Powered by Deep Web Technologies
Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

On the Median Volume Diameter Approximation for Droplet Collision Efficiency  

Science Conference Proceedings (OSTI)

In this note, we examine a shortcut for calculating the overall collision efficiency of a droplet spectrum, known as the “median volume diameter” (mvd) approximation. By calculating the overall collision efficiency of a circular cylinder for a ...

Karen J. Finstad; Edward P. Lozowski; Lasse Makkonen

1988-12-01T23:59:59.000Z

2

Aerodynamic size associations of natural radioactivity with ambient aerosols  

SciTech Connect

The aerodynamic size of /sup 214/Pb, /sup 212/Pb, /sup 210/Pb, /sup 7/Be, /sup 32/P, /sup 35/S (as SO/sub 4//sup 2 -/), and stable SO/sub 4//sup 2 -/ was measured using cascade impactors. The activity distribution of /sup 212/Pb and /sup 214/Pb, measured by alpha spectroscopy, was largely associated with aerosols smaller than 0.52 ..mu..m. Based on 46 measurements, the activity median aerodynamic diameter of /sup 212/Pb averaged 0.13 ..mu..m (sigma/sub g/ = 2.97), while /sup 214/Pb averaged 0.16 ..mu..m (sigma/sub g/ = 2.86). The larger median size of /sup 214/Pb was attributed to ..cap alpha..-recoil depletion of smaller aerosols following decay of aerosol-associated /sup 218/Po. Subsequent /sup 214/Pb condensation on all aerosols effectively enriches larger aerosols. /sup 212/Pb does not undergo this recoil-driven redistribution. Low-pressure impactor measurements indicated that the mass median aerodynamic diameter of SO/sub 4//sup 2 -/ was about three times larger than the activity median diameter /sup 212/Pb, reflecting differences in atmospheric residence times as well as the differences in surface area and volume distributions of the atmospheric aerosol. Cosmogenic radionuclides, especially /sup 7/Be, were associated with smaller aerosols than SO/sub 4//sup 2 -/ regardless of season, while /sup 210/Pb distributions in summer measurements were similar to sulfate but smaller in winter measurements. Even considering recoil following /sup 214/Po ..cap alpha..-decay, the avervage /sup 210/Pb labeled aerosol grows by about a factor of two during its atmospheric lifetime. The presence of 5 to 10% of the /sup 7/Be on aerosols greater than 1 ..mu..m was indicative of post-condensation growth, probably either in the upper atmosphere or after mixing into the boundary layer.

Bondietti, E.A.; Papastefanou, C.; Rangarajan, C.

1986-04-01T23:59:59.000Z

3

A Study of the Effect of Size on Ice Nucleation in the Aerodynamic Range of Particles  

Science Conference Proceedings (OSTI)

The effect of size on ice nucleation has been experimentally investigated for aerosol particles in the aerodynamic range. Aerosol particles are separated according to their aerodynamic diameter while airborne and deposited on a membrane filter ...

F. Prodi; G. Santachiara; V. Prodi

1982-07-01T23:59:59.000Z

4

Median statistics cosmological parameter values  

E-Print Network (OSTI)

We present median statistics central values and ranges for 12 cosmological parameters, using 582 measurements (published during 1990-2010) collected by Croft & Dailey (2011). On comparing to the recent Planck collaboration Ade et al. 2013 estimates of 11 of these parameters, we find good consistency in nine cases.

Crandall, Sara

2013-01-01T23:59:59.000Z

5

Conformity or Equivalent Diameter  

Science Conference Proceedings (OSTI)

...7(a), at left) and two external (Fig. 7(b), at right). The equations for the equivalent diameter, DE, are given in Fig. 7 for both modes. The equivalent diameter is the size of wheel that

6

Aerodynamic interference between two Darrieus wind turbines  

DOE Green Energy (OSTI)

The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

1981-04-01T23:59:59.000Z

7

The diameter game  

E-Print Network (OSTI)

Abstract. A large class of the so-called Positional Games are defined on the complete graph on n vertices. The players, Maker and Breaker, take the edges of the graph in turns, and Maker wins iff his subgraph has a given – usually monotone – property. Here we introduce the d-diameter game, which means that Maker wins iff the diameter of his subgraph is at most d. We investigate the biased version of the game; i.e., when the players may take more than one, and not necessarily the same number of edges, in a turn. The 2-diameter game has the property that Breaker wins the game in which each player chooses one edge per turn, but Maker wins as long as he is permitted to choose 2 edges in each turn whereas Breaker can choose as many as 0.25n 1/7 /(lnn) 3/7. In addition, we investigate d-diameter games for d> 1. The diameter games are strongly related to the degree games. Thus, we also provide a generalization of the fair degree game for the biased case. 1.

József Balogh; Ryan Martin; András Pluhár

2006-01-01T23:59:59.000Z

8

Freight Wing Trailer Aerodynamics  

SciTech Connect

Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

Graham, Sean (Primary Investigator); Bigatel, Patrick

2004-10-17T23:59:59.000Z

9

Double diameter boring tool  

DOE Patents (OSTI)

A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting edges formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first cutting edge tip to the axis of rotation plus the distance from the second cutting edge tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second cutting edge tip to the axis of rotation minus one-half the distance from the first cutting edge tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

Ashbaugh, Fred N. (Belton, MO); Murry, Kenneth R. (Odessa, MO)

1988-12-27T23:59:59.000Z

10

Double diameter boring tool  

DOE Patents (OSTI)

A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting flutes formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first flute tip to the axis of rotation plus the distance from the second flute tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second flute tip to the axis of rotation minus one-half the distance from the first flute tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

Ashbaugh, F.A.; Murry, K.R.

1986-02-10T23:59:59.000Z

11

Aerodynamic Contrails: Phenomenology and Flow Physics  

Science Conference Proceedings (OSTI)

Aerodynamic contrails have been recognized for a long time although they appear sporadically. Usually one observes them under humid conditions near the ground, where they are short-lived phenomena. Aerodynamic contrails appear also at cruise ...

K. Gierens; B. Kärcher; H. Mannstein; B. Mayer

2009-02-01T23:59:59.000Z

12

diameter  

Science Conference Proceedings (OSTI)

... 11013S, Per Gage (over 50 mm), At Cost. 11014S, Roundness trace, price per trace, 209. ... 11021C, Single Wire, price per wire, 112. ...

2013-08-17T23:59:59.000Z

13

Sunsets and solar diameter measurement  

E-Print Network (OSTI)

A sunset over the sea surface offers the possibility to chronometrate a solar transit across the horizon. The vertical solar diameter is proportional to the duration of the sunset, the cosine of the azimuth and the cosine of the latitude of the observing site. The same formula applies to every circle of equal height, called in arabic almucantarat, and it is exploited in the measurements of the solar diameter made with the Danjon's solar astrolabes. The analogies between sunsets and astrolabes observations are presented, showing advantages and sources of errors of these methods of solar astrometry.

Sigismondi, Costantino

2011-01-01T23:59:59.000Z

14

Diameter-constrained steiner tree  

Science Conference Proceedings (OSTI)

Given an edge-weighted undirected graph G = (V, E, c, w), where each edge e ? E has a cost c(e) and a weight w(e), a set S ? V of terminals and a positive constant D0, ... Keywords: diameter-constrained steiner tree, fixed topology, fully polynomial time approximation scheme

Wei Ding; Guohui Lin; Guoliang Xue

2010-12-01T23:59:59.000Z

15

Aerodynamic Losses and Heat Transfer in a Blade Cascade with...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerodynamic Losses and Heat Transfer in a Aerodynamic Losses and Heat Transfer in a Blade Cascade with 3 Blade Cascade with 3 - - D D Endwall Endwall Contouring Contouring...

16

Aerodynamic Drag and Gyroscopic Stability  

E-Print Network (OSTI)

This paper describes the effects on aerodynamic drag of rifle bullets as the gyroscopic stability is lowered from 1.3 to 1.0. It is well known that a bullet can tumble for stability less than 1.0. The Sierra Loading Manuals (4th and 5th Editions) have previously reported that ballistic coefficient decreases significantly as gyroscopic stability, Sg, is lowered below 1.3. These observations are further confirmed by the experiments reported here. Measured ballistic coefficients were compared with gyroscopic stabilities computed using the Miller Twist Rule for nearly solid metal bullets with uniform density and computed using the Courtney-Miller formula for plastic-tipped bullets. The experiments reported here also demonstrate a decrease in aerodynamic drag near Sg = 1.23 +/- 0.02. It is hypothesized that this decrease in drag over a narrow band of Sg values is due to a rapid damping of coning motions (precession and nutation). Observation of this drag decrease at a consistent value of Sg demonstrates the relative accuracy of the twist formulas used to compute Sg. The relationship between Sg and drag may be used to test the applicability of existing twist formulas to given bullet designs and to evaluate the accuracy of alternate formulas in cases where the existing twist formulas are not as accurate.

Elya R. Courtney; Michael W. Courtney

2013-08-15T23:59:59.000Z

17

High voltage variable diameter insulator  

DOE Patents (OSTI)

A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

Vanecek, David L. (Martinez, CA); Pike, Chester D. (Pinole, CA)

1984-01-01T23:59:59.000Z

18

Property:EstimatedCostMedianUSD | Open Energy Information  

Open Energy Info (EERE)

EstimatedCostMedianUSD EstimatedCostMedianUSD Jump to: navigation, search Property Name EstimatedCostMedianUSD Property Type Quantity Description the median estimate of cost in USD Use this type to express a monetary value in US Dollars. The default unit is one US Dollar. http://en.wikipedia.org/wiki/Area Acceptable units (and their conversions) are: 100 cent USD,cents USD,Cent USD,Cents USD .001 k USD,thousand USD,Thousand USD .000001 M USD,million USD,Million USD .000000001 T USD,trillion USD,Trillion USD Pages using the property "EstimatedCostMedianUSD" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey + 30030,000 centUSD 0.3 kUSD 3.0e-4 MUSD 3.0e-7 TUSD + A Acoustic Logs + 4.62462 centUSD 0.00462 kUSD 4.62e-6 MUSD 4.62e-9 TUSD + Aerial Photography + 240.5424,054 centUSD

19

Property:EstimatedTimeMedian | Open Energy Information  

Open Energy Info (EERE)

EstimatedTimeMedian EstimatedTimeMedian Jump to: navigation, search Property Name EstimatedTimeMedian Property Type Quantity Description the median estimate of time required Use this type to enumerate a length of time. The default unit is the year. Acceptable units (and their conversions) are: 8766 hours,hour,h,H,Hour,Hours,HOUR,HOURS 365.25 days,day,d,Day,Days,D,DAY,DAYS 52.17857 weeks,week,w,Week,Weeks,W,WEEK,WEEKS 12 months,month,m,Month,Months,M,MONTH,MONTHS 1 years,year,y,Year,Years,Y,YEAR,YEARS Pages using the property "EstimatedTimeMedian" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey + 2.281542e-4 years2 hours 0.0833 days 0.0119 weeks 0.00274 months + A Acoustic Logs + 0.044 years385.92 hours 16.08 days 2.297 weeks 0.528 months +

20

Free-air performance tests of a 5-metre-diameter Darrieus turbine  

DOE Green Energy (OSTI)

A five-meter-diameter vertical-axis wind turbine has been tested at the Sandia Laboratories Wind Turbine Site. The results of these tests and some of the problems associated with free-air testing of wind turbines are presented. The performance data obtained follow the general trend of data obtained in extensive wind tunnel tests of a 2-meter-diameter turbine. However, the power coefficient data are slightly lower than anticipated. The reasons for this discrepancy are explored along with comparisons between experimental data and a computerized aerodynamic prediction model.

Sheldahl, R.E.; Blackwell, B.F.

1977-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Weighted median filters with sigma-delta modulation encoding  

Science Conference Proceedings (OSTI)

Digital decimation filters play a fundamental role in oversampled sigma-delta A/D decoders. In this paper, we first show that weighted median (WM) filtering of a demodulated sequence (at the Nyquist rate) can be implemented concurrently in the A/D decoder. ...

G.R. Arce; N.A. Grabowski; N.C. Gallagher

2000-02-01T23:59:59.000Z

22

Placement of Traffic Barriers on Roadside and Median Slopes  

E-Print Network (OSTI)

Cross median crashes have become a serious problem in recent years. Most of the median cross sections used for divided highways have terrains with steep slopes. Traffic barriers, frequently used on slopes, are generally designed based on the findings obtained from crash tests performed on flat terrain. For barriers placed on roadside and median slopes, vehicle impact height varies depending on the trajectory of the vehicle along the ditch section and lateral offset of the barrier. Thus depending on the placement location on a relatively steep slope, a barrier can be impacted by an errant vehicle at height and orientation more critical compared to those considered during its design. Hence, detailed study of performance of barriers on roadside and median slopes is needed to achieve acceptable safety performance. In this study, performances of modified G4(1S) W-beam, Midwest Guardrail System (MGS), modified Thrie-beam, modified weak post W-beam, and box-beam guardrail systems on sloped terrains are investigated using numerical simulations. A procedure is developed that provide guidance for their placement on roadside and median slopes. The research approach consists of nonlinear finite element analyses and multi-rigid-body dynamic analyses approach. Detailed finite element representation for each of the barriers is developed using LS-DYNA. Model fidelity is assessed through comparison of simulated and measured responses reported in full scale crash test studies conducted on flat terrain. LS-DYNA simulations of vehicle impacts on barriers placed on flat terrain at different impact heights are performed to identify performance limits of the barriers in terms of acceptable vehicle impact heights. The performances of the barriers are evaluated following the guidelines provided in NCHRP Report 350. Multi-rigid-body dynamic analysis code, CARSIM, is used to identify trajectories of the vehicles traversing various roadside and median cross-slopes. After analyzing vehicle trajectories and barrier performance limits, a guideline has been prepared with recommendations for the placement of barriers along roadside and median slopes. This guideline is then verified and refined using the responses obtained from full-scale LS-DYNA simulations. These simulations capture the full encroachment event from departure of the vehicle off the traveled way through impact with the barrier.

Ferdous, Md Rubiat

2011-05-01T23:59:59.000Z

23

Aerodynamic Contrails: Microphysics and Optical Properties  

Science Conference Proceedings (OSTI)

Aerodynamic contrails form when air flows across the wings of subsonic aircraft in cruise. During a short adiabatic expansion phase, high supersaturations trigger burstlike homogeneous ice formation on ambient liquid aerosol particles within a ...

B. Kärcher; B. Mayer; K. Gierens; U. Burkhardt; H. Mannstein; R. Chatterjee

2009-02-01T23:59:59.000Z

24

16.100 Aerodynamics, Fall 2002  

E-Print Network (OSTI)

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including ...

Darmofal, David L.

25

Mechanisms for Diameter service performance enhancement  

Science Conference Proceedings (OSTI)

One of the basic requirements of service providers is to deliver fast processing, highly available, scalable, redundant and unobtrusive AAA services. In this paper we present incorporation of Diameter service into a legacy switching system. Our approach ... Keywords: diameter protocol, diameter relay agent, load balancing

D. Matijaševic; I. Gizdic; D. Huljenic

2009-09-01T23:59:59.000Z

26

Aerodynamic particle size measurement by laser--Doppler velocimetry. Publication number 343  

DOE Green Energy (OSTI)

A method of measuring the aerodynamic diameter of aerosol particles was investigated. The method consists of accelerating particles in a coverging nozzle and measuring their velocities near the exit of th nozzle with a laser--Doppler velocimeter. The experimental studies utilized a test nozzle with a converging angle of approximately 15/sup 0/ and an exit diameter of about .1 cm. The pressure drop across the nozzle was varied from 2.54 to 276 cm of H/sub 2/O, and particle velocity was observed to vary from approximately 0.5 to 1.0 times the gas velocity at the exit of the nozzle. A theoretical analysis utilized boundary layer theory to predict the velocity of the gas in the nozzle, and then the equations of particle motion were integrated to give the theoretical particle velocities. These values agreed with the experimental values to within a few percent. The effects of nozzle geometry, flow rate, particle density, and particle size were studied using the results of calculations made with dimensionless equations. The velocity of a particle in a given nozzle and flow depends upon the aerodynamic diameter of the particle and the particle density. The geometry and flow can be chosen to minimize the effect of particle density. Assuming that the density of particles in the atmosphere ranges from 1 g/cm/sup 3/ to 3 g/cm/sup 3/, the aerodynamic diameter of particles can be measured with an uncertainty of +- 10% in the size range from .5 ..mu..m to 10 ..mu..m.

Wilson, J.C.

1977-12-01T23:59:59.000Z

27

Freight Wing Trailer Aerodynamics Final Technical Report  

Science Conference Proceedings (OSTI)

Freight Wing Incorporated utilized the opportunity presented by a DOE category two Inventions and Innovations grant to commercialize and improve upon aerodynamic technology for semi-tuck trailers, capable of decreasing heavy vehicle fuel consumption, related environmental damage, and U.S. consumption of foreign oil. Major project goals included the demonstration of aerodynamic trailer technology in trucking fleet operations, and the development and testing of second generation products. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck’s fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Freight Wing utilized a 2003 category one Inventions and Innovations grant to develop practical solutions to trailer aerodynamics. Fairings developed for the front, rear, and bottom of standard semi-trailers together demonstrated a 7% improvement to fuel economy in scientific tests conducted by the Transportation Research Center (TRC). Operational tests with major trucking fleets proved the functionality of the products, which were subsequently brought to market. This category two grant enabled Freight Wing to further develop, test and commercialize its products, resulting in greatly increased understanding and acceptance of aerodynamic trailer technology. Commercialization was stimulated by offering trucking fleets 50% cost sharing on trial implementations of Freight Wing products for testing and evaluation purposes. Over 230 fairings were implemented through the program with 35 trucking fleets including industry leaders such as Wal-Mart, Frito Lay and Whole Foods. The feedback from these testing partnerships was quite positive with product performance exceeding fleet expectations in many cases. Fleet feedback also was also valuable from a product development standpoint and assisted the design of several second generation products intended to further improve efficiency, lower costs, and enhance durability. Resulting products demonstrated a 30% efficiency improvement in full scale wind tunnel tests. The fuel savings of our most promising product, the “Belly Fairing” increased from 4% to 6% in scientific track and operational tests. The project successfully demonstrated the economic feasibility of trailer aerodynamics and positioned the technology to realize significant public benefits. Scientific testing conducted with partners such as the EPA Smartway program and Transport Canada clearly validated the fuel and emission saving potential of the technology. The Smartway program now recommends trailer aerodynamics as a certified fuel saving technology and is offering incentives such as low interest loans. Trailer aerodynamics can save average trucks over 1,100 gallons of fuel an 13 tons of emissions every 100,000 miles, a distance many trucks travel annually. These fuel savings produce a product return on investment period of one to two years in average fleet operations. The economic feasibility of the products was validated by participating fleets, several of which have since completed large implementations or demonstrated an interest in volume orders. The commercialization potential of the technology was also demonstrated, resulting in a national distribution and manufacturing partnership with a major industry supplier, Carrier Transicold. Consequently, Freight Wing is well positioned to continue marketing trailer aerodynamics to the trucking industry. The participation of leading fleets in this project served to break down the market skepticism that represents a primary barrier to widespread industry utilization. The benefits of widespread utilization of the technology could be quite significant for both the transportation industry and the public. Trailer aerodynamics could potentially save the U.S. trucking fleet over a billion gallons of fuel and 20 million tons of emissions annually.

Sean Graham

2007-10-31T23:59:59.000Z

28

Indigenous development and performance evaluation of BARC aerodynamic size separator (BASS)  

E-Print Network (OSTI)

Commercially available cascade impactors, commonly used for aerodynamic size separation of aerosol particles, are based on the principle of inertial impaction. As of now, these instruments are imported at a cost of several lakhs of rupees; hence an effort has been made to develop an aerodynamic particle sizer indigenously in BARC. This unit, referred to as BARC Aerodynamic Size Separator (BASS), separates aerosols into seven size classes ranging from 0.53 mu m to 10 mu m and operates at a flow rate of 45 Ipm. Intercomparison studies between the standard Andersen Mark-II (Grasbey Andersen Inc.) impactor and BASS using nebulizer generated aerosols have consistently shown excellent performance by BASS in all respects. In particular, BASS yielded the parameters of polydisperse aerosols quite accurately. Experiments to evaluate the individual stage cut-off diameters show that these are within 8% of their designed value for all stages except the higher two stages which indicate about 30% lower values than the desig...

Singh, S; Khan, A; Mayya, Y S; Narayanan, K P; Purwar, R C; Sapra, B K; Sunny, F

2002-01-01T23:59:59.000Z

29

Fireball yield from fractional intensity diameters  

SciTech Connect

It is desired to develop an empirical formula of the type Y=KD[sup n] where Y is the yield in kilotons and D is the `effective diameter` in feet corrected for temperature and pressure variations if necessary.

Gellert, E. R.

1963-07-31T23:59:59.000Z

30

Precision wire feeder for small diameter wire  

DOE Patents (OSTI)

A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

1992-08-11T23:59:59.000Z

31

Precision wire feeder for small diameter wire  

SciTech Connect

A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

Brandon, Eldon D. (Albuquerque, NM); Hooper, Frederick M. (Albuquerque, NM); Reichenbach, Marvin L. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

32

The Aerodynamic, Dual- Wavelength Optical Spectrometer  

NLE Websites -- All DOE Office Websites (Extended Search)

Determination of Real and Imaginary Refractive Indices, Diameter and Density with a Compact Instrument (A-DWOPS) * DWOPS: Two Wavelengths, Two Angles. - A. Nagy, W.W. Szymanski,...

33

Vehicle Technologies Office: Fact #597: November 16, 2009 Median Age of  

NLE Websites -- All DOE Office Websites (Extended Search)

7: November 16, 7: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 to someone by E-mail Share Vehicle Technologies Office: Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 on Facebook Tweet about Vehicle Technologies Office: Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 on Twitter Bookmark Vehicle Technologies Office: Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 on Google Bookmark Vehicle Technologies Office: Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 on Delicious Rank Vehicle Technologies Office: Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 on Digg Find More places to share Vehicle Technologies Office: Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 on

34

Precision wire feeder for small diameter wire  

DOE Patents (OSTI)

This invention is comprised of a device for feeding small diameter wire having a diameter less than .04 mm (16 mil) to a welding station which includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 fig.

Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

1990-12-31T23:59:59.000Z

35

Corona losses dependence from the conductor diameter  

Science Conference Proceedings (OSTI)

This paper presents possibility to decrease the corona power losses in overhead transmission lines. Corona power losses can be reduced by increasing the diameter of the conductor and used bundled conductors per phase. The objectives were to determine ... Keywords: corona model, critical disruptive voltage, electric discharge, electric field, power losses, transmission line

Isuf Krasniqi; Vjollca Komoni; Avni Alidemaj; Gazmend Kabashi

2011-10-01T23:59:59.000Z

36

Ground-based measurements of solar diameter  

E-Print Network (OSTI)

The solar diameter changes or not? Whatever will be the answer the methods used for its measurements are more and more challenging, and facing new astrophysical and optical problems since the required space resolution is of astrometric quality. A quick overview on different methods is here presented, as well as the problem of the solar limb definition, emerging after the flash spectrum during eclipses.

Sigismondi, Costantino

2011-01-01T23:59:59.000Z

37

Wind Turbine Blade Flow Fields and Prospects for Active Aerodynamic Control: Preprint  

DOE Green Energy (OSTI)

This paper describes wind turbine flow fields that can cause adverse aerodynamic loading and can impact active aerodynamic control methodologies currently contemplated for wind turbine applications.

Schreck, S.; Robinson, M.

2007-08-01T23:59:59.000Z

38

Table B2. Summary Table: Totals and Medians of Floorspace, Number of Workers,  

U.S. Energy Information Administration (EIA) Indexed Site

. Summary Table: Totals and Medians of Floorspace, Number of Workers, Hours of Operation, and Age of Building, 1999" . Summary Table: Totals and Medians of Floorspace, Number of Workers, Hours of Operation, and Age of Building, 1999" ,"All Buildings (thousand)","Total Floorspace (million square feet)","Total Workers in All Buildings (thousand)","Median Square Feet per Building (thousand)","Median Square Feet per Worker","Median Hours per Week","Median Age of Buildings (years)" "All Buildings ................",4657,67338,81852,5,909,50,30.5 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,6774,11125,2.5,667,50,30.5 "5,001 to 10,000 ..............",1110,8238,10968,7,1000,50,34.5 "10,001 to 25,000 .............",708,11153,11378,15,1354,55,28.5

39

A GRASP with path-relinking for the p-median problem ?  

E-Print Network (OSTI)

Sep 18, 2002 ... Given n customers and a set F of m potential facilities, the p-median ..... The pool must support two essential operations: addition of new ...

40

CFD calculations of S809 aerodynamic characteristics  

DOE Green Energy (OSTI)

Steady-state, two-dimensional CFD calculations were made for the S809 laminar-flow, wind-turbine airfoil using the commercial code CFD-ACE. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data from the Delft University 1.8 m x 1.25 m low-turbulence wind tunnel. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to-turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-{epsilon} model, is not appropriate at angles of attack with flow separation.

Wolfe, W.P. [Sandia National Labs., Albuquerque, NM (United States); Ochs, S.S. [Iowa State Univ., Ames, IA (United States)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Methods of reducing vehicle aerodynamic drag  

Science Conference Proceedings (OSTI)

A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.

Sirenko V.; Rohatgi U.

2012-07-08T23:59:59.000Z

42

Thread gauge for measuring thread pitch diameters  

DOE Patents (OSTI)

A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts is disclosed. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade. 2 figs.

Brewster, A.L.

1985-11-19T23:59:59.000Z

43

Thread gauge for measuring thread pitch diameters  

DOE Patents (OSTI)

A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade.

Brewster, Albert L. (R.R. 2, Box 190A, Pleasant Hill, MO 64080)

1985-01-01T23:59:59.000Z

44

Aerodynamic performance measurements in a counter-rotating aspirated compressor.  

E-Print Network (OSTI)

??This thesis is an experimental investigation of the aerodynamic performances of a counter-rotating aspirated compressor. This compressor is implemented in a blow-down facility, which gives… (more)

Onnée, Jean-François

2005-01-01T23:59:59.000Z

45

Ris-R-1543(EN) Aerodynamic investigation of Winglets on  

E-Print Network (OSTI)

an aerodynamic load such that the vortex from the winglet spreads out the influence of the tip vortex decreasing, or profile drag, of the winglet is smaller than the decrease in induced drag such that the total drag

46

Aerodynamic performance measurements in a counter-rotating aspirated compressor  

E-Print Network (OSTI)

This thesis is an experimental investigation of the aerodynamic performances of a counter-rotating aspirated compressor. This compressor is implemented in a blow-down facility, which gives rigorous simulation of the ...

Onnée, Jean-François

2005-01-01T23:59:59.000Z

47

Full-scale wind turbine rotor aerodynamics research  

DOE Green Energy (OSTI)

The United States Department of Energy and the National Renewable Energy Laboratory (NREL) are conducting research to improve wind turbine technology at the NREL National Wind Technology Center (NWTC). One program, the Combined Experiment, has focused on making measurements needed to understand aerodynamic and structural responses of horizontal-axis wind turbines (HAWT). A new phase of this program, the Unsteady Aerodynamics Experiment, will focus on quantifying unsteady aerodynamic phenomena prevalent in stall-controlled HAWTs. Optimally twisted blades and innovative instrumentation and data acquisition systems will be used in these tests. Data can now be acquired and viewed interactively during turbine operations. This paper describes the NREL Unsteady Aerodynamics Experiment and highlights planned future research activities.

Simms, D A; Butterfield, C P

1994-11-01T23:59:59.000Z

48

Aerodynamic optimization of a solar powered race vehicle  

E-Print Network (OSTI)

Aerodynamic optimization was performed on Tesseract, the MIT Solar Electric Vehicle Team's 2003-2005 solar car using Wind Tunnel 8 at Jacobs/Sverdrup Drivability Test Facility in Allen Park, MI. These tests include angle ...

Augenbergs, Peteris K

2006-01-01T23:59:59.000Z

49

Reduced-order aerodynamic models for aeroelastic control of turbomachines  

E-Print Network (OSTI)

Aeroelasticity is a critical consideration in the design of gas turbine engines, both for stability and forced response. Current aeroelastic models cannot provide high-fidelity aerodynamics in a form suitable for design ...

Willcox, Karen Elizabeth

50

DOE Project on Heavy Vehicle Aerodynamic Drag  

SciTech Connect

Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag coefficient of the vehicle. Furthermore, the evaluation of the impact of small changes in radiator or grille dimensions has revealed that the total drag is not particularly sensitive to those changes. This observation leads to two significant conclusions. First, a small increase in radiator size to accommodate heat rejection needs related to new emissions restrictions may be tolerated without significant increases in drag losses. Second, efforts to reduce drag on the tractor requires that the design of the entire tractor be treated in an integrated fashion. Simply reducing the size of the grille will not provide the desired result, but the additional contouring of the vehicle as a whole which may be enabled by the smaller radiator could have a more significant effect.

McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

2007-01-04T23:59:59.000Z

51

Vickers microindentation toughness of a sintered SiC in the median-crack regime  

SciTech Connect

The Vickers microindentation method for the determination of the fracture toughness of ceramics was investigated in the median crack regime for a sintered alpha SiC. The results are compared with fracture toughness measurements by conventional fracture mechanics technique and also with the reported indentation toughness for the low-load Palmqvist crack regime. Indentation toughnesses in the median crack regime vary widely depending on the choice of the specific equation which is applied. The indentation toughnesses are also load (crack length) dependent. A decreasing R-curve trend results, in contradiction to the flat R-curve that has been observed with conventional fracture mechanics techniques. It is concluded that the Vickers microindentation method is not a reliable technique for the determination of the fracture toughness of ceramics in the median crack regime.

Ghosh, Asish; Kobayashi, A.S. (Washington Univ., Seattle, WA (United States). Coll. of Engineering); Li, Zhuang (Argonne National Lab., IL (United States)); Henager, C.H. Jr. (Pacific Northwest Lab., Richland, WA (United States)); Bradt, R.C. (Nevada Univ., Reno, NV (United States). Mackay School of Mines)

1991-01-01T23:59:59.000Z

52

Investigation of aerodynamic braking devices for wind turbine applications  

DOE Green Energy (OSTI)

This report documents the selection and preliminary design of a new aerodynamic braking system for use on the stall-regulated AWT-26/27 wind turbines. The goal was to identify and design a configuration that offered improvements over the existing tip brake used by Advanced Wind Turbines, Inc. (AWT). Although the design objectives and approach of this report are specific to aerodynamic braking of AWT-26/27 turbines, many of the issues addressed in this work are applicable to a wider class of turbines. The performance trends and design choices presented in this report should be of general use to wind turbine designers who are considering alternative aerodynamic braking methods. A literature search was combined with preliminary work on device sizing, loads and mechanical design. Candidate configurations were assessed on their potential for benefits in the areas of cost, weight, aerodynamic noise, reliability and performance under icing conditions. As a result, two configurations were identified for further study: the {open_quotes}spoiler-flap{close_quotes} and the {open_quotes}flip-tip.{close_quotes} Wind tunnel experiments were conducted at Wichita State University to evaluate the performance of the candidate aerodynamic brakes on an airfoil section representative of the AWT-26/27 blades. The wind tunnel data were used to predict the braking effectiveness and deployment characteristics of the candidate devices for a wide range of design parameters. The evaluation was iterative, with mechanical design and structural analysis being conducted in parallel with the braking performance studies. The preliminary estimate of the spoiler-flap system cost was $150 less than the production AWT-26/27 tip vanes. This represents a reduction of approximately 5 % in the cost of the aerodynamic braking system. In view of the preliminary nature of the design, it would be prudent to plan for contingencies in both cost and weight.

Griffin, D.A. [R. Lynette & Associates, Seattle, WA (United States)

1997-04-01T23:59:59.000Z

53

Four-stage computational technology with adaptive numerical methods for computational aerodynamics  

Science Conference Proceedings (OSTI)

Computational aerodynamics is a key technology in aircraft design which is ahead of physical experiment and complements it. Of course all three components of computational modeling are actively developed: mathematical models of real aerodynamic processes

2012-01-01T23:59:59.000Z

54

ACARS Aerodynamic (Research Incorporated) Communication and Recording System  

NLE Websites -- All DOE Office Websites (Extended Search)

ix ix Acrononyms and Abbreviations Acronyms and Abbreviations ACARS Aerodynamic (Research Incorporated) Communication and Recording System ACSYS Arctic Climate System Study AER Atmospheric Environmental Research, Inc. AERI Atmospheric Emitted Radiance Interferometer AFOSR Air Force Office of Scientific Research AGARD Advisory Group for Aerospace Research and Development ALFA AER Local Forecast and Assimilation (model) AMIP Atmospheric Model Intercomparison Project ARCS Atmosphere Radiation and Cloud Stations ARCSS Arctic System Science (NSF) ARCSYM Arctic Regional Climate System Model ARINC Aerodynamic Research Incorporated Communication ARM Atmospheric Radiation Measurement program AS anvil stratus ASTER Atmosphere-Surface Turbulent Exchange Research ASTEX Altantic Stratocumulus Transition EXperiment

55

2003 CBECS National Median Source Energy Use and Performance Comparisons by  

NLE Websites -- All DOE Office Websites (Extended Search)

2003 CBECS National Median Source Energy Use and Performance 2003 CBECS National Median Source Energy Use and Performance Comparisons by Building Type Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

56

Performance Analysis of DS Signal Code Acquisition Using the Matched Filter and the Median Filter  

Science Conference Proceedings (OSTI)

The theoretical analysis and simulation of the performance of a matched filter code acquisition structure with a median filter as the aiding device to cancel CW jamming in the AWGN channel is described. Both coherent and noncoherent structures are ... Keywords: interference cancellation, synchronization

J. Iinatti; P. Leppänen

1998-09-01T23:59:59.000Z

57

Aerodynamic performance measurements of a film-cooled turbine stage  

E-Print Network (OSTI)

The goal of this research is to measure the aerodynamic performance of a film-cooled turbine stage and to quantify the loss caused by film-cooling. A secondary goal of the research is to provide a detailed breakdown of the ...

Keogh, Rory (Rory Colm), 1968-

2001-01-01T23:59:59.000Z

58

Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance  

DOE Green Energy (OSTI)

Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

2008-08-01T23:59:59.000Z

59

Performance Comparison of Large Diameter Residential Drinking Water Wells.  

E-Print Network (OSTI)

??Published scientific work indicates that residential large diameter drinking water wells are at a higher risk of contamination from surface water impacts than drilled wells.… (more)

Javor, Paul

2010-01-01T23:59:59.000Z

60

Pin diameter optimization in 1200 MWe heterogeneous vs. homogeneous LMFBRs  

SciTech Connect

LMFBRs with internal blankets (heterogeneous reactors) are known for reducing the sodium void reactivity and increasing the breeding ratio. As for homogeneous reactors, the optimization of the fuel pin diameter for heterogeneous reactors is of great interest. The optimum pin diameter is obtained by changing the fuel pin diameter until the homogenized fuel volume fraction is the same as the optimum fuel volume fraction of the homogeneous core. The optimization of the fuel pin diameter with respect to doubling time for a loosely coupled 1200 MWe oxide heterogeneous reactor is described. The results are compared with those of a homogeneous reactor.

Orechwa, Y.; Turski, R.B.; King, M.J.

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

An Aerodynamic Design Technique For Optimizing Fan Blade Spacing  

E-Print Network (OSTI)

INTRODUCTION Aerodynamic shape optimization involves designing the most efficient shapes of bodies that move through fluids. An optimization algorithm perturbs the shape of an airfoil until it finds the shape which best exhibits a given design objective. For an inverse design technique, this objective is a prescribed aerodynamic distribution, usually the surface pressure distribution. Liebeck pressure distributions [1], for example, have been demonstrated to generate airfoils with high lift to drag ratios. When designing fans, consideration must be given not only to the shape of the fan blades, but also to the distance separating the fan blades. This spacing is defined by the pitch/chord ratio t/l, where the pitch, t, is the distance between fan blades, and the chord, l, is the length of each fan blade. In this work, an inverse algorithm is developed, then used to design fan blade shapes and to find the optimal blade spacing.

T. Rogalsky; R.W. Derksen; Rt N; Rt N; S. Kocabiyik

1999-01-01T23:59:59.000Z

62

Predicting aerodynamic characteristic of typical wind turbine airfoils using CFD  

DOE Green Energy (OSTI)

An investigation was conducted into the capabilities and accuracy of a representative computational fluid dynamics code to predict the flow field and aerodynamic characteristics of typical wind-turbine airfoils. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-e model, is not appropriate at angles of attack with flow separation. 14 refs., 28 figs., 4 tabs.

Wolfe, W.P. [Sandia National Labs., Albuquerque, NM (United States); Ochs, S.S. [Iowa State Univ., Ames, IA (United States). Aerospace Engineering Dept.

1997-09-01T23:59:59.000Z

63

Digital pipelined hardware median filter design for real-time image processing  

Science Conference Proceedings (OSTI)

A hardware median filter is described which is designed to filter imagery at a rate of 10*10/sup 6/ pixels/second. The data is windowed with line buffers, and propagated through n pipelined stages where n is the number of bits in a pixel. The algorithm described is a form of the Radix method of Ataman modified to reduce the decisionmaking at each stage. The filter can be implemented with available logic components and would be useful as a preprocessor in a pattern recognition system. 6 references.

Delman, D.J.

1981-01-01T23:59:59.000Z

64

Eddy sensors for small diameter stainless steel tubes.  

SciTech Connect

The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.

2011-08-01T23:59:59.000Z

65

Parameterization of the Sedimentation of Raindrops with Finite Maximum Diameter  

Science Conference Proceedings (OSTI)

In common cloud microphysics parameterization models, the prognostic variables are one to three moments of the drop size distribution function. They are defined as integrals of the distribution function over a drop diameter ranging from zero to ...

Corinna Ziemer; Ulrike Wacker

2012-05-01T23:59:59.000Z

66

Maximal r-Diameter Sets and Solids of Constant Width  

E-Print Network (OSTI)

We recall the definition of an r-maximal set in a metric space as a maximal subset of diameter r. In the special case when the metric space is Euclidean such a set is exactly a solid of constant diameter r. In the process of reviewing the theory of these objects we provide a simple construction which generates a large class of such solids.

Ethan Akin

2010-03-30T23:59:59.000Z

67

IEA Wind Annex XX: HAWT Aerodynamics and Models from Wind Tunnel Measurements; Final Report  

DOE Green Energy (OSTI)

This work characterizes undocumented physical relationships that govern aerodynamic force time variations that take place in connection with rotational augmentation on rotating wind turbine blades.

Schreck, S.

2008-12-01T23:59:59.000Z

68

Cost-effectiveness of freeway median high occupancy vehicle (HOV) facility conversion to rail guideway transit  

E-Print Network (OSTI)

Many freeways in the United States contain median high occupancy vehicle (HOV) facilities. These facilities have been envisioned by some as reserved space for future rail guideway transit. This thesis examines the cost-effectiveness of converting a freeway median HOV lane into a guideway transit line. A full-cost model was developed to determine the cost effectiveness of converting an HOV lane into a rail transit line. The measure of cost-effectiveness used was the benefit-to-cost ratio. The full-cost model contained two cost categories (capital and operating costs) and two benefit categories (travel time and externality benefits). This fullcost model was adopted to conditions on the Katy Freeway in Houston Texas which served as a case study for this thesis. It was found that 29 percent of the person-miles of travel on the Katy Freeway under given conditions must utilize guideway transit for conversion to be cost-effective. It was also found that the model is sensitive to assumptions of the value of time, project soft costs (administrative, planning, and design costs) and the operating cost of the rail transit system. The model is also sensitive to assumptions regarding latent demand. It was concluded that conversion to rail guideway transit in the case study example is not cost-effective. It was reconunended that further investigation be taken into full-cost model components to allow more certain estimates of cost components. Also recommended was further consideration of the effects of latent demand on HOV to rail guideway transit conversions.

Best, Matthew Evans

1996-01-01T23:59:59.000Z

69

Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns  

DOE Green Energy (OSTI)

The primary objective of the insteady aerodynamics experiment was to provide information needed to quantify the full-scale, three-dimensional aerodynamic behavior of horizontal-axis wind turbines. This report is intended to familiarize the user with the entire scope of the wind tunnel test and to support the use of the resulting data.

Hand, M. M.; Simms, D. A.; Fingersh, L. J.; Jager, D. W.; Cotrell, J. R.; Schreck, S.; Larwood, S. M.

2001-12-01T23:59:59.000Z

70

Study on Aerodynamic Design of Horizontal Axis Wind Turbine Generator System  

Science Conference Proceedings (OSTI)

In this paper the choosing principles of design parameters and multi-airfoils in horizontal axis wind turbine (HAWT) generator system aerodynamic design are introduced. On the basis of the comparison analysis of wind turbine aerodynamic design method ... Keywords: Schmitz, airfoil, partial load, horizontal axis wind turbine (HAWT), blade tip speed ratio (BTSR)

Li Dong; Mingfu Liao; Yingfeng Li; Xiaoping Song; Ke Xu

2009-10-01T23:59:59.000Z

71

25th AIAA Applied Aerodynamics Conference 25 -28 June 2007, Miami, FL AIAA 2007-4442  

E-Print Network (OSTI)

25th AIAA Applied Aerodynamics Conference 25 - 28 June 2007, Miami, FL AIAA 2007-4442 Copyright , Diego Saer3 and Ge-Cheng Zha4 University of Miami, Coral Gables, Florida 33124 A flying wing personal and Aerospace Engineering A #12;25th AIAA Applied Aerodynamics Conference 25 - 28 June 2007, Miami, FL AIAA 2007

Zha, Gecheng

72

Computationally fast harmonic balance methods for unsteady aerodynamic predictions of helicopter rotors  

Science Conference Proceedings (OSTI)

A harmonic balance technique for the analysis of unsteady flows about helicopter rotors in forward flight and hover is presented in this paper. The aerodynamics of forward flight are highly nonlinear, with transonic flow on the advancing blade, subsonic ... Keywords: Computational fluid dynamics, Frequency-domain methods, Harmonic balance technique, Helicopter rotors, Unsteady aerodynamics

Kivanc Ekici; Kenneth C. Hall; Earl H. Dowell

2008-06-01T23:59:59.000Z

73

WIND-TUNNEL STUDY ON AERODYNAMIC PERFORMANCE OF SMALL VERTICAL-AXIS WIND TURBINES  

E-Print Network (OSTI)

of a building was explored [2]. Referred to such applications, a VAWT can be so small in physical size that its by the present authors to study the aerodynamic performance of small VAWTs using the experimental and numerical1 WIND-TUNNEL STUDY ON AERODYNAMIC PERFORMANCE OF SMALL VERTICAL-AXIS WIND TURBINES J. J. Miau*1

Leu, Tzong-Shyng "Jeremy"

74

Wind turbine aerodynamics using ALE---VMS: validation and the role of weakly enforced boundary conditions  

Science Conference Proceedings (OSTI)

In this article we present a validation study involving the full-scale NREL Phase VI two-bladed wind turbine rotor. The ALE---VMS formulation of aerodynamics, based on the Navier---Stokes equations of incompressible flows, is employed in conjunction ... Keywords: ALE---VMS, Finite elements, NREL 5MW offshore, NREL Phase VI, Weakly enforced essential boundary conditions, Wind turbine aerodynamics

Ming-Chen Hsu; Ido Akkerman; Yuri Bazilevs

2012-10-01T23:59:59.000Z

75

Wind turbine trailing-edge aerodynamic brake design  

DOE Green Energy (OSTI)

This report describes the design of a centrifugally actuated aerodynamic-overspeed device for a horizontal-axis wind turbine. The device will meet the following criteria; (1) It will be effective for airfoil angles of attack 0{degrees} to 45{degrees}. (2) It will be stowed inside the blade profile prior to deployment. (3) It will be capable of offsetting the positive torque produced by the overall blade. (4) Hinge moments will be minimized to lower actuator loads and cost. (5) It will be evaluated as a potential power modulating active rotor-control system. A literature review of aerodynamic braking devices was conducted. Information from the literature review was used to conceptualize the most effective devices for subsequent testing and design. Wind-tunnel test data for several braking devices are presented in this report. Using the data for the most promising configuration, a preliminary design was developed for a MICON 65/13 wind turbine with Phoenix 7.9-m rotor blades.

Quandt, G.

1996-01-01T23:59:59.000Z

76

Absolute Calibration of a Large-diameter Light Source  

E-Print Network (OSTI)

A method of absolute calibration for large aperture optical systems is presented, using the example of the Pierre Auger Observatory fluorescence detectors. A 2.5 m diameter light source illuminated by an ultra--violet light emitting diode is calibrated with an overall uncertainty of 2.1 % at a wavelength of 365 nm.

Brack, J T; Dorofeev, A; Gookin, B; Harton, J L; Petrov, Y; Rovero, A C

2013-01-01T23:59:59.000Z

77

Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams (504) Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams (504) Richard Parker,. Parker Geoscience Consulting, LLC, Arvada, Colorado, USA; Zhiyue Xu and Claude Reed, Argonne National Laboratory, Argonne, Illinois, USA; Ramona Graves, Department of Petroleum Engineering, Colorado School of Mines, Golden, Colorado, USA; Brian Gahan and Samih Batarseh, Gas Technology Institute, Des Plaines, Illinois, USA ABSTRACT Studies on drilling petroleum reservoir rocks with lasers show that modern infrared lasers have the capability to spall (thermally fragment), melt and vaporize natural earth materials with the thermal spallation being the most efficient rock removal mechanism. Although laser irradiance as low as 1000 W/cm 2 is sufficient to spall rock, firing the

78

Vacuum chamber with a supersonic flow aerodynamic window  

DOE Patents (OSTI)

A supersonic flow aerodynamic window, whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

Hanson, Clark L. (Livermore, CA)

1982-01-01T23:59:59.000Z

79

Vacuum chamber with a supersonic-flow aerodynamic window  

DOE Patents (OSTI)

A supersonic flow aerodynamic window is disclosed whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

Hanson, C.L.

1980-10-14T23:59:59.000Z

80

Aerodynamic testing of a rotating wind turbine blade  

DOE Green Energy (OSTI)

Aerodynamic, load, flow-visualization, and inflow measurements were taken on a downwind horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor recorded video images of tufts attached to the low-pressure side of the blade. Strain gages, mounted every 10% of the blade's span, provided load and pressure measurements. Pressure taps at 32 chordwise positions recorded pressure distributions. Wind inflow was measured via a vertical-plane array of anemometers located 10 m upwind. The objectives of the test were to address whether airfoil pressure distributions measured on a rotating blade differed from those measured in the wind tunnel, if radial flow near or in the boundary layer of the airfoil affected pressure distributions, if dynamic stall could result in increased dynamic loads, and if the location of the separation boundary measured on the rotating blade agreed with that measured in two-dimensional flow in the wind tunnel. 6 refs., 9 figs., 1 tab.

Butterfield, C.P.; Nelsen, E.N.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Aeroacoustics and aerodynamic performance of a rotor with flatback airfoils.  

Science Conference Proceedings (OSTI)

The aerodynamic performance and aeroacoustic noise sources of a rotor employing flatback airfoils have been studied in field test campaign and companion modeling effort. The field test measurements of a sub-scale rotor employing nine meter blades include both performance measurements and acoustic measurements. The acoustic measurements are obtained using a 45 microphone beamforming array, enabling identification of both noise source amplitude and position. Semi-empirical models of flatback airfoil blunt trailing edge noise are developed and calibrated using available aeroacoustic wind tunnel test data. The model results and measurements indicate that flatback airfoil noise is less than drive train noise for the current test turbine. It is also demonstrated that the commonly used Brooks, Pope, and Marcolini model for blunt trailing edge noise may be over-conservative in predicting flatback airfoil noise for wind turbine applications.

Paquette, Joshua A.; Barone, Matthew Franklin; Christiansen, Monica (Pennsylvania State University, State College, PA); Simley, Eric (University of Colorado, Boulder, CO)

2010-06-01T23:59:59.000Z

82

Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer  

DOE Green Energy (OSTI)

The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows. Again, to verify and or direct the development of these advanced codes, complete three-dimensional unsteady flow field data are needed.

Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States). School of Mechanical Engineering

1995-12-31T23:59:59.000Z

83

The mid-infrared diameter of W Hydrae  

E-Print Network (OSTI)

Mid-infrared (8-13 microns) interferometric data of W Hya were obtained with MIDI/VLTI between April 2007 and September 2009, covering nearly three pulsation cycles. The spectrally dispersed visibility data of all 75 observations were analyzed by fitting a circular fully limb-darkened disk (FDD) model to all data and individual pulsation phases. Asymmetries were studied with an elliptical FDD. Modeling results in an apparent angular FDD diameter of W Hya of about (80 +/- 1.2) mas (7.8 AU) between 8 and 10 microns, which corresponds to an about 1.9 times larger diameter than the photospheric one. The diameter gradually increases up to (105 +/- 1.2) mas (10.3 AU) at 12 microns. In contrast, the FDD relative flux fraction decreases from (0.85 +/- 0.02) to (0.77 +/- 0.02), reflecting the increased flux contribution from a fully resolved surrounding silicate dust shell. The asymmetric character of the extended structure could be confirmed. An elliptical FDD yields a position angle of (11 +/- 20) deg and an axis ra...

Zhao-Geisler, R; Koehler, R; Lopez, B; Leinert, C

2011-01-01T23:59:59.000Z

84

Experimental and analytical research on the aerodynamics of wind driven turbines. Final report  

DOE Green Energy (OSTI)

This aerodynamic research program was aimed at providing a reliable, comprehensive data base on a series of wind turbine models covering a broad range of the prime aerodynamic and geometric variables. Such data obtained under controlled laboratory conditions on turbines designed by the same method, of the same size, and tested in the same wind tunnel had not been available in the literature. Moreover, this research program was further aimed at providing a basis for evaluating the adequacy of existing wind turbine aerodynamic design and performance methodology, for assessing the potential of recent advanced theories and for providing a basis for further method development and refinement.

Rohrbach, C.; Wainauski, H.; Worobel, R.

1977-12-01T23:59:59.000Z

85

A Case Study of Wide Diameter Casing for Geothermal Systems  

SciTech Connect

Three wells have been drilled in the central resistivity area of a geothermal field in the Taupo Volcanic Zone, New Zealand. Using a well bore simulator, WELL SIM V3.0, reservoir conditions and well characteristics are evaluated to determine the increase in output by increasing production casing diameters from either 8-5/8 inches OD or 9-5/8 inches OD to 13-3/8 inches OD. Increases in well drilling costs are determined to provide a commentary on the economics. While open hole size is effectively doubled, well costs increase by 10% and, in this study, output increases by an average of 18%.

King, T.R.; Freeston, D.H.; Winmill, R.L.

1995-01-01T23:59:59.000Z

86

Aerodynamic Losses and Heat Transfer in a Blade Cascade with 3-D Endwall Contouring  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerodynamic Losses and Heat Transfer in a Aerodynamic Losses and Heat Transfer in a Aerodynamic Losses and Heat Transfer in a Aerodynamic Losses and Heat Transfer in a Blade Cascade with 3 Blade Cascade with 3 - - D D Endwall Endwall Contouring Contouring Principal Investigator Principal Investigator Sumanta Acharya, Professor Sumanta Acharya, Professor Louisiana State University, Baton Rouge, Louisiana Louisiana State University, Baton Rouge, Louisiana Collaborators Collaborators Gazi Mahmood, Ph.D., Research Asqociate Gazi Mahmood, Ph.D., Research Asqociate Arun Saha, Ph.D., Research Associate Arun Saha, Ph.D., Research Associate Ross Gustafson, M.S. student Ross Gustafson, M.S. student SCIES Project 02 SCIES Project 02 - - 01 01 - - SR098 SR098 DOE COOPERATIVE AGREEMENT DE DOE COOPERATIVE AGREEMENT DE - - FC26 FC26 - - 02NT41431 02NT41431 Tom J. George, Program Manager, DOE/NETL

87

A Comparison of Sensible and Latent Heat Flux Calculations Using the Bowen Ratio and Aerodynamic Methods  

Science Conference Proceedings (OSTI)

An analysis technique is outlined that calculates the sensible and latent heat fluxes by the Bowen ratio and aerodynamic methods, using profile measurements at any number of heights. Field measurements at two sites near Churchill, Manitoba, ...

David H. Halliwell; Wayne R. Rouse

1989-08-01T23:59:59.000Z

88

Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form  

Science Conference Proceedings (OSTI)

Several methods to determine the aerodynamic characteristics of a site through analysis of its surface form (morphometry) are considered in relation to cities. The measures discussed include zero-plane displacement length (zd), roughness length (...

C. S. B. Grimmond; T. R. Oke

1999-09-01T23:59:59.000Z

89

LES Analysis of the Aerodynamic Surface Properties for Turbulent Flows over Building Arrays with Various Geometries  

Science Conference Proceedings (OSTI)

This paper describes aerodynamic roughness properties for turbulent flows over various building arrays that represent realistic urban surface geometries. First, building morphological characteristics such as roughness density ?f and building ...

Hiromasa Nakayama; Tetsuya Takemi; Haruyasu Nagai

2011-08-01T23:59:59.000Z

90

Derivation of Effective Aerodynamic Surface Roughness in Urban Areas from Airborne Lidar Terrain Data  

Science Conference Proceedings (OSTI)

An automated technique was developed that uses only airborne lidar terrain data to derive the necessary parameters for calculation of effective aerodynamic surface roughness in urban areas. The technique provides parameters for geometric models ...

Donald E. Holland; Judith A. Berglund; Joseph P. Spruce; Rodney D. McKellip

2008-10-01T23:59:59.000Z

91

Prediction of loaded airfoil unsteady aerodynamic gust response by a locally analytical method  

Science Conference Proceedings (OSTI)

A complete first order model is formulated to analyze the effects of steady loading on the incompressible unsteady aerodynamics generated by a two-dimensional gust convected with the steady mean flow past an arbitrary airfoil at finite nonzero angle ...

Hsiao-Wei D. Chiang; Sanford Fleeter

1988-12-01T23:59:59.000Z

92

Which Bulk Aerodynamic Algorithms are Least Problematic in Computing Ocean Surface Turbulent Fluxes?  

Science Conference Proceedings (OSTI)

Bulk aerodynamic algorithms are needed to compute ocean surface turbulent fluxes in weather forecasting and climate models and in the development of global surface flux datasets. Twelve such algorithms are evaluated and ranked using direct ...

Michael A. Brunke; Chris W. Fairall; Xubin Zeng; Laurence Eymard; Judith A. Curry

2003-02-01T23:59:59.000Z

93

Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines  

Science Conference Proceedings (OSTI)

This paper presents the current major modeling challenges for floating offshore wind turbine design tools and describes aerodynamic and hydrodynamic effects due to rotor and platform motions and usage of non-slender support structures.

Matha, D.; Schlipf, M.; Cordle, A.; Pereira, R.; Jonkman, J.

2011-10-01T23:59:59.000Z

94

Stabilized space---time computation of wind-turbine rotor aerodynamics  

Science Conference Proceedings (OSTI)

We show how we use the Deforming-Spatial-Domain/Stabilized Space---Time (DSD/SST) formulation for accurate 3D computation of the aerodynamics of a wind-turbine rotor. As the test case, we use the NREL 5MW offshore baseline wind-turbine rotor. This class ... Keywords: DSD/SST formulation, Rotating turbulent flow, Space---time variational multiscale method, Torque values, Wind-turbine aerodynamics

Kenji Takizawa; Bradley Henicke; Tayfun E. Tezduyar; Ming-Chen Hsu; Yuri Bazilevs

2011-09-01T23:59:59.000Z

95

Computer subroutine for estimating aerodynamic blade loads on Darrieus vertical axis wind turbines. [FORCE code  

DOE Green Energy (OSTI)

An important aspect of structural design of the Darrieus rotor is the determination of aerodynamic blade loads. This report describes a load generator which has been used at Sandia for quasi-static and dynamic rotor analyses. The generator is based on the single streamtube aerodynamic flow model and is constructed as a FORTRAN IV subroutine to facilitate its use in finite element structural models. Input and output characteristics of the subroutine are described and a complete listing is attached as an appendix.

Sullivan, W. N.; Leonard, T. M.

1980-11-01T23:59:59.000Z

96

Allowable pillar to diameter ratio for strategic petroleum reserve caverns.  

Science Conference Proceedings (OSTI)

This report compiles 3-D finite element analyses performed to evaluate the stability of Strategic Petroleum Reserve (SPR) caverns over multiple leach cycles. When oil is withdrawn from a cavern in salt using freshwater, the cavern enlarges. As a result, the pillar separating caverns in the SPR fields is reduced over time due to usage of the reserve. The enlarged cavern diameters and smaller pillars reduce underground stability. Advances in geomechanics modeling enable the allowable pillar to diameter ratio (P/D) to be defined. Prior to such modeling capabilities, the allowable P/D was established as 1.78 based on some very limited experience in other cavern fields. While appropriate for 1980, the ratio conservatively limits the allowable number of oil drawdowns and hence limits the overall utility and life of the SPR cavern field. Analyses from all four cavern fields are evaluated along with operating experience gained over the past 30 years to define a new P/D for the reserve. A new ratio of 1.0 is recommended. This ratio is applicable only to existing SPR caverns.

Ehgartner, Brian L.; Park, Byoung Yoon

2011-05-01T23:59:59.000Z

97

Part I--A Rational Aerodynamic Design Procedure  

E-Print Network (OSTI)

'The design of a turbine stage is described in which all leading parameters (stage loading, flow coefficient, pitch/chord ratio, blade profile shape and aspect ratio) have been selected conservatively to accord with current ideas for ensuring a reasonably high level of aerodynamic efficiency. From consideration of the influence of stage loading KpAT V~ U,2, flow coefficient ~ and rotor exit swirl angle c ~ 3, the stage design was selected such that these parameters were 1.15, 0.65 and 10 degrees respectively. At the design speed of U ~ = 34 the resulting stage pressure ratio is approximately 1.65. Such a stage duty is 'light ' by aero engine standards but very comparable to much industrial gas turbine design practice. Blade spacing and profile shapes are 'finally selected in such a way as to preclude severe opposing pressure gradients on the suction surface which might result in local separation of the boundary layer from the blade surfaces. The methods applied and described for predicting blade surface velocities are simple and approximate only, and might readily be imitated by designers not wishing or able to exploit more elaborate and complex digital techniques.

M. No; D. J. L. Smith; I. H. Johnston; D. J. L. Smith; D. J. Fullbrook; D. J. L. Smith; I. H. Johnston

1967-01-01T23:59:59.000Z

98

Tandem Differential Mobility Analyzer/Aerodynamic Particle Sizer (APS) Handbook  

SciTech Connect

The tandem differential mobility analyzer (TDMA) is a single instrument that cycles through a series of complementary measurements of the physical properties of size-resolved submicron particles. In 2008, the TDMA was augmented through the addition of an aerodynamic particle sizer (APS), which extends the upper limit of the measured size distribution into the supermicron range. These two instruments are operated in parallel, but because they are controlled by a common computer and because the size distributions measured by the two are integrated in the produced datastreams, they are described together here. Throughout the day, the TDMA sequentially measures submicron aerosol size distributions and size-resolved hygroscopic growth distributions. More specifically, the instrument is operated as a scanning DMA to measure size distributions and as a TDMA to measure size-resolved hygroscopicity. A typical measurement sequence requires roughly 45 minutes. Each morning additional measurements are made of the relative humidity (RH) dependent hygroscopicity and temperature-dependent volatility of size-resolved particles. When the outside temperature and RH are within acceptable ranges, the hydration state of size-resolved particles is also characterized. The measured aerosol distributions complement the array of aerosol instruments in the Aerosol Observing System (AOS) and provide additional details of the light-scattering and cloud-nucleating characteristics of the aerosol.

Collins, D

2010-06-18T23:59:59.000Z

99

Diameter-controlled Growth of Single-walled Carbon Nanotubes by Using Nano-Diamonds  

E-Print Network (OSTI)

Diameter-controlled Growth of Single-walled Carbon Nanotubes by Using Nano-Diamonds Shohei Chiashi diameter attract attention. Here, we perform CVD growth by using nano-diamond particles as the catalyst [1] and investigate the CVD condition dependence of SWNT tube diameter. The average diameter of the as-received nano

Maruyama, Shigeo

100

AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES  

Science Conference Proceedings (OSTI)

Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining and losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.

PETERSEN SW; EDRINGTON RS; MAHOOD RO; VANMIDDLESWORTH PE

2011-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Developing Supersonic Impactor and Aerodynamic Lens for Separation and Handling of Nano-Sized Particles  

SciTech Connect

A computational model for supersonic flows of compressible gases in an aerodynamic lens with several lenses and in a supersonic/hypersonic impactor was developed. Airflow conditions in the aerodynamic lens were analyzed and contour plots for variation of Mach number, velocity magnitude and pressure field in the lens were evaluated. The nano and micro-particle trajectories in the lens and their focusing and transmission efficiencies were evaluated. The computational model was then applied to design of a aerodynamic lens that could generate focus particle beams while operating under atmospheric conditions. The computational model was also applied to airflow condition in the supersonic/hypersonic impactor. Variations of airflow condition and particle trajectories in the impactor were evaluated. The simulation results could provide understanding of the performance of the supersonic and hypersonic impactors that would be helpful for the design of such systems.

Goodarz Ahmadi

2008-06-30T23:59:59.000Z

102

The Formation of Systems with Tightly-packed Inner Planets (STIPs) via Aerodynamic Drift  

E-Print Network (OSTI)

The NASA Kepler mission has revealed an abundant class of Systems with Tightly-packed Inner Planets (STIPs). The current paradigm for planet formation suggests that small planetesimals will quickly spiral into the host star due to aerodynamic drag, preventing rocky planet formation. In contrast, we find that aerodynamic drift, when acting on an ensemble of solids, can concentrate mass at short orbital periods in gaseous disks. Sublimation fronts may further aid this process. Kepler data suggest that the innermost known planets are found near the silicate sublimation zone. STIP planets should have a wide range of volatile fractions due to aerodynamic drift and H2 dissociation-driven gas accretion. We further propose that the low mass of Mars is evidence that the Solar System was once a proto-STIP.

Boley, Aaron C

2013-01-01T23:59:59.000Z

103

Experimental and analytical research on the aerodynamics of wind driven turbines. Final report  

DOE Green Energy (OSTI)

The successful development of reliable, cost competitive horizontal axis, propeller-type wind energy conversion systems (WECS) is strongly dependent on the availability of advanced technology for each of the system components. This aerodynamic research program was aimed at providing a reliable, comprehensive data base on a series of wind turbine models covering a broad range of the prime aerodynamic and geometric variables. Such data obtained under controlled laboratory conditions on turbines designed by the same method, of the same size, and tested in the same wind tunnel had not been available in the literature. Moreover, this research program was further aimed at providing a basis for evaluating the adequacy of existing wind turbine aerodynamic design and performance methodology, for assessing the potential of recent advanced theories and for providing a basis for further method development and refinement.

Rohrbach, C.; Wainauski, H.; Worobel, R.

1977-12-01T23:59:59.000Z

104

Characterization of aerodynamic drag force on single particles: Final report  

Science Conference Proceedings (OSTI)

An electrodynamic balance was used to measure the drag coefficient and also to record the size and shape of spheres, and coal and oil shale particles (100 ..mu..m to 200 ..mu..m in size). The electrodynamic balance consisted of a central, and two end electrodes. The resulting electric field stably suspended a charged particle. A suspended particle, back illuminated by a light emitting diode, was viewed by a video camera. The image was analyzed for particle position control and was calibrated to give the diameter of spheres, or the area equivalent diameter of nonspherical particles. The drag coefficient was calculated from the air velocity and the dc voltage required to keep the particle at the balance center. The particle Reynolds number varied from 0.2 to 13. Three particles each of coal and oil shale were captured and photographed by a scanning electron microscope and the motion of all the particles was recorded on video tape. Drag coefficient vs Reynolds number data for spheres agreed well with correlations. Data for thirteen particles each of coal and oil shale indicated a power law relationship between drag coefficient and Reynolds number. All these particles exhibited higher drag than spheres and were also observed to rotate. The rotation, however, did not affect the drag coefficient. The choice of characteristic dimension affects the drag characteristics of oil shale more strongly than for coal, owing to the flake-like shape of oil shale. 38 figs., 5 tabs.

Kale, S.R.

1987-10-01T23:59:59.000Z

105

Diameter tuning of single-walled carbon nanotubes by diffusion plasma CVD  

Science Conference Proceedings (OSTI)

We have realized a diameter tuning of single-walled carbon nanotubes (SWNTs) by adjusting process gas pressures with plasma chemical vapor deposition (CVD). Detailed photoluminescence measurements reveal that the diameter distribution of SWNTs clearly ...

Toshiaki Kato; Shunsuke Kuroda; Rikizo Hatakeyama

2011-01-01T23:59:59.000Z

106

Numerical prediction of aerodynamic characteristics of prismatic cylinder by finite element method with Spalart-Allmaras turbulence model  

Science Conference Proceedings (OSTI)

Aerodynamic characteristic of prismatic cylinders is numerically investigated by using finite element method with Spalart-Allmaras turbulence model. The developed model is verified against the available experimental and numerical results for turbulent ... Keywords: Aerodynamic characteristic, Afterbody shape, Finite element method, Prismatic cylinder, Turbulent flow, Unsteady S-A model

Yan Bao; Dai Zhou; Cheng Huang; Qier Wu; Xiang-qiao Chen

2011-02-01T23:59:59.000Z

107

Original papers: Aerodynamic analysis and CFD simulation of several cellulose evaporative cooling pads used in Mediterranean greenhouses  

Science Conference Proceedings (OSTI)

The present work makes an aerodynamic analysis and computational fluid dynamics (CFD) simulation of the four commercial models of corrugated cellulose evaporative cooling pads that are most widely used in Mediterranean greenhouses. The geometric characteristics ... Keywords: Aerodynamic analysis, CFD, Evaporative cooling, Fan and pad, Greenhouse, Pressure drop

A. Franco; D. L. Valera; A. Peña; A. M. Pérez

2011-05-01T23:59:59.000Z

108

A computer program for monitoring and controlling ultrasonic anemometers for aerodynamic measurements in animal buildings  

Science Conference Proceedings (OSTI)

Ultrasonic anemometers (USAs) are widely implemented in animal housing to measure the air velocity in different measuring points throughout the whole barn, which ultimately leads to determine the velocity fields and the air flow patterns drawing a clear ... Keywords: Aerodynamics, Air profile, Airflow, Computer program, Precision livestock farming, Ultrasonic anemometer

M. Samer; C. Loebsin; K. von Bobrutzki; M. Fiedler; C. Ammon; W. Berg; P. Sanftleben; R. Brunsch

2011-10-01T23:59:59.000Z

109

A New Drag Relation for Aerodynamically Rough Flow over the Ocean  

Science Conference Proceedings (OSTI)

From almost 7000 near-surface eddy-covariance flux measurements over the sea, the authors deduce a new air–sea drag relation for aerodynamically rough flow:Here u* is the measured friction velocity, and UN10 is the neutral-stability wind speed at ...

Edgar L Andreas; Larry Mahrt; Dean Vickers

2012-08-01T23:59:59.000Z

110

Aerodynamic and Performance Measurements on a SWT-2.3-101 Wind Turbine  

DOE Green Energy (OSTI)

This paper provides an overview of a detailed wind turbine field experiment being conducted at NREL under U.S. Department of Energy sponsorship. The purpose of the experiment is to obtain knowledge about the aerodynamics, performance, noise emission and structural characteristics of the Siemens SWT-2.3-101 wind turbine.

Medina, P.; Singh, M.; Johansen, J.; Jove, A.R.; Machefaux, E.; Fingersh, L. J.; Schreck, S.

2011-10-01T23:59:59.000Z

111

Estimating Monthly Averaged Air-Sea Transfers of Heat and Momentum Using the Bulk Aerodynamic Method  

Science Conference Proceedings (OSTI)

Air-sea transfers of sensible heat, latent heat and momentum are computed from 25 years of middle-latitude and subtropical ocean weather ship data in the North Atlantic and North Pacific using the bulk aerodynamic method. The results show that ...

Steven K. Esbensen; Richard W. Reynolds

1981-04-01T23:59:59.000Z

112

Fan Aerodynamic Performance Guarantees: Do Your Policies, Procedures and Penalties Provide Adequate Certainty?  

E-Print Network (OSTI)

With few exceptions, fan vendors do not provide a written guarantee regarding aerodynamic performance. Some fan vendors even go so far as to state in their terms and conditions of sale that fan performance is not guaranteed unless it is specifically reque

Kaufman, S. G.; Martin, V.; Falk, M. A.

2004-01-01T23:59:59.000Z

113

Structural effects of unsteady aerodynamic forces on horizontal-axis wind turbines  

DOE Green Energy (OSTI)

Due to its renewable nature and abundant resources, wind energy has the potential to fulfill a large portion of this nation`s energy needs. The simplest means of utilizing wind energy is through the use of downwind, horizontal-axis wind turbines (HAWT) with fixed-pitch rotors. This configuration regulates the peak power by allowing the rotor blade to aerodynamically stall. The stall point, the point of maximum coefficient of lift, is currently predicted using data obtained from wind tunnel tests. Unfortunately, these tests do not accurately simulate conditions encountered in the field. Flow around the tower and nacelle coupled with inflow turbulence and rotation of the turbine blades create unpredicted aerodynamic forces. Dynamic stall is hypothesized to occur. Such aerodynamic loads are transmitted into the rotor and tower causing structural resonance that drastically reduces the design lifetime of the wind turbine. The current method of alleviating this problem is to structurally reinforce the tower and blades. However, this adds unneeded mass and, therefore, cost to the turbines. A better understanding of the aerodynamic forces and the manner in which they affect the structure would allow for the design of more cost effective and durable wind turbines. Data compiled by the National Renewable Energy Laboratory (NREL) for a downwind HAWT with constant chord, untwisted, fixed-pitch rotors is analyzed. From these data, the actual aerodynamic characteristics of the rotor are being portrayed and the potential effects upon the structure can for the first time be fully analyzed. Based upon their understanding, solutions to the problem of structural resonance are emerging.

Miller, M.S.; Shipley, D.E. [Univ. of Colorado, Boulder, CO (United States). BioServe Space Technologies

1994-08-01T23:59:59.000Z

114

Aerodynamic Design Criteria for Class 8 Heavy Vehicles Trailer Base Devices to Attain Optimum Performance  

SciTech Connect

Lawrence Livermore National Laboratory (LLNL) as part of its Department of Energy (DOE), Energy Efficiency and Renewable Energy (EERE), and Vehicle Technologies Program (VTP) effort has investigated class 8 tractor-trailer aerodynamics for many years. This effort has identified many drag producing flow structures around the heavy vehicles and also has designed and tested many new active and passive drag reduction techniques and concepts for significant on the road fuel economy improvements. As part of this effort a database of experimental, computational, and conceptual design for aerodynamic drag reduction devices has been established. The objective of this report is to provide design guidance for trailer base devices to improve their aerodynamic performance. These devices are commonly referred to as boattails, base flaps, tail devices, and etc. The information provided here is based on past research and our most recent full-scale experimental investigations in collaboration with Navistar Inc. Additional supporting data from LLNL/Navistar wind tunnel, track test, and on the road test will be published soon. The trailer base devices can be identified by 4 flat panels that are attached to the rear edges of the trailer base to form a closed cavity. These devices have been engineered in many different forms such as, inflatable and non-inflatable, 3 and 4-sided, closed and open cavity, and etc. The following is an in-depth discussion with some recommendations, based on existing data and current research activities, of changes that could be made to these devices to improve their aerodynamic performance. There are 6 primary factors that could influence the aerodynamic performance of trailer base devices: (1) Deflection angle; (2) Boattail length; (3) Sealing of edges and corners; (4) 3 versus 4-sided, Position of the 4th plate; (5) Boattail vertical extension, Skirt - boattail transition; and (6) Closed versus open cavity.

Salari, K; Ortega, J

2010-12-13T23:59:59.000Z

115

Large-Eddy Simulation of Wind-Plant Aerodynamics  

DOE Green Energy (OSTI)

In this work, we present results of a large-eddy simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation, and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done large-eddy simulations of wind plants with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-eddy simulation capability to create a sound methodology for performing this type of simulation. We used the OpenFOAM CFD toolbox to create our solver. The simulated time-averaged power production of the turbines in the plant agrees well with field observations, except with the sixth turbine and beyond in each wind-aligned. The power produced by each of those turbines is overpredicted by 25-40%. A direct comparison between simulated and field data is difficult because we simulate one wind direction with a speed and turbulence intensity characteristic of Lillgrund, but the field observations were taken over a year of varying conditions. The simulation shows the significant 60-70% decrease in the performance of the turbines behind the front row in this plant that has a spacing of 4.3 rotor diameters in this direction. The overall plant efficiency is well predicted. This work shows the importance of using local grid refinement to simultaneously capture the meter-scale details of the turbine wake and the kilometer-scale turbulent atmospheric structures. Although this work illustrates the power of large-eddy simulation in producing a time-accurate solution, it required about one million processor-hours, showing the significant cost of large-eddy simulation.

Churchfield, M. J.; Lee, S.; Moriarty, P. J.; Martinez, L. A.; Leonardi, S.; Vijayakumar, G.; Brasseur, J. G.

2012-01-01T23:59:59.000Z

116

Performance of Large Diameter Residential Drinking Water Wells - Biofilm Growth: Laboratory and Field Testing.  

E-Print Network (OSTI)

??In the first phase of this project three enhanced large diameter (> 60 cm) residential wells were constructed at a study site in Lindsay, Ontario.… (more)

Ruiz Salazar, Hector Fabio

2011-01-01T23:59:59.000Z

117

A comparative study of the aerodynamics of several wind turbines using flow visualization  

Science Conference Proceedings (OSTI)

This paper reports flow visualization techniques used to study the flows over the Enertech 21-5, Carter 25, and Enertech 44-50. Despite centrifugal effects superimposed on the aerodynamics, tufting (gross aerodynamic behavior) and oil flow (average boundary layer behavior), tests reveal the nature and many of the details of the flows involved. Results were compared to expected flow patterns based on angles of attack calculated from the PROPPC code. Chord Reynolds numbers ranged between 75,000 (Enertech 21-5) to 1,340,000 (Enertech 44-50). The typical low Reynolds number flow characteristics of these airfoils, including laminar separation bubbles, turbulent reattachment, and complete separation were observed. full or partial reattachment due to tower shadow was observed on each machine. Spanwise flow was observed near the leading edge of the Enertech 21-5. Cyclic radial flow from tower dam effect was also noted.

Eggleston, D.M. (Control Engineering, Univ. of Texas of the Permian Basin, Odessa, TX (US)); Starcher, K. (Alternative Energy Inst., West Texas State Univ., Canyon, TX (US))

1990-11-01T23:59:59.000Z

118

Effects of flow curvature on the aerodynamics of Darrieus wind turbines  

DOE Green Energy (OSTI)

A theoretical and experimental investigation was conducted which clearly showed the effects of flow curvature to be significant determinants of Darrieus turbine blade aerodynamics; qualitatively, these results apply equally to straight or curved bladed machines. Unusually large boundary layer radial pressure gradients and virtually altered camber and incidence are the phenomena of primary importance. Conformal mapping techniques were developed which transform the geometric turbine airfoils in curved flow to their virtual equivalents in rectilinear flow, thereby permitting the more accurate selection of airfoil aerodynamic coefficients from published sectional data. It is demonstrated that once the flow idiosyncracies are fully understood, they may be used to advantage to improve the wind energy extraction efficiency of these machines.

Migliore, P. G.; Wolfe, W. P.

1980-07-01T23:59:59.000Z

119

July 2004 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentation, Summary of Comments, and Conclusions  

SciTech Connect

A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held in Portland, Oregon on July 1, 2004. The purpose of the meeting was to provide a summary of achievements, discuss pressing issues, present a general overview of future plans, and to provide a forum for dialogue with the Department of Energy (DOE) and industry representatives. The meeting was held in Portland, because the DOE Aero Team participated in an exclusive session on Heavy Truck Vehicle Aerodynamic Drag at the 34th AIAA Fluid Dynamics Conference and Exhibit in Portland on the morning of July 1st, just preceding our Working Group meeting. Even though the paper session was on the last day of the Conference, the Team presented to a full room of interested attendees.

McCallen, R; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; DeChant, L; Hassan, B; Browand, F; Arcas, D; Ross, J; Heineck, J; Storms, B; Walker, S; Leonard, A; Roy, C; Whitfield, D; Pointer, D; Sofu, T; Englar, R; Funk, R

2004-08-17T23:59:59.000Z

120

Embedding a carbon nanotube across the diameter of a solid state nanopore  

E-Print Network (OSTI)

A fabrication method for positioning and embedding a single-walled carbon nanotube (SWNT) across the diameter of a solid state nanopore is presented. Chemical vapor deposition (CVD) is used to grow SWNTs over arrays of focused ion beam (FIB) milled pores in a thin silicon nitride membrane. This typically yields at least one pore whose diameter is centrally crossed by a SWNT. The final diameter of the FIB pore is adjusted to create a nanopore of any desired diameter by atomic layer deposition (ALD), simultaneously embedding and insulating the SWNT everywhere but in the region that crosses the diameter of the final nanopore, where it remains pristine and bare. This nanotube-articulated nanopore is an important step towards the realization of a new type of detector for biomolecule sensing and electronic characterization, including DNA sequencing.

E. S. Sadki; S. Garaj; D. Vlassarev; J. A. Golovchenko; D. Branton

2013-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Near Infrared Angular Diameters of a few AGB variables by Lunar Occultations  

E-Print Network (OSTI)

The uniform disk (UD) angular diameter measurements of two oxygen-rich Mira variables (AW Aur and BS Aur) and three semiregular (SRb) variables (GP Tau, RS Cap, RT Cap), in near Infrared K-band (2.2 micron) by lunar occultation observations are reported. UD angular diameters of the two Miras and one SRV are first time measurements. In addition a method of predicting angular diameters from (V-K) colour is discussed and applied to the five sources. The effect of mass-loss enhancing measured K-band diameters is examined for Miras using (K-[12]) colour excess as an index. In our sample the measured angular diameter of one of the Miras (BS Aur) is found enhanced by nearly 40% compared to its expected value, possibly due to mass loss effects leading to formation of a circumstellar shell.

Baug, Tapas

2011-01-01T23:59:59.000Z

122

A Multi-Year Program Plan for the Aerodynamic Design of Heavy Vehicles  

DOE Green Energy (OSTI)

The project tasks and deliverables are as follows: Computations and Experiments--(1) Simulation and analysis of a range of generic shapes, simplified to more complex, representative of tractor and integrated tractor-trailer flow characteristics using computational tools, (2) The establishment of an experimental data base for tractor-trailer models for code/computational method development and validation. The first shapes to be considered will be directed towards the investigation of tractor-trailer gaps and mismatch of tractor-trailer heights. (3) The evaluation and documentation of effective computational approaches for application to heavy vehicle aerodynamics based on the benchmark results with existing and advanced computational tools compared to experimental data, and (4) Computational tools and experimental methods for use by industry, National Laboratories, and universities for the aerodynamic modeling of heavy truck vehicles. Evaluation of current and new technologies--(1) The evaluation and documentation of current and new technologies for drag reduction based on published literature and continued communication with the heavy vehicle industry (e.g., identification and prioritization of tractor-trailer drag-sources, blowing and/or suction devices, body shaping, new experimental methods or facilities), and the identification and analysis of tractor and integrated tractor-trailer aerodynamic problem areas and possible solution strategies. (2) Continued industrial site visits. It should be noted that ''CFD tools'' are not only the actual computer codes, but descriptions of appropriate numerical solution methods. Part of the project effort will be to determine the restrictions or avenues for technology transfer.

None

2001-09-01T23:59:59.000Z

123

Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines  

Science Conference Proceedings (OSTI)

When work began on the Darrieus vertical axis wind turbine (VAWT) program at Sandia National Laboratories, it was recognized that there was a paucity of symmetrical airfoil data needed to describe the aerodynamics of turbine blades. Curved-bladed Darrieus turbines operate at local Reynolds numbers (Re) and angles of attack (..cap alpha..) seldom encountered in aeronautical applications. This report describes (1) a wind tunnel test series conducted at moderate values of Re in which 0 less than or equal to ..cap alpha.. less than or equal to 180/sup 0/ force and moment data were obtained for four symmetrical blade-candidate airfoil sections (NACA-0009, -0012, -0012H, and -0015), and (2) how an airfoil property synthesizer code can be used to extend the measured properties to arbitrary values of Re (10/sup 4/ less than or equal to Re less than or equal to 10/sup 7/) and to certain other section profiles (NACA-0018, -0021, -0025).

Sheldahl, R E; Klimas, P C

1981-03-01T23:59:59.000Z

124

Ultrasonic Acceptance Small Diameter Boiler Tube Butt Weld: Project Status Update  

Science Conference Proceedings (OSTI)

This is an interim report documenting the progress of a multiyear project for developing an alternative ultrasonic testing (UT) acceptance guideline for small diameter boiler tube butt welds.BackgroundHistorically, small diameter boiler tube butt welds have either been examined for defects using radiography or not inspected, with the owner relying only on a hydrostatic pressure test at 1.5 times the design pressure to assess weld quality. This reliance is ...

2013-12-20T23:59:59.000Z

125

Development of Pneumatic Aerodynamic Devices to Improve the Performance, Economics, and Safety of Heavy Vehicles  

SciTech Connect

Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model.

Robert J. Englar

2000-06-19T23:59:59.000Z

126

Numerical simulation of VAWT stochastic aerodynamic loads produced by atmospheric turbauence: VAWT-SAL code  

DOE Green Energy (OSTI)

Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). A principal source of blade fatigue is thought to be the stochastic (i.e., random) aerodynamic loads created by atmospheric turbulence. This report describes the theoretical background of the VAWT Stochastic Aerodynamic Loads (VAWT-SAL) computer code, whose purpose is to numerically simulate these random loads, given the rotor geometry, operating conditions, and assumed turbulence properties. A Double-Multiple-Stream Tube (DMST) analysis is employed to model the rotor's aerodynamic response. The analysis includes the effects of Reynolds number variations, different airfoil sections and chord lengths along the blade span, and an empirical model for dynamic stall effects. The mean ambient wind is assumed to have a shear profile which is described by either a power law or a logarithmic variation with height above ground. Superimposed on this is a full 3-D field of turbulence: i.e., in addition to random fluctuations in time, the turbulence is allowed to vary randomly in planes perpendicular to the mean wind. The influence of flow retardation on the convection of turbulence through the turbine is also modeled. Calculations are presented for the VAWT 34-m Test Bed currently in operation at Bushland, Texas. Predicted time histories of the loads, as well as their Fourier spectra, are presented and discussed. Particular emphasis is placed on the differences between so-called steady-state'' (mean wind only) predictions, and those produced with turbulence present. Somewhat surprisingly, turbulence is found to be capable of either increasing or decreasing the average output power, depending on the turbine's tip-speed ratio. A heuristic explanation for such behavior is postulated, and a simple formula is derived for predicting the magnitude of this effect without the need for a full stochastic simulation. 41 refs., 32 figs., 1 tab.

Homicz, G.F.

1991-09-01T23:59:59.000Z

127

Aerodynamics overview of the ground transportation systems (GTS) project for heavy vehicle drag reduction  

DOE Green Energy (OSTI)

The focus of the research was to investigate the fundamental aerodynamics of the base flow of a tractor trailer that would prove useful in fluid flow management. Initially, industry design needs and constraints were defined. This was followed by an evaluation of state-of-the-art Navier-Stokes based computational fluid dynamics tools. Analytical methods were then used in combination with computational tools in a design process. Several geometries were tested at 1:8 scale in a low speed wind tunnel. In addition to the baseline geometry, base add-on devices of the class of ogival boattails and slants were analyzed.

Gutierrez, W.T.; Hassan, B.; Croll, R.H.; Rutledge, W.H.

1995-12-31T23:59:59.000Z

128

Aerodynamically induced radial forces in a centrifugal gas compressor: Part 2 -- Computational investigation  

SciTech Connect

Radial loads and direction of a centrifugal gas compressor containing a high specific speed mixed flow impeller and a single tongue volute were determined both experimentally and computationally at both design and off-design conditions. The experimental methodology was developed in conjunction with a traditional ASME PTC-10 closed-loop test to determine radial load and direction. The experimental study is detailed in Part 1 of this paper (Moore and Flathers, 1998). The computational method employs a commercially available, fully three-dimensional viscous code to analyze the impeller and the volute interaction. An uncoupled scheme was initially used where the impeller and volute were analyzed as separate models using a common vaneless diffuser geometry. The two calculations were then repeated until the boundary conditions at a chosen location in the common vaneless diffuser were nearly the same. Subsequently, a coupled scheme was used where the entire stage geometry was analyzed in one calculation, thus eliminating the need for manual iteration of the two independent calculations. In addition to radial load and direction information, this computational procedure also provided aerodynamic stage performance. The effect of impeller front face and rear face cavities was also quantified. The paper will discuss computational procedures, including grid generation and boundary conditions, as well as comparisons of the various computational schemes to experiment. The results of this study will show the limitations and benefits of Computational Fluid Dynamics (CFD) for determination of radial load, direction, and aerodynamic stage performance.

Flathers, M.B.; Bache, G.E.

1999-10-01T23:59:59.000Z

129

Advanced Aerodynamic Devices to Improve the Performance, Economics, Handling, and Safety of Heavy Vehicles  

Science Conference Proceedings (OSTI)

Research is being conducted at the Georgia Tech Research Institute (GTRI) to develop advanced aerodynamic devices to improve the performance, economics, stability, handling and safety of operation of Heavy Vehicles by using previously-developed and flight-tested pneumatic (blown) aircraft technology. Recent wind-tunnel investigations of a generic Heavy Vehicle model with blowing slots on both the leading and trailing edges of the trailer have been conducted under contract to the DOE Office of Heavy Vehicle Technologies. These experimental results show overall aerodynamic drag reductions on the Pneumatic Heavy Vehicle of 50% using only 1 psig blowing pressure in the plenums, and over 80% drag reductions if additional blowing air were available. Additionally, an increase in drag force for braking was confirmed by blowing different slots. Lift coefficient was increased for rolling resistance reduction by blowing only the top slot, while downforce was produced for traction increase by blowing only the bottom. Also, side force and yawing moment were generated on either side of the vehicle, and directional stability was restored by blowing the appropriate side slot. These experimental results and the predicted full-scale payoffs are presented in this paper, as is a discussion of additional applications to conventional commercial autos, buses, motor homes, and Sport Utility Vehicles.

Robert J. Englar

2001-05-14T23:59:59.000Z

130

Economic and Performance Benefits Resulting From the Use of Large Diameter  

Open Energy Info (EERE)

and Performance Benefits Resulting From the Use of Large Diameter and Performance Benefits Resulting From the Use of Large Diameter Fans on Air Cooled Heat Exchangers (A Case Study in the Use of Large Fan Air Cooled Condensers at the Neal Hot Springs Geothermal Power Plant, Oregon) Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Economic and Performance Benefits Resulting From the Use of Large Diameter Fans on Air Cooled Heat Exchangers (A Case Study in the Use of Large Fan Air Cooled Condensers at the Neal Hot Springs Geothermal Power Plant, Oregon) Abstract A significant improvement in air cooler technology was implementedat the Neal Hot Springs geothermal power plant in Vale,Oregon. Large cooling tower fans were used in an induced draftarrangement (fans above the heat exchanger). The total numberof fans was reduced from 270 x 12ft / 3.7m fans

131

Large-diameter, high-plutonium metallic fuel testing in EBR-II  

Science Conference Proceedings (OSTI)

The integral fast reactor (IFR) concept makes use of U-Pu-Zr metallic fuel alloys because of favorable core behavior characteristics and compatibility with a pyrometallurgical reprocessing scheme. Advanced reactor designs use U-x Pu-10 Zr (where 20 {le} x {le} 28). Most of the IFR fuel performance database was obtained with fuel containing {le}20 wt% Pu having a 0.439-cm diameter irradiated in cladding tubes having a 0.584-cm o.d. However, commercial implementations of the IFR concept (e.g., the advanced liquid-metal reactor by General Electric) will likely use fuel of larger diameter and plutonium contents {ge}20 wt%. The HT9 advanced driver fuel test, irradiated in Experimental Breeder Reactor II (EBR-II), was initiated to obtain irradiation performance data from larger diameter fuel cast with a range of plutonium compositions and clad in the reference cladding alloy HT9.

Crawford, D.C.; Hayes, S.L.; Pahl, R.G. [Argonne National Lab., Idaho Falls, ID (United States)

1994-12-31T23:59:59.000Z

132

Subcooled and saturated water flow boiling pressure drop in small diameter helical coils at low pressure  

SciTech Connect

Experimental pressure drop results on boiling water flow through three helical coils of tube inner diameter of 4.03 mm and 4.98 mm and coil diameter to tube diameter ratio of 26.1, 64.1 and 93.3 are presented. Both subcooled and saturated flow boiling are investigated, covering operating pressures from 120 to 660 kPa, mass fluxes from 290 to 690 kg m{sup -2} s{sup -1} and heat fluxes from 50 to 440 kW m{sup -2}. Existing correlations for subcooled flow pressure drop are found not capable to fit the present subcooled database, while the measurements in saturated flow conditions are successfully reproduced by existing correlations for both straight and coiled pipe two-phase flow. The experimental database is included in tabular form. (author)

Cioncolini, Andrea; Santini, Lorenzo; Ricotti, Marco E. [Department of Nuclear Engineering, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy)

2008-05-15T23:59:59.000Z

133

Prediction of Aortic Diameter Values in Healthy Turkish Infants, Children, and Adolescents by Using Artificial Neural Network  

Science Conference Proceedings (OSTI)

The aorta is the largest vessel in the systemic circuit. Its diameter is very important to guess for child before adult age, due to growing up body. Aortic diameter, one of the cardiac values, changes in time. Evaluation of the cardiac structures and ... Keywords: Aortic diameter, Artificial neural network, Echocardiography, Line based, Normalization, Pediatric cardiology

Bayram Akdemir; Bülent Oran; Salih Gunes; Sevim Karaaslan

2009-10-01T23:59:59.000Z

134

Prediction of Aortic Diameter Values in Healthy Turkish Infants, Children and Adolescents Via Adaptive Network Based Fuzzy Inference System  

Science Conference Proceedings (OSTI)

The aorta diameter size one of the cardiac value is very important to guess for child before adult age, due to growing up body. In conventional method, the experts use curve charts to decide whether their measured aortic diameter size is normal or not. ... Keywords: ANFIS, Aortic Diameter, Line Base Normalization Method, Prediction

Bayram Akdemir; Salih Güne?; Bülent Oran

2008-09-01T23:59:59.000Z

135

Microlens rapid prototyping technique with capability for wide variation in lens diameter and focal length  

Science Conference Proceedings (OSTI)

A ''mold-less'' method for rapid prototyping spherical microlenses using the surface tension of a transparent, temperature sensitive polymer is presented. The lens size can be varied with the volume of the polymer dispensed, with a diameter range of ... Keywords: Microlenses, Polymer, Rapid prototyping, Surface tension

J. L. Cruz-Campa; M. Okandan; M. L. Busse; G. N. Nielson

2010-11-01T23:59:59.000Z

136

Hardware and software efficacy in assessment of fine root diameter distributions  

Science Conference Proceedings (OSTI)

Fine roots constitute the majority of root system surface area and thus most of the nutrient and water absorption surface. Fine roots are, however, the least understood of all plant roots. A sensitivity analysis of several software programs capable of ... Keywords: Diameter distribution, Digital image analysis, Fine roots, High resolution, Root length, Scanner

Richard W. Zobel

2008-03-01T23:59:59.000Z

137

METHOD OF BUTT WELDING SMALL THERMOCOUPLES 0.001 TO 0.010 INCH IN DIAMETER  

SciTech Connect

A method of butt welding thermoeouples 0.001 to 0.010 in. in diameter is described. The thermocouple wires are positioned in a micro-manipulator, and a controlled welding pulse is applied to them. This welding method provides uniform upset welds through a simple preduction technique. (auth)

Stover, C.M.

1960-06-01T23:59:59.000Z

138

Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces  

DOE Patents (OSTI)

A new and useful nanotube growth substrate conditioning processes is herein disclosed that allows the growth of vertical arrays of carbon nanotubes where the average diameter of the nanotubes can be selected and/or controlled as compared to the prior art.

Hauge, Robert H. (Houston, TX); Xu, Ya-Qiong (Houston, TX); Shan, Hongwei (Houston, TX); Nicholas, Nolan Walker (South Charleston, WV); Kim, Myung Jong (Houston, TX); Schmidt, Howard K. (Cypress, TX); Kittrell, W. Carter (Houston, TX)

2012-02-28T23:59:59.000Z

139

Laboratory evaluation of fan/filter units' aerodynamic and energy performance  

SciTech Connect

The paper discusses the benefits of having a consistent testing method to characterize aerodynamic and energy performance of FFUs. It presents evaluation methods of laboratory-measured performance of ten relatively new, 1220 mm x 610 mm (or 4 ft x 2 ft) fan-filter units (FFUs), and includes results of a set of relevant metrics such as energy performance indices (EPI) based upon the sample FFUs tested. This paper concludes that there are variations in FFUs' performance, and that using a consistent testing and evaluation method can generate compatible and comparable FFU performance information. The paper also suggests that benefits and opportunities exist for our method of testing FFU energy performance to be integrated in future recommended practices.

Xu, Tengfang; Jeng, Ming-Shan

2004-07-27T23:59:59.000Z

140

Vessel-Spanning Bubble Formation in K-Basin Sludge Stored in Large-Diameter Containers  

DOE Green Energy (OSTI)

The K Basin sludge to be retrieved and stored in the large diameter containers (LDCs) contains some fraction of uranium metal that generates hydrogen gas, which introduces potential upset conditions. One postulated upset condition is a rising plug of sludge supported by a hydrogen bubble that is driven into the vent filters at the top of the container. In laboratory testing with actual K Basin sludge, vessel-spanning bubbles that lifted plugs of sludge were observed in 3-inch-diameter graduated cylinders. This report presents a series of analytical assessments performed by the Pacific Northwest National Laboratory to address the potential for the generation of a vessel spanning bubble in the LDCs. The assessments included the development and evaluation of static and dynamic bubble formation models over the projected range of K Basin sludge physical properties. Additionally, the theory of circular plates was extrapolated to examine conditions under which a plug of sludge would collapse and release a spanning bubble.

Terrones, Guillermo; Gauglitz, Phillip A.

2002-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks  

DOE Green Energy (OSTI)

Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on fuel economy was determined, either through on-road testing or full-size wind tunnel testing. All of the manufacturers worked with devices and systems that offer practical solutions to reduce aerodynamic drag, accounting for functionality, durability, cost effectiveness, reliability, and maintainability. The project team members and their roles and responsibilities are shown in Figure 2-1. Figure 2-2 shows the Phase I and II project schedules for all four projects and associated management activities.

Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

2007-04-30T23:59:59.000Z

142

Measurements of Aerodynamic Roughness, Bowen Ratio, and Atmospheric Surface Layer Height by Eddy Covariance and Tethersonde Systems Simultaneously over a Heterogeneous Rice Paddy  

Science Conference Proceedings (OSTI)

The aerodynamic roughness, Bowen ratio, and friction velocity were measured over a rice paddy using tethersonde and eddy covariance (EC) systems. In addition, the height ranges of the atmospheric inertial sublayer (ISL) were derived using the ...

Jeng-Lin Tsai; Ben-Jei Tsuang; Po-Sheng Lu; Ken-Hui Chang; Ming-Hwi Yao; Yuan Shen

2010-04-01T23:59:59.000Z

143

Significant Decrease of Uncertainties in Sensible Heat Flux Simulation Using Temporally Variable Aerodynamic Roughness in Two Typical Forest Ecosystems of China  

Science Conference Proceedings (OSTI)

Aerodynamic roughness length zom is an important parameter for reliably simulating surface fluxes. It varies with wind speed, atmospheric stratification, terrain, and other factors. However, it is usually considered a constant. It is known that ...

Yanlian Zhou; Weimin Ju; Xiaomin Sun; Xuefa Wen; Dexin Guan

2012-06-01T23:59:59.000Z

144

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

Science Conference Proceedings (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

145

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

DOE Green Energy (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

146

Mathematical Modeling of Aerodynamic Space -to - Surface Flight with Trajectory for Avoid Intercepting Process for Safety and Security Issues  

E-Print Network (OSTI)

The research project has been made for mathematical modeling of aerospace system Space-to-Surface for avoid intercepting process by flight objects Surface-to-Air. The research has been completed and created mathematical models which used for research and statistical analysis. In mathematical modeling has been including a few models: Model of atmosphere, Model of speed of sound, Model of flight head in space, Model of flight in atmosphere, Models of navigation and guidance, Model and statistical analysis of approximation of aerodynamic characteristics. Modeling has been created for a Space-to-Surface system defined for an optimal trajectory in terminal phase. The modeling includes models for simulation atmosphere, aerodynamic flight and navigation by an infrared system. The modeling simulation includes statistical analysis of the modeling results.

Gorneff, Serge

2009-01-01T23:59:59.000Z

147

Film Cooling, Heat Transfer and Aerodynamic Measurements in a Three Stage Research Gas Turbine  

E-Print Network (OSTI)

The existing 3-stage turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A and M University, is re-designed and newly installed to enable coolant gas injection on the first stage rotor platform to study the effects of rotation on film cooling and heat transfer. Pressure and temperature sensitive paint techniques are used to measure film cooling effectiveness and heat transfer on the rotor platform respectively. Experiments are conducted at three turbine rotational speeds namely, 2400rpm, 2550rpm and 3000rpm. Interstage aerodynamic measurements with miniature five hole probes are also acquired at these speeds. The aerodynamic data characterizes the flow along the first stage rotor exit, second stage stator exit and second stage rotor exit. For each rotor speed, film cooling effectiveness is determined on the first stage rotor platform for upstream stator-rotor gap ejection, downstream discrete hole ejection and a combination of upstream gap and downstream hole ejection. Upstream coolant ejection experiments are conducted for coolant to mainstream mass flow ratios of MFR=0.5%, 1.0%, 1.5% and 2.0% and downstream discrete hole injection tests corresponding to average hole blowing ratios of M = 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0 for each turbine speed. To provide a complete picture of hub cooling under rotating conditions, experiments with simultaneous injection of coolant gas through upstream and downstream injection are conducted for an of MFR=1% and Mholes=0.75, 1.0 and 1.25 for the three turbine speeds. Heat transfer coefficients are determined on the rotor platform for similar upstream and downstream coolant injection. Rotation is found to significantly affect the distribution of coolant on the platform. The measured effectiveness magnitudes are lower than that obtained with numerical simulations. Coolant streams from both upstream and downstream injection orient themselves towards the blade suction side. Passage vortex cuts-off the coolant film for the lower MFR for upstream injection. As the MFR increases, the passage vortex effects are diminished. Effectiveness was maximum when Mholes was closer to one as the coolant ejection velocity is approximately equal to the mainstream relative velocity for this blowing ratio. Heat transfer coefficient and film cooling effectiveness increase with increasing rotational speed for upstream rotor stator gap injection while for downstream hole injection the maximum effectiveness and heat transfer coefficients occur at the reference speed of 2550rpm.

Suryanarayanan, Arun

2009-05-01T23:59:59.000Z

148

A small diameter, flexible, all attitude, self-contained germanium spectrometer. Operator`s manual  

SciTech Connect

The end of the Cold War has brought about tremendous changes in the nuclear complex of the Department of Energy. One of the many changes has been the shutdown or decommissioning of many facilities that performed nuclear work. One of the steps in the process of decommissioning a facility involves the decontamination or removal of drain lines or pipes that may have carried radioactive materials at one time. The removal of all these pipes and drain lines to a nuclear disposal facility could be quite costly. It was suggested by Pacific Northwest National Laboratory (PNNL) that a germanium spectrometer could be built that could fit through straight pipes with a diameter as small as 5.08 cm (2 inches) and pass through curved pipes with a diameter as small as 7.6 cm (3 inches) such as that of a 3-inch p-trap in a drain line. The germanium spectrometer could then be used to simultaneously determine all gamma-ray emitting radionuclides in or surrounding the pipe. By showing the absence of any gamma-ray emitting radionuclides, the pipes could then be reused in place or disposed of as non-radioactive material, thus saving significantly in disposal costs. A germanium spectrometer system has been designed by PNNL and fabricated by Princeton Gamma Tech (PGT) that consists of three segments, each 4.84 cm in diameter and about 10 cm in length. Flexible stainless steel bellows were used to connect the segments. Segment 1 is a small liquid nitrogen reservoir. The reservoir is filled with a sponge-like material which enables the detector to be used in any orientation. A Stirling cycle refrigerator is under development which can replace the liquid nitrogen reservoir to provide continuous cooling and operation.

Bordzindki, R.L.; Lepel, E.A.; Reeves, J.H. [Battelle, Pacific Northwest National Lab., Richland, WA (United States); Kohli, R. [Battelle, Columbus Lab., OH (United States)

1997-05-01T23:59:59.000Z

149

Flooding Experiments with Steam and Water in a Large Diameter Vertical Tube  

E-Print Network (OSTI)

An experimental study on flooding with steam and water in a large diameter vertical tube was conducted. This research has been performed to provide a better prediction of flooding in a pressurized water reactor (PWR) pressurizer surge line to be used in reactor safety codes. Experiments were conducted using a 3-inch (76.2 mm) diameter tube 72 inches (1.83 m) long with subcooled water and super-heated steam at atmospheric pressure as the working fluids. Water flows down the inside walls of the tube as an annulus while the steam flows upward in the middle. The water flow rates ranged from 3.5 to 12 gallons per minute (GPM) (0.00022 to 0.00076 m^3/s) and the water inlet temperature was approximately 70 degrees C. The steam inlet temperature was approximately 110 degrees C. The size of the test section as well as the flow ranges of the working fluids was determined based on a scaling analysis of a PWR pressurizer surge line. Two distinct trends were observed in the data. It was found that for water flow rates below 6 GPM (0.00038 m3/s) the amount of steam required for flooding to occur decreases with an increasing water flow rate. For water flow rates above 6 GPM the amount of steam required for flooding to occur increases with an increasing water flow rate. In addition, axial water temperature data was collected. Axial water temperatures have not been recorded in previous flooding experiments with steam and water. A new correlation for predicting flooding with steam and water was proposed. This correlation was an improvement from previous correlations because it included the amount of steam condensation. Incorporation of steam-water mass exchange promotes a better prediction of behavior in reactor systems. This data for flooding with steam and water in a large diameter vertical tube can lead to a mechanistic model for flooding.

Williams, Susan Nicole

2009-08-01T23:59:59.000Z

150

Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers  

E-Print Network (OSTI)

The guided modes of sub-wavelength diameter air-clad optical fibers exhibit a pronounced evanescent field. The absorption of particles on the fiber surface is therefore readily detected via the fiber transmission. We show that the resulting absorption for a given surface coverage can be orders of magnitude higher than for conventional surface spectroscopy. As a demonstration, we present measurements on sub-monolayers of 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) molecules at ambient conditions, revealing the agglomeration dynamics on a second to minutes timescale.

F. Warken; E. Vetsch; D. Meschede; M. Sokolowski; A. Rauschenbeutel

2007-01-12T23:59:59.000Z

151

PROCESSING METHOD EFFECT ON SUN DIAMETER MEASUREMENT WITH CCD SOLAR ASTROLABE  

Science Conference Proceedings (OSTI)

Photometric Sun diameter measurement is based on the calculation of the inflection point of the solar limb. In ground measurement, this point is located at a position on the solar limb where the signal-to-noise ratio is very high, which necessitates the appropriate filtering techniques to eliminate the noise while preserving its position. In this paper, we compare the filtering method currently in use to process the CCD solar astrolabe data, the FFTD method widely used, with a different method that we propose. Using the acquired data from the CCD astrolabe at Calern, France during 1997, we can obtain a mean difference of 130 mas in the measured radii.

Djafer, Djelloul [Unite de Recherche Appliquee en Energies Renouvelables, BP 88, Ghardaiea (Algeria); Irbah, Abdenour, E-mail: djdjafer@gmail.com, E-mail: abdenour.irbah@latmos.ipsl.fr [Laboratoire Atmospheres, Milieux, Observations Spatiales (LATMOS), CNRS UMR8190, Universite Paris VI, Pierre et Marie Curie, Universite de Versailles Saint-Quentin-en-Yvelines INSU, 78280 Guyancourt (France)

2012-05-01T23:59:59.000Z

152

Correlation between Median Household Income and LEED Sustainable Site Criteria for Public Transportation Access and a Regression Model Predicting Appraised Unit Value of Unimproved Parcels in Houston, Texas  

E-Print Network (OSTI)

The Leadership in Energy and Environmental Design (LEED) Green Building Rating System provides third-party verification for environmentally sustainable construction. LEED certified buildings often provide healthier work and living environments, however, it does not provide any direct economic incentives to the owners and developers. An early research suggested that there was a significant correlation between appraised unit value of a parcel and LEED sustainable site criteria for public transportation access. Moreover, the regression model for predicting appraised unit value of a parcel suggested that the coefficient of Number of Light Rail Stations was positive, while the coefficient of Number of Bus Stops was negative. This result contradicted our original expectation that both number of bus stops and light rail stations could have a positive effect on the appraised unit value. Hence it becomes important to conduct further research to explain this phenomenon. In this research, Pearson correlation was examined to determine whether there is a significant correlation between median household income and the number of bus stops and light rail stations for a given parcel that meet LEED sustainable site criteria for public transportation access. After confirming no significant correlation exists, multiple regression analysis was applied to establish a regression model for predicting unit value of a given parcel using number of bus stops and light rail stations for a given parcel that meet LEED sustainable site criteria for public transportation access, median household income and parcel area as the independent variables. Result of Pearson correlation indicated that there was no significant correlation exists between median household income and the number of bus stops and light rail stations for a given parcel which met LEED sustainable site criteria for public transportation access. Findings of multiple regression analysis suggested that all independent variables were significant predictors for unit value of a parcel. Besides, this regression model had a higher adjusted R- square value than that of the model which was established by Bhagyashri Joshi. It means that this regression model could better predict appraised unit value of an unimproved parcel.

Ji, Qundi

2010-05-01T23:59:59.000Z

153

THE MEGAMASER COSMOLOGY PROJECT. V. AN ANGULAR-DIAMETER DISTANCE TO NGC 6264 AT 140 Mpc  

SciTech Connect

We present the direct measurement of the Hubble constant, yielding the direct measurement of the angular-diameter distance to NGC 6264 using the H{sub 2}O megamaser technique. Our measurement is based on sensitive observations of the circumnuclear megamaser disk from four observations with the Very Long Baseline Array, the Green Bank Telescope (GBT), and the Effelsberg telescope. We also monitored the maser spectral profile for 2.3 years using the GBT to measure accelerations of maser lines by tracking their line-of-sight velocities as they change with time. The measured accelerations suggest that the systemic maser spots have a significantly wider radial distribution than in the archetypal megamaser in NGC 4258. We model the maser emission as arising from a circumnuclear disk with orbits dominated by the central black hole. The best fit of the data gives a Hubble constant of H{sub 0} = 68 {+-} 9 km s{sup -1} Mpc{sup -1}, which corresponds to an angular-diameter distance of 144 {+-} 19 Mpc. In addition, the fit also gives a mass of the central black hole of (3.09 {+-} 0.42) Multiplication-Sign 10{sup 7} M{sub Sun }. The result demonstrates the feasibility of measuring distances to galaxies located well into the Hubble flow by using circumnuclear megamaser disks.

Kuo, C. Y. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Braatz, J. A.; Lo, K. Y.; Condon, J. J.; Impellizzeri, C. M. V. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Reid, M. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Henkel, C. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany)

2013-04-20T23:59:59.000Z

154

Inflow Characterization and Aerodynamics Measurements on a SWT-2.3-101 Wind Turbine: Preprint  

DOE Green Energy (OSTI)

Post processing techniques for aerodynamic data acquired from a Siemens SWT-2.3-101 turbine have been developed and applied in this paper. The turbine is installed at the National Wind Technology Center (NWTC) as part of Cooperative Research And Development Agreement between Siemens Wind Power and the National Renewable Energy Laboratory (NREL) under U.S. Department of Energy (DOE) sponsorship. The results indicate that the use of these corrections is essential for accurate analysis of the data. An example of local inflow angles, velocities, and inflow velocity over the rotor plane derived from measurements from a 5-hole probe is also presented. Finally the pressure measurements are used to characterize unsteady phenomenon, namely, rotational augmentation and dynamic stall on an inboard station. The results show that the rotational augmentation can considerably increase the attached flow regime compared to the 2D CFD results. The dynamic stall event was seen to significantly delay the stall. Furthermore, the nondimensionalized vortex convection derived from the dynamic stall event was found to agree well with results from others studies.

Medina, P.; Singh, M.; Johansen, J.; Jove, A.; Fingersh, L.; Schreck, S.

2012-01-01T23:59:59.000Z

155

Inflow Characterization and Aerodynamics Measurements on a SWT-2.3-101 Wind Turbine  

SciTech Connect

Post processing techniques for aerodynamic data acquired from a Siemens SWT-2.3101 turbine have been developed and applied in this paper. The turbine is installed at the National Wind Technology Center (NWTC) as part of Cooperative Research and Development Agreement between Siemens Wind Power and the National Renewable Energy Laboratory (NREL) under U.S. Department of Energy (DOE) sponsorship. The results indicate that the use of these corrections is essential for accurate analysis of the data. An example of local inflow angles, velocities, and inflow velocity over the rotor plane derived from measurements from a 5-hole probe is also presented. Finally, the pressure measurements are used to characterize unsteady phenomenon, namely, rotational augmentation and dynamic stall on an inboard station. The results show that the rotational augmentation can considerably increase the attached flow regime compared to the 2D Computational Fluid Dynamics (CFD) results. The dynamic stall event was seen to significantly delay the stall. Furthermore, the non-dimensionalized vortex convection derived from the dynamic stall event was found to agree well with results from others studies.

Medina, P.; Singh, M.; Johansen, J.; Jove, A. R.; Fingersh, L.; Schreck, S.

2012-01-01T23:59:59.000Z

156

The Engineering Design of the 1.5 m Diameter Solenoid for the MICERFCC Modules  

SciTech Connect

The RF coupling coil (RFCC) module of MICE is where muonsthat have been cooled within the MICE absorber focus (AFC) modules arere-accelerated to their original longitudinal momentum. The RFCC moduleconsists of four 201.25 MHz RF cavities in a 1.4 meter diameter vacuumvessel. The muons are kept within the RF cavities by the magnetic fieldgenerated by a superconducting coupling solenoid that goes around the RFcavities. The coupling solenoid will be cooled using a pair of 4 K pulsetube cooler that will generate 1.5 W of cooling at 4.2 K. The magnet willbe powered using a 300 A two-quadrant power supply. This report describesthe ICST engineering design of the coupling solenoid forMICE.

Wang, L.; Green, M.A.; Xu, F.Y.; Wu, H.; Li, L.K.; Gou, C.S.; Liu, C.S.; Han, G.; Jia, L.X.; Li, D.; Prestemon, S.O.; Virostek, S.P.

2007-08-27T23:59:59.000Z

157

Demonstration of the BioBaler harvesting system for collection of small-diameter woody biomass  

Science Conference Proceedings (OSTI)

As part of a project to investigate sustainable forest management practices for producing wood chips on the Oak Ridge Reservation (ORR) for the ORNL steam plant, the BioBaler was tested in various Oak Ridge locations in August of 2011. The purpose of these tests and the subsequent economic analysis was to determine the potential of this novel woody biomass harvesting method for collection of small-diameter, low value woody biomass. Results suggest that opportunities may exist for economical harvest of low-value and liability or negative-cost biomass. (e.g., invasives). This could provide the ORR and area land managers with a tool to produce feedstock while improving forest health, controlling problem vegetation, and generating local employment.

Langholtz, Matthew H [ORNL; Caffrey, Kevin R [ORNL; Barnett, Elliott J [ORNL; Webb, Erin [ORNL; Brummette, Mark W [ORNL; Downing, Mark [ORNL

2011-12-01T23:59:59.000Z

158

Design Calculations for Gas Flow & Diffusion Behavior in the large Diameter Container & Cask  

DOE Green Energy (OSTI)

This report describes the calculations for the gas behavior in the void volumes or gas spaces of the sludge Large Diameter Container (LDC) and Cask. The objective is to prevent flammable gas conditions in the LDC and Cask gas spaces. This is achieved by the Active Inert Ventilation System (AIVS), which uses argon gas for dilution purposes. With AIVS, the oxygen content is kept below 5 vol% in the LDC, and the hydrogen content is kept below 4 vol% in the Cask before its purge at the KE Basin. After the Cask sweep-through purge with argon at the KE Basin, oxygen is kept below 5% in both the Cask and the LDC. The analysis here assumes that any oxygen generated in the sludge is consumed by the uranium and uranium dioxide (SNF-18133, ''Gas Behavior in Large Diameter Containers (LDCs) During and Following Loading with 105K East Sludge''). Thus, oxygen production from radiolysis is intentionally not included in this report, but hydrogen from radiolysis and from chemical reactions between uranium and water are considered, depending on the scenario being analyzed. The analysis starts immediately after the final decant at K Basin, when argon is assumed to be the only gas in the LDC gas space, except for the normal water vapor. The oxygen ingress is calculated during the disconnecting of the lines hoses from the LDC, during the time that air is surrounding the LDC with two NucFil-type filters in place after the disconnect, before the Cask is sealed, and, finally, during the sweep-through Cask purge. Dissolution of oxygen from water due to increasing sludge temperatures (mainly during hot transport to the T Plant) is also included.

PIEPHO, M.G.

2003-10-21T23:59:59.000Z

159

PROBLEM 13.94 KNOWN: Diameter, temperature and emissivity of boiler tube. Thermal conductivity and emissivity of  

E-Print Network (OSTI)

PROBLEM 13.94 KNOWN: Diameter, temperature and emissivity of boiler tube. Thermal conductivity of 0.5 mm), Td = 773 K nd the ash provides a significant resistance to heat transfer.a COMMENTS: Boiler

Rothstein, Jonathan

160

Retrieval of cloud properties using CALIPSO Imaging Infrared Radiometer. Part II: effective diameter and ice water path  

Science Conference Proceedings (OSTI)

The paper describes the version 3 Level 2 operational analysis of the Imaging Infrared Radiometer (IIR) data collected in the framework of the CALIPSO mission to retrieve cirrus cloud effective diameter and ice water path in synergy with the ...

Anne Garnier; Jacques Pelon; Philippe Dubuisson; Ping Yang; Michaël Faivre; Olivier Chomette; Nicolas Pascal; Pat Lucker; Tim Murray

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

Science Conference Proceedings (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to optimize the design of the robot elements and surface control electronics and software. Task 6 (Design & Build Surface Control and Monitoring System) has been completed with the control and computer display functions being operated through LabView. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to completing the detailed design of the entry fitting for 12-inch diameter cast iron pipe. The fitting is now being manufactured. The 12-inch ball valve for allowing no-blow access was also procured. Task 8 (System Integration and Laboratory Validation) continued with the development of the robot module inter-connects and of a master LabView-based system display and control software.

Kiran M Kothari; Gerard T. Pittard

2004-07-01T23:59:59.000Z

162

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

SciTech Connect

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to optimize the design of the robot elements and surface control electronics and software. Task 6 (Design & Build Surface Control and Monitoring System) has been completed with the control and computer display functions being operated through LabView. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to the design, fabrication and testing of a entry fitting in a 4-inch prototype and is now being used to complete drawings for use in 12-inch diameter pipe. Task 8--System Integration and Laboratory Validation continued developing the robot module inter-connects and development of a master LabView-based system display and control software.

Kiran M. Kothari, Gerard T. Pittard

2004-01-01T23:59:59.000Z

163

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

Science Conference Proceedings (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to optimize the design of the robot elements and surface control electronics and software. Task 6 (Design & Build Surface Control and Monitoring System) has been completed with the control and computer display functions being operated through LabView. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to completing the detailed design of the entry fitting for 12-inch diameter cast iron pipe. The fitting is now being placed into manufacture. Task 8--System Integration and Laboratory Validation continued developing the robot module inter-connects and development of a master LabView-based system display and control software.

Kiran M. Kothari; Gerard T. Pittard

2004-04-01T23:59:59.000Z

164

Experimental and analytical research on the aerodynamics of wind turbines. Mid-term technical report, June 1--December 31, 1975  

SciTech Connect

The successful development of reliable, cost competitive horizontal axis, propeller-type wind energy conversion systems (WECS) is strongly dependent on the availability of advanced technology for each of the system components. Past experience and current studies of this type of wind energy conversion systems have shown that the wind turbine subsystem most significantly effects the system's cost effectiveness and performance capability. Thus adequate technology bases are essential for all elements of the wind turbine design. Information is presented concerning aerodynamic design and performance technology, wind turbine parametric performance study, selection of model wind turbine configurations, and structural design of wind turbine models.

Rohrbach, C.

1976-02-01T23:59:59.000Z

165

Experimental and analytical research on the aerodynamics of wind turbines. Mid-term technical report, June 1--December 31, 1975  

DOE Green Energy (OSTI)

The successful development of reliable, cost competitive horizontal axis, propeller-type wind energy conversion systems (WECS) is strongly dependent on the availability of advanced technology for each of the system components. Past experience and current studies of this type of wind energy conversion systems have shown that the wind turbine subsystem most significantly effects the system's cost effectiveness and performance capability. Thus adequate technology bases are essential for all elements of the wind turbine design. Information is presented concerning aerodynamic design and performance technology, wind turbine parametric performance study, selection of model wind turbine configurations, and structural design of wind turbine models.

Rohrbach, C.

1976-02-01T23:59:59.000Z

166

Apparatus and Method for Increasing the Diameter of Metal Alloy Wires Within a Molten Metal Pool  

DOE Patents (OSTI)

In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

2002-01-29T23:59:59.000Z

167

Subcooling Effects for Flooding Experiments with Steam and Water in a Large Diameter Vertical Tube  

E-Print Network (OSTI)

A counter current annular flow experiment was performed to determine flooding conditions for varying degrees of subcooling using steam and water. The findings can be used in reactor safety codes to provide an improved model of flooding during accident analysis. The test section is a stainless steel tube which is approximately a 5/16 scale version of a pressurized water reactor (PWR) surge line. The water flows in an annular film down the inside of the tube and steam flows upward through the annulus. Flooding is the point at which the water film reverses direction and begins to travel upward. Flooding tests were conducted at atmospheric pressure for water flow rates between 3.5 gallons per minute (GPM) and 11 GPM and water inlet temperatures between 35 degrees C and 97 degrees C. The data obtained at high water subcooling indicate a significant departure from accepted flooding correlations developed for air-water systems which is expected because vapor condensation alters the steam inlet flow rate needed to induce flooding. The data more closely follow air-water data at low subcooling. Such data has not been seen in the literature for steam-water flooding experiments in a large diameter vertical tube and will serve as an important benchmark.

Cullum, Wes

2012-08-01T23:59:59.000Z

168

Radiofrequency Thermal Ablation: Increase in Lesion Diameter with Continuous Acetic Acid Infusion  

SciTech Connect

Purpose. To evaluate the influence of continuous infusion of acetic acid 50% during radiofrequency ablation (RFA) on the size of the thermal lesion produced. Methods. Radiofrequency (RF) was applied to excised bovine liver by using an expandable needle electrode with 10 retractable tines (LeVeen Needle Electrode, RadioTherapeutics, Sunnyvale, CA) connected to a commercially available RF generator (RF 2000, RadioTherapeutics, Sunnyvale, CA). Experiments were performed using three different treatment modalities: RF only (n = 15), RF with continuous saline 0.9% infusion (n = 15), and RF with continuous acetic acid 50% infusion (n = 15). RF duration, power output, tissue impedance, and time to a rapid rise in impedance were recorded. The ablated lesions were evaluated both macroscopically and histologically. Results. The ablated lesions appeared as spherical or ellipsoid, well-demarcated pale areas with a surrounding brown rim with both RF only and RF plus saline 0.9% infusion. In contrast, thermolesions generated with RF in combination with acetic acid 50% infusion were irregular in shape and the central portion was jelly-like. Mean diameter of the coagulation necrosis was 22.3 {+-} 2.1 mm (RF only), 29.2 {+-} 4.8 mm (RF + saline 0.9%) and 30.7 {+-} 5.7 mm (RF + acetic acid 50%), with a significant increase in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Time to a rapid rise in impedance was significantly prolonged in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Conclusions. A combination of RF plus acetic acid 50% infusion is able to generate larger thermolesions than RF only or RF combined with saline 0.9% infusion.

Lubienski, Andreas [Ruprecht-Karls-University Heidelberg, Department of Diagnostic Radiology (Germany)], E-mail: lubienski@radiologie.uni-luebeck.de; Duex, Markus [Hospital Northwest Frankfurt, Department of Radiology (Germany); Lubienski, Katrin; Grenacher, Lars; Kauffmann, Guenter [Ruprecht-Karls-University Heidelberg, Department of Diagnostic Radiology (Germany)

2005-12-15T23:59:59.000Z

169

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

Science Conference Proceedings (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each as well as field testing of the 4-inch gas pipe repair robot in cast iron pipe at Public Service Electric & Gas. The field tests were conducted August 23-26, 2004 in Oradell, New Jersey. The field tests identified several design issues which need to be implemented in both the small- and large-diameter cast iron repair robots to assure their commercial success. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module in the last quarter 5. In this quarter, work has been concentrated on increasing the nitrogen bladder reservoir volume to allow at least two complete patch inflation/patch setting cycles in the event the sleeve does not set all ratchets in the same row on the first attempt. This problem was observed on a few of the repair sleeves that were recently installed during field tests with the small-diameter robotic system. For Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) it was observed that it will be necessary to add a stiff brush to push debris away from the immediate vicinity of the bell and spigot joints in mains having low gas velocities. Otherwise, material removed by the cleaning flails (which were found to be very effective in cleaning bell and spigot joints) simply falls to the low side of the pipe and accumulates in a pile. This accumulation can prevent the sleeve from achieving a leak free repair. Similarly, it is also necessary to design a small magnet to capture existing service tap coupons and allow their removal from the inside of the pipe. These coupons were found to cause difficulty in launching and retrieving the small pipe repair robot; one coupon lodged beneath the end of the guide shoe. These new features require redesign of the pipe wall cleaning train and modification to the patch setting train. Task 6 (Design & Build Surface Control and Monitoring System) was previously completed with the control and computer display functions being operated through LabView. However, this must now be re-visited to add control routines for the coupon catcher to be added. This will most likely include a lift-off/place-on magnet translation function. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to completing the detailed design of th

Kiran M. Kothari; Gerard T. Pittard

2004-11-01T23:59:59.000Z

170

NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements  

SciTech Connect

Currently, wind turbine designers rely on safety factors to compensate for the effects of unknown loads acting on the turbine structure. This results in components that are overdesigned because precise load levels and load paths are unknown. To advance wind turbine technology, the forces acting on the turbine structure must be accurately characterized because these forces translate directly into loads imparted to the wind turbine structure and resulting power production. Once these forces are more accurately characterized, we will better understand load paths and can therefore optimize turbine structures. To address this problem, the National Renewable Energy Laboratory (NREL) conducted the Unsteady Aerodynamics Experiment (UAE), which was a test of an extensively instrumented wind turbine in the giant NASA-Ames 24.4-m (80 feet) by 36.6-m (120 feet) wind tunnel. To maximize the benefits from testing, NREL formed a Science Panel of advisers comprised of wind turbine aerodynamics and modeling experts throughout the world. NREL used the Science Panel's guidance to specify the conditions and configurations under which the turbine was operated in the wind tunnel. The panel also helped define test priorities and objectives that would be effective for wind turbine modeling tool development and validation.

Simms, D.; Schreck, S.; Hand, M.; Fingersh, L.J.

2001-06-22T23:59:59.000Z

171

Chromatin fibers observed in situ in frozen hydrated sections. Native fiber diameter is not correlated with nucleosome repeat length  

E-Print Network (OSTI)

Abstract. Chromatin fibers have been observed and measured in frozen hydrated sections of three types of cell (chicken erythrocytes and sperm of Patiria miniata and Thyone briareus) representing an •20-bp range of nucleosomal repeat lengths. For sperm of the starfish P. miniata, it was possible to obtain images of chromatin fibers from cells that were swimming in seawater up to the moment of cryo-immobilization, thus providing a record of the native morphology of the chromatin of these cells. Glutaraldehyde fixation produced no significant changes in the ultrastructure or diameter of chromatin fibers, and fiber diameters observed in cryosections were similar to those recorded after low temperature embedding in Lowicryl KllM. Chromatin fiber diameters measured from

C. L. Woodcock

1994-01-01T23:59:59.000Z

172

Abstract--Pitch angle control is the most common means for adjusting the aerodynamic torque of the wind turbine when wind  

E-Print Network (OSTI)

of the wind turbine when wind speed is above rated speed and various controlling variables may be chosen Terms--Blade aerodynamic, Fatigue load, Fuzzy logic control, Pitch angle, Wind turbine I. INTRODUCTION of 40 GW. Pitch-adjusting variable-speed wind turbines have become the dominating type of yearly

Hansen, René Rydhof

173

Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: October 31, 2002--January 31, 2003  

DOE Green Energy (OSTI)

Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbinesrepresents the fourth installment in a series of volumes documenting the ongoing work of th University of Illinois at Urbana-Champaign Low-Speed Airfoil Tests Program. This particular volume deals with airfoils that are candidates for use on small wind turbines, which operate at low Reynolds numbers.

Selig, M. S.; McGranahan, B. D.

2004-10-01T23:59:59.000Z

174

90Exploring the Large Hadron Collider The 27-kilometer diameter LHC ring, buried deep underground, uses thousands of  

E-Print Network (OSTI)

90Exploring the Large Hadron Collider The 27-kilometer diameter LHC ring, buried deep underground Joules)? During November, 2009 the Large Hadron Collider experiment at CERN began a slow, step, uses thousands of magnets to steer two beams of protons so that they collide at specific points along

175

April 2002 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions  

DOE Green Energy (OSTI)

A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on April 3 and 4, 2002. The purpose of the meeting was to present and discuss technical details on the experimental and computational work in progress and future project plans. Representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center, University of Southern California (USC), and California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), and Argonne National Laboratory (ANL), Volvo Trucks, and Freightliner Trucks presented and participated in discussions. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.

Salari, K; Dunn, T; Ortega, J; Yen-Nakafuji, D; Browand, F; Arcas, D; Jammache, M; Leoard, A; Chatelain, P; Rubel, M; Rutledge, W; McWherter-Payne, M; Roy, Ca; Ross, J; Satran, D; Heineck, J T; Storms, B; Pointer, D; Sofu, T; Weber, D; Chu, E; Hancock, P; Bundy, B; Englar, B

2002-08-22T23:59:59.000Z

176

Angular diameter measurements of evolved variables by lunar occultations at 2.2 and 3.8 micron  

E-Print Network (OSTI)

We report the angular diameters of two Mira variables (U Ari and Z Sco), three semiregular (SR) and irregular variables (SW Vir, eta Gem and mu Gem) and a supergiant SR variable (TV Gem) by lunar occultation observations in the near-IR broad K-band (2.2 micron). Lunar occultations of eta Gem and mu Gem were also observed for the first time simultaneously in both the K and L' bands, yielding angular diameters at 2.2 and 3.8 micron. Effective temperatures and linear radii are also derived for all the observed sources and compared with earlier measurements. The mode of pulsation of both Mira and SR sources in our sample is discussed.

Soumen Mondal; T. Chandrasekhar

2005-04-14T23:59:59.000Z

177

Direct Detection of Planets Orbiting Large Angular Diameter Stars: Sensitivity of an Internally-Occulting Space-Based Coronagraph  

E-Print Network (OSTI)

High-contrast imaging observations of large angular diameter stars enable complementary science questions to be addressed compared to the baseline goals of proposed missions like the Terrestrial Planet Finder-Coronagraph, New World's Observer, and others. Such targets however present a practical problem in that finite stellar size results in unwanted starlight reaching the detector, which degrades contrast. In this paper, we quantify the sensitivity, in terms of contrast, of an internally-occulting, space-based coronagraph as a function of stellar angular diameter, from unresolved dwarfs to the largest evolved stars. Our calculations show that an assortment of band-limited image masks can accommodate a diverse set of observations to help maximize mission scientific return. We discuss two applications based on the results: the spectro-photometric study of planets already discovered with the radial velocity technique to orbit evolved stars, which we elucidate with the example of Pollux b, and the direct detecti...

Crepp, Justin R; Ge, Jian

2009-01-01T23:59:59.000Z

178

Angular diameter measurements of evolved variables by lunar occultations at 2.2 and 3.8 micron  

E-Print Network (OSTI)

We report the angular diameters of two Mira variables (U Ari and Z Sco), three semiregular (SR) and irregular variables (SW Vir, eta Gem and mu Gem) and a supergiant SR variable (TV Gem) by lunar occultation observations in the near-IR broad K-band (2.2 micron). Lunar occultations of eta Gem and mu Gem were also observed for the first time simultaneously in both the K and L' bands, yielding angular diameters at 2.2 and 3.8 micron. Effective temperatures and linear radii are also derived for all the observed sources and compared with earlier measurements. The mode of pulsation of both Mira and SR sources in our sample is discussed.

Mondal, S A; Mondal, Soumen

2005-01-01T23:59:59.000Z

179

On the Diameter of Zero-Divisor Graphs of Idealizations with Respect to Integral Manal Al-labadi  

E-Print Network (OSTI)

@philadelphia.edu.jo Abstract Let R be a ring with unity and let M be an R - module. Let R(+)M be the idealization of the ring R by the R - module M. In this paper, we give new results on the diameter of (R(+)M) when R is an integral and 4]. Let R be a commutative ring with unity. We use the notation A to refer to the nonzero elements

180

Market Enhancement for Small Diameter Timber in Florida Final Project Report to Florida Department of Agriculture & Consumer Services-Division of  

E-Print Network (OSTI)

biomass into electricity, industrial steam energy and fuel ethanol. A barrier to private sector investment .................................................................................................................... 7 Biomass Energy Uses................. 39 Small Diameter Timber for Fuel or Energy

Florida, University of

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Effects of Carbon Nanotube Coating on Bubble Departure Diameter and Frequency in Pool Boiling on a Flat, Horizontal Heater  

E-Print Network (OSTI)

The effects of a carbon nanotube (CNT) coating on bubble departure diameter and frequency in pool boiling experiments was investigated and compared to those on a bare silicon wafer. The pool boiling experiments were performed at liquid subcooling of 10 degrees Celsius and 20 degrees Celsius using PF-5060 as the test fluid and at atmospheric pressure. High-speed digital image acquisition techniques were used to perform hydrodynamic measurements. Boiling curves obtained from the experiments showed that the CNT coating enhanced critical heat flux (CHF) by 63% at 10 degrees Celsius subcooling. The CHF condition was not measured for the CNT sample at 20 degrees Celsius subcooling. Boiling incipience superheat for the CNT-coated surface is shown to be much lower than predicted by Hsu's hypothesis. It is proposed that bubble nucleation occurs within irregularities at the surface of the CNT coating. The irregularities could provide larger cavities than are available between individual nanotubes of the CNT coating. Measurements from high-speed imaging showed that the average bubble departing from the CNT coating in the nucleate boiling regime (excluding the much larger bubbles observed near CHF) was about 75% smaller (0.26 mm versus 1.01 mm)and had a departure frequency that was about 70% higher (50.46 Hz versus 30.10 Hz). The reduction in departure diameter is explained as a change in the configuration of the contact line, although further study is required. The increase in frequency is a consequence of the smaller bubbles, which require less time to grow. It is suggested that nucleation site density for the CNT coating must drastically increase to compensate for the smaller departure diameters if the rate of vapor creation is similar to or greater than that of a bare silicon surface.

Glenn, Stephen T.

2009-08-01T23:59:59.000Z

182

Critical heat flux and boiling heat transfer to water in a 3-mm-diameter horizontal tube.  

DOE Green Energy (OSTI)

Boiling of the coolant in an engine, by design or by circumstance, is limited by the critical heat flux phenomenon. As a first step in providing relevant engine design information, this study experimentally addressed both rate of boiling heat transfer and conditions at the critical point of water in a horizontal tube of 2.98 mm inside diameter and 0.9144 m heated length. Experiments were performed at system pressure of 203 kPa, mass fluxes in range of 50 to 200 kg/m{sup z}s, and inlet temperatures in range of ambient to 80 C. Experimental results and comparisons with predictive correlations are presented.

Yu, W.; Wambsganss, M. W.; Hull, J. R.; France, D. M.

2000-12-04T23:59:59.000Z

183

Power Spectrum Analysis of Mount-Wilson Solar Diameter Measurements: Evidence for Solar Internal R-mode Oscillations  

E-Print Network (OSTI)

This article presents a power-spectrum analysis of 39,024 measurements of the solar diameter made at the Mount Wilson Observatory from 1968.670 to 1997.965. This power spectrum contains a number of very strong peaks. We find that eight of these peaks agree closely with the frequencies of r-mode oscillations for a region of the Sun where the sidereal rotation frequency is 12.08 year$^{-1}$. We estimate that there is less than one chance in ten to the sixth power of finding this pattern by chance.

Sturrock, Peter A

2010-01-01T23:59:59.000Z

184

A computational study of tandem dual wheel aerodynamics and the effect of fenders and fairings on spray dispersion  

SciTech Connect

With the goal of understanding how to mitigate the safety hazard of splash and spray around heavy vehicles, a computational study of the aerodynamics and spray dispersion about a simplified trailer wheel assembly has been completed. A tandem dual slick (TDS) wheel model that neglects complex geometric features such as brakes, wheel bolts and wheel cutouts but with the same dimensions as an actual trailer wheel assembly was used . A detailed simulation of the wheels alone demonstrated that the flow field is both unsteady and complex, containing a number of vortical structures that interact strongly with spray. Preliminary simulations with fenders and fairings demonstrated that these devices prevent the ballistic transport of drops larger than approximately 0.1 mm, but the fine mist speculated to be responsible for visibility reduction is unaffected. This work suggests that to use computational fluid dynamics (CFD) to design and evaluate spray mitigation strategies the jet or sheet breakup processes can be modeled using an array of injectors of small (< 0.01 mm) water droplets; however the choice of size distribution, injection locations, directions and velocities is largely unknown and requires further study. Possible containment strategies would include using flow structures to 'focus' particles into regions away from passing cars or surface treatments to capture small drops.

Paschkewitz, J S

2006-01-13T23:59:59.000Z

185

Single round blasting of 10-foot diameter X 65-foot depth emplacement collar holes at the Nevada Test Site  

SciTech Connect

Since 1961 REECo has drilled and mined emplacement holes for testing nuclear devices underground. An oversize drill pattern was the primary method used. The application of drilling the final size configuration hole to a 65-foot depth and mucking with the Auger Rig was then investigated. Numerous drilling patterns, loading and time schemes and methods were tried. Some were successful. Most were expensive. All concerned looked for a better and less costly method for this collar casing installation. Poor fragmentation in the collar holes prior to Atlas Powder becoming involved resulted in slow hole cleanout and excessive rig maintenance with associated excessive costs. One of the more successful shots was a 120-inch diameter {times} 60-foot deep hole that was drilled using 3 1/2-inch holes and then casing them to a 2-inch diameter using PVC pipe. A 30-inch burn hole was drilled to total depth. Twenty-seven 3 1/2-inch holes were drilled and then loaded with 1 1/2-inch powder boosted with Detaprimes and wired using all 0 delay caps. This shot smooth walled and the blast holes were visible all the way from top to bottom. Fragmentation was excellent and the Auger Rig mucked out quickly. The 28-inch bit used for the burn hole was a high cost item in this test and other methods continued to be investigated.

1991-01-01T23:59:59.000Z

186

Estimated Maximum Gas Retention from Uniformly Dispersed Bubbles in K Basin Sludge Stored in Large-Diameter Containers  

DOE Green Energy (OSTI)

This letter report addresses the KE Basin sludge that will be retrieved and stored in large-diameter containers (LDCs.) A fraction of the hydrogen gas bubbles generated from the corrosion of uranium metal and oxides may be retained within the sludge matrix. Those entrapped bubbles will expand the sludge bed volume and, therefore, will affect how much sludge can be loaded into a container. The entrapped gas bubbles will also impact the overall thermal conductivity and heat capacity of the sludge bed. The evaluation summarized here was performed to estimate the maximum gas holdup (volume fraction gas) that could occur sludge stored in large-diameter containers, assuming uniform gas generation (i.e., uniform distribution of metallic uranium particles). This report represents an evaluation of the retention of uniformly distributed bubbles and an estimate of the maximum gas fraction that might be retained in K Basin LDCs based on existing literature data on bubble retention and Basin sludge characterization data. Existing data show that the maximum gas fraction varies, depending on physical properties and the configuration of the material or waste.

Gauglitz, Phillip A.; Terrones, Guillermo

2002-05-15T23:59:59.000Z

187

Orbital inside diameter welder  

DOE Patents (OSTI)

The disclosure relates to welding apparatus and more particularly to apparatus for welding together two abutted cylinders from the inside of the joint.

Patterson, R.A.; Mitchell, J.O.

1982-07-23T23:59:59.000Z

188

Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 1 quarter 3 progress report.  

SciTech Connect

The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of April through June 2011.

Lottes, S.A.; Kulak, R.F.; Bojanowski, C. (Energy Systems)

2011-08-26T23:59:59.000Z

189

Computational mechanics research and support for aerodynamics and hydraulics at TFHRC year 1 quarter 4 progress report.  

SciTech Connect

The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFCHR wind engineering laboratory, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of July through September 2011.

Lottes, S.A.; Kulak, R.F.; Bojanowski, C. (Energy Systems)

2011-12-09T23:59:59.000Z

190

Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 2 quarter 1 progress report.  

SciTech Connect

The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of October through December 2011.

Lottes, S.A.; Bojanowski, C.; Shen, J.; Xie, Z.; Zhai, Y. (Energy Systems); (Turner-Fairbank Highway Research Center)

2012-04-09T23:59:59.000Z

191

Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 2 quarter 2 progress report  

SciTech Connect

The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of January through March 2012.

Lottes, S.A.; Bojanowski, C.; Shen, J.; Xie, Z.; Zhai, Y. (Energy Systems); (Turner-Fairbank Highway Research Center)

2012-06-28T23:59:59.000Z

192

Location Games and Bounds for Median Problems  

E-Print Network (OSTI)

We consider a two-person zero-sum game in which the maximizer selects a point in a given bounded planar region, the minimizer selects K points in that region,.and the payoff is the distance from the maximizer's location ...

Haimovich, Mordecai

193

A study of production/injection data from slim holes and large-diameter wells at the Takigami Geothermal Field, Kyushu, Japan  

DOE Green Energy (OSTI)

Production and injection data from nine slim holes and sixteen large-diameter wells at the Takigami Geothermal Field, Kyushu, Japan were analyzed in order to establish relationships (1) between injectivity and productivity indices, (2) between productivity/injectivity index and borehole diameter, and (3) between discharge capacity of slim holes and large-diameter wells. Results are compared with those from the Oguni and Sumikawa fields. A numerical simulator (WELBOR) was used to model the available discharge rate from Takigami boreholes. The results of numerical modeling indicate that the flow rate of large-diameter geothermal production wells with liquid feedzones can be predicted using data from slim holes. These results also indicate the importance of proper well design.

Garg, S.K. [Maxwell Federal Div., Inc., San Diego, CA (United States)] [Maxwell Federal Div., Inc., San Diego, CA (United States); Combs, J. [Geo-Hills Associates, Los Altos Hills, CA (United States)] [Geo-Hills Associates, Los Altos Hills, CA (United States); Azawa, Fumio [Idemitsu Kosan Co. Ltd., Tokyo (Japan)] [Idemitsu Kosan Co. Ltd., Tokyo (Japan); Gotoh, Hiroki [Idemitsu Oita Geothermal Co. Ltd., Oita (Japan)] [Idemitsu Oita Geothermal Co. Ltd., Oita (Japan)

1996-11-01T23:59:59.000Z

194

Wake of the MOD-0A1 wind turbine at two rotor diameters downwind on December 3, 1981  

DOE Green Energy (OSTI)

The wake of the MOD-0A1 wind turbine at Clayton, New Mexico has been measured using a vertical plane array of anemometers in a crosswind plane at a distance of two rotor diameters directly downwind of the turbine. Rotor blade vortices were well mixed into the wake turbulence and were not separately detectable. Wake swirl about the along-wind axis had a value not greater than 0.025 rad/s. Extra turbulence energy existed in the edge of the wake at a frequency of about n=0.025 Hz. The cross-wake plane analyses of wind speeds revealed a nearly circular inner portion and a strongly elliptical portion. The elliptical portion major axis was horizontal. An estimate of the average rate of reenergizing of the wake, using measurements of mean wind energy flow and turbine power, suggests that entrainment with ambient air may have been rapid. Some wake characteristics were compared with the corresponding ones for several simple wake models based upon concepts of mixing of ambient air into a wake or an equivalent coaxial jet. (LEW)

Connell, J.R.; George, R.L.

1982-11-01T23:59:59.000Z

195

Pitch-to-diameter effect on two-phase flow across an in-line tube bundle  

SciTech Connect

This paper reports on void fraction and friction pressure drop measurements that were made for an adiabatic, vertical two-phase flow of air-water across two horizontal, in-line, 5 {times} 20 rod bundles, one with a pitch-to-diameter ratio, P/D, of 1.3, the other 1.75. For both bundles the average void fraction showed a strong mass velocity effect and values were significantly less than those predicted by a homogeneous flow model. All void fraction data were found to be well correlated, with no P/D effect, using the dimensionless gas velocity, j*{sub g}. The two-phase friction multiplier data exhibited a strong effect of P/D and mass velocity, however, the data for both bundles could be well correlated with the Martinelli parameter for G {gt} 200 kg/m{sup 2}s. The correlations developed for void fraction and two-phase friction multiplier were successfully tested in predicting the total pressure drop in boiling freon experiments.

Dowlati, R.; Kawaji, M. (Dept. of Chemical Engineering and Applied Chemistry, Univ. of Toronto, Toronto, Ontario M5S 1A4 (CA)); Chan, M.M.C. (Ontario Hydro Research Div., Ontario Hydro Toronto, Ontario (CA))

1990-05-01T23:59:59.000Z

196

Design report for an indirectly cooled 3-m diameter superconducting solenoid for the Fermilab Collider Detector Facility  

SciTech Connect

The Fermilab Collider Detector Facility (CDF) is a large detector system designed to study anti pp collisions at very high center of mass energies. The central detector for the CDF shown employs a large axial magnetic field volume instrumented with a central tracking chamber composed of multiple layers of cylindrical drift chambers and a pair of intermediate tracking chambers. The purpose of this system is to determine the trajectories, sign of electric charge, and momenta of charged particles produced with polar angles between 10 and 170 degrees. The magnetic field volume required for tracking is approximately 3.5 m long an 3 m in diameter. To provide the desired ..delta..p/sub T/p/sub T/ less than or equal to 1.5% at 50 GeV/c using drift chambers with approx. 200..mu.. resolution the field inside this volume should be 1.5 T. The field should be as uniform as is practical to simplify both track finding and the reconstruction of particle trajectories with the drift chambers. Such a field can be produced by a cylindrical current sheet solenoid with a uniform current density of 1.2 x 10/sup 6/ A/m (1200 A/mm) surrounded by an iron return yoke. For practical coils and return yokes, both central electromagnetic and central hadronic calorimetry must be located outside the coil of the magnet. This geometry requires that the coil and the cryostat be thin both in physical thickness and in radiation and absorption lengths. This dual requirement of high linear current density and minimal coil thickness can only be satisfied using superconducting technology. In this report we describe the design for an indirectly cooled superconducting solenoid to meet the requirements of the Fermilab CDF. The components of the magnet system are discussed in the following chapters, with a summary of parameters listed in Appendix A.

Fast, R.; Grimson, J.; Kephart, R.

1982-10-01T23:59:59.000Z

197

Performance of a Focused Cavity Aerosol Spectrometer for Measurements in the Stratosphere of Particle Size in the 0.06–2.0-µm-Diameter Range  

Science Conference Proceedings (OSTI)

A focused cavity aerosol spectrometer aboard a NASA ER-2 high-altitude aircraft provided high-resolution measurements of the size of the stratospheric particles in the 0.06–2.0-µm-diameter range in flights following the eruption of Mount Pinatubo ...

H.H. Jonsson; J.C. Wilson; C.A. Brock; R.G. Knollenberg; T.R. Newton; J.E. Dye; D. Baumgardner; S. Borrmann; G.V. Ferry; R. Pueschel; Dave C. Woods; Mike C. Pitts

1995-02-01T23:59:59.000Z

198

A comparison of spanwise aerodynamic loads estimated from measured bending moments versus direct pressure measurements on horizontal axis wind turbine blades  

DOE Green Energy (OSTI)

Two methods can be used to determine aerodynamic loads on a rotating wind turbine blade. The first is to make direct pressure measurements on the blade surface. This is a difficult process requiring costly pressure instrumentation. The second method uses measured flap bending moments in conjunction with analytical techniques to estimate airloads. This method, called ALEST, was originally developed for use on helicopter rotors and was modified for use on horizontal axis wind turbine blades. Estimating airloads using flap bending moments in much simpler and less costly because measurements can be made with conventional strain gages and equipment. This paper presents results of airload estimates obtained using both methods under a variety of operating conditions. Insights on the limitations and usefulness of the ALEST bending moment technique are also included. 10 refs., 6 figs.

Simms, D A; Butterfield, C P

1991-10-01T23:59:59.000Z

199

NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies Wind Farm Studies Wind Farm Aerodynamics to Improve Siting NREL researchers have used high-tech instruments and high- performance computing to understand atmospheric turbulence and turbine wake behavior in order to improve wind turbine design and siting within wind farms. The knowledge gained from this research could lead to improved turbine design standards, increased productivity in large wind farms, and a lower cost of energy from wind power. This is key, because as turbines grow in size-approximately doubling in height over the past five years-they present more complex challenges to wind turbine designers and operators. To gain new insights into turbine wind wakes, NREL and the Renewable and Sustainable Energy Institute (RASEI) joined together with the National Oceanic and Atmospheric Administration (NOAA), the

200

Assessment of present state-of-the-art sawing technology of large diameter ingots for solar sheet material. Final report, September 1, 1977-February 28, 1978  

SciTech Connect

The objective of this program is to assess the present state-of-the-art sawing technology of large diameter silicon ingots (3'' and 4'' diameter) for solar sheet materials. During this program, work has progressed in: (1) slicing of the ingots with the multiblade slurry (MBS) saw, the multiwire slurry (MWS) saw and the I.D. saw, (2) characterization of the sliced wafers, and (3) analysis of add-on slicing cost based on SAMICS. Multiblade slurry slicing resulted in mechanical wafer yields of 95% for the 3'' diameter ingot and 84% for the 4'' diameter ingot (using a 230 blade package to cut 6'' ingot in length). A slicing test with the I.D. saw was performed to obtain mechanical yield versus both wafer thickness and cut rate, and the result showed a good yield (above 95%) down to 7 to 8 mils of wafer thickness for the 3'' wafers and 11 to 12 mils for the 4'' wafers if the cut rates were reduced to 1'' per minute. An ingot of 3'' in diameter and 3'' in length was sliced with a multiwire slurry saw to obtain wafer yield of about 97%; 163 wires were used, and wafer thickness and kerf width were 10 to 11 mils and 8 mils, respectively. Thickness, taper, bow, and roughness (RMS) were measured to characterize the sliced wafers. Four in. wafers sliced wih the multiblade slurry saw showed larger thickness variation (wafer to wafer) and more taper than 3'' wafers. Wafers sliced with the I.D. saw indicated that taper, bow, and roughness increased as the cut rate increased. Comparison showed the wafers cut with the I.D. saw (sliced below 3'' per minute of cut rate) and the multiwire slurry saw have much smaller values and variations than those cut with the multiblade slurry saw, indicating the need for less removal of silicon before solar cell formation.

Yoo, H.I.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Development of methods of producing large areas of silicon sheet by the slicing of silicon ingots using inside diameter (ID) saws. First quarterly report  

SciTech Connect

An STC 16 inch automated ID slicing machine (Model SMA-4401) is being used for this effort. The saw has been modified to accept an STC Programmable Electric Feed System, STC Crystal Rotating System and an STC Dyna-Track Blade Monitoring and Control System. The saw and accessories will be used to slice 100 mm diameter single crystal silicon ingots while rotating them. The automated saw will automatically recover the wafers and load them into a cassette. The amount of material lost during slicing is being reduced by using smaller blades than ones normally used to slice 100 mm wafers. Some blades have been manufactured with cutting edge thickness as low as 0.20 mm. Initial slicing runs on 75 mm diameter silicon has been successful on blades in the 0.23 to 0.24 mm cutting edge thickness range. The thinner blades will be used to slice 100 mm silicon while rotating the boule.

Aharonyan, P.

1979-01-01T23:59:59.000Z

202

Nondestructive Evaluation: Development of NDE Techniques for Detection of Outside Diameter Stress Corrosion Cracking on Stainless St eel Pipe Under Pipe Clamps  

Science Conference Proceedings (OSTI)

The commercial nuclear power industry has been dealing with stress corrosion cracking (SCC) for almost 50 years. This project worked to develop nondestructive examination (NDE) techniques for detecting outside diameter stress corrosion cracking (ODSCC) and pitting under pipe clamps or pipe hangers on Type 304 stainless steel piping. The NDE techniques to be evaluated for this application include conventional pulse-echo ultrasonics (PE UT), phased array ultrasonics (PA UT), guided wave, forward ...

2012-11-29T23:59:59.000Z

203

Computational mechanics research and support for aerodynamics and hydraulics at TFHRC. Quarterly report January through March 2011. Year 1 Quarter 2 progress report.  

SciTech Connect

This project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at the Turner-Fairbank Highway Research Center for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of January through March 2011.

Lottes, S. A.; Kulak, R. F.; Bojanowski, C. (Energy Systems)

2011-05-19T23:59:59.000Z

204

RESULTS OF TESTS TO DEMONSTRATE A SIX-INCH DIAMETER COATER FOR PRODUCTION OF TRISO-COATED PARTICLES FOR ADVANCED GAS REACTOR EXPERIMENTS  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory's (INL's) Advanced Test Reactor. TRISOcoated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a twoinch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (MTS) concentrations up to 3 mol %. Using only hydrogen as the fluidizing gas, the high concentration MTS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SiC densities were achieved with the high MTS gas fraction.

Douglas W. Marshall

2008-09-01T23:59:59.000Z

205

RESULTS OF TESTS TO DEMONSTRATE A SIX-INCH-DIAMETER COATER FOR PRODUCTION OF TRISO-COATED PARTICLES FOR ADVANCED GAS REACTOR EXPERIMENTS  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory’s (INL’s) Advanced Test Reactor. TRISOcoated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a two inch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (MTS) concentrations up to 3 mol %. Using only hydrogen as the fluidizing gas, the high concentration MTS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SiC densities were achieved with the high MTS gas fraction.

Charles M Barnes

2008-09-01T23:59:59.000Z

206

A forgotten little chapter on isoperimetric inequalities: On the fraction of a convex and closed plane area lying outside a circle with which it shares a diameter  

E-Print Network (OSTI)

Often some interesting or simply curious points are left out when developing a theory. It seems that one of them is the existence of an upper bound for the fraction of area of a convex and closed plane area lying outside a circle with which it shares a diameter, a problem stemming from the theory of isoperimetric inequalities. In this paper such a bound is constructed and shown to be attained for a particular area. It is also shown that convexity is a necessary condition in order to avoid the whole area lying outside the circle.

Jose M. Pacheco

2007-01-21T23:59:59.000Z

207

Stress analyses of flat plates with attached nozzles. Vol. 3. Experimental stress analyses of a flat plate with two closely spaced nozzles of equal diameter attached  

SciTech Connect

The complete test results for a flat plate with two closely spaced nozzles attached are presented. Test loadings were 1:1, 1:2, and 2:1 biaxial planar tension loadings on the plate, axial thrust loadings applied separately to the nozzles, and bending moment loadings applied to the nozzles both within and normal to the plane of symmetry containing the nozzle axes. The test plate was 36 x 36 x 0.375 in., and the attached nozzles had outer diameters of 2.625 in. and wall thicknesses of 0.250 in. The nozzles were located in the center of the plate with their centers 3.0 in. apart and were considered to be free of weld distortions and irregularities in the junction region. 6 references. (auth)

Bryson, J.W.; Swinson, W.F.

1975-12-01T23:59:59.000Z

208

The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels  

SciTech Connect

Two-phase air-water flow characteristics are experimentally investigated in horizontal circular micro-channels. Test sections are made of fused silica. The experiments are conducted based on three different inner diameters of 0.53, 0.22 and 0.15 mm with the corresponding lengths of 320, 120 and 104 mm, respectively. The test runs are done at superficial velocities of gas and liquid ranging between 0.37-42.36 and 0.005-3.04 m/s, respectively. The flow visualisation is facilitated by systems mainly including stereozoom microscope and high-speed camera. The flow regime maps developed from the observed flow patterns are presented. The void fractions are determined based on image analysis. New correlation for two-phase frictional multiplier is also proposed for practical applications. (author)

Saisorn, Sira [Energy Division, The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand); Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

2010-05-15T23:59:59.000Z

209

Effect of a 90° Elbow on the Accuracy of an Insertion Flowmeter, Results and Comparisons for 4 and 6 in. Diameter PVC Pipe  

E-Print Network (OSTI)

Thermal energy consumption in buildings with chilled or hot water distribution systems is often monitored through the use of some type of flow metering device. These flowmeters can be fixed types, such as venturis or orifices, or insertion flowmeters which can be more easily installed and removed. The easy removal and reinstallation of the insertion type flowmeters makes them good choices for use in existing buildings or in retrofit projects. Besides the installation benefits, insertion flowmeters can also be installed while the pipe is in service or ''hot tapped". With any type flowmeter however, location in the pipe is a critical problem and deserves special consideration. Ideally, the meter should be inserted in existing pipe with a minimum of 10 to 15 diameters of straight pipe upstream of the meter location. This is rarely the case in existing piping distribution systems. It is much more common to be faced with only one or two candidate metering locations and these often are very short straight runs or will have elbows upstream and downstream of the proposed metering location. This paper reports on flow measurement error resulting from an insertion flowmeter installed downstream of a 90° elbow. The measurement errors were compared for tests conducted in 4.0 and 6.0 inch (0.1 and 0.15 meter) diameter PVC pipe. The insertion flowmeter was a nonmagnetic, tangential paddle wheel type. The flowmeter was located from 2 to 10 pipe diameters downstream fiom a 90° elbow with fluid velocities ranging from 1.0 to 10.0 ft/s (0.3 to 3.0 m/s). At each flowmeter location, the meter was rotated in 45° increments around the circumference of the pipe to quantify the effect of circumferential location on flow error. The flowmeters were tested at the energy metering calibration facility at the Texas A&M University Energy Systems Laboratory Riverside campus. Flowmeter output was compared to mass flow measurements obtained 6om precision load cells mounted beneath a 1342 ft^3 (38 m^3 ) weigh tank. All output is given in terms of percent error relative to the load cells. Final results are presented as a bction of flowmeter downstream location, circumferential rotation angle, and fluid velocity. Circumferential meter location was found to be a very important factor. The percent difference for the tested flow meters ranged 6om -23% to -5% in the 4.0 in. (0.1 m) pipe and 6om -33% to 1% in the 6.0 in. (0.15 m) pipe. The ''best" location for these flowmeters was at zero degrees rotation angle, regardless of pipe size or meter location relative to the upstream 90° elbow.

Bryant, J. A.; O'Neal, D. L.

1996-01-01T23:59:59.000Z

210

The effect of jet velocity ratio on aerodynamics of a rectangular slot-burner in the presence of cross-flow  

Science Conference Proceedings (OSTI)

In a typical coal-fired power station boiler the ignition and the combustion of the fuel is largely controlled by burner aerodynamics. An experimental and numerical study of the rectangular slot-burners widely used on power stations in Victoria, Australia has been conducted to improve understanding of jet development within the boiler. The 1:15 scale model burner consisted of a central (primary) rectangular fuel nozzle with two (secondary) rectangular air jets positioned above and below it. The burner jets entered the measurement vessel at an angle of 60 deg to the wall. A cross-flow jet was attached to the wall of the vessel to simulate the recirculation prevalent in power station boilers. Experiments were conducted using a primary to cross-flow jet velocity ratio ({phi}) of 1.0 and secondary to primary jet velocity ratios ({phi}) of 1.0 and 3.0. Laser Doppler Anemometry (LDA) was used to measure mean and turbulent velocity components in the near field and downstream regions of the jets. Cross-flow significantly influenced the near field flow development from the slot-burner by deviating both primary and secondary jets from their geometric axes towards the wall. The degree of deviation was greater for {phi} = 1.0 since the higher velocity secondary jets increased the overall momentum of the primary jet for {phi} = 3.0. A numerical investigation of the rectangular slot-burner was also performed. First, the numerical results were validated against the experimental results and then visualization of the developing flow field was used to reveal the finer details of the cross-flow/burner jet interaction. Agreement between numerical and experimental jet features was good, although the numerical results predicted a primary jet that was marginally too narrow. Also the predicted downstream behaviour for {phi} = 3.0 deviated more significantly from experimental observation. Using the SST turbulence model, the numerical results suggested that a twin vortex was generated behind the initial region of the primary jet and this would aid in mixing of gas and fuel between primary and secondary jets. (author)

Ahmed, S. [CSIRO Manufacturing and Materials Technology, Highett VIC-3190 (Australia); Hart, J.; Naser, J. [School of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn VIC-3122 (Australia); Nikolov, J.; Solnordal, C.; Yang, W. [CSIRO Minerals, Clayton, VIC-3169 (Australia)

2007-11-15T23:59:59.000Z

211

Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes  

Science Conference Proceedings (OSTI)

Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes were investigated experimentally. The experimental condensing temperature is 40 C, and nominal oil concentration range is from 0% to 5%. The test results indicate that the presence of oil deteriorates the heat transfer. The deterioration effect is negligible at nominal oil concentration of 1%, and becomes obvious with the increase of nominal oil concentration. At 5% nominal oil concentration, the heat transfer coefficient of R410A-oil mixture is found to have a maximum reduction of 25.1% and 23.8% for 5 mm and 4 mm tubes, respectively. The predictabilities of the existing condensation heat transfer correlations were verified with the experimental data, and Yu and Koyama correlation shows the best predictability. By replacing the pure refrigerant properties with the mixture's properties, Yu and Koyama correlation has a deviation of -15% to + 20% in predicting the local condensation heat transfer coefficient of R410A-oil mixture. (author)

Huang, Xiangchao; Ding, Guoliang; Hu, Haitao; Zhu, Yu. [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Gao, Yifeng [International Copper Association Shanghai Office, Shanghai 200020 (China); Deng, Bin [Institute of Heat Transfer Technology, Golden Dragon Precise Copper Tube Group Inc., Shanghai 200135 (China)

2010-10-15T23:59:59.000Z

212

Aerodynamic Loads On Rotor Blades.  

E-Print Network (OSTI)

??In the last decade, we have heard more and more about the need of renewable clean energy, but not much has been done. Currently, the… (more)

Abedi, Hamidreza

2011-01-01T23:59:59.000Z

213

On the structurization of coal dust precipitations and their influence on aerodynamic resistance by granulated mediums in air filters at nuclear power plants  

E-Print Network (OSTI)

The processes of structurization of dust precipitations in granulated filtering mediums, formed by the monolithic glass spherical granules with the diameters of 2mm and 3mm, are re-searched. The distinctions between the distributions of filtered coal dust masses in the air filters with cylindrical granules and the air filters with spherical granules, are found. The influences by the filtered dust masses on the air resistance of both the air filters with the cylindrical granules and the air filters with the spherical granules are described. The conclusions on a possibility of the use of various chemical adsorbents with different geometric forms and volumetric dimensions to improve the filtering properties of granulated filtering mediums in air filters at nuclear power plants are formulated.

I. M. Neklyudov; O. P. Ledenyov; L. I. Fedorova; P. Ya. Poltinin

2012-07-02T23:59:59.000Z

214

On the structurization of coal dust precipitations and their influence on aerodynamic resistance by granulated mediums in air filters at nuclear power plants  

E-Print Network (OSTI)

The processes of structurization of dust precipitations in granulated filtering mediums, formed by the monolithic glass spherical granules with the diameters of 2mm and 3mm, are re-searched. The distinctions between the distributions of filtered coal dust masses in the air filters with cylindrical granules and the air filters with spherical granules, are found. The influences by the filtered dust masses on the air resistance of both the air filters with the cylindrical granules and the air filters with the spherical granules are described. The conclusions on a possibility of the use of various chemical adsorbents with different geometric forms and volumetric dimensions to improve the filtering properties of granulated filtering mediums in air filters at nuclear power plants are formulated.

Neklyudov, I M; Fedorova, L I; Poltinin, P Ya

2012-01-01T23:59:59.000Z

215

VECTOR MEDIAN-RATIONALHYBRID FILTERS FOR MULTICHANNELIMAGE Lazhar Khriji  

E-Print Network (OSTI)

thevectorrationaloperator(VRF)(Theoutputisthe result of vector rational operation taking into account three sub/outputrelation, and hence the name "vectorrational filters" (VRF's)[3]. There are several advantage to the use

Gabbouj, Moncef

216

Recall-Precision Curve Difference from Median in Precision at ...  

Science Conference Proceedings (OSTI)

... 7C3%& A50VAbADQbA('qA2 p(A3121C5 Q0f9C32 drig@f Q0ed9 C32 dri@ds Q0ef9 C32 drea@i Q0id9 C32 dret@g Q0@d9 C32 dresea ...

2003-03-07T23:59:59.000Z

217

Optimization Online - Reliable p-median facility location problem ...  

E-Print Network (OSTI)

Dec 18, 2012 ... A customized column-and- constraint generation approach is implemented and shown to be more effective ... Entry Last Modified: 12/18/2012.

218

2003 CBECS National Median Source Energy Use and Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Type Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy...

219

Median Light Rail Crossing: Accident Causation And Countermeasures  

E-Print Network (OSTI)

Integration of Light Rail Transit Into City Streets. TCRPInfluencing Safety at Highway-Rail Grade Crossings. InK. , W. Hucke and W. Berg. Rail Highway Crossing Accident

Coifman, Benjamin; Bertini, Robert L.

1997-01-01T23:59:59.000Z

220

Median Light Rail Crossing: Accident Causation And Countermeasures  

E-Print Network (OSTI)

Cooperative Research Program. Integration of Light RailRail Grade Crossings. In National Cooperative Highway ResearchLight Rail Safety Issues. In Transportation Research Record

Coifman, Benjamin; Bertini, Robert L.

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Performance testing and Bayesian Reliability Analysis of small diameter, high power electric heaters for the simulation of nuclear fuel rod temperatures  

E-Print Network (OSTI)

The conversion of plutonium from a nuclear weapon to nuclear reactor fuel requires an evaluation of the residual gallium as a potential corrosive material within an operating nuclear fuel element. Homogeneous trace levels of gallium may remain following conversion and have the potential to migrate along the thermal gradient within the fuel and concentrate at the cladding-fuel contact zone. A system to investigate this material transport phenomenon was constructed using small diameter (0.18 inch), indirect electric heaters to simulate the centerline temperatures of operating nuclear fuel in a pressurized water reactor. The heater was inserted into annular surrogate fuel pellets containing depleted uranium, cerium oxide and trace quantities (10 ppm) of gallium to perform an initial study of the gallium migration using non-plutonium fuels and evaluate the performance of the simulation system. Heat was removed from the operating heaters by using an innovative liquid metal heat exchanger. The heaters were of a new design and were required to operate at a nominal temperature of 1000?C and for a minimum of 5000 hours. An evaluation of the expected heater lifetime and the thermal simulation system was needed in order to justify the high expense of a proposed full test using prototypic mixed-oxide fuel (MOX) containing plutonium from converted nuclear weapons. Bayesian reliability analysis methods were used to determine the expected heater failure rate because of the expected short test duration and the small sample size. Results from the operation of the simulation system and lifetime data indicate the current heater design is capable of producing the required temperatures and thermal gradients normally found in operating nuclear fuels. However, a design weakness in the heaters resulted in an unacceptably high failure rate of the heaters. The heaters were determined to have a reliability of 0.83 % at 5000 hours of operation with a Mean Time to Failure (MTTF) of 485 hours. The current heater design would require some modification and further testing prior to beginning a full scale test using prototypic MOX fuel pellets.

O'Kelly, David Sean

2000-01-01T23:59:59.000Z

222

Large Diameter Lasing Tube Cooling Arrangement  

DOE Patents (OSTI)

A cooling structure (16) for use inside a ceramic cylindrical tube (11) of a metal vapor laser (10) to cool the plasma in the tube (11), the cooling structure (16) comprising a plurality of circular metal members (17,31) and mounting members (18, 34) that position the metal members (17,31) coaxially in the tube (11) to form an annular lasing volume, with the metal members (17, 31) being axially spaced from each other along the length of the tube (11) to prevent the metal members from shorting out the current flow through the plasma in the tube (11) and to provide spaces through which the heat from localized hot spots in the plasma may radiate to the other side of the tube (11).

Hall, Jerome P.; Alger, Terry W.; Anderson, Andrew T.; Arnold, Philip A.

2004-05-18T23:59:59.000Z

223

Development of methods of producing large areas of silicon sheet by the slicing of silicon ingots using inside-diameter (I. D. ) saws. Final report, May 1979-April 1980  

SciTech Connect

I.D. wafering equipment, blades and processes were used to develop methods for producing large areas of silicon sheet. Modifications to a 16 inch STC automated saw included programmable feed system; crystal rotating system; and STC dyna-track blade monitoring and control system. By controlling the plating operation and by grinding of the cutting edge, we were able to produce 16 inch I.D. blades with a cutting edge thickness of .22 mm. Crystal rotation mechanism was used to slice 100 mm diameter crystals with a 16 inch blade down to a thickness of .20 mm. Cutting rates with crystal rotation were generally slower than with standard plunge I.D. slicing techniques. Using programmed feeds and programmed rotation, maximum cutting rates were from 0.3 to 1.0 inches per minute.

Aharonyan, P.

1980-01-01T23:59:59.000Z

224

Einar Strømmen: Theory of bridge aerodynamics  

Science Conference Proceedings (OSTI)

... BOOK REVIEW ... In addition to bridges, the book also covers chimneys susceptible to vortex-shedding and aeroelas- tic response. ...

2013-07-24T23:59:59.000Z

225

New Aerodynamics Simulations Provide Better Understanding of...  

NLE Websites -- All DOE Office Websites (Extended Search)

lates the region within and immediately surrounding the wind plant, with a mesoscale weather forecasting tool that simulates the weather on a scale of a few hundred kilometers...

226

Journal of Wind Engineering and Industrial Aerodynamics ] (  

E-Print Network (OSTI)

of hyperbolic cooling towers indicated that wind-induced peak tensile stresses can be more than twice their steady or mean values. This was an important finding for cooling tower designers, who at that time were reeling from the disastrous collapse of a group of cooling towers at Ferrybridge in the UK. Alan's close

Kareem, Ahsan

227

Low mass vehicle and its aerodynamic study.  

E-Print Network (OSTI)

??Nowadays the fuel economy has become more and more important to both manufacturers and individual users. The main approach to achieve better fuel economy is… (more)

Feng, Huayi

2011-01-01T23:59:59.000Z

228

COE Reductions through Active Aerodynamic Control of Rotor Aerodynamics and Geometry  

Science Conference Proceedings (OSTI)

This study investigates potential cost of energy reductions that might be achieved by designing active systems to mitigate loads throughout the wind turbine system.

Griffin, D. A.; McCoy, T. J.

2008-12-01T23:59:59.000Z

229

Radioactive Aerosols as an Index of Air Pollution in the City of Thessaloniki, Greece  

Science Conference Proceedings (OSTI)

This study summarizes results of an investigation done in order to find out how the radioactive aerosols of {sup 7}Be could serve as indicators of air pollution conditions. Beryllium-7 is a cosmic-ray produced radionuclide with an important fraction of its production to take place in the upper troposphere. Once it is formed is rapidly associated with submicron aerosol particles and participates in the formation and growth of the accumulation mode aerosols, which is a major reservoir of pollutants in the atmosphere. In order to define any influence of AMAD of {sup 7}Be aerosols by air pollution conditions, the aerodynamic size distribution of {sup 7}Be aerosols was determined by collecting samples at different locations in the suburban area of the city of Thessaloniki, including rural areas, industrial areas, high elevations, marine environment and the airport area. The aerodynamic size distribution of {sup 7}Be aerosols in different locations was obtained by using Andersen 1-ACFM cascade impactors and the Activity Median Aerodynamic Diameter (AMAD) was determined. Some dependency of the AMADs on height has been observed, while in near marine environment the {sup 7}Be activity size distribution was dominant in the upper size range of aerosol particles. Low AMADs as low as 0.62 to 0.74 {mu}m of {sup 7}Be aerosols have been observed at locations characterized with relative low pollution, while it is concluded that in the activity size distribution of ambient aerosols, {sup 7}Be changes to larger particle sizes in the presence of pollutants, since low AMADs of {sup 7}Be aerosols have been observed at low polluted locations. Preliminary data of simultaneous measurements of {sup 214}Pb and {sup 212}Pb with gaseous air pollutants CO, NO, NO{sub X}, SO{sub 2} and total suspended particulate matter (TSP) show that radon decay products near the ground could be a useful index of air pollution potential conditions and transport processes in the boundary layer.

Ioannidou, A.; Papastefanou, C. [Nuclear Physics and Elementary Particle Physics Division, Physics Department, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

2010-01-21T23:59:59.000Z

230

Reliable p-median facility location problem: two-stage robust models ...  

E-Print Network (OSTI)

Results show the significant influence of the demand loss factor on the network ...... Robust Unit Commitment Problem with Demand Response and Wind.

231

Difference from Median in T11U per Topic Difference from ...  

Science Conference Proceedings (OSTI)

... &'(( )01&2)2342354 6'7 89@ )ABCCD E&p &'E2)4F E)25G 6H4I'05H4'4HP@ I2GH0Q 6RS TA23(3U HP VI0 QCCp QIA3521AH@ W44H44I0 ...

2003-03-06T23:59:59.000Z

232

Addendum to a proposal to NSF to sponsor a vertical-axis wind turbine research program  

SciTech Connect

Information is presented concerning the performance evaluation of a 15 foot-diameter test bed Darrieus rotor, Darrieus rotor wind tunnel tests, Savonius rotor wind tunnel tests, blade manufacturing techniques for 15 foot-diameter and 35 foot-diameter wind turbines, static and dynamic structural analysis, production prototype design of a 15 foot-diameter turbine, production prototype design of 35 foot-diameter turbine, and aerodynamic performance studies.

Blackwell, B.F.; Feltz, L.V.; Rightley, E.C.

1974-11-01T23:59:59.000Z

233

GUIDE TO CALCULATING TRANSPORT EFFICIENCY OF AEROSOLS IN OCCUPATIONAL AIR SAMPLING SYSTEMS  

SciTech Connect

This report will present hand calculations for transport efficiency based on aspiration efficiency and particle deposition losses. Because the hand calculations become long and tedious, especially for lognormal distributions of aerosols, an R script (R 2011) will be provided for each element examined. Calculations are provided for the most common elements in a remote air sampling system, including a thin-walled probe in ambient air, straight tubing, bends and a sample housing. One popular alternative approach would be to put such calculations in a spreadsheet, a thorough version of which is shared by Paul Baron via the Aerocalc spreadsheet (Baron 2012). To provide greater transparency and to avoid common spreadsheet vulnerabilities to errors (Burns 2012), this report uses R. The particle size is based on the concept of activity median aerodynamic diameter (AMAD). The AMAD is a particle size in an aerosol where fifty percent of the activity in the aerosol is associated with particles of aerodynamic diameter greater than the AMAD. This concept allows for the simplification of transport efficiency calculations where all particles are treated as spheres with the density of water (1 g?cm-3). In reality, particle densities depend on the actual material involved. Particle geometries can be very complicated. Dynamic shape factors are provided by Hinds (Hinds 1999). Some example factors are: 1.00 for a sphere, 1.08 for a cube, 1.68 for a long cylinder (10 times as long as it is wide), 1.05 to 1.11 for bituminous coal, 1.57 for sand and 1.88 for talc. Revision 1 is made to correct an error in the original version of this report. The particle distributions are based on activity weighting of particles rather than based on the number of particles of each size. Therefore, the mass correction made in the original version is removed from the text and the calculations. Results affected by the change are updated.

Hogue, M.; Hadlock, D.; Thompson, M.; Farfan, E.

2013-11-12T23:59:59.000Z

234

Large Diameter 718 Ingots for Land-Based Gas Turbines  

Science Conference Proceedings (OSTI)

h'ew high efficiency land based gas turbines made by General Electric ... Materials used for turbine rotors in land-based gas turbines have typically been CrMoV ...

235

The Vacuum Arc Remelting of Large Diameter Alloy 706  

Science Conference Proceedings (OSTI)

mands on the world's electrical power generation capability. In the United States for example, present electrical power demands are causing surplus power ...

236

Prospects for 2 mm Diameter NIF Polymer Capsules (A22732)  

E-Print Network (OSTI)

Proc. Of The 17th IEEE/NPSS Symp. On Fusion Engineering, San Diego, California (Institute Of Electrical And Electronics Engineers, Inc., Piscataway, New Jersey) To Be Published.17th IEEE/NPSS Symposium on Fusion Engineering San Diego California, US, 1997932759869

Stephens, R.B.

1997-10-06T23:59:59.000Z

237

Modelling Hop-Constrained and Diameter-Constrained Minimum ...  

E-Print Network (OSTI)

mance constraints such as availability and reliability (see [39]). Availability is the probability that all the transmission lines in the path from the root node.

238

P-9: Evaluation of Banana Fibers Density with Different Diameters  

Science Conference Proceedings (OSTI)

Biosorption Characteristics of Pb(II) from Aqueous Solution onto Poplar Cotton · Characterization of Aluminum Cathode Sheets Used for Zinc Electrowinning.

239

An Evaluation Of Large Diameter Steel Water Pipelines.  

E-Print Network (OSTI)

??Najafi, Mohammad Steel water pipelines, as a part of America's underground infrastructure, play a key role in maintaining the quality of life and well-being of… (more)

Joshi, Tushar

2013-01-01T23:59:59.000Z

240

Correlation between the Density and the Diameter of Buriti Fibers  

Science Conference Proceedings (OSTI)

Mercury Oxidation and Capture over SCR Catalysts in Simulated Coal Combustion Flue Gas · Microstructural Characterization of Fe-Mn-C Ternary Alloy under ...

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Elastic Modulus Variation with Diameter for Ramie Fibers  

Science Conference Proceedings (OSTI)

Mercury Oxidation and Capture over SCR Catalysts in Simulated Coal Combustion Flue Gas · Microstructural Characterization of Fe-Mn-C Ternary Alloy under ...

242

Electrolytic transport through a synthetic nanometer-diameter pore  

E-Print Network (OSTI)

. Berneche, S. & Roux, B. (2003) Proc. Natl. Acad. Sci. USA, 100, 8644­8648. 36. Paces, M., Kosek, J., Marek

Aluru, Narayana R.

243

Thermal Cracking of Large-Diameter 706 Ingots  

Science Conference Proceedings (OSTI)

responsible for the cracking. The most plausible scenario is that residual stresses generated by ... Analysis of Heat Up for Homogenization. Finite Element Model.

244

Effective Diameter in Radiation Transfer: General Definition, Applications, and Limitations  

Science Conference Proceedings (OSTI)

Although the use of an effective radius for radiation transfer calculations in water clouds has been common for many years, the export of this concept to ice clouds has been fraught with uncertainty, due to the nonspherical shapes of ice ...

David L. Mitchell

2002-08-01T23:59:59.000Z

245

Spray Cooling in Room Fires  

Science Conference Proceedings (OSTI)

... power of the volumetric median drop diameter* of the spray. ... The temperature, velocity and concentrations (CO, CO2, 02 and total hydro- ...

2008-12-05T23:59:59.000Z

246

Physicochemical Characterization of Capstone Depleted Uranium Aerosols II: Particle Size Distributions as a Function of Time  

SciTech Connect

The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing depleted uranium from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluated particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using beta spectrometry, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements was quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 um and a large size mode between 2 and 15 um. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 um shortly after perforation to around 1 um at the end of the 2-hr sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.

Cheng, Yung-Sung; Kenoyer, Judson L.; Guilmette, Raymond A.; Parkhurst, MaryAnn

2009-03-01T23:59:59.000Z

247

Spanwise aerodynamic loads on a rotating wind turbine blade  

DOE Green Energy (OSTI)

Wind turbine performance and load predictions depend on accurate airfoil performance data. Wind tunnel test data are typically used which accurately describe two-dimensional airfoil performance characteristics. Usually these data are only available for a range of angles of attack from 0 to 15 deg, which excludes the stall characteristics. Airfoils on stall-controlled wind turbines operate in deep stall in medium to high winds. Therefore it is very important to know how the airfoil will perform in these high load conditions. Butterfield et al. have shown that three-dimensional effects and rotation of the blade modify the two-dimensional performance of the airfoil. These effects are modified to different degrees throughout the blade span. The Solar Energy Research Institute (SERI) has conducted a series of tests to measure the spanwise variation of airfoil performance characteristics on a rotating wind turbine blade. Maximum lift coefficients were measured to be 200% greater than wind tunnel results at the 30% span. Stall characteristics were generally modified throughout the span. Lift characteristics were unmodified for low to medium angles of attack. This paper discusses these test results for four spanwise locations. 8 refs., 12 figs.

Butterfield, C.P.; Simms, D.; Musial, W.; Scott, G.

1990-10-01T23:59:59.000Z

248

Simplified Wind Flow Model for the Estimation of Aerodynamic ...  

Science Conference Proceedings (OSTI)

... and the low-frequency fluctuations present in the ABL flow are suppressed; that is, the peak energy of the ... For personal use only; all rights reserved. ...

2013-08-19T23:59:59.000Z

249

The power balance method For aerodynamic performance assessment  

E-Print Network (OSTI)

This thesis describes the use of the power balance method for performance estimation of aircraft configurations. In this method, mechanical power production and mechanical power consumption of the aircraft are balanced, ...

Sato, Sho, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

250

Large-Eddy Simulation of Wind-Plant Aerodynamics: Preprint  

DOE Green Energy (OSTI)

In this work, we present results of a large-eddy simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done wind plant large-eddy simulations with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-eddy simulation capability to create a sound methodology for performing this type of simulation. We have used the OpenFOAM CFD toolbox to create our solver.

Churchfield, M. J.; Lee, S.; Moriarty, P. J.; Martinez, L. A.; Leonardi, S.; Vijayakumar, G.; Brasseur, J. G.

2012-01-01T23:59:59.000Z

251

Modelling the aerodynamics of vertical-axis wind turbines.  

E-Print Network (OSTI)

??The current generation of wind turbines that are being deployed around the world features, almost exclusively, a three-bladed rotor with a horizontal-axis configuration. In recent… (more)

Scheurich, Frank

2011-01-01T23:59:59.000Z

252

NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet)  

DOE Green Energy (OSTI)

NREL researchers have used high-tech instruments and high-performance computing to understand atmospheric turbulence and turbine wake behavior in order to improve wind turbine design and siting within wind farms.

Not Available

2012-04-01T23:59:59.000Z

253

Aerodynamic effects on fuel spray characteristics: Air-assist atomizer  

SciTech Connect

Results are presented on the internal structure of a kerosene fuel spray, generated with an air-assist type nozzle. Effects of atomization air flow rate and combustion air swirl on droplet transport processes have been investigated. Spatially-resolved measurements have been obtained on mean droplet size, number density and velocity, at different combustion air swirl and atomization air flow rates. An ensemble light scattering technique, based on measurement of the polarization ratio, and laser velocimetry have been used for these measurements. The results indicate that as atomization air flow rate increases, the spray becomes confined to a narrower spray angle; in addition, mean droplet size decreases and number density increases significantly along the spray centerline. Larger droplets are found generally on the spray boundary, and smaller ones near the spray centerline. In all cases, there is a gradual increase in mean droplet size along the spray centerline with axial distance. Under burning conditions the flame plume becomes short and intense, with fewer droplets penetrating through the flame envelope. Combustion air swirl and atomization air have a significant effect on the transport of droplets and on combustion characteristics of spray flames. 20 refs., 9 figs.

Presser, C.; Semerjian, H.G.; Gupta, A.K.

1988-01-01T23:59:59.000Z

254

A Perturbation Model of Raindrop Oscillation Characteristics with Aerodynamic Effects  

Science Conference Proceedings (OSTI)

An asymptotic analysis with the method of multiple-parameter perturbations has been carried out to examine the basic features of drop oscillations in a uniform flow field. The quiescent drop shape has an oblate deformation resulting from a ...

James Q. Feng; Kenneth V. Beard

1991-08-01T23:59:59.000Z

255

Aerodynamic drag reduction apparatus for gap-divided bluff bodies ...  

Solar Photovoltaic; Solar ... invention pursuant to Contract No. W-7405-ENG48 between the United States Department of Energy and the University of California for the ...

256

Advanced turbine cooling, heat transfer, and aerodynamic studies  

DOE Green Energy (OSTI)

The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect of Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

Han, Je-Chin; Schobeiri, M.T. [Texas A & M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

257

Aerodynamic levitator allows samples to "float on air"  

NLE Websites -- All DOE Office Websites (Extended Search)

something to hold the claret. To scientists, however, glass is a liquid that has lost its mobility, yet keeps its memory of being a liquid. Both liquids and glasses are disordered...

258

Transient Vehicle Aerodynamics In Four-car Platoons  

E-Print Network (OSTI)

Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Four-carCars . . . . . . . . . . . . . . . . . . . . . . . . . .

Chen, A. L.; Savas, Omer; Hedrick, Karl

1997-01-01T23:59:59.000Z

259

Distance-Scaled Water Concentrations versus Mass-Median Drop Size, Temperature, and Altitude in Supercooled Clouds  

Science Conference Proceedings (OSTI)

About 28 000 nautical miles (n mi) of select in-flight measurements of liquid water content (LWC), droplet sizes, temperature, and other variables in supercooled clouds from a variety of research projects over portions of North America, Europe, ...

Richard K. Jeck

2008-07-01T23:59:59.000Z

260

The toxicity of inhaled particles of sup 238 PuO sub 2 in dogs  

SciTech Connect

This study was conducted to determine the toxicity of inhaled {sup 238}PuO{sub 2} in the dog. Inhalation was selected because it is the mostly likely route of human exposure in the event of an accidental airborne release. Of 166 dog in the study, 72 inhaled 1.5{mu}m and 72 inhaled 3.0 {mu}m activity median aerodynamic diameter particles of {sup 238}PuO{sub 2}. Another 24 dogs inhaled the aerosol vector without plutonium. The aerosol exposures resulted in initial pulmonary burdens ranging from 37 to 0.11 and 55.5 to 0.37 kBq of {sup 238}Pu/kg body mass, of 1.5 {mu}m and 3.0 {mu}, particles, respectively. The particles dissolved slowly resulting in translocation of the Pu to liver, bone and other sites. The dogs were observed for biological effects over their life span. Necropsies were performed at death, and tissues were examined microscopically. The principal late-occurring effects were tumors of the lung, skeleton, and liver. Risk factors estimated for these cancers were 2800 lung cancers/10{sup 4} Gy, 800 liver cancers/10{sup 4} Gy, and 6200 bone cancers/10{sup 4} Gy for dogs. The potential hazard from {sup 238}Pu to humans may include tumors of the lung, bone and liver because of the likelihood of similarity of the dose patterns for the two species. 10 refs., 1 fig., 3 tabs.

Muggenburg, B.A.; Guilmette, R.A.; Griffith, W.C. Jr.; Hahn, F.F.; Boecker, B.B. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States). Inhalation Toxicology Research Inst.); Gillett, N.A. (Genentech, Inc., San Francisco, CA (United States))

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry  

SciTech Connect

Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

Plionis, Alexander A [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory; Lamont, Stephen P [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

262

Connecting Subseasonal Movements of the Winter Mean Ridge in Western North America to Inversion Climatology in Cache Valley, Utah  

Science Conference Proceedings (OSTI)

A 10-yr record of PM2.5 (particulate matter of aerodynamic diameter ? 2.5 ?m), collected in Cache Valley near downtown Logan, Utah, reveals a strong peak in the PM2.5 concentration climatology that is tightly localized in mid-January. The cause of ...

Shih-Yu Wang; Robert R. Gillies; Randy Martin; Robert E. Davies; Marty R. Booth

2012-03-01T23:59:59.000Z

263

Disdrometer Measurements during an Intense Rainfall Event in Central Illinois: Implications for Differential Reflectivity Radar Observations  

Science Conference Proceedings (OSTI)

Empirical relationships for estimating rainfall rate, liquid water content and median volume diameter from radar measurements of reflectivity factor and differential reflectivity are derived from a disdrometer record of a highly variable, heavy ...

T. A. Seliga; K. Aydin; H. Direskeneli

1986-06-01T23:59:59.000Z

264

Analysis of Rotating Multicylinder Data in Measuring Cloud-Droplet Size and Liquid Water Content  

Science Conference Proceedings (OSTI)

An objective method is presented for the analysis of rotating multicylinder data in measuring the liquid water content and median volume droplet diameter of icing clouds. The method is based on time-dependent numerical modeling of cylinder icing ...

Lasse Makkonen

1992-06-01T23:59:59.000Z

265

Evaluating Light Rain Drop Size Estimates from Multi-Wavelength Micropulse Lidar Network Profiling  

Science Conference Proceedings (OSTI)

We investigate multi-wavelength retrievals of median equivolumetric drop diameter, D0, suitable for drizzle and light rain, through collocated 355/527 nm Micro Pulse Lidar NETwork (MPLNET) observations collected during precipitation occurring 9 ...

Simone Lolli; Ellsworth J. Welton; James. R. Campbell

266

Characterization of Vertical Velocity and Drop Size Distribution Parameters in Widespread Precipitation at ARM Facilities  

Science Conference Proceedings (OSTI)

Extended, high-resolution measurements of vertical air motion and median volume drop diameter D0 in widespread precipitation from three diverse Atmospheric Radiation Measurement Program (ARM) locations [Lamont, Oklahoma, Southern Great Plains site ...

Scott E. Giangrande; Edward P. Luke; Pavlos Kollias

2012-02-01T23:59:59.000Z

267

Comparison of Drop Size Distribution Parameter (D0) and Rain Rate from S-Band Dual-Polarized Ground Radar, TRMM Precipitation Radar (PR), and Combined PR–TMI: Two Events from Kwajalein Atoll  

Science Conference Proceedings (OSTI)

The estimation of the drop size distribution parameter [median volume diameter (D0)] and rain rate (R) from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) as well as from combined PR–TRMM Microwave Imager (TMI) algorithms ...

V. N. Bringi; Gwo-Jong Huang; S. Joseph Munchak; Christian D. Kummerow; David A. Marks; David B. Wolff

2012-11-01T23:59:59.000Z

268

Biomass quantification of live trees in a mixed evergreen forest using diameter-based allometric equations.  

E-Print Network (OSTI)

??Biomass quantification methods have become of increased interest recently due to the threat of climate change. Organizations such as the California Climate Action Registry (CCAR)… (more)

Coltrin, William

2010-01-01T23:59:59.000Z

269

Designing Energy-Efficient Low-Diameter On-chip Networks with Equalized Interconnects  

E-Print Network (OSTI)

In a power and area constrained multicore system, the on-chip communication network needs to be carefully designed to maximize the system performance and programmer productivity while minimizing energy and area. In this ...

Joshi, Ajay J.

270

Centrifugal Modeling of Seismic Behavior of Large-Diameter Pipe in Liquefiable Soil  

E-Print Network (OSTI)

thick, was used to create a water-tight containment for the saturated sand deposit in the lami- nar box pipe in a laminar box under 30g gravitational field. The ground was prepared with Nevada sand in a fine sand. The pipe had adequate factor of safety to resist flotation under static conditions. However

Ling, Hoe I.

271

Cost and Productivity of Multi-Product Processing for Small Diameter Trees : Final Report.  

SciTech Connect

This project evolved from an effort by the land manager, the United States Forest Service, to economically deal with thousands of acres of thick (doghair) Douglas-fir and hemlock forests on Washington's Olympic Peninsula. These forests are very densely stocked and the trees are small. Until this effort, there has been no reasonable way to get enough product from the sites to justify managing them. And, even this project required some special agreements between the landowner and the investigator to be viable. This report describes the in-woods processing system now working in doghair stands on the Quilcene District. As whole trees arrive at the landing, they are sorted by a Cat 225 shovel-type loader. Sawlogs are trimmed, limbed, bucked, and decked for transportation on conventional log trucks. Chip grade trees are passed through a prototype, multi-stem debarker/delimber and then chipped by a Morbark 23'' Chiparvester. Clean chips are transported in regular highway chip vans. All other materials, not sold as logs or clean chips, are processed by a prototype shredder, and taken from the site as hogfuel. 7 ref., 15 figs., 11 tabs.

Lambert, Michael B.; Howard, James O.; Hermann, Steven E.

1987-09-01T23:59:59.000Z

272

Controlling Liquid Pool Depth in VAR of a 21.6 cm Diameter Ingot of ...  

Science Conference Proceedings (OSTI)

Evolution of ESR Technology and Equipment for Long Hollow Ingots Manufacture ... Phosphorus Partitioning During EAF Refining of DRI Based Steel.

273

FEM analysis of voltage drop in the anode connector induced by steel stub diameter reduction  

Science Conference Proceedings (OSTI)

Primary aluminium production is a high-energy consumption process, and improving the energy efficiency of smelters could be economically viable. An issue in the Hall-Heroult prebake anode technology is the voltage drop in the anode connector caused by ... Keywords: Aluminium reduction cell, Carbon anode, Energy efficiency, Finite element method, Stub hole, Thermo-electro-mechanical modelling

Hugues Fortin; Nedeltcho Kandev; Mario Fafard

2012-05-01T23:59:59.000Z

274

Cumulonimbus Vertical Velocity Events in GATE. Part I: Diameter, Intensity and Mass Flux  

Science Conference Proceedings (OSTI)

This is the first part of a two-part paper defining the nature of the vertical air motion in and around GATE cumulonimbus clouds. The statistics are from a total of 104 km of flight legs, flown on six days in GATE, at altitudes from near the ...

Margaret A. LeMone; Edward J. Zipser

1980-11-01T23:59:59.000Z

275

Effect of the Fiber Equivalent Diameter on the Elastic Modulus and ...  

Science Conference Proceedings (OSTI)

... of polymer composites for uses in engineering parts for automobile and building construction. In spite of ... Characterization of Graphite from PAN Aerogels.

276

A Graphical Approach to a Model of Neuronal Tree with Variable Diameter  

E-Print Network (OSTI)

We propose a simple graphical approach to steady state solutions of the cable equation for a general model of dendritic tree with tapering. A simple case of transient solutions is also briefly discussed.

Marco Herrera-Valdez; Sergei K. Suslov

2010-12-31T23:59:59.000Z

277

Forced-convection surface-boiling heat transfer and burnout in tubes of small diameters  

E-Print Network (OSTI)

A basic heat-transfer apparatus was designed and constructed for the study of forced-convection boiling in small channels. The various regions of forced-convection surface boiling were studied experimentally and analytically. ...

Bergles A. E.

1962-01-01T23:59:59.000Z

278

Experimental investigation of a six inch diameter, four inch span cross-flow fan .  

E-Print Network (OSTI)

??Investigations into the use of a cross-flow fan as a potential source of propulsion and lift have arisen due to the cross-flow fan's geometry, light… (more)

Ulvin, Jessica M.

2008-01-01T23:59:59.000Z

279

Tensile Strength as a Function of Sisal Fiber Diameter through a ...  

Science Conference Proceedings (OSTI)

Constitutive Modelling and Numerical Simulation of Ship Structure Response to Underwater Explosion · Contribution of Brazil Nut Shell Fiber and ...

280

Modern, three-blade wind turbines are 50 to 90 meters in diameter...  

NLE Websites -- All DOE Office Websites (Extended Search)

of trained and qualified workers to manufacture, construct, operate, and maintain the wind energy facilities. In addition, the nation will continue to need skilled scientists...

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Considerations of Selection of ECH System Transmission Line Waveguide Diameter for ITER (A25121)  

E-Print Network (OSTI)

Proc. 3rd Tech. Mtg On Electron Cyclotron Resonanxe Heating Physics And Technology For ITER, Como, Italy, 2005; General Atomics Report GA-A25121 (2005)3rd Technical Meeting on Electron Cyclotron Resonance Heating Physics and Technology for ITER Como, IT, 2005999610860

Olstad, R.A.

2005-07-07T23:59:59.000Z

282

A New Optical Instrument for Simultaneous Measurement of Raindrop Diameter and Fall Speed Distributions  

Science Conference Proceedings (OSTI)

This paper presents a recently developed optical spectro-pluviometer. The principle of the device is based upon the optical occultation of an infrared light beam by falling drops. This allows the retrieval of raindrop-size and velocity ...

Danièle Hauser; Paul Amayenc; Bernard Nutten; Philippe Waldteufel

1984-09-01T23:59:59.000Z

283

Effect of Irregularities in the Diameter Classification of Raindrops by the Joss-Waldvogel Disdrometer  

Science Conference Proceedings (OSTI)

The Joss-Waldvogel Disdrometer (JWD) is an electromechanical counter designed to measure raindrop size distributions for the purpose of calculating radar reflectivities. It has performed this function successfully for 20 years. Recently, JWD ...

Brian E. Sheppard

1990-02-01T23:59:59.000Z

284

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

Science Conference Proceedings (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. Bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs with the pipe in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, minimize excavation, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct safe repair operations on live mains.

Kiran M. Kothari; Gerard T. Pittard

2005-07-01T23:59:59.000Z

285

Validation of protection provided by one brand of filtering facepiece respirator  

Science Conference Proceedings (OSTI)

A previous laboratory study of a widely used disposable dust / mist (D/M) respirator (3M{trademark}8710) utilized a challenge agent that had high penetration values for D/M filter media. Therefore, measured protection factors (PFs) reflected both filter and faceseal penetration, and would be lower than that expected for faceseal penetration only. The purpose of this study was to determine a PF for this brand of disposable D/M respirator using a challenge agent that has low filter penetration for this type of filter. Methodology involved qualitatively (QLFT) and quantitatively (QNFT) fit testing 15 males and 15 females while wearing the respirator. One QLFT was done per subject using the saccharin method. Three QNFTs were performed on each subject utilizing a 2.5 {mu}m mass median aerodynamic diameter (MMAD) monodisperse challenge aerosol. Measured PF`s were corrected for lung deposition of this size aerosol. The average fit for each subject was the arithmetic mean of the three PFs. The PFs were found to be approximately log-normally distributed, so logs of PFs were used in the statistical analysis. The exponent of the 95% lower tolerance level (LTL) of the fifth percentile of the log PFs was 50. This compares to an exponent of the 95% LTL of the fifth percentile of the log PFs of two determined in a previous study and to the American National Standards Institute (ANSI) Assigned Protection Factor (APF) of ten. No significant difference of average fit between males and females was found. The sensitivity of the saccharin QLFT was 42.9%, and specificity could not be evaluated.

Peacock, J.R. [Univ. of Alabama, Birmingham, AL (United States). Dept. of Environmental Health Sciences

1995-05-01T23:59:59.000Z

286

INTEGR. COMP. BIOL., 42:10091017 (2002) Experimental Hydrodynamics and Evolution: Function of Median Fins in Ray-finned Fishes1  

E-Print Network (OSTI)

of relevant fluid dynamic parameters such as circulation and vorticity. In previous papers we have described and represent energy lost as a consequence of thrust generation (Carling et al., 1998). Such lateral forces may, shares several characteristics at odds with recent com- putational fluid dynamic analyses (e.g., Cheng

Drucker, Eliot G.

287

Performance Characteristics of the Kennedy Space Center 50-MHz Doppler Radar Wind Profiler Using the Median Filter/First-Guess Data Reduction Algorithm  

Science Conference Proceedings (OSTI)

The performance of an improved signal-processing algorithm implemented on the NASA 50-MHz radar wind profiler at Kennedy Space Center is analyzed. In 1990, NASA began using a 50-MHz Doppler radar wind profiler to demonstrate the applicability of ...

Robin S. Schumann; Gregory E. Taylor; Francis J. Merceret; Timothy L. Wilfong

1999-05-01T23:59:59.000Z

288

Wind energy conversion. Volume IX. Aerodynamics of wind turbine with tower disturbances  

DOE Green Energy (OSTI)

Lifting line theory which is the counterpart of Prandtl's lifting line theory for rotating wing is employed for the overall performance analysis of a horizontal axis wind turbine rotor operating in a uniform flow. The wake system is modeled by non-rigid wake which includes the radial expansion and the axial retardation of trailing vortices. For the non-uniform flow which are caused by the ground, the tower reflection, or the tower shadow, the unsteady airloads acting on the turbine blade are computed, using lifting line theory and a non-rigid wake model. An equation which gives the wind profile in the tower shadow region is developed. Also, the equations to determine pitch angle control are derived to minimize the flapping moment variations or the thrust variations due to the non-uniform flow over a rotation.

Chung, S.Y.

1978-09-01T23:59:59.000Z

289

New Aerodynamics Simulations Provide Better Understanding of Wind Plant Underperformance and Loading (Fact Sheet)  

DOE Green Energy (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) develop a high-fidelity large-eddy simulation model designed to predict the performance of large wind plants with a higher degree of accuracy than current models.

Not Available

2011-02-01T23:59:59.000Z

290

99--MarMar--0707 11AERODYNAMIC RESEARCH CENTER MECHANICAL AND AEROSPACE ENGINEERING DEPARTMENT  

E-Print Network (OSTI)

Constant volume combustion offers better efficiencies than constant pressure combustion in Brayton cycle simplicity and versatilityversatility Mostly military: Missiles,Mostly military: Missiles, UAVsUAVs Electric

Texas at Arlington, University of

291

Laboratory evaluation of fan/filter units' aerodynamic and energy performance  

E-Print Network (OSTI)

such as motor types, fan wheels, design, and orientations ofventilation system design, testing of fans and ventilation

Xu, Tengfang; Jeng, Ming-Shan

2004-01-01T23:59:59.000Z

292

The role of the aerodynamic modifications of the shapes of tall buildings  

E-Print Network (OSTI)

With the advances in technology, recent tall building design has undergone a shift to the free-style geometric forms in the exuberant and liberal atmosphere. As a height of the building increases, it is more susceptible ...

Lee, Jooeun, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

293

Inertial and Aerodynamic Tail Steering of a Meso-scale Legged Robot  

E-Print Network (OSTI)

SCM adapter holding a carbon fiber rod to the servo, andgears lower housing carbon fiber rod motor ballast Figureprovides bearing support, a carbon fiber rod to serve as the

Kohut, Nicholas Jospeh

2013-01-01T23:59:59.000Z

294

The Influence of Aerodynamic Stall on the Performance of Vertical Axis Wind Turbines.  

E-Print Network (OSTI)

??There is currently an increasing desire for local small-scale sustainable energy generation. This has lead to increased interest in the concept of the vertical axis… (more)

Edwards, Jonathan

2012-01-01T23:59:59.000Z

295

Mesh Requirement Investigation for 2D and 3D Aerodynamic Simulation of Vertical Axis Wind Turbines.  

E-Print Network (OSTI)

??The accuracy of a Computational Fluid Dynamics (CFD) model to capture the complex flow around a small vertical axis wind turbine (VAWT) on 2D and… (more)

Naghib Zadeh, Saman

2013-01-01T23:59:59.000Z

296

The Influence of Unsteady Wind on the Performance and Aerodynamics of Vertical Axis Wind Turbines.  

E-Print Network (OSTI)

??Interest in small–scale wind turbines as energy sources in the built environment has increased due to the desire of consumers in urban areas to reduce… (more)

Danao, Louis Angelo

2012-01-01T23:59:59.000Z

297

Code Thrust 1400 Aeronautical/Astronautical Engineering (including Aerodynamics, Aerospace Engineering, and Space Technology)  

E-Print Network (OSTI)

Sciences (including Clinical/Medical Laboratory Technologies, Communication Disorders Sciences and Services, Gerontology, Health and Medical Administrative Services, Other Health Professions and Related Services, Environmental health, Geotechnical, Hydraulic, Hydrologic, Sanitary, Structural, and Transportation) 1404

Alabama in Huntsville, University of

298

A Critical Evaluation of the Aerodynamical Error of a Turbulence Instrument  

Science Conference Proceedings (OSTI)

An instrument, intended for tower-borne measurements of atmospheric turbulence, constructed at the Department of Meteorology, Uppsala University, has been carefully tested for the errors induced by the local flow around the instrument itself, ...

Ulf Högström

1982-12-01T23:59:59.000Z

299

Aerodynamic Experiments on a Ducted Fan in Hover and Edgewise Flight.  

E-Print Network (OSTI)

??Ducted fans and ducted rotors have been integrated into a wide range of aerospace vehicles, including manned and unmanned systems. Ducted fans offer many potential… (more)

Myers, Leighton

2009-01-01T23:59:59.000Z

300

Laboratory evaluation of fan/filter units' aerodynamic and energy performance  

E-Print Network (OSTI)

Jeng, M.S. , F. Tsau. 2002. Fan-Filter Unit (FFU) TestLaboratory Methods of Testing Fans for Rating, Air MovementTest Procedure For Fan-Filter Units (not published). Xu,

Xu, Tengfang; Jeng, Ming-Shan

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Transient Platoon Aerodynamics During Passing Maneuvers and In-line Oscillations  

E-Print Network (OSTI)

DRAG FORCE A C = 6.440 F (d)| ACF = 4.993 (h)| c f - r \\ z cthe magnitudes of the ACf) did not show strong dependence onthe "oscillating" model's position. ACf) values for steady

Tsuei, J. L.; Savas, O.; Hedrick, J. K.

2000-01-01T23:59:59.000Z

302

RANS-based Aerodynamic Shape Optimization of a Blended-Wing-Body Aircraft  

E-Print Network (OSTI)

-loading allows the BWB to have excellent low-speed flight characteristics as well, making heavy high lift] and Wakayama [7, 8] presented the multidisciplinary design optimization (MDO) of the Boeing BWB- 450 using

Papalambros, Panos

303

215BAT AERODYNAMICS Revista Chilena de Historia Natural 78: 215-227, 2005  

E-Print Network (OSTI)

reports on blackouts that affect at least 50,000 customers or 300 MW of load. Reports for the years from of the best-studied examples is that of vampire bats. Vampire bats cannot survive more than one or two days locally, such as shedding load, switch- ing capacitors on or off, or changing generator set points

304

Aerodynamic levitator allows samples to float on air | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

processed as liquids at some stage in their life, such as silicon wafers that start as sand and then are converted into silicon by melting and processing. "We look at the liquid...

305

Subsonic Aerodynamic Characteristics of a Circular Body Earth-to-Orbit Vehicle  

Science Conference Proceedings (OSTI)

A test of a generic reusable earth-to-orbit transport was conducted in the 7- by 10-Foot high-speed tunnel at the Langley Research Center at Mach number 0.3. The model had a body with a circular cross section and a thick clipped delta wing as the major ...

Jr Roger A. Lepsch; Ware George M.; MacConochie Ian O.

1996-07-01T23:59:59.000Z

306

Supersonic Aerodynamic Characteristics of a Circular Body Earth-to-Orbit Vehicle  

Science Conference Proceedings (OSTI)

The circular body configuration is a generic single- or multi-stage reusable Earth-to-orbit transport. A thick clipped-delta wing is the major lifting surface. For directional control, three different vertical fin arrangements were investigated: a conventional ...

Ware George M.; Engelund Walter C.; MacConochie Ian O.

1994-01-01T23:59:59.000Z

307

A Tour of the Aerodynamic and Hydraulic Research Infrastructure, Department of Engineering, University of Leicester  

E-Print Network (OSTI)

of Engineering Science, Oxford University Oxford, UK ABSTRACT Most of the loss mechanisms in Stirling and Pulse temperature part of the system as a result of cyclic pressure changes in a typical Stirling cycle geometry. The loss does depend on geometry, and is typically higher on a 'split' Stirling cycle machine than

Gorban, Alexander N.

308

Theoretical and Experimental Characterization of the Ultrafast Aircraft Thermometer: Reduction of Aerodynamic Disturbances and Signal Processing  

Science Conference Proceedings (OSTI)

The ultrafast aircraft thermometer, built for measuring temperature in clouds at flight speeds up to 100 m?s?1, employs a 2.5-?m-thick platinum-coated tungsten wire as a sensing element. When temperature increases, the wire resistance increases. ...

Bogdan Rosa; Konrad Bajer; Krzysztof E. Haman; Tomasz Szoplik

2005-07-01T23:59:59.000Z

309

Emission factors for ammonia and particulate matter from broiler Houses  

E-Print Network (OSTI)

Total suspended particulate (TSP) concentrations, ammonia (NH?) concentrations, and ventilation rates were measured in four commercial, tunnel ventilated broiler houses in June through December of 2000 in Brazos County, Texas. Particle size distributions were developed from TSP samplers collected and used to determine the mass fraction of PM?? in the TSP samples collected. Concentrations of TSP and ammonia measured were multiplied by the ventilation rates measured to obtain emission factors for PM?? and ammonia from tunnel ventilated commercial broiler houses. TSP and NH? concentrations ranged from 7,387 to 11,387 []g/m³ and 2.02 to 45 ppm, respectively. Ammonia concentration exhibited a correlation with the age of the birds. Mass median diameters (MMD) found using particle size analysis with a Coulter Counter Multisizer were between 24.0 and 26.7 mm aerodynamic equivalent diameter. MMD increased with bird age. The mass fraction of PM?? in the TSP samples was between 2.72% and 8.40% with a mean of 5.94%. Ventilation rates were measured between 0.58 and 89 m³/s. Ammonia emission rates varied from 38 to 2105 g/hr. TSP emission rates and PM?? emission rates ranged from 7.0 to 1673 g/hr 0.58 to 99 g/hr respectively. Emission rates for ammonia and particulate matter increased with the age of the birds. Error and sensitivity analysis was conducted using Monte Carlo simulation for the calculation of emission rates. Error for ammonia emission rates was 99 g/hr during tunnel ventilation and 6 g/hr during sidewall ventilation. Error for TSP emission rates was 79 g/hr and 11 g/hr for tunnel and sidewall ventilation respectively. Sensitivity analysis showed that ventilation rate measurements and measurement of ammonia concentration had the most effect on the emission rates. Emission factors of NH? and PM?? estimated for these buildings were 1.32 ± 0.472 g/bird and 22.8 ± 9.28 g/bird, respectively. These emission factors take into account the variation of PM?? and NH? concentrations and ventilation rates with the age of the birds.

Redwine, Jarah Suzanne

2001-01-01T23:59:59.000Z

310

Computational fluid dynamics (CFD) simulations of aerosol in a u-shaped steam generator tube  

E-Print Network (OSTI)

To quantify primary side aerosol retention, an Eulerian/Lagrangian approach was used to investigate aerosol transport in a compressible, turbulent, adiabatic, internal, wall-bounded flow. The ARTIST experimental project (Phase I) served as the physical model replicated for numerical simulation. Realizable k-? and standard k-? turbulence models were selected from the computational fluid dynamics (CFD) code, FLUENT, to provide the Eulerian description of the gaseous phase. Flow field simulation results exhibited: a) onset of weak secondary flow accelerated at bend entrance towards the inner wall; b) flow separation zone development on the convex wall that persisted from the point of onset; c) centrifugal force concentrated high velocity flow in the direction of the concave wall; d) formation of vortices throughout the flow domain resulted from rotational (Dean-type) flow; e) weakened secondary flow assisted the formation of twin vortices in the outflow cross section; and f) perturbations induced by the bend influenced flow recovery several pipe diameters upstream of the bend. These observations were consistent with those of previous investigators. The Lagrangian discrete random walk model, with and without turbulent dispersion, simulated the dispersed phase behavior, incorrectly. Accurate deposition predictions in wall-bounded flow require modification of the Eddy Impaction Model (EIM). Thus, to circumvent shortcomings of the EIM, the Lagrangian time scale was changed to a wall function and the root-mean-square (RMS) fluctuating velocities were modified to account for the strong anisotropic nature of flow in the immediate vicinity of the wall (boundary layer). Subsequent computed trajectories suggest a precision that ranges from 0.1% to 0.7%, statistical sampling error. The aerodynamic mass median diameter (AMMD) at the inlet (5.5 ?m) was consistent with the ARTIST experimental findings. The geometric standard deviation (GSD) varied depending on the scenario evaluated but ranged from 1.61 to 3.2. At the outlet, the computed AMMD (1.9 ?m) had GSD between 1.12 and 2.76. Decontamination factors (DF), computed based on deposition from trajectory calculations, were just over 3.5 for the bend and 4.4 at the outlet. Computed DFs were consistent with expert elicitation cited in NUREG-1150 for aerosol retention in steam generators.

Longmire, Pamela

2007-05-01T23:59:59.000Z

311

Ocular Response of Choroidal Melanoma With Monosomy 3 Versus Disomy 3 After Iodine-125 Brachytherapy  

SciTech Connect

Purpose: To report the ocular response of choroidal melanoma with monosomy 3 vs. disomy 3 after {sup 125}I brachytherapy. Methods and Materials: We evaluated patients with ciliochoroidal melanoma managed with fine needle aspiration biopsy immediately before plaque application for {sup 125}I brachytherapy between January 1, 2005 and December 31, 2008. Patients with (1) cytopathologic diagnosis of melanoma, (2) melanoma chromosome 3 status identified by fluorescence in situ hybridization, and (3) 6 or more months of follow-up after brachytherapy were sorted by monosomy 3 vs. disomy 3 and compared by Kruskal-Wallis test. Results: Among 40 ciliochoroidal melanomas (40 patients), 15 had monosomy 3 and 25 had disomy 3. Monosomy 3 melanomas had a median greatest basal diameter of 12.00 mm and a median tumor thickness of 6.69 mm before brachytherapy; at a median of 1.75 years after brachytherapy, median thickness was 3.10 mm. Median percentage decrease in tumor thickness was 48.3%. Disomy 3 melanomas had a median greatest basal diameter of 10.00 mm and median tumor thickness of 3.19 mm before brachytherapy; at a median of 2.00 years after brachytherapy, median tumor thickness was 2.37 mm. The median percentage decrease in tumor thickness was 22.7%. Monosomy 3 melanomas were statistically greater in size than disomy 3 melanomas (p < 0.001) and showed a greater decrease in tumor thickness after brachytherapy (p = 0.006). Conclusion: In this study, ciliochoroidal melanomas with monosomy 3 were significantly greater in size than disomy 3 melanoma and showed a significantly greater decrease in thickness at a median of 1.75 years after brachytherapy. The greater decrease in monosomy 3 melanoma thickness after brachytherapy is consistent with other malignancies in which more aggressive pathology has been shown to be associated with a greater initial response to radiotherapy.

Marathe, Omkar S. [David Geffen School of Medicine, University of Los Angeles, Los Angeles, CA (United States); Wu, Jeffrey; Lee, Steve P. [Department of Radiation Oncology, University of Los Angeles, Los Angeles, CA (United States); Yu Fei; Burgess, Barry L. [Department of Ophthalmology, The Jules Stein Eye Institute, University of Los Angeles, Los Angeles, CA (United States); Leu Min [Department of Radiation Oncology, University of Los Angeles, Los Angeles, CA (United States); Straatsma, Bradley R. [Department of Ophthalmology, The Jules Stein Eye Institute, University of Los Angeles, Los Angeles, CA (United States); McCannel, Tara A., E-mail: TMcCannel@jsei.ucla.edu [Department of Ophthalmology, Jules Stein Eye Institute, University of Los Angeles, Los Angeles, CA (United States); Jonsson Comprehensive Cancer Center, University of Los Angeles, Los Angeles, CA (United States)

2011-11-15T23:59:59.000Z

312

November 2004 APS 2004 1 The SSPX is a 1m diameter magnetized coaxial gun-driven experiment designed to  

E-Print Network (OSTI)

a change in field topology in the growth of mean-field flux contours · Reconnection is generated by current, and better matching of edge current and bias flux to minimize B/B. Comparison of D2 and H2 fueled discharges discharges yield the highest magnetic field in SSPX. ·NIMROD simulations ­Show good closed nested flux

313

A diameter distribution model for even-aged beech in Denmark Thomas Nord-Larsen a,*, Quang V. Cao b  

E-Print Network (OSTI)

) linear regression, or by moment (Burk and Newberry, 1984) or percentile estimation (Bailey and Burgan, and a basal area growth projection method. Forest Sci. 36, 413­ 424. Burk, T.E., Newberry, J.D., 1984

Cao, Quang V.

314

Dependence of drop speed on nozzle diameter, viscosity and drive amplitude in drop-on-demand ink-jet printing  

E-Print Network (OSTI)

recent numerical codes developed by collaborators in the University of Leeds, and from simple models for drop-on-demand fluid jetting resulting from physical laws...

Hoath, S.D.; Hsiao, W.-K.; Jung, S.; Martin, G.D.; Hutchings, I.M.

2011-01-01T23:59:59.000Z

315

The Effects of a Hydrogen Environment on the Lifetime of Small-Diameter Drift Chamber Anode Wires  

DOE Green Energy (OSTI)

Possible deterioration of anode sense wires used in a hydrogen-filled neutron detector is investigated. Wires were loaded with free weights and put into a wire detector environment. Stainless Steel, Tungsten, and Platinum wires did not break after exposure to charge equivalent to many wire lifetimes. Furthermore, exposure to hydrogen gas caused no noticeable surface degradation or change in wire yield strength.

King, J; Smith, T; Kunkle, J; Castelaz, J; Thomson, S; Burstein, Z; Bernstein, A; Rosenberg, L; Hefner, M

2005-04-29T23:59:59.000Z

316

GAS BEHAVIOR IN LARGE DIAMETER CONTAINERS (LCDS) DURING & FOLLOWING LOADING WITH 105K EAST NORTH LOADOUT PIT SLUDGE  

DOE Green Energy (OSTI)

105K East NLOP sludge is an exceptionally benign environment with respect to producing large volumes of hydrogen quickly. In fact, should the uranium metal-water reaction become the dominant reaction for production of hydrogen, only 96 liters of hydrogen gas per m{sup 3} of sludge can be produced before the uranium metal in the sludge is consumed by the reaction. Accordingly, in an LDC containing 2.5 m{sup 3} of sludge, only 240 liters of hydrogen can be produced from the uranium-metal-water reaction. One of the conservatisms applied in this model is that the consumption of uranium metal in the reaction is not considered. The only flammable gas of interest in the calculation is hydrogen because the LDC will be vented through HEPA-type filters making it impossible to exclude aid-oxygen from reaching the interior of the LDC. Accordingly, it is assumed that sufficient oxygen to support combustion is always present in the headspace of the LDC. Two hydrogen limits are examined: (1) The Lower Flammability Limit (LFL) for hydrogen when argon is initially used as the cover gas. Since the LDC will be vented through two 2 inch ports fitted with HEPA-type filters, air will enter the LDC, diluting and eventually replacing the argon cover gas by: (a) Barometric breathing of the LDC during storage prior to processing. (b) Breathing by thermal expansion and contraction of the headspace gases during and following the transportation process. (c) Diffusion of air through the HEPA-type filtered vents during storage and processing. The LFL for hydrogen in an argon-lair mixture is the same as the LFL for hydrogen when air is the only cover gas in the LDC headspace (4%). Regardless of the exact mechanism for diluting and eventually replacing the argon with air, the headspace of a vented LDC will be diluted and will eventually contain only air. When 25% air (5% oxygen) is present, flammability is possible. Accordingly, 4% (the bounding value) will be used as the LFL for hydrogen in all calculations. The limit for hydrogen for the transportation window calculations (5%), (i.e., the normal transportation time shall not exceed 1/2 the time for hydrogen to reach 5% in any void space of the shipping container). Unlike the four case methodology used in SNF-18133, and the three case methodology used in the NLOP Addendum to SNF-18133 Revision 0, this analysis presents only the analysis necessary to establish the Safety Basis for LDCs filled with 105K East North Loadout Pit sludge using the normal (flow-through fill) method and the alternate (batch fill) method for two storage/processing locations: storage and processing at Building 325 or storage and processing at T Plant.

SHELOR, J.L.

2004-09-23T23:59:59.000Z

317

Measurement of Expected Nucleation Precursor Species and 3–500-nm Diameter Particles at Mauna Loa Observatory, Hawaii  

Science Conference Proceedings (OSTI)

Atmospheric measurements of expected homogeneous nucleation precursors and aerosols were made at the Mauna Loa Observatory, Hawaii, from 28 June to 27 July 1992. Large molecular clusters and gas phase species including sulfuric acid (H2SO4), ...

R. J. Weber; P. H. McMurry; F. L. Eisele; D. J. Tanner

1995-06-01T23:59:59.000Z

318

Theoretical and empirical study of single-substance, upward two-phase flow in a constant-diameter adiabatic pipe  

DOE Green Energy (OSTI)

A scheme is developed to describe the upward flow of a two-phase mixture of a single substance in a vertical adiabatic constant area pipe. The scheme is based on dividing the mixture into a homogeneous core surrounded by a liquid film. This core may be a mixture of bubbles in a contiguous liquid phase, or a mixture of droplets in a contiguous vapor phase. The core is turbulent, whereas the liquid film may be laminar or turbulent. The working fluid is Dichlorotetrafluoroethane CClF/sub 2/-CClF/sub 2/ known as refrigerant 114 (R-114); the two-phase mixture is generated from the single phase substance by the process of flashing. In this study, the effect of the Froude and Reynolds numbers on the liquid film characteristics is examined. An expression for an interfacial friction coefficient between the turbulent core and the liquid film is developed; it is similar to Darcy's friction coefficient for a single phase flow in a rough pipe. Results indicate that for the range of Reynolds and Froude numbers considered, the liquid film is likely to be turbulent rather than laminar. The study also shows that two-dimensional effects are important, and the flow is never fully developed either in the film or the core. In addition, the new approach for the turbulent film is capable of predicting a local net flow rate that may be upward, downward, stationary, or stalled. An actual steam-water geothermal well is simulated. A similarity theory is used to predict the steam-water mixture pressure and temperature starting with laboratory measurements on the flow of R-114. Results indicate that the theory can be used to predict the pressure gradient in the two-phase region based on laboratory measurements.

Laoulache, R.N.; Maeder, P.F.; DiPippo, R.

1987-05-01T23:59:59.000Z

319

Theoretical and empirical study of single-substance, upward two-phase flow in a constant-diameter adiabatic pipe  

SciTech Connect

A Scheme is developed to describe the upward flow of a two-phase mixture of a single substance in a vertical adiabatic constant area pipe. The scheme is based on dividing the mixture into a homogeneous core surrounded by a liquid film. This core may be a mixture of bubbles in a contiguous liquid phase, or a mixture of droplets in a contiguous vapor phase. Emphasis is placed upon the latter case since the range of experimental measurements of pressure, temperature, and void fraction collected in this study fall in the slug-churn''- annular'' flow regimes. The core is turbulent, whereas the liquid film may be laminar or turbulent. Turbulent stresses are modeled by using Prandtl's mixing-length theory. The working fluid is Dichlorotetrafluoroethane CCIF{sub 2}-CCIF{sub 2} known as refrigerant 114 (R-114); the two-phase mixture is generated from the single phase substance by the process of flashing. In this study, the effect of the Froude and Reynolds numbers on the liquid film characteristics is examined. The compressibility is accounted for through the acceleration pressure gradient of the core and not directly through the Mach number. An expression for an interfacial friction coefficient between the turbulent core and the liquid film is developed; it is similar to Darcy's friction coefficient for a single phase flow in a rough pipe. Finally, an actual steam-water geothermal well is simulated; it is based on actual field data from New Zealand. A similarity theory is used to predict the steam-water mixture pressure and temperature starting with laboratory measurements on the flow of R-114.

Laoulache, R.N.; Maeder, P.F.; DiPippo, R.

1987-05-01T23:59:59.000Z

320

Impact of Screening on Behavior During Storage and Cost of Ground Small-Diameter Pine Trees: A Case Study  

DOE Green Energy (OSTI)

Whole comminuted trees are known to self-heat and undergo quality changes during storage. Trommel screening after grinding is a process that removes fines from the screened material and removes a large proportion of high-ash, high-nutrient material. In this study, the trade-off between an increase in preprocessing cost from trommel screening and an increase in quality of the screened material was examined. Fresh lodgepole pine (Pinus contorta) was comminuted using a drum grinder with a 10-cm screen, and the resulting material was distributed into separate fines and overs piles. A third pile of unscreened material, the unsorted pile, was also examined. The three piles exhibited different characteristics during a 6-week storage period. The overs pile was much slower to heat. The overs pile reached a maximum temperature of 56.88 degrees C, which was lower than the maximum reached by the other two piles (65.98 degrees C and 63.48 degrees C for the unsorted and fines, respectively). The overs also cooled faster and dried to a more uniform moisture content and had a lower ash content than the other two piles. Both piles of sorted material exhibited improved airflow and more drying than the unsorted material. Looking at supply system costs from preprocessing through in-feed into thermochemical conversion, this study found that trommel screening reduced system costs by over $3.50 per dry matter ton and stabilized material during storage.

Erin Searcy; Brad D Blackwelder; Mark E Delwiche; Allison E Ray; Kevin L Kenney

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

1184 IEEE SENSORS JOURNAL, VOL. 11, NO. 5, MAY 2011 The Internal Aerodynamics of Cargo Containers for  

E-Print Network (OSTI)

into and are transported throughout the United States each year. The possibility that some might contain terrorist devices States each year. Serious concerns exist that a terrorist could smuggle weapons of mass destruction] outlines scientific challenges related to the threat of terrorist-made im- provised explosive devices (IEDs

Settles, Gary S.

322

Wind Turbines Under Atmospheric Icing Conditions - Ice Accretion Modeling, Aerodynamics, and Control Strategies for Mitigating Performance Degradation.  

E-Print Network (OSTI)

??This thesis presents a combined engineering methodology of ice accretion, airfoil data, and rotor performance analysis of wind turbines subject to moderate atmospheric icing conditions.… (more)

Brillembourg, Dwight

2013-01-01T23:59:59.000Z

323

Low Wind Speed Technology Phase II: Reducing Cost of Energy Through Rotor Aerodynamics Control; Global Energy Concepts, LLC  

DOE Green Energy (OSTI)

This fact sheet describes a subcontract with Global Energy Concepts to evaluate a wide range of wind turbine configurations and their impact on overall cost of energy (COE).

Not Available

2006-03-01T23:59:59.000Z

324

Research and design work on heat emission and aerodynamic resistance of tube bundles in air cooling equipment  

SciTech Connect

Results of studies of heat emission using methods of local and global thermal simulation of crossflow small-array bundles of tubes finned with wound aluminum strip, and flared into the load-bearing wall, are reported. Correction factors applicable to the method of simulating convective heat transfer over the range Re = (2.5-25).10/sup 3/ are given, with variation in the number of rows over the air course from one to four.

Kuntysh, V.B.; Fedotova, L.M.

1983-01-01T23:59:59.000Z

325

DOE/SEA-04  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

μm in aerodynamic μm in aerodynamic diameter (PM 10 ). As a result of the study, on August 19, 2005, the Virginia Department of Environmental Quality (VDEQ) issued a letter to Mirant requesting that Mirant "undertake such action as is necessary to ensure protection of human health and the environment, in the area surrounding the Potomac River Generating Station, including the potential reduction of levels of operation, or potential shutdown of the facility." On August 24, 2005, in response to VDEQ's August 19, 2005, letter, Mirant decided to shut down all five generating units at the Plant. Figure S-1. The location of the Plant in relation to the central Washington, D.C. area. DOE/SEA-04 November 2006 S-3 DOE Action On August 24, 2005, the District of Columbia Public Service Commission (DCPSC) filed an

326

Estimating the Accuracy of Polarimetric Radar–Based Retrievals of Drop-Size Distribution Parameters and Rain Rate: An Application of Error Variance Separation Using Radar-Derived Spatial Correlations  

Science Conference Proceedings (OSTI)

The accuracy of retrieving the two drop size distribution (DSD) parameters, median volume diameter (D0), and normalized intercept parameter (NW), as well as rain rate (R), from polarimetric C-band radar data obtained during a cool-season, long-...

M. Thurai; V. N. Bringi; L. D. Carey; P. Gatlin; E. Schultz; W. A. Petersen

2012-06-01T23:59:59.000Z

327

DOE-HDBK-1169-2003; DOE Handbook Nuclear Air Cleaning Handbook  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

viii viii ACRONYMS, ABBREVIATIONS, AND CONVERSION CHARTS ACGIH American Conference of Governmental Industrial Hygienists ACI American Concrete Institute ADC Air Diffusion Council ADL Additional Dynamic Loads AEC U.S. Atomic Energy Commission (predecessor of ERDA, DOE, and NRC) AFI Air Filter Institute AGS American Glovebox Society AgX silver-exchanged zeolite AHJ Authority Having Jurisdiction AISI American Iron and Steel Institute AISC American Institute of Steel Construction ALAP as low as practicable (obsolete term for ALARA) ALARA as low as reasonably achievable AMCA Air Moving and Conditioning Association AMD aerodynamic mean diameter (of particles) ANS American Nuclear Society ANSI American National Standards Institute APA American Plywood Association

328

High-Order Terms in the Asymptotic Expansions of the Steady-State Voltage Potentials in the Presence of Conductivity Inhomogeneities of Small Diameter  

E-Print Network (OSTI)

We derive high-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of a finite number of diametrically small inhomogeneities with conductivities different from the background conductivity. Our derivation is rigorous, and based on layer potential techniques. The asymptotic expansions in this paper are valid for inhomogeneities with Lipschitz boundaries and those with extreme conductivities.

Habib Ammari; Hyeonbae Kang

2001-12-12T23:59:59.000Z

329

Theoretical and experimental power from large horizontal-axis wind turbines  

SciTech Connect

A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-O (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

Viterna, L A; Janetzke, D C

1982-09-01T23:59:59.000Z

330

Buildings Energy Data Book: 1.4 Environmental Data  

Buildings Energy Data Book (EERE)

0 0 2010 Emissions Summary Table for U.S. Buildings Energy Consumption (Thousand Short Tons) (1) Buildings Buildings Percent Wood/SiteFossil Electricity Total U.S. Total of U.S. Total SO2 (2) 54% NOx 17% CO 5% VOCs 2% PM-2.5 15% PM-10 7% Note(s): Source(s): 1) VOCs = volatile organic compounds; PM-10 = particulate matter less than 10 micrometers in aerodynamic diameter. PM-2.5 = particulate matter less than 2.5 micrometers in aerodynamic diameter. CO and VOCs site fossil emissions mostly from wood burning. 2) Emissions of SO2 are 28% lower for 2002 than 1994 estimates since Phase II of the 1990 Clean Air Act Amendments began in 2000. Buildings Energy Consumption related to SO2 emissions dropped 27% from 1994 to 2002. EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Summary Reference Case Tables, Table A2, p. 3-5; and EPA, 1970-2010 National Emissions

331

Investigation of technology for monitoring UF/sub 6/ mass flow  

DOE Green Energy (OSTI)

The applicability of gas flow meters, in-line enrichment monitors, and instruments for measuring uranium or UF/sub 6/ concentrations in process streams as a means for verifying declared plant throughput have been investigated. The study was performed to assist the International Atomic Energy Agency in the development of an effective international safeguards approach for aerodynamic uranium enrichment plants. Because the process gas in an aerodynamic enrichment facility is a mixture of UF/sub 6/ and H/sub 2/, a mass flow measurement in conjunction with a measurement of the uranium (or UF/sub 6/) concentration in the process gas is required to quantify the amount of uranium being fed into, and withdrawn from, the cascades for nuclear materials accountability verification. In-line enrichment monitors developed for the US gas centrifuge enrichment plant are found to be applicable only to pure UF/sub 6/ streams. Of the five gas flow meters evaluated, the orifice meter and the pitot tube meter are judged the best choices for the proposed applications: the first is recommended for low-velocity gas, small diameter piping; the latter, for high-velocity gas, large diameter piping. Of the six procedures evaluated for measurement of uranium or UF/sub 6/ concentration in a mixed process stream, infrared-ultraviolet-visible spectrophotometry is judged to be the best procedure currently available to perform the required measurement. 4 refs., 3 figs., 3 tabs.

Cooley, J.N.; Moran, B.W.; Swindle, D.W. Jr.

1987-06-01T23:59:59.000Z

332

Wind loading on solar concentrators: some general considerations  

DOE Green Energy (OSTI)

A survey has been completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view; current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed; recent results on heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly. Wind loads, i.e., forces and moments, are proportional to the square of the mean wind velocity. Forces are proportional to the square of concentrator diameter, and moments are proportional to the cube of diameter. Thus, wind loads have an important bearing on size selection from both cost and performance standpoints. It is concluded that sufficient information exists so that reasonably accurate predictions of wind loading are possible for a given paraboloidal concentrator configuration, provided that reliable and relevant wind conditions are specified. Such predictions will be useful to the design engineer and to the systems engineer as well. Information is lacking, however, on wind effects in field arrays of paraboloidal concentrators. Wind tunnel tests have been performed on model heliostat arrays, but there are important aerodynamic differences between heliostats and paraboloidal dishes.

Roschke, E. J.

1984-05-01T23:59:59.000Z

333

Method for determining aerosol particle size, device for determining aerosol particle size  

DOE Patents (OSTI)

A method for determining the mass median diameter D of particles contained in a fluid is provided wherein the data of the mass of a pre-exposed and then a post-exposed filter is mathematically combined with data concerning the pressure differential across the same filter before and then after exposure to a particle-laden stream. A device for measuring particle size is also provided wherein the device utilizes the above-method for mathematically combining the easily quantifiable data.

Novick, Vincent J.

1997-12-01T23:59:59.000Z

334

Numerical modeling of the aerodynamics, heat exchange, and combustion of a polydisperse ensemble of coke-ash particles in ascending axisymmetric two-phase flow  

Science Conference Proceedings (OSTI)

A two-dimensional stationary model of motion, heat and mass exchange, and chemical reaction of polydisperse coke and ash particles in ascending gas-suspension flow has been constructed with allowance for the turbulent and pseudo turbulent mechanisms of transfer in the dispersed phase. The system of equations that describes motion and heat transfer in the solid phase has been closed at the level of the equations for the second moments of velocity and temperature pulsations, whereas the momentum equations of the carrying medium have been closed using the equation for turbulent gas energy, which allows for the influence of the particles and heterogeneous reactions.

B.B. Rokhman [National Academy of Sciences of Ukraine, Kiev (Ukraine). Institute of Coal Power Technologies

2009-07-15T23:59:59.000Z

335

Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles (Presentation)  

SciTech Connect

This presentation discusses a method of accounting for realistic levels of driver aggression to higher-level vehicle studies, including the impact of variation in real-world driving characteristics (acceleration and speed) on vehicle energy consumption and different powertrains (e.g., conventionally powered vehicles versus electrified drive vehicles [xEVs]). Aggression variation between drivers can increase fuel consumption by more than 50% or decrease it by more than 20% from average. The normalized fuel consumption deviation from average as a function of population percentile was found to be largely insensitive to powertrain. However, the traits of ideal driving behavior are a function of powertrain. In conventional vehicles, kinetic losses dominate rolling resistance and aerodynamic losses. In xEVs with regenerative braking, rolling resistance and aerodynamic losses dominate. The relation of fuel consumption predicted from real-world drive data to that predicted by the industry-standard HWFET, UDDS, LA92, and US06 drive cycles was not consistent across powertrains, and varied broadly from the mean, median, and mode of real-world driving. A drive cycle synthesized by NREL's DRIVE tool accurately and consistently reproduces average real-world for multiple powertrains within 1%, and can be used to calculate the fuel consumption effects of varying levels of driver aggression.

Neubauer, J.; Wood, E.

2013-05-01T23:59:59.000Z

336

Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles (Presentation)  

SciTech Connect

This presentation discusses a method of accounting for realistic levels of driver aggression to higher-level vehicle studies, including the impact of variation in real-world driving characteristics (acceleration and speed) on vehicle energy consumption and different powertrains (e.g., conventionally powered vehicles versus electrified drive vehicles [xEVs]). Aggression variation between drivers can increase fuel consumption by more than 50% or decrease it by more than 20% from average. The normalized fuel consumption deviation from average as a function of population percentile was found to be largely insensitive to powertrain. However, the traits of ideal driving behavior are a function of powertrain. In conventional vehicles, kinetic losses dominate rolling resistance and aerodynamic losses. In xEVs with regenerative braking, rolling resistance and aerodynamic losses dominate. The relation of fuel consumption predicted from real-world drive data to that predicted by the industry-standard HWFET, UDDS, LA92, and US06 drive cycles was not consistent across powertrains, and varied broadly from the mean, median, and mode of real-world driving. A drive cycle synthesized by NREL's DRIVE tool accurately and consistently reproduces average real-world for multiple powertrains within 1%, and can be used to calculate the fuel consumption effects of varying levels of driver aggression.

Neubauer, J.; Wood, E.

2013-05-01T23:59:59.000Z

337

Nanomaterial Exposure A d M Assessment and Management ...  

Science Conference Proceedings (OSTI)

... Page 20. Purpose of the Assessment BASIC AEROSOL CHARACTERIZATION ... counting - Aerodynamic - Thermodynamic - Electrical mobility ...

2012-10-10T23:59:59.000Z

338

Coal Particle Flow Patterns for O2 Enriched, Low NOx Burners  

SciTech Connect

This project involved a systematic investigation examining the effect of near-flame burner aerodynamics on standoff distance and stability of turbulent diffusion flames and the resultant NO{sub x} emissions from actual pulverized coal diffusion flames. Specifically, the scope of the project was to understand how changes in near-flame aerodynamics and transport air oxygen partial pressure can influence flame attachment and coal ignition, two properties essential to proper operation of low NO{sub x} burners. Results from this investigation utilized a new 2M tall, 0.5m in diameter combustor designed to evaluate near-flame combustion aerodynamics in terms of transport air oxygen partial pressure (Po{sub 2}), coal fines content, primary fuel and secondary air velocities, and furnace wall temperature furnish insight into fundamental processes that occur during combustion of pulverized coal in practical systems. Complementary cold flow studies were conducted in a geometrically similar chamber to analyze the detailed motion of the gas and particles using laser Doppler velocimetry. This final technical report summarizes the key findings from our investigation into coal particle flow patterns in burners. Specifically, we focused on the effects of oxygen enrichment, the effect of fines, and the effect of the nozzle velocity ratio on the resulting flow patterns. In the cold flow studies, detailed measurements using laser Doppler velocimetry (LDV) were made to determine the details of the flow. In the hot flow studies, observations of flame stability and measurements of NO{sub x} were made to determine the effects of the flow patterns on burner operation.

Jennifer Sinclair Curtis

2005-08-01T23:59:59.000Z

339

Microsoft Word - doe_mirant_order_sierraclub.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 20 February 20 th , 2006 Mr. Lawrence Mansueti Permitting, Siting, and Analysis Division Office of Electricity Delivery and Energy Reliability Department of Energy 1000 Independence Avenue, SW Washington, DC 20585-0119 Dear Mr. Mansueti, This letter is in response to the Department of Energy Emergency Order to Resume Limited Operation at the Potomac River Generating Station, Alexandria, VA, in Response to Electricity Reliability Concerns in Washington, DC. For over 50 years, and as indicated by Mirant's own recent modeling analysis, citizens in the city of Alexandria have been exposed to significant health risks, including concentrations of nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), and particulate matter with aerodynamic diameter less than 10 microns (PM

340

DOE/SEA-04  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

μm in aerodynamic diameter (PM 10 ). As a result of the study, on August 19, 2005, the Virginia Department of Environmental Quality (VDEQ) issued a letter to Mirant requesting that Mirant "undertake such action as is necessary to ensure protection of human health and the environment, in the area surrounding the Potomac River Generating Station, including the potential reduction of levels of operation, or potential shutdown of the facility." On August 24, 2005, in response to VDEQ's August 19, 2005, letter, Mirant decided to shut down all five generating units at the Plant. Figure S-1. The location of the Plant in relation to the central Washington, D.C. area. DOE/SEA-04 November 2006 S-3 DOE Action On August 24, 2005, the District of Columbia Public Service Commission (DCPSC) filed an

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Acronyms  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 2001 May 2001 Supplement to the Draft Environmental Impact Statement U.S. Department of Energy Office of Civilian Radioactive Waste Management DOE/EIS-0250D-S Next Section ACRONYMS AND ABBREVIATIONS To ensure a more reader-friendly document, the U.S. Department of Energy (DOE) limited the use of acronyms and abbreviations in this Supplement. Acronyms and abbreviations are defined the first time they are used in each chapter. Acronyms and abbreviations used in tables and figures because of space limitations are listed in footnotes to the tables and figures. CFR Code of Federal Regulations DOE U.S. Department of Energy EIS environmental impact statement FR Federal Register MTHM metric tons of heavy metal NEPA National Environmental Policy Act of 1969, as amended PM 10 particulate matter with an aerodynamic diameter of 10 micrometers or less

342

Vertical axis wind turbine power regulation through centrifugally pumped lift spoiling  

Science Conference Proceedings (OSTI)

This paper describes an approach for lowering the rated windspeeds of Darrieus-type vertical axis wind turbines (VAWTs) whose blades are hollow aluminum extrusions. The blades, which when rotating act as centrifugal pumps, are fitted with a series of small perforations distributed along a portion of the blades' span. By valving the ends of the hollow blades, flow into the blade ends and out of the perforations may be controlled. This flow can induce premature aerodynamic stall on the blade elements, thereby reducing both the rated power of the turbine and its cost-of-energy. The concept has been proven on the Sandia National Laboratories 5-m diameter research VAWT and force balance and flow visualization wind tunnel tests have been conducted using a blade section designed for the VAWT application.

Klimas, P.C.; Sladky, J.F. Jr.

1985-01-01T23:59:59.000Z

343

NICKEL SPECIATION OF URBAN PARTICULATE MATTER  

SciTech Connect

A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

2003-10-01T23:59:59.000Z

344

Production of High Quality Dust Control Foam to Minimize Moisture Addition to Coal  

E-Print Network (OSTI)

Foam is displacing wet suppression as the method of choice for controlling fugitive emissions from coal. Coal treated by wet suppression consumes through moisture addition, a heat energy equivalent of 1 ton out of every 500 tons fired. The application of foam requires less than 10% of the moisture usually required for wet suppression. In addition, foam is a much more effective dust suppressant, especially on respirable dust (particle with an aerodynamic diameter less than 10 microns). To achieve maximum benefit from foam dust control, efficient on-site production of dry, stable foam is required. This paper discusses the basics of foam production and the many variables affecting foam expansion ratios. Successful applications of foam are also described.

Termine, F.; Jordan, S. T.

1985-05-01T23:59:59.000Z

345

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS  

SciTech Connect

This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

Glenn C. England; Stephanie Wien; Mingchih O. Chang

2002-08-01T23:59:59.000Z

346

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS  

SciTech Connect

This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

Glenn England; Oliver Chang; Stephanie Wien

2002-02-14T23:59:59.000Z

347

Synchronized droplet size measurements for coal-water-slurry (CWS) diesel sprays of an electronically-controlled fuel injection system  

DOE Green Energy (OSTI)

Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMDs near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 {mu}m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

Kihm, K.D.; Terracina, D.P.; Payne, S.E.; Caton, J.A. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1993-12-31T23:59:59.000Z

348

Materials Reliability Program: Assessment of the Current Status and Completeness of Work on Inner and Outer Diameter Stress Corrosion Cracking of Austenitic Stainless Steels in PWR Plants (MRP-352)  

Science Conference Proceedings (OSTI)

Field experience with austenitic stainless steel in operating pressurized water reactors (PWRs) has, in general, been good, with a relatively small number of failures due to stress corrosion cracking (SCC) observed worldwide. Nevertheless, the number and nature of these failures are not insignificant and could potentially become more important as the age of the existing PWR fleet increases. In light of this, it has been identified that an ongoing focused research and plant management program is ...

2013-03-31T23:59:59.000Z

349

Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop  

SciTech Connect

The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

McCulloch, R.W.; MacPherson, R.E.

1983-03-01T23:59:59.000Z

350

Evaluation of the Hydraulic Capacity and Mass Transfer Efficiency of the CSSX Process with the Optimized Solvent in a Single Stage of 5.5-cm-Diameter Centrifugal Contactor  

Science Conference Proceedings (OSTI)

The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections of the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A’s 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of a centrifugal contactor for use in the CSSX process. A prototype of any centrifugal contactors designed for future pilot-scale or full-scale processing should be thoroughly tested prior to implementation.

Law, Jack Douglas; Tillotson, Richard Dean; Todd, Terry Allen

2002-09-01T23:59:59.000Z

351

Evaluation of the Hydraulic Performance and Mass Transfer Efficiency of the CSSX Process with the Optimized Solvent in a Single Stage of 5.5-Cm Diameter Centrifugal Contactor  

Science Conference Proceedings (OSTI)

The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections of the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A's 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of a centrifugal contactor for use in the CSSX process. A prototype of any centrifugal contactors designed for future pilot-scale or full-scale processing should be thoroughly tested prior to implementation.

Law, J.D.; Tillotson, R.D.; Todd, T.A.

2002-09-19T23:59:59.000Z

352

Method for determining aerosol particle size, device for determining aerosol particle size  

DOE Patents (OSTI)

A method for determining the mass median diameter D of particles contained in a fluid is provided wherein the data of the mass of a pre-exposed and then a post-exposed filter is mathematically combined with data concerning the pressure differential across the same filter before and then after exposure to a particle-laden stream. A device for measuring particle size is also provided wherein the device utilizes the above-method for mathematically combining the easily quantifiable data. 2 figs.

Novick, V.J.

1998-10-06T23:59:59.000Z

353

Dept. of Aerospace Engg. Department of Aerospace Engineering  

E-Print Network (OSTI)

· Laboratories: - Aerodynamics - Gas Dynamics - Rarefied Gas Dynamics - Rockets & Missiles - Combustion & Flow Three groups: - Aerodynamics & Flight Mechanics - Propulsion & Combustion - Aerospace Structures Fluid Dynamics Vortex Dynamics, Supersonic Mixing and Combustion Helicopters, MAVs Rotating

Das, Bijoy Krishna

354

An evolutionary environment for wind turbine blade design  

Science Conference Proceedings (OSTI)

The aerodynamic design of wind turbine blades is carried out by means of evolutionary techniques within an automatic design environment based on evolution. A simple, fast, and robust aerodynamic simulator is embedded in the design environment to predict ...

V. Díaz Casás; F. Lopez Peña; A. Lamas; R. J. Duro

2005-06-01T23:59:59.000Z

355

doi:10.1017/S0022112005006026 Printed in the United Kingdom 1 Aerodynamic effects in the break-up of liquid jets: on the first wind-induced break-up regime  

E-Print Network (OSTI)

We present both numerical and analytical results from a spatial stability analysis of the coupled gas–liquid hydrodynamic equations governing the first wind-induced (FWI) liquid-jet break-up regime. Our study shows that an accurate evaluation of the growth rate of instabilities developing in a liquid jet discharging into a still gaseous atmosphere requires gas viscosity to be included in the stability equations even for low Weg, whereWeg = ?g U 2 l R0/?,and?g,Ul,R0 and ? are the gas density, the liquid injection velocity, the jet radius and the surface tension coefficient, respectively. The numerical results of the complete set of equations, in which the effect of viscosity in the gas perturbations is treated self-consistently for the first time, are in accordance with recently reported experimental growth rates. This permits us to conclude that the simple stability analysis presented here can be used to predict experimental results. Moreover, in order to throw light on the physical role played by the gas viscosity in the liquid-jet break-up process, we have considered the limiting case of very high Reynolds numbers and performed an asymptotic analysis which provides us with a parameter, ?, that measures the relative importance of viscous effects in the gas perturbations. The criterion |?|?1, with ? computed aprioriusing only the much simpler inviscid stability results is a guide to assess the accuracy of a stability analysis in which viscous diffusion is neglected. We have also been able to explain the origin of the ad hoc constant 0.175 introduced by Sterling & Sleicher (J. Fluid Mech. vol. 68, 1975, p. 477) to correct the discrepancies between Weber’s results (Z. Angew. Math.

J. M. Gordillo; M. P Érez-saborid

2005-01-01T23:59:59.000Z

356

Aerodyn Energiesysteme GmbH | Open Energy Information  

Open Energy Info (EERE)

Germany Product Consulting engineers involved in converter conception and development, load simulation, aerodynamics, fibre-composite technology, mechanical engineering,...

357

University of Toronto | Faculty of Applied Science and Engineering | Research Awards University of Toronto | Faculty of Applied Science and Engineering  

E-Print Network (OSTI)

.E. Sullivan MIE Aerodynamic improvements to microair vehicles and wind turbines J.S. Wallace MIE Diesel

Sislian, J. P.

358

Siemens Westinghouse Advanced Turbine Systems Program Final Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

development concentrated on the following areas: aerodynamic design, combustion, heat transfercooling design, engine mechanical design, advanced alloys, advanced coating...

359

Firm Uses DOE?s Fastest Supercomputer to Streamline Long-Haul Trucks  

DOE R&D Accomplishments (OSTI)

Sophisticated simulation on the world?s fastest computer for science makes trucks more aerodynamic, saves fuel, helps environment.

2011-03-28T23:59:59.000Z

360

Experiments with Wind to Produce Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Nat EXPERIMENTS WITH WIND TO PRODUCE ENERGY Curriculum: Wind Power (simple machines, weatherclimatology, aerodynamics, leverage, mechanics, atmospheric pressure, and energy...

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A catalog of bright calibrator stars for 200-meter baseline near-infrared stellar interferometry  

E-Print Network (OSTI)

We present in this paper a catalog of reference stars suitable for calibrating infrared interferometric observations. In the K band, visibilities can be calibrated with a precision of 1% on baselines up to 200 meters for the whole sky, and up to 300 meters for some part of the sky. This work, extending to longer baselines a previous catalog compiled by Borde et al. (2002), is particularly well adapted to hectometric-class interferometers such as the Very Large Telescope Interferometer (VLTI, Glindemann et al. 2003) or the CHARA array (ten Brummelaar et al. 2003) when observing well resolved, high surface brightness objects (K<8). We use the absolute spectro-photometric calibration method introduced by Cohen et al. (1999) to derive the angular diameters of our new set of 948 G8--M0 calibrator stars extracted from IRAS, 2MASS and MSX catalogs. Angular stellar diameters range from 0.6 mas to 1.8 mas (median is 1.1 mas) with a median precision of 1.35%. For both the northern and southern hemispheres, the closest calibrator star is always less than 10 degree away.

A. Merand; P. Borde; V. Coude du Foresto

2004-12-10T23:59:59.000Z

362

Dynamic Contrast-Enhanced MRI Kinetics of Invasive Breast Cancer: A Potential Prognostic Marker for Radiation Therapy  

SciTech Connect

Purpose: Our goal was to determine the correlations between dynamic contrast-enhanced MRI (DCE-MRI) kinetics of breast cancers and axillary nodal status (ANS) which may have prognostic value in designing radiation therapy recommendations. Methods and Materials: A retrospective review identified 167 consecutive patients treated with external beam radiotherapy for invasive breast cancer from Jan 1, 2006 to Nov 1, 2007. Patients with DCE-MRI kinetic data from our institution who underwent axillary surgical staging prior to chemotherapy were included. ANS was assessed as positive or negative by pathology record review. For each primary cancer, maximum tumor diameter and kinetic values for initial peak enhancement (PE), percent initial rapid enhancement (RE), and percent delayed washout enhancement (WE) were measured with a computer-aided evaluation program. Univariate, multivariate, and receiver operating characteristic curve analyses were performed according to the ANS. Results: Forty-six patients met study criteria, with 32 (70%) node-negative and 14 (30%) node-positive patients. Median PE was significantly greater in node-positive patients (209%) than in node-negative patients (138%, p = 0.0027). Similarly, median RE was significantly greater in node-positive patients (57%) than in node-negative patients (27%, p = 0.0436). WE was not different between groups (p = 0.9524). Median maximum tumor diameter was greater in node-positive patients (26 mm) than in node-negative patients (15 mm, p = 0.015). Multivariate analysis showed that only PE trended toward significance (p = 0.18). Conclusions: DCE-MRI kinetics of primary breast cancers correlate with ANS. Multivariate analysis demonstrates the correlation is not due simply to underlying lesion size. If validated prospectively, DCE-MRI kinetics may aid as a tool in selecting patients or designing fields for radiation therapy.

Loiselle, Christopher R., E-mail: Loiselle@u.washington.ed [Department of Radiation Oncology, University of Washington Medical Center, Seattle, Washington 98195 (United States); Eby, Peter R.; DeMartini, Wendy B.; Peacock, Sue M.S. [Department of Radiology, University of Washington Medical Center, Seattle, Washington 98195 (United States); Seattle Cancer Care Alliance, 825 Eastlake Ave. E, Seattle, Washington 98109 (United States); Bittner, Nathan [Department of Radiation Oncology, University of Washington Medical Center, Seattle, Washington 98195 (United States); Lehman, Constance D. [Department of Radiology, University of Washington Medical Center, Seattle, Washington 98195 (United States); Seattle Cancer Care Alliance, 825 Eastlake Ave. E, Seattle, Washington 98109 (United States); Kim, Janice N. [Department of Radiation Oncology, University of Washington Medical Center, Seattle, Washington 98195 (United States); Seattle Cancer Care Alliance, 825 Eastlake Ave. E, Seattle, Washington 98109 (United States)

2010-04-15T23:59:59.000Z

363

Filter loading corrections for real-time aethalometer measurements of fresh  

NLE Websites -- All DOE Office Websites (Extended Search)

Filter loading corrections for real-time aethalometer measurements of fresh Filter loading corrections for real-time aethalometer measurements of fresh diesel soot. (2007) Title Filter loading corrections for real-time aethalometer measurements of fresh diesel soot. (2007) Publication Type Journal Article Year of Publication 2007 Authors Jimenez, Jorge, Candis S. Claiborn, Timothy Larson, Thomas W. Kirchstetter, and Lara A. Gundel Journal Journal of Air and Waste Management Association Volume 57 Issue 7 Pagination 868-873 Abstract In this study, a correction was developed for the aethalometer to measure real-time black carbon (BC) concentrations in an environment dominated by fresh diesel soot. The relationship between the actual mass-specific absorption coefficient for BC and the BC-dependent attenuation coefficients was determined from experiments conducted in a diesel exposure chamber that provided constant concentrations of fine particulate matter (PM; PM(2.5); PM < 2.5 microm in aerodynamic diameter) from diesel exhaust. The aethalometer reported BC concentrations decreasing with time from 48.1 to 31.5 microg m(-3) when exposed to constant PM(2.5) concentrations of 55 +/- 1 microg m(-3) and b(scat) = 95 +/- 3 Mm(-1) from diesel exhaust. This apparent decrease in reported light-absorbing PM concentration was used to derive a correction K(ATN) for loading of strong light-absorbing particles onto or into the aethalometer filter tape, which was a function of attenuation of light at 880 nm by the embedded particles

364

Subarctic atmospheric aerosol composition: 1. Ambient aerosol characterization  

SciTech Connect

Sub-Arctic aerosol was sampled during July 2007 at the Abisko Research Station Stordalen field site operated by the Royal Swedish Academy of Sciences. Located in northern Sweden at 68º latitude and 385 meters above sea level (msl), this site is classified as a semi-continuous permafrost mire. Number density, size distribution, cloud condensation nucleus properties, and chemical composition of the ambient aerosol were determined. Backtrajectories showed that three distinct airmasses were present over Stordalen during the sampling period. Aerosol properties changed and correlated with airmass origin to the south, northeast, or west. We observe that Arctic aerosol is not compositionally unlike that found in the free troposphere at mid-latitudes. Internal mixtures of sulfates and organics, many on insoluble biomass burning and/or elemental carbon cores, dominate the number density of particles from ~200 to 2000 nm aerodynamic diameter. Mineral dust which had taken up gas phase species was observed in all airmasses. Sea salt, and the extent to which it had lost volatile components, was the aerosol type that most varied with airmass.

Friedman, Beth; Herich, Hanna; Kammermann, Lukas; Gross, Deborah S.; Ameth, Almut; Holst, Thomas; Lohmann, U.; Cziczo, Daniel J.

2009-07-10T23:59:59.000Z

365

Projected compliance with the PM2.5 National Ambient Air Quality Standards. Final report  

SciTech Connect

In 1997, the State of Maryland had no available ambient Federal Reference Method data on particulate matter less than 2.5 microns in aerodynamic diameter (PM2.5) but did have annual ambient data for particulate matter smaller than 10 microns (PM10) at twenty-four sites. The PM10 data was analyzed in conjunction with local annual and seasonal ZIP code-level emission inventories and with speciated PM2.5 data from four nearby monitors in the IMPROVE network (located in the national parks and wilderness areas) in an effort to predict annual average and seasonal high PM2.5 concentrations at the twenty-four PM10 monitor sites operated from 1992 to 1996. All seasonal high concentrations were predicted to be below the 24-hour PM2.5 National Ambient Air Quality Standard (NAAQS) at the sites operated in Maryland between 1992 and 1996. A geographic analysis of the emission inventories was also performed to evaluate the impact of PM2.5 emissions from Maryland`s power plants on fourteen monitor locations that were predicted to have a reading exceeding the annual NAAQS for any year.

Walsh, K.; Gardner, R.

1999-02-01T23:59:59.000Z

366

GAS TURBINE REHEAT USING IN SITU COMBUSTION  

Science Conference Proceedings (OSTI)

In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

2004-05-17T23:59:59.000Z

367

Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency Studies Using Laboratory Generated Particles  

DOE Green Energy (OSTI)

Diesel offers higher fuel efficiency, but produces higher exhaust particulate matter. Diesel particulate filters are presently the most efficient means to reduce these emissions. These filters typically trap particles in two basic modes: at the beginning of the exposure cycle the particles are captured in the filter holes, and at longer times the particles form a "cake" on which particles are trapped. Eventually the "cake" removed by oxidation and the cycle is repeated. We have investigated the properties and behavior of two commonly used filters: silicon carbide (SiC) and cordierite (DuraTrap® RC) by exposing them to nearly-spherical ammonium sulfate particles. We show that the transition from deep bed filtration to "cake" filtration can easily be identified by recording the change in pressure across the filters as a function of exposure. We investigated performance of these filters as a function of flow rate and particle size. The filters trap small and large particles more efficiently than particles that are ~80 to 200 nm in aerodynamic diameter. A comparison between the experimental data and a simulation using incompressible lattice-Boltzmann model shows very good qualitative agreement, but the model overpredicts the filter’s trapping efficiency.

Yang, Juan; Stewart, Marc; Maupin, Gary D.; Herling, Darrell R.; Zelenyuk, Alla

2009-04-15T23:59:59.000Z

368

Immunochemical approach to indoor aeroallergen quantitation with a new volumetric air sampler: studies with mite, roach, cat, mouse, and guinea pig antigens  

SciTech Connect

We describe a new high-volume air sampler for determining antigen concentrations in homes and illustrate its use for quantitating airborne house dust mite, cat, cockroach, mouse, and guinea pig antigens. The concentration of house dust-mite antigen was similar from houses in Rochester, Minn. and tenement apartments in Harlem, N. Y., but cockroach and mouse urinary proteins were present only in Harlem. The amount of cat or guinea pig antigen varied as expected with the number of pets in the home. In calm air the airborne concentration of mite and cat antigen was similar throughout the house but increased greatly in a bedroom when bedding was changed. In calm air most of the cat and mite antigens were associated with respirable particles less than 5 microns mean aerodynamic mass diameter, but in air sampled after the bedding was changed, more cat antigen was found in particles greater than 5 microns. The apparatus and technique described can provide objective data concerning the magnitude and the relative distribution and duration of suspended particles of defined sizes, which contain allergen activity.

Swanson, M.C.; Agarwal, M.K.; Reed, C.E.

1985-11-01T23:59:59.000Z

369

Results from the DCH-1 (Direct Containment Heating) experiment. [Pressurized melt ejection and direct containment heating  

SciTech Connect

The DCH-1 (Direct Containment Heating) test was the first experiment performed in the Surtsey Direct Heating Test Facility. The test involved 20 kg of molten core debris simulant ejected into a 1:10 scale model of the Zion reactor cavity. The melt was produced by a metallothermic reaction of iron oxide and aluminum powders to yield molten iron and alumina. The cavity model was placed so that the emerging debris propagated directly upwards along the vertical centerline of the chamber. Results from the experiment showed that the molten material was ejected from the caviity as a cloud of particles and aerosol. The dispersed debris caused a rapid pressurization of the 103-m/sup 3/ chamber atmosphere. Peak pressure from the six transducers ranged from 0.09 to 0.13 MPa (13.4 to 19.4 psig) above the initial value in the chamber. Posttest debris collection yielded 11.6 kg of material outside the cavity, of which approximately 1.6 kg was attributed to the uptake of oxygen by the iron particles. Mechanical sieving of the recovered debris showed a lognormal size distribution with a mass mean size of 0.55 mm. Aerosol measurements indicated a subsantial portion (2 to 16%) of the ejected mass was in the size range less than 10 m aerodynamic equivalent diameter.

Tarbell, W.W.; Brockmann, J.E.; Pilch, M.; Ross, J.E.; Oliver, M.S.; Lucero, D.A.; Kerley, T.E.; Arellano, F.E.; Gomez, R.D.

1987-05-01T23:59:59.000Z

370

Ambient aerosol sampling inlet for flow rates of 100 and 400 l/min  

E-Print Network (OSTI)

New bioaerosol sampling inlets were designed and tested that have nominal exhaust flow rates of 100 L/min to 400 L/min, and which have internal fractionators and screens to scalp large, unwanted particles and debris from the transmitted size distribution. These units consist of the same aspiration section, which is a 100 L/min Bell Shaped Inlet (BSI-100), and different pre-separators. The pre-separators are called the IRI-100 (Inline Real Impactor) with an exhaust flow rate of 100 L/min, the IRI-400 (exhaust flow rate of 400 L/min), the IVI-300 (Inline Virtual Impactor for a flow rate of 300 L/min) and the IVI-400. These units were tested in a wind tunnel at speeds of 2, 8, and 24 km/hr with particle sizes between 3 and 20 ?m AD (aerodynamic diameter). The units show wind independent characteristics over the range of wind speeds tested. The aspiration section of the BSI-100 has greater than 85% penetration for particle sizes ? 10 ?m AD. The IRI-100, IRI-400, IVI-300 and IVI-400, when combined with the BSI-100 all provide cutpoints of 11 ± 0.5 ?m AD.

Baehl, Michael Matthew

2007-12-01T23:59:59.000Z

371

Real-time Shape-based Particle Separation and Detailed In-situ Particle Shape Characterization  

SciTech Connect

Particle shape is an important attribute that is very difficult to characterize. We present a new portable system that offers, for the first time, the opportunity to separate particles with different shapes and characterize their chemical and physical properties, including their dynamic shape factors (DSFs) in the transition and free-molecular regimes, with high precision, in-situ, and in real-time. The system uses a new generation aerosol particle mass analyzer (APM) to classify particles based on their masses and transport them to a differential mobility analyzer (DMA) that is used to select particles of one charge, one mass, and one shape. These highly uniform particles are ready for use and/or characterization by any application or analytical tool. We combine APM and DMA with our single particle mass spectrometer, SPLAT II, to form the ADS, and demonstrate its utility to measure in real-time individual particle compositions and vacuum aerodynamic diameters to yield, for each selected shape, particle DSFs in two flow regimes. We apply the ADS to characterize aspherical ammonium sulfate and NaCl particles and show that both particle types have wide distribution of particle shapes with DSFs from nearly 1 to 1.5.

Beranek, Josef; Imre, D.; Zelenyuk, Alla

2012-02-07T23:59:59.000Z

372

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Variability of Tropical Cirrus from 2006 TWP-ICE Variability of Tropical Cirrus from 2006 TWP-ICE Junshik Um, Greg M. McFarquhar, and Matt Freer University of Illinois, Urbana IL junum@earth.uiuc.edu 1. Introduction In-situ cloud data acquired during the 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) are used to determine if the microphysical properties of tropical cirrus formed under differing conditions can be characterized in terms of prognostic variables in large-scale models such as temperature and ice water content (IWC) To accomplish this, the spatial variability (horizontal and vertical) of microphysical properties (IWC, habit distribution, size distribution, median mass diameter D mm ) is examined and contrasted for different types of cirrus (convective vs. non- convective; aged vs. fresh),

373

Properly synchronized measurements of droplet sizes for high-pressure intermittent coal-water slurry fuel sprays  

DOE Green Energy (OSTI)

Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation with a laser diffraction particle analyzing (LDPA) technique. This technique allowed measurement of SMDs near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 {mu}m mass median diameter coal particulates was considered. A correlation of the SMD with the injection conditions was determined which should show a satisfactory agreement with the measured SMD data. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure.

Kihm, K.D.; Terracina, D.P.; Payne, S.E.; Caton, J.A. [Texas A and M Univ., College Station, TX (United States)

1993-12-31T23:59:59.000Z

374

Effects of laser irradiation on the self-assembly of MnAs nanoparticles in a GaAs matrix  

SciTech Connect

We investigate the effects of laser irradiation on the self-assembly of MnAs nanoparticles during solid-phase decomposition in a GaAs matrix. It is found that laser irradiation suppresses the growth of MnAs nanoparticles from small to large size, and that the median diameter D{sub 1} in the size distribution of small MnAs nanoparticles depends on the incident photon energy E following D{sub 1} {approx} E{sup -1/5}. We explain this behavior by the desorption of Mn atoms on the MnAs nanoparticle surface due to resonant optical absorption, in which incident photons excite intersubband electronic transitions between the quantized energy levels in the MnAs nanoparticles.

Hai, Pham Nam; Nomura, Wataru [Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yatsui, Takashi; Ohtsu, Motoichi; Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nanophotonics Research Center, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

2012-11-05T23:59:59.000Z

375

Rotationally Augmented Flow Structures and Time Varying Loads on Turbine Blades: Preprint  

DOE Green Energy (OSTI)

To better understand wind turbine flow physics, time dependent blade surface pressure data were acquired from the NREL Unsteady Aerodynamics Experiment.

Schreck, S. J.

2007-01-01T23:59:59.000Z

376

Spectral Content and Spatial Scales in Unsteady Rotationally Augmented Flow Fields: Preprint  

DOE Green Energy (OSTI)

This paper describes wind turbine flow fields that effect load predictions for design and analysis and the active aerodynamic control methodologies being considered for wind turbine applications.

Schreck, S. J.

2007-08-01T23:59:59.000Z

377

Turbine Tip Clearance Region De-Sensitization  

NLE Websites -- All DOE Office Websites (Extended Search)

TURBINE TIP CLEARANCE REGION DE-SENSITIZATION Penn State & U. of Minnesota Lakshminarayana, Camci & Goldstein 079 * Experimental aerodynamic studies leading to the weakening...

378

Dr. Fahim H. Sadek  

Science Conference Proceedings (OSTI)

... to large aerodynamic data sets generated in the wind tunnel, reliability ... and analysis of sophisticated finite element models of the towers to establish ...

2012-07-05T23:59:59.000Z

379

Wind-induced Ground-surface Pressures Around a Single-Family House  

E-Print Network (OSTI)

numerical simulation value minus wind tunnel value, equationfor publication in The Journal of Wind Engineering andIndustrial Aerodynamics Wind-Induced Ground-Surface

Riley, W.J.

2008-01-01T23:59:59.000Z

380

REQUEST BY HEIL. TRAILER INTERNATIONAL FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

molded fiberglass transport, the first titanium transport, and the first low center of gravity tank integrally designed to be aerodynamic with the tractor. More recently, Heil has...

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A Local Convergence Analysis of Bilevel Decomposition Algorithms  

E-Print Network (OSTI)

in charge of the analysis of the aerodynamic system and another in charge of the ...... MHz Pentium III, 256MB RAM and running under WINDOWS 2000.

382

Development, validation and verification of the Momentum Source Model for discrete rotor blades.  

E-Print Network (OSTI)

??In this research, a novel numerical technique for modeling the unsteady aerodynamics of rotorcraft flows has been developed. The aim of this research is to… (more)

Guntupalli, Kanchan

2011-01-01T23:59:59.000Z

383

Sandia National Laboratories: About Sandia: History  

NLE Websites -- All DOE Office Websites (Extended Search)

aerodynamic research, 1950s. Sandia National Laboratories' roots lie in World War II's Manhattan Project, which built the world's first atomic bombs. Our history reflects the...

384

16.901 Computational Methods in Aerospace Engineering, Spring 2003  

E-Print Network (OSTI)

Introduction to computational techniques arising in aerospace engineering. Applications drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration ...

Darmofal, David L.

385

An automated reliable method for two-dimensional Reynolds-Averaged Navier-Stokes simulations  

E-Print Network (OSTI)

The development of computational fluid dynamics algorithms and increased computational resources have led to the ability to perform complex aerodynamic simulations. Obstacles remain which prevent autonomous and reliable ...

Modisette, James M

2011-01-01T23:59:59.000Z

386

An Evolutonary Parametrization for Aerodyanmic Shape Optimization.  

E-Print Network (OSTI)

??An evolutionary geometry parametrization is established to represent aerodynamic configurations. This geometry parametrization technique is constructed by integrating the classical B-spline formulation with the knot… (more)

Han, Xiaocong

2011-01-01T23:59:59.000Z

387

High-Rise Reinforced Concrete Structures: Database-Assisted ...  

Science Conference Proceedings (OSTI)

... on low-rise buildings: Databased-assisted design versus ASCE ... on the aerodynamic forces for an oscillating tower through wind tunnel tests ...

2013-08-19T23:59:59.000Z

388

Microsoft PowerPoint - 1-Final-UTSR.ppt [Compatibility Mode  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance and Flow Research Laboratory, Texas A&M University Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC-Requirements: Endwall Contouring,...

389

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC- Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under...

390

Microsoft Word - 25A2756 Continued  

NLE Websites -- All DOE Office Websites (Extended Search)

The MEWT is a direct descendant of modern jet engine technology where aerodynamic optimization is achieved through sound design analysis and testing The turbine is of a...

391

University Turbine Systems Research Program  

SciTech Connect

The primary areas of university research were combustion, aerodynamics/heat transfer, and materials, with a few projects in the area of instrumentation, sensors and life (ISL).

Leitner, Robert; Wenglarz, Richard

2010-12-31T23:59:59.000Z

392

FLIGHT CONTROL DESIGN OF TANDEM DUCTED FAN AIRCRAFT USING REDUNDANT CONTROL EFFECTORS.  

E-Print Network (OSTI)

??Controllability and stability of ducted fan air vehicles is a challenging problem due to their complex nonlinear aerodynamics and dynamic behavior. At the same time,… (more)

Ozdemir, Gurbuz

2010-01-01T23:59:59.000Z

393

NREL: Wind Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

spectrum of engineering disciplines that are applicable to both land-based and offshore wind energy, including: atmospheric fluid mechanics and aerodynamics; dynamics, structures,...

394

A Distributed Framework for Coordinated Heavy-duty Vehicle ...  

E-Print Network (OSTI)

Dec 28, 2013 ... Abstract: Heavy-duty vehicles traveling in a single file with small intervehicle distances experience a reduced aerodynamic drag and therefore ...

395

Computational Fluid (introduction)  

E-Print Network (OSTI)

. Construction Flow vectors and pressure distribution on an offshore oil rig Flow around cooling towers Wing-Body Interaction Hypersonic Launch Vehicle Aerodynamics Engine Cooling Polymerization reactor

396

US Energy Secretary Chu Announces Finalized $5.9 Billion Loan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

that improve internal combustion engines and transmissions, reduce vehicle weight, reduce vehicle drag with more aerodynamic designs, and improve vehicle efficiency through the...

397

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

Supply Fan Motor Median Mean LCC Savings Ranges By DesignSupply Fan Motor Median Mean LCC Savings Ranges By DesignSupply Fan Motor Median Mean LCC Savings Ranges By Design

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

398

Prospective Multi-Institutional Study of Definitive Radiotherapy With High-Dose-Rate Intracavitary Brachytherapy in Patients With Nonbulky (<4-cm) Stage I and II Uterine Cervical Cancer (JAROG0401/JROSG04-2)  

SciTech Connect

Purpose: To determine the efficacy of a definitive radiotherapy protocol using high-dose-rate intracavitary brachytherapy (HDR-ICBT) with a low cumulative dose schedule in nonbulky early-stage cervical cancer patients, we conducted a prospective multi-institutional study. Methods and Materials: Eligible patients had squamous cell carcinoma of the intact uterine cervix, Federation of Gynecologic Oncology and Obstetrics (FIGO) stages Ib1, IIa, and IIb, tumor size <40 mm in diameter (assessed by T2-weighted magnetic resonance imaging), and no pelvic/para-aortic lymphadenopathy. The treatment protocol consisted of whole-pelvis external beam radiotherapy (EBRT) of 20 Gy/10 fractions, pelvic EBRT with midline block of 30 Gy/15 fractions, and HDR-ICBT of 24 Gy/4 fractions (at point A). The cumulative biologically effective dose (BED) was 62 Gy{sub 10} ({alpha}/{beta} = 10) at point A. The primary endpoint was the 2-year pelvic disease progression-free (PDPF) rate. All patients received a radiotherapy quality assurance review. Results: Between September 2004 and July 2007, 60 eligible patients were enrolled. Thirty-six patients were assessed with FIGO stage Ib1; 12 patients with stage IIa; and 12 patients with stage IIb. Median tumor diameter was 28 mm (range, 6-39 mm). Median overall treatment time was 43 days. Median follow-up was 49 months (range, 7-72 months). Seven patients developed recurrences: 3 patients had pelvic recurrences (2 central, 1 nodal), and 4 patients had distant metastases. The 2-year PDPF was 96% (95% confidence interval [CI], 92%-100%). The 2-year disease-free and overall survival rates were 90% (95% CI, 82%-98%) and 95% (95% CI, 89%-100%), respectively. The 2-year late complication rates (according to Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer of Grade {>=}1) were 18% (95% CI, 8%-28%) for large intestine/rectum, 4% (95% CI, 0%-8%) for small intestine, and 0% for bladder. No Grade {>=}3 cases were observed for genitourinary/gastrointestinal late complications. Conclusions: These results suggest that definitive radiotherapy using HDR-ICBT with a low cumulative dose schedule (BED, 62 Gy{sub 10} at point A) can provide excellent local control without severe toxicity in nonbulky (<4-cm) early-stage cervical cancer.

Toita, Takafumi, E-mail: b983255@med.u-ryukyu.ac.jp [Department of Radiology, Graduate School of Medical Science, University of Ryukyus, Okinawa (Japan); Kato, Shingo [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Niibe, Yuzuru [Department of Radiology, School of Medicine, Kitasato University, Sagamihara (Japan); Ohno, Tatsuya [Gunma University Heavy Ion Medical Center, Maebashi (Japan); Kazumoto, Tomoko [Department of Radiology, Saitama Cancer Center, Saitama (Japan); Kodaira, Takeshi [Department of Radiation Oncology, Aichi Cancer Center, Nagoya (Japan); Kataoka, Masaaki [Department of Radiology, National Shikoku Cancer Center, Ehime (Japan); Shikama, Naoto [Department of Radiation Oncology, Saku Central Hospital, Saku (Japan); Kenjo, Masahiro [Department of Radiation Oncology, Graduate School of Medical Science, Hiroshima University, Hiroshima (Japan); Tokumaru, Sunao [Department of Radiology, Saga University, Saga (Japan); Yamauchi, Chikako [Department of Radiation Oncology, Shiga Medical Center for Adults, Moriyama (Japan); Suzuki, Osamu [Department of Radiation Oncology, Osaka Medical Center for Cancer, Osaka (Japan); Sakurai, Hideyuki [Proton Medical Research Center and Tsukuba University, Tsukuba (Japan); Numasaki, Hodaka; Teshima, Teruki [Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka (Japan); Oguchi, Masahiko [Department of Radiation Oncology, Cancer Institute Hospital, Tokyo (Japan); Kagami, Yoshikazu [Radiation Oncology Division, National Cancer Center Hospital, Tokyo (Japan); Nakano, Takashi [Department of Radiation Oncology, Gunma University, Graduate School of Medicine, Maebashi (Japan); Hiraoka, Masahiro [Department of Radiation Oncology and Image-applied Therapy, Kyoto University, Graduate School of Medicine, Kyoto (Japan); Mitsuhashi, Norio [Department of Radiation Oncology, Tokyo Women's Medical University, Tokyo (Japan)

2012-01-01T23:59:59.000Z

399

Outcomes of Patients With Non-Hodgkin's Lymphoma Treated With Bexxar With or Without External-Beam Radiotherapy  

Science Conference Proceedings (OSTI)

Purpose: To compare the efficacy and toxicity of external-beam radiotherapy (EBRT) to sites of bulky lymphadenopathy in patients with chemotherapy-refractory low-grade non-Hodgkin's lymphoma (NHL) immediately before receiving Bexxar (tositumomab and {sup 131}I) vs. in patients receiving Bexxar alone for nonbulky disease. Methods and Materials: Nineteen patients with chemotherapy-refractory NHL were treated with Bexxar at our institution (University of Florida, Gainesville, FL) from 2005 to 2008. Seventeen patients had Grade 1-2 follicular lymphoma. Ten patients received a median of 20 Gy in 10 fractions to the areas of clinical involvement, immediately followed by Bexxar (EBRT + Bexxar); 9 patients received Bexxar alone. The median tumor sizes before EBRT + Bexxar and Bexxar alone were 4.8 cm and 3.3 cm, respectively. All 5 patients with a tumor diameter >5 cm were treated with EBRT + Bexxar. A univariate analysis of prognostic factors for progression-free survival (PFS) was performed. Results: The median follow-up was 2.3 years for all patients and 3.1 years for 12 patients alive at last follow-up. Of all patients, 79% had a partial or complete response; 4 of the 8 responders in the EBRT + Bexxar group achieved a durable response of over 2 years, including 3 of the 5 with tumors >5 cm. Three of 9 patients treated with Bexxar alone achieved a durable response over 2 years. Actuarial estimates of 3-year overall survival and PFS for EBRT + Bexxar and Bexxar alone were 69% and 38% and 62% and 33%, respectively. The median time to recurrence after EBRT + Bexxar and Bexxar alone was 9 months. Having fewer than 4 involved lymph-node regions was associated with superior PFS at 3 years (63% vs. 18%). There was no Grade 4 or 5 complications. Conclusions: Adding EBRT immediately before Bexxar produced PFS equivalent to that with Bexxar alone, despite bulkier disease. Hematologic toxicity was not worsened. EBRT combined with Bexxar adds a safe and effective therapeutic treatment for managing recurrent low-grade follicular NHL.

Smith, Kristy; Byer, Gracie; Morris, Christopher G.; Kirwan, Jessica M.; Lightsey, Judith [Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL (United States); Mendenhall, Nancy P., E-mail: menden@shands.ufl.edu [Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL (United States); Hoppe, Bradford S.; Lynch, James [Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, FL (United States); Olivier, Kenneth [Mayo Clinic, Rochester, MN (United States)

2012-03-01T23:59:59.000Z

400

Simulation method for rigid and control modes aeroservoelastic interactions  

Science Conference Proceedings (OSTI)

An important aeroservoelasticity aspect is the analysis of interactions between rigid, elastic and control modes. We know that the rigid aerodynamic modes are not well calculated by use of finite element software for aeroelastic analysis such as Nastran ... Keywords: aerodynamics, aeroelasticity, aeroservoelasticity, aircraft model, simulation

Ruxandra Mihaela Botez; Adrian Hiliuta; Lucian Grigorie

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

An adaptive multitime multigrid algorithm for time-periodic flow simulations  

Science Conference Proceedings (OSTI)

The multiscale behaviour and multidisciplinary nature of rotorcraft aerodynamics has delayed the introduction of CFD techniques for rotorcraft aerodynamics. The numerical dissipation of standard CFD algorithms may destroy tip vortices before blade-vortex ... Keywords: 02.60.Cb, 02.70.Dh, 03.40.Gc, Multigrid, Space-time discontinuous Galerkin method, Time domain, Time-periodic

H. van der Ven

2008-05-01T23:59:59.000Z

402

Finite element formulation of the self-excited forces for time-domain assessment of wind-induced dynamic response and flutter stability limit of cable-supported bridges  

Science Conference Proceedings (OSTI)

In this paper it is shown how unsteady self-excited aerodynamic forces modelled by rational functions can be introduced into a finite element beam model, using the nodal displacement degrees of freedom of the element to characterize the aeroelastic system. ... Keywords: Aerodynamic derivatives, Cable-supported bridges, FEM, Flutter, Wind loading

Ole ØIseth; Anders RöNnquist; Ragnar SigbjöRnsson

2012-03-01T23:59:59.000Z

403

UNDERGRADUATE STUDENT MANUAL Department of Mechanical Engineering  

E-Print Network (OSTI)

, and motions of solid bodies and fluids, heat generation and transport, and applications to analysis, design: Dynamics MEAM 247 MEAM Lab I ­ Fall MEAM 247 MEAM Lab I ­ Spring MEAM 302 Fluid Mechanics MEAM 321 Energy and Its Impacts Fluid Mechanics and Aerodynamics MEAM 435/545 Aerodynamics MEAM 513, ESE 406

Plotkin, Joshua B.

404

High-Lift Flight Tunnel---Phase II Report  

Science Conference Proceedings (OSTI)

The High-Lift Flight Tunnel (HiLiFT) concept is a revolutionary approach to aerodynamic ground testing. This concept utilizes magnetic levitation and linear motors to propel an aerodynamic model through a tube containing a quiescent test medium. This ...

Lofftus David; Lund Thomas; Rote Donald

2000-12-01T23:59:59.000Z

405

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

cost dependent on pipeline length and diameter against thedescribe with only the pipeline length and diameter. Labordescribed by the pipeline diameter and length alone. In some

Parker, Nathan

2004-01-01T23:59:59.000Z

406

Assessment of self-organizing map variants for clustering with application to redistribution of emotional speech patterns  

Science Conference Proceedings (OSTI)

Two well-known variants of the self-organizing map (SOM) that are based on multivariate order statistics are the marginal median SOM and the vector median SOM. In the past, their efficiency was demonstrated for color image quantization. We employ the ... Keywords: Danish emotional speech (DES) database, Emotional speech patterns, Marginal median SOM, Self-organizing map (SOM), Vector median SOM

Vassiliki Moschou; Dimitrios Ververidis; Constantine Kotropoulos

2007-12-01T23:59:59.000Z

407

Loading Effect Correction for Real-Time Aethalometer Measurements of Fresh  

NLE Websites -- All DOE Office Websites (Extended Search)

Loading Effect Correction for Real-Time Aethalometer Measurements of Fresh Loading Effect Correction for Real-Time Aethalometer Measurements of Fresh Diesel Soot Title Loading Effect Correction for Real-Time Aethalometer Measurements of Fresh Diesel Soot Publication Type Journal Article Year of Publication 2007 Authors Jimenez, Jorge, Candis S. Claiborn, Timothy Larson, Timothy Gould, Thomas W. Kirchstetter, and Lara A. Gundel Journal Journal of the Air & Waste Management Association Volume 57 Issue 7 Pagination 868-873 Abstract In this study, a correction was developed for the aethalometer to measure real-time black carbon (BC) concentrations in an environment dominated by fresh diesel soot. The relationship between the actual mass-specific absorption co-efficient for BC and the BC-dependent attenuation coefficients was determined from experiments conducted in a diesel exposure chamber that provided constant concentrations of fine particulate matter (PM; PM2.5; PM <2.5 μm aerodynamic diameter) from diesel exhaust. The aethalometer reported BC concentrations decreasing with time from 48.1 to 31.5 μg m-3 when exposed to constant PM2.5 concentrations of 55 ± 1 μg m-3 and bscat 95 ± 3Mm-1 from diesel exhaust. This apparent decrease in reported light-absorbing PM concentration was used to derive a correction K (ATN) for loading of strong light-absorbing particles onto or into the aethalometer filter tape, which was a function of attenuation of light at 880 nm by the embedded particles.

408

NETL: Predictive Modeling and Evaluation - CMU Regional Modeling Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Source-Receptor Modeling Study Regional Source-Receptor Modeling Study The Pittsburgh Air Quality Study (PAQS) [PDF-744KB] is comprised of three inter-related components: 1) ambient PM measurements, 2) source characterization, and 3) deterministic and statistical air quality modeling. This effort will permit clarification of the contribution of coal-fired power plants to fine ambient PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm). The resources from the Department of Energy (DOE) will be leveraged with resources from the Environmental Protection Agency (EPA) and other organizations. Clarkson University (Hopke group) will apply advanced receptor models to identify the nature, location and contribution of the sources of particulate matter observed by the measurements made as part of the PAQS. Several forms of factor analysis including Positive Matrix Factorization (PMF) and UNMIX will be applied in order to identify the composition and contributions of the sources. Potential Source Contribution Function analysis as well as Residence Time Weighted Concentration analysis will be applied to the determination of the locations of the likely major contributing sources. The aforementioned factor analysis methods will also be applied to the spatially distributed data both on a single species and multiple species basis and to compare these results with those obtained utilizing the back-trajectory-based methods. The availability of highly time resolved data should permit greater source resolution and will be examined to determine how much increased source specificity can be obtained from the increased time resolution in the data. Assistance will be provided with the multivariate calibration that will permit the use of single-particle mass spectrometry data to estimate ambient concentrations of particulate species. These analyses should provide a better understanding of the source/receptor relationships that lead to the observed particle concentrations in the Pittsburgh area.

409

A discussion of the results of an in-situ comparison of three full-vector anemometers  

DOE Green Energy (OSTI)

Extensive field measurements and the numerical modeling of dynamic responses associated with wind turbine rotor blades have pointed to strong interactions with coherent turbulent structures in the turbine inflow. These interactions are thought to be a major source of high-cycle fatigue in the primary structural components of wind turbines. The sources of such turbulent structures are not only natural terrain features but also the wakes from upwind turbines. Many unsteady aerodynamic processes are excited by turbulent eddies ranging in size from several rotor diameters down to the dimensions of the mean blade chord. These processes are responsible for inducing large, fluctuating loads on the turbine rotor blades. For the wind turbine generators now in use, this encompasses a spatial range of about 0.1 to 300 m. To assess our ability to measure the coherent properties of inflow turbulence over such a wide range of spatial range, we performed a study to compare three full-vector anemometers. We believe that to identify the dominant fluid dynamic properties of such flows, the instrumentation used must be capable of good fidelity measurements over the desired spatial range. The sonic anemometer is a primary candidate; we also wanted to compare the results associated with a well-designed mechanical instrument which is available at considerably less cost. Two sonic designs and as propeller-bivane were exposed to turbulent flows downstream of both extremely complex and moderately rolling terrain. This paper discusses some of the results of these comparisons with an emphasis on the measurements of turbulent fluctuations.

Kelley, N.D.; Scott, G.N.; Allread, J.S.

1990-10-01T23:59:59.000Z

410

Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols  

Science Conference Proceedings (OSTI)

We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM{sub 2.5} and PM{sub 10} (particulate matter with aerodynamic diameters less than 2.5 {mu}m and 10 {mu}m, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO{sub 2}). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.

Gyawali, Madhu S.; Arnott, W. Patrick; Zaveri, Rahul A.; Song, Chen; Moosmuller, H.; Liu, Li; Mishchenko, M.; Chen, L-W A.; Green, M.; Watson, J. G.; Chow, J. C.

2012-03-08T23:59:59.000Z

411

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

DOE Green Energy (OSTI)

Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and 0.6 m in diameter. The concentrations of OC and BC{sub e} varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.

Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

2011-06-03T23:59:59.000Z

412

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

Science Conference Proceedings (OSTI)

Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and 0.6 m in diameter. The concentrations of OC and BC{sub e} varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.

Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

2011-06-03T23:59:59.000Z

413

Photooxidation of Alpha-Pinene at High Relative Humidity in the Presence of Increasing Concentrations of NOx  

DOE Green Energy (OSTI)

The photooxidation of ~1 ppm alpha-pinene in the presence of increasing concentrations of NO2 was studied in a Teflon chamber at relative humidities from 70 - 88% and temperatures from 296 - 304 K. The loss of alpha-pinene and formation of gas phase products were followed using proton transfer reaction mass spectrometry (PTR-MS). Gas phase reaction products measured by PTR-MS and their yields include formaldehyde (5 + 1%), formic acid (2.5 + 1.4%), methanol (0.6 + 0.3%), acetaldehyde (3.9 + 1.7%), acetic acid (10 + 2%), acetone (11.5 + 3.1%), pinonaldehyde (22 + 6%), and pinene oxide (0.9 + 0.1%). There was evidence of organic nitrates in the gas phase and small peaks were tentatively assigned to norpinonaldehyde, 4-oxopinonaldehyde, propanedial, 2,3-dioxobutanal and 3,5,6-trioxoheptanal or 3-hydroxymethyl-2,2-dimethylcyclobutylethanone. The formation and growth of new particles were followed using a scanning mobility particle sizer (SMPS), and their chemical composition was probed using single particle mass spectrometry (SPLAT II). SPLAT II analysis also provided measurements of the vacuum aerodynamic diameters of the newly formed secondary organic aerosol (SOA) particles and, in combination with the electrical mobility diameter, a particle density of 1.21 + 0.02 g cm-3 was calculated, 20% larger than often assumed in calculating SOA yields. SPLAT II showed that the suspended SOA consisted of a complex mixture of organic nitrates and organics, possibly including pinonic acid, pinic acid and trans-sobrerol. Three-wavelength light scattering measurements made using an integrating nephelometer were consistent with particles having a refractive index characteristic of organic compounds, but the data could not be well matched at all three wavelengths with a single refractive index. The effect of addition of cyclohexane or NO on particle formation showed that ozonolysis was the major mechanism of SOA formation in this system. However, unlike simple ozonolysis, organic nitrates are formed in both the gas and particle phases. Identifying and measuring specific organic nitrates in both the gas and particle phases in air may help to elucidate why SOA formation has been reported in field studies to be associated with polluted urban areas, yet the carbon in these particles is largely contemporary, i.e., non-fossil fuel carbon.

Yu, Yong; Ezell, Michael J.; Zelenyuk, Alla; Imre, Dan G.; Alexander, M. Lizabeth; Ortega, John V.; D'Anna, Barbara; Harmon, Chris W.; Johnson, Stan; Finlayson-Pitts, Barbara J.

2008-06-01T23:59:59.000Z

414

Errors associated with particulate matter measurements on rural sources: appropriate basis for regulating cotton gins  

E-Print Network (OSTI)

Agricultural operations across the United States are encountering difficulties complying with current air pollution regulations for particulate matter (PM). PM is currently regulated in terms of particle diameters less than or equal to a nominal 10 ?m (PM10); however, current legislation is underway to regulate PM with diameters less than or equal to a nominal 2.5 ?m (PM2.5). The goals of this research were to determine the biases and uncertainties associated with current PM10 and PM2.5 sampling methods and to determine the extent to which these errors may impact the determination of cotton gin emission factors. Ideally, PM samplers would produce an accurate measure of the pollutant indicator; for instance, a PM10 sampler would produce an accurate measure of PM less than or equal to 10 ?m. However, samplers are not perfect and errors are introduced because of the established tolerances associated with sampler performance characteristics and the interaction of particle size and sampler performance characteristics. Results of this research indicated that a source emitting PM characterized by a mass median diameter (MMD) of 20 ?m and a geometric standard deviation (GSD) of 1.5 could be forced to comply with a 3.2 and 14 times more stringent regulation of PM10 and PM2.5, respectively, than a source emitting PM characterized by a MMD of 10 ?m and a GSD of 1.5. These estimates are based on both sources emitting the same concentrations of true PM or concentrations corresponding to the particle diameters less than the size of interest. Various methods were used to estimate the true PM10 and PM2.5 emission factors associated with cotton gin exhausts and the extent to which the sampler errors impacted the PM regulation. Results from this research indicated that current cotton gin emission factors could be over-estimated by about 40%. This over-estimation is a consequence of the relatively large PM associated with cotton gin exhausts. These PM sampling errors are contributing to the misappropriation of source emissions in State Implementation Plans, essentially forcing Air Pollution Regulatory Agencies to require additional controls on sources that may be incorrectly classified has high emitters.

Buser, Michael Dean

2003-05-01T23:59:59.000Z

415

Rotational Augmentation Disparities in the MEXICO and UAE Phase VI Experiments: Preprint  

DOE Green Energy (OSTI)

Wind turbine structures and components suffer excessive loads and premature failures when key aerodynamic phenomena are not well characterized, fail to be understood, or are inaccurately predicted. Turbine blade rotational augmentation remains incompletely characterized and understood, thus limiting robust prediction for design. Pertinent rotational augmentation research including experimental, theoretical, and computational work has been pursued for some time, but large scale wind tunnel testing is a relatively recent development for investigating wind turbine blade aerodynamics. Because of their large scale and complementary nature, the MEXICO and UAE Phase VI wind tunnel experiments offer unprecedented synergies to better characterize and understand rotational augmentation of blade aerodynamics.

Schreck, S.; Sant, T.; Micallef, D.

2010-05-01T23:59:59.000Z

416

Computational atmospheric trajectory simulation analysis of spin-stabilised projectiles and small bullets  

Science Conference Proceedings (OSTI)

A mathematical model is based on the full equations of motion set up in the no-roll body reference frame and is integrated numerically from given initial conditions at the firing site. The computational flight analysis takes into consideration the ... Keywords: Coriolis effect, Mach number, Magnus effect, aerodynamic jump, atmospheric trajectory, constant aerodynamic coefficients, equations of motion, flight analysis, flight trajectories, gyroscopic stability, no-roll body reference frame, simulation, small bullets, spin-stabilised projectiles, static stability, total angle of attack, variable aerodynamic coefficients

D. N. Gkritzapis; E. E. Panagiotopoulos; D. P. Margaris; D. G. Papanikas

2008-07-01T23:59:59.000Z

417

Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models  

Science Conference Proceedings (OSTI)

The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and. 4) development of dry deposition formulations applicable to urban areas. Also to improve dry deposition modeling capabilities, atmospheric dispersion models in which the dry deposition formulations are imbedded need better source-term plume initialization and improved in-plume treatment of particle growth processes. Dry deposition formulations used in current models are largely inapplicable to the complex urban environment. An improved capability is urgently needed to provide surface-specific information to assess local exposure hazard levels in both urban and non-urban areas on roads, buildings, crops, rivers, etc. A model improvement plan is developed with a near-term and far-term component. Despite some conceptual limitations, the current formulations for particle deposition based on a resistance approach have proven to provide reasonable dry deposition simulations. For many models with inadequate dry deposition formulations, adding or improving a resistance approach will be the desirable near-term update. Resistance models however are inapplicable aerodynamically very rough surfaces such as urban areas. In the longer term an improved parameterization of dry deposition needs to be developed that will be applicable to all surfaces, and in particular urban surfaces.

Droppo, James G.

2006-07-01T23:59:59.000Z

418

ARM - VAP Product - 30baebbr  

NLE Websites -- All DOE Office Websites (Extended Search)

Productsbaebbr30baebbr Productsbaebbr30baebbr Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027268 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Example 30baebbr Data Plot Example 30baebbr data plot VAP Output : 30BAEBBR EBBR: bulk aerodynamic estimates of sensible & latent heat fluxes, 30-min Active Dates 1993.07.04 - 2013.12.31 Originating VAP Process Best-Estimate Fluxes From EBBR Measurements and Bulk Aerodynamics Calculations : BAEBBR Measurements Only measurements considered scientifically relevant are shown below by default. Show all measurements Measurement Units Variable Aerodynamic latent heat flux W/m^2 aerodynamic_latent_heat_flux ( time )

419

An Arnoldi Approach for Generation of Reduced Order Models for Turbomachinery  

E-Print Network (OSTI)

A linear reduced-order aerodynamic model is developed for aeroelastic analysis of turbo-machines. The basis vectors are constructed using a block Arnoldi method. Although the model is cast in the time domain in state-space ...

Willcox, Karen

1999-01-01T23:59:59.000Z

420

Probabilistic analysis of meanline compressor rotor performance  

E-Print Network (OSTI)

This thesis addresses variability in aerodynamic performance of a compressor rotor due to geometric variation. The performance of the rotor is computed using a meanline model that includes the effect of tip clearance ...

Fitzgerald, Nathan Andrew, 1980-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Determination of the Mean Wind Speed and Momentum Diffusivity Profiles above Tall Vegetation and Forest Canopies Using a Mass Conservation Assumption  

Science Conference Proceedings (OSTI)

A semianalytical method based on a mass conservation principle is presented for describing the transition- layer profiles of mean wind speed and momentum diffusivity and for estimating the aerodynamic characteristics of forest and tall vegetation ...

N. M. Zoumakis

1994-02-01T23:59:59.000Z

422

Low-Maintenance Wind Power System  

E-Print Network (OSTI)

with widespread adoption of wind energy. The project hasProject: Low-Maintenance Wind Power System Summary of theImproved Vertical Axis Wind Turbine and Aerodynamic Control

Rasson, Joseph E

2010-01-01T23:59:59.000Z

423

Annuaire du 1er cycle 20102011 1  

E-Print Network (OSTI)

characteristic to meet the maximum power point tracking (MPPT) requirement; (ii) a nonlinear speed regulator properties. Keywords: wind energy conversion; synchronous generators; speed regulation; MPPT; nonlinear point tracking (MPPT)' and its achievement guarantees optimal aerodynamic efficiency. Presently, we seek

Québec, Université du

424

Intercomparison of Spatially Distributed Models for Predicting Surface Energy Flux Patterns during SMACEX  

Science Conference Proceedings (OSTI)

The treatment of aerodynamic surface temperature in soil–vegetation–atmosphere transfer (SVAT) models can be used to classify approaches into two broad categories. The first category contains models utilizing remote sensing (RS) observations of ...

Wade T. Crow; Fuqin Li; William P. Kustas

2005-12-01T23:59:59.000Z

425

Microsoft Word - 40913 Topical Report Task 1.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

i GAS TURBINE REHEAT USING IN-SITU COMBUSTION Topical Report: Task 1 - Blade Path Aerodynamics by T.E. Lippert D.M. Bachovchin April 30, 2004 Cooperative Agreement No....

426

Flow analysis and control in a subsonic inlet  

E-Print Network (OSTI)

S-duct inlets are commonly used on subsonic cruise missiles, as they offer a good compromise between compactness, low observability and aerodynamic performance. Though currently used S-ducts exhibit good performance in ...

Tournier, Serge (Serge E.)

2005-01-01T23:59:59.000Z

427

Surface Energy Fluxes of Arctic Winter Sea Ice in Barrow Strait  

Science Conference Proceedings (OSTI)

The surface energy balance of sea ice was measured during degree one-week periods in November, January, and February of 1980?81 in the Barrow Strait, Northwest Territories, Canada. Turbulent fluxes were derived with the bulk aerodynamic transfer ...

Konrad Steffen; Ted deMaria

1996-11-01T23:59:59.000Z

428

The Segregation of Aerosols by Cloud-Nucleating Activity. Part I: Design, Construction, and Testing of A High-Flux Thermal Diffusion Cloud Chamber for Mass Separation  

Science Conference Proceedings (OSTI)

We describe a thermal diffusion cloud chamber operated in series with an aerodynamic dichotomous separator that can segregate aerosol particles by their abilities to nucleate cloud droplets. The apparatus takes advantage of compensating gradients ...

Lee Harrison; Halstead Harrison

1985-04-01T23:59:59.000Z

429

Estimation of the Latent Heat Flux over Full Canopy Covers from the Radiative Temperature  

Science Conference Proceedings (OSTI)

This paper examines the bulk aerodynamic method and proposes an alternative algorithm for estimating evapotranspiration from radiative temperature over unstressed full-canopy cover crops. Both approaches are studied using calibration and ...

M. Ibáñez; P. J. Pérez; J. I. Rosell; F. Castellví

1999-04-01T23:59:59.000Z

430

Flow simulations using particles: bridging computer graphics and CFD  

Science Conference Proceedings (OSTI)

The simulation of the motion of interacting particles is a deceivingly simple, yet powerful and natural method for exploring and animating flows in physical systems as diverse as planetary dark accretion and sea waves, unsteady aerodynamics and nanofluidics.

Petros Koumoutsakos; Georges-Henri Cottet; Diego Rossinelli

2008-08-01T23:59:59.000Z

431

School of Engineering Rensselaer nurtures a "low walls" research culture that facilitates strong interactions among faculty  

E-Print Network (OSTI)

and theoretical fluid dynamics, aerodynamics, advanced propulsion, experimental gas dynamics, energy conversion computation, energy, nanotechnology, fluid mechanics, heat transfer, dynamics and vibrations, automation and high temperature structures, biochemi- cal sensing, thermal management, and energy generation

432

NREL: Computational Science - Kenny Gruchalla  

NLE Websites -- All DOE Office Websites (Extended Search)

"Computational Modeling of Wind-plant Aerodynamics." CP-2C00-52445. Golden, CO: Solar Energy Research Institute, Lunacek, M.; Nag, A.; Alber, D.M.; Gruchalla, K.; Chang, C.H.;...

433

Comments on Measuring Turbulent Exchange Within and Above Forest Canopy  

Science Conference Proceedings (OSTI)

Actual problems of measuring the turbulent exchange in and above forests (e.g., site requirements of micrormeteorological observations, aerodynamic characteristics of forests, observations of the crown-produced mixing layer, flux-profile ...

Stanislaw J. Tajchman

1981-11-01T23:59:59.000Z

434

Ice Accretion on Wires and Anti-Icing Induced by Joule Effect  

Science Conference Proceedings (OSTI)

This study concerns both the formation of ice accreted around wires due to rotation from gravitational and aerodynamic forces, and the anti-icing induced by the Joule effect. The experiments have been carried out in an instrumented wind tunnel ...

P. Personne; J-F. Gayet

1988-02-01T23:59:59.000Z

435

Analytical Land–Atmosphere Radiometer Model  

Science Conference Proceedings (OSTI)

Conversion of radiometric land surface temperature (?r) to an equivalent isothermal (aerodynamic) surface temperature (?i) is important in balancing the land surface energy budget with satellite-based ?r measurements. An analytical land–...

Ayman Suleiman; Richard Crago

2002-02-01T23:59:59.000Z

436

Scaling considerations for small aircraft engines  

E-Print Network (OSTI)

Small aircraft engines traditionally have poorer performance compared to larger engines, which until recently, has been a factor that outweighed the aerodynamic benefits of commoditized and distributed propulsion. Improvements ...

Chan, Nicholas Y. S

2008-01-01T23:59:59.000Z

437

An Unmanned Aircraft for Dropwindsonde Deployment and Hurricane Reconnaissance  

Science Conference Proceedings (OSTI)

The prototype of a remotely piloted aircraft designed for research and operational reconnaissance of tropical cyclones has been developed and successfully test flown. Using modern aerodynamic and materials technology, the operational aircraft ...

John S. Langford; Kerry A. Emanuel

1993-03-01T23:59:59.000Z

438

Sensible Heat Flux-Radiometric Surface Temperature Relationship for Eight Semiarid Areas  

Science Conference Proceedings (OSTI)

Measurements of sensible heat flux, radiometric surface temperature, air temperature, and wind speed made at eight semiarid rangeland sites were used to investigate the sensible heat flux-aerodynamic resistance relationship. The individual sites ...

J. B. Stewart; W. P. Kustas; K. S. Humes; W. D. Nichols; M. S. Moran; H. A. R. de Bruin

1994-09-01T23:59:59.000Z

439

Development of a Fan-Filter Unit Test Standard, Laboratory Validations, and its Applications across Industries  

E-Print Network (OSTI)

Energy Performance of Fan-Filter Units, Version 1.3 (2005).Energy Performance of Fan-Filter Units, Version 2.0 (2006).Evaluation of Fan-filter Units’ Aerodynamic and Energy

Xu, Tengfang

2008-01-01T23:59:59.000Z

440

Surface Energy Fluxes of the South Atlantic Ocean  

Science Conference Proceedings (OSTI)

Fluxes of sensible, latent and radiational energy and momentum across the surface of the South Atlantic Ocean have been calculated by substituting ship meteorological observations into bulk aerodynamic and empirical radiation equations. Upper-air ...

Andrew F. Bunker

1988-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Development of a Fan-Filter Unit Test Standard, Laboratory Validations, and its Applications across Industries  

E-Print Network (OSTI)

Energy Performance of Fan-Filter Units, Version 1.3 (2005).Energy Performance of Fan-Filter Units, Version 2.0 (2006).Laboratory Evaluation of Fan-filter Units’ Aerodynamic and

Xu, Tengfang

2008-01-01T23:59:59.000Z

442

The multidisciplinary design and organization of an unconventional, extremely quiet transport aircraft  

E-Print Network (OSTI)

(cont.) aircraft. A design which utilized the results of the trade studies was presented and evaluated. The performance was reviewed in terms of aerodynamics, weight, economics, operations, and acoustics. The resulting ...

Diedrich, Adam John, 1980-

2005-01-01T23:59:59.000Z

443

Reviews of plasma physics. Vol. 10  

SciTech Connect

This book presents information on the following topics: nonlinear dynamics of rarefied plasmas and ionospheric aerodynamics; cyclotron instability of the earth radiation belts; dynamic nonlinear electromagnetic phenomena in plasmas; and dynamics of the Z pinch.

Leontovich, M.A.

1986-01-01T23:59:59.000Z

444

A New Model for the Equilibrium Shape of Raindrops  

Science Conference Proceedings (OSTI)

The equilibrium shape of raindrops has been determined from Laplace's equation using an internal hydrostatic pressure with an external aerodynamic pressure based on measurements for a sphere but adjusted for the effect of distortion. The drop ...

Kenneth V. Beard; Catherine Chuang

1987-06-01T23:59:59.000Z

445

A Simple Perturbation Model for the Electrostatic Shape of Falling Drops  

Science Conference Proceedings (OSTI)

A perturbation model for the shape of falling drops in the presence of electric fields and charges was developed by extension of previous methods that includes aerodynamic effects in the pressure balance equation of Laplace. Use of a consistent ...

Kenneth V. Beard; James Q. Feng; Catherine Chuang

1989-08-01T23:59:59.000Z

446

Compression Losses In Cryocoolers J.S. Reed, G. Davey, M.W. Dadd and P.B. Bailey  

E-Print Network (OSTI)

and Reacting Flows l Aerodynamics l Internal-Combustion Engines l Stirling Engines l Computational Fluid internal-combustion engines l Cross-flow and co-flow combustion facilities l Flammability test apparatus l

447

National Solar Thermal Test Facility  

SciTech Connect

This is a brief report about a Sandia National Laboratory facility which can provide high-thermal flux for simulation of nuclear thermal flash, measurements of the effects of aerodynamic heating on radar transmission, etc

Cameron, C.P.

1989-12-31T23:59:59.000Z

448

Balancing Performance, Noise, Cost, and Aesthetics in the Southwest Windpower "Storm" Wind Turbine: Preprint  

DOE Green Energy (OSTI)

This paper describes the design, fabrication, and testing of an 1800-watt innovative small wind turbine and discusses the importance of idiosyncratic aerodynamic and aeroacoustic airfoil characteristics for clean airfoils at low Reynolds numbers.

Migliore, P.; Green, J.; Calley, D.; Lonjaret, J.

2005-08-01T23:59:59.000Z

449

Cloudiness and Marine Boundary Layer Dynamics in the ASTEX Lagrangian Experiments. Part II: Cloudiness, Drizzle, Surface Fluxes, and Entrainment  

Science Conference Proceedings (OSTI)

The Analysis of the Atlantic Stratocumulus Transition Experiment (ASTEX) Lagrangians started in Part I is continued, presenting measurements of sea surface temperature, surface latent and sensible heat fluxes from bulk aerodynamic formulas, cloud ...

Christopher S. Bretherton; Philip Austin; Steven T. Siems

1995-08-01T23:59:59.000Z

450

Fluid---structure interaction modeling of wind turbines: simulating the full machine  

Science Conference Proceedings (OSTI)

In this paper we present our aerodynamics and fluid---structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation ... Keywords: ALE-VMS method, Fluid---structure interaction, Full machine, NREL 5 MW offshore, Rotor---tower interaction, Sliding-interface formulation, Wind turbine aerodynamics

Ming-Chen Hsu; Yuri Bazilevs

2012-12-01T23:59:59.000Z

451

Methane ignition catalyzed by in situ generated palladium nanoparticles  

SciTech Connect

Catalytic ignition of methane over the surfaces of freely-suspended and in situ generated palladium nanoparticles was investigated experimentally and numerically. The experiments were conducted in a laminar flow reactor. The palladium precursor was a compound (Pd(THD){sub 2}, THD: 2,2,6,6-tetramethyl-3,5-heptanedione) dissolved in toluene and injected into the flow reactor as a fine aerosol, along with a methane-oxygen-nitrogen mixture. For experimental conditions chosen in this study, non-catalytic, homogeneous ignition was observed at a furnace temperature of {proportional_to}1123 K, whereas ignition of the same mixture with the precursor was found to be {proportional_to}973 K. In situ production of Pd/PdO nanoparticles was confirmed by scanning mobility, transmission electron microscopy and X-ray photoelectron spectroscopy analyses of particles collected at the reactor exit. The catalyst particle size distribution was log-normal. Depending on the precursor loading, the median diameter ranged from 10 to 30 nm. The mechanism behind catalytic ignition was examined using a combined gas-phase and gas-surface reaction model. Simulation results match the experiments closely and suggest that palladium nanocatalyst significantly shortens the ignition delay times of methane-air mixtures over a wide range of conditions. (author)

Shimizu, T.; Abid, A.D.; Poskrebyshev, G.; Wang, H. [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089 (United States); Nabity, J.; Engel, J.; Yu, J. [TDA Research, Inc., 12345 W. 52nd Ave, Wheat Ridge, CO 80033 (United States); Wickham, D. [Reaction Systems, LLC, 19039 E. Plaza Drive, Suite 290, Parker, CO 80134 (United States); Van Devener, B.; Anderson, S.L. [Department of Chemistry, University of Utah, Salt Lake City, UT 84112 (United States); Williams, S. [Air Force Research Laboratory, Mail Stop RZA, 1950 Fifth Street, WPAFB, OH 45433 (United States)

2010-03-15T23:59:59.000Z

452

Effect of aluminum and silicon reactants and process parameters on glass-ceramic waste form characteristics for immobilization of high-level fluorinel-sodium calcined waste  

SciTech Connect

In this report, the effects of aluminum and silicon reactants, process soak time and the initial calcine particle size on glass-ceramic waste form characteristics for immobilization of the high-level fluorinel-sodium calcined waste stored at the Idaho Chemical Processing Plant (ICPP) are investigated. The waste form characteristics include density, total and normalized elemental leach rates, and microstructure. Glass-ceramic waste forms were prepared by hot isostatically pressing (HIPing) a pre-compacted mixture of pilot plant fluorinel-sodium calcine, Al, and Si metal powders at 1050{degrees}C, 20,000 psi for 4 hours. One of the formulations with 2 wt % Al was HIPed for 4, 8, 16 and 24 hours at the same temperature and pressure. The calcine particle size range include as calcined particle size smaller than 600 {mu}m (finer than {minus}30 mesh, or 215 {mu}m Mass Median Diameter, MMD) and 180 {mu}m (finer than 80 mesh, or 49 {mu}m MMD).

Vinjamuri, K.

1993-06-01T23:59:59.000Z

453

Thermal Interaction Between Molten Metal Jet and Sodium Pool: Effect of Principal Factors Governing Fragmentation of the Jet  

SciTech Connect

To clarify the effects of the principal factors that govern the thermal fragmentation of a molten metallic fuel jet in the course of fuel-coolant interaction, which is important in evaluating the sequence of core disruptive accidents (CDAs) for metallic fuel fast reactors, basic experiments were carried out using molten metallic fuel simulants (copper and silver) and a sodium pool.Fragmentation of a molten metal jet with a solid crust was caused by internal pressure produced by the boiling of sodium, which is locally entrapped inside the jet due to hydrodynamic motion between the jet and the coolant. The superheating and the latent heat of fusion of the jet are the principal factors governing this type of thermal fragmentation. On the other hand, the effect of the initial sodium temperature is regarded as negligible in the case of thermal conditions expected to result in CDAs for practical metallic fuel cores. Based on the fragmentation data for several kinds of jets (Cu, Ag, SUS, U, and U-5 wt% Zr alloy), an empirical correlation is proposed that is applicable to the calculation of a mass median diameter of fragments produced by the thermal fragmentation of the jet with a solid crust under low ambient Weber number conditions.

Nishimura, Satoshi [Central Research Institute of Electric Power Industry (CRIEPI) (Japan); Kinoshita, Izumi [Central Research Institute of Electric Power Industry (CRIEPI) (Japan); Sugiyama, Ken-Ichiro [Hokkaido University (Japan); Ueda, Nobuyuki [Central Research Institute of Electric Power Industry (CRIEPI) (Japan)

2005-02-15T23:59:59.000Z

454

credarr.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1 LT SHP Proposal: Average generation forecast - average allocation. 2 Average hydro--median load--5 year step-up. 3 Average hydro--median load--10 year step-up. 4...

455

Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Projects  

E-Print Network (OSTI)

energy savings %, project costs, cost savings, and payback timesenergy cost savings were $0.25/sf, for a median simple payback timeenergy cost savings were $0.25/sf-year, for a median simple payback time

Mills, Evan

2009-01-01T23:59:59.000Z

456

Influence of Oceanographic Variability on the Planktonic Prey and Growth of Sardine and Anchovy in the California Current Ecosystem  

E-Print Network (OSTI)

median weight, ?g (s.d. ) offshore median weight, ?g (s.d. )composition, % (s.d. ) offshore composition, % (s.d. )trends with distance offshore. Figure 3.6. Comparison of

Rykaczewski, Ryan R

2009-01-01T23:59:59.000Z

457

Influence of oceanographic variability on the planktonic prey and growth of sardine and anchovy in the California current ecosystem  

E-Print Network (OSTI)

median weight, ?g (s.d. ) offshore median weight, ?g (s.d. )composition, % (s.d. ) offshore composition, % (s.d. )trends with distance offshore. Figure 3.6. Comparison of

Rykaczewski, Ryan Ross

2009-01-01T23:59:59.000Z

458

Semi-Lagrangian relaxation  

E-Print Network (OSTI)

Sep 14, 2004 ... then we set as new medians the p?p most expensive customers. b) If the number of open medians is greater than p, say p , then we close the p ...

459

Step 2: Set an energy performance target | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

you have a team assembled, it's time to set a goal. Choose from two types of goals: Percentage better than median You can specify a percentage better than the national median for...

460

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

E-Print Network (OSTI)

program in Mexico City, and contacts in energy efficiencyenergy savings due to cool roofs for the median climate in Brazil, India, and Mexico ..energy savings due to cool roofs for the median climate in Brazil, India, and Mexico

Akbari, Hashem

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "median aerodynamic diameter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Morphology, Distribution, and Genesis of Nanometer-Scale Pores in the Mississippian Barnett Shale Morphology, Distribution, and Genesis of Nanometer-Scale Pores in the Mississippian Barnett Shale Morphology, Distribution, and Genesis of Nanometer-Scale Pores in the Mississippian Barnett Shale Authors: R. M. Reed, R. G. Loucks, D. M. Jarvie, and S. C. Ruppel Venue: 2008 American Association of Petroleum Geologists (AAPG) Annual Convention and Exhibition, San Antonio, TX, April 19-24, 2008 oral session chaired by S. C. Ruppel and R. G. Loucks (http://www.aapg.org) Abstract: The Mississippian Barnett Shale from the Fort Worth Basin of Texas predominantly consists of black, clay-mineral-poor, calcareous and siliceous mudstones. Siliceous mudstones from two wells have been examined to characterize pores. A few primarily intragranular micropores >500 nm in diameter are present but they are isolated and numerically insignificant. Nanometer-scale pores (nanopores) are the dominant pore type. Use of Ar-ion-beam milling provides surfaces without topography related to differential hardness, which are suitable for examination of nanopores. Nanopores are primarily found in three locales within the samples. Carbonaceous grains host the majority of nanopores with many of these grains containing hundreds. Other nanopores are found in bedding-parallel wisps of largely organic matrix material. The remaining, less common, nanopore locale is within extremely fine-grained matrix areas not associated with organic material. Intragranular nanopores tend to be larger, and less regularly shaped than intergranular nanopores; which tend to be more elliptical to elongate, smaller, and less complexly shaped. At least two distinct morphologies of nanopores have formed in carbonaceous grains. In one type, nanopores are more elliptical and do not have a clear distribution pattern. In the other, nanopores are more rectilinear and form parallel linear arrays. This latter pattern may be controlled by original structure in the grains. Median pore diameters vary from grain to grain, but a typical diameter is ~100 nm. Intragranular porosities up to 20.15% have been measured. All intragranular nanopores in carbonaceous grains may result from devolatilization of the organic material during hydrocarbon maturation

462

Determining size-specific emission factors for environmental tobacco smoke  

NLE Websites -- All DOE Office Websites (Extended Search)

Determining size-specific emission factors for environmental tobacco smoke Determining size-specific emission factors for environmental tobacco smoke particles Title Determining size-specific emission factors for environmental tobacco smoke particles Publication Type Journal Article Year of Publication 2003 Authors Klepeis, Neil E., Michael G. Apte, Lara A. Gundel, Richard G. Sextro, and William W. Nazaroff Journal Aerosol Science & Technology Volume 37 Start Page Chapter Pagination 780-790 Date Published October 2003 Abstract Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides -- in addition to estimates of the emissions size distribution and integrated emission factors -- estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange rate 20m^3 chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained by integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes

463

Not Sold Here: Limited Access to Legally Available Syringes at Pharmacies in Tijuana, Mexico  

E-Print Network (OSTI)

age of staff person 2 Median number of customers within 10of shopper Number of customers in store Unsuccessful (%) N =

2011-01-01T23:59:59.000Z

464

SPORT FISHERY PROJECTS, 1954 CIRCULAR 26  

E-Print Network (OSTI)

-table depth, PME = mean water pH, CMD = median water eletrical conductivity, peat depth = thickness of peat

465

TOPIC BY TOPIC PERFORMANCEOF INFORMATION ...  

Science Conference Proceedings (OSTI)

... Tukey's median polish (Velleman and Hoaglin,1981). ... considered, this does not hold. ... system descriptions presented elsewhere in this Proceedings. ...

466

Hingeless flow control over an airfoil via distributed actuation  

E-Print Network (OSTI)

An experimental investigation was undertaken to test the effectiveness of a novel design for controlling the aerodynamics of an airfoil. A synthetic jet actuator (SJA) was placed inside a NACA 0015 airfoil with its jet at 12.5% of the chord length, hereby referred to as the leading edge actuator. Four centrifugal fans across the span were mounted at 70% of the chord and the jet formed by them was located at 99% of the chord, hereby referred to as the trailing edge actuator. The effects of these actuators on the aerodynamic properties were studied, separately and then in conjunction, with varying angles of attack. The leading edge actuator delays the onset of stall up to 24 degrees, the maximum angle of attack that could be attained. The control of the aerodynamics was achieved by controlling the amount of separated region. There was no effect of the actuation at lower angles of attack. The trailing edge actuator provides aerodynamic control at both low and high angles of attack. The study investigated the effect of jet momentum coefficient on the aerodynamic properties for various angles of attack. The data obtained shows that lift control (in both positive and negative direction) was achieved even at low angles. The actuator enhances the aerodynamic properties by changing the pressure distribution as well as by delaying flow separation. Study of the combined actuation shows that the synthetic jet actuator was very effective in delaying stall when the trailing edge jet was ejected from the upper surface. For the case when the jet is ejected from the lower surface, there is less control. This can be accounted for by the difference in aerodynamic loading for both cases.

Agrawal, Anmol

2005-12-01T23:59:59.000Z

467

Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign  

SciTech Connect

A comparison between observed aerosol optical properties from the MILAGRO field campaign, which took place in the Mexico City Metropolitan Area (MCMA) during March 2006, and values simulated by the Weather Research and Forecasting model (WRF-Chem) model, reveals large differences. To help identify the source of the discrepancies, data from the MILAGRO campaign are used to evaluate the "aerosol chemical to aerosol optical properties" module implemented in the full chemistry version of the WRF-Chem model. The evaluation uses measurements of aerosol size distributions and chemical properties obtained at the MILAGRO T1 site. These observations are fed to the module, which makes predictions of various aerosol optical properties, including the scattering coefficient, Bscat; the absorption coefficient, Babs; and the single-scattering albedo, v0; all as a function of time. This simulation is compared with independent measurements obtained from a photoacoustic spectrometer (PAS) at a wavelength of 870 nm. Because of line losses and other factors, only "fine mode" aerosols with aerodynamic diameters less than 2.5 mm are considered here. Over a 10-day period, the simulations of hour-by-hour variations of Bscat are not satisfactory, but simulations of Babs and v0 are considerably better. When averaged over the 10-day period, the computed and observed optical properties agree within the uncertainty limits of the measurements and simulations. Specifically, the observed and calculated values are, respectively: (1) Bscat, 34.1 ± 5.1 Mm-1 versus 30.4 ± 4.3 Mm-1; (2) Babs, 9.7 ± 1.0 Mm-1 versus 11.7 ± 1.5 Mm-1; and (3) v0, 0.78 ± 0.04 and 0.74 ± 0.03. The discrepancies in values of v0 simulated by the full WRF-Chem model thus cannot be attributed to the "aerosol chemistry to optics" module. The discrepancy is more likely due, in part, to poor characterization of emissions near the T1 site, particularly black carbon emissions.

Barnard, James C.; Fast, Jerome D.; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Laskin, Alexander

2010-08-09T23:59:59.000Z

468

Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Project Report  

DOE Green Energy (OSTI)

Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Report Global Energy Concepts, LLC (GEC) has performed a conceptual design study concerning aeroelastic tailoring of small wind turbine blades. The primary objectives were to evaluate ways that blade/rotor geometry could be used to enable cost-of-energy reductions by enhancing energy capture while constraining or mitigating blade costs, system loads, and related component costs. This work builds on insights developed in ongoing adaptive-blade programs but with a focus on application to small turbine systems with isotropic blade material properties and with combined blade sweep and pre-bending/pre-curving to achieve the desired twist coupling. Specific goals of this project are to: (A) Evaluate and quantify the extent to which rotor geometry can be used to realize load-mitigating small wind turbine rotors. Primary aspects of the load mitigation are: (1) Improved overspeed safety affected by blades twisting toward stall in response to speed increases. (2) Reduced fatigue loading affected by blade twisting toward feather in response to turbulent gusts. (B) Illustrate trade-offs and design sensitivities for this concept. (C) Provide the technical basis for small wind turbine manufacturers to evaluate this concept and commercialize if the technology appears favorable. The SolidWorks code was used to rapidly develop solid models of blade with varying shapes and material properties. Finite element analyses (FEA) were performed using the COSMOS code modeling with tip-loads and centripetal accelerations. This tool set was used to investigate the potential for aeroelastic tailoring with combined planform sweep and pre-curve. An extensive matrix of design variables was investigated, including aerodynamic design, magnitude and shape of planform sweep, magnitude and shape of blade pre-curve, material stiffness, and rotor diameter. The FEA simulations resulted in substantial insights into the structural response of these blades. The trends were used to identify geometries and rotor configurations that showed the greatest promise for achieving beneficial aeroelastic response. The ADAMS code was used to perform complete aeroelastic simulations of selected rotor configurations; however, the results of these simulations were not satisfactory. This report documents the challenges encountered with the ADAMS simulations and presents recommendations for further development of this concept for aeroelastically tailored small wind turbine blades.

Griffin, Dayton A.

2005-09-29T23:59:59.000Z

469

A rugged continuous air monitor for sampling radionuclides  

E-Print Network (OSTI)

A new rugged continuous air monitor (CAM) for sampling radionuclide has been developed. The sampler was designed for analyzing aerosols from occupied environments of laboratories and samples extracted from stacks and ducts. Experiments were conducted to characterize the collection efficiency of the aerosol sampler system and to characterize the uniformity of particulate deposition on the filter surface as affected by variations in particle size and sampler flow rates. An experimental parametric analysis was conducted to determine the best internal geometric flow configuration, in order to achieve optimum aerosol collection. The results showed that at a flow rate of 56.6 L/min, 90% of 10 []m aerodynamic diameter (AD) aerosol particles penetrated through the sampler. The 10% loss was attributed to particle impaction at the location where the aerosol stream is turned from the vertical direction and then enters a 4 mm gap between a sampler filter and a planar detector, both of which are horizontally oriented. The cut point for the sampler was 20 []m AD. Uniformity of aerosol collection on the filter, as characterized by the coefficient of variation of the areal density deposits, was less than 10% for 10 []m AD aerosol particles. The sampler sealing integrity with respect to air leaks was tested by placing the sampler in a pressurized container and operating the sampler with the pressure in the container higher than that in the sampler for in-leakage, and with the pressure in the container less than that in the sampler for out-leakage. The pressure inside the container did not exceed 10 inches of water. For in-leakage tests, sulfur hexafluoride (SF?) was diluted with air and released into the container, external to the sampler. The ratio of the SF? concentration in the sampler to the SF? concentration in the container was calculated to characterize the integrity of the sampler system. For pressure differences of 5 and 10 inches of water, the in-leakage was 0.03% and 0.02%, respectively. The same procedure was repeated for out-leakage except that the diluted SF? was released into the sampler. The leakage results for this procedure were 0.04% and 0.02% for pressure differences of 5 and 10 inches of water, respectively.

Martinez, Joseph Thaddeus

2002-01-01T23:59:59.000Z

470

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

Information on turbine hub heights and rotor diameters wereStates; wind turbine size, hub height, and rotor diameter;of turbine size, including hub height and rotor diameter (

Bolinger, Mark

2013-01-01T23:59:59.000Z

471

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

in average turbine hub height and rotor diameter have beenInformation on turbine hub heights and rotor diameters werehub height and rotor diameter of wind turbines installed in