Nobelium Click for Main Data Most of the...

294

It's Elemental - Isotopes of the Element Fermium  

NLE Websites -- All DOE Office Websites (Extended Search)

Einsteinium Previous Element (Einsteinium) The Periodic Table of Elements Next Element (Mendelevium) Mendelevium Isotopes of the Element Fermium Click for Main Data Most of the...

295

WEB RESOURCE: Exploring the Table of Isotopes  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... This page offers an interactive table of isotopes, an animated glossary of nuclear terms and relevant support documents created by the ...

296

Available Technologies: Real Time High Throughput Isotopic ...  

Space exploration; Any scientific research involving the tracking of isotopic labels, as in: Solar power; Scintillators (deuterated, 10 B, 6 Li, 3 He) Batteries (doping)

297

Zeolite Cryopumps for Hydrogen Isotopes Transportation  

Science Conference Proceedings (OSTI)

Tritium Processing / Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995

Ivan A. Alekseev; Sergey P. Karpov; Veniamin D. Trenin

298

It's Elemental - Isotopes of the Element Rhodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 89 1.5 microseconds Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available...

299

It's Elemental - Isotopes of the Element Promethium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 126 No Data Available Electron Capture (suspected) No Data Available 127 No Data Available Proton Emission...

300

It's Elemental - Isotopes of the Element Niobium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 81 < 200 nanoseconds Electron Capture No Data Available 82 50 milliseconds Electron Capture 100.00% Electron...

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

It's Elemental - Isotopes of the Element Indium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 97 No Data Available Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available...

302

It's Elemental - Isotopes of the Element Cerium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 119 No Data Available Electron Capture (suspected) No Data Available 120 No Data Available Electron Capture...

303

HFIR | High Flux Isotope Reactor | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

HFIR Working with HFIR Neutron imaging offers new tools for exploring artifacts and ancient technology Home | User Facilities | HFIR HFIR | High Flux Isotope Reactor SHARE The High...

304

Isotopic Exchange in Air Detritiation Dryers  

Science Conference Proceedings (OSTI)

Tritium Processing / Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988)

A.E. Everatt; A.H. Dombra; R.E. Johnson

305

Medication List- September 14, 2010  

Energy.gov (U.S. Department of Energy (DOE))

This scale is created to provide a guide for the physician determination of ability to work for HRP certified persons with certain conditions and while taking certain medications.

306

CLUMPED ISOTOPIC EQUILIBRIUM AND THE RATE OF ISOTOPE EXCHANGE BETWEEN CO2 AND WATER  

E-Print Network (OSTI)

CLUMPED ISOTOPIC EQUILIBRIUM AND THE RATE OF ISOTOPE EXCHANGE BETWEEN CO2 AND WATER HAGIT P. AFFEK Department of Geology and Geophysics, Yale University, 210 Whitney Ave., New Haven, Connecticut, 06511, USA the exchange of oxygen isotopes with water. The use of 18 O as an environmental indicator typically assumes

307

Light stable isotope study of the Roosevelt Hot Springs thermal area, Southwestern Utah  

DOE Green Energy (OSTI)

The isotopic composition of hydrogen, oxygen, and carbon has been determined for regional cold springs, thermal fluids, and rocks and minerals from the Roosevelt Hot Springs thermal area. The geothermal system has developed within plutonic granitic rocks and amphibolite facies gneiss, relying upon fracture-controlled permeability for the migration of the thermal fluids. Probably originating as meteoric waters in the upper elevations of the Mineral Mountains, the thermal waters sampled in the production wells display an oxygen isotopic shift of at least +1.2. Depletions of delta /sup 18/O in wole rock, K-feldspar, and biotite have a positive correlation with alteration intensity. W/R mass ratios, calculated from the isotopic shifts of rock and water, range up to 3.0 in a producing horizon of one well, although the K-feldspar has experienced only 30% exchange with the thermal waters. While veinlet quartz has equilibrated with the thermal waters, the /sup 18/O values of K-mica clay, an alteration product of plagioclase, mimic the isotopic composition of K-feldspar and whole rock. This suggests that locally small W/R ratios enable plagioclase to influence its alteration products by isotopic exchange.

Rohrs D.T.; Bowman, J.R.

1980-05-01T23:59:59.000Z

308

Changes in mixing ratio and isotopic composition of CO2 in urban air from the Los Angeles basin, California, between 1972 and 2003  

E-Print Network (OSTI)

reflects a change in the relative proportion of natural gas and petroleum products burned in the regionChanges in mixing ratio and isotopic composition of CO2 in urban air from the Los Angeles basin December 2008. [1] Atmospheric CO2 mixing ratios and C and O isotopic compositions are reported for the Los

309

Mercury Isotope Fractionation by Environmental Transport and Transformation Processes  

E-Print Network (OSTI)

isotope fractionation in fossil hydrothermal systems. Geology,isotopes: Evaporation, chemical diffusion and Soret diffusion. Chemical Geology,isotope records of atmospheric and riverine pollution from two major European heavy metal refineries. Chemical Geology,

Koster van Groos, Paul Gijsbert

2011-01-01T23:59:59.000Z

310

Isotopic generator for bismuth-212 and lead-212 from radium  

DOE Patents (OSTI)

A method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.

Atcher, Robert W. (Kensington, MD); Friedman, Arnold M. (Park Forest, IL); Hines, John (Glen Ellyn, IL)

1987-01-01T23:59:59.000Z

311

Feasibility study Part I - Thermal hydraulic analysis of LEU target for {sup 99}Mo production in Tajoura reactor  

SciTech Connect

The Renewable Energies and Water Desalination Research Center (REWDRC), Libya, will implement the technology for {sup 99}Mo isotope production using LEU foil target, to obtain new revenue streams for the Tajoura nuclear research reactor and desiring to serve the Libyan hospitals by providing the medical radioisotopes. Design information is presented for LEU target with irradiation device and irradiation Beryllium (Be) unit in the Tajoura reactor core. Calculated results for the reactor core with LEU target at different level of power are presented for steady state and several reactivity induced accident situations. This paper will present the steady state thermal hydraulic design and transient analysis of Tajoura reactor was loaded with LEU foil target for {sup 99}Mo production. The results of these calculations show that the reactor with LEU target during the several cases of transient are in safe and no problems will occur. (author)

Bsebsu, F.M.; Abotweirat, F. [Reactor Department, Renewable Energies and Water Desalination Research Cente, P.O. Box 30878 Tajoura, Tripoli (Libyan Arab Jamahiriya)], E-mail: Bsebso@yahoo.com, E-mail: abutweirat@yahoo.com; Elwaer, S. [Radiochemistry Department, Renewable Energies and Water Desalination Research Cente, P.O. Box 30878 Tajoura, Tripoli (Libyan Arab Jamahiriya)], E-mail: samiwer@yahoo.com

2008-07-15T23:59:59.000Z

312

Medical imaging systems  

DOE Patents (OSTI)

A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

Frangioni, John V. (Wayland, MA)

2012-07-24T23:59:59.000Z

313

Management, Emergency Medical  

E-Print Network (OSTI)

Leiba and co-authors should be commended for their article describing emergency physician bioterrorism preparedness on a national level. 1 The recognition of the relative lack of knowledge of emergency physician study subjects about anthrax, an organism that is recognized as a high potential bioterrorist agent, was particularly interesting. Their description of efforts that were required to alert and educate “front-line ” physicians about potential bioterrorist agents illustrates a successful approach to this new area of focus in emergency medicine. Bioterrorism threats have redefined the role of emergency medicine in relation to population health. Emergency departments can be considered the primary interface between the medical or individual health sector and population or public health sector. Collaboration of emergency care and public health providers is essential for the recognition and control of potential bioterrorism events. Not only is this collaboration important for bioterrorism, but it also is important to any public health emergency including disease outbreaks and natural or man-made disasters. 2 The detection of potential bioterrorist agents and

Samuel J. Stratton

2007-01-01T23:59:59.000Z

314

ISOTOPES  

E-Print Network (OSTI)

U.S. Department of Energy: Uranium Enrichment (1978). UnitedRaux and W.L. Grant, uranium Enrichment in South Africa,for heavy~water and uranium enrichment is more severe. In

Lederer, C. Michael

2013-01-01T23:59:59.000Z

315

ISOTOPES  

E-Print Network (OSTI)

depends on the cost and energy efficiency of the laser.and the low cost and energy efficiency of existing, large-

Lederer, C. Michael

2013-01-01T23:59:59.000Z

316

ISOTOPES  

E-Print Network (OSTI)

uranium, heavy-water-moderated CANDU reactor, as contrastedis important, and in the CANDU power reactor, which uses

Lederer, C. Michael

2013-01-01T23:59:59.000Z

317

ISOTOPES  

E-Print Network (OSTI)

A Guidebook to Nuclear Reactors, University of Californiaa thermal position of a nuclear reactor followed by analysisproduced by six large nuclear reactors. The power usage per

Lederer, C. Michael

2013-01-01T23:59:59.000Z

318

ISOTOPES  

E-Print Network (OSTI)

is somewhat uncertain~ and projections have been reducedFigure 15 shows the recent CONAES projections for the U.S. (72,90), along with earlier projections for the U.S. and the

Lederer, C. Michael

2013-01-01T23:59:59.000Z

319

ISOTOPES  

E-Print Network (OSTI)

Klein and S.V. Peterson, May 9-ll, 1973, Argonne NationalLaboratory, Argonne, Illinois (1973). 97. R.A. Muller,S.V. Peterson, May 9-11, 1973, Argonne National Laboratory,

Lederer, C. Michael

2013-01-01T23:59:59.000Z

320

ISOTOPES  

E-Print Network (OSTI)

as occurs in batch distillation. The urgency of developingor one plate of a distillation column, for example. Anas in the case of a distillation column, for which any other

Lederer, C. Michael

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Dynamical aspects of isotopic scaling  

E-Print Network (OSTI)

Investigation of the effect of the dynamical stage of heavy-ion collisions indicates that the increasing width of the initial isospin distributions is reflected by a significant modification of the isoscaling slope for the final isotopic distributions after de-excitation. For narrow initial distributions, the isoscaling slope assumes the limiting value of the two individual initial nuclei while for wide initial isotopic distributions the slope for hot fragments approaches the initial value. The isoscaling slopes for final cold fragments increase due to secondary emissions. The experimentally observed evolution of the isoscaling parameter in multifragmentation of hot quasiprojectiles at E$_{inc}$=50 AMeV, fragmentation of $^{86}$Kr projectiles at E$_{inc}$=25 AMeV and multifragmentation of target spectators at relativistic energies was reproduced by a simulation with the dynamical stage described using the appropriate model (deep inelastic transfer and incomplete fusion at the Fermi energy domain and spectator-participant model at relativistic energies) and the de-excitation stage described with the statistical multifragmentation model. In all cases the isoscaling behavior was reproduced by a proper description of the dynamical stage and no unambiguous signals of the decrease of the symmetry energy coefficient were observed.

M. Veselsky

2006-07-17T23:59:59.000Z

322

Advanced Mass Spectrometers for Hydrogen Isotope Analyses  

DOE Green Energy (OSTI)

This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

Chastagner, P.

2001-08-01T23:59:59.000Z

323

The Quest for the Heaviest Uranium Isotope  

E-Print Network (OSTI)

We study Uranium isotopes and surrounding elements at very large neutron number excess. Relativistic mean field and Skyrme-type approaches with different parametrizations are used in the study. Most models show clear indications for isotopes that are stable with respect to neutron emission far beyond N=184 up to the range of around N=258.

S. Schramm; D. Gridnev; D. V. Tarasov; V. N. Tarasov; W. Greiner

2011-07-06T23:59:59.000Z

324

5, 547577, 2008 Isotope hydrology of  

E-Print Network (OSTI)

HESSD 5, 547­577, 2008 Isotope hydrology of cave dripwaters L. Fuller et al. Title Page Abstract are under open-access review for the journal Hydrology and Earth System Sciences Isotope hydrology of Geology and Palaeontology, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria 3 School

Paris-Sud XI, Université de

325

Positive and inverse isotope effect on superconductivity  

E-Print Network (OSTI)

This article improves the BCS theory to include the inverse isotope effect on superconductivity. An affective model can be deduced from the model including electron-phonon interactions, and the phonon-induced attraction is simply and clearly explained on the electron Green function. The focus of this work is on how the positive or inverse isotope effect occurs in superconductors.

Tian De Cao

2009-09-04T23:59:59.000Z

326

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and...

327

Isotopic Analysis At Newberry Caldera Area (Carothers, Et Al...  

Open Energy Info (EERE)

H. Mariner, Terry E. C. Keith (1987) Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Retrieved from "http:en.openei.orgwindex.php?titleIsotopicA...

328

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...  

Open Energy Info (EERE)

Inyo and Kern Counties, California. Supplement. Isotope geochemistry and Appendix H. Final report Retrieved from "http:en.openei.orgwindex.php?titleIsotopicAnalysis-Flu...

329

CALIFORNIUM ISOTOPES FROM BOMBARDMENT OF URANIUM WITH CARBON IONS  

E-Print Network (OSTI)

Isotopes from Bombardment of Uranium with Carbon Ions A.ISOTOPES FROM BOMBARDMENT OF URANIUM WITH CARBON IONS A.the irradiations, the uranium was dissolved in dilute

Ghiorso, A.; Thompson, S.G.; Street, K. Jr.; Seaborg, G.T.

2008-01-01T23:59:59.000Z

330

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope...

331

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith &...  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-...

332

The Medical College of Wisconsin 6 THE MEDICAL COLLEGE OF WISCONSIN MEDICAL SCHOOL ACADEMIC BULLETIN 2011-2012  

E-Print Network (OSTI)

The Medical College of Wisconsin 6 THE MEDICAL COLLEGE OF WISCONSIN MEDICAL SCHOOL ACADEMIC BULLETIN 2011-2012 The Medical College of Wisconsin offers MD, PhD, MA, MS and MPH degrees. There are more as volunteer faculty. More than 1,250 physicians on the Medical College faculty provide care in every specialty

333

WHAT TO DO IN A MEDICAL EMERGENCY (2004) If the medical emergency requires immediate medical attention or is life  

E-Print Network (OSTI)

WHAT TO DO IN A MEDICAL EMERGENCY (2004) If the medical emergency requires immediate medical attention or is life threatening, call 911. If the medical emergency is not life threatening, first notify: Gottschalk Medical Plaza, Primary Care Clinic on campus (walk-ins OK) UCIMC: May see any UCI provider

Mease, Kenneth D.

334

It's Elemental - Isotopes of the Element Radon  

NLE Websites -- All DOE Office Websites (Extended Search)

Astatine Astatine Previous Element (Astatine) The Periodic Table of Elements Next Element (Francium) Francium Isotopes of the Element Radon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Radon has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 193 1.15 milliseconds Alpha Decay 100.00% 194 0.78 milliseconds Alpha Decay 100.00% 195 6 milliseconds Alpha Decay 100.00% 195m 5 milliseconds Alpha Decay 100.00% 196 4.4 milliseconds Alpha Decay 99.90% Electron Capture ~ 0.10% 197 53 milliseconds Alpha Decay 100.00% 197m 25 milliseconds Alpha Decay 100.00% 198 65 milliseconds Alpha Decay No Data Available

335

It's Elemental - Isotopes of the Element Francium  

NLE Websites -- All DOE Office Websites (Extended Search)

Radon Radon Previous Element (Radon) The Periodic Table of Elements Next Element (Radium) Radium Isotopes of the Element Francium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Francium has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 199 12 milliseconds Alpha Decay > 0.00% Electron Capture No Data Available 200 49 milliseconds Alpha Decay 100.00% 201 62 milliseconds Alpha Decay 100.00% 201m 19 milliseconds Alpha Decay 100.00% 202 0.30 seconds Alpha Decay 100.00% 202m 0.29 seconds Alpha Decay 100.00% 203 0.55 seconds Alpha Decay <= 100.00% 204 1.8 seconds Alpha Decay 92.00%

336

Selected Isotopes for Optimized Fuel Assembly Tags  

SciTech Connect

In support of our ongoing signatures project we present information on 3 isotopes selected for possible application in optimized tags that could be applied to fuel assemblies to provide an objective measure of burnup. 1. Important factors for an optimized tag are compatibility with the reactor environment (corrosion resistance), low radioactive activation, at least 2 stable isotopes, moderate neutron absorption cross-section, which gives significant changes in isotope ratios over typical fuel assembly irradiation levels, and ease of measurement in the SIMS machine 2. From the candidate isotopes presented in the 3rd FY 08 Quarterly Report, the most promising appear to be Titanium, Hafnium, and Platinum. The other candidate isotopes (Iron, Tungsten, exhibited inadequate corrosion resistance and/or had neutron capture cross-sections either too high or too low for the burnup range of interest.

Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

2008-10-01T23:59:59.000Z

337

Process management applications in biopharmaceutical drug production  

E-Print Network (OSTI)

Genzyme's manufacturing and supply chain organization is responsible for the production and delivery of medically necessary medicines for patients with rare diseases around the world. Because of the nature of the products ...

Smith, Stephen E

2011-01-01T23:59:59.000Z

338

MEDICAL OR PSYCHOLOGICAL EMERGENCY Ambulatory Patient (Students)  

E-Print Network (OSTI)

MEDICAL OR PSYCHOLOGICAL EMERGENCY Ambulatory Patient (Students): Medical assistance can) with a physician is available for urgent medical concerns. Faculty and Staff can seek medical assistance If the individual needing assistance is not ambulatory, call 911 to request assistance from Emergency Medical

Meyers, Steven D.

339

Medical research: assessing the benefits to society  

E-Print Network (OSTI)

May 2006 Medical research: assessing the benefits to society A report by the UK Evaluation Forum, supported by the Academy of Medical Sciences, Medical Research Council and Wellcome Trust. #12;The independent Academy of Medical Sciences promotes advances in medical science and campaigns to ensure

Maizels, Rick

340

Identifying important concepts from medical documents  

Science Conference Proceedings (OSTI)

Automated medical concept recognition is important for medical informatics such as medical document retrieval and text mining research. In this paper, we present a software tool called keyphrase identification program (KIP) for identifying topical concepts ... Keywords: Document keyphrase, Keyphrase extraction, Medical concepts, Medical documents, Noun phrase extraction, Text mining

Quanzhi Li; Yi-Fang Brook Wu

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Solar proton events in cosmogenic isotope data Ilya G. Usoskin,1  

E-Print Network (OSTI)

Solar proton events in cosmogenic isotope data Ilya G. Usoskin,1 Sami K. Solanki,2 Gennady A March 2006; published 27 April 2006. [1] A possible contribution of solar energetic particle events to the production of cosmogenic 10 Be and 14 C in the atmosphere is studied. The solar particle effect is negligible

Usoskin, Ilya G.

342

NIDC: Online Catalog of Isotope Products | Request a Quote  

NLE Websites -- All DOE Office Websites (Extended Search)

Selenium Silicon Silver Sodium Strontium Sulfur Tantalum Technetium Tellurium Thallium Thorium Tin Titanium Tungsten Uranium Vanadium Xenon Ytterbium Yttrium Zinc Zirconium Find...

343

Applied Radiation and Isotopes 62 (2005) 525532 Production of [17  

E-Print Network (OSTI)

continuous low-energy beam output in excess of 300 mA overnight. The two dome charging chains are rated for neon reaction) via 1/16" stainless steel tubing at a typical total flow rate of 400 ml/min. The gas for improved fast radiochemistry, and ease of implementa- tion on low-energy proton cyclotrons. The purpose

Oakes, Terry

344

Apparatus for storing hydrogen isotopes  

DOE Green Energy (OSTI)

An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas(es) is (are) stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forming at a significantly lower temperature).

McMullen, John W. (Los Alamos, NM); Wheeler, Michael G. (Los Alamos, NM); Cullingford, Hatice S. (Houston, TX); Sherman, Robert H. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

345

Medical students' attitudes toward gay men  

E-Print Network (OSTI)

attitudes toward gay men. BMC Medical Education 2012 12:71.859. 4. Snowden S: The Medical School Curriculum and LGBT60. Matharu et al. BMC Medical Education 2012, 12:71 http://

Matharu, Kabir; Kravitz, Richard L; McMahon, Graham T; Wilson, Machelle D; Fitzgerald, Faith T

2012-01-01T23:59:59.000Z

346

WHAT IS MEDICAL MINERALOGY AND GEOCHEMISTRY?  

E-Print Network (OSTI)

WHAT IS MEDICAL MINERALOGY AND GEOCHEMISTRY? The connection between human health of medical mineralogy and geochemistry (MMG) focuses on understanding the equilibria and reaction pathways phases with naturally occurring, inorganic solid phases within the human body. Medical mineralogy

Sahai, Nita

347

Making Medical Records More Resilient  

E-Print Network (OSTI)

Hurricane Katrina showed that the current methods for handling medicalrecords are minimally resilient to large scale disasters. This research presents a preliminary model for measuring the resilience of medical records ...

Rudin, Robert

2008-02-17T23:59:59.000Z

348

Achromatic and uncoupled medical gantry  

DOE Patents (OSTI)

A medical gantry that focus the beam from the beginning of the gantry to the exit of the gantry independent of the rotation angle of the gantry by keeping the beam achromatic and uncoupled, thus, avoiding the use of collimators or rotators, or additional equipment to control the beam divergence, which may cause beam intensity loss or additional time in irradiation of the patient, or disadvantageously increase the overall gantry size inapplicable for the use in the medical treatment facility.

Tsoupas, Nicholaos (Center Moriches, NY); Kayran, Dmitry (Rocky Point, NY); Litvinenko, Vladimir (Mt. Sinai, NY); MacKay, William W. (Wading River, NY)

2011-11-22T23:59:59.000Z

349

Alameda County Medical Center Beth Israel Deaconess Medical Center, Boston MA  

E-Print Network (OSTI)

Alameda County Medical Center Beth Israel Deaconess Medical Center, Boston MA California Pacific Medical Center, San Francisco Cedar Sinai Medical Center Los Angeles Children's Hospital Orange Co. City of Hope National Medical Center, Duarte CA Community Regional Medical Center, Fresno Desert Regional

Tsien, Roger Y.

350

Tritium Isotope Separation Using Adsorption-Distillation Column  

Science Conference Proceedings (OSTI)

Technical Paper / Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation

Satoshi Fukada

351

Atmospheric Trace Gases, Carbon Isotopes, Radionuclides, and Aerosols: Isotopes in Greenhouse Gases Data from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer (OSTI)

(Scroll down to find Isotopes in Greenhouse Gases, a subheading under the broader heading of Atmospheric Trace Gases, etc.) CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to isotopes in greenhouse gases includes: • Monthly atmospheric 13C/12C isotopic ratios for 10 SIO stations, (2005) (Trends Online) • Mixing ratios of CO, CO2, CH4, and isotope ratios of associated 13C, 18O, and 2H in air samples from Niwot Ridge, Colorado, and Monta±a de Oro, California, USA (2004) • Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from Fossil-Fuel Consumption in the U.S.A., (2004) (Trends Online) ?13C in CO2 from the CSIRO GASLAB Flask Sampling Network (Trends Online) • In Situ 13CO2 from Cape Grim, Tasmania, Australia: 1982-1993 (2001) (Trends Online) • In situ Carbon 13 and Oxygen 18 Ratios of Atmospheric CO2 from Cape Grim, Tasmania, Australia: 1982-1993 (1995) • Carbon-13 Isotopic Abundance and concentration of Atmospheric Methane for Background Air in the Southern and Northern Hemispheres from 1978 to 1989 (1995) • Measurements of Atmospheric Methane and 13C/12C of Atmospheric Methane from Flask Air Samples (1999) • 14CO 2 Observations from Schauinsland, Germany (1997) (Trends Online) • Carbon-14 Measurements in Atmospheric CO 2 from Northern and Southern Hemisphere Sites, 1962-1992 (1996) • Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 (1998) (Specialized Interface)

352

Occupational Medical Surveillance System (OMSS) PIA, Idaho National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Surveillance System (OMSS) PIA, Idaho National Laboratory Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory Occupational Medical Surveillance...

353

Former Worker Medical Screening Program - Battelle Laboratories...  

NLE Websites -- All DOE Office Websites (Extended Search)

West Jefferson Former Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Battelle...

354

Medical Plans for Medicare-Eligible Retirees  

NLE Websites -- All DOE Office Websites (Extended Search)

Medicare-Eligible Retirees Medical Plans for Medicare-Eligible Retirees Blue Cross Blue Shield of New Mexico (BCBSNM) is the provider of medical benefits. Contact Retiree Insurance...

355

Former Worker Medical Screening Program - Portsmouth Gaseous...  

NLE Websites -- All DOE Office Websites (Extended Search)

Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Portsmouth Worker Population...

356

Former Worker Medical Screening Program - Battelle Laboratories...  

NLE Websites -- All DOE Office Websites (Extended Search)

King Avenue Former Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Battelle...

357

ORISE Resources: Medical Office Preparedness Planner  

NLE Websites -- All DOE Office Websites (Extended Search)

partnership with CDC yields Medical Office Preparedness Planner for Primary Care Providers The Medical Office Preparedness Planner is a tool for primary care providers (PCPs) and...

358

Medical Device Failure Analysisâ??Specific Materials  

Science Conference Proceedings (OSTI)

...ASM International, 2012, p 343â??359ASM Handbook, Volume 23, Materials for Medical Devices,B.A. James, Medical Device Failure

359

Former Worker Medical Screening Program Implementation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Worker Medical Screening Program Implementation Former Worker Medical Screening Program Implementation Program implementation focuses on four specific activities, which are:...

360

Former Worker Medical Screening Program - Brookhaven National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Brookhaven National Laboratory...

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Former Workers Medical Facilities with Experience Evaluating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Workers Medical Facilities with Experience Evaluating Chronic Beryllium Disease Former Workers Medical Facilities with Experience Evaluating Chronic Beryllium Disease April...

362

Former Worker Medical Screening Program - Mallinckrodt Chemical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mallinckrodt Chemical Co. Former Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE...

363

ORISE: Argonne National Laboratory Electonic Medical Records...  

NLE Websites -- All DOE Office Websites (Extended Search)

successfully design electronic medical records system for Argonne National Laboratory Health worker accessing electronic medical records Argonne National Laboratory (ANL) provides...

364

Photonuclear reactions on mercury isotopes in the region of the giant-dipole-resonance energy  

Science Conference Proceedings (OSTI)

The induced-activity method is used to measure yields of photonuclear reactions induced in stable mercury isotopes by beams of bremsstrahlung photons whose spectra have the endpoint energies of 19.5 and 29.1 MeV. On the basis of a collective model, the partial cross sections and yields are calculated for photoproton and photoneutron reactions on these isotopes. The yields calculated theoretically are compared with their measured counterparts. The possibility for the production in photonuclear reactions of the bypassed nucleus {sup 196}Hg, which cannot be formed in astrophysical r and s processes, is analyzed.

Ishkhanov, B. S.; Orlin, V. N.; Troschiev, S. Yu., E-mail: sergey.troschiev@googlemail.com [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

2011-05-15T23:59:59.000Z

365

Jackson Park Hospital Green Building Medical Center  

SciTech Connect

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

William Dorsey; Nelson Vasquez

2010-03-31T23:59:59.000Z

366

Jackson Park Hospital Green Building Medical Center  

SciTech Connect

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

William Dorsey; Nelson Vasquez

2010-03-31T23:59:59.000Z

367

Former Worker Medical Screening Program | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Former Worker Medical Screening Program Former Worker Medical Screening Program The Former Worker Medical Screening Program (FWP) provides ongoing medical screening examinations,...

368

Medical Migration: Strategies for Affordable Care in an Unaffordable System  

E-Print Network (OSTI)

the whole thing. Our American medical system is a greedy ripcompanies, doctors, American Medical Association (AMA) andEcology of Health in Medical Anthropology” in Medical

Miller-Thayer, Jennifer Catherine

2010-01-01T23:59:59.000Z

369

Medical and Biohazardous Waste Generator's Guide (Revision 2)  

E-Print Network (OSTI)

Biohazardous Waste Training Medical/Biohazardous WasteInspections 7. Forms and Supplies Medical Waste AccumulationLog Ordering Medical Waste Supplies 8. Solid Medical Waste

Waste Management Group

2006-01-01T23:59:59.000Z

370

Preface to bLithium isotope geochemistryQ The use of light stable isotopes to elucidate Earth  

E-Print Network (OSTI)

Li reflect heavier isotopic ratios. Chemical Geology 212 (2004) 1­4 wwwPreface Preface to bLithium isotope geochemistryQ The use of light stable isotopes to elucidate isotope geochemistry. Taylor and Urey (1938) used ion exchange chromatography to sepa- rate 6 Li from 7 Li

Rudnick, Roberta L.

371

It's Elemental - Isotopes of the Element Boron  

NLE Websites -- All DOE Office Websites (Extended Search)

Beryllium Beryllium Previous Element (Beryllium) The Periodic Table of Elements Next Element (Carbon) Carbon Isotopes of the Element Boron [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 10 19.9% STABLE 11 80.1% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 6 No Data Available Double Proton Emission (suspected) No Data Available 7 3.255Ă—10-22 seconds Proton Emission No Data Available Alpha Decay No Data Available 8 770 milliseconds Electron Capture 100.00% Electron Capture with delayed Alpha Decay 100.00% 9 8.439Ă—10-19 seconds Proton Emission 100.00% Double Alpha Decay 100.00%

372

It's Elemental - Isotopes of the Element Tungsten  

NLE Websites -- All DOE Office Websites (Extended Search)

Tantalum Tantalum Previous Element (Tantalum) The Periodic Table of Elements Next Element (Rhenium) Rhenium Isotopes of the Element Tungsten [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 180 0.12% >= 6.6Ă—10+17 years 182 26.50% STABLE 183 14.31% > 1.3Ă—10+19 years 184 30.64% STABLE 186 28.43% > 2.3Ă—10+19 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 157 275 milliseconds Electron Capture No Data Available 158 1.25 milliseconds Alpha Decay 100.00% 158m 0.143 milliseconds Isomeric Transition No Data Available Alpha Decay No Data Available 159 7.3 milliseconds Alpha Decay ~ 99.90%

373

It's Elemental - Isotopes of the Element Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Boron Boron Previous Element (Boron) The Periodic Table of Elements Next Element (Nitrogen) Nitrogen Isotopes of the Element Carbon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 12 98.93% STABLE 13 1.07% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 8 1.981Ă—10-21 seconds Proton Emission 100.00% Alpha Decay No Data Available 9 126.5 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 61.60% Electron Capture with delayed Alpha Decay 38.40% 10 19.308 seconds Electron Capture 100.00% 11 20.334 minutes Electron Capture 100.00% 12 STABLE - -

374

It's Elemental - Isotopes of the Element Rhenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Tungsten Tungsten Previous Element (Tungsten) The Periodic Table of Elements Next Element (Osmium) Osmium Isotopes of the Element Rhenium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 185 37.40% STABLE 187 62.60% 4.33Ă—10+10 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 159 No Data Available No Data Available No Data Available 160 0.82 milliseconds Proton Emission 91.00% Alpha Decay 9.00% 161 0.44 milliseconds Proton Emission 100.00% Alpha Decay <= 1.40% 161m 14.7 milliseconds Alpha Decay 93.00% Proton Emission 7.00% 162 107 milliseconds Alpha Decay 94.00% Electron Capture 6.00%

375

Isotopically engineered semiconductors: from the bulk tonanostructures  

SciTech Connect

Research performed with semiconductors with controlled isotopic composition is evolving from the measurement of fundamental properties in the bulk to those measured in superlattices and nanostructures. This is driven in part by interests associated with the fields of 'spintronics' and quantum computing. In this topical review, which is dedicated to Prof. Abstreiter, we introduce the subject by reviewing classic and recent measurements of phonon frequencies, thermal conductivity, bandgap renormalizations, and spin coherence lifetimes in isotopically controlled bulk group IV semiconductors. Next, we review phonon properties measured in isotope heterostructures, including pioneering work made possible by superlattices grown by the group of Prof. Abstreiter. We close the review with an outlook on the exciting future possibilities offered through isotope control in 1, 2, and 3 dimensions that will be possible due to advances in nanoscience.

Ager III, Joel W.; Haller, Eugene E.

2006-04-07T23:59:59.000Z

376

It's Elemental - Isotopes of the Element Magnesium  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium Sodium Previous Element (Sodium) The Periodic Table of Elements Next Element (Aluminum) Aluminum Isotopes of the Element Magnesium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 24 78.99% STABLE 25 10.00% STABLE 26 11.01% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 19 4.0 picoseconds Double Proton Emission 100.00% 20 90.8 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission ~ 27.00% 21 122 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 32.60% Electron Capture with delayed Alpha Decay < 0.50%

377

It's Elemental - Isotopes of the Element Chlorine  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur Sulfur Previous Element (Sulfur) The Periodic Table of Elements Next Element (Argon) Argon Isotopes of the Element Chlorine [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 35 75.76% STABLE 37 24.24% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 28 No Data Available Proton Emission (suspected) No Data Available 29 < 20 nanoseconds Proton Emission No Data Available 30 < 30 nanoseconds Proton Emission No Data Available 31 150 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.70% 32 298 milliseconds Electron Capture 100.00%

378

It's Elemental - Isotopes of the Element Potassium  

NLE Websites -- All DOE Office Websites (Extended Search)

Argon Argon Previous Element (Argon) The Periodic Table of Elements Next Element (Calcium) Calcium Isotopes of the Element Potassium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 39 93.2581% STABLE 40 0.0117% 1.248Ă—10+9 years 41 6.7302% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 32 No Data Available Proton Emission (suspected) No Data Available 33 < 25 nanoseconds Proton Emission No Data Available 34 < 25 nanoseconds Proton Emission No Data Available 35 178 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.37% 36 342 milliseconds Electron Capture 100.00%

379

It's Elemental - Isotopes of the Element Phosphorus  

NLE Websites -- All DOE Office Websites (Extended Search)

Silicon Silicon Previous Element (Silicon) The Periodic Table of Elements Next Element (Sulfur) Sulfur Isotopes of the Element Phosphorus [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 31 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 24 No Data Available Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available 25 < 30 nanoseconds Proton Emission 100.00% 26 43.7 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission No Data Available 27 260 milliseconds Electron Capture 100.00% Electron Capture with

380

It's Elemental - Isotopes of the Element Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Previous Element (Nitrogen) The Periodic Table of Elements Next Element (Fluorine) Fluorine Isotopes of the Element Oxygen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 16 99.757% STABLE 17 0.038% STABLE 18 0.205% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 12 1.139Ă—10-21 seconds Proton Emission No Data Available 13 8.58 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 14 70.620 seconds Electron Capture 100.00% 15 122.24 seconds Electron Capture 100.00% 16 STABLE - - 17 STABLE - - 18 STABLE - - 19 26.88 seconds Beta-minus Decay 100.00%

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

It's Elemental - Isotopes of the Element Gallium  

NLE Websites -- All DOE Office Websites (Extended Search)

Zinc Zinc Previous Element (Zinc) The Periodic Table of Elements Next Element (Germanium) Germanium Isotopes of the Element Gallium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 69 60.108% STABLE 71 39.892% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 56 No Data Available Proton Emission (suspected) No Data Available 57 No Data Available Proton Emission (suspected) No Data Available 58 No Data Available Proton Emission (suspected) No Data Available 59 No Data Available Proton Emission (suspected) No Data Available 60 70 milliseconds Electron Capture 98.40%

382

It's Elemental - Isotopes of the Element Sodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Neon Neon Previous Element (Neon) The Periodic Table of Elements Next Element (Magnesium) Magnesium Isotopes of the Element Sodium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 23 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 18 1.3Ă—10-21 seconds Proton Emission 100.00% 19 < 40 nanoseconds Proton Emission No Data Available 20 447.9 milliseconds Electron Capture with delayed Alpha Decay 20.05% Electron Capture 100.00% 21 22.49 seconds Electron Capture 100.00% 22 2.6027 years Electron Capture 100.00% 23 STABLE - - 24 14.997 hours Beta-minus Decay 100.00%

383

It's Elemental - Isotopes of the Element Neon  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorine Fluorine Previous Element (Fluorine) The Periodic Table of Elements Next Element (Sodium) Sodium Isotopes of the Element Neon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 20 90.48% STABLE 21 0.27% STABLE 22 9.25% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 16 9Ă—10-21 seconds Double Proton Emission 100.00% 17 109.2 milliseconds Electron Capture with delayed Alpha Decay No Data Available Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 18 1.6670 seconds Electron Capture 100.00% 19 17.22 seconds Electron Capture 100.00% 20 STABLE - -

384

It's Elemental - Isotopes of the Element Copper  

NLE Websites -- All DOE Office Websites (Extended Search)

Nickel Nickel Previous Element (Nickel) The Periodic Table of Elements Next Element (Zinc) Zinc Isotopes of the Element Copper [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 63 69.15% STABLE 65 30.85% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 52 No Data Available Proton Emission No Data Available 53 < 300 nanoseconds Electron Capture No Data Available Proton Emission No Data Available 54 < 75 nanoseconds Proton Emission No Data Available 55 27 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 15.0% 56 93 milliseconds Electron Capture 100.00%

385

Stable isotope investigations of chlorinated aliphatic hydrocarbons.  

Science Conference Proceedings (OSTI)

Stable isotope ratio measurements for carbon (C) and chlorine (Cl) can be used to elucidate the processes affecting transformation and transportation of chlorinated aliphatic hydrocarbons (CAHs) in the environment. Methods recently developed in our laboratory for isotopic analysis of CAHs have been applied to laboratory measurements of the kinetic isotope effects associated with aerobic degradation of dichloromethane (DCM) and with both anaerobic and aerobic cometabolic degradation of trichlomethene (TCE) in batch and column microbial cultures. These experimental determinations of fractionation factors are crucial for understanding the behavior of CAHs in complex natural systems, where the extent of biotransformation can be masked by dispersion and volatilization. We have also performed laboratory investigations of kinetic isotope effects accompanying evaporation of CAHs, as well as field investigations of natural attenuation and in situ remediation of CAHs in a number of contaminated shallow aquifers at sites operated by the federal government and the private sector.

Abrajano, T.; Heraty, L. J.; Holt, B. D.; Huang, L.; Sturchio, N. C.

1999-06-01T23:59:59.000Z

386

Atomic vapor laser isotope separation process  

DOE Patents (OSTI)

A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

Wyeth, R.W.; Paisner, J.A.; Story, T.

1990-08-21T23:59:59.000Z

387

It's Elemental - Isotopes of the Element Dysprosium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 138 No Data Available Electron Capture (suspected) No Data Available 139 0.6 seconds Electron Capture No Data...

388

It's Elemental - Isotopes of the Element Antimony  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 103 1.5 microseconds Electron Capture (suspected) No Data Available 104 0.44 seconds Electron Capture 100.00%...

389

Improved process for preparing strontium-82 isotope  

DOE Patents (OSTI)

This invention is comprised of a process for making {sup 82}Sr by bombarding a molybdenum target enriched in light-mass molybdenum isotopes with high energy protons resulting in high yield, high purity {sup 82}Sr.

Michaels, G.E.; Beaver, J.E.; Moody, D.C.

1991-12-31T23:59:59.000Z

390

Selective Isotope Determination of Uranium using HR-RIMS  

Science Conference Proceedings (OSTI)

The detection of lowest abundances of the ultra trace isotope {sup 236}U in environmental samples requires an efficient detection method which allows a high elemental and isotopic selectivity to suppress neighbouring isotopes of the same element and other background. High Resolution Laser Resonance Ionization Mass Spectrometry (HR-RIMS) uses the individual electron structure of each isotope to provide an outstanding element and isotope selective ionization.

Raeder, S.; Fies, S.; Wendt, K. D. A. [Institut fuer Physik, Johannes Gutenberg Universitaet Mainz, 55128 Mainz (Germany); Tomita, H. [Nagoya University (Japan)

2009-03-17T23:59:59.000Z

391

DOE and NNSA labs work with CTBTO to reduce medical isotope emissions...  

National Nuclear Security Administration (NNSA)

NNSA approach to assisting the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) in completing the treaty's verification system. Several...

392

Radioisotopes for Medical Diagnostics and Cancer Therapy at BNL | U.S. DOE  

Office of Science (SC) Website

Radioisotopes for Medical Diagnostics Radioisotopes for Medical Diagnostics and Cancer Therapy at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Radioisotopes for Medical Diagnostics and Cancer Therapy at BNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/Instrumentation: Brookhaven Linac Isotope Producer (BLIP) Developed at: Brookhaven National Laboratory

393

Isotope Enrichment Detection by Laser Ablation - Dual Tunable Diode Laser Absorption Spectrometry  

Science Conference Proceedings (OSTI)

The rapid global expansion of nuclear energy is motivating the expedited development of new safeguards technology to mitigate potential proliferation threats arising from monitoring gaps within the uranium enrichment process. Current onsite enrichment level monitoring methods are limited by poor sensitivity and accuracy performance. Offsite analysis has better performance, but this approach requires onsite hand sampling followed by time-consuming and costly post analysis. These limitations make it extremely difficult to implement comprehensive safeguards accounting measures that can effectively counter enrichment facility misuse. In addition, uranium enrichment by modern centrifugation leads to a significant proliferation threat, since the centrifuge cascades can quickly produce a significant quantity of highly enriched uranium (HEU). The Pacific Northwest National Laboratory is developing an engineered safeguards approach having continuous aerosol particulate collection and uranium isotope analysis to provide timely detection of HEU production in a low enriched uranium facility. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy, to characterize the 235U/238U isotopic ratio by subtle differences in atomic absorption wavelengths arising from differences in each isotope’s nuclear mass, volume, and spin (hyperfine structure for 235U). Environmental sampling media is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes a 10 to 20-µm sample diameter. The ejected plasma forms a plume of atomic vapor. A plume for a sample containing uranium has atoms of the 235U and 238U isotopes present. Tunable diode lasers are directed through the plume to selectively excite each isotope and their presence is detected by monitoring absorbance signals on a shot-to-shot basis. Single-shot detection sensitivity approaching the femtogram range and abundance uncertainty less than 10% have been demonstrated with measurements on surrogate materials. In this paper we present measurement results on samples containing background materials (e.g., dust, minerals, soils) laced with micron-sized target particles having isotopic ratios ranging from 1 to 50%.

Anheier, Norman C.; Bushaw, Bruce A.

2009-07-01T23:59:59.000Z

394

Iron isotopic fractionation during continental weathering  

SciTech Connect

The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

Fantle, Matthew S.; DePaolo, Donald J.

2003-10-01T23:59:59.000Z

395

DOELEA-1211 Environmental Assessment Relocation and Storage of Isotopic Heat Sources, Hanford Site,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOELEA-1211 DOELEA-1211 - Environmental Assessment Relocation and Storage of Isotopic Heat Sources, Hanford Site, Richland, Washington U.S. Department of Energy Richland, Washington June 1997 DOE/EA-1211 ENVIRONMENTAL ASSESSMENT FOR THE RELOCATION AND STORAGE OF ISOTOPIC HEAT SOURCES HANFORD SITE RICHLAND, WASHINGTON JUNE 1997 U.S. DEPARTMENT OF ENERGY NCHLAND, WASHINGTON Portions of this document may be iiIegiile in electronic image products. Images are produced from the best available original dornmeut DOWEA- 1 2 1 1 U.S. Department of Energy Preface PREFACE This environmental assessment (EA) has been prep- to assess potentia environmental impacts associated with the U.S. Department of Energy proposed action: Relocation and storage of the isotopic heat sources.

396

Workshop on The Nation's Needs for Isotopes: Present and Future | U.S.  

Office of Science (SC) Website

Workshop Workshop on The Nation's Needs for Isotopes: Present and Future Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Isotope Development & Production for Research and Applications (IDPRA) Workshop on The Nation's Needs for Isotopes: Present and Future Print Text Size: A A A RSS Feeds FeedbackShare Page August 5-7, 2008 Hilton Hotel, Rockville, MD Sponsored by the Department of Energy Office of Science for Nuclear Physics and Office of Nuclear Energy

397

Fiskenaesset Anorthosite Complex: Stable isotope evidence for shallow emplacement into Archean ocean crust  

DOE Green Energy (OSTI)

Oxygen and hydrogen isotope ratios indicate that unusual rocks at the upper contact of the Archean Fiskenaesset Anorthosite Complex at Fiskenaesset Harbor (southwest Greenland) are the products of hydrothermal alteration by seawater at the time of anorthosite intrusion. Subsequent granulite-facies metamorphism of these Ca-poor and Al- and Mg-rich rocks produced sapphirine- and kornerupine-bearing assemblages. Because large amounts of surface waters cannot penetrate to depths of 30 km during granulite-facies metamorphism, the isotopic signature of the contact rocks must have been obtained prior to regional metamorphism. The stable isotope and geochemical characteristics of the contact rocks support a model of shallow emplacement into Archean ocean crust for the Fiskenaesset Anorthosite Complex. 45 refs., 3 figs., 2 tabs.

Peck, W.H.; Valley, J.W. [Univ. of Wisconsin, Madison, WI (United States)] [Univ. of Wisconsin, Madison, WI (United States)

1996-06-01T23:59:59.000Z

398

A Low Temperature Distillation System for Separating Mixtures of Protium, Deuterium, and Tritium Isotopes  

SciTech Connect

A low temperature (24 K) distillation system for separating mixtures of hydrogen isotopes has been designed, fabricated, and delivered for use as the main component of the Hydrogen Isotope Separation System (HISS) at Mound. The HISS will handle feed mixtures of all six isotopic species of hydrogen (H2, HD, HT, D2, DT, T2) and will enrich the tritium while producing a stackable raffinate. Arther D. Little, Inc. (ADL) was the prime contractor for the distillation system. The design and fabrication techniques used for the HISS distillation system are similar to those used for previous stills which were also designed and built by ADL. The distillation system was tested with mixtures of protium and deuterium at the ADL shop. This system, as well as the feed, product, and raffinate handling systems are presently being installed at Mound where integrated testing is scheduled next calendar year.

Embury, Michael, C.; Watkins, Reed A.; Hinckley, Richard; Post, Jr., Arthur H.

1985-04-30T23:59:59.000Z

399

Isotopes Tell Origin and Operation of the Sun  

E-Print Network (OSTI)

The Iron Sun formed on the collapsed core of a supernova and now acts as a magnetic plasma diffuser, as did the precursor star, separating ions by mass. This process covers the solar surface with lightweight elements and with lighter isotopes of each element. Running difference images expose rigid, iron-rich structures below the fluid photosphere made of lightweight elements. The energy source for the Sun and ordinary stars seems to be neutron-emission and neutron-decay, with partial fusion of the decay product, rather than simple fusion of hydrogen into helium or heavier elements. Neutron-emission from the solar core and neutron-decay generate about sixty five percent of solar luminosity and H-fusion generates about thirty-five percent. The upward flow of H ions maintains mass-separation in the Sun. Only about one percent of this neutron decay product survives its upward journey to depart as solar-wind hydrogen.

O. Manuel; Sumeet A. Kamat; Michael Mozina

2005-09-28T23:59:59.000Z

400

Compton Backscattering Concept for the Production of Molybdenum-99  

SciTech Connect

The medical isotope Molybdenum-99 is presently used for 80-85% of all nuclear medicine procedures and is produced by irradiating highly enriched uranium U-235 targets in NRU reactors. It was recently proposed that an electron linac be used for the production of 99Mo via photo-fission of a natural uranium target coming from the excitation of the giant dipole resonance around 15 MeV. The photons can be produced using the braking radiation (“bremsstrahlung”) spectrum of an electron beam impinged on a high Z material. In this paper we present an alternate concept for the production of 99Mo which is also based on photo-fission of U-238, but where the ~15 MeV gamma-rays are produced by Compton backscattering of laser photons from relativistic electrons. We assume a laser wavelength of 330 nm, resulting in 485 MeV electron beam energy, and 10 mA of average current. Because the induced energy spread on the electron beam is a few percent, one may recover most of the electron beam energy, which substantially increases the efficiency of the system. The accelerator concept, based on a three-pass recirculation system with energy recovery, is described and efficiency estimates are presented.

L. Merminga, G.A. Krafft

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Isotope separation by photodissociation of Van der Waal's molecules  

DOE Patents (OSTI)

A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

Lee, Yuan T. (Berkeley, CA)

1977-01-01T23:59:59.000Z

402

Metals With Toxicity Related To Medical Therapy  

Science Conference Proceedings (OSTI)

...respectively, so they do have importance in medical therapy. Toxicologic effects are unlikely and seldom occur....

403

Formalising medical quality indicators to improve guidelines  

E-Print Network (OSTI)

Formalising medical quality indicators to improve guidelines Marjolein van Gendt, Annette ten Teije,annette,rserban,frank.van.harmelen}@cs.vu.nl Abstract. Medical guidelines can significantly improve quality of med- ical care and reduce costs. But how that are formulated by medical institutions to evaluate medical care. The main research questions are (i) whether

ten Teije, Annette

404

MEDICAL IMAGE ARCHIVE, RETRIEVAL AND COMMUNICATION  

E-Print Network (OSTI)

15.03.2013 1 MEDICAL IMAGE ARCHIVE, RETRIEVAL AND COMMUNICATION BNG 5122 Medical Image Analysis Advisor: Assist. Prof. Dr. Devrim �NAY S. Ahsen YILDIRIM INTRODUCTION Archiving medical images for future in · clinical review · diagnosis to compare with patients' current examinations · as a resource in medical

Ă?nay, Devrim

405

BNG5122 Medical Imaging Analysis REGISTRATION  

E-Print Network (OSTI)

16.04.2013 1 BNG5122 Medical Imaging Analysis Project REGISTRATION Gökhan Gökay Istanbul Bahçeehir University Advisor: Asst. Prof. Dr. Devrim �nay Outline 16 April 2013 2 BNG5122 Medical Imaging Analysis 2013 3 BNG5122 Medical Imaging Analysis Registration is technique for medical image analysis To combine

Ă?nay, Devrim

406

Formalising medical quality indicators to improve guidelines  

E-Print Network (OSTI)

Formalising medical quality indicators to improve guidelines Marjolein van Gendt1 , Annette ten,annette,rserban,frank.van.harmelen}@cs.vu.nl Abstract. Medical guidelines can significantly improve quality of med- ical care and reduce costs. But how that are formulated by medical institutions to evaluate medical care. The main research questions are (i) whether

van Harmelen, Frank

407

MEDICAL STATEMENT Participant Record (Confidential Information)  

E-Print Network (OSTI)

MEDICAL STATEMENT Participant Record (Confidential Information) This is a statement in which you this statement prior to signing it. You must complete this Medical Statement, which includes the medical cold or congestion, epilepsy, a severe medical problem or who is under the influence of alcohol

Kavanagh, Karen L.

408

Medical Examination Office of Human Resources  

E-Print Network (OSTI)

Medical Examination 4.40 Office of Human Resources Applies to: Faculty, staff, graduate associates-292-2800 ohrc@hr.osu.edu hr.osu.edu/elr Policy clarification for medical center employees Medical Center Employee Relations 614-293-4988 Medical exam arrangements Employee Health Services 614-293-8146 #12;

Howat, Ian M.

409

NEW NIST MEDICAL-INDUSTRIAL RADIATION FACILITY ...  

Science Conference Proceedings (OSTI)

... NEW NIST MEDICAL-INDUSTRIAL RADIATION FACILITY WILL HELP DEVELOP NEW TECHNOLOGIES, ESTABLISH STANDARDS. ...

410

Hydrogen isotope separation from water  

DOE Patents (OSTI)

A process for separating tritium from tritium-containing water or deuterium enrichment from water is described. The process involves selective, laser-induced two-photon excitation and photodissociation of those water molecules containing deuterium or tritium followed by immediate reaction of the photodissociation products with a scavenger gas which does not substantially absorb the laser light. The reaction products are then separated from the undissociated water. (auth)

Jensen, R.J.

1975-09-01T23:59:59.000Z

411

Former Worker Medical Screening Program Summary of Services Available to Former Workers, February 1, 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

February 1, 2013 Former Worker Medical Screening Program Summary of Services Available to Former Workers (Sites listed below are primary sites served, but multiple small sites are also served by the Building Trades National Medical Screening Program for construction workers and by the National Supplemental Screening Program for production workers) State DOE Site Worker Population/Medical Screening Program Provider Local Office Location and Phone Number Alaska Amchitka Island All workers, primarily construction CPWR - The Center for Construction Research & Training (CPWR)/Building Trades National Medical Screening Program (BTMed) 1-800-866-9663 California Lawrence Berkeley National Laboratory All workers Queens College (QC)/Worker Health Protection

412

Former Worker Medical Screening Program Summary of Services Available to Former Workers, February 1, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 1, 2013 Former Worker Medical Screening Program Summary of Services Available to Former Workers (Sites listed below are primary sites served, but multiple small sites are also served by the Building Trades National Medical Screening Program for construction workers and by the National Supplemental Screening Program for production workers) State DOE Site Worker Population/Medical Screening Program Provider Local Office Location and Phone Number Alaska Amchitka Island All workers, primarily construction CPWR - The Center for Construction Research & Training (CPWR)/Building Trades National Medical Screening Program (BTMed) 1-800-866-9663 California Lawrence Berkeley National Laboratory All workers Queens College (QC)/Worker Health Protection

413

Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN  

SciTech Connect

The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.

Weaver, Phyllis C

2013-12-12T23:59:59.000Z

414

INSTRUCTIONS FOR FILING A WITHDRAWAL with APPROVED EXCUSE Non-Medical and Medical  

E-Print Network (OSTI)

1 INSTRUCTIONS FOR FILING A WITHDRAWAL with APPROVED EXCUSE Non-Medical and Medical Withdraw with Approved Excuse ­ Non-Medical Withdraw with Approved Excuse - Medical Step 1: Attach a statement to page 1 your reasons for seeking a Withdrawal with Approved Excuse for Medical Reasons. Include the last date

Boufadel, Michel

415

Medical Guidelines Reconciling Medical Software and Electronic Devices: Imatinib Case-study  

E-Print Network (OSTI)

Medical Guidelines Reconciling Medical Software and Electronic Devices: Imatinib Case-study Alena.demicheli@epfl.ch Abstract--Nowadays medical software is tightly coupled with medical devices that perform patient state monitoring and lately even some basic treatment procedures. Medical guidelines (GLs) can be seen

De Micheli, Giovanni

416

2012 Entering Medical Class: Allopathic Medical Schools (48) to which 142 Penn State applicants matriculated  

E-Print Network (OSTI)

2012 Entering Medical Class: Allopathic Medical Schools (48) to which 142 Penn State applicants University Georgetown University * Jefferson Medical College ­ 38 Marshall University Medical University UMDNJ ­ New Jersey Medical School University of Arizona College of Medicine ­ Phoenix campus University

dePamphilis, Claude

417

H. UCSF/FRESNO MEDICAL EDUCATION PROGRAM H. UCSF/FRESNO MEDICAL EDUCATION PROGRAM  

E-Print Network (OSTI)

H. UCSF/FRESNO MEDICAL EDUCATION PROGRAM 165 H. UCSF/FRESNO MEDICAL EDUCATION PROGRAM BACKGROUND UCSF established a regional medical education program in Fresno in 1975 to provide training for doctors Medical Center, Fresno County Hospital, Fresno Community Hospital, Valley Medical Center and Kaiser

Mullins, Dyche

418

(09)UC/05 BSc(Hons) Medical Physics/11 Bachelor of Science (Honours) Medical Physics  

E-Print Network (OSTI)

(09)UC/05 ­ BSc(Hons) Medical Physics/11 Bachelor of Science (Honours) Medical Physics 2005 Calendar, pages 348 and 681 (09)UC/05 ­ BSc(Hons) Medical Physics/1 Section A 1. Purpose of proposal To provide a better pathway for PhD students in Medical Physics, a BSc(Hons) degree in Medical Physics

Hickman, Mark

419

MEDICAL COLLEGE OF WISCONSIN AFFILIATED HOSPITALS, INC. Registrar Confirmation of Medical School Graduation form  

E-Print Network (OSTI)

MEDICAL COLLEGE OF WISCONSIN AFFILIATED HOSPITALS, INC. Registrar Confirmation of Medical School Graduation form The Medical College of Wisconsin Affiliated Hospitals, Inc (MCWAH) requires primary verification of your medical school graduation. Please complete and send this form to your Medical School

420

MEDICAL EDUCATION Medical Students Speak: A Two-Voice Comment on  

E-Print Network (OSTI)

MEDICAL EDUCATION Medical Students Speak: A Two-Voice Comment on Learning Professionalism We are two medical students. For one of us, medical school is just beginning; for the other, it is important to understand how medical students today view professionalism and how such a construct

Maxwell, Bruce D.

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Systematic examination of dynamically driven organic reactions via kinetic isotope effects  

E-Print Network (OSTI)

Organic reactions are systematically examined experimentally and theoretically to determine the role dynamics plays in the outcome of the reaction. It is shown that trajectory studies are of vital importance in understanding reactions influenced by dynamical motion. This dissertation discusses how a combination of kinetic isotope effects, theoretical calculations, and quasiclassical dynamics trajectories aid in the understanding of the solvolysis of p-tolyldiazonium cation in water, the cycloadditions of cyclopentadiene with diphenylketene and dichloroketene, and the cycloaddition of 2- methyl-2-butene with dichloroketene. In the solvolysis of p-tolyldiazonium cation, significant 13C kinetic isotope effects are qualitatively consistent with a transition state leading to formation of an aryl cation, but on a quantitative basis, the isotope effects are not adequately accounted for by simple SN1 heterolysis to the aryl cation. The best predictions of the 13C isotope effects for the heterolytic process arise from transition structures solvated by clusters of water molecules. Dynamic trajectories starting from these transition structures afford products very slowly. The nucleophilic displacement process for aryldiazonium ions in water is determined to be at the boundary of the SN2Ar and SN1 mechanisms. The reaction of cyclopentadiene with diphenylketene affords both [4 + 2] and [2 + 2] cycloadducts directly. This is surprising. There is only one low-energy transition structure for adduct formation. Investigation of this reaction indicates that quasiclassical trajectories started from a single transition structure afford both [4 + 2] and [2 + 2] products. Overall, an understanding of the products, rates, selectivities, isotope effects, and mechanism in these reactions requires the explicit consideration of dynamic trajectories.

Ussing, Bryson Richard

2006-12-01T23:59:59.000Z

422

Former Worker Medical Screening Program - Fernald Former Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Workers Principal Investigator: Steven Markowitz, MD Toll-free Telephone: (888) 241-1199 Local Outreach Office Ray Beatty and Mooch Callaway 1150 Harrison Ave., Suite 106...

423

Former Worker Medical Screening Program - Production Worker Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Iowa Army Ammunition Plant Kentucky: Paducah Gaseous Diffusion Plant Missouri: Kansas City Plant Nevada: Nevada National Security Site (formerly Nevada Test Site) New Jersey:...

424

REPORT OF SURVEY OF OAK RIDGE ISOTOPE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OAK RIDGE ISOTOPE OAK RIDGE ISOTOPE ENRICHMENT (CALUTRON) FACILITY BUILDING 9204-3 U.S. Department of Energy Office of Environmental Management & Office of Nuclear Energy Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 FINAL May 8, 2000 Contents 1. Introduction 1.1 Purpose 1.2 Facility Description 1.3 Organization Representatives 1.4 Survey Participants 2. Summary, Conclusions & Recommendations 2.1 Transfer Considerations 2.2 Post-Transfer EM Path Forward & Management Risk 3. Survey Results 4. Stabilization and Other Actions Required for Transfer 5. Surveillance & Maintenance After Transfer 6. Other Transfer Details 7. Attachments and References Appendix A - Detailed Survey Notes

425

Atomic line emission analyzer for hydrogen isotopes  

DOE Patents (OSTI)

Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using, a metal hydride.

Kronberg, J.W.

1991-05-08T23:59:59.000Z

426

Atomic line emission analyzer for hydrogen isotopes  

DOE Patents (OSTI)

Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

Kronberg, J.W.

1993-03-30T23:59:59.000Z

427

Atomic line emission analyzer for hydrogen isotopes  

DOE Patents (OSTI)

Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1993-01-01T23:59:59.000Z

428

Apparatus for separating and recovering hydrogen isotopes  

DOE Patents (OSTI)

An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

Heung, Leung K. (Aiken, SC)

1994-01-01T23:59:59.000Z

429

Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid  

DOE Patents (OSTI)

A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

Michaels, E.D.

1981-02-25T23:59:59.000Z

430

Laser isotope separation by multiple photon absorption  

DOE Patents (OSTI)

Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

Robinson, C. Paul (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Lyman, John L. (Los Alamos, NM); Aldridge, III, Jack P. (Los Alamos, NM)

1977-01-01T23:59:59.000Z

431

Laser isotope separation by multiple photon absorption  

DOE Patents (OSTI)

Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

Robinson, C. Paul (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Lyman, John L. (Los Alamos, NM); Aldridge, III, Jack P. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

432

The ORNL High Flux Isotope Reactor and New Advanced Fuel Testing Capabilities  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy s High Flux Isotope Reactor (HFIR), located at the Oak Ridge National Laboratory (ORNL), was originally designed (in the 1960s) primarily as a part of the overall program to produce transuranic isotopes for use in the heavy-element research program of the United States. Today, the reactor is a highly versatile machine, producing medical and transuranic isotopes and performing materials test experimental irradiations and neutron-scattering experiments. The ability to test advanced fuels and cladding materials in a thermal neutron spectrum in the United States is limited, and a fast-spectrum irradiation facility does not currently exist in this country. The HFIR has a distinct advantage for consideration as a fuel/cladding irradiation facility because of the extremely high neutron fluxes that this reactor provides over the full thermal- to fast-neutron energy range. New test capabilities have been developed that will allow testing of advanced nuclear fuels and cladding materials in the HFIR under prototypic light-water reactor (LWR) and fast-reactor (FR) operating conditions.

Ott, Larry J [ORNL; McDuffee, Joel Lee [ORNL

2011-01-01T23:59:59.000Z

433

Cryogenic Adsorption of Hydrogen Isotopes over Nano-Structured Materials  

Science Conference Proceedings (OSTI)

Detritiation and Isotope Separation / Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2)

X. Xiao; L. K. Heung

434

Isotope effect in BEDT-TTF based organic superconductors  

SciTech Connect

The results of the comprehensive isotope effect studies, in which seven different isotopically labeled (involving {sup 13}C, {sup 34}S and {sup 2}H labeling) BEDT-TTF derivatives and isotopically labeled anion [Cu({sup 15}N{sup 13}CS){sub 2}]{sup {minus}} were utilized, are summarized. For the first time, convincing evidence for a genuine BCS-like mass isotope effect in an organic superconductor is revealed in these studies.

Kini, A.M.; Carlson, K.D.; Dudek, J.D.; Geiser, U.; Wang, H.H.; Williams, J.M.

1996-10-01T23:59:59.000Z

435

Expression of Stable Isotopically Labeled Proteins for Use as ...  

Science Conference Proceedings (OSTI)

Expression of Stable Isotopically Labeled Proteins for Use as Internal Standards for Mass Spectrometric Quantitation of Clinical Protein Biomarkers. ...

2013-03-13T23:59:59.000Z

436

Facility for Endurance Testing of Hydrophobic Isotope Exchange Catalysts  

Science Conference Proceedings (OSTI)

Detritiation and Isotope Separation / Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2)

Lidia Matei; C. Postolache; C. Tuta; S. Brad

437

Space isotope power program. Quarterly report, October--December 1968  

SciTech Connect

Progress during October through December 1968 in the Space Isotope Power Program at the Sandia Laboratories is reported. (LCL)

1969-02-01T23:59:59.000Z

438

Isotopic Interdiffusion Analysis and its Application in Multicomponent ...  

Science Conference Proceedings (OSTI)

Presentation Title, Isotopic Interdiffusion Analysis and its Application in Multicomponent ... Calorimetric studies of lithium ion cells and their constructing materials.

439

Thermal manipulator of medical catheters  

DOE Patents (OSTI)

This invention consists of a maneuverable medical catheter comprising a flexible tube having a functional tip. The catheter is connected to a control source. The functional tip of the catheter carries a plurality of temperature activated elements arranged in parallel and disposed about the functional tip and held in spaced relation at each end. These elements expand when they are heated. A plurality of fiber optic bundles, each bundle having a proximal end attached to the control source and a distal end attached to one of the elements carry light into the elements where the light is absorbed as heat. By varying the optic fiber that is carrying the light and the intensity of the light, the bending of the elements can be controlled and thus the catheter steered. In an alternate embodiment, the catheter carries a medical instrument for gathering a sample of tissue. The instrument may also be deployed and operated by thermal expansion and contraction of its moving parts.

Chastagner, P.

1991-03-04T23:59:59.000Z

440

Converting Energy to Medical Progress  

Office of Scientific and Technical Information (OSTI)

Converting Converting to April 2001 An introduction to the unique research funded by the Medical Sciences Division Biological and Environmental Research (BER) Office of Science, U.S. Department of Energy Nuclear Medicine E v e r y w h e r e i n He a l t h c a r e A n d s o do e s B E R N u c l e a r M e d i c i n e H e lps P a t i e n t s the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Converting Energy to Medical Progress  

NLE Websites -- All DOE Office Websites (Extended Search)

Converting Converting to April 2001 An introduction to the unique research funded by the Medical Sciences Division Biological and Environmental Research (BER) Office of Science, U.S. Department of Energy Nuclear Medicine E v e r y w h e r e i n He a l t h c a r e A n d s o do e s B E R N u c l e a r M e d i c i n e H e lps P a t i e n t s the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by

442

E.L. Grossman Chapter 10 Oxygen Isotope Stratigraphy  

E-Print Network (OSTI)

are the mineral and water respectively. Oxygen isotopic ratios are The Geologic Time Scale 2012. DOI: 10.1016/B978E.L. Grossman Chapter 10 Oxygen Isotope Stratigraphy Abstract:Variations in the 18 O/16 O ratios for global correlation. Relying on previous compilations and new data, this chapter presents oxygen isotope

Grossman, Ethan L.

443

Glossary of Health Coverage and Medical Terms  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary of Health Coverage and Medical Terms Page 1 of 4 Glossary of Health Coverage and Medical Terms * This glossary has many commonly used terms, but isn't a full list. These...

444

ENERGY STAR Score for Medical Offices  

NLE Websites -- All DOE Office Websites (Extended Search)

July 2013 ENERGY STAR Score for Medical Offices in the United States Page 1 ENERGY STAR Score for Medical Offices in the United States Technical Reference OVERVIEW The ENERGY STAR...

445

Novel Gas Isotope Interpretation Tools to Optimize Gas Shale  

NLE Websites -- All DOE Office Websites (Extended Search)

Final Report to Final Report to Report Number 08122.15.Final Novel Gas Isotope Interpretation Tools to Optimize Gas Shale Production Contract: 08122-15 Principal Investigator: William A. Goddard, III Title: Director, Materials and Process Simulation Center California Institute of Technology Wag@wag.caltech.edu Co-PIs: Yongchun Tang, Ph.D. Title: Director, Power Environmental Energy Research Institute Other Author(s) Sheng Wu, Ph.D Andrew Deev, Ph.D Qisheng Ma, Ph.D Gao Li, Ph.D. June 5, 2013 2 LEGAL NOTICE This report was prepared by California Institute of Technology as an account of work sponsored by the Research Partnership to Secure Energy for America, RPSEA. Neither RPSEA members of RPSEA, the National Energy Technology Laboratory, the U.S. Department of Energy, nor any person acting on behalf of

446

Carbon and nitrogen isotope studies in an arctic ecosystem  

Science Conference Proceedings (OSTI)

This proposal requests funding for the completion of our current ecological studies at the MS-117 research site at Toolik Lake, Alaska. We have been using a mix of stable and radioisotope techniques to assess the fluxes of carbon and nitrogen within the ecosystem and the implications for long-term carbon storage or loss from the tundra. Several tentative conclusions have emerged from our study including: Tundra in the foothills is no longer accumulating carbon. Surficial radiocarbon abundances show little or no accumulation since 1000--2500 yrs BP. Coastal plain tundra is still accumulating carbon, but the rate of accumulation has dropped in the last few thousand years. Carbon export from watersheds in the Kuparuk and Imnavait Creek drainages are in excess of that expected from estimated primary productivity; and Nitrogen isotope abundances vary between species of plants and along hydrologic gradients.

Schell, D.M.

1989-01-01T23:59:59.000Z

447

Carbon and nitrogen isotope studies in an arctic ecosystem  

Science Conference Proceedings (OSTI)

This proposal requests funding for the completion of our current ecological studies at the MS-117 research site at Toolik Lake, Alaska. We have been using a mix of stable and radioisotope techniques to assess the fluxes of carbon and nitrogen within the ecosystem and the implications for long-term carbon storage or loss from the tundra. Several tentative conclusions have emerged from our study including: Tundra in the foothills is no longer accumulating carbon. Surficial radiocarbon abundances show little or no accumulation since 1000--2500 yrs BP. Coastal plain tundra is still accumulating carbon, but the rate of accumulation has dropped in the last few thousand years. Carbon export from watersheds in the Kuparuk and Imnavait Creek drainages are in excess of that expected from estimated primary productivity; and Nitrogen isotope abundances vary between species of plants and along hydrologic gradients.

Schell, D.M.

1989-12-31T23:59:59.000Z

448

Kinetically Relevant Steps and H2/D2 Isotope Effects in Fischer-Tropsch Synthesis on Fe and Co Catalysts  

SciTech Connect

H2/D2 isotope effects on Fischer-Tropsch synthesis (FTS) rate and selectivity are examined here by combining measured values on Fe and Co at conditions leading to high C5+ yields with theoretical estimates on model Fe(110) and Co(0001) surfaces with high coverages of chemisorbed CO (CO*). Inverse isotope effects (rH/rD < 1) are observed on Co and Fe catalysts as a result of compensating thermodynamic (H2 dissociation to H*; H* addition to CO* species to form HCO*) and kinetic (H* reaction with HCO*) isotope effects. These isotopic effects and their rigorous mechanistic interpretation confirm the prevalence of H-assisted CO dissociation routes on both Fe and Co catalysts, instead of unassisted pathways that would lead to similar rates with H2 and D2 reactants. The small contributions from unassisted pathways to CO conversion rates on Fe are indeed independent of the dihydrogen isotope, as is also the case for the rates of primary reactions that form CO2 as the sole oxygen rejection route in unassisted CO dissociation paths. Isotopic effects on the selectivity to C5+ and CH4 products are small, and D2 leads to a more paraffinic product than does H2, apparently because it leads to preference for chain termination via hydrogen addition over abstraction. These results are consistent with FTS pathways limited by H-assisted CO dissociation on both Fe and Co and illustrate the importance of thermodynamic contributions to inverse isotope effects for reactions involving quasi-equilibrated H2 dissociation and the subsequent addition of H* in hydrogenation catalysis, as illustrated here by theory and experiment for the specific case of CO hydrogenation.

Ojeda, Manuel; Li, Anwu; Nabar, Rahul P.; Nilekar, Anand U.; Mavrikakis, Manos; Iglesia, Enrique

2010-11-25T23:59:59.000Z

449

Application in Advanced Laparoscopic Procedures: Medical Ice...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications Homeland Security Applications Biomedical Applications Medical Ice Slurry Coolants for Inducing Targeted-OrganTissue Protective Cooling Technology...

450

NIST Medical-Industrial Radiation Facility  

Science Conference Proceedings (OSTI)

Medical-Industrial Radiation Facility. ... Radiation hardness testing; Electron-beam sterilization; Beam diagnostics; Industrial CT scanning. ...

451

VA Medical Device Protection Program (MDPP)  

Science Conference Proceedings (OSTI)

... Photo Source: Idaho Department of Commerce ... in patient healthcare for diagnosis, treatment, or monitoring; ... medical system: Any group of devices ...

2011-05-11T23:59:59.000Z

452

BMC Medical Education BioMed Central  

E-Print Network (OSTI)

Research article Life satisfaction and resilience in medical school – a six-year longitudinal, nationwide and comparative study

Kari Kjeldstadli; Reidar Tyssen; Arnstein Finset; Erlend Hem; Tore Gude; Nina T Gronvold; Oivind Ekeberg; Per Vaglum

2006-01-01T23:59:59.000Z

453

Titanium/Polymer Sandwich for Medical Applications  

Science Conference Proceedings (OSTI)

Presentation Title, Titanium/Polymer Sandwich for Medical Applications. Author(s ) ... Biocompatible Nanoparticle Materials in Cancer Research · Bioinspired ...

454

Panel on Economic Incentives for Medical Device ...  

Science Conference Proceedings (OSTI)

... and safety, reduced energy consumption, faster performance ... Kevin works on energy-aware software ... of Harvard Medical School, Microsoft Research ...

2012-02-10T23:59:59.000Z

455

A Review of Antarctic Surface Snow Isotopic Composition: Observations, Atmospheric Circulation, and Isotopic Modeling  

Science Conference Proceedings (OSTI)

A database of surface Antarctic snow isotopic composition is constructed using available measurements, with an estimate of data quality and local variability. Although more than 1000 locations are documented, the spatial coverage remains uneven ...

V. Masson-Delmotte; S. Hou; A. Ekaykin; J. Jouzel; A. Aristarain; R. T. Bernardo; D. Bromwich; O. Cattani; M. Delmotte; S. Falourd; M. Frezzotti; H. Gallée; L. Genoni; E. Isaksson; A. Landais; M. M. Helsen; G. Hoffmann; J. Lopez; V. Morgan; H. Motoyama; D. Noone; H. Oerter; J. R. Petit; A. Royer; R. Uemura; G. A. Schmidt; E. Schlosser; J. C. Simőes; E. J. Steig; B. Stenni; M. Stievenard; M. R. van den Broeke; R. S. W. van de Wal; W. J. van de Berg; F. Vimeux; J. W. C. White

2008-07-01T23:59:59.000Z

456

Strategies for Application of Isotopic Uncertainties in Burnup Credit  

SciTech Connect

Uncertainties in the predicted isotopic concentrations in spent nuclear fuel represent one of the largest sources of overall uncertainty in criticality calculations that use burnup credit. The methods used to propagate the uncertainties in the calculated nuclide concentrations to the uncertainty in the predicted neutron multiplication factor (k{sub eff}) of the system can have a significant effect on the uncertainty in the safety margin in criticality calculations and ultimately affect the potential capacity of spent fuel transport and storage casks employing burnup credit. Methods that can provide a more accurate and realistic estimate of the uncertainty may enable increased spent fuel cask capacity and fewer casks needing to be transported, thereby reducing regulatory burden on licensee while maintaining safety for transporting spent fuel. This report surveys several different best-estimate strategies for considering the effects of nuclide uncertainties in burnup-credit analyses. The potential benefits of these strategies are illustrated for a prototypical burnup-credit cask design. The subcritical margin estimated using best-estimate methods is discussed in comparison to the margin estimated using conventional bounding methods of uncertainty propagation. To quantify the comparison, each of the strategies for estimating uncertainty has been performed using a common database of spent fuel isotopic assay measurements for pressurized-light-water reactor fuels and predicted nuclide concentrations obtained using the current version of the SCALE code system. The experimental database applied in this study has been significantly expanded to include new high-enrichment and high-burnup spent fuel assay data recently published for a wide range of important burnup-credit actinides and fission products. Expanded rare earth fission-product measurements performed at the Khlopin Radium Institute in Russia that contain the only known publicly-available measurement for {sup 103}Rh have also been included.

Gauld, I.C.

2002-12-23T23:59:59.000Z

457

It's Elemental - Isotopes of the Element Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen Isotopes of the Element Nitrogen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 14 99.636% STABLE 15 0.364% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 10 No Data Available Proton Emission 100.00% 11 5.49Ă—10-22 seconds Proton Emission 100.00% 12 11.000 milliseconds Electron Capture 100.00% 13 9.965 minutes Electron Capture 100.00% 14 STABLE - - 15 STABLE - - 16 7.13 seconds Beta-minus Decay 100.00% Beta-minus Decay with delayed Alpha Decay 1.2Ă—10-3 % 17 4.173 seconds Beta-minus Decay 100.00%

458

RADIATION PROTECTION AND DECONTAMINATION IN ISOTOPE LABORATORIES  

SciTech Connect

An accident trolley is described that contains everything needed if an accident with radioactive materials occurs. Instructions for decontamination are given and measures to be taken after mishaps with open isotopes are recommended. Cleansing and treatment of laundry that is contaminated with radioactive materials are discussed and an active laundry is described. (auth)

Schanze, U.O.

1963-12-01T23:59:59.000Z

459

Diagnostic Medical Sonography Clinical Technical Standards  

E-Print Network (OSTI)

Diagnostic Medical Sonography Clinical Technical Standards Listed below are the technical standards identified for students in the Diagnostic Medical Sonography (DMS) clinical program. Review each standard and communicate effectively. Smell Be able to detect electrical hazards inherent in medical equipment Speech

Barrash, Warren

460

Medical Insurance An overview for active employees  

E-Print Network (OSTI)

Your UC Medical Insurance An overview for active employees #12;Agenda · Your Options · Pre-paid medical · Other Insurance Plans · Conclusion #12;Your Options #12;Your options · UC offers four types of medical plan o HMO plans (4) o POS plan o PPO plans (2) o FFS plan · Availability determined by zip code o

Burke, Peter

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

MEDICAL EVACUATION IN A THEATER OF  

E-Print Network (OSTI)

FM 8-10-6 MEDICAL EVACUATION IN A THEATER OF OPERATIONS HEADQUARTERS, DEPARTMENT OF THE ARMY APRIL 2000 MEDICAL EVACUATION IN A THEATER OF OPERATIONS TACTICS, TECHNIQUES, AND PROCEDURES TABLE ......................................................................................................... xi CHAPTER 1. INTRODUCTION TO THE COMBAT HEALTH SUPPORT SYSTEM AND MEDICAL EVACUATION

US Army Corps of Engineers

462

MEDICAL/ DENTAL/ VISION ENROLLMENT / CHANGE FORM  

E-Print Network (OSTI)

MEDICAL/ DENTAL/ VISION ENROLLMENT / CHANGE FORM Changes are effective the 1st of the next month UNM Medical Plan Third Party Administrator Election Dental Plan Election Vision Plan Election Lovelace: (Add or Remove) Mark Type of Coverage for each Enrollee Spouse Add Remove Medical Dental Vision

New Mexico, University of

463

Medical Examination Office of Human Resources  

E-Print Network (OSTI)

Medical Examination 4.40 Office of Human Resources Applies to: Faculty, staff, graduate associates or graduate associate or prospective employee or graduate associate to undergo medical examination or utensils, or food-contact surfaces. Policy Details I. Current Employees A job-related medical examination

Howat, Ian M.

464

wwwwww..ccoommmmuunniittyy..hhaarrvvaarrdd..eedduu Harvard Medical  

E-Print Network (OSTI)

·· wwwwww..ccoommmmuunniittyy..hhaarrvvaarrdd..eedduu ·· Harvard Medical School students help local are learning about science and medi- cine by working with Harvard Medical School (HMS) student volunteers who realize that a career in sci- ence is something they can achieve. At Girl Power, where medical and dental

465

Postgraduate Medical Education PGME MISSION STATEMENT  

E-Print Network (OSTI)

Postgraduate Medical Education PGME MISSION STATEMENT FACULTY OF MEDICINE ­ VISION Creating the future of health. FACULTY OF MEDICINE ­ MISSION An innovative medical school committed to excellence and leadership in education, research, and service to society. INTRODUCTION Postgraduate Medical Education

Habib, Ayman

466

NEW TITANIUM ISOTOPE DATA FOR ALLENDE AND EFREMOVKA CAIs  

SciTech Connect

We measured the titanium (Ti) isotope composition, i.e., {sup 50}Ti/{sup 47}Ti, {sup 48}Ti/{sup 47}Ti, and {sup 46}Ti/{sup 47}Ti, in five calcium-rich-aluminum-rich refractory inclusions (CAIs) from the oxidized CV3 chondrite Allende and in two CAIs from the reduced CV3 chondrite Efremovka. Our data indicate that CAIs are enriched in {sup 50}Ti/{sup 47}Ti and {sup 46}Ti/{sup 47}Ti and are slightly depleted in {sup 48}Ti/{sup 47}Ti compared to normal Ti defined by ordinary chondrites, eucrites, ureilites, mesosiderites, Earth, Moon, and Mars. Some CAIs have an additional {sup 50}Ti excess of {approx}8{epsilon} relative to bulk carbonaceous chondrites, which are enriched in {sup 50}Ti by {approx}2{epsilon} relative to terrestrial values, leading to a total excess of {approx}10{epsilon}. This additional {sup 50}Ti excess is correlated with nucleosynthetic anomalies found in {sup 62}Ni and {sup 96}Zr, all indicating an origin from a neutron-rich stellar source. Bulk carbonaceous chondrites show a similar trend, however, the extent of the anomalies is either less than or similar to the smallest anomalies seen in CAIs. Mass balance calculations suggest that bulk Allende Ti possibly consists of a mixture of at least two Ti components, anomalous Ti located in CAIs and a normal component possibly for matrix and chondrules. This argues for a heterogeneous distribution of Ti isotopes in the solar system. The finding that anomalous Ti is concentrated in CAIs suggests that CAIs formed in a specific region of the solar system and were, after their formation, not homogeneously redistributed within the solar system. Combining the CAI data with improved model predictions for early solar system irradiation effects indicates that a local production scenario for the relatively short lived radionuclides can be excluded, because the production of, e.g., {sup 10}Be, {sup 26}Al, and {sup 41}Ca, would result in a significant collateral shift in Ti isotopes, which is not seen in the measured data.

Leya, Ingo [Physical Institute, Space Sciences and Planetology, University of Bern (Switzerland); Schoenbaechler, Maria [School of Earth, Atmospheric and Environmental Sciences, University of Manchester (United Kingdom); Kraehenbuehl, Urs [Laboratory for Radiochemistry, University of Bern (Switzerland); Halliday, Alex N. [Deparment of Earth Sciences, University of Oxford, Oxford (United Kingdom)], E-mail: Ingo.Leya@space.unibe.ch

2009-09-10T23:59:59.000Z

467

Isotopic Analysis of N and O in Nitrite and Nitrate by Sequential Selective Bacterial Reduction to N2O  

E-Print Network (OSTI)

composition of NO2 - is linked to those of NO3 -, N2O, NH4 +, and N2 gas, the production or consumption in natural aquatic systems is poorly understood. Isotopic data can be used to study the sources independently, reproducible 15N and 18O values were obtained at both natural-abundance levels ((0.2-0.5 for 15N

468

HISTORY of the UMH Medical Library The medical library of Cedars Medical Center was initially housed in a remove and relatively  

E-Print Network (OSTI)

HISTORY of the UMH Medical Library 1 The medical library of Cedars Medical Center was initially subscriptions were purchased through dues of the Medical Staff. Selections of material were based and Journals for the Small Medical Library. Requests from medical staff members were incorporated

Shyu, Mei-Ling

469

Complexity management through product portfolio cost modeling and optimization  

E-Print Network (OSTI)

A significant amount of complexity exists within the brand and product portfolios of PharmaCo. This complexity is driven by several factors: first, medical needs for differing products and dosages; second, marketing requests ...

Sommerkorn, Peter (Peter Wilford)

2013-01-01T23:59:59.000Z

470

Production system improvement : floor area reduction and visual management  

E-Print Network (OSTI)

This thesis suggests on the development process of a new layout design and visual management tools to improve the efficiency of a production line in a medical device company. Lean production philosophy and common lean ...

Chen, Zhuling, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

471

SOURCE OF PRODUCTS OF NUCLEAR FISSION  

DOE Patents (OSTI)

A source of fission product recoil energy suitable for use in radiation chemistry is reported. The source consists of thermal neutron irradiated glass wool having a diameter of 1 to 5 microns and containing an isotope fissionable by thermal neutrons, such as U/sup 235/.

Harteck, P.; Dondes, S.

1960-03-15T23:59:59.000Z

472

A survey of Sub-Saharan African medical schools  

E-Print Network (OSTI)

directory of medical schools. World Health Organization. [directories of medical schools, contact lists of medical education meetings hosted by the World Health Organization

2012-01-01T23:59:59.000Z

473

DOE: Former Worker Medical Screening Program (FWP) | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Former Worker Medical Screening Program (FWP) DOE: Former Worker Medical Screening Program (FWP) Addthis Description FWP provides no-cost medical screenings to all former DOE...

474

California Medical Association and Emergency Medicine - A Vital Link  

E-Print Network (OSTI)

July 14, 2009. California Medical Association. About CMA.L egislative California Medical Association and Emergencyand in- hospital emergency medical systems and the skills

Lieser, Alexis

2009-01-01T23:59:59.000Z

475

ORISE: The Medical Basis for Radiation-Accident Preparedness...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Medical Basis for Radiation-Accident Preparedness: Medical Management Proceedings of the Fifth International REACTS Symposium on the Medical Basis for Radiation-Accident...

476

Former Worker Program Medical Protocol | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Medical Protocol Former Worker Program Medical Protocol April 2013 The medical protocol is intended to identify work-related health outcomes of relevance to DOE workers for which...

477

Medical student dermatology research in the United States  

E-Print Network (OSTI)

PC, The value of medical student research: the experience atfor successful medical student research, new mechanisms ofbenchwork. Medical student research activity increased

Wagner, Richard F MD; PharmD, Boris Ioffe

2005-01-01T23:59:59.000Z

478

University of Rochester Office for Graduate Medical Education 2012 / 2013 OFFICE FOR GRADUATE MEDICAL EDUCATION  

E-Print Network (OSTI)

University of Rochester Office for Graduate Medical Education 2012 / 2013 Page 1 OFFICE FOR GRADUATE MEDICAL EDUCATION RESIDENT/FELLOW MANUAL FOR MEDICAL AND DENTAL PROGRAMS 2012-2013 http://www.urmc Office for Graduate Medical Education 2012 / 2013 Page 2 Table of Contents INTRODUCTION

Goldman, Steven A.

479

Legal Medical Record Standards Policy No. 9420 LEGAL MEDICAL RECORD STANDARDS  

E-Print Network (OSTI)

Legal Medical Record Standards Policy No. 9420 LEGAL MEDICAL RECORD STANDARDS PURPOSE To establish guidelines for the contents, maintenance, and confidentiality of patient Medical Records that meet's healthcare information, whether in paper or electronic format, that comprises the medical record. Patient

Abagyan, Ruben

480

Division of Medical Sciences Ph.D. Programs at Harvard Medical School  

E-Print Network (OSTI)

Division of Medical Sciences Ph.D. Programs at Harvard Medical School Quarter Courses Spring Visualization with Maya Catalog Number: 61072 Enrollment: Limited to 18. Gael McGill (Medical School) and David Lopes Cardozo (Medical School) *BCMP 307qc. Approaches to Drug Action, Discovery, and Design Catalog

Mekalanos, John

Note: This page contains sample records for the topic "medical isotopes production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Medical Technology 1 Running Head: USE OF TECHNOLGY IN A MEDICAL SETTING  

E-Print Network (OSTI)

Medical Technology 1 Running Head: USE OF TECHNOLGY IN A MEDICAL SETTING The Use of Different Technologies During a Medical Interview: Effects on Perceived Quality of Care Julia M. DeBlasio, Britt Caldwell of Technology GVU Technical Report # GIT-GVU-07-13 October, 2007 #12;Medical Technology 2 Abstract This two

482

11MEDICAL CHECK UP 11.1 Students' Annual Medical Examination  

E-Print Network (OSTI)

23 11.1 11.2 11MEDICAL CHECK UP 11.1 Students' Annual Medical Examination All students are required to take the annual medical examination which takes place in spring. Please make sure to check the home page or the bulletin board for the exact date and time. Medical examination is also held

483

UC COMPENSATION FOR INJURY 1a. GENERAL PROVISION OF MEDICAL TREATMENT OR REIMBURSEMENT OF MEDICAL COST  

E-Print Network (OSTI)

UC COMPENSATION FOR INJURY GUIDELINES 1a. GENERAL PROVISION OF MEDICAL TREATMENT OR REIMBURSEMENT OF MEDICAL COST The University of California will provide to any injured subject any and all medical or illness is a consequence of a medical research procedure which is designed to benefit the subject directly

El Zarki, Magda

484

MEDICAL INSURANCE The CHEIBA Trust is pleased to continue to offer you three medical insurance plans  

E-Print Network (OSTI)

- 23 - MEDICAL INSURANCE The CHEIBA Trust is pleased to continue to offer you three medical and are included with your medical coverage. MyAnthemTM Tired of paperwork and phone calls? MyAnthemTM takes See if your medication is on the Anthem formulary Visit MyHealth@Anthem® , powered by Web

485

WORLD MEDICAL ASSOCIATION DECLARATION OF HELSINKI Ethical Principles for Medical Research Involving Human Subjects  

E-Print Network (OSTI)

1 WORLD MEDICAL ASSOCIATION DECLARATION OF HELSINKI Ethical Principles for Medical Research, October 2008 A. INTRODUCTION 1. The World Medical Association (WMA) has developed the Declaration of Helsinki as a statement of ethical principles for medical research involving human subjects, including

Pfeifer, Holger

486

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas and Isotopes Geochemistry, Kennedy, van Soest and Shevenell. During FY04, we concentrated on two primary projects. The first was a detailed study of helium isotope systematics throughout Dixie Valley and the inter-relationship between the Dixie Valley geothermal reservoir and local hydrology. The second is the construction of a helium isotope "map" of the

487

Method of preparing mercury with an arbitrary isotopic distribution  

DOE Patents (OSTI)

This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.

Grossman, M.W.; George, W.A.

1986-12-16T23:59:59.000Z

488

Method of preparing mercury with an arbitrary isotopic distribution  

DOE Patents (OSTI)

This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg.sub.2 Cl.sub.2, corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H.sub.2 O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H.sub.2 O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1986-01-01T23:59:59.000Z

489

Conventional Medical Screening Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conventional Medical Screening Program Conventional Medical Screening Program Conventional Medical Screening Program Medical screening is a strategy used to identify diseases or conditions in a select population at an early stage, often before signs and symptoms develop, and to refer individuals with suspicious findings to their personal physician or a specialist for further testing, diagnosis, and treatment. The program is not intended to serve as a substitute for routine medical exams through an individual's personal physician. The medical screening exam offered by the FWP evaluates an employee's health as it relates to their potential occupational exposures to hazardous agents. The FWP uses a customized medical screening protocol that was developed by a team of independent physicians specializing in occupational

490

Agreement of Medical and Undergraduate School Counselors about the Ways an Average Student Can Improve His Application to Medical School  

E-Print Network (OSTI)

service, volunteering in any medical setting, and obtaininggiven student applicants for medical school. Boththat volunteering in a medical/clinical setting is a highly

Shapiro, Sharon; Stanley, Kristi A; Henderson, Sean O; Massopust, Kristy

2008-01-01T23:59:59.000Z

491

NIDC: Online Catalog of Isotope Products | Add a Product to Quote...  

NLE Websites -- All DOE Office Websites (Extended Search)

Rubidium Ruthenium Samarium Selenium Silicon Silver Sodium Strontium Sulfur Tantalum Technetium Tellurium Thallium Thorium Tin Titanium Tungsten Uranium Vanadium Xenon Ytterbium...

492

SCALE Validation Experience Using an Expanded Isotopic Assay Database for Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

The availability of measured isotopic assay data to validate computer code predictions of spent fuel compositions applied in burnup-credit criticality calculations is an essential component for bias and uncertainty determination in safety and licensing analyses. In recent years, as many countries move closer to implementing or expanding the use of burnup credit in criticality safety for licensing, there has been growing interest in acquiring additional high-quality assay data. The well-known open sources of assay data are viewed as potentially limiting for validating depletion calculations for burnup credit due to the relatively small number of isotopes measured (primarily actinides with relatively few fission products), sometimes large measurement uncertainties, incomplete documentation, and the limited burnup and enrichment range of the fuel samples. Oak Ridge National Laboratory (ORNL) recently initiated an extensive isotopic validation study that includes most of the public data archived in the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) electronic database, SFCOMPO, and new datasets obtained through participation in commercial experimental programs. To date, ORNL has analyzed approximately 120 different spent fuel samples from pressurized-water reactors that span a wide enrichment and burnup range and represent a broad class of assembly designs. The validation studies, completed using SCALE 5.1, are being used to support a technical basis for expanded implementation of burnup credit for spent fuel storage facilities, and other spent fuel analyses including radiation source term, dose assessment, decay heat, and waste repository safety analyses. This paper summarizes the isotopic assay data selected for this study, presents validation results obtained with SCALE 5.1, and discusses some of the challenges and experience associated with evaluating the results. Preliminary results obtained using SCALE 6 and ENDF/B-VII cross sections libraries are also briefly summarized. Oak Ridge National Laboratory (ORNL) has been performing spent-fuel isotopic validation studies using the depletion analysis methods in the SCALE [1] code system for the past 20 years. These studies involve comparisons of calculated inventories against measured isotopic composition data obtained from destructive radiochemical analysis of commercial spent nuclear fuel samples. The results of these benchmark studies are used to quantify the bias and uncertainties associated with isotopic calculations and ultimately determine appropriate margins for uncertainty that can be applied in safety-related analyses such as burnup credit in criticality calculations, decay heat analysis, and source terms. Previous studies using several versions of SCALE and nuclear data libraries have been published in multiple validation reports [2-6] that evaluate selected experimental data obtained largely from public sources. A study was recently initiated at ORNL with the objectives of updating and expanding the validation calculations using a comprehensive database of experimental isotopic assay data that includes isotopic composition data obtained from both publicly available sources and international commercial programs. As part of the study, an extensive isotopic database of nearly 120 measured spent fuel samples with an expanded range of initial enrichments and burnup values compared to previously analyzed data was reviewed and analyzed. The calculations were performed using two-dimensional (2-D) assembly models and a consistent set of modeling assumptions using the SCALE 5.1 code system and ENDF/B-V 44-group cross section library. As part of the current study, detailed benchmark modeling information and measurement data are being documented in a format that is readily usable for validating depletion and decay codes. The work is being extended to include analysis results using SCALE 6 and the ENDF/B-VII 238-group cross section library. This paper describes the isotopic composition data evaluated in this study and highlights the pre

Gauld, Ian C [ORNL; Radulescu, Georgeta [ORNL; Ilas, Germina [ORNL

2009-01-01T23:59:59.000Z

493

Optically pumped isotopic ammonia laser system  

DOE Patents (OSTI)

An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

Buchwald, Melvin I. (Santa Fe, NM); Jones, Claude R. (Los Alamos, NM); Nelson, Leonard Y. (Seattle, WA)

1982-01-01T23:59:59.000Z

494

ORISE: Advanced Radiation Medicine | REAC/TS Continuing Medical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Incident Medical Consultation Cytogenetic Biodosimetry Continuing Medical Education Radiation Emergency Medicine Advanced Radiation Medicine Health Physics in Radiation...

495

Diffusional exchange of isotopes in a metal hydride sphere.  

DOE Green Energy (OSTI)

This report describes the Spherical Particle Exchange Model (SPEM), which simulates exchange of one hydrogen isotope by another hydrogen isotope in a spherical metal hydride particle. This is one of the fundamental physical processes during isotope exchange in a bed of spherical metal particles and is thus one of the key components in any comprehensive physics-based model of exchange. There are two important physical processes in the model. One is the entropy of mixing between the two isotopes; the entropy of mixing is increased by having both isotopes randomly placed at interstitial sites on the lattice and thus impedes the exchange process. The other physical process is the elastic interaction between isotope atoms on the lattice. The elastic interaction is the cause for {beta}-phase formation and is independent of the isotope species. In this report the coupled diffusion equations for two isotopes in the {beta}-phase hydride are solved. A key concept is that the diffusion of one isotop