National Library of Energy BETA

Sample records for mecs energy measures

  1. MECS 2006 - Chemicals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    documents Manufacturing Energy and Carbon Footprint Chemicals (121.71 KB) More Documents & Publications Chemicals (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - Cement

  2. MECS 2006 - Petroleum Refining | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Energy and Carbon Footprint Petroleum Refining (123.98 KB) More Documents & Publications Petroleum Refining (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - ...

  3. Cement (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cement (2010 MECS) Cement (2010 MECS) Manufacturing Energy and Carbon Footprint for Cement Sector (NAICS 327310) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Cement (126.44 KB) More Documents & Publications MECS 2006 - Cement Glass and Glass Products (2010 MECS) Textiles

  4. Chemicals (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemicals (2010 MECS) Chemicals (2010 MECS) Manufacturing Energy and Carbon Footprint for Chemicals Sector (NAICS 325) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Chemicals (125.4 KB) More Documents & Publications All Manufacturing (2010 MECS) Cement (2010 MECS) Computers, Electronics and Electrical Equipment

  5. Textiles (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Textiles (2010 MECS) Textiles (2010 MECS) Manufacturing Energy and Carbon Footprint for Textiles Sector (NAICS 313-316) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Textiles (124.04 KB) More Documents & Publications MECS 2006 - Textiles Cement (2010 MECS) Glass and Glass Products (2010 MECS) Manufacturing Energy Sankey Diagrams Manufacturing energy Sankey

  6. Machinery (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machinery (2010 MECS) Machinery (2010 MECS) Manufacturing Energy and Carbon Footprint for Machinery Sector (NAICS 333) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Machinery (122.63 KB) More Documents & Publications MECS 2006 - Machinery Cement (2010 MECS) Glass and Glass Products (2010 MECS) Manufacturing Energy Sankey Diagrams Manufacturing energy Sankey

  7. Fabricated Metals (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fabricated Metals (2010 MECS) Fabricated Metals (2010 MECS) Manufacturing Energy and Carbon Footprint for Fabricated Metals Sector (NAICS 332) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Fabricated Metals (124.58 KB) More Documents & Publications MECS 2006 - Fabricated Metals Cement (2010 MECS) Glass and Glass Products (2010 MECS) Manufacturing Energy Sankey

  8. MECS 2006 - All Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Energy and Carbon Footprint All Manufacturing (NAICS 31-33) (120.28 KB) More Documents & Publications All Manufacturing (2010 MECS) MECS 2006 - Alumina and Aluminum ...

  9. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Transportation Equipment (125.57 KB) More Documents & Publications MECS 2006 - Transportation Equipment Cement (2010 MECS) Glass and Glass Products (2010

  10. All Manufacturing (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All Manufacturing (2010 MECS) All Manufacturing (2010 MECS) Manufacturing Energy and Carbon Footprint for All Manufacturing Sector (NAICS 31-33) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: June 2015 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint All Manufacturing (111.63 KB) More Documents & Publications Cement (2010 MECS) Chemicals (2010 MECS) Computers, Electronics and Electrical Equipment

  11. Manufacturing Energy Consumption Survey (MECS) - Residential...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 Energy consumption in the U.S. ...

  12. Manufacturing-Industrial Energy Consumption Survey(MECS) Historical...

    U.S. Energy Information Administration (EIA) Indexed Site

    reports, data tables and questionnaires Released: May 2008 The Manufacturing Energy Consumption Survey (MECS) is a periodic national sample survey devoted to measuring...

  13. MECS 2006 - Food and Beverage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Energy and Carbon Footprint Food and Beverage (121.73 KB) More Documents & Publications Food and Beverage (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - ...

  14. Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration (EIA) U. S. Census Regions and Divisions: census map About the MECS Survey forms Maps MECS Terminology Archives Features First 2010 Data Press Release 2010 Data Brief Other End Use Surveys Commercial Buildings - CBECS Residential - RECS Transportation DOE Uses MECS Data Manufacturing Energy and Carbon Footprints Associated Analysis Manufacturing Energy Sankey Diagrams Manufacturing Energy Flows Tool

  15. Iron and Steel (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iron and Steel (2010 MECS) Iron and Steel (2010 MECS) Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Iron and Steel (125.81 KB) More Documents & Publications MECS 2006 - Iron and Steel Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October

  16. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration (EIA) About the MECS Survey forms Maps MECS Terminology Archives Features First 2010 Data Press Release 2010 Data Brief Other End Use Surveys Commercial Buildings - CBECS Residential - RECS Transportation DOE Uses MECS Data Manufacturing Energy and Carbon Footprints Associated Analysis Manufacturing Energy Sankey Diagrams Manufacturing Energy Flows Tool Cost of Natural Gas Used in Manufacturing Sector Has Fallen MECS 2010 - Release date: September 6,

  17. Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration (EIA) ‹ Consumption & Efficiency Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 1998-2010, September 6, 2013. New 2010 Manufacturing Energy

  18. Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration (EIA) MECS Terminology A B C D E F G H I J K L M N O P Q R S T U V W XYZ B Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke

  19. Manufacturing Energy Consumption Survey (MECS) - Data - U.S....

    U.S. Energy Information Administration (EIA) Indexed Site

    Archive MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Special Reports (click on table headings to sort) Title Release Year Cycle Year Format Energy-Related...

  20. Manufacturing Energy and Carbon Footprints (2006 MECS) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Manufacturing Energy and Carbon Footprints (2006 MECS) Manufacturing Energy and Carbon Footprints (2006 MECS) Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost-and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also

  1. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration (EIA) Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 MECS 2010 - Release date: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17 percent from 2002 to 2010 (Figure 1), according to data from the U.S. Energy Information Administration's (EIA) Manufacturing Energy Consumption Survey (MECS). line chart:air

  2. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) 8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values SIC RSE Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National

  3. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) 1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 1 (Estimates in Btu or Physical Units) XLS Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 2 (Estimates

  4. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) 4 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census Region, Census Division, Industry Group, and Selected Industries, 1994: Part 1 (Estimates in Btu or Physical Units) XLS Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census Region,

  5. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) 2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms all tables + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values RSE Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.4 Number of Establishments Using Energy Consumed

  6. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) 10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.4 Number of Establishments Using Energy Consumed for All Purpose XLS PDF Table

  7. Petroleum Refining (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The energy pathway-from primary sources (fuel, steam, and electricity) to facility end use-is shown ... of energy use or compare energy consumption across manufacturing subsectors. ...

  8. Manufacturing Energy and Carbon Footprints (2006 MECS)

    Broader source: Energy.gov [DOE]

    Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

  9. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) 6 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms 2006 Data Tables Revision notice (November 2009): Tables 1.1, 1.2, 2.1, 2.2, 3.1, 3.2, 3.5, 4.1 and 4.2 have been slightly revised due to further editing. The revisions in XLS are indicated with a value of "R" in an adjacent column. In the PDF versions, the revised values are superscripted with an "R". No further revisions are anticipated for

  10. MECS 2006- Forest Products

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Forest Products (NAICS 321, 322) Sector with Total Energy Input, October 2012 (MECS 2006)

  11. MECS 2006- Glass

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Glass (NAICS 3272, 327993) Sector with Total Energy Input, October 2012 (MECS 2006)

  12. MECS 2006- Cement

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Cement (NAICS 327310) Sector with Total Energy Input, October 2012 (MECS 2006)

  13. MECS 2006- Machinery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Machinery (NAICS 333) Sector with Total Energy Input, October 2012 (MECS 2006)

  14. MECS 2006- Plastics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Plastics (NAICS 326) Sector with Total Energy Input, October 2012 (MECS 2006)

  15. MECS 2006- Textiles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Textiles (NAICS 313-316) Sector with Total Energy Input, October 2012 (MECS 2006)

  16. MECS 2006- Transportation Equipment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Transportation Equipment (NAICS 336) Sector with Total Energy Input, October 2012 (MECS 2006)

  17. MECS 2006- Fabricated Metals

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Fabricated Metals (NAICS 332) Sector with Total Energy Input, October 2012 (MECS 2006)

  18. MECS 2006- Foundries

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Foundries (NAICS 3315) Sector with Total Energy Input, October 2012 (MECS 2006)

  19. Manufacturing Consumption of Energy 1994 - Derived measures of...

    U.S. Energy Information Administration (EIA) Indexed Site

    eialogo Calculation of MECS Energy Measures Reported energy values were used to construct several derived values, which, in turn, were used to prepare the estimates appearing in...

  20. Modeling plant-level industrial energy demand with the Manufacturing Energy Consumption Survey (MECS) database and the Longitudinal Research Database (LRD)

    SciTech Connect (OSTI)

    Boyd, G.A.; Neifer, M.J.; Ross, M.H.

    1992-08-01

    This report discusses Phase 1 of a project to help the US Department of Energy determine the applicability of the Manufacturing Energy Consumption Survey (MECS) database and the Longitudinal Research Database (LRD) for industrial modeling and analysis. Research was conducted at the US Bureau of the Census; disclosure of the MECS/LRD data used as a basis for this report was subject to the Bureau`s confidentiality restriction. The project is designed to examine the plant-level energy behavior of energy-intensive industries. In Phase 1, six industries at the four-digit standard industrial classification (SIC) level were studied. The utility of analyzing four-digit SIC samples at the plant level is mixed, but the plant-level structure of the MECS/LRD makes analyzing samples disaggregated below the four-digit level feasible, particularly when the MECS/LRD data are combined with trade association or other external data. When external data are used, the validity of using value of shipments as a measure of output for analyzing energy use can also be examined. Phase 1 results indicate that technical efficiency and the distribution of energy intensities vary significantly at the plant level. They also show that the six industries exhibit monopsony-like behavior; that is, energy prices vary significantly at the plant level, with lower prices being correlated with a higher level of energy consumption. Finally, they show to what degree selected energy-intensive products are manufactured outside their primary industry.

  1. MECS Fuel Oil Figures

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry...

  2. Forest Products (2010 MECS)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Forest Products Sector (NAICS 321, 322) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

  3. Foundries (2010 MECS)

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Foundries Sector (NAICS 3315) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

  4. MECS 2006- Alumina and Aluminum

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Alumina and Aluminum Sector (NAICS 3313) with Total Energy Input, October 2012 (MECS 2006)

  5. Plastics and Rubber Products (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The energy pathway-from primary sources (fuel, steam, and electricity) to facility end use-is shown ... of energy use or compare energy consumption across manufacturing subsectors. ...

  6. Glass and Glass Products (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The energy pathway-from primary sources (fuel, steam, and electricity) to facility end use-is shown ... of energy use or compare energy consumption across manufacturing subsectors. ...

  7. Manufacturing Energy and Carbon Footprints (2010 MECS) | Department...

    Energy Savers [EERE]

    Each footprint visualizes the flow of energy (in the form of fuel, electricity, or steam) to major end ... The analyses are based on manufacturing energy consumption data from the ...

  8. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    Association of Electrical and Medical Imaging Equipment Manufacturers Manufacturing Solutions for Energy Efficiency in Buildings Patrick Hughes Policy Director, High Performance Buildings National Electrical Manufacturers Association The Association of Electrical and Medical Imaging Equipment Manufacturers What is NEMA? The Association of Electrical Equipment and Medical Imaging Manufacturers Which policies encourage energy efficiency in buildings? Energy Savings Performance Contracts Tax

  9. Manufacturing Energy and Carbon Footprint - Sector: Foundries (NAICS 3315), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    281 65 Steam Distribution Losses 1 11 Nonprocess Energy 101 Electricity Generation Steam Generation 281 0 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 26 130 57 Generation and Transmission Losses Generation and Transmission Losses 0 123 Onsite Generation 157 154 4 158 180 0 3 0.0 10.9 10.9 0.2 0.2 4.1 13.3 2.6 16 5.2 16.1 0.9 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e Energy use data source: 2006 MECS (with

  10. Alumina and Aluminum (2010 MECS)

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Alumina and Aluminum Sector (NAICS 3313) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

  11. Food and Beverage (2010 MECS)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Food and Beverage Sector (NAICS 311, 312) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

  12. MECS 2006- Iron and Steel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input, October 2012 (MECS 2006)

  13. MECS 2006- Computer, Electronics and Appliances

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy Footprint for Computer, Electronics and Appliances (NAICS 334, 335) Sector with Total Energy Input, October 2012 (MECS 2006)

  14. Manufacturing Energy and Carbon Footprint- Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input

  15. Manufacturing Energy and Carbon Footprint - Sector: All Manufacturing (NAICS 31-33), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    Energy Performance | Department of Energy At a White House meeting of the Better Buildings Initiative on December 3rd, six manufacturers and three utilities officially joined the Department of Energy's Better Buildings Industrial Superior Energy Performance (SEP) Accelerator Program. Manufacturers joining the Accelerator include the 3M Company, Cummins Inc., General Dynamics OTS, Nissan, Schneider Electric, and Volvo Group North America. Utilities joining the program include the Bonneville

  16. Manufacturing Energy and Carbon Footprint - Sector: Alumina and Aluminum (NAICS 3313), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    5 Nonprocess Losses 603 134 Steam Distribution Losses 3 7 Nonprocess Energy 118 Electricity Generation Steam Generation 603 3 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 16 250 152 Generation and Transmission Losses Generation and Transmission Losses 1 329 Onsite Generation 265 255 18 273 481 4 13 0.3 29.0 29.3 1.0 1.0 5.0 33.0 1.6 36 6.3 35.6 0.3 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e Energy use data source:

  17. Manufacturing Energy and Carbon Footprint - Sector: Cement (NAICS 327310), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    0 Nonprocess Losses 471 154 Steam Distribution Losses 4 5 Nonprocess Energy 341 Electricity Generation Steam Generation 471 0 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 14 353 41 Generation and Transmission Losses Generation and Transmission Losses 0 89 Onsite Generation 367 345 37 382 130 0 26 0.0 7.8 7.8 3.4 3.4 27.2 34.1 1.1 39 30.8 38.6 0.1 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e Energy use data source: 2006

  18. Manufacturing Energy and Carbon Footprint - Sector: Fabricated Metals (NAICS 332), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    9 Nonprocess Losses 708 127 Steam Distribution Losses 8 38 Nonprocess Energy 248 Electricity Generation Steam Generation 708 6 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 88 293 143 Generation and Transmission Losses Generation and Transmission Losses 2 309 Onsite Generation 381 356 41 397 452 8 33 0.5 27.3 27.8 2.4 2.2 8.8 30.3 8.4 41 13.3 41.1 2.3 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e Energy use data source:

  19. Manufacturing Energy and Carbon Footprint - Sector: Machinery (NAICS 333), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    6 Nonprocess Losses 444 51 Steam Distribution Losses 4 39 Nonprocess Energy 92 Electricity Generation Steam Generation 444 1 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 91 103 111 Generation and Transmission Losses Generation and Transmission Losses 0 240 Onsite Generation 194 178 26 204 351 1 20 0.1 21.2 21.3 1.6 1.4 1.6 13.8 10.9 26 5.1 26.3 2.1 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e Energy use data source:

  20. Manufacturing Energy and Carbon Footprint - Sector: Textiles (NAICS 313-316), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    21 Nonprocess Losses 472 107 Steam Distribution Losses 17 23 Nonprocess Energy 162 Electricity Generation Steam Generation 472 9 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 52 175 94 Generation and Transmission Losses Generation and Transmission Losses 3 203 Onsite Generation 227 167 98 265 297 12 77 0.8 18.0 18.7 6.7 6.5 2.9 16.8 5.2 29 10.0 28.7 0.7 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e Energy use data

  1. Manufacturing Energy and Carbon Footprint - Sector: Transportation Equipment (NAICS 336), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    4 Nonprocess Losses 904 106 Steam Distribution Losses 11 82 Nonprocess Energy 278 Electricity Generation Steam Generation 904 7 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 196 258 195 Generation and Transmission Losses Generation and Transmission Losses 3 422 Onsite Generation 455 415 65 480 617 9 51 0.6 37.2 37.8 4.2 3.8 6.4 29.4 19.6 53 15.3 53.2 5.2 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e Energy use data

  2. Computers, Electronics and Electrical Equipment (2010 MECS) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Computers, Electronics and Electrical Equipment (2010 MECS) Computers, Electronics and Electrical Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Computers, Electronics and Electrical Equipment Sector (NAICS 334, 335) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Computers, Electronics and Electrical Equipment (123.71 KB) More Documents

  3. Manufacturing Energy and Carbon Footprint - Sector: Transportation Equipment (NAICS 336), January 2014 (MECS 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment (NAICS 336) Process Energy Electricity and Steam Generation Losses Process Losses 10 Nonprocess Losses 541 68 Steam Distribution Losses 6 48 Nonprocess Energy 143 Electricity Generation Steam Generation 541 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 115 145 132 Generation and Transmission Losses Generation and Transmission Losses 0 266 259 234 41 275 398 0 32 0.0 23.1 23.1 3.0 16.6 11.9 31 7.9 31.0 2.6 Fuel

  4. Manufacturing Energy and Carbon Footprint - Sector: Food and Beverage (NAICS 311, 312), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    34 Nonprocess Losses 1,934 524 Steam Distribution Losses 111 63 Nonprocess Energy 928 Electricity Generation Steam Generation 1,934 86 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 166 884 281 Generation and Transmission Losses Generation and Transmission Losses 32 607 Onsite Generation 1,051 677 618 1,295 888 118 485 7.5 53.7 61.1 39.7 38.5 14.7 63.2 14.3 117 56.1 117.2 2.9 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e

  5. Manufacturing Energy and Carbon Footprint - Sector: Glass (NAICS 3272, 327993), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    (NAICS 3272, 327993) Process Energy Electricity and Steam Generation Losses Process Losses 5 Nonprocess Losses 466 162 Steam Distribution Losses 4 12 Nonprocess Energy 267 Electricity Generation Steam Generation 466 0 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 30 292 63 Generation and Transmission Losses Generation and Transmission Losses 0 136 Onsite Generation 321 306 24 330 199 0 19 0.0 12.0 12.0 1.5 1.5 12.1 22.8 2.0 26 14.3 26.3 0.6 Fuel Total Energy

  6. Manufacturing Energy and Carbon Footprint - Sector: Petroleum Refining (NAICS 324110), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    45 Nonprocess Losses 3,546 641 Steam Distribution Losses 145 20 Nonprocess Energy 2,994 Electricity Generation Steam Generation 3,546 110 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 62 2,779 127 Generation and Transmission Losses Generation and Transmission Losses 41 275 Onsite Generation 2,840 2,304 927 3,231 402 151 682 9.6 24.3 33.8 64.7 64.3 144.5 176.0 3.0 244 209.8 243.6 1.1 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT

  7. Manufacturing Energy and Carbon Footprint - Sector: Plastics (NAICS 326), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    (NAICS 326) Process Energy Electricity and Steam Generation Losses Process Losses 16 Nonprocess Losses 729 89 Steam Distribution Losses 13 36 Nonprocess Energy 154 Electricity Generation Steam Generation 729 0 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 84 223 182 Generation and Transmission Losses Generation and Transmission Losses 0 393 Onsite Generation 307 255 81 336 575 0 65 0.0 34.8 34.8 5.1 4.9 2.3 28.9 9.7 44 8.9 43.7 1.7 Fuel Total Energy Total

  8. Manufacturing Energy and Carbon Footprint - Sector: Chemicals (NAICS 325), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    461 Nonprocess Losses 4,513 813 Steam Distribution Losses 282 89 Nonprocess Energy 2,138 Electricity Generation Steam Generation 4,513 540 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 253 2,198 517 Generation and Transmission Losses Generation and Transmission Losses 201 1,118 Onsite Generation 2,452 1,690 1,505 3,195 1,635 740 1,044 46.9 98.7 145.6 95.6 93.3 34.0 159.4 19.8 275 129.2 274.8 1.9 Fuel Total Energy Total Primary Energy Use: Total Combustion

  9. Manufacturing Energy and Carbon Footprint - Sector: Forest Products (NAICS 321, 322), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    04 Nonprocess Losses 3,559 1,079 Steam Distribution Losses 300 94 Nonprocess Energy 2,381 Electricity Generation Steam Generation 3,559 80 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 256 1,738 338 Generation and Transmission Losses Generation and Transmission Losses 30 731 Onsite Generation 1,994 717 2,082 2,799 1,069 110 1,581 7.0 64.6 71.5 52.1 49.8 15.4 76.5 11.3 140 68.4 139.9 3.1 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu

  10. Technical support document for proposed 1994 revision of the MEC thermal envelope requirements

    SciTech Connect (OSTI)

    Conner, C.C.; Lucas, R.G.

    1994-03-01

    This report documents the development of the proposed revision of the Council of American Building Officials` (CABO) 1994 supplement to the 1993 Model Energy Code (MEC) building thermal envelope requirements for maximum component U{sub 0}-value. The 1994 amendments to the 1993 MEC were established in last year`s code change cycle and did not change the envelope requirements. The research underlying the proposed MEC revision was conducted by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Building Energy Standards program. The goal of this research was to develop revised guidelines based on an objective methodology that determines the most cost-effective (least total cost) combination of energy conservation measures (ECMs) (insulation levels and window types) for residential buildings. This least-cost set of ECMs was used as a basis for proposing revised MEC maximum U{sub 0}-values (thermal transmittances). ECMs include window types (for example, double-pane vinyl) and insulation levels (for example, R-19) for ceilings, walls, and floors.

  11. Water Energy Conservation Measures | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Products & Technologies Technology Deployment Efficient Technologies & Products Water Energy Conservation Measures Water Energy Conservation Measures Water and Sewer ...

  12. Motor Energy Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple motor inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: High Efficiency Motor retrofit and Cogged V-belts retrofit. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  13. Manufacturing Energy and Carbon Footprint - Sector: Computer, Electronics and Appliances (NAICS 334, 335), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    335) Process Energy Electricity and Steam Generation Losses Process Losses 6 Nonprocess Losses 527 48 Steam Distribution Losses 5 43 Nonprocess Energy 89 Electricity Generation Steam Generation 527 1 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 103 114 138 Generation and Transmission Losses Generation and Transmission Losses 0 298 Onsite Generation 217 199 29 228 436 1 23 0.0 26.4 26.4 1.8 1.6 1.6 16.6 13.0 31 4.9 31.3 1.7 Fuel Total Energy Energy use data

  14. Manufacturing Energy and Carbon Footprint - Sector: Computer, Electronics and Appliances (NAICS 334, 335), January 2014 (MECS 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computers, Electronics and Electrical Equipment (NAICS 334, 335) Process Energy Electricity and Steam Generation Losses Process Losses 5 Nonprocess Losses 493 46 Steam Distribution Losses 4 41 Nonprocess Energy 80 Electricity Generation Steam Generation 493 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 103 105 137 Generation and Transmission Losses Generation and Transmission Losses 0 276 208 193 24 217 413 0 19 0.0 23.9 23.9 1.4 14.4 12.4

  15. Measuring Energy Achievements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measuring Energy Achievements Measuring Energy Achievements This presentation covers types of energy measurements essential to industrial facilities and discusses the benefits of metrics. ArcelorMittal provides examples from their experience measuring energy achievements. Measuring Energy Achievements (September 8, 2010) (1013.62 KB) More Documents & Publications "Just do it (replicate)" with Plans, Tools, and Resources Capturing Waste Gas: Saves Energy, Lower Costs - Case Study,

  16. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...

  17. Lighting Energy Conservation Measures | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Deployment » Efficient Technologies & Products » Lighting Energy Conservation Measures Lighting Energy Conservation Measures Lighting Improvements Lighting technologies are constantly innovating and improving in cost and energy consumption. Lighting upgrades can be simple to install and immediately reduce energy consumption. Lighting Technologies Replace lighting with more efficient lamp types and lower wattages, where cost effective and without compromising light quality for

  18. High frequency energy measurements

    SciTech Connect (OSTI)

    Stotlar, S.C.

    1981-01-01

    High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described.

  19. Cement Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-01

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  20. Textiles Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  1. Transportation Equipment Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  2. Foundries Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  3. Fabricated Metals Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-19

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  4. Machinery Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  5. Petroleum Refining Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  6. Aluminum Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  7. Chemicals Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  8. Forest Products Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  9. All Manufacturing Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  10. Fabricated Metals Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  11. Transportation Equipment Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  12. Forest Products Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  13. Petroleum Refining Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  14. Textiles Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  15. Chemical Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  16. All Manufacturing Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  17. Aluminum Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  18. Cement Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  19. Foundries Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  20. MECS Fuel Oil Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    202-586-0018 URL: http:www.eia.govemeuconsumptionbriefsmecsmecsfueloiltables.html For questions about content, please contact the National Energy Information Center:...

  1. ARM - Measurement - Surface energy balance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy balance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface energy balance The energy balance at the earth's surface between the net radiation and the sensible and latent heat fluxes and ground heat flux. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  2. Microbial Electrolysis Cells (MECs) for High Yield Hydrogen (H2) Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Biodegradable Materials | Department of Energy Electrolysis Cells (MECs) for High Yield Hydrogen (H2) Production from Biodegradable Materials Microbial Electrolysis Cells (MECs) for High Yield Hydrogen (H2) Production from Biodegradable Materials Presentation by Jason Ren, University of Colorado Boulder, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. bio_h2_workshop_ren.pdf (437.03 KB) More

  3. Steam System Energy Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: fixing steam leaks. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  4. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Office of Environmental Management (EM)

    - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS ...

  5. Energy Savings Performance Contracts ENABLE: Energy Conservation Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary | Department of Energy Contracts ENABLE: Energy Conservation Measures Summary Energy Savings Performance Contracts ENABLE: Energy Conservation Measures Summary Presentation summarizes energy conservation measures that are offered through the Energy Savings Performance Contract ENABLE program. Download the ENABLE presentation. (46.24 KB) More Documents & Publications Energy Savings Performance Contract ENABLE Briefing Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and

  6. Structure of the MecI repressor from Staphylococcus aureus in complex with the cognate DNA operator of mec

    SciTech Connect (OSTI)

    Safo, Martin K.; Ko, Tzu-Ping; Musayev, Faik N.; Zhao, Qixun; Archer, Gordon L.

    2006-04-01

    The up-and-down binding of dimeric MecI to mecA dyad DNA may account for the cooperative effect of the repressor. The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of β-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Å resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI–mec complex, but unlike the MecI–bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.

  7. Franklin (Lynn) Orr | Department of Energy

    Energy Savers [EERE]

    Forest Products (2010 MECS) Forest Products (2010 MECS) Manufacturing Energy and Carbon Footprint for Forest Products Sector (NAICS 321, 322) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Forest Products (127.9 KB) More Documents & Publications MECS 2006 - Forest Products Cement (2010 MECS) Transportation

    OGE Form 450, 5 CFR Part 2634, Subpart I U.S. Office of

  8. Exploring Mbar shock conditions and isochorically heated aluminum at the MEC end station of the LCLS

    SciTech Connect (OSTI)

    Fletcher, L. B.; Lee, H. J.; SLAC, aff; Barbrel, B.; Gauthier, M.; Galtier, E.; Nagler, B.; Doppner, T.; LePape, S.; Ma, T.; Pak, A.; Turnbull, D.; White, T.; Gregori, G.; Wei, M.; Falcone, R. W.; Heimann, P.; Zastrau, U.; Hastings, J. B.; Glenzer, S. H.

    2015-02-05

    Recent experiments performed at the Matter in Extreme Conditions end station (MEC) of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatter x-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using Velocity Interferometer System for Any Reflector (VISAR) have been measured. The combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Credits, Rebates & Savings Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative (MEC) encourages energy...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Savings Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative (MEC) encourages energy efficiency in the...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Refrigeration Equipment Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative (MEC) encourages energy...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Others pending approval Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative (MEC) encourages energy...

  13. Superior Energy Performance Measurement and Verification Protocol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superior Energy Performance logo This Measurement and Verification Protocol for Industry defines the procedures that will be used to confirm conformance with the energy performance ...

  14. Amchitka Archived Soil & Groundwater Master Reports | Department of Energy

    Office of Environmental Management (EM)

    All Manufacturing (2010 MECS) All Manufacturing (2010 MECS) Manufacturing Energy and Carbon Footprint for All Manufacturing Sector (NAICS 31-33) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: June 2015 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint All Manufacturing (111.63 KB) More Documents & Publications Cement (2010 MECS) Chemicals (2010 MECS) Computers, Electronics and Electrical Equipment

    511.1 (02-94) All Other

  15. Aluminum electroplating on steel from a fused bromide electrolyte - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumina and Aluminum (2010 MECS) Alumina and Aluminum (2010 MECS) Manufacturing Energy and Carbon Footprint for Alumina and Aluminum Sector (NAICS 3313) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Alumina and Aluminum (122.75 KB) More Documents & Publications MECS 2006 - Alumina and Aluminum Cement (2010 MECS) Glass and Glass Products Innovation Portal

  16. UN-Energy-Measuring Energy Access | Open Energy Information

    Open Energy Info (EERE)

    Network (UN-Energy) Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy Topics: Co-benefits assessment, - Energy Access Resource Type: Dataset, Maps Website:...

  17. Food and Beverage Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  18. Iron and Steel Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  19. Glass and Fiber Glass Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  20. Plastics and Rubber Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  1. Computers, Electronics, and Appliances Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  2. Food and Beverage Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  3. Glass and Fiber Glass Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  4. Computers, Electronics, and Appliances Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  5. Plastics and Rubber Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  6. Iron and Steel Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  7. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projection...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer ...

  8. NREL: Technology Deployment - Net Zero Energy and Energy Security Measures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Being Replicated Across the Military Net Zero Energy and Energy Security Measures Being Replicated Across the Military News MCAS Miramar 'Flip the Switch' Ceremony Celebrates Renewable Energy Facility Energy Assurance Only Microgrid Away Publications Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations Army Net Zero Energy Roadmap and Program Summary Net Zero Energy Military Installations: A Guide to Assessment and Planning DOE, NREL Help DOD Enhance

  9. Paleomagnetic Measurements | Open Energy Information

    Open Energy Info (EERE)

    Over Core Stress Paleomagnetic Measurements Petrography Analysis Rock Density X-Ray Diffraction (XRD) X-Ray Fluorescence (XRF) Field Procedures One field method is to take small...

  10. Marine Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Energy Corporation Jump to: navigation, search Name: Marine Energy Corporation Abbreviation: MEC Address: 1308 Waugh Drive PMB 465 Place: Houston, Texas Country: United States...

  11. Measuring Standby Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Products & Technologies » Energy-Efficient Products » Measuring Standby Power Measuring Standby Power Some devices consume electricity when they appear to be turned off. This power consumption is known as standby power and can be a significant contributor to product energy use. The International Electrotechnical Commission (IEC) 62301 test procedure describes a method for measuring standby power use in appliances. This summary introduces the general approach to measuring standby power.

  12. Wind Measurement Buoy Advances Offshore Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Measurement Buoy Advances Offshore Wind Energy Wind Measurement Buoy Advances Offshore Wind Energy December 7, 2015 - 1:52pm Addthis Wind Measurement Buoy Advances Offshore Wind Energy Alana Duerr Alana Duerr Ph.D., Ocean Engineer (New West Technologies) Seen here at a visit to the Energy Department's headquarters in Washington D.C., the Axys WindSentinel buoy is now deployed at its final destination off the coast of New Jersey. Photo courtesy: U.S. Department of Energy. The United States

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    CustomOthers pending approval Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative (MEC) encourages...

  14. Measuring Energy Efficiency Report in Html: Table of Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Report: Measuring Energy Efficiency in the U.S. Economy Measuring Energy Efficiency In The United States' Economy: A Beginning Measuring Energy Efficiency in the United States'...

  15. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

  16. Labor and energy impacts of energy-conservation measures

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Three papers are presented discussing the labor and energy impacts of energy-conservation measures, namely: Generation of the Industry/Occupation Wage Matrix and Related Matters, by Carole Green; Job Shifts from Energy Conservation (Salary Distribution Effects), by Robert A. Herendeen; and Energy and Labor Implication of Improving Thermal Integrity of New Houses, by John Joseph Nangle. A separate abstract was prepared for each paper.

  17. Procedure to Measure Indoor Lighting Energy Performance

    SciTech Connect (OSTI)

    Deru, M.; Blair, N.; Torcellini, P.

    2005-10-01

    This document provides standard definitions of performance metrics and methods to determine them for the energy performance of building interior lighting systems. It can be used for existing buildings and for proposed buildings. The primary users for whom these documents are intended are building energy analysts and technicians who design, install, and operate data acquisition systems, and who analyze and report building energy performance data. Typical results from the use of this procedure are the monthly and annual energy used for lighting, energy savings from occupancy or daylighting controls, and the percent of the total building energy use that is used by the lighting system. The document is not specifically intended for retrofit applications. However, it does complement Measurement and Verification protocols that do not provide detailed performance metrics or measurement procedures.

  18. 2010 Manufacturing Energy and Carbon Footprints: Definitions and Assumptions

    Broader source: Energy.gov [DOE]

    This 13-page document provides definitions and assumptions used in the Manufacturing Energy and Carbon Footprints (MECS 2010)

  19. Measuring Income and Projecting Energy Use

    SciTech Connect (OSTI)

    Pitcher, Hugh M.

    2009-11-01

    Abstract: Energy is a key requirement for a healthy, productive life and a major driver of the emissions leading to an increasingly warm planet. The implications of a doubling and redoubling of per capita incomes over the remainder of this century for energy use are a critical input into understanding the magnitude of the carbon management problem. A substantial controversy about how the Special Report on Emssions Scenarios (SRES) measured income and the potential implications of how income was measured for long term levels of energy use is revisited again in the McKibbin, Pearce and Stegman article appearing elsewhere in this issue. The recent release of a new set of purchasing power estimates of national income, and the preparations for creating new scenarios to support the IPCCs fifth assessment highlight the importance of the issues which have arisen surrounding income and energy use. Comparing the 1993 and 2005 ICP results on Purchasing Power Parity (PPP) based measures of income reveals that not only do the 2005 ICP estimates share the same issue of common growth rates for real income as measured by PPP and US $, but the lack of coherence in the estimates of PPP incomes, especially for developing countries raises yet another obstacle to resolving the best way to measure income. Further, the common use of an income term to mediate energy demand (as in the Kaya identity) obscures an underlying reality about per capita energy demands, leading to unreasonable estimates of the impact of changing income measures and of the recent high GDP growth rates in India and China. Significant new research is required to create both a reasonable set of GDP growth rates and long term levels of energy use.

  20. Energy Savings Measure Packages: Existing Homes

    SciTech Connect (OSTI)

    Casey, S.; Booten, C.

    2011-11-01

    This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the US. These packages are optimized for minimum cost to homeowners for given source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home. The dollar value of the maximum annual savings varies significantly by location but typically amounts to $300 - $700/year.

  1. Low-bay Lighting Energy Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple low-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Low-wattage T8 lighting retrofit, T12 to T8 lighting retrofit, LED Exit signs retrofit, Occupancy sensors, Screw-in lighting retrofit, and central lighting controls. This tool calculates energy savings, demand reduction, cooling load reduction, heating load increases, cost savings, building life cycle costs including: Simple payback, discounted payback,more » net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  2. Energy Savings Measure Packages. Existing Homes

    SciTech Connect (OSTI)

    Casey, Sean; Booten, Chuck

    2011-11-01

    This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the United States. These packages are optimized for minimum cost to homeowners for source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home; this typically amounts to $300 - $700/year.

  3. Precision timing measurements for high energy photons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; et al

    2014-11-21

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.71.71.7 cm3 lutetiumyttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.52.1 psmorefor an incoming beam energy of 32 GeV. In a second measurement, using a 2.52.520 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 5911 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 545 ps for an incoming beam energy of 32 GeV.less

  4. Pulse energy measurement at the SXR instrument

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moeller, Stefan; Brown, Garth; Dakovski, Georgi; Hill, Bruce; Holmes, Michael; Loos, Jennifer; Maida, Ricardo; Paiser, Ernesto; Schlotter, William; Turner, Joshua J.; et al

    2015-04-14

    A gas monitor detector was implemented and characterized at the Soft X-ray Research (SXR) instrument to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. The detector is placed after the monochromator and addresses the need to provide reliable absolute pulse energy as well as pulse-resolved measurements for the various experiments at this instrument. This detector provides a reliable non-invasive measurement for determining flux levels on the samples in the downstream experimental chamber and for optimizing signal levels of secondary detectors and for the essential need of datamore » normalization. The design, integration into the instrument and operation are described, and examples of its performance are given.« less

  5. Pulse energy measurement at the SXR instrument

    SciTech Connect (OSTI)

    Moeller, Stefan; Brown, Garth; Dakovski, Georgi; Hill, Bruce; Holmes, Michael; Loos, Jennifer; Maida, Ricardo; Paiser, Ernesto; Schlotter, William; Turner, Joshua J.; Wallace, Alex; Jastrow, Ulf; Kreis, Svea; Sorokin, Andrey A.; Tiedtke, Kai

    2015-04-14

    A gas monitor detector was implemented and characterized at the Soft X-ray Research (SXR) instrument to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. The detector is placed after the monochromator and addresses the need to provide reliable absolute pulse energy as well as pulse-resolved measurements for the various experiments at this instrument. This detector provides a reliable non-invasive measurement for determining flux levels on the samples in the downstream experimental chamber and for optimizing signal levels of secondary detectors and for the essential need of data normalization. The design, integration into the instrument and operation are described, and examples of its performance are given.

  6. NEMVP: North American energy measurement and verification protocol

    SciTech Connect (OSTI)

    1996-03-01

    This measurement and verification protocol discusses procedures that,when implemented, allow buyers, sellers, and financiers of energy projects to quantify energy conservation measure performance and savings.

  7. DOE Resources Help Measure Building Energy Benchmarking Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Help Measure Building Energy Benchmarking Policy & Program Effectiveness DOE Resources Help Measure Building Energy Benchmarking Policy & Program Effectiveness May 21,...

  8. June 30 Webinar: Measuring Energy Storage System Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30 Webinar: Measuring Energy Storage System Performance: A GovernmentIndustry-Developed Protocol June 30 Webinar: Measuring Energy Storage System Performance: A Government...

  9. Energy Efficiency Measures to Incorporate into Remodeling Projects...

    Office of Scientific and Technical Information (OSTI)

    Energy Efficiency Measures to Incorporate into Remodeling Projects Citation Details In-Document Search Title: Energy Efficiency Measures to Incorporate into Remodeling Projects...

  10. White House Highlights New DOE Measures to Advance Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deployment and Increase Energy Efficiency | Department of Energy Highlights New DOE Measures to Advance Renewable Energy Deployment and Increase Energy Efficiency White House Highlights New DOE Measures to Advance Renewable Energy Deployment and Increase Energy Efficiency September 18, 2014 - 10:30am Addthis News Media Contact 202-586-4940 White House Highlights New DOE Measures to Advance Renewable Energy Deployment and Increase Energy Efficiency For more information, see the White House

  11. High-bay Lighting Energy Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building lifemore » cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  12. Data Center Energy Efficiency Measurement Assessment Kit and Specifications

    Office of Environmental Management (EM)

    | Department of Energy Efficiency Measurement Assessment Kit and Specifications Data Center Energy Efficiency Measurement Assessment Kit and Specifications Guide describes the Federal Energy Management Program Data Center Energy Efficiency Measurement Assessment Kit and Specifications. Download the assessment kit and specifications. (909.16 KB) More Documents & Publications Wireless Sensors Improve Data Center Efficiency Energy Efficiency Opportunities in Federal High Performance

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Efficiency Rebate Program Midstate Electric Cooperative (MEC) encourages energy efficiency in the commercial and industrial sectors by giving customers a choice of...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative (MEC) encourages energy efficiency in the commercial and...

  15. Measuring energy efficiency: Opportunities from standardization and common metrics

    U.S. Energy Information Administration (EIA) Indexed Site

    Measuring energy efficiency: Opportunities from standardization and common metrics For 2016 EIA Energy Conference July 11, 2016 | Washington, D.C. By Stacy Angel, Energy Information Portfolio Analyst Carol White, Senior Energy Efficiency Analyst How is the importance of measuring energy efficiency changing? * The number of energy efficiency policies and programs is growing. * Common metrics help measure progress towards multiple objectives. * Clear metrics help consumers make informed energy

  16. Measuring Energy Access: Supporting a Global Target | Open Energy...

    Open Energy Info (EERE)

    Columbia University Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy Topics: Co-benefits assessment, - Energy Access Resource Type: Publications Website:...

  17. Measuring the Resilience of Energy Distribution Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report provides a review of existing resilience metrics for electric, oil, and natural gas distribution systems. The report summarizes the concepts addressed by measures of resilience, describes a framework for organizing alternative metrics used to measure resilience of energy distribution systems, and reviews the state of metrics for resilience of such systems. The framework organized resilience metrics into five categories – system inputs, capacities, capabilities, performance and outcomes – and existing metrics were evaluated within the context of this framework. The report finds more metrics for the electricity system than for oil and gas and that the literature pays greater attention to metrics at the facility level. Also, there were many performance measures identified at the system and regional level and these metrics were determined to be relatively well developed. In comparison, outcome measures were identified at the system, regional and national levels, but they were judged to be relatively less well developed. To improve resilience metrics, the report recommends standardizing data on inputs and capacities at the facility and system levels; developing measures of capabilities at the system and regional levels; and improving understanding of how capabilities and performance translate to regional and national outcomes.

  18. Measurement of magnetic fluctuation induced energy transport

    SciTech Connect (OSTI)

    Fiksel, G.; Prager, S.C.; Shen, W.; Stoneking, M.

    1993-11-01

    The local electron energy flux produced by magnetic fluctuations has been measured directly in the MST reversed field pinch (over the radial range r/a > 0.75). The flux, produced by electrons traveling parallel to a fluctuating magnetic field, is obtained from correlation between the fluctuations in the parallel heat flux and the radial magnetic field. The fluctuation induced flux is large (100 kW/cm{sup 2}) in the ``core`` (r/a < 0.85) and small (< 10--30 kW/cm{sup 2}) in the edge.

  19. Preparing for Project Implementation Measuring Energy Achievements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Achievements Save Energy Now LEADER Web Conference Project Implementation Seminar Series Save Energy Now LEADER Web Conference Agenda Seminar Series Overview ...

  20. Sandia Energy - Post-Processing and Analysis of Wake Measurements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Post-Processing and Analysis of Wake Measurements Around a Scaled Turbine Home Renewable Energy Energy Water Power Partnership News News & Events Post-Processing and Analysis of...

  1. Measuring Energy Poverty: Focusing on What Matters | Open Energy...

    Open Energy Info (EERE)

    Energy Topics: Policiesdeployment programs, - Energy Access Resource Type: Publications, Lessons learnedbest practices Website: www.ophi.org.ukwp-contentuploads...

  2. Measurement and Verification Options for Federal Energy- and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Energy Management Program measurement and ... engineering analysis of measurements of the most critical parameter. Option B: Retrofit Isolation or System-Level ...

  3. Policies and Measures to Realise Industrial Energy Efficiency...

    Open Energy Info (EERE)

    Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policies and Measures to...

  4. M&V Guidelines: Measurement and Verification for Federal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 4.0) M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 4.0) ...

  5. Evaluation, Measurement, and Verification of Energy Data | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Evaluation, Measurement, and Verification of Energy Data Evaluation, Measurement, and Verification of Energy Data Evaluation, measurement, and verification (EM&V) is the collection of methods and processes used to assess the performance of energy efficiency activities so planned results can be achieved with greater certainty and future activities can be more effective. The main objectives of an EM&V process are to assess the performance of an energy efficiency program or

  6. Data Center Energy Efficiency Measurement Assesment Kit Guide and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Specification | Department of Energy Efficiency Measurement Assesment Kit Guide and Specification Data Center Energy Efficiency Measurement Assesment Kit Guide and Specification Guide describes the Federal Energy Management Program Data Center Energy Efficiency Measurement Assesment Kit and Specifications. dc_assessmentkit.pdf (909.16 KB) More Documents & Publications Wireless Sensors Improve Data Center Efficiency Energy Efficiency Opportunities in Federal High Performance Computing

  7. Energy Efficiency Measures to Incorporate into Remodeling Projects...

    Office of Scientific and Technical Information (OSTI)

    Efficiency Measures to Incorporate into Remodeling Projects Liaukus, C. 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION RESIDENTIAL; RESIDENTIAL BUILDINGS; BARA; BUILDING...

  8. June 30 Webinar: Measuring Energy Storage System Performance: A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government/Industry-Developed Protocol | Department of Energy 30 Webinar: Measuring Energy Storage System Performance: A Government/Industry-Developed Protocol June 30 Webinar: Measuring Energy Storage System Performance: A Government/Industry-Developed Protocol June 20, 2016 - 5:52pm Addthis The U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability, Energy Storage Systems Program, through the support of Pacific Northwest National Laboratory (PNNL) and Sandia

  9. 2002 Manufacturing Energy Consumption Survey - User Needs Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    2002 Manufacturing Energy Consumption Survey: User-Needs Survey View current results. We need your help in designing the next Energy Consumption Survey (MECS) As our valued...

  10. U.S. Energy Information Administration (EIA) - Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Manufacturing Energy Consumption Survey Data 2006 Analysis & Reports Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing ...

  11. Scheduling-shutdown-2014-MEC v4 web.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fri Sat Sun Mon Tue MEC Glenzer Optical-laser-only Glenzer Optical-laser-only Glenzer Albert Optical-laser-only Albert Oct 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21...

  12. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    SciTech Connect (OSTI)

    Therkelesen, Peter; McKane, Aimee

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  13. State and Local Energy Savings Performance Contracting: Savings Measurement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Verification (M&V) | Department of Energy and Local Energy Savings Performance Contracting: Savings Measurement and Verification (M&V) State and Local Energy Savings Performance Contracting: Savings Measurement and Verification (M&V) DOE's Technical Assistance Program (TAP) supports the Energy Efficiency and Conservation Block Grant Program (EECBG) and the State Energy Program (SEP) by providing state, local, and tribal officials the tools and resources needed to implement

  14. Property:ElectricalMeasurement | Open Energy Information

    Open Energy Info (EERE)

    search Property Name ElectricalMeasurement Property Type String Description MHK Electrical & Power Measurement Categories Used in FormTemplate MHKSensor Allows Values...

  15. National Residential Efficiency Measures Database | Open Energy...

    Open Energy Info (EERE)

    Effectiveness and Revise as Needed Type CommunityEnergyToolType Modeling Tool Cost Free User Interface Website, Other Website http:www.nrel.govapretrofitsindex.cfm Tool...

  16. Procedure for Measuring and Reporting Commercial Building Energy Performance

    SciTech Connect (OSTI)

    Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

    2005-10-01

    This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

  17. EIA Energy Efficiency-Table 1d. Nonfuel Consumption (Site Energy...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    d Page Last Modified: May 2010 Table 1d. Nonfuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and...

  18. Heating and Cooling Energy Conservation Measures | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The installation of a stack economizer is estimated to have a 30F temperature rise on the inlet water which lowers heating energy, costs, and CO2 emissions. Replace Inefficient ...

  19. Uncertainty Estimation Improves Energy Measurement and Verification Procedures

    SciTech Connect (OSTI)

    Walter, Travis; Price, Phillip N.; Sohn, Michael D.

    2014-05-14

    Implementing energy conservation measures in buildings can reduce energy costs and environmental impacts, but such measures cost money to implement so intelligent investment strategies require the ability to quantify the energy savings by comparing actual energy used to how much energy would have been used in absence of the conservation measures (known as the baseline energy use). Methods exist for predicting baseline energy use, but a limitation of most statistical methods reported in the literature is inadequate quantification of the uncertainty in baseline energy use predictions. However, estimation of uncertainty is essential for weighing the risks of investing in retrofits. Most commercial buildings have, or soon will have, electricity meters capable of providing data at short time intervals. These data provide new opportunities to quantify uncertainty in baseline predictions, and to do so after shorter measurement durations than are traditionally used. In this paper, we show that uncertainty estimation provides greater measurement and verification (M&V) information and helps to overcome some of the difficulties with deciding how much data is needed to develop baseline models and to confirm energy savings. We also show that cross-validation is an effective method for computing uncertainty. In so doing, we extend a simple regression-based method of predicting energy use using short-interval meter data. We demonstrate the methods by predicting energy use in 17 real commercial buildings. We discuss the benefits of uncertainty estimates which can provide actionable decision making information for investing in energy conservation measures.

  20. Driving Accountability for Program Performance Using Measured Energy Savings (201)

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Driving Accountability for Program Performance Using Measured Energy Savings (201), November 12, 2015.

  1. FEMP Releases New Training Course on Energy Conservation Measures...

    Broader source: Energy.gov (indexed) [DOE]

    Course modules focus on four specific energy conservation measures (ECMs)-demand response, cogenerationCHP, irrigation efficiency improvements, and retro-commissioning-that are ...

  2. Measurement and Verification of Energy Savings and Performance...

    Office of Environmental Management (EM)

    Savings and Performance from Advanced Lighting Controls Measurement and Verification of Energy Savings and Performance from Advanced Lighting Controls This document provides a ...

  3. Water-saving Measures: Energy and Cost Savings Calculator | Open...

    Open Energy Info (EERE)

    and Cost Savings Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Water-saving Measures: Energy and Cost Savings Calculator AgencyCompany Organization:...

  4. Measurement and Verification for Federal Energy Savings Performance Contracts

    Broader source: Energy.gov [DOE]

    Measurement and verification (M&V) activities help agencies confirm that legally and contractually required savings guarantees are met in federal energy savings performance contracts (ESPCs).

  5. Solar Resource Measurements at FPL Energy … Equipment Only:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Number: CRD-08-283 CRADA Title: Solar Resource Measurements at FPL Energy - Equipment Only Joint Work ... solar irradiance are important for developing renewable resource data. ...

  6. Data Center Energy Efficiency Measurement Assesment Kit Guide...

    Broader source: Energy.gov (indexed) [DOE]

    Data Center Energy Efficiency Measurement Assesment Kit and Specifications. dcassessmentkit.pdf (909.16 KB) More Documents & Publications Wireless Sensors Improve Data ...

  7. Measurements of PM Traps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurements of PM Traps 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentantion: West Virginia University PDF icon 2004deerclark.pdf More Documents & Publications ...

  8. Property:DisplacementMeasurement | Open Energy Information

    Open Energy Info (EERE)

    String Description MHK Displacement Measurement Categories Used in FormTemplate MHKSensor & MHKInstrument Allows Values 3-axis (Displacement);2-axis (Displacement);1-axis...

  9. Property:BendingMeasurement | Open Energy Information

    Open Energy Info (EERE)

    Type String Description MHK Bending Measurement Categories Used in FormTemplate MHKSensor & MHKInstrument Allows Values Angle (Bending);Strain (Bending);3-axis...

  10. Property:AirMeasurement | Open Energy Information

    Open Energy Info (EERE)

    String Description MHK Axial Load Measurement Categories Used in FormTemplate MHKSensor & MHKInstrument Allows Values Barometric Pressure (Air);Precipitation (Air);Relative...

  11. Property:CurrentMeasurement | Open Energy Information

    Open Energy Info (EERE)

    Type String Description MHK Current Measurement Categories Used in FormTemplate MHKSensor & MHKInstrument Allows Values Current Statistics (Current);Turbulence (Current);1D...

  12. Property:AxialMeasurement | Open Energy Information

    Open Energy Info (EERE)

    String Description MHK Axial Load Measurement Categories Used in FormTemplate MHKSensor & MHKInstrument Allows Values Strain (Axial);3-axis (Axial);2-axis (Axial);1-axis...

  13. Geothermal Properties Measurement Tool | Open Energy Information

    Open Energy Info (EERE)

    Measurement tool was developed at Oak Ridge National Laboratory for geothermal heat pump (GHP) designers and installers to better determine the geothermal properties of a...

  14. Novel Photoconductive Decay Measurement System - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Novel Photoconductive Decay Measurement System Colorado School of Mines Contact CSM About This Technology...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 1993 State Legislature updated the state energy code to the 1989 Model Energy Code (MEC) and established a procedure to update the standard. Then in 1995, following consultation with an...

  16. Measuring industrial energy efficiency: Physical volume versus economic value

    SciTech Connect (OSTI)

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  17. Extrans - Permeation Measurement System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extrans - Permeation Measurement System Y-12 National Security Complex Contact Y12 About This Technology Publications: PDF Document Publication Fact Sheet (695 KB) PDF Document Publication Patent (156 KB) Technology Marketing SummaryThe Extrans Permeation Measurement System is a customizable system for testing the behavior and uniformity of polymers and other materials. The system can be used to determine permeation rates using variable temperatures, total pressures, differential pressures, and

  18. Performance Measurement of MEAs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Measurement of MEAs Performance Measurement of MEAs Presentation by Shyam S. Kocha at the October 2008 High Temperature Membrane Working Group Meeting htmwg_oct08_kocha.pdf (549.55 KB) More Documents & Publications Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Preliminary Agenda: October 2008 High Temperature Membrane Working Group Meeting Rotating Disk-Electrode Aqueous Electrolyte Accelerated Stress Tests for PGM Electrocatalyst/Support

  19. Measuring energy efficiency in the United States` economy: A beginning

    SciTech Connect (OSTI)

    1995-10-01

    Energy efficiency is a vital component of the Nation`s energy strategy. One of the Department of Energy`s missions are to promote energy efficiency to help the Nation manage its energy resources. The ability to define and measure energy efficiency is essential to this objective. In the absence of consistent defensible measures, energy efficiency is a vague, subjective concept that engenders directionless speculation and confusion rather than insightful analysis. The task of defining and measuring energy efficiency and creating statistical measures as descriptors is a daunting one. This publication is not a final product, but is EIA`s first attempt to define and measure energy efficiency in a systematic and robust manner for each of the sectors and the United States economy as a whole. In this process, EIA has relied on discussions, customer reviews, in-house reviews, and seminars that have focused on energy efficiency in each of the sectors. EIA solicits the continued participation of its customers in further refining this work.

  20. Standardization of Transport Properties Measurements: Internal Energy

    Broader source: Energy.gov (indexed) [DOE]

    STD-5507-2013 February 2013 DOE STANDARD Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects [This Standard describes acceptable, but not mandatory means for complying with requirements. Standards are not requirements documents and are not to be construed as requirements in any audit or appraisal for compliance with associated rule or directives.] U.S. Department of Energy SAFT

  1. Measuring and Managing Cleanroom Energy Use

    SciTech Connect (OSTI)

    Tschudi, William; Mills, Evan; Xu, Tenfang; Rumsey, Peter

    2005-11-15

    Combining high air-recirculation rates and energy-intensive processes, cleanrooms are 20 to 100 times as costly to operate on a per-square-foot basis as conventional commercial buildings. Additionally, they operate 24 hr a day, seven days a week, which means their electricity demand always is contributing to peak utility-system demand, an important fact given increasing reliance on time-dependent tariffs.

  2. Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Midstate Electric Cooperative (MEC) encourages energy efficiency in the commercial and industrial sectors by giving customers a choice of several different financial incentive programs. First, ...

  3. Neutron Energy Measurements in Radiological Emergency Response Applications

    SciTech Connect (OSTI)

    Sanjoy Mukhopadhyay, Paul Guss, Michael Hornish, Scott Wilde, Tom Stampahar, Michael Reed

    2009-04-30

    We present significant results in recent advances in the determination of neutron energy. Neutron energy measurements are a small but very significant part of radiological emergency response applications. Mission critical information can be obtained by analyzing the neutron energy given off from radioactive materials. In the case of searching for special nuclear materials, neutron energy information from an unknown source can be of paramount importance.

  4. SEE Action Webinar on Energy Efficiency Measure Cost Studies

    Broader source: Energy.gov [DOE]

    Presented by State and Local Energy Efficiency Action Network (SEE Action), this webinar will explain the importance of measure cost studies, review the current "state of the science" of measure cost development and estimation, and explore opportunities for future collaboration and advancement of measure cost research.

  5. A Framework for Comparative Assessments of Energy Efficiency Policy Measures

    SciTech Connect (OSTI)

    Blum, Helcio; Atkinson, Barbara; Lekov, Alex

    2011-05-24

    When policy makers propose new policies, there is a need to assess the costs and benefits of the proposed policy measures, to compare them to existing and alternative policies, and to rank them according to their effectiveness. In the case of equipment energy efficiency regulations, comparing the effects of a range of alternative policy measures requires evaluating their effects on consumers budgets, on national energy consumption and economics, and on the environment. Such an approach should be able to represent in a single framework the particularities of each policy measure and provide comparable results. This report presents an integrated methodological framework to assess prospectively the energy, economic, and environmental impacts of energy efficiency policy measures. The framework builds on the premise that the comparative assessment of energy efficiency policy measures should (a) rely on a common set of primary data and parameters, (b) follow a single functional approach to estimate the energy, economic, and emissions savings resulting from each assessed measure, and (c) present results through a set of comparable indicators. This framework elaborates on models that the U.S. Department of Energy (DOE) has used in support of its rulemakings on mandatory energy efficiency standards. In addition to a rigorous analysis of the impacts of mandatory standards, DOE compares the projected results of alternative policy measures to those projected to be achieved by the standards. The framework extends such an approach to provide a broad, generic methodology, with no geographic or sectoral limitations, that is useful for evaluating any type of equipment energy efficiency market intervention. The report concludes with a demonstration of how to use the framework to compare the impacts estimated for twelve policy measures focusing on increasing the energy efficiency of gas furnaces in the United States.

  6. Structure of the Mecl Repressor from Staphylococcus aureus in Complex with the Cognate DNA Operator of mec

    SciTech Connect (OSTI)

    Safo,M.; Ko, T.; Musayev, F.; Zhao, Q.; Wang, A.; Archer, G.

    2006-01-01

    The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of {beta}-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Angstroms resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI-mec complex, but unlike the MecI-bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.

  7. Mitigation technologies and measures in energy sector of Kazakstan

    SciTech Connect (OSTI)

    Pilifosova, O.; Danchuk, D.; Temertekov, T.

    1996-12-31

    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  8. Key energy efficiency measures signed into law by President Obama...

    Open Energy Info (EERE)

    Key energy efficiency measures signed into law by President Obama Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2017) Super contributor 2...

  9. ENERGY MEASUREMENTS GROUP ECT FOLLOW-UP REPORT

    Office of Legacy Management (LM)

    , EGsG ENERGY MEASUREMENTS GROUP ECT FOLLOW-UP REPORT DECEMBER 1979 EGG-R-003 AN AERIAL RADIOLOGICAL SURVEY OF THE SHPACK PROPERTY Norton, Massachusetts DATE OF SURVEY: AUGUST 1979 C. M . BLUITT Project Scientist APPROVED FOR PUBLICATION ?4@ t!lz- T. P. Stuart, Manager Remote Sensing Sciences Department THE REMOTE SENSING. lA!ORATORY OF THE UNITED STATES DEPARTMENT OF ENERGY ____--- I(-__ ABSTRACT An aerial radiological survey to measure terrestrial gamma radiation was carried out over the

  10. You Can't Manage Energy Use That You Don't Measure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You Can't Manage Energy Use That You Don't Measure You Can't Manage Energy Use That You Don't Measure December 7, 2009 - 7:30am Addthis John Lippert "You can't manage what you don't measure" is a common management adage. It applies well to energy as well. I think I do a decent job at restricting my energy usage at home. After all, I'm supposed to be an energy expert. But who would have thought that my plugged-in combination fax machine/photocopier/printer was consuming seven watts of

  11. Energy Efficiency Measures to Incorporate into Remodeling Projects

    SciTech Connect (OSTI)

    Liaukus, C.

    2014-12-01

    Energy improvements in a home are often approached as one concerted effort, beginning with a simple walk-through assessment or more in-depth energy audit and followed by the installation of recommended energy measures. While this approach allows for systems thinking to guide the efforts, comprehensive energy improvements of this nature are undertaken by a relatively small number of the households in our nation compared to more piecemeal remodeling efforts. Even when programs like the Weatherization Assistance Program and Home Performance with ENERGY STAR are considered, homes that have had a comprehensive energy makeover still represent a small fraction of the 111.1 million households. In this report, the U.S Department of Energy Building America Retrofit Alliance research team looks at the improvement of a home's energy performance in an opportunistic way: it examines what can be done to incorporate energy efficiency measures into general remodeling work and home repair projects. This allows for the possibility for people who would not normally pursue energy efficiency but will remodel their kitchen or re-side their home to improve their home's performance at the same time. There are challenges to this approach, not the least of which being that the work will take place over time in potentially many separate projects. The opportunity to improve a home's energy efficiency at one time expands or contracts with the scope of the remodel. As such, guidance on how to do each piece thoughtfully and with consideration for potential future projects, is critical.

  12. Superior Energy Performance Measurement and Verification Protocol for Industry

    Broader source: Energy.gov [DOE]

    This Measurement and Verification Protocol for Industry defines the procedures that will be used to confirm conformance with the energy performance level requirements of the Superior Energy Performance® (SEP™) Program. The Program has two paths. This document is structured to reflect those different paths.

  13. ENERGY MEASUREMENTS EGG-10282-1063 UC-41

    Office of Legacy Management (LM)

    $ EGcG ENERGY MEASUREMENTS EGG-10282-1063 UC-41 OCTOBER 1984 ii 23 THE REMOTE SENSING 1 i13 LAGORATO OPERATED FORTHE U.S. DEPARTMENT OF ENERGY BY EG&G/EM AN AERIAL RADIOLOGICAL SURVEY FOR *41Am CONTAMINATION IN TONAWANDA, NEW YORK DATE OF SURVEY: MAY 1984 --- -I, .--_--...- &, EGcG ENERGY MEASUREMENTS EGG-10282-1063 OCTOBER 1984 AN AERIAL RADIOLOGICAL SURVEY FOR *41Am CONTAMINATION IN TONAWANDA, N E W YORK DATE OF SURVEY: M A Y 1984 H. W . Clark Project Scientist REVIEWED BY Nuclear

  14. Analysis of Illinois Home Performance with ENERGY STAR® Measure Packages

    SciTech Connect (OSTI)

    Baker, J.; Yee, S.; Brand, L.

    2013-09-01

    Through the Chicagoland Single Family Housing Characterization and Retrofit Prioritization report, the Partnership for Advanced Residential Retrofit research team characterized 15 housing types in the Chicagoland region based on assessor data, utility billing history, and available data from prior energy efficiency programs. Within these 15 groups, a subset showed the greatest opportunity for energy savings based on BEopt Version 1.1 modeling of potential energy efficiency package options and the percent of the housing stock represented by each group. In this project, collected field data from a whole-home program in Illinois are utilized to compare marketplace-installed measures to the energy saving optimal packages previously developed for the 15 housing types. Housing type, conditions, energy efficiency measures installed, and retrofit cost information were collected from 19 homes that participated in the Illinois Home Performance with ENERGY STAR program in 2012, representing eight of the characterized housing groups. Two were selected for further case study analysis to provide an illustration of the differences between optimal and actually installed measures. Taken together, these homes are representative of 34.8% of the Chicagoland residential building stock. In one instance, actual installed measures closely matched optimal recommended measures.

  15. Near-equilibrium measurements of nonequilibrium free energy

    SciTech Connect (OSTI)

    Crooks, Gavin

    2012-04-09

    A central endeavor of thermodynamics is the measurement of free energy changes. Regrettably, although we can measure the free energy of a system in thermodynamic equilibrium, typically all we can say about the free energy of a nonequilibrium ensemble is that it is larger than that of the same system at equilibrium. Herein, we derive a formally exact expression for the probability distribution of a driven system, which involves path ensemble averages of the work over trajectories of the time-reversed system. From this we find a simple near-equilibrium approximation for the free energy in terms of an excess mean time-reversed work, which can be experimentally measured on real systems. With analysis and computer simulation, we demonstrate the accuracy of our approximations for several simple models.

  16. Energy and Water Conservation Measures for Hanford (2013)

    SciTech Connect (OSTI)

    Reid, Douglas J.; Butner, Ryan S.

    2013-04-01

    Pacific Northwest National Laboratory (PNNL) performed an energy and water evaluation of selected buildings on the Hanford Site during the months of May and June 2012. The audit was performed under the direction of the U.S. Department of Energy, Sustainability Performance Office to identify key energy conservation measures (ECMs) and water conservation measures (WCMs). The evaluations consisted of on-site facility walk-throughs conducted by PNNL staff, interviews with building-operating personnel, and an examination of building designs and layouts. Information on 38 buildings was collected to develop a list of energy and water conservation measures. Table ES.1 is a summary of the ECMs, while table ES.2 is a summary of the WCMs.

  17. Electrical Calcium Test for Measuring Barrier Permeability - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Electrical Calcium Test for Measuring Barrier Permeability National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication Electrical Calcium Test for Measuring Barrier Permeability, Webinar Presentation by Arrelaine A. Dameron (7,247 KB) PDF Document Publication NREL's e-Ca Test: A Scalable, High-Sensitivity Water Permeation Measurement Methodology (511

  18. Renewable Energy and the International Performance Measurement and Verification Protocol

    SciTech Connect (OSTI)

    Walker, A.; Thompson, A.; Mills, D.; Kats, G. H.

    1999-04-14

    The Renewables Subcommittee for the International Performance Measurement and Verification Protocol (IPMVP) is developing a section of the IPMVP treating the special issues related to performance measurement of renewable energy systems. An industry consensus framework for measuring project benefits is important in realizing the promise of renewable energy. This work represents a voluntary, consensus-building process among sponsoring organizations from 21 countries and several disciplines. Measurement and Verification (M&V) can provide a common tool for standardization to support performance-based contracting, financing, and emissions trading. M&V can ensure that savings and generation requirements in energy projects will be achieved accurately and objectively. The protocol defines procedures that are consistently applicable to similar projects, internationally accepted, and reliable. Actual M&V project results can demonstrate success and provide developers, investors, lenders, and customers with more confidence in the value of future projects.

  19. Renewable energy and the International Performance Measurement and Verification Protocol

    SciTech Connect (OSTI)

    Walker, A.; Thompson, A.; Mills, D.; Kats, G.H.

    1999-07-01

    The Renewables Subcommittee for the International Performance Measurement and Verification Protocol (IPMVP) is developing a section of the IPMVP treating the special issues related to performance measurement of renewable energy systems. An industry consensus framework for measuring project benefits is important in realizing the promise of renewable energy. This work represents a voluntary, consensus-building process among sponsoring organizations from 21 countries and several disciplines. Measurement and Verification (M and V) can provide a common tool for standardization to support performance-based contracting, financing, and emissions trading. M and V can ensure that savings and generation requirements in energy projects will be achieved accurately and objectively. The protocol defines procedures that are consistently applicable to similar projects, internationally accepted, and reliable. Actual M and V project results can demonstrate success and provide developers, investors, lenders, and customers with more confidence in the value of future projects.

  20. Energy Efficiency Measures to Incorporate into Remodeling Projects

    SciTech Connect (OSTI)

    Liaukus, C.

    2014-12-01

    Energy improvements in a home are often approached as one concerted effort, beginning with a simple walk-through assessment or more in-depth energy audit and followed by the installation of recommended energy measures. While this approach allows for systems thinking to guide the efforts, comprehensive energy improvements of this nature are undertaken by a relatively small number of U.S. households compared to piecemeal remodeling efforts. In this report, the U.S Department of Energy Building America Retrofit Alliance research team examines the improvement of a home’s energy performance in an opportunistic way by examining what can be done to incorporate energy efficiency measures into general remodeling work and home repair projects. This allows for energy efficiency upgrades to occur at the same time as remodeling proejcts. There are challenges to this approach, not the least of which being that the work will take place over time in potentially many separate projects. The opportunity to improve a home’s energy efficiency at one time expands or contracts with the scope of the remodel. As such, guidance on how to do each piece thoughtfully and with consideration for potential future projects, is critical.

  1. Improving energy efficiency via smart building energy management systems. A comparison with policy measures

    SciTech Connect (OSTI)

    Rocha, Paula; Siddiqui, Afzal; Stadler, Michael

    2014-12-09

    In this study, to foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end, we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.

  2. Improved Method to Measure Glare and Reflected Solar Irradiance - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Thermal Solar Thermal Industrial Technologies Industrial Technologies Energy Analysis Energy Analysis Early Stage R&D Early Stage R&D Find More Like This Return to Search Improved Method to Measure Glare and Reflected Solar Irradiance Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (767 KB) Solar glare from aerial view Solar glare from aerial view Typical solar glare Typical solar glare

  3. Priority mitigation measures in non-energy sector in Kazakstan

    SciTech Connect (OSTI)

    Mizina, S.V.; Pilifosova, O.V.; Gossen, E.F.

    1996-12-31

    Fulfilling the Commitments on UN FCCC through the U.S. Country Studies Program, Kazakstan has developed the national GHG Inventory, vulnerability and adaptation assessment and estimated the possibility of mitigation measures in certain sectors. Next step is developing National Climate Change Action Plan. That process includes such major steps as setting priorities in mitigation measures and technologies, their comprehensive evaluation, preparation implementation strategies, developing the procedure of incorporation of the National Action Plan into other development plans and programs. This paper presents programs and measures that can reduce GHG emissions in non-energy sector. Measures in land-use change and forestry, agriculture and coal mining are considered. Current situation in non-energy sector of Kazakstan is discussed. The amount of GHG emissions reduction and cost analysis presented in this paper was developed with the use of IPCC recommendations.

  4. Certifying Industrial Energy Efficiency Performance: AligningManagement, Measurement, and Practice to Create Market Value

    SciTech Connect (OSTI)

    McKane, Aimee; Scheihing, Paul; Williams, Robert

    2007-07-01

    More than fifteen years after the launch of programs in theU.K. and U.S., industry still offers one of the largest opportunities forenergy savings worldwide. The International Energy Agency (IEA) estimatesthe savings potential from cost-optimization of industrial motor-drivensystems alone at 7 percent of global electricity use. The U.S. Departmentof Energy (USDOE) Industrial Technologies Program estimates 7 percentsavings potential in total US industrial energy use through theapplication of proven best practice. Simple paybacks for these types ofprojects are frequently two years or less. The technology required toachieve these savings is widely available; the technical skills requiredto identify energy saving opportunities are known and transferable.Although programs like USDOE's Best Practices have been highlysuccessful, most plants, as supported by 2002 MECS data, remain eitherunaware or unmotivated to improve their energy efficiency--as evidencedby the 98 percent of US industrial facilities reporting to MECS say thatthey lack a full-time energy manager. With the renewed interest in energyefficiency worldwide and the emergence of carbon trading and newfinancial instruments such as white certificates1, there is a need tointroduce greater transparency into the way that industrial facilitiesidentify, develop, and document energy efficiency projects. Historically,industrial energy efficiency projects have been developed by plantengineers, frequently with assistance from consultants and/or supplierswith highly specialized technical skills. Under this scenario,implementation of energy efficiency improvements is dependent onindividuals. These individuals typically include "champions" within anindustrial facility or corporation, working in cooperation withconsultants or suppliers who have substantial knowledge based on years ofexperience. This approach is not easily understood by others without thisspecialized technical knowledge, penetrates the market fairly slowly

  5. IEA Policies and Measures Database | Open Energy Information

    Open Energy Info (EERE)

    Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency, Climate Change Topics: Policiesdeployment programs, Background analysis Resource Type: Dataset...

  6. Energy Savings Modelling of Re-tuning Energy Conservation Measures in Large Office Buildings

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2014-10-20

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BASs capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This paper investigates the energy savings potential of several common HVAC system re-tuning measures on a typical large office building, using the Department of Energys building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply-air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All the individual measures and combinations were simulated in 16 climate locations representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual total HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy

  7. High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter 2004 Diesel ...

  8. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Broader source: Energy.gov [DOE]

    In April 2013 the National Renewable Energy Laboratory (NREL) published the first set of protocols for determining energy savings from energy efficiency measures and programs.

  9. M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 4.0)

    Broader source: Energy.gov [DOE]

    Document outlines the Federal Energy Management Program's standard procedures and guidelines for measurement and verification (M&V) for federal energy managers, procurement officials, and energy service providers.

  10. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures (April 2013)

    Office of Energy Efficiency and Renewable Energy (EERE)

    In April 2013 the National Renewable Energy Laboratory (NREL) published the first set of protocols for determining energy savings from energy efficiency measures and programs.

  11. Energy Information Administration - Energy Efficiency-Table 5b...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    b Page Last Modified: June 2010 Table 5b. Consumption of Energy for All Purposes (First Use) per Ton of Steel, 1998, 2002, and 2006 (Million Btu per ton) MECS Survey Years Iron and...

  12. Superior Energy Performance Measurement and Verification Protocol for Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superior Energy Performance Measurement and Verification Protocol for Industry November 19, 2012 Table of Contents ©2012, The Regents of the University of California Notice: this manuscript has been authored by employees of the Regents of the University of California, and others, under Contract No DE-AC02-05CH11231 with the U.S. Department of Energy, for the management and operation of the Lawrence Berkeley National Laboratory. The United State Government retains a non-exclusive, paid-up,

  13. Table 1c. Off-Site Produced Energy (Site Energy)For Selected...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    c Page Last Modified: May 2010 Table 1c. Off-Site Produced Energy (Site Energy) for Selected Industries, 1998, 2002 and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and...

  14. 2010 Manufacturing Energy and Carbon Footprints: References | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy References 2010 Manufacturing Energy and Carbon Footprints: References This five-page document provides the references to the Manufacturing Energy and Carbon Footprints (MECS 2010) References for the Manufacturing Energy and Carbon Footprints (MECS 2010) (265.96 KB) More Documents & Publications Manufacturing Energy and Carbon Footprint References 2010 Manufacturing Energy and Carbon Footprints: Definitions and Assumptions User Experience Research Templates and Examples: Card

  15. 2010 Manufacturing Energy and Carbon Footprints: Scope | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Scope 2010 Manufacturing Energy and Carbon Footprints: Scope This five-page document provides detailed descriptions of the manufacturing sectors examined in the Energy and Carbon Footprints (MECS 2010) Scope of the Manufacturing Energy and Carbon Footprints (MECS 2010) (330.09 KB) More Documents & Publications Manufacturing Energy and Carbon Footprints Scope End-Use Sector Flowchart U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis

  16. Improving energy efficiency via smart building energy management systems. A comparison with policy measures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rocha, Paula; Siddiqui, Afzal; Stadler, Michael

    2014-12-09

    In this study, to foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end,more » we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.« less

  17. Developing an Evaluation Measurement and Verification Plan for Your Energy Efficiency Project/Program

    Broader source: Energy.gov [DOE]

    Developing an Evaluation Measurement and Verification Plan for Your Energy Efficiency Project/Program

  18. Energy Savings Performance Contracting-Savings Measurement and Verification Transcript 2-24-2011.doc

    Broader source: Energy.gov [DOE]

    Energy Savings Performance Contracting-Savings Measurement and Verification Transcript 2-24-2011.doc

  19. State and Local Energy Savings Performance Contracting: Savings Measurement and Verification (M&V)

    Office of Energy Efficiency and Renewable Energy (EERE)

    State and Local Energy Savings Performance Contracting: Savings Measurement and Verification (M&V) Webinar.

  20. Linac4 low energy beam measurements with negative hydrogen ions

    SciTech Connect (OSTI)

    Scrivens, R. Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T.

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  1. Sub-Metering: Energy Savings Measurement and Verification

    SciTech Connect (OSTI)

    2010-04-19

    Presentation from the Save Energy Now LEADER Industrial Sustainability and Energy Management Showcase.

  2. FEMP Expands ESPC ENABLE Program to Include More Energy Conservation Measures

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Federal Energy Management Program announced the expansion of the Energy Savings Performance Contract ENABLE program to include two new energy conservation measures.

  3. Neutron emission profiles and energy spectra measurements at JET

    SciTech Connect (OSTI)

    Giacomelli, L.; Conroy, S.; Belli, F.; Riva, M.; Gorini, G.; Horton, L.; Joffrin, E.; Lerche, E.; Murari, A.; Popovichev, S.; Syme, B.; Collaboration: JET EFDA Contributors

    2014-08-21

    The Joint European Toras (JET, Culham, UK) is the largest tokamak in the world. It is devoted to nuclear fusion experiments of magnetic confined Deuterium (D) or Deuterium-Tritium (DT) plasmas. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). JET makes use of many different diagnostics to measure the physical quantities of interest in plasma experiments. Concerning D or DT plasmas neutron production, various types of detectors are implemented to provide information upon the neutron total yield, emission profile and energy spectrum. The neutron emission profile emitted from the JET plasma poloidal section is reconstructed using the neutron camera (KN3). In 2010 KN3 was equipped with a new digital data acquisition system capable of high rate neutron measurements (<0.5 MCps). A similar instrument will be implemented on ITER and it is currently in its design phase. Various types of neutron spectrometers with different view lines are also operational on JET. One of them is a new compact spectrometer (KM12) based on organic liquid scintillating material which was installed in 2010 and implements a similar digital data acquisition system as for KN3. This article illustrates the measurement results of KN3 neutron emission profiles and KM 12 neutron energy spectra from the latest JET D experimental campaign C31.

  4. Potential environmental effects of energy conservation measures in northwest industries

    SciTech Connect (OSTI)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  5. ENERGY MEASUREMENTS GROUP EG&G Survey Report

    Office of Legacy Management (LM)

    kL2' . ",- - &j EGG0 ENERGY MEASUREMENTS GROUP EG&G Survey Report NRC-81 09 April 1981 . AN AERIAL RADIOLOGIC SURVEY OF THE STEPAN CHEMCIAL COMPANY AND SURROUNDING AREA MAYWOOD, N E W JERSEY DATE OF SURVEY: 26 JANUARY 1981 J.R. Mueller Project Director S.A. Gunn Project Scientist APPROVED FOR DISTRIBUTION W . John Tipton, Head Radiation Sciences Section This Document is UNCLASSIFIED G. P. Stobie Classification Officer This work was performed by EG&G for the United States Nuclear

  6. Cosmic shear measurements with Dark Energy Survey Science Verification data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Becker, M. R.

    2016-07-06

    Here, we present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear measurement pipeline, either ngmix or im3shape, and robust to the choice of two-point statistic, including both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode contamination and direct tests for any dependence of the two-point functions on a set of 16 observing conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We use a large suite of simulationsmore » to compute the covariance matrix of the cosmic shear measurements and assign statistical significance to our null tests. We find that our covariance matrix is consistent with the halo model prediction, indicating that it has the appropriate level of halo sample variance. We also compare the same jackknife procedure applied to the data and the simulations in order to search for additional sources of noise not captured by the simulations. We find no statistically significant extra sources of noise in the data. The overall detection significance with tomography for our highest source density catalog is 9.7σ. Cosmological constraints from the measurements in this work are presented in a companion paper (DES et al. 2015).« less

  7. Formaldehyde measurements in five new unoccupied energy efficient manufactured homes

    SciTech Connect (OSTI)

    Parker, G.B.; Onisko, S.A.

    1986-11-01

    Week-long integrated formaldehyde levels were measured over eight weeks in five new unoccupied energy efficient manufactured homes. These homes were constructed to the specifications set forth in the Model Conservation Standards (MCS) established by the Northwest Power Planning Council for site-built homes. The MCS standards exceed the Housing and Urban Development's (HUD) standards that currently apply to manufactured homes nationwide. Two of the homes were located at Richland, Washington, and three homes were located at Vancouver, Washington. Among other features of the MCS, the homes are equipped with air-to-air heat exchangers (AAHX) to supply additional fresh air ventilation. The first four weeks of testing were conducted with the AAHX off and the second four-week measurement period was conducted with the AAHX continuously on the HI setting. Formaldehyde levels ranged from 0.047 ppM the fifth week of the testing in a double wide home (with the AAHX turned on) to 0.164 ppM in the single wide home in the first week of measurements with the AAHX off. At no time did the formaldehyde levels exceed 0.4 ppM, the HUD targeted indoor level based on HUD codes for formaldehyde emissions from plywood and particle board building materials used in the homes. There was no strong correlation between formaldehyde levels and the measured air exchange rate. 9 refs., 2 figs., 3 tabs.

  8. Customer Feedback during Development of 1998 MECS: Mail/Electronic...

    U.S. Energy Information Administration (EIA) Indexed Site

    and its composition (by fuel type) in China; - commercial and industrial energy management market data, specifically in software market; - energy consumption in health,...

  9. Low energy ion distribution measurements in Madison Symmetric Torus plasmas

    SciTech Connect (OSTI)

    Titus, J. B. Mezonlin, E. D.; Johnson, J. A.

    2014-06-15

    Charge-exchange neutrals contain information about the contents of a plasma and can be detected as they escape confinement. The Florida A and M University compact neutral particle analyzer (CNPA), used to measure the contents of neutral particle flux, has been reconfigured, calibrated, and installed on the Madison Symmetric Torus (MST) for high temperature deuterium plasmas. The energy range of the CNPA has been extended to cover 0.34–5.2 keV through an upgrade of the 25 detection channels. The CNPA has been used on all types of MST plasmas at a rate of 20 kHz throughout the entire discharge (∼70 ms). Plasma parameter scans show that the ion distribution is most dependent on the plasma current. Magnetic reconnection events throughout these scans produce stronger poloidal electric fields, stronger global magnetic modes, and larger changes in magnetic energy all of which heavily influence the non-Maxwellian part of the ion distribution (the fast ion tail)

  10. High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating Engine PM Emissions High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating ...

  11. Measure Guideline. Deep Energy Enclosure Retrofit for Zero Energy Ready House Flat Roofs

    SciTech Connect (OSTI)

    Loomis, H.; Pettit, B.

    2015-05-29

    This Measure Guideline provides design and construction information for a deep energy enclosure retrofit solution of a flat roof assembly. It describes the strategies and procedures for an exterior retrofit of a flat wood-framed roof with brick masonry exterior walls using exterior and interior (framing cavity) insulation. The approach supported in this guide could also be adapted for use with flat wood-framed roofs with wood-framed exterior walls.

  12. Measure Guideline: Deep Energy Enclosure Retrofit for Zero Energy Ready House Flat Roofs

    SciTech Connect (OSTI)

    Loomis, H.; Pettit, B.

    2015-05-01

    This Measure Guideline provides design and construction information for a deep energy enclosure retrofit (DEER) solution of a flat roof assembly. It describes the strategies and procedures for an exterior retrofit of a flat, wood-framed roof with brick masonry exterior walls, using exterior and interior (framing cavity) insulation. The approach supported in this guide could also be adapted for use with flat, wood-framed roofs with wood-framed exterior walls.

  13. Measurement and Verification Options for Federal Energy- and Water-Saving

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects | Department of Energy Options for Federal Energy- and Water-Saving Projects Measurement and Verification Options for Federal Energy- and Water-Saving Projects Federal Energy Management Program measurement and verification (M&V) guidelines and International Performance Measurement and Verification Protocol M&V methodologies are broken into four options. These options offer generic M&V approaches for energy- and water-saving projects. Option A: Retrofit Isolation

  14. Draft M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 4.0)

    Broader source: Energy.gov [DOE]

    Document describes the Federal Energy Management Program's (FEMP) standard procedures and guidelines for measurement and verification (M&V) for federal, state, and local government energy managers and procurement officials and utility and energy service providers.

  15. M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 3.0)

    Broader source: Energy.gov [DOE]

    Document describes the Federal Energy Management Program's (FEMP) standard procedures and guidelines for measurement and verification (M&V) for federal energy managers, procurement officials, and energy service providers.

  16. Energy Department Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design

    Broader source: Energy.gov [DOE]

    Supporting the Obama Administration’s goal to reduce carbon emissions and protect the environment, the Energy Department is pursuing a suite of initiatives to strengthen federal energy management through increased focus on measurement of energy use in federal buildings and energy efficient building design.

  17. Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Source energy attributes all the energy used for electricity generation and transmission to the specific end-use sector, addition to the direct consumption of electricity and ...

  18. Energy Storage Monitoring System and In-Situ Impedance Measurement...

    Broader source: Energy.gov (indexed) [DOE]

    Path Dependence Vehicle Technologies Office Merit Review 2015: INL Electrochemical Performance Testing Energy Storage Testing and Analysis High Power and High Energy Development

  19. Measurement and Verification Activities Required in the Energy Savings Performance Contract Process

    Broader source: Energy.gov [DOE]

    There are four major measurement and verification (M&V) activities in the energy savings performance contract (ESPC) procurement process.

  20. Energy consumption series: Development of the 1991 Manufacturing Energy Consumption Survey

    SciTech Connect (OSTI)

    Not Available

    1992-05-18

    The implementation and results of the proceedings concerning the Energy Information Administration assessment of the Manufacturing Energy Consumption Survey (MECS) are documented in this report. The text and Appendices C, D, and E summarize the background of the MECS data system, the events that led to the MECS redesign, the major issues address during the review process, and the eventual 1991 MECS design that resulted. For many readers, the most useful part of the report may be Appendices A and B, which contain overall summaries of the users' groups and the industrial roundtables. These appendices capture the rationale for additional data needs as provided by the users. Also, they are a rich source of information on how manufacturers deal with energy use day-to-day, how they have addressed the need for energy efficiency improvement in the past, and the opportunities and problems associated with future efforts to improve efficiency. (VC)

  1. Energy consumption series: Development of the 1991 Manufacturing Energy Consumption Survey

    SciTech Connect (OSTI)

    Not Available

    1992-05-18

    The implementation and results of the proceedings concerning the Energy Information Administration assessment of the Manufacturing Energy Consumption Survey (MECS) are documented in this report. The text and Appendices C, D, and E summarize the background of the MECS data system, the events that led to the MECS redesign, the major issues address during the review process, and the eventual 1991 MECS design that resulted. For many readers, the most useful part of the report may be Appendices A and B, which contain overall summaries of the users` groups and the industrial roundtables. These appendices capture the rationale for additional data needs as provided by the users. Also, they are a rich source of information on how manufacturers deal with energy use day-to-day, how they have addressed the need for energy efficiency improvement in the past, and the opportunities and problems associated with future efforts to improve efficiency. (VC)

  2. DOE Guidance on the Elements Necessary to Qualify as an Energy Conservation Measure under an Energy Savings Performance Contract

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guidance on the Elements Necessary to Qualify as an Energy Conservation Measure under an Energy Savings Performance Contract August 2013 This document provides guidance on the statutory definition of "energy conservation measure" (ECM) for the purpose of an energy savings performance contract (ESPC), including clarification that multiple ECMs under the same ESPC may be "bundled" when evaluating lifecycle cost-effectiveness. Additionally, this document clarifies that an ESPC

  3. Additional Measures to Protect Whistleblowers at the Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download the Department of Energy's Acquisition Letter and Notice of Proposed Rulemaking pertaining to whistleblower protection.

  4. Measuring Turbulence from Moored Acoustic Doppler Velocimeters A Manual to Quantifying Inflow at Tidal Energy Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring Turbulence from Moored Acoustic Doppler Velocimeters A Manual to Quantifying Inflow at Tidal Energy Sites Levi Kilcher National Renewable Energy Laboratory Jim Thomson, Joe Talbert, and Alex DeKlerk University of Washington NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  5. Rule to Support Increased Energy Measurement and Efficient Building Design

    Broader source: Energy.gov [DOE]

    In 2014, EEREs Federal Energy Management Program issued a final rule that requires verified energy and water performance for new and retrofitted federal buildings that are certified by private...

  6. The Home Energy Score: Measuring 'MPG' For Your Home | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biden and Secretary Chu recently launched the Home Energy Score program to help consumers save money by saving energy. The program is kicking off in ten pilot locations across the...

  7. The Home Energy Score: Measuring 'MPG' For Your Home | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vice President Biden and Secretary Chu recently launched the Home Energy Score program to help consumers save money by saving energy. The program is kicking off in ten pilot ...

  8. The Home Energy Score: Measuring "MPG" For Your Home | Department...

    Office of Environmental Management (EM)

    Today, Vice President Biden and Secretary Chu launched the Home Energy Score program to help consumers save money by saving energy. The program is kicking off in ten pilot ...

  9. Prioritization Tool Measurement Input Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Austin Energy Data Dashboard Massachusetts -- SEP Data Dashboard Phoenix, Arizona Data Dashboard Buildings Home About Emerging Technologies Residential...

  10. High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reciprocating Engine PM Emissions | Department of Energy Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating Engine PM Emissions High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating Engine PM Emissions 2002 DEER Conference Presentation: Sandia National Laboratories 2002_deer_witze.pdf (3.85 MB) More Documents & Publications High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter TG-1: Portable Instrument

  11. EERE Success Story-Rule to Support Increased Energy Measurement and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Building Design | Department of Energy Rule to Support Increased Energy Measurement and Efficient Building Design EERE Success Story-Rule to Support Increased Energy Measurement and Efficient Building Design February 12, 2015 - 12:10pm Addthis In 2014, EERE's Federal Energy Management Program issued a final rule that requires verified energy and water performance for new and retrofitted federal buildings that are certified by private sector green building certification systems. The

  12. Sandia Energy - Improved Method to Measure Glare and Reflected...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and more accurate method of measuring the irradiance from solar reflections using a digital camera. Measurements of reflected solar irradiance is of great importance to...

  13. PFT Air Infiltration Measurement Technique | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infiltration Measurement Technique PFT Air Infiltration Measurement Technique The Brookhaven National Laboratory developed the PFT (PerFluorocarbon tracer gas) technique to...

  14. Property:FluidMechanicsMeasurement | Open Energy Information

    Open Energy Info (EERE)

    Property Name FluidMechanicsMeasurement Property Type String Description MHK Fluid Mechanics Measurement Categories Used in FormTemplate MHKSensor Allows Values Differential...

  15. Description of the Solar-MEC field test installation (Conference...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Institute of Gas Technology, Chicago, Ill. (USA) Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY; SOLAR AIR CONDITIONERS; DESIGN; ...

  16. The Uniform Methods Project: Methods For Determining Energy Efficiency Savings For Specific Measures

    Broader source: Energy.gov [DOE]

    This document provides a set of model protocols for determining energy and demand savings that result from specific energy efficiency measures implemented through state and utility efficiency programs. The methods described here are approaches that are―or are among―the most commonly used in the energy efficiency industry for certain measures or programs.

  17. Securing Wide Area Measurement Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northwest National Laboratory (PNNL) as a project funded by the National SCADA Test Bed Program in cooperation with the Department of Energy's Transmission Reliability Program. ...

  18. Measure Guideline. Energy-Efficient Window Performance and Selection

    SciTech Connect (OSTI)

    Carmody, John; Haglund, Kerry

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all U.S. climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The report also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well.

  19. An Assessment of Envelope Measures in Mild Climate Deep Energy...

    Office of Scientific and Technical Information (OSTI)

    energy uses were added to the home during the retrofit that offset some heating savings. ... Indoor temperatures maintained in these DERs were highly variable, and no project home ...

  20. Sandia Energy - Final FY14 Measurement Campaign in Roza Canal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the effects on local water operations of deploying a current energy converter (CEC) turbine in an irrigation canal for the purposes of producing electricity via the canal's...

  1. EERE Success Story-Rule to Support Increased Energy Measurement...

    Office of Environmental Management (EM)

    final rule that requires verified energy and water performance for new and retrofitted federal buildings that are certified by private sector green building certification systems. ...

  2. EIA Energy Efficiency-Table 1a. Table 1a. Consumption of Site...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    a Page Last Modified: May 2010 Table 1a. Consumption of Energy (Site Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey...

  3. EIA Energy Efficiency-Table 2a. First Use for All Purposes (Primary...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    a Page Last Modified: May 2010 Table 2a. Consumption of Energy (Primary 1 Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS...

  4. SEE Action Webinar – Energy Efficiency Measure Cost Studies

    Broader source: Energy.gov [DOE]

    In this webinar, leading experts will explain the importance of measure cost studies, review the current “state of the science” of measure cost development and estimation, and explore opportunities...

  5. Measure Guideline: Energy-Efficient Window Performance and Selection

    SciTech Connect (OSTI)

    Carmody, J.; Haglund, K.

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

  6. Real Time Tailpipe Emission Measurements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real Time Tailpipe Emission Measurements Real Time Tailpipe Emission Measurements 2002 DEER Conference Presentation: Brookhaven National Laboratory 2002_deer_imre.pdf (1.23 MB) More Documents & Publications Real-Time Simultaneous Measurements of Size, Density, and Composition of Single Ultrafine Diesel Tailpipe Particles Microsoft PowerPoint - 4. ORNL- deer.ppt [Read-Only] Real-Time Measurement of Diesel Trap Efficiency

  7. EOSO ENERGY MEASUREMENTS GROUP THE REMOT SENSIN EG&G SURVEY REPORT...

    Office of Legacy Management (LM)

    Oe. 1-G lZLq n EOSO ENERGY MEASUREMENTS GROUP THE REMOT SENSIN EG&G SURVEY REPORT LABORATO EP-F-002 Of THE UNITED STATES DECEMBER 1981 DEPARTMENT OF ENERGY AN AERIAL RADIOLOGICAL ...

  8. Measurement and Verification of Energy Savings and Performance from Advanced Lighting Controls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SA-25222 Measurement and Verification of Energy Savings and Performance from Advanced Lighting Controls February 2016 EE Richman PNNL-SA-25222 Measurement and Verification of Energy Savings and Performance from Advanced Lighting Controls EE Richman February 2016 Prepared for the U.S. Department of Energy Federal Energy Management Program under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 iii Contacts Project Manager Linda Sandahl Pacific Northwest

  9. Energy Information Administration (EIA)- Manufacturing Energy Consumption

    Gasoline and Diesel Fuel Update (EIA)

    Survey (MECS) Steel Analysis Brief Chemical Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities | Fuel Switching Capacity Introduction The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials

  10. Energy Information Administration (EIA)- Manufacturing Energy Consumption

    Gasoline and Diesel Fuel Update (EIA)

    Survey (MECS) Steel Analysis Brief Steel Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities Introduction The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers,

  11. Energy and Cost Savings of Retro-Commissioning and Retrofit Measures for Large Office Buildings

    SciTech Connect (OSTI)

    Wang, Weimin; Zhang, Jian; Moser, Dave; Liu, Guopeng; Athalye, Rahul A.; Liu, Bing

    2012-08-03

    This paper evaluates the energy and cost savings of seven retro-commissioning measures and 29 retrofit measures applicable to most large office buildings. The baseline model is for a hypothetical building with characteristics of large office buildings constructed before 1980. Each retro-commissioning measure is evaluated against the original baseline in terms of its potential of energy and cost savings while each retrofit measure is evaluated against the commissioned building. All measures are evaluated in five locations (Miami, Las Vegas, Seattle, Chicago and Duluth) to understand the impact of weather conditions on energy and cost savings. The results show that implementation of the seven operation and maintenance measures as part of a retro-commissioning process can yield an average of about 22% of energy use reduction and 14% of energy cost reduction. Widening zone temperature deadband, lowering VAV terminal minimum air flow set points and lighting upgrades are effective retrofit measures to be considered.

  12. DOE Resources Help Measure Building Energy Benchmarking Policy & Program Effectiveness

    Broader source: Energy.gov [DOE]

    The DOE Benchmarking & Transparency Policy and Program Impact Evaluation Handbook provides cost-effective, standardized analytic methods for determining gross and net energy reduction, greenhouse gas (GHG) emissions mitigation, job creation and economic growth impacts.

  13. M&V Guidelines: Measurement and Verification for Federal Energy...

    Energy Savers [EERE]

    and Verification Protocol (IPMVP) Concepts and Options for Determining Energy and Water Savings Volume 1, April 2007. M&V Guidelines 3.0 FEMP ii Contents Section Page Section...

  14. M&V Guidelines: Measurement and Verification for Federal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nEnergyPlus%2Bredirect%2B1 for discussion of simulation issues. 17 http:rredc.nrel.govsolarolddatansrdb1991-2005tmy3. 18 See ASHRAE Guideline 14-2015 and Section 4.2.2...

  15. Data Center Energy Efficiency Measurement Assessment Kit Guide and Specification

    SciTech Connect (OSTI)

    2012-10-26

    A portable and temporary wireless mesh assessment kit can be used to speed up and reduce the costs of a data center energy use assessment and overcome the issues with respect to shutdowns. The assessment kit is comprised of temperature, relative humidity, and pressure sensors. Also included are power meters that can be installed on computer room air conditioners (CRACs) without intrusive interruption of data center operations. The assessment kit produces data required for a detailed energy assessment of the data center.

  16. Cool roofs as an energy conservation measure for federal buildings

    SciTech Connect (OSTI)

    Taha, Haider; Akbari, Hashem

    2003-04-07

    We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

  17. State and Local Energy Savings Performance Contracting: Savings Measurement and Verification

    Broader source: Energy.gov [DOE]

    This webinar, held on Feb. 24, 2011, covers background and benefits of measurement and verification and highlights activities for state and local energy savings performance contracting.

  18. Proceedings of the Department of Energy workshop on beta measurements

    SciTech Connect (OSTI)

    Swinth, K.L.; Vallario, E.J.

    1987-09-01

    Participants discussed current practices, efforts to upgrade the quality of beta measurements, and initiatives necessary to improve the measurement and control of beta doses. This proceedings includes papers presented at the workshop, transcripts of panel and open discussions, and documentation of question and answer sessions. The information exchange resulting from this meeting is expected to provide a clearer focus on the problems of beta measurements.

  19. Coriolis Meters for Hydrogen Dispensing Measurement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coriolis Meters for Hydrogen Dispensing Measurement Coriolis Meters for Hydrogen Dispensing Measurement This presentation by John Daly of GE Measurement and Control Solutions was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. csd_workshop_14_daly.pdf (572.19 KB) More Documents & Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Report on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters Metering Best

  20. Sensor Rapidly Measures the Concentration of Oxygen in Fluids - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Vehicles and Fuels Vehicles and Fuels Find More Like This Return to Search Sensor Rapidly Measures the Concentration of Oxygen in Fluids Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryTo provide rapid measurement of oxygen concentrations in fluids, ORNL researchers developed a sensor that measures oxygen in temperatures from 0 degrees Celsius up to the 200 degrees Celsius commonly found in intake manifolds. The sensor can be

  1. Property:ElectricalCurrentMeasurement | Open Energy Information

    Open Energy Info (EERE)

    Description MHK Electrical Current Measurement Categories Used in FormTemplate MHKSensor Allows Values AC (Electric Current);DC (Electric Current) Retrieved from "http:...

  2. Property:ElectricalPowerMeasurement | Open Energy Information

    Open Energy Info (EERE)

    Description MHK Electrical Power Measurement Categories Used in FormTemplate MHKSensor & MHKInstrument Retrieved from "http:en.openei.orgwindex.php?titleProperty:Elect...

  3. Measurement and Verification for Federal Energy Savings Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement and verification (M&V) activities help agencies confirm that legally and ... When done correctly, M&V: Appropriately allocates risks Reduces uncertainty of savings ...

  4. Sandia Energy - New Polarized-Depolarized Measurement Capability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unit allows researcher to simultaneously measure polarized and depolarized components of Raman scattering signals, helping to overcome fluorescence interference from soot...

  5. Safety Measures a hinder for Geothermal Drilling | Open Energy...

    Open Energy Info (EERE)

    2010 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Safety Measures a hinder for Geothermal Drilling Citation Renewable Power...

  6. Thermal Imaging Technique for Measuring Mixing of Fluids - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fluid flow. Current methods rely on different physical principles such as: pressure measurement, particle tracking using images, heat removal from a wire and Doppler shift...

  7. Space Charge Correction on Emittance Measurement of Low Energy...

    Office of Scientific and Technical Information (OSTI)

    of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the...

  8. Sandia Energy - CRF Researchers Measure Reaction Rates of Second...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measure Reaction Rates of Second Key Atmospheric Component Researchers at Sandia's Combustion Research Facility, the University of Manchester, Bristol University, University of...

  9. M&V Guidelines: Measurement and Verification for Federal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... measured (e.g., reduced solar gain and heat loss through ... The power draw on lighting, plug load, HVAC equipment, and ... controls, exterior photocells, and improved programmed ...

  10. Measurement and Verification Activities Required in the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    service company (ESCO) defines the baselines as part of the investment-grade audit (IGA). ... strategies) are characterized through IGA surveys, inspections, spot measurements, ...

  11. Measuring Changes in Energy Efficiency for the Annual Energy Outlook 2002

    Reports and Publications (EIA)

    2002-01-01

    This paper describes the methodology used to develop the National Energy Modeling System estimate of projected aggregate energy efficiency and to describe the results of applying it to the Annual Energy Outlook 2002 (AEO2002) reference case.

  12. Quantify the energy and environmental benefits of implementing energy-efficiency measures in China’s iron and steel production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Ding; Chen, Wenying; Xu, Tengfang

    2015-08-21

    As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less

  13. Quantify the energy and environmental benefits of implementing energy-efficiency measures in China’s iron and steel production

    SciTech Connect (OSTI)

    Ma, Ding; Chen, Wenying; Xu, Tengfang

    2015-08-21

    As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits and environmental benefits (i.e., CO2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.

  14. Determinants of measured energy consumption in public housing

    SciTech Connect (OSTI)

    Greely, K.M.; Mills, E.; Goldman, C.A.; Ritschard, R.L. )

    1988-01-01

    In this study, the authors used a two-part methodology to analyze metered energy use patterns in 91 public housing projects. Their goal was to develop a technique that could be used by the U.S. Department of Housing and Urban Development (HUD) and public housing authorities (PHAs) to derive reasonable energy use guidelines for different segments of the public housing stock. In the authors' approach, actual energy use was first normalized to consumption in a year with ''typical'' weather and then used in a multiple regression analysis of different cross-sectional variables. The regression model explained 80% of the variation in energy use, with the type of account and the management practices of PHAs emerging as important explanatory factors. As compared to previous engineering estimates of public housing consumption, the projects in this study used 8% (per square foot) to 16% (per apartment) less fuel and electricity, but consumption was still significantly higher (43%) than that of privately owned multifamily housing. They conclude that this methodology could be used to help HUD and PHAs increase their understanding of energy use patterns and appropriate consumption levels in public housing.

  15. M&V Guidelines: Measurement and Verification for Federal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    M&V Guidelines: Measurement and Verification for Performance-Based Contracts Version 4.0 ... Management Program November 2015 FEMP M&V Guidelines 4.0 i ACKNOWLEDGMENTS ...

  16. Measurement of intergranular attack in stainless steel using ultrasonic energy

    DOE Patents [OSTI]

    Mott, Gerry; Attaar, Mustan; Rishel, Rick D.

    1989-08-08

    Ultrasonic test methods are used to measure the depth of intergranular attack (IGA) in a stainless steel specimen. The ultrasonic test methods include a pitch-catch surface wave technique and a through-wall pulse-echo technique. When used in combination, these techniques can establish the extent of IGA on both the front and back surfaces of a stainless steel specimen from measurements made on only one surface.

  17. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interpretation of micro benchmark and application energy use on the Cray XC30 Brian Austin, and Nicholas J. Wright ⇤ August 29, 2014 Abstract Understanding patterns of application energy use is key to reaching future HPC e ciency goals. We have measured the sensitivity of en- ergy use to CPU frequency for several microbenchmarks and applications on a Cray XC30. First order fits to the performance and power data are su cient to describe the energy used by these applications. Exam- ination of

  18. United States Industrial Sector Energy End Use Analysis

    SciTech Connect (OSTI)

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energys (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a completed

  19. Understanding Manufacturing Energy and Carbon Footprints, October 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Understanding Manufacturing Energy and Carbon Footprints, October 2012 Understanding Manufacturing Energy and Carbon Footprints, October 2012 understanding_energy_footprints_2012.pdf (735.69 KB) More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis MECS 2006 - Cement

  20. DOE/EIA-0555(95)/2 Energy Consumption Series Measuring Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    is possible to separate the effects unrelated to energy efficiency. This approach can be thought of as a "top-down" approach. It is like peeling away all the effects until energy...

  1. Energy Intensity Changes by Sector, 1985-2011 – Alternative Measures by Type of Energy

    Broader source: Energy.gov [DOE]

    Further insight with regard to the comparison of intensity changes by sector can be gained by looking at how they differ with respect to different definitions of energy use. Source energy...

  2. Retail Building Guide for Entrance Energy Efficiency Measures

    SciTech Connect (OSTI)

    Stein, J.; Kung, F.

    2012-03-01

    This booklet is based on the findings of an infiltration analysis for supermarkets and large retail buildings without refrigerated cases. It enables retail building managers and engineers to calculate the energy savings potential for vestibule additions for supermarkets; and bay door operation changes in large retail stores without refrigerated cases. Retail managers can use initial estimates to decide whether to engage vendors or contractors of vestibules for pricing or site-specific analyses, or to decide whether to test bay door operation changes in pilot stores, respectively.

  3. Chapter 1: Introduction. Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Introduction The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 Hossein Haeri The Cadmus Group, Inc., Portland, Oregon NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-63417 February 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for

  4. Measurement and verifiction (M&V) guidelines for federal energy projects

    SciTech Connect (OSTI)

    1996-02-01

    This document provides procedures and guidelines for quantifying the savings resulting from the installation of Energy Conservation Measures (ECMs) implemented with federal Energy Savings Performance Contracts (ESPCs) or task orders implemented under a federal IDIQ contract. The first section of this document provides an overview of measurement and verification (M&V) options and procedures. The second, third, and fourth sections provide standardized measurement and verification (M&V) methods for common types of ECMs.

  5. FACT SHEET U.S. Department of Energy Atmospheric Radiation Measurement Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility The Atmospheric Radiation Measurement (ARM) Climate Research Facility is a key component of the U.S. Department of Energy's efforts to better understand and predict Earth's climate in order to develop sustainable solutions to the nation's energy and environmental challenges. ARM was the first climate research program to deploy a comprehensive suite of cutting-edge instrumentation to continually measure cloud and aerosol properties and

  6. Trapping and Measuring Charged Particles in Liquids - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Advanced Materials Advanced Materials Find More Like This Return to Search Trapping and Measuring Charged Particles in Liquids Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication Printable fact sheet (552 KB) Planar aqueous Paul trap (PAPT) devices and experimental platform Planar aqueous Paul trap (PAPT) devices and experimental platform Technology Marketing SummaryA nanoscale version of the Paul ion trap was developed by

  7. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  8. Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures; January 2012 - March 2013

    SciTech Connect (OSTI)

    Jayaweera, T.; Haeri, H.

    2013-04-01

    Under the Uniform Methods Project, DOE is developing a framework and a set of protocols for determining the energy savings from specific energy efficiency measures and programs. The protocols provide a straightforward method for evaluating gross energy savings for common residential and commercial measures offered in ratepayer-funded initiatives in the United States. They represent a refinement of the body of knowledge supporting energy efficiency evaluation, measurement, and verification (EM&V) activities. This document deals with savings from the following measures: commercial and industrial lighting, commercial and industrial lighting controls, small commercial and residential unitary and split system HVAC cooling equipment, residential furnaces and boilers, residential lighting, refrigerator recycling, whole-building retrofit using billing analysis, metering, peak demand and time-differentiated energy savings, sample design, survey design and implementation, and assessing persistence and other evaluation issues.

  9. Health effects associated with energy conservation measures in commercial buildings

    SciTech Connect (OSTI)

    Stenner, R.D.; Baechler, M.C.

    1990-09-01

    Indoor air quality can be impacted by hundreds of different chemicals. More than 900 different organic compounds alone have been identified in indoor air. Health effects that could arise from exposure to individual pollutants or mixtures of pollutants cover the full range of acute and chronic effects, including largely reversible responses, such as rashes and irritations, to the irreversible toxic and carcinogenic effects. These indoor contaminants are emitted from a large variety of materials and substances that are widespread components of everyday life. Pacific Northwest Laboratory conducted a search of the peer-reviewed literature on health effects associated with indoor air contaminants for the Bonneville Power Administration to aid the agency in the preparation of environmental documents. Results are reported in two volumes. Volume 1 summarizes the results of the search of the peer-reviewed literature on health effects associated with a selected list of indoor air contaminants. In addition, the report discusses potential health effects of polychlorinated biphenyls and chlorofluorocarbons. All references to the literature reviewed are found in this document Volume 2. Volume 2 provides detailed information from the literature reviewed, summarizes potential health effects, reports health hazard ratings, and discusses quantitative estimates of carcinogenic risk in humans and animals. Contaminants discussed in this report are those that; have been measured in the indoor air of a public building; have been measured (significant concentrations) in test situations simulating indoor air quality (as presented in the referenced literature); and have a significant hazard rating. 38 refs., 7 figs., 23 tabs.

  10. Pulse energy measurement at the hard x-ray laser in Japan

    SciTech Connect (OSTI)

    Kato, M.; Tanaka, T.; Saito, N.; Kurosawa, T.; Richter, M.; Sorokin, A. A.; Tiedtke, K.; Kudo, T.; Yabashi, M.; Tono, K.; Ishikawa, T.

    2012-07-09

    The pulse energies of a free electron laser have accurately been measured in the hard x-ray spectral range. In the photon energy regime from 4.4 keV to 16.8 keV, pulse energies up to 100 {mu}J were obtained at the hard x-ray laser facility SACLA (SPring-8 Angstrom Compact free-electron LAser). Two independent methods, using a cryogenic radiometer and a gas monitor detector, were applied and agreement within 3.3% was achieved. Based on our validated pulse energy measurement, a SACLA online monitor detector could be calibrated for all future experiments.

  11. A small low energy cyclotron for radioisotope measurements

    SciTech Connect (OSTI)

    Bertsche, K.J.

    1989-11-01

    Direct detection of {sup 14}C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the cyclotrino'') was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of {sup 14}C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat-field, electrostatically-focused cyclotron to comprise a system capable of measuring {sup 14}C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-grated output. In its present form the system is capable of improving the sensitivity of detecting {sup 14}C in some biomedical experiments by a factor of 10{sup 4}. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as {sup 3}H, and {sup 10}Be, and {sup 26}Al, are discussed. 70 refs.

  12. EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected...

    Gasoline and Diesel Fuel Update (EIA)

    b Page Last Modified: May 2010 Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector...

  13. EIA Energy Efficiency-Table 2b. Primary Fuel Consumption for...

    Gasoline and Diesel Fuel Update (EIA)

    b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS...

  14. Analysis of Installed Measures and Energy Savings for Single-Family Residential Better Buildings Projects

    SciTech Connect (OSTI)

    Heaney, M.; Polly, B.

    2015-04-30

    This report presents an analysis of data for residential single-family projects reported by 37 organizations that were awarded federal financial assistance (cooperative agreements or grants) by the U.S. Department of Energy’s Better Buildings Neighborhood Program.1 The report characterizes the energy-efficiency measures installed for single-family residential projects and analyzes energy savings and savings prediction accuracy for measures installed in a subset of those projects.

  15. Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2012-06-01

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for

  16. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source

    SciTech Connect (OSTI)

    Malapit, Giovanni M.; Mahinay, Christian Lorenz S.; Poral, Matthew D.; Ramos, Henry J.

    2012-02-15

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into the data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.

  17. Quantitation of absorbed or deposited materials on a substrate that measures energy deposition

    DOE Patents [OSTI]

    Grant, Patrick G.; Bakajin, Olgica; Vogel, John S.; Bench, Graham

    2005-01-18

    This invention provides a system and method for measuring an energy differential that correlates to quantitative measurement of an amount mass of an applied localized material. Such a system and method remains compatible with other methods of analysis, such as, for example, quantitating the elemental or isotopic content, identifying the material, or using the material in biochemical analysis.

  18. Analysis of Illinois Home Performance with ENERGY STAR(R) Measure Packages

    SciTech Connect (OSTI)

    Baker, J.; Yee, S.; Brand, L.

    2013-09-01

    Through the Chicagoland Single Family Housing Characterization and Retrofit Prioritization report, the Partnership for Advanced Residential Retrofit characterized 15 housing types in the Chicagoland region based on assessor data, utility billing history, and available data from prior energy efficiency programs. Within these 15 groups, a subset showed the greatest opportunity for energy savings based on BEopt Version 1.1 modeling of potential energy efficiency package options and the percent of the housing stock represented by each group. In this project, collected field data from a whole-home program in Illinois are utilized to compare marketplace-installed measures to the energy saving optimal packages previously developed for the 15 housing types. Housing type, conditions, energy efficiency measures installed, and retrofit cost information were collected from 19 homes that participated in the Illinois Home Performance with ENERGY STAR program in 2012, representing eight of the characterized housing groups. Two were selected for further case study analysis to provide an illustration of the differences between optimal and actually installed measures. Taken together, these homes are representative of 34.8% of the Chicagoland residential building stock. In one instance, actual installed measures closely matched optimal recommended measures.

  19. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    SciTech Connect (OSTI)

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Boehly, T. R.; Collins, G. W.

    2015-09-04

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  20. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, A.; Luo, J.; Wang, A.; Broadbent, C.; Zhong, J.; Dilmanian, F. A.; Zafonte, F.; Zhong, Z.

    2015-03-14

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. In addition, an efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent inmore » the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.« less

  1. Iron and Steel Energy Intensities

    U.S. Energy Information Administration (EIA) Indexed Site

    MECS Survey Year 1985 1988 1991 1994 All Energy Sources 46.47 30.61 34.77 33.98 Electricity 3.66 2.44 3.17 3.05 Natural Gas 11.33 7.86 10.25 9.97 Coal 29.13 19.12 20.08 18.40...

  2. Impact evaluation of energy conservation measures installed at Mayr Brothers Logging Company under the Energy Savings Plan

    SciTech Connect (OSTI)

    Brown, D.R.; Spanner, G.E.

    1995-05-01

    This impact evaluation of adjustable speed drives (ASDs), programmble logic controllers (PLCs), and high efficiency motors (HEMs) that were recently installed at Mayr Brothers Logging Co., Inc. (Mayr Bros.) was conducted for the Bonneville Power Administration (Bonneville) as part of an evaluation of its Energy $avings Plan (E$P) Program. The project consists of ASDs, PLCs, and HEMs that were installed at the Mayr Bros. new small log nill at their facility in Hoquiam, Washington. Energy savings directly accrue through improved motor efficiency and indirectly accrue via an increase in production rate. This latter effect reduces energy consumption per unit of production by spreading fixed energy requirements over a greater number of units. The objective of this impact evaluation was to assess how much electricity is being saved at Mayr Bros. as a result of the E$P and to determine how much the savings cost Bonneville and the region. The impact of the project was evaluated with a combination of engineering analysis, financial analysis, interviews, and submittal reviews (Mayr Bros. proposal and completion report). The energy conservation measures were incorporated into the small log mill while the mill was constructed in 1992 and 1993. Financing the new mill had stretched Mayr Bros. cash and credit resources to the limit. Without the acquisition payment, Mayr Bros. would not have been able to afford the additional investment in the energy conservation measures. Therefore, all of the project`s impact can be attributed to the E$P. The key recommendation resulting from this impact evaluation is to avoid the direct comparison of energy consumption estimates derived via engineering calculations and metering. If ``before and after`` metering is not possible, engineering calculations should be calibrated against metered data to enhance comparability.

  3. Theoretical study of energy deposition in ionization chambers for tritium measurements

    SciTech Connect (OSTI)

    Chen, Zhilin; Peng, Shuming; Meng, Dan; He, Yuehong; Wang, Heyi

    2013-10-15

    Energy deposition in ionization chambers has been theoretically studied for tritium measurements in gaseous form. A one-dimension model is introduced to establish the quantitative relationship between energy deposition rate and many factors, including carrier gas, gas pressure, wall material, chamber size, and gas temperature. Energy deposition rate has been calculated at pressure varying from 5 kPa to 500 kPa based on some approximations. It is found that energy deposition rate varies greatly for different parameters, especially at low gas pressure. For the same chamber, energy deposition rate in argon is much higher than in deuterium, as much as 70.7% higher at 5 kPa. Gold plated chamber gives highest energy deposition rate in the calculations while aluminum chamber results in the lowest. As chamber size gets smaller, β ray emitted by tritium will deposit less energy in the sensitive region of the chamber. For chambers flowing through with the same gas, energy deposition rate in a 10 L chamber is 23.9% higher than in a 0.05 L chamber at 5 kPa. Gas temperature also places slight influence on energy deposition rate, and 373 K will lead to 6.7% lower deposition rate than 233 K at 5 kPa. In addition, experiments have been performed to obtain energy deposition rate in a gold plated chamber, which show good accordance with theoretical calculations.

  4. Measure Guideline. Five Steps to Implement the Public Housing Authority Energy-Efficient Unit Turnover Checklist

    SciTech Connect (OSTI)

    Liaukus, Christine

    2015-07-09

    Five Steps to Implementing the PHA Energy Efficient Unit Turnover Package (ARIES, 2014) is a guide to prepare for the installation of energy efficient measures during a typical public housing authority unit turnover. While a PHA is cleaning, painting and readying a unit for a new resident, there is an opportunity to incorporate energy efficiency measures to further improve the unit's performance. The measures on the list are simple enough to be implemented by in-house maintenance personnel, inexpensive enough to be folded into operating expenses without needing capital budget, and fast enough to implement without substantially changing the number of days between occupancies, a critical factor for organizations where the demand for dwelling units far outweighs the supply. The following guide lays out a five step plan to implement the EE Unit Turnover Package in your PHA, from an initial Self-Assessment through to Package Implementation.

  5. ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT NE-F-003

    Office of Legacy Management (LM)

    * * * * * * * * * ~n~EGc.G ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT NE-F-003 FEBRUARY 1983 THE REMOTE SENSING LABORATORY OF THE UNITED STATES DEPARTMENT OF ENERGY AN AERIAL RADIOLOGICAL SURVEY OF AN AREA SURROUNDING THE FORMER MIDDLESEX SAMPLING PLANT IN MIDDLESEX, NEW JERSEY DATE OF SURVEY: MAY 1978 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of

  6. Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-01

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

  7. The Cosmic Ray Energy Spectrum and Related Measurements with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the cosmic ray energy spectrum above 10{sup 18} eV with the Pierre Auger Observatory; (2) The cosmic ray flux observed at zenith angles larger than 60 degrees with the Pierre Auger Observatory; (3) Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory; (4) Exposure of the Hybrid Detector of The Pierre Auger Observatory; and (5) Energy scale derived from Fluorescence Telescopes using Cherenkov Light and Shower Universality.

  8. Home Performance with Energy Star. Which Measures Get You 30% Savings?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance With Energy Star, Which Measures Get You 30% Savings? Christine Liaukus, R.A. Building America Retrofit Alliance Context A Building America goal for existing homes is to reduce source energy use by 30% Savings from HPwES range from 10% to 30%+ HPwES is the largest existing market rate Home EE program in the US Research Questions 1 1 * Can Building America formulate a prescriptive package based on HPwES to reliably achieve 30% source energy savings in existing homes? 2 2 * What

  9. Measuring energy-saving retrofits: Experiences from the Texas LoanSTAR program

    SciTech Connect (OSTI)

    Haberl, J.S.; Reddy, T.A.; Claridge, D.E.; Turner, W.D.; O`Neal, D.L.; Heffington, W.M.

    1996-02-01

    In 1988 the Governor`s Energy Management Center of Texas received approval from the US Department of Energy to establish a $98.6 million state-wide retrofit demonstration revolving loan program to fund energy-conserving retrofits in state, public school, and local government buildings. As part of this program, a first-of-its-kind, statewide Monitoring and Analysis Program (MAP) was established to verify energy and dollar savings of the retrofits, reduce energy costs by identifying operational and maintenance improvements, improve retrofit selection in future rounds of the LoanSTAR program, and initiate a data base of energy use in institutional and commercial buildings located in Texas. This report discusses the LoanSTAR MAP with an emphasis on the process of acquiring and analyzing data to measure savings from energy conservation retrofits when budgets are a constraint. This report includes a discussion of the program structure, basic measurement techniques, data archiving and handling, data reporting and analysis, and includes selected examples from LoanSTAR agencies. A summary of the program results for the first two years of monitoring is also included.

  10. Unfolding the high energy electron flux from CRRES fluxmeter measurements. Master`s thesis

    SciTech Connect (OSTI)

    McKellar, B.D.

    1996-12-01

    The Combined Release and Radiation Effects Satellite (CRRES) was launched on 25 July 1990 to collect measurements in the earth`s radiation belts. One instrument, the High Energy Electron Fluxmeter (HEEF), measured the flux of electrons in 10 channels with energies between 1 MeV and 10 MeV. The channel sensitivities, Ri(E), have been calibrated and partially re-calibrated. The authors explore the errors introduced in unfolding the electron flux spectrum from the channel measurements and the propagation and growth of calibration and measurement errors. Using numerical experimentation, they fold the responses with known spectra to obtain simulated measurements, add random measurement and calibration errors, and unfold the spectra as 10-bin histograms which are compared with histograms of the original spectra. The authors observe that the shape (of the response functions) is the major factor in the growth of error in unfolding and in determining which type of error dominates the unfolding process. They conclude that successful unfolding of the electron flux is critically dependent upon the shape of the response functions. The re-calibration of the REEF must be accurately completed if reliable unfolds of the high energy electron flux are to be obtained.

  11. A TECHNOLOGY ASSESSMENT AND FEASIBILITY EVALUATION OF NATURAL GAS ENERGY FLOW MEASUREMENT ALTERNATIVES

    SciTech Connect (OSTI)

    Kendricks A. Behring II; Eric Kelner; Ali Minachi; Cecil R. Sparks; Thomas B. Morrow; Steven J. Svedeman

    1999-01-01

    Deregulation and open access in the natural gas pipeline industry has changed the gas business environment towards greater reliance on local energy flow rate measurement. What was once a large, stable, and well-defined source of natural gas is now a composite from many small suppliers with greatly varying gas compositions. Unfortunately, the traditional approach to energy flow measurement [using a gas chromatograph (GC) for composition assay in conjunction with a flow meter] is only cost effective for large capacity supplies (typically greater than 1 to 30 million scfd). A less costly approach will encourage more widespread use of energy measurement technology. In turn, the US will benefit from tighter gas inventory control, more efficient pipeline and industrial plant operations, and ultimately lower costs to the consumer. An assessment of the state and direction of technology for natural gas energy flow rate measurement is presented. The alternative technologies were ranked according to their potential to dramatically reduce capital and operating and maintenance (O and M) costs, while improving reliability and accuracy. The top-ranked technologies take an unconventional inference approach to the energy measurement problem. Because of that approach, they will not satisfy the fundamental need for composition assay, but have great potential to reduce industry reliance on the GC. Technological feasibility of the inference approach was demonstrated through the successful development of data correlations that relate energy measurement properties (molecular weight, mass-based heating value, standard density, molar ideal gross heating value, standard volumetric heating value, density, and volume-based heating value) to three inferential properties: standard sound speed, carbon dioxide concentration, and nitrogen concentration (temperature and pressure are also required for the last two). The key advantage of this approach is that inexpensive on-line sensors may be used

  12. Energy Efficiency Under Alternative Carbon Policies. Incentives, Measurement, and Interregional Effects

    SciTech Connect (OSTI)

    Steinberg, Daniel C.; Boyd, Erin

    2015-08-28

    In this report, we examine and compare how tradable mass-based polices and tradable rate-based policies create different incentives for energy efficiency investments. Through a generalized demonstration and set of examples, we show that as a result of the output subsidy they create, traditional rate-based policies, those that do not credit energy savings from efficiency measures, reduce the incentive for investment in energy efficiency measures relative to an optimally designed mass-based policy or equivalent carbon tax. We then show that this reduced incentive can be partially addressed by modifying the rate-based policy such that electricity savings from energy efficiency measures are treated as a source of zero-carbon generation within the framework of the standard, or equivalently, by assigning avoided emissions credit to the electricity savings at the rate of the intensity target. These approaches result in an extension of the output subsidy to efficiency measures and eliminate the distortion between supply-side and demand-side options for GHG emissions reduction. However, these approaches do not address electricity price distortions resulting from the output subsidy that also impact the value of efficiency measures. Next, we assess alternative approaches for crediting energy efficiency savings within the framework of a rate-based policy. Finally, we identify a number of challenges that arise in implementing a rate-based policy with efficiency crediting, including the requirement to develop robust estimates of electricity savings in order to assess compliance, and the requirement to track the regionality of the generation impacts of efficiency measures to account for their interstate effects.

  13. Evaluation of Model Results and Measured Performance of Net-Zero Energy Homes in Hawaii: Preprint

    SciTech Connect (OSTI)

    Norton, P.; Kiatreungwattana, K.; Kelly, K. J.

    2013-03-01

    The Kaupuni community consists of 19 affordable net-zero energy homes that were built within the Waianae Valley of Oahu, Hawaii in 2011. The project was developed for the native Hawaiian community led by the Department of Hawaiian Homelands. This paper presents a comparison of the modeled and measured energy performance of the homes. Over the first year of occupancy, the community as a whole performed within 1% of the net-zero energy goals. The data show a range of performance from house to house with the majority of the homes consistently near or exceeding net-zero, while a few fall short of the predicted net-zero energy performance. The impact of building floor plan, weather, and cooling set point on this comparison is discussed. The project demonstrates the value of using building energy simulations as a tool to assist the project to achieve energy performance goals. Lessons learned from the energy performance monitoring has had immediate benefits in providing feedback to the homeowners, and will be used to influence future energy efficient designs in Hawaii and other tropical climates.

  14. Knowledge is power: How information alone can cause commercial customers to install energy-efficient measures

    SciTech Connect (OSTI)

    Garafalo, A.; Mulholland, C.

    1994-12-31

    As part of their overall efforts to encourage Commercial and Industrial customers to become more energy efficient, many utilities offer Energy Audit Programs. This type of program has two main purposes. First, it offers the utility`s commercial and industrial (C/I) customers the opportunity to identify ways in which they can increase the overall energy efficiency of their facilities through the installation of more energy-efficient lighting, space conditioning, thermal efficiency, and other measures. Secondly, audit programs offer a utility public relations value because such programs usually have a positive reception among customers. The first purpose, however, that of educating customers about the energy efficiency of their facilities, is the key to potential energy savings. Many audit programs are designed to feed directly into a utility`s rebate program, and thus offer good marketing opportunities for demand side management. Many utilities and regulatory bodies consider C/I audit programs to be non-resource or information-only programs. There are quantifiable benefits to these programs beyond the marketing leads they provide for the rebate programs. Since 1987, Applied Energy Group, Inc. (AEG) has been involved in the measurement of savings attributable to energy audit programs. Through years of development and refinement, AEG has developed a process which is able to identify savings attributable solely to a utility`s energy audit program, effectively netting out the results achieved through the efforts of a rebate program. This process also factors out free ridership and ensures that there is no double counting of savings between audit and rebate programs. The findings presented here focus on the work that AEG has done for two of its utility clients: Rochester Gas & Electric (RG&E) and Long Island Lighting Company (LILCO) during the course of evaluating their 1990 and 1991 C/I programs.

  15. Filter-fluorescer measurement of low-voltage simulator x-ray energy spectra

    SciTech Connect (OSTI)

    Baldwin, G.T.; Craven, R.E.

    1986-01-01

    X-ray energy spectra of the Maxwell Laboratories MBS and Physics International Pulserad 737 were measured using an eight-channel filter-fluorescer array. The PHOSCAT computer code was used to calculate channel response functions, and the UFO code to unfold spectrum.

  16. Measure Guideline. Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    SciTech Connect (OSTI)

    Hunt, A.; Easley, S.

    2012-05-01

    This measure guideline evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provides a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  17. FAST NEUTRON SPECTROMETER USING SPACED SEMICONDUCTORS FOR MEASURING TOTAL ENERGY OF NEUTRONS CAPTURED

    DOE Patents [OSTI]

    Love, T.A.; Murray, R.B.

    1964-04-14

    A fast neutron spectrometer was designed, which utilizes a pair of opposed detectors having a layer of /sup 6/LiF between to produce alpha and T pair for each neutron captured to provide signals, which, when combined, constitute a measure of neutron energy. (AEC)

  18. Using Measurement and Verification to Manage Risk in Federal Energy- and Water-Saving Projects

    Broader source: Energy.gov [DOE]

    "Risk," in the context of measurement and verification (M&V), refers to the uncertainty that expected savings will be realized. Assumption of risk implies acceptance of the potential monetary consequences. Energy service companies (ESCOs) and agencies are each reluctant to assume responsibility for factors they cannot control, and holding certain parameters fixed in the M&V plan can match up responsibilities.

  19. Effect of air on energy and rise-time spectra measured by proportional gas counter

    SciTech Connect (OSTI)

    Kawano, T.; Tanaka, M.; Isozumi, S.; Isozumi, Y.; Tosaki, M.; Sugiyama, T.

    2015-03-15

    Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection. For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)

  20. Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.; Crawford, Aladsair J.; Viswanathan, Vilayanur V.; Ferreira, Summer; Schoenwald, David

    2014-06-01

    The Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems (PNNL-22010) was first issued in November 2012 as a first step toward providing a foundational basis for developing an initial standard for the uniform measurement and expression of energy storage system (ESS) performance. Its subsequent use in the field and review by the protocol working group and most importantly the users’ subgroup and the thermal subgroup has led to the fundamental modifications reflected in this update of the 2012 Protocol. As an update of the 2012 Protocol, this document (the June 2014 Protocol) is intended to supersede its predecessor and be used as the basis for measuring and expressing ESS performance. The foreword provides general and specific details about what additions, revisions, and enhancements have been made to the 2012 Protocol and the rationale for them in arriving at the June 2014 Protocol.

  1. Reducing and measuring fluctuations in the MST RFP: Enhancement of energy confinement and measurement of the MHD dynamo

    SciTech Connect (OSTI)

    Den Hartog, D.J.; Almagri, A.F.; Cekic, M.

    1996-09-01

    A three- to five-fold enhancement of the energy confinement time in a reversed-field pinch (RFP) has been achieved in the Madison Symmetric Torus (MST) by reducing the amplitude of tearing mode fluctuations responsible for anomalous transport in the core of the RFP. By applying a transient poloidal inductive electric field to flatten the current density profile, the fluctuation amplitude {tilde b}/B decreases from 1.5% to 0.8%, the electron temperature T{sub e0} increases from 250 eV to 370 eV, the ohmic input power decreases from 4.5 MW to approximately 1.5 MW, the poloidal beta {beta}{sub 0} increases from 6% to 9%, and the energy confinement time {tau}{sub E} increases from 1 ms to {approximately}5 ms in I{sub {phi}} = 340 kA plasmas with density {tilde n} = 1 {times} 10{sup 19} m{sup -3}. Current profile control methods are being developed for the RFP in a program to eliminate transport associated with these current-gradient-driven fluctuations. In addition to controlling the amplitude of the tearing modes, we are vigorously pursuing an understanding of the physics of these fluctuations. In particular, plasma flow, both equilibrium and fluctuating, plays a critical role in a diversity of physical phenomena in MST. The key results: 1) Edge probe measurements show that the MHD dynamo is active in low collisionality plasmas, while at high collisionality a new mechanism, the `electron diamagnetic dynamo,` is observed. 2) Core spectroscopic measurements show that the toroidal velocity fluctuations of the plasma are coherent with the large-scale magnetic tearing modes; the scalar product of these two fluctuating quantities is similar to that expected for the MHD dynamo electromotive force. 3) Toroidal plasma flow in MST exhibits large radial shear and can be actively controlled, including unlocking locked discharges, by modifying E{sub r} with a robust biased probe. 24 refs.

  2. Evaluation of Modeled and Measured Energy Savings in Existing All Electric Public Housing in the Pacific Northwest

    SciTech Connect (OSTI)

    Gordon, A.; Lubliner, M.; Howard, L.; Kunkle, R.; Salzberg, E.

    2014-04-01

    This project analyzes the cost effectiveness of energy savings measures installed by a large public housing authority in Salishan, a community in Tacoma Washington. Research focuses on the modeled and measured energy usage of the first six phases of construction, and compares the energy usage of those phases to phase 7. Market-ready energy solutions were also evaluated to improve the efficiency of affordable housing for new and existing (built since 2001) affordable housing in the marine climate of Washington State.

  3. Measuring linac photon beam energy through EPID image analysis of physically wedged fields

    SciTech Connect (OSTI)

    Dawoud, S. M. Weston, S. J.; Bond, I.; Ward, G. C.; Rixham, P. A.; Mason, J.; Huckle, A.; Sykes, J. R.

    2014-02-15

    Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful tools for measuring several parameters of interest in linac quality assurance (QA). However, a method for measuring linac photon beam energy using EPIDs has not previously been reported. In this report, such a method is devised and tested, based on fitting a second order polynomial to the profiles of physically wedged beams, where the metric of interest is the second order coefficientα. The relationship between α and the beam quality index [percentage depth dose at 10 cm depth (PDD{sub 10})] is examined to produce a suitable calibration curve between these two parameters. Methods: Measurements were taken in a water-tank for beams with a range of energies representative of the local QA tolerances about the nominal value 6 MV. In each case, the beam quality was found in terms of PDD{sub 10} for 100 × 100 mm{sup 2} square fields. EPID images of 200 × 200 mm{sup 2} wedged fields were then taken for each beam and the wedge profile was fitted in MATLAB 2010b (The MathWorks, Inc., Natick, MA). α was then plotted against PDD{sub 10} and fitted with a linear relation to produce the calibration curve. The uncertainty in α was evaluated by taking five repeat EPID images of the wedged field for a beam of 6 MV nominal energy. The consistency of measuring α was found by taking repeat measurements on a single linac over a three month period. The method was also tested at 10 MV by repeating the water-tank crosscalibration for a range of energies centered approximately about a 10 MV nominal value. Finally, the calibration curve from the test linac and that from a separate clinical machine were compared to test consistency of the method across machines in a matched fleet. Results: The relationship betweenα and PDD{sub 10} was found to be strongly linear (R{sup 2} = 0.979) while the uncertainty in α was found to be negligible compared to that associated with measuring PDD{sub 10} in the water-tank (

  4. Measurement of the atmospheric muon charge ratio at TeV energies with MINOS

    SciTech Connect (OSTI)

    Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Avvakumov, S.; Ayres, D.S.; Baller, B.; Barish, B.; Barnes, P.D., Jr.; Barr, G.; /Fermilab /University Coll. London /Rutherford /Minnesota U. /Indiana U. /Sussex U. /Stanford U., Phys. Dept. /Argonne /Caltech /LLNL, Livermore /Oxford U.

    2007-05-01

    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be N{sub {mu}}+/N{sub {mu}}-=1.374{+-}0.004(stat)-0.010{sup +0.012}(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.

  5. Measured energy savings and performance of power-managed personal computers and monitors

    SciTech Connect (OSTI)

    Nordman, B.; Piette, M.A.; Kinney, K.

    1996-08-01

    Personal computers and monitors are estimated to use 14 billion kWh/year of electricity, with power management potentially saving $600 million/year by the year 2000. The effort to capture these savings is lead by the US Environmental Protection Agency`s Energy Star program, which specifies a 30W maximum demand for the computer and for the monitor when in a {open_quote}sleep{close_quote} or idle mode. In this paper the authors discuss measured energy use and estimated savings for power-managed (Energy Star compliant) PCs and monitors. They collected electricity use measurements of six power-managed PCs and monitors in their office and five from two other research projects. The devices are diverse in machine type, use patterns, and context. The analysis method estimates the time spent in each system operating mode (off, low-, and full-power) and combines these with real power measurements to derive hours of use per mode, energy use, and energy savings. Three schedules are explored in the {open_quotes}As-operated,{close_quotes} {open_quotes}Standardized,{close_quotes} and `Maximum` savings estimates. Energy savings are established by comparing the measurements to a baseline with power management disabled. As-operated energy savings for the eleven PCs and monitors ranged from zero to 75 kWh/year. Under the standard operating schedule (on 20% of nights and weekends), the savings are about 200 kWh/year. An audit of power management features and configurations for several dozen Energy Star machines found only 11% of CPU`s fully enabled and about two thirds of monitors were successfully power managed. The highest priority for greater power management savings is to enable monitors, as opposed to CPU`s, since they are generally easier to configure, less likely to interfere with system operation, and have greater savings. The difficulties in properly configuring PCs and monitors is the largest current barrier to achieving the savings potential from power management.

  6. Review of Evaluation, Measurement and Verification Approaches Used to Estimate the Load Impacts and Effectiveness of Energy Efficiency Programs

    SciTech Connect (OSTI)

    none,

    2012-04-01

    Provides an overview of evaluation, measurement, and verification approaches used to estimate the load impacts and effectiveness of energy efficiency programs.

  7. Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-10

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a

  8. Chapter 10, Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocols: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocols Frank Stern, Navigant Consulting Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 10 - 1 Chapter 10 - Table of Contents 1 Introduction .............................................................................................................................2 2 Purpose of Peak Demand and Time-differentiated Energy

  9. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures: January 2012 - March 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contract No. DE-AC36-08GO28308 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures January 2012 - March 2013 Tina Jayaweera Hossein Haeri The Cadmus Group Portland, Oregon NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A30-53827 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable

  10. Measurements of continuous mix evolution in a high energy density shear flow

    SciTech Connect (OSTI)

    Loomis, E. Doss, F.; Flippo, K.; Fincke, J.

    2014-04-15

    We report on the novel integration of streaked radiography into a counter-flowing High Energy Density (HED) shear environment that continually measures a growing mix layer of Al separating two low-density CH foams. Measurements of the mix width allow us to validate compressible turbulence models and with streaked imaging, make this possible with a minimal number of experiments on large laser facilities. In this paper, we describe how the HED counter-flowing shear layer is created and diagnosed with streaked radiography. We then compare the streaked data to previous two-dimensional, single frame radiography and radiation hydrodynamic simulations of the experiment with inline compressible turbulent mix models.

  11. Measure Guideline: Deep Energy Enclosure Retrofit for Double-Stud Walls

    SciTech Connect (OSTI)

    Loomis, H.; Pettit, B.

    2015-06-22

    This Measure Guideline describes a deep energy enclosure retrofit solution that provides insulation to the interior of the wall assembly with the use of a double-stud wall. The guide describes two approaches to retrofitting the existing walls—one that involves replacing the existing cladding and the other that leaves the cladding in place. This guideline also covers the design principles related to the use of various insulation types and provides strategies and procedures for implementing the double-stud wall retrofit. It also includes an evaluation of important moisture-related and indoor air quality measures that need to be implemented to achieve a durable high-performance wall.

  12. Measure Guideline: Deep Energy Enclosure Retrofit for Double-Stud Walls

    SciTech Connect (OSTI)

    Loomis, H.; Pettit, B.

    2015-06-01

    This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution that provides insulation to the interior of the wall assembly with the use of a double stud wall. The guide describes two approaches to retrofitting the existing the walls: one involving replacement of the existing cladding, and the other that leaves the existing cladding in place. It discusses the design principles related to the use of various insulation types, and provides strategies and procedures for implementing the double stud wall retrofit. It also evaluates important moisture-related and indoor air quality measures that need to be implemented to achieve a durable, high performance wall.

  13. Exclusive Measurements of the b to s gamma Transition Rate and Photon Energy Spectrum

    SciTech Connect (OSTI)

    Lees, J.P.; Poireau, V.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Palano, A.; /Bari U. /INFN, Bari; Eigen, G.; Stugu, B.; /Bergen U.; Brown, David Nathan; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; /LBL, Berkeley /UC, Berkeley; Koch, H.; Schroeder, T.; /Ruhr U., Bochum; Asgeirsson, D.J.; Hearty, C.; Mattison, T.S.; McKenna, J.A.; /British Columbia U.; Khan, A.; /Brunel U.; Blinov, V.E.; Buzykaev, A.R.; /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Harvey Mudd Coll. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U., Comp. Sci. Dept. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Naples U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U.; /more authors..

    2012-08-30

    We use 429 fb{sup -1} of e{sup +}e{sup -} collision data collected at the {Upsilon}(4S) resonance with the BABAR detector to measure the radiative transition rate of b {yields} s{gamma} with a sum of 38 exclusive final states. The inclusive branching fraction with a minimum photon energy of 1.9 GeV is found to be {Beta}({bar B} {yields} Xs{gamma}) = (3.29 {+-} 0.19 {+-} 0.48) x 10{sup -4} where the first uncertainty is statistical and the second is systematic. We also measure the first and second moments of the photon energy spectrum and extract the best fit values for the heavy-quark parameters, m{sub b} and {mu}{sub {pi}}{sup 2}, in the kinetic and shape function models.

  14. Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2016-06-14

    Here, we measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 ± 0.7 (stat) ± 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascademore » of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.« less

  15. Energy Yield Determination of Concentrator Solar Cells using Laboratory Measurements: Preprint

    SciTech Connect (OSTI)

    Geisz, John F.; Garcia, Ivan; McMahon, William E.; Steiner, Myles A.; Ochoa, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-09-14

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used to predict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted. temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted.

  16. Measurement and Verification of Energy Savings and Performance from Advanced Lighting Controls

    Broader source: Energy.gov [DOE]

    This document provides a framework for measurement and verification (M&V) of energy savings, performance, and user satisfaction from lighting retrofit projects involving occupancy-sensor-based, daylighting, and/or other types of automatic lighting. It was developed to provide site owners, contractors, and other involved organizations with the essential elements of a robust M&V plan for retrofit projects and to assist in developing specific project M&V plans.

  17. METHOD OF MEASURING THE INTEGRATED ENERGY OUTPUT OF A NEUTRONIC CHAIN REACTOR

    DOE Patents [OSTI]

    Sturm, W.J.

    1958-12-01

    A method is presented for measuring the integrated energy output of a reactor conslsting of the steps of successively irradiating calibrated thin foils of an element, such as gold, which is rendered radioactive by exposure to neutron flux for periods of time not greater than one-fifth the mean life of the induced radioactlvity and producing an indication of the radioactivity induced in each foil, each foil belng introduced into the reactor immediately upon removal of its predecessor.

  18. Measure Guideline. Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    SciTech Connect (OSTI)

    Musunuru, S.; Pettit, B.

    2015-04-30

    This Measure Guideline describes a deep energy enclosure retrofit solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits might adversely affect the durability of the wall. This guideline includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  19. Measure Guideline: Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    SciTech Connect (OSTI)

    Musunuru, S.; Pettit, B.

    2015-04-01

    This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits has the potential to adversely affect the durability of the wall; this document includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  20. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    SciTech Connect (OSTI)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; /more authors..

    2012-09-20

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  1. Measurement of Exterior Foundation Insulation to Assess Durability in Energy-Saving Performance

    SciTech Connect (OSTI)

    Kehrer, Manfred; Christian, Jeff

    2012-04-01

    The foundation of a house is a sometimes ignored component of the building because of its low visibility. It is increasingly evident, however, that attention to good foundation design and construction significantly benefits the homeowner and the builder by mitigating future problems. Good foundation design and construction practice involves not only insulating to save energy but also providing effective structural design as well as moisture, termite, and radon control techniques as appropriate. Energy efficiency in housing is augmented by use of exterior slab and basement insulation, but high moisture content in the insulation material has led to concerns about its durability. The activity under this task was to extract six different exterior insulation systems that were characterized at installation and have been in the ground for 9 months to 15 years. R-value and moisture content were measured and inspections conducted for evidence of termite intrusion or deterioration. Based on the results, the durability of the various systems has been documented and assessments made of which systems appear to be best practice. Heat flux and temperature measurement data had been archived for some of the exterior insulation tests, thereby providing a unique opportunity to assess energy-saving performance and durability over the long term. The results show that the durability of foundation insulation systems depends on insulation type as well as on foundation type and local boundary conditions, the latter of which may have a marked influence on the durability of energy-saving performance.

  2. Protocol for uniformly measuring and expressing the performance of energy storage systems.

    SciTech Connect (OSTI)

    Ferreira, Summer Rhodes; Rose, David Martin; Schoenwald, David Alan; Bray, Kathy; Conover, David; Kintner-Meyer, Michael; Viswanathan, Vilayanur

    2013-08-01

    The U.S. Department of Energy's Energy Storage Systems (ESS) Program, through the support of Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories (SNL), facilitated the development of the protocol provided in this report. The focus of the protocol is to provide a uniform way of measuring, quantifying, and reporting the performance of ESSs in various applications; something that does not exist today and, as such, is hampering the consideration and use of this technology in the market. The availability of an application-specific protocol for use in measuring and expressing performance-related metrics of ESSs will allow technology developers, power-grid operators and other end-users to evaluate the performance of energy storage technologies on a uniform and comparable basis. This will help differentiate technologies and products for specific application(s) and provide transparency in how performance is measured. It also will assist utilities and other consumers of ESSs to make more informed decisions as they consider the potential application and use of ESSs, as well as form the basis for documentation that might be required to justify utility investment in such technologies.

  3. Direct Measurement of the Bubble Nucleation Energy Threshold in a CF3I Bubble Chamber

    SciTech Connect (OSTI)

    Behnke, E.; Benjamin, T.; Brice, S. J.; Broemmelsiek, D.; Collar, J. I.; Cooper, P. S.; Crisler, M.; Dahl, C. E.; Fustin, D.; Hall, Jeter C.; Harnish, C.; Levine, I.; Lippincott, W. H.; Moan, T.; Nania, T.; Neilson, R.; Ramberg, E.; Robinson, A. E.; Ruschman, M.; Sonnenschein, Andrew; Vazquez-Jauregui, E.; RIvera, R. A.; Uplegger, L.

    2013-07-30

    Here, we measured the energy threshold and efficiency for bubble nucleation from iodine recoils in a CF3I bubble chamber in the energy range of interest for a dark matter search. These interactions cannot be probed by standard neutron calibration methods, so we develop a new technique by observing the elastic scattering of 12 GeV/c negative pions. The pions are tracked with a silicon pixel telescope and the reconstructed scattering angle provides a measure of the nuclear recoil kinetic energy. The bubble chamber was operated with a nominal threshold of (13.6±0.6) keV. Interpretation of the results depends on the response to fluorine and carbon recoils, but in general we find agreement with the predictions of the classical bubble-nucleation theory. Moreover, this measurement confirms the applicability of CF3I as a target for spin-independent dark matter interactions and represents a novel technique for calibration of superheated fluid detectors.

  4. Measuring and tuning energy efficiency on large scale high performance computing platforms.

    SciTech Connect (OSTI)

    Laros, James H., III

    2011-08-01

    Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. While research has been conducted on many related aspects, there is a stark absence of work focused on large scale High Performance Computing. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To collect the measurements necessary to analyze real scientific computing applications at large scale, an in-situ measurement capability must exist on a large scale capability class platform. In response to this challenge, we exploit the unique power measurement capabilities of the Cray XT architecture to gain an understanding of power use and the effects of tuning. We apply these capabilities at the operating system level by deterministically halting cores when idle. At the application level, we gain an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes), while simultaneously collecting current and voltage measurements on the hosting nodes. We examine the effects of both CPU and network bandwidth tuning and demonstrate energy savings opportunities of up to 39% with little or no impact on run-time performance. Capturing scale effects in our experimental results was key. Our results provide strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, but could also benefit from the capability to tune other platform components, such as the network, to achieve energy efficient performance.

  5. Energy Information Administration (EIA)- About the Manufacturing Energy

    Gasoline and Diesel Fuel Update (EIA)

    Consumption Survey (MECS) U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation,

  6. Chapter 20: Data Center IT Efficiency Measures. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures; Period of Performance: September 2011 … December 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Data Center IT Efficiency Measures The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 Robert Huang The Cadmus Group, Inc. Waltham, Massachusetts Eric Masanet Northwestern University Evanston, Illinois NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-63181 January 2015 NREL is a national laboratory of the U.S. Department of Energy

  7. Correlation measurements in nuclear {beta}-decay using traps and polarized low energy beams

    SciTech Connect (OSTI)

    Naviliat-Cuncic, Oscar

    2013-05-06

    Precision measurements in nuclear {beta}-decay provide sensitive means to test discrete symmetries in the weak interaction and to determine some of the fundamental constants in semi-leptonic decays, like the coupling of the lightest quarks to charged weak bosons. The main motivation of such measurements is to find deviations from Standard Model predictions as possible indications of new physics. In this contribution I will focus on two topics related to precision measurements in nuclear {beta}-decay: i) the determination of the V{sub ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix from nuclear mirror transitions and ii) the search for exotic scalar or tensor contributions from {beta}{nu} angular correlations. The purpose is to underline the role being played by experimental techniques based on the confinement of radioactive species with atom and ion traps as well as the plans to use low energy polarized beams.

  8. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    SciTech Connect (OSTI)

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  9. No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Suchyta, E.

    2016-01-27

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of stars or galaxies detectable in an imaging survey. We have implemented our proposal in Balrog, a software package which embeds fake objects in real imaging in order to accurately characterize measurement biases.more » We also demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a wide variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the standard LandySzalay correlation function estimator suppresses the effects of variable survey selection by at least two orders of magnitude. Now our measured angular clustering is found to be in excellent agreement with that of a matched sample drawn from much deeper, higherresolution space-based COSMOS imaging; over angular scales of 0.004° < θ < 0.2 ° , we find a best-fit scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending the statistical reach of measurements in a wide variety of coming imaging surveys.« less

  10. No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey

    SciTech Connect (OSTI)

    Suchyta, E.

    2015-07-29

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of stars or galaxies detectable in an imaging survey. We have implemented our proposal in Balrog, a software package which embeds fake objects in real imaging in order to accurately characterize measurement biases. We also demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a wide variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the standard LandySzalay correlation function estimator suppresses the effects of variable survey selection by at least two orders of magnitude. Now our measured angular clustering is found to be in excellent agreement with that of a matched sample drawn from much deeper, higherresolution space-based COSMOS imaging; over angular scales of 0.004° < θ < 0.2 ° , we find a best-fit scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending the statistical reach of measurements in a wide variety of coming imaging surveys.

  11. Measuring kinetic energy changes in the mesoscale with low acquisition rates

    SciTech Connect (OSTI)

    Roldn, .; Martnez, I. A.; Rica, R. A.; Dinis, L.

    2014-06-09

    We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of the Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.

  12. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect (OSTI)

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  13. No galaxy left behind. Accurate measurements with the faintest objects in the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Suchyta, E.; Huff, E. M.; Aleksić, J.; Melchior, P.; Jouvel, S.; MacCrann, N.; Ross, A. J.; Crocce, M.; Gaztanaga, E.; Honscheid, K.; et al

    2016-01-27

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. Here, we introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of detectable stars or galaxies. Moreover, our proposal was implemented in BALROG, software which embeds fake objects in real imaging to accurately characterize measurement biases. We demonstrate this technique with an angular clusteringmore » measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the Landy–Szalay estimator suppresses the effects of variable survey selection by at least two orders of magnitude. With this correction, our measured angular clustering is found to be in excellent agreement with that of a matched sample from much deeper, higher resolution space-based Cosmological Evolution Survey (COSMOS) imaging; over angular scales of 0.°004 < θ < 0.°2, we find a best-fitting scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending measurements’ statistical reach in a variety of upcoming imaging surveys.« less

  14. An Assessment of Envelope Measures in Mild Climate Deep Energy Retrofits

    SciTech Connect (OSTI)

    Walker, Iain; Less, Brennan

    2014-06-01

    Energy end-uses and interior comfort conditions have been monitored in 11 Deep Energy Retrofits (DERs) in a mild marine climate. Two broad categories of DER envelope were identified: first, bringing homes up to current code levels of insulation and airtightness, and second, enhanced retrofits that go beyond these code requirements. The efficacy of envelope measures in DERs was difficult to determine, due to the intermingled effects of enclosure improvements, HVAC system upgrades and changes in interior comfort conditions. While energy reductions in these project homes could not be assigned to specific improvements, the combined effects of changes in enclosure, HVAC system and comfort led to average heating energy reductions of 76percent (12,937 kWh) in the five DERs with pre-retrofit data, or 80percent (5.9 kWh/ft2) when normalized by floor area. Overall, net-site energy reductions averaged 58percent (15,966 kWh; n=5), and DERs with code-style envelopes achieved average net-site energy reductions of 65percent (18,923 kWh; n=4). In some homes, the heating energy reductions were actually larger than the whole house reductions that were achieved, which suggests that substantial additional energy uses were added to the home during the retrofit that offset some heating savings. Heating system operation and energy use was shown to vary inconsistently with outdoor conditions, suggesting that most DERs were not thermostatically controlled and that occupants were engaged in managing the indoor environmental conditions. Indoor temperatures maintained in these DERs were highly variable, and no project home consistently provided conditions within the ASHRAE Standard 55-2010 heating season comfort zone. Thermal comfort and heating system operation had a large impact on performance and were found to depend upon the occupant activities, so DERs should be designed with the occupants needs and patterns of consumption in mind. Beyond-code building envelopes were not found to be

  15. Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems

    SciTech Connect (OSTI)

    Bray, Kathryn L.; Conover, David R.; Kintner-Meyer, Michael CW; Viswanathan, Vijayganesh; Ferreira, Summer; Rose, David; Schoenwald, David

    2012-10-01

    The U.S. Department of Energy’s Energy Storage Systems (ESS) Program, through the support of Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories (SNL), facilitated the development of the protocol provided in this report. The focus of the protocol is to provide a uniform way of measuring, quantifying, and reporting the performance of EESs in various applications; something that does not exist today and, as such, is hampering the consideration and use of this technology in the market. The availability of an application-specific protocol for use in measuring and expressing performance-related metrics of ESSs will allow technology developers, power-grid operators and other end-users to evaluate the performance of energy storage technologies on a uniform and comparable basis. This will help differentiate technologies and products for specific application(s) and provide transparency in how performance is measured. It also will assist utilities and other consumers of ESSs make more informed decisions as they consider the potential application and use of ESSs, as well as form the basis for documentation that might be required to justify utility investment in such technologies.

  16. Boundary displacement measurements using multi-energy soft x-rays

    SciTech Connect (OSTI)

    Tritz, K. Stutman, D.; Diallo, A.; LeBlanc, B. P.; Sabbagh, S.

    2014-11-15

    The Multi-Energy Soft X-ray (ME-SXR) system on NSTX provides radial profiles of soft X-ray emission, measured through a set of filters with varying thickness, which have been used to reconstruct the electron temperature on fast time scales (∼10 kHz). In addition to this functionality, here we show that the ME-SXR system can be used to measure the boundary displacement of the NSTX plasma with a few mm spatial resolution during magnetohydrodyamic (MHD) activity. Boundary displacement measurements can serve to inform theoretical predictions of neoclassical toroidal viscosity, and will be used to investigate other edge phenomena on NSTX-U. For example, boundary measurements using filtered SXR measurements can provide information on pedestal steepness and dynamic evolution leading up to and during edge localized modes (ELMs). Future applications include an assessment of a simplified, filtered SXR edge detection system as well as its suitability for real-time non-magnetic boundary feedback for ELMs, MHD, and equilibrium position control.

  17. Measurements of ion stopping around the Bragg peak in high-energy-density plasmas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Frenje, J. A.; Grabowski, P. E.; Li, C. K.; Seguin, F. H.; Zylstra, A. B.; Gatu Johnson, M.; Petrasso, R. D.; Glebov, V. Yu; Sangster, T. C.

    2015-11-09

    For the first time, quantitative measurements of ion stopping at energies about the Bragg peak (or peak ion stopping, which occurs at an ion velocity comparable to the average thermal electron velocity), and its dependence on electron temperature (Te) and electron number density (ne) in the range of 0.5 – 4.0 keV and 3 × 1022 – 3 × 1023 cm-3 have been conducted, respectively. It is experimentally demonstrated that the position and amplitude of the Bragg peak varies strongly with Te with ne. As a result, the importance of including quantum diffraction is also demonstrated in the stopping-power modelingmore » of High-Energy-Density Plasmas.« less

  18. Measurements of ion stopping around the Bragg peak in high-energy-density plasmas

    SciTech Connect (OSTI)

    Frenje, J. A.; Grabowski, P. E.; Li, C. K.; Seguin, F. H.; Zylstra, A. B.; Gatu Johnson, M.; Petrasso, R. D.; Glebov, V. Yu; Sangster, T. C.

    2015-11-09

    For the first time, quantitative measurements of ion stopping at energies about the Bragg peak (or peak ion stopping, which occurs at an ion velocity comparable to the average thermal electron velocity), and its dependence on electron temperature (Te) and electron number density (ne) in the range of 0.5 – 4.0 keV and 3 × 1022 – 3 × 1023 cm-3 have been conducted, respectively. It is experimentally demonstrated that the position and amplitude of the Bragg peak varies strongly with Te with ne. As a result, the importance of including quantum diffraction is also demonstrated in the stopping-power modeling of High-Energy-Density Plasmas.

  19. Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA

    SciTech Connect (OSTI)

    Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.

    2012-06-05

    Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.

  20. Eleventh symposium on energy engineering sciences: Proceedings. Solid mechanics and processing: Analysis, measurement and characterization

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Eleventh Symposium on Energy Engineering Sciences was held on May 3--5, 1993, at the Argonne National Laboratory, Argonne, Illinois. These proceedings include the program, list of participants, and the papers that were presented during the eight technical sessions held at this meeting. This symposium was organized into eight technical sessions: Surfaces and interfaces; thermophysical properties and processes; inelastic behavior; nondestructive characterization; multiphase flow and thermal processes; optical and other measurement systems; stochastic processes; and large systems and control. Individual projects were processed separately for the databases.

  1. Top-quark mass measurement using events with missing transverse energy and jets at CDF

    SciTech Connect (OSTI)

    Aaltonen, T; Alvarez Gonzalez, B; Amerio, S; Anastassov, A; Amidei, D; Antos, J; Annovi, A

    2013-07-01

    We present a measurement of the top-quark mass with tt? events using a data sample corresponding to an integrated luminosity of 5.7 fb -1 of pp? collisions at the Fermilab Tevatron with ?s = 1.96 TeV and collected by the CDF II Detector. We select events having no identified charged leptons, large missing transverse energy, and four, five, or six jets with at least one jet containing a secondary vertex consistent with the decay of a b quark. This analysis considers events from the semileptonic tt? decay channel, including events that contain tau leptons, which are usually not included in the top-quark mass measurements. The measurement uses as kinematic variables the invariant mass of two jets consistent with the mass of the W boson, and the invariant masses of two different three-jet combinations. We fit the data to signal templates of varying top-quark masses and background templates, and measure a top-quark mass of Mtop = 172.3 2.4 (stat) 1.0 (syst) GeV/c2.

  2. Top-quark mass measurement using events with missing transverse energy and jets at CDF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.

    2011-11-30

    We present a measurement of the top-quark mass with tt̄ events using a data sample corresponding to an integrated luminosity of 5.7 fb -1 of pp̄ collisions at the Fermilab Tevatron with √s = 1.96 TeV and collected by the CDF II Detector. We select events having no identified charged leptons, large missing transverse energy, and four, five, or six jets with at least one jet containing a secondary vertex consistent with the decay of a b quark. This analysis considers events from the semileptonic tt̄ decay channel, including events that contain tau leptons, which are usually not included inmore » the top-quark mass measurements. The measurement uses as kinematic variables the invariant mass of two jets consistent with the mass of the W boson, and the invariant masses of two different three-jet combinations. We fit the data to signal templates of varying top-quark masses and background templates, and measure a top-quark mass of Mtop = 172.3 ± 2.4 (stat) ± 1.0 (syst) GeV/c2.« less

  3. Measurement of attitudes toward commercial development of geothermal energy in Federal Region IX. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    A survey was conducted of ten target study groups and subgroups for Klamath Falls, Oregon, and Susanville, California: local government, current and potential industry at the site, relocators to the site, current and potential financial community, regulators, and current and potential promoters and developers. The results of benchmark attitudinal measurement is presented separately for each target group. A literature review was conducted and Macro-environmental attitudes of a sample of local government and industry personnel at the sites were assessed. An assessment of capabilities was made which involved two measurements. The first was a measurement of a sample of promoters, developers, and industrial service companies active at the site to determine infrastructure capabilities required by industry for geothermal plants. The second measurement involved analyzing a sample of industry management in the area and defining their requirements for plant retrofit and expansion. Finally, the processes used by the study group to analyze information to reach commitment and regulatory decisions that significantly impact on geothermal energy projects at the site were identified and defined.

  4. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    SciTech Connect (OSTI)

    Font-Ribera, Andreu; McDonald, Patrick; Mostek, Nick; Reid, Beth A.; Seo, Hee-Jong; Slosar, Ane E-mail: PVMcDonald@lbl.gov E-mail: BAReid@lbl.gov E-mail: anze@bnl.gov

    2014-05-01

    We present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant DESI and other experiments can measure the sum of neutrino masses to ? 0.02 eV or better, while the minimum possible sum is ? 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. We do not try to be especially innovative, e.g., with complex treatments of potential systematic errors these projections are intended as a straightforward baseline for comparison to more detailed analyses.

  5. M&V Guidelines: Measurement and Verification for Federal Energy Projects

    Broader source: Energy.gov [DOE]

    FEMP's standard procedures and guidelines for M&V for federal energy managers, procurement officials, and energy service providers.

  6. Measurement and Verification (M&V) Guidelines for Federal Energy Projects, V3.0

    SciTech Connect (OSTI)

    2008-06-11

    FEMP's standard procedures and guidelines for M&V for federal energy managers, procurement officials, and energy service providers.

  7. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    SciTech Connect (OSTI)

    Ding Huanjun; Ducote, Justin L.; Molloi, Sabee

    2013-06-15

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of -11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis.

  8. Energy Savings Performance Contracts ENABLE: Energy Conservation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contracts ENABLE: Energy Conservation Measures Summary Energy Savings Performance Contracts ENABLE: Energy Conservation Measures Summary Presentation summarizes energy conservation ...

  9. Time-of-flight energy analyzer for the plasma potential measurements by a heavy ion beam diagnostic

    SciTech Connect (OSTI)

    Nedzelskiy, I.S.; Malaquias, A.; Goncalves, B.; Silva, C.; Varandas, C.A.F.; Cabral, J.A.C.

    2004-10-01

    A time-of-flight (TOF) technique for the plasma potential measurements by a heavy ion beam diagnostic (HIBD) with a multiple cell array detector has been elaborated on tokamak ISTTOK as an alternative to the traditional electrostatic energy analyzer. This article describes the design and operation of a four-channel TOF energy analyzer (TOFEA). First results of plasma potential measurements by TOFEA are presented proving the feasibility of this technique in experiments with HIBD.

  10. Potential social, institutional, and environmental impacts of selected energy-conservation measures in two Washington communities. [Seattle and Yakima

    SciTech Connect (OSTI)

    Edelson, E.; Olsen, M.

    1980-03-01

    The likely environmental, social, and institutional impacts of selected energy-conservation measures in two communities in Washington state are reported. The five conservation measures investigated in this study were: (1) retrofitting existing buildings; (2) district heating and Integrated Community Energy Systems (ICES); (3) small automobiles and vehicle redesign; (4) land-use and housing modifications; and (5) electric-utility rate reform. Twenty potential impact areas were selected for analysis. These areas were divided into five categories of environmental impacts, economic impacts, community impacts, personal impacts, and overall quality of life in the community. The research was conducted in Seattle and Yakima, Washington. In each location, about two dozen public officials and business, labor, and community leaders were interviewed. Their diverse views are summarized. The Seattle respondents saw energy conservation as a highly desirable policy with a number of temporary, transitional problems arising as energy-conservation measures were implemented. Yakima respondents, in contrast, did not expect to encounter many serious energy problems in the foreseeable future and consequently viewed energy conservation as a relatively minor community concern. Moreover, they anticipated that many conservation measures, if implemented by the government, would encounter either apathy or resistance in their community. Two broad generalizations can bedrawn from these interviews: (1) energy conservation will basically be beneficial for the natural environment and our society; and (2) if energy conservation does become a dominant thrust in our society, it could stimulate and reinforce a much broader process of fundamental social change. (LCL)

  11. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetic fluctuation-induced particle flux "invited... a... W. X. Ding, D. L. Brower, and T. Y. Yates Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA ͑Presented 13 May 2008; received 12 May 2008; accepted 16 May 2008; published online 31 October 2008͒ Magnetic field fluctuation-induced particle transport has been directly measured in the high-temperature core of the MST reversed field pinch plasma. Measurement of radial

  12. Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch

    SciTech Connect (OSTI)

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2010-01-15

    Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

  13. High-energy x-ray response of photographic films: models and measurement

    SciTech Connect (OSTI)

    Henke, B.L.; Uejio, J.Y.; Stone, G.F.; Dittmore, C.H.; Fujiwara, F.G.

    1986-11-01

    A detailed characterization has been established for the new, high-sensitivity double-emulsion Kodak Direct Exposure Film (DEF). The experimental data base consisted of density-versus-exposure measurements that were duplicated at several laboratories for x radiations in the 1000-10,000-eV region. The absortpion and geometric properties of the film were determined, which, along with the density-exposure data, permitted the application of a relatively simple analytical model description for the optical density, D, as a function of the intensity, I (photons/..mu..m/sup 2/), the photon energy, E (eV), and the angle of incidence, 0, of the exposing radiation. A detailed table is presented for the I values corresponding to optical densities in the 0.2--2.0 range and to photon energies, E (eV), in the 1000-10,000-eV region. Experimentally derived conversion relations have been obtained that allow the density values to be expressed as either diffuse of specular. Also presented here is a similar characterization of the complementary, single-emulsion x-ray film, Kodak SB-5 (or 392). For the 1000-10,000-eV region this x-ray film is appreciably less sensitive but has higher resolution.

  14. Characteristics of beta detection and dose measurement at Department of Energy facilities

    SciTech Connect (OSTI)

    Mulvehill, J.M.; Brackenbush, L.W.

    1987-02-01

    This report considers the current state of the art of beta dosimetry practices and beta detection methods used by health physicists at US Department of Energy facilities. This information is based on a survey of DOE facilities. Beta measurements are technically difficult and innovative efforts must be expended to improve their accuracy. Perhaps the most pronounced problem is that beta dosimetry and instrumentation in use are highly energy and angular dependent. Many believe that beta exposures are adequately controlled because beta to photon ratios are assumed to be low. This assumption is not always valid as demonstrated by the accident at Three Mile Island (TMI). Significant beta doses exist where personnel are exposed to mixed fission products; for example, chemical reprocessing plants, reactor accidents, or where uranium metals are processed. This report is part of an effort to increase the DOE response to this technically difficult area of health protection. Problem areas are addressed and methods recommended to improve beta dosimetry through a cooperative effort among the various DOE contractors. 34 refs., 2 figs., 16 tabs.

  15. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    SciTech Connect (OSTI)

    Neary, Vincent S; Gunawan, Budi

    2011-09-01

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  16. A tool for estimating the mix of energy conservation measures given competing acquisition scenarios

    SciTech Connect (OSTI)

    Schultz, R.W.

    1991-03-01

    Bonneville Power Administration (BPA) is conducting analyses that are to serve the Resource Program Environmental Impact Statement (RP/EIS). Parts of the RP/EIS are to address the impacts of commercial sector electricity conservation acquisitions under various conservation acquisition alternatives. These impacts include the energy conservation measure (ECM) mix adopted by the commercial sector and the equipment/technology that would be replaced by implementing new ECMs. The goal of this project was to develop a tool that has the capability to detail region-wide numerical estimates of the commercial sector ECM and replaced technology mix. The tool (hereafter called ECMMIX) was to be sufficiently flexible and user friendly that analysts could easily perform sensitivity tests of alternative forecasts of energy conservation acquisitions. It needed to have the capability to assess impacts across different building types, utility regions, vintage and end-use categories, as well as to aggregate similar ECMs across all categories. The aggregation capability was to exist for the replaced technology as well. Chapter 2 presents specific details about the methodology and assumptions adopted in developing ECMMIX. Included is a discussion of data disaggregation, adjustment to forecasted savings estimates, and incorporation of ADM and Ecotope ECMs. Chapter 3 contains a users guide to ECMMIX and concluding comments. 14 refs., 3 tabs.

  17. Chapter 7, Refrigerator Recycling Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Refrigerator Recycling Evaluation Protocol Doug Bruchs and Josh Keeling, The Cadmus Group, Inc. Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 7 - 1 Chapter 7 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol

  18. Acknowledgements: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acknowledgments This report was prepared for the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, and the Permitting, Siting and Analysis Division of the Office of Electricity Delivery and Energy Reliability under National Renewable Energy Contract No. DE-AC36-08GO28308. The project was managed by Charles Kurnik of NREL. The Cadmus Group, Inc. managed protocols development with participation from a broad

  19. Measurements of Transverse Energy Distributions in Au+Au Collisions at {radical}s{sub NN} = 200 GeV

    SciTech Connect (OSTI)

    Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bharadwaj, S.; Bhatia, V.S.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Boucham, A.; Botje, M.; Brandin, A.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Carroll, J.; Castillo, J.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopdhyay, S.; Chen, H.F.; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; de Moura, M.M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R>; Eckardt, V.; Edwards, W.R.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Filimonov, K.; Finch, E.; Fine, V.; Fisyak, Y.; Foley, K.J.; Fomenko, K.; Fu, J.; Gagliardi, C.A.; Gans, J.; Ganti, M.S.; Gaudichet, L.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guo, Y.; Gupta, A.; Gutierrez, T.D.; Hallman, T.J.; Hamed, A.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrev, V.Yu.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; Kunz, C.L.; Kutuev, R.Kh.; Kuznetsov, A.A.; Lamont, M.A.C.; et al.

    2004-07-02

    Transverse energy (E{sub T}) distributions have been measured for Au+Au collisions at {radical}s{sub NN} = 200 GeV by the STAR collaboration at RHIC. E{sub T} is constructed from its hadronic and electromagnetic components, which have been measured separately. E{sub T} production for the most central collisions is well described by several theoretical models whose common feature is large energy density achieved early in the fireball evolution. The magnitude and centrality dependence of E{sub T} per charged particle agrees well with measurements at lower collision energy, indicating that the growth in E{sub T} for larger collision energy results from the growth in particle production. The electromagnetic fraction of the total E{sub T} is consistent with a final state dominated by mesons and independent of centrality.

  20. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    SciTech Connect (OSTI)

    William H. Morrison; Jon P. Christophersen; Patrick Bald; John L. Morrison

    2012-06-01

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.

  1. Guidance for the Implementation and Follow-Up of Identified Energy and Water Efficiency Measures in Covered Facilities

    Broader source: Energy.gov [DOE]

    Document provides specific guidance to agencies on the implementation and follow-up of energy and water efficiency measures identified and undertaken per Section 432 of the Energy Independence and Security Act of 2007 (EISA) (42 U.S.C. 8253(f)(4) and (5)). Document also provides context for how these activities fit into the comprehensive approach to facility energy and water management outlined by the statute and incorporates by reference previous U.S. Department of Energy guidance released for Section 432 of EISA and other related documents.

  2. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    SciTech Connect (OSTI)

    Thatcher, T; Madsen, S; Sudowe, R; Meigooni, A Soleimani

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cm solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.

  3. A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities

    SciTech Connect (OSTI)

    Hendrik Hamann, Levente Klein

    2012-06-28

    Data center (DC) electricity use is increasing at an annual rate of over 20% and presents a concern for the Information Technology (IT) industry, governments, and the society. A large fraction of the energy use is consumed by the compressor cooling to maintain the recommended operating conditions for IT equipment. The most common way to improve the DC efficiency is achieved by optimally provisioning the cooling power to match the global heat dissipation in the DC. However, at a more granular level, the large range of heat densities of today's IT equipment makes the task of provisioning cooling power optimized to the level of individual computer room air conditioning (CRAC) units much more challenging. Distributed sensing within a DC enables the development of new strategies to improve energy efficiency, such as hot spot elimination through targeted cooling, matching power consumption at rack level with workload schedule, and minimizing power losses. The scope of Measurement and Management Technologies (MMT) is to develop a software tool and the underlying sensing technology to provide critical decision support and control for DC and telecommunication facilities (TF) operations. A key aspect of MMT technology is integration of modeling tools to understand how changes in one operational parameter affect the overall DC response. It is demonstrated that reduced ordered models for DC can generate, in less than 2 seconds computational time, a three dimensional thermal model in a 50 kft{sup 2} DC. This rapid modeling enables real time visualization of the DC conditions and enables 'what if' scenarios simulations to characterize response to 'disturbances'. One such example is thermal zone modeling that matches the cooling power to the heat generated at a local level by identifying DC zones cooled by a specific CRAC. Turning off a CRAC unit can be simulated to understand how the other CRAC utilization changes and how server temperature responds. Several new sensing

  4. Measurement of high energy x-ray beam penumbra with Gafchromic trade mark sign EBT radiochromic film

    SciTech Connect (OSTI)

    Cheung Tsang; Butson, Martin J.; Yu, Peter K. N.

    2006-08-15

    High energy x-ray beam penumbra are measured using Gafchromic trade mark sign EBT film. Gafchromic trade mark sign EBT, due to its limited energy dependence and high spatial resolution provide a high level of accuracy for dose assessment in penumbral regions. The spatial resolution of film detector systems is normally limited by the scanning resolution of the densitometer. Penumbral widths (80%/20%) measured at D{sub max} were found to be 2.8, 3.0, 3.2, and 3.4 mm ({+-}0.2 mm) using 5, 10, 20, and 30 cm square field sizes, respectively, for a 6 MV linear accelerator produced x-ray beam. This is compared to 3.2 mm{+-}0.2 mm (Kodak EDR2) and 3.6 mm{+-}0.2 mm (Kodak X-Omat V) at 10 cmx10 cm measured using radiographic film. Using a zero volume extrapolation technique for ionization chamber measurements, the 10 cmx10 cm field penumbra at D{sub max} was measured to be 3.1 mm, a close match to Gafchromic trade mark sign EBT results. Penumbral measurements can also be made at other depths, including the surface, as the film does not suffer significantly from dosimetric variations caused by changing x-ray energy spectra. Gafchromic trade mark sign EBT film provides an adequate measure of penumbral dose for high energy x-ray beams.

  5. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Induced, Charged Current, Charged Pion Production by Michael Joseph Wilking B.Ch.E., University of Minnesota, 2001 M.S., University of Colorado, 2007 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2009 This thesis entitled: Measurement of Neutrino Induced, Charged Current, Charged Pion Production written by Michael Joseph Wilking has been

  6. SU-E-T-359: Measurement of Various Metrics to Determine Changes in Megavoltage Photon Beam Energy

    SciTech Connect (OSTI)

    Gao, S; Balter, P; Rose, M; Simon, W

    2014-06-01

    Purpose: To examine the relationship between photon beam energy and various metrics for energy on the flattened and flattening filter free (FFF) beams generated by the Varian TrueBeam. Methods: Energy changes were accomplished by adjusting the bending magnet current 10% from the nominal value for the 4, 6, 8, and 10 MV flattened and 6 and 10 MV FFF beams. Profiles were measured for a 3030 cm{sup 2} field using a 2D ionization chamber array and a 3D water Scanner which was also used to measure PDDs. For flattened beams we compared several energy metrics; PDD at 10 cm depth in water (PDD(10)); the variation over the central 80% of the field (Flat); and the average of the highest reading along each diagonal divided by the CAX value, diagonal normalized flatness (FDN). For FFF beams we examined PDD(10), FDN, and the width of a chosen isodose level in a 3030 cm{sup 2} field (W(d%)). Results: Changes in PDD(10) were nearly linear with changes in energy for both flattened and FFF beams as were changes in FDN. Changes in W(d%) were also nearly linear with energy for the FFF beams. PDD(10) was not as sensitive to changes in energy compared to the other metrics for either flattened or FFF beams. Flat was not as sensitive to changes in energy compared to FDN for flattened beams and its behavior depends on depth. FDN was the metric that had the highest sensitivity to the changes in energy for flattened beams while W(d%) was the metric that had highest sensitivity to the changes in energy for FFF beams. Conclusions: The metric FDN was found to be most sensitive to energy changes for flattened beams, while the W(d%) was most sensitive to energy changes for FFF beams.

  7. Review of water, lighting, and cooling energy efficiency measures for low-income homes located in warm climates

    SciTech Connect (OSTI)

    Martin, M.A.; Gettings, M.B.

    1998-02-01

    In support of the U.S. Department of Energy`s Weatherization Assistance Program, Oak Ridge National Laboratory has performed a literature review of weatherization measures applicable for homes located in warm climate regions. Sources for this information included: (1) documented engineering estimates, (2) vendor information, (3) reported performance from research and field tests, and (4) direct discussions with researchers, vendors, and field reporters. Estimated savings are extrapolated from reported energy savings and applied to the end-use energy consumption for low-income homes reported by the Energy Information Administration. Additionally, installation costs, savings-to-investment ratios, and parameters indicating performance sensitivity to issues such as occupancy, construction, client education, and maintenance requirements are presented. The report is comprised of two sections: (1) an overview of measure performance, and (2) an appendix. The overview of measures is in a tabular format, which allows for quick reference. More detailed discussions and references for each measure are presented in the Appendix and it is highly recommended that these be reviewed prior to measure selection.

  8. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    core velocity fluctuations and the dynamo in a reversed-field pinch * D. J. Den Hartog, †,a) J. T. Chapman, b) D. Craig, G. Fiksel, P. W. Fontana, S. C. Prager, and J. S. Sarff Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 ͑Received 16 November 1998; accepted 20 January 1999͒ Plasma flow velocity fluctuations have been directly measured in the high-temperature magnetically confined plasma in the Madison Symmetric Torus ͑MST͒

  9. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 H( 7 Be, 8 B)γ cross section by Ryan P. Fitzgerald A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics & Astronomy. Chapel Hill 2005 Approved: A. E. Champagne, Advisor J. C. Blackmon, Reader C. Iliadis, Reader ABSTRACT Ryan P. Fitzgerald: Measurement of the 1 H( 7 Be, 8 B)γ cross section (Under the Direction of A. E. Champagne) The fusion

  10. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronegative Contaminants and Drift Electron Lifetime in the MicroBooNE Experiment The MicroBooNE Collaboration May 19, 2016 Abstract High-purity liquid argon is critical for the operation of a liquid argon time projec- tion chamber (LArTPC). At MicroBooNE, we have achieved an electron drift lifetime of at least 6 ms without evacuation of the detector vessel. Measurements of the elec- tronegative contaminants oxygen and water are described and shown as the gas and liquid argon stages of

  11. Review of Evaluation, Measurement and Verification Approaches Used to Estimate the Load Impacts and Effectiveness of Energy Efficiency Programs

    SciTech Connect (OSTI)

    Messenger, Mike; Bharvirkar, Ranjit; Golemboski, Bill; Goldman, Charles A.; Schiller, Steven R.

    2010-04-14

    Public and private funding for end-use energy efficiency actions is expected to increase significantly in the United States over the next decade. For example, Barbose et al (2009) estimate that spending on ratepayer-funded energy efficiency programs in the U.S. could increase from $3.1 billion in 2008 to $7.5 and 12.4 billion by 2020 under their medium and high scenarios. This increase in spending could yield annual electric energy savings ranging from 0.58% - 0.93% of total U.S. retail sales in 2020, up from 0.34% of retail sales in 2008. Interest in and support for energy efficiency has broadened among national and state policymakers. Prominent examples include {approx}$18 billion in new funding for energy efficiency programs (e.g., State Energy Program, Weatherization, and Energy Efficiency and Conservation Block Grants) in the 2009 American Recovery and Reinvestment Act (ARRA). Increased funding for energy efficiency should result in more benefits as well as more scrutiny of these results. As energy efficiency becomes a more prominent component of the U.S. national energy strategy and policies, assessing the effectiveness and energy saving impacts of energy efficiency programs is likely to become increasingly important for policymakers and private and public funders of efficiency actions. Thus, it is critical that evaluation, measurement, and verification (EM&V) is carried out effectively and efficiently, which implies that: (1) Effective program evaluation, measurement, and verification (EM&V) methodologies and tools are available to key stakeholders (e.g., regulatory agencies, program administrators, consumers, and evaluation consultants); and (2) Capacity (people and infrastructure resources) is available to conduct EM&V activities and report results in ways that support program improvement and provide data that reliably compares achieved results against goals and similar programs in other jurisdictions (benchmarking). The National Action Plan for Energy

  12. Determination of neutral beam energy fractions from collisional radiative measurements on DIII-D

    SciTech Connect (OSTI)

    Thomas, D. M.; Van Zeeland, M. A.; Grierson, B. A.; Munoz Burgos, J. M.

    2012-10-15

    Neutral beams based on positive ion source technology are a key component of contemporary fusion research. An accurate assessment of the injected beam species mix is important for determining the actual plasma heating and momentum input as well as proper interpretation of beam-based diagnostics. On DIII-D, the main ion charge-exchange spectroscopy system is used to extract well-resolved intensity ratios of the Doppler-shifted D{sub {alpha}} emission from the full, half, and third energy beam components for a variety of beam operational parameters. In conjunction with accurate collisional-radiative modeling, these measurements indicate the assumed species mix and power fractions can vary significantly and should be regularly monitored and updated for the most accurate interpretation of plasma performance. In addition, if stable active control of the power fractions can be achieved through appropriate source tuning, the resulting control over the deposition profile can serve as an additional experimental knob for advanced tokamak studies, e.g., varying the off axis beam current drive without altering the beam trajectory.

  13. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  14. FEMP Releases New Training Course on Energy Conservation Measures in ESPCs

    Broader source: Energy.gov [DOE]

    This course provides experienced energy savings performance contract (ESPC) practitioners with insight into gaining additional savings from ESPC projects.

  15. Aerial Measuring System (AMS)/Israel Atomic Energy Commission (IAEC) Joint Comparison Study Report

    SciTech Connect (OSTI)

    Wasiolek, P.; Halevy, I.

    2013-12-23

    Under the 13th Bilateral Meeting to Combat Nuclear Terrorism conducted on January 8–9, 2013, the committee approved the development of a cost-effective proposal to conduct a Comparison Study of the Aerial Measuring System (AMS) of the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and Israel Atomic Energy Commission (IAEC). The study was to be held at the Remote Sensing Laboratory (RSL), Nellis Air Force Base, Las Vegas, Nevada, with measurements at the Nevada National Security Site (NNSS). The goal of the AMS and the IAEC joint survey was to compare the responses of the two agencies’ aerial radiation detection systems to varied radioactive surface contamination levels and isotopic composition experienced at the NNSS, and the differing data processing techniques utilized by the respective teams. Considering that for the comparison both teams were using custom designed and built systems, the main focus of the short campaign was to investigate the impact of the detector size and data analysis techniques used by both teams. The AMS system, SPectral Advanced Radiological Computer System, Model A (SPARCS-A), designed and built by RSL, incorporates four different size sodium iodide (NaI) crystals: 1" × 1", 2" × 4" × 4", 2" × 4" ×16", and an “up-looking” 2" × 4" × 4". The Israel AMS System, Air RAM 2000, was designed by the IAEC Nuclear Research Center – Negev (NRCN) and built commercially by ROTEM Industries (Israel) and incorporates two 2" diameter × 2" long NaI crystals. The operational comparison was conducted at RSL-Nellis in Las Vegas, Nevada, during week of June 24–27, 2013. The Israeli system, Air RAM 2000, was shipped to RSL-Nellis and mounted together with the DOE SPARCS on a DOE Bell-412 helicopter for a series of aerial comparison measurements at local test ranges, including the Desert Rock Airport and Area 3 at the NNSS. A 4-person Israeli team from the IAEC NRCN supported the activity together with 11

  16. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    SciTech Connect (OSTI)

    Famiano, M.A.

    1997-07-07

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time ({approximately}1 {micro}s to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, {sup 137}Cs gamma rays, and electrons from a {sup 90}Sr/{sup 90}Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired.

  17. International collaboration in measurement of differential nuclear data for energy applications in the frame of the NEA Nuclear Science Committee

    SciTech Connect (OSTI)

    Deruytter, A.; Weigmann, H.; Carlson, A.; Smith, D.

    1994-12-31

    At the occasion of the restructurisation of the Committees at the Nuclear Energy Agency (OECD, Paris), the newly formed Nuclear Energy Agency Nuclear Science Committee (NEA-NSC) took over some of the activities of the former Nuclear Energy Agency Nuclear Data Committee (NEA-NDC). Amongst these activities were two Interlaboratory Collaborations, one on an important standard, the {sup 10}B(n,{alpha}) cross-section, the other on measurements of activation cross-sections. Progress of these two NEA-NSC Interlaboratory Collaborations is reported.

  18. Derived annual estimates of manufacturing energy consumption, 1974--1988

    SciTech Connect (OSTI)

    Not Available

    1992-08-05

    This report presents a complete series of annual estimates of purchased energy used by the manufacturing sector of the US economy, for the years 1974 to 1988. These estimates interpolate over gaps in the actual data collections, by deriving estimates for the missing years 1982--1984 and 1986--1987. For the purposes of this report, ``purchased`` energy is energy brought from offsite for use at manufacturing establishments, whether the energy is purchased from an energy vendor or procured from some other source. The actual data on purchased energy comes from two sources, the US Department of Commerce Bureau of the Census`s Annual Survey of Manufactures (ASM) and EIA`s Manufacturing Energy Consumption Survey (MECS). The ASM provides annual estimates for the years 1974 to 1981. However, in 1982 (and subsequent years) the scope of the ASM energy data was reduced to collect only electricity consumption and expenditures and total expenditures for other purchased energy. In 1985, EIA initiated the triennial MECS collecting complete energy data. The series equivalent to the ASM is referred to in the MECS as ``offsite-produced fuels.``

  19. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  20. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  1. Climate Science for a Sustainable Energy Future Atmospheric Radiation Measurement Best Estimate (CSSEFARMBE)

    SciTech Connect (OSTI)

    Riihimaki, Laura D.; Gaustad, Krista L.; McFarlane, Sally A.

    2012-09-28

    The Climate Science for a Sustainable Energy Future (CSSEF) project is working to improve the representation of the hydrological cycle in global climate models, critical information necessary for decision-makers to respond appropriately to predictions of future climate. In order to accomplish this objective, CSSEF is building testbeds to implement uncertainty quantification (UQ) techniques to objectively calibrate and diagnose climate model parameterizations and predictions with respect to local, process-scale observations. In order to quantify the agreement between models and observations accurately, uncertainty estimates on these observations are needed. The DOE Atmospheric Radiation Measurement (ARM) program takes atmospheric and climate related measurements at three permanent locations worldwide. The ARM VAP called the ARM Best Estimate (ARMBE) [Xie et al., 2010] collects a subset of ARM observations, performs quality control checks, averages them to one hour temporal resolution, and puts them in a standard format for ease of use by climate modelers. ARMBE has been widely used by the climate modeling community as a summary product of many of the ARM observations. However, the ARMBE product does not include uncertainty estimates on the data values. Thus, to meet the objectives of the CSSEF project and enable better use of this data with UQ techniques, we created the CSSEFARMBE data set. Only a subset of the variables contained in ARMBE is included in CSSEFARMBE. Currently only surface meteorological observations are included, though this may be expanded to include other variables in the future. The CSSEFARMBE VAP is produced for all extended facilities at the ARM Southern Great Plains (SGP) site that contain surface meteorological equipment. This extension of the ARMBE data set to multiple facilities at SGP allows for better comparison between model grid boxes and the ARM point observations. In the future, CSSEFARMBE may also be created for other ARM sites. As

  2. Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    Based on the Manufacturing Energy Consumption Survey (MECS) conducted by the U.S. Department of Energy, Energy Information Administration (EIA), this paper presents historical energy-related carbon dioxide emission estimates for energy-intensive sub-sectors and 23 industries. Estimates are based on surveys of more than 15,000 manufacturing plants in 1991, 1994, 1998, and 2002. EIA is currently developing its collection of manufacturing data for 2006.

  3. Industrial Facility Combustion Energy Use

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McMillan, Colin

    2016-08-01

    Facility-level industrial combustion energy use is calculated from greenhouse gas emissions data reported by large emitters (>25,000 metric tons CO2e per year) under the U.S. EPA's Greenhouse Gas Reporting Program (GHGRP, https://www.epa.gov/ghgreporting). The calculation applies EPA default emissions factors to reported fuel use by fuel type. Additional facility information is included with calculated combustion energy values, such as industry type (six-digit NAICS code), location (lat, long, zip code, county, and state), combustion unit type, and combustion unit name. Further identification of combustion energy use is provided by calculating energy end use (e.g., conventional boiler use, co-generation/CHP use, process heating, other facility support) by manufacturing NAICS code. Manufacturing facilities are matched by their NAICS code and reported fuel type with the proportion of combustion fuel energy for each end use category identified in the 2010 Energy Information Administration Manufacturing Energy Consumption Survey (MECS, http://www.eia.gov/consumption/manufacturing/data/2010/). MECS data are adjusted to account for data that were withheld or whose end use was unspecified following the procedure described in Fox, Don B., Daniel Sutter, and Jefferson W. Tester. 2011. The Thermal Spectrum of Low-Temperature Energy Use in the United States, NY: Cornell Energy Institute.

  4. A study on dual readout crystal calorimeter for hadron and jet energy measurement at a future lepton collider

    SciTech Connect (OSTI)

    Yeh, G.P.; /Fermilab

    2010-01-01

    Studies of requirements and specifications of crystals are necessary to develop a new generation of crystals for dual readout crystal hadron or total absorption calorimeter. This is a short and basic study of the characteristics and hadron energy measurement of PbWO4 and BGO crystals for scintillation and Cerenkov Dual Readout hadron calorimeter.

  5. Measured energy savings and economics of retrofitting existing single- family homes: An update of the BECA-B database

    SciTech Connect (OSTI)

    Cohen, S.D.; Goldman, C.A.; Harris, J.P.

    1991-02-01

    These appendices are the companion volume to report number LBL--28147 Vol.1, with the same title. The summary data tables include physical characteristics, energy consumption, savings, and the retrofit measures installed and their costs for each retrofit project. Each existing single family residential building'' retrofit project in the BECA-B database is described. 99 refs. (BM)

  6. An Energy Signature Scheme for Steam Trap Assessment and Flow Rate Estimation Using Pipe-Induced Acoustic Measurements

    SciTech Connect (OSTI)

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Lake, Joe E

    2012-01-01

    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization framework within the steam distribution system within the ORNL campus. We make assessments on the real-time status of the distribution system by observing the state measurements of acoustic sensors mounted on the steam pipes/traps/valves. In this paper, we describe a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps health status. Experimental results show that the energy signature scheme has the potential to identify different steam trap health status and it has sufficient sensitivity to estimate steam flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. The analysis based on estimated steam flow and steam trap status helps generate alerts that enable operators and maintenance personnel to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves.

  7. A comparison of ion beam measurements by retarding field energy analyzer and laser induced fluorescence in helicon plasma devices

    SciTech Connect (OSTI)

    Gulbrandsen, N. Fredriksen, Å.; Carr, J.; Scime, E.

    2015-03-15

    Both Laser-Induced Fluorescence (LIF) and Retarding Field Energy Analyzers (RFEA) have been applied to the investigation of beams formed in inductively coupled helicon plasmas. While the LIF technique provides a direct measurement of the velocity distribution in the plasma, the RFEA measures ion flux as a function of a retarding potential. In this paper, we present a method to compare the two techniques, by converting the LIF velocity distribution to an equivalent of a RFEA measurement. We applied this method to compare new LIF and RFEA measurements in two different experiments; the Hot Helicon Experiment (HELIX) - Large Experiment on Instabilities and Anisotropies (LEIA) at West Virginia University and Njord at University of Tromsø. We find good agreement between beam energies of the two methods. In agreement with earlier observations, the RFEA is found to measure ion beams with densities too low for the LIF to resolve. In addition, we present measurements of the axial development of the ion beam in both experiments. Beam densities drop exponentially with distance from the source, both in LIF and RFEA measurements. The effective quenching cross section from LIF in LEIA is found to be σ{sub b,*}=4×10{sup −19} m{sup 2}, and the effective beam collisional cross sections by RFEA in Njord to be σ{sub b}=1.7×10{sup −18} m{sup 2}.

  8. New Airborne Technology Measures Ocean Surface Currents for Offshore Energy Production and Emergency Rescue Missions

    Broader source: Energy.gov [DOE]

    In a breakthrough project sponsored by the Energy Department’s National Energy Technology Laboratory (NETL), private-sector partners Fugro and Areté Associates have developed, commercialized, and sold a system that can monitor offshore current conditions from the air, providing critical information in record time for oceanographic research and emergency situations, such as oil spills and search and rescue missions.

  9. Development of an Online Toolkit for Measuring Commercial Building Energy Efficiency Performance -- Scoping Study

    SciTech Connect (OSTI)

    Wang, Na

    2013-03-13

    This study analyzes the market needs for building performance evaluation tools. It identifies the existing gaps and provides a roadmap for the U.S. Department of Energy (DOE) to develop a toolkit with which to optimize energy performance of a commercial building over its life cycle.

  10. Target Pilots Energy Efficiency Measures for Broad Rollout in Existing Stores

    SciTech Connect (OSTI)

    2013-03-01

    Target Corporation partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce annual energy consumption by at least 30% versus requirements set by ASHRAE/ANSI/IESNA Standard 90.1-20041 as part of DOE’s Commercial Building Partnership (CBP) program.

  11. North-south asymmetry for high-energy cosmic-ray electrons measured with the PAMELA experiment

    SciTech Connect (OSTI)

    Karelin, A. V.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Galper, A. M.; Danilchenko, I. A.; Donato, C. De; Santis, C. De; and others

    2013-08-15

    The north-south asymmetry for cosmic-ray particles was measured with one instrument of the PAMELA satellite-borne experiment in the period June 2006-May 2009. The analysis has been performed by two independent methods: by comparing the count rates in regions with identical geomagnetic conditions and by comparing the experimental distribution of particle directions with the simulated distribution that would be in the case of an isotropic particle flux. The dependences of the asymmetry on energy release in the PAMELA calorimeter and on time have been constructed. The asymmetry (N{sub n} - N{sub s})/(N{sub n} + N{sub s}) is 0.06 {+-} 0.004 at the threshold energy release in the calorimeter and gradually decreases with increasing energy release. The observed effect is shown to be produced by electrons in the energy range 10-100 GeV.

  12. Real-Time Measurement of Diesel Trap Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement of Diesel Trap Efficiency Real-Time Measurement of Diesel Trap Efficiency 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_niemela.pdf (555.43 KB) More Documents & Publications Update on 2007 Diesel Particulate Measurement Research 2007 Diesel Particulate Measurement Research (E-66 Project) Evaluation of the European PMP Methodologies Using Chassis Dynamometer and On-road Testing of Heavy-duty Vehicles

  13. Measurement of fenestration net energy performance: Considerations leading to development of a Mobile Window Thermal Test (MoWitt) facility

    SciTech Connect (OSTI)

    Klems, J.H.

    1988-08-01

    The authors present a detailed consideration of the energy flows entering a building space and the effect of random measurement errors on determining fenestration performance. Estimates of error magnitudes are made for a passive test cell; they show that a more accurate test facility is needed for reliable measurements on fenestration systems with thermal resistance 2-10 times that of single glazing or with shading coefficients less than 0.7. A test facility of this type, built at Lawrence Berkeley Laboratory, is described. The effect of random errors in this facility is discussed and computer calculations of its performance are presented. The discussion shows that, for any measurement facility, random errors are most serious in nighttime measurements, and systematic errors are most important in daytime measurements. It is concluded that, for this facility, errors from both sources should be small.

  14. Runaway electron energy measurement using hard x-ray spectroscopy in 'Damavand' tokamak

    SciTech Connect (OSTI)

    Rasouli, C.; Farahbod, A. H.; Rasouli, H.; Lamehi, M.; Iraji, D.; Akhtari, K.; Modarresi, H.

    2009-01-15

    Set of experiments has been developed to study existing runaway electrons in ''Damavand'' tokamak plasma upon characteristics of hard x-ray emissions produced by collision of the runaway electrons with the plasma particles and limiters. As a first step, spatial distribution of hard x-ray emissions on the equatorial plane of the torus was considered. Obtained spectra of hard x-ray emissions for different alignments of shielded detector indicate isotropic emissivity in the equatorial plane. This is in agreement with wide angle cone of bremsstrahlung radiations, deduced from the mean value of energy of the runaway electrons. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons. In the second stage in order to investigate time evolution of energy of the runaway electrons, similar technique were applied to obtain hard x-ray energy in every 3 ms intervals, from the beginning to the end of plasma. The mean energy of the runaway electrons increases during the ramp up phase and reaches its maximum between 3 and 9 ms after plasma formation. Also considering the time dependence of the counted photons in each energy range shows that energetic photons are emitted during the ramp up phase of the plasma current in Damavand tokamak.

  15. Measuring the Effects of Disturbance & Climate on the CO2 & Energy Exchange of Ponderosa Pine Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements

    SciTech Connect (OSTI)

    Beverly E. Law; Larry Mahrt

    2007-01-05

    The goal is to quantify and understand the influence of climate and disturbance on ecosystem processes and thus net carbon uptake by forests. The objective is to combine tower and ground-based observations to quantify the effects of disturbance on processes controlling carbon storage and CO{sub 2} and energy exchange in varying climatic conditions. Specific objectives are: (1) Investigate the effects of logging and fire on carbon storage and carbon dioxide and energy exchange in chronosequences of ponderosa pine, using consistent methodology; (2) Determine key environmental factors controlling carbon storage and carbon dioxide and energy exchange in these forests through a combination of measurements and process modeling; and (3) Assess spatial variation of the concentrations and transport in complex terrain. The eddy covariance method is used for measurements of CO2, water vapor, and energy exchanges in a chronosequence of ponderosa pine forests (burned in 2002 wildfire, 10 year-old stand, 90 year-old mature stand). The mature stand has been an AmeriFlux site since 2000 (following previous flux sites in young and old stands initiated in 1996). In addition to the eddy covariance measurements, a large suite of biological processes and ecosystem properties are determined for the purpose of developing independent forest carbon budgets and NEP estimates; these include photosynthesis, stand respiration, soil CO{sub 2} fluxes, annual litterfall, foliar chemistry, and bole increment, and soil organic matter among other parameters. The measurements are being integrated and evaluated with two ecosystem models (BIOME-BGC and SPA). Such analyses are needed to assess regional terrestrial ecosystem carbon budgets. The results will contribute scientific understanding of carbon processes, and will provide comprehensive data sets for forest managers and those preparing national carbon inventories to use in assessments of carbon sequestration in relation to interannual climate

  16. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    SciTech Connect (OSTI)

    UC Berkeley, Berkeley, CA USA; Brown, Richard; Lanzisera, Steven; Cheung, Hoi Ying; Lai, Judy; Jiang, Xiaofan; Dawson-Haggerty, Stephen; Taneja, Jay; Ortiz, Jorge; Culler, David

    2011-05-24

    Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Despite the success of policies, such as Energy Star, that promote more efficient miscellaneous and electronic products, much remains to be done to address the energy use of these devices if we are to achieve our energy and carbon reduction goals. Developing efficiency strategies for these products depends on better data about their actual usage, but very few studies have collected field data on the long-term energy used by a large sample of devices due to the difficulty and expense of collecting device-level energy data. This paper describes the development of an improved method for collecting device-level energy and power data using small, relatively inexpensive wireless power meters. These meters form a mesh network based on Internet standard protocols and can form networks of hundreds of metering points in a single building. Because the meters are relatively inexpensive and do not require manual data downloading, they can be left in the field for months or years to collect long time-series energy use data. In addition to the metering technology, we also describe a field protocol used to collect comprehensive, robust data on the miscellaneous and electronic devices in a building. The paper presents sample results from several case study buildings, in which all the plug-in devices for several homes were metered, and a representative sample of several hundred plug-in devices in a commercial office building were metered for several months.

  17. Cold Climate Foundation Retrofit Energy Savings. The Simulated Energy and Experimental Hygrothermal Performance of Cold Climate Foundation Wall Insulation Retrofit Measures -- Phase I, Energy Simulation

    SciTech Connect (OSTI)

    Goldberg, Louise F.; Steigauf, Brianna

    2013-04-01

    A split simulation whole building energy / 3-dimensional earth contact model (termed the BUFETS/EnergyPlus Model or BEM) capable of modeling the full range of foundation systems found in the target retrofit housing stock has been extensively tested. These foundation systems that include abovegrade foundation walls, diabatic floors or slabs as well as lookout or walkout walls, currently cannot be modeled within BEopt.

  18. Cold Climate Foundation Retrofit Energy Savings: The Simulated Energy and Experimental Hygrothermal Performance of Cold Climate Foundation Wall Insulation Retrofit Measures -- Phase I, Energy Simulation

    SciTech Connect (OSTI)

    Goldberg, L. F.; Steigauf, B.

    2013-04-01

    A split simulation whole building energy/3-dimensional earth contact model (termed the BUFETS/EnergyPlus Model or BEM) capable of modeling the full range of foundation systems found in the target retrofit housing stock has been extensively tested. These foundation systems that include abovegrade foundation walls, diabatic floors or slabs as well as lookout or walkout walls, currently cannot be modeled within BEopt.

  19. Standardization of Transport Properties Measurements: Internal Energy Agency (IEA-AMT) Annex on Thermoelectric

    Office of Energy Efficiency and Renewable Energy (EERE)

    Thermoelectric materials transport properties measurements improvement and standardization is undertaken by new IEA annex under the Advanced Materials for Transportation implementing agreement

  20. Uncertainty Analysis of Certified Photovoltaic Measurements at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Emery, K.

    2009-08-01

    Discusses NREL Photovoltaic Cell and Module Performance Characterization Group's procedures to achieve lowest practical uncertainty in measuring PV performance with respect to reference conditions.

  1. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy

    SciTech Connect (OSTI)

    Sheng, WC; Zhuang, ZB; Gao, MR; Zheng, J; Chen, JGG; Yan, YS

    2015-01-08

    The hydrogen oxidation/evolution reactions are two of the most fundamental reactions in distributed renewable electrochemical energy conversion and storage systems. The identification of the reaction descriptor is therefore of critical importance for the rational catalyst design and development. Here we report the correlation between hydrogen oxidation/evolution activity and experimentally measured hydrogen binding energy for polycrystalline platinum examined in several buffer solutions in a wide range of electrolyte pH from 0 to 13. The hydrogen oxidation/evolution activity obtained using the rotating disk electrode method is found to decrease with the pH, while the hydrogen binding energy, obtained from cyclic voltammograms, linearly increases with the pH. Correlating the hydrogen oxidation/evolution activity to the hydrogen binding energy renders a monotonic decreasing hydrogen oxidation/evolution activity with the hydrogen binding energy, strongly supporting the hypothesis that hydrogen binding energy is the sole reaction descriptor for the hydrogen oxidation/evolution activity on monometallic platinum.

  2. Level: National Data; Row: General Energy-Management Activities within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be fielded in 2015 Table 8.1 Number of Establishments by Participation in General Energy-Management Activities, 2010; Level: National Data; Row: General Energy-Management Activities within NAICS Codes; Column: Participation and Source of Assistance; Unit: Establishment Counts. NAICS Code(a) Energy-Management Activity No Participation Participation(b) In-house Utility/Energy Suppler Product/Service Provider Federal Program State/Local Program Don't Know Total United States 311 -

  3. National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements

    SciTech Connect (OSTI)

    Schiller Consulting, Inc.; Schiller, Steven R.; Goldman, Charles A.; Galawish, Elsia

    2011-02-04

    This report is a scoping study that identifies issues associated with developing a national evaluation, measurement and verification (EM&V) standard for end-use, non-transportation, energy efficiency activities. The objectives of this study are to identify the scope of such a standard and define EM&V requirements and issues that will need to be addressed in a standard. To explore these issues, we provide and discuss: (1) a set of definitions applicable to an EM&V standard; (2) a literature review of existing guidelines, standards, and 'initiatives' relating to EM&V standards as well as a review of 'bottom-up' versus 'top-down' evaluation approaches; (3) a summary of EM&V related provisions of two recent federal legislative proposals (Congressman Waxman's and Markey's American Clean Energy and Security Act of 2009 and Senator Bingaman's American Clean Energy Leadership Act of 2009) that include national efficiency resource requirements; (4) an annotated list of issues that that are likely to be central to, and need to be considered when, developing a national EM&V standard; and (5) a discussion of the implications of such issues. There are three primary reasons for developing a national efficiency EM&V standard. First, some policy makers, regulators and practitioners believe that a national standard would streamline EM&V implementation, reduce costs and complexity, and improve comparability of results across jurisdictions; although there are benefits associated with each jurisdiction setting its own EM&V requirements based on their specific portfolio and evaluation budgets and objectives. Secondly, if energy efficiency is determined by the US Environmental Protection Agency to be a Best Available Control Technology (BACT) for avoiding criteria pollutant and/or greenhouse gas emissions, then a standard can be required for documenting the emission reductions resulting from efficiency actions. The third reason for a national EM&V standard is that such a standard is

  4. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 5. Neutron measurements. Part 3. High-energy spectrum (time-of-flight method)

    SciTech Connect (OSTI)

    Hall, W.C.

    1985-09-01

    This report describes the experiments performed to measure the energy spectrum of neutrons released in certain atomic-weapons tests in Operation Greenhouse. The measurements were made of two types: (1) the time-of-flight measurements designed to establish the fission neutron spectrum down to about 3 MeV energy, and (2) the so-called Tenex (Temperature-Neutron Experiment) measurements designed to obtain the velocity distribution of neutrons produced by the deuterium-tritium fusion reactions.

  5. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    SciTech Connect (OSTI)

    Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; de Gouvea, A.; Fisher, Peter H.; Formaggio, Joseph Angelo; Jenkins, J.; Karagiorgi, Georgia S.; Kobilarcik, T.R.; /Fermilab /Texas U.

    2009-06-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics.

  6. Missing energy and the measurement of the CP-violating phase in neutrino oscillations

    SciTech Connect (OSTI)

    Ankowski, Artur M.; Coloma, Pilar; Huber, Patrick; Mariani, Camillo; Vagnoni, Erica

    2015-11-30

    In the next generation of long-baseline neutrino oscillation experiments aiming to determine the charge-parity-violating phase δCP in the appearance channel, fine-grained time-projection chambers are expected to play an important role. In this study, we analyze an influence of realistic detector capabilities on the δCP sensitivity for a setup similar to that of the Deep Underground Neutrino Experiment. We find that the effect of the missing energy carried out by undetected particles is sizable. Although the reconstructed neutrino energy can be corrected for the missing energy, the accuracy of such procedure has to exceed 20%, to avoid a sizable bias in the extracted δCP value.

  7. Missing energy and the measurement of the CP-violating phase in neutrino oscillations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ankowski, Artur M.; Coloma, Pilar; Huber, Patrick; Mariani, Camillo; Vagnoni, Erica

    2015-11-30

    In the next generation of long-baseline neutrino oscillation experiments aiming to determine the charge-parity-violating phase δCP in the appearance channel, fine-grained time-projection chambers are expected to play an important role. In this study, we analyze an influence of realistic detector capabilities on the δCP sensitivity for a setup similar to that of the Deep Underground Neutrino Experiment. We find that the effect of the missing energy carried out by undetected particles is sizable. Although the reconstructed neutrino energy can be corrected for the missing energy, the accuracy of such procedure has to exceed 20%, to avoid a sizable bias inmore » the extracted δCP value.« less

  8. The National Fuel End-Use Efficiency Field Test: Energy Savings and Performance of an Improved Energy Conservation Measure Selection Technique

    SciTech Connect (OSTI)

    Ternes, M.P.

    1991-01-01

    The performance of an advanced residential energy conservation measure (ECM) selection technique was tested in Buffalo, New York, to verify the energy savings and program improvements achieved from use of the technique in conservation programs and provide input into determining whether utility investments in residential gas end-use conservation are cost effective. The technique analyzes a house to identify all ECMs that are cost effective in the building envelope, space-heating system, and water-heating system. The benefit-to-cost ratio (BCR) for each ECM is determined and cost-effective ECMs (BCR > 1.0) are selected once interactions between ECMs are taken into account. Eighty-nine houses with the following characteristics were monitored for the duration of the field test: occupants were low-income, houses were single-family detached houses but not mobile homes, and primary space- and water-heating systems were gas-fired. Forty-five houses received a mix of ECMs as selected by the measure selection technique (audit houses) and 44 served as a control group. Pre-weatherization data were collected from January to April 1988 and post-weatherization data were collected from December 1988 to April 1989. Space- and waterheating gas consumption and indoor temperature were monitored weekly during the two winters. A house energy consumption model and regression analysis were employed to normalize the space-heating energy savings to average outdoor temperature conditions and a 68 F indoor temperature. Space and water-heating energy savings for the audit houses were adjusted by the savings for the control houses. The average savings of 257 therms/year for the audit houses was 17% of the average pre-weatherization house gas consumption and 78% of that predicted. Average space-heating energy savings was 252 therms/year (25% of pre-weatherization space-heating energy consumption and 85% of the predicted value) and average water-heating savings was 5 therms/year (2% of pre

  9. Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams

    DOE Patents [OSTI]

    Gammel, George M.; Kugel, Henry W.

    1992-10-06

    A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

  10. Chapter 21: Residential Lighting Evaluation Protocol. Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Residential Lighting Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 This supersedes the version originally published in April 2013. Scott Dimetrosky, Katie Parkinson, and Noah Lieb Apex Analytics, LLC Boulder, Colorado NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-63205 February 2015 NREL is a national

  11. Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    SciTech Connect (OSTI)

    Hunt, A.; Easley, S.

    2012-05-01

    The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  12. Overview of existing residential energy-efficiency rating systems and measuring tools

    SciTech Connect (OSTI)

    Hendrickson, P.L.; Garrett-Price, B.A.; Williams, T.A.

    1982-10-01

    Three categories of rating systems/tools were identified: prescriptive, calculational, and performance. Prescriptive systems include rating systems that assign points to various conservation features. Most systems that have been implemented to date have been prescriptive systems. The vast majority of these are investor-owned utility programs affiliated with the National Energy Watch program of the Edison Electric Institute. The calculational category includes computational tools that can be used to estimate energy consumption. This estimate could then be transformed, probably by indexing, into a rating. The available computational tools range from very simple to complex tools requiring use of a main-frame computer. Performance systems refer to residential energy-efficiency ratings that are based on past fuel consumption of a home. There are few of these systems. For each identified system/tool, the name, address, and telephone number of the developer is included. In addition, relevant publications discussing the system/tool are cited. The extent of field validation/verification of individual systems and tools is discussed. In general, there has been little validation/verification done. A bibliography of literature relevant to the use and implementation of a home energy rating system is also included.

  13. Guidance for the Implementation and Follow-up of Identified Energy and Water Efficiency Measures in Covered Facilities

    SciTech Connect (OSTI)

    2012-09-01

    This document provides specific guidance to agencies on the implementation and follow-up of energy and water efficiency measures identified and undertaken per Section 432 of the Energy Independence and Security Act of 2007 (EISA) (42 U.S.C. 8253(f)(4) and (5)) This guidance also provides context for how these activities fit into the comprehensive approach to facility energy and water management outlined by the statute and incorporates by reference previous DOE guidance released for Section 432 of EISA and other related documents. 42 U.S.C. 8253(f)(7)(A) specifies that facility energy managers shall certify compliance for each covered facility with the 42 U.S.C. 8253(f)(2)-(5) requirements via a web-based tracking system and make it publicly available. This document also describes the role of the tracking system that has been developed for the collection and reporting of data needed for the demonstration of compliance and progress toward meeting all energy and water efficiency requirements outlined in the statute.

  14. Chapter 2, Commercial and Industrial Lighting Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Commercial and Industrial Lighting Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Dakers Gowans, Left Fork Energy Subcontract Report NREL/SR-7A30-53827 April 2013 Chapter 2 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of the Protocol

  15. Chapter 5, Residential Furnaces and Boilers Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Residential Furnaces and Boilers Evaluation Protocol David Jacobson, Jacobson Energy Research Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 5 - 1 Chapter 5 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol

  16. ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http:energy.govqtr 2015-01-13 Page 2 The United States faces serious ...

  17. CONFRRM Solar Energy Resource Data: Data from the Cooperative Network for Renewable Resource Measurements

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Cooperative Network for Renewable Resource Measurements (CONFRRM) is a cooperative effort between NREL and other agencies to conduct long-term solar radiation and wind measurements at selected locations in the United States. CONFRRM expands the geographic coverage of measurement locations and provides high quality data for determining site-specific resources, as well as data for the validation and testing of models to predict available resources based on meteorological or satellite data. Twelve sites are currently active in the CONFRRM network. CONFRRM complements and provides additional geographic coverage to the National Oceanic and Atmospheric Administration's (NOAA's) Integrated Surface Irradiance Study (ISIS) network. Solar data elements measured and reported by the CONFRRM sites include global horizontal irradiance (GHI), direct normal irradiance (DNI), diffuse horizontal irradiance (DHI), and global horizontal irradiance measured with a LI-COR pyranometer. Meteorological data include air temperature, relative humidity, pressure, wind speed, wind direction and peak wind speed. Data logger temperature and battery voltage may also be reported. Prior to January 1, 1996, five CONFRRM sites together with South Caroline State College in Orangeburg, South Carolina, made up the Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network, located in the Southeastern United States. In January 1997 the HBCU sites became part of CONFRRM.

  18. Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings A. Hunt and S. Easley Building America Retrofit Alliance (BARA) May 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

  19. Impact of conservation measures on Pacific Northwest residential energy consumption. Final report

    SciTech Connect (OSTI)

    Moe, R.J.; Owzarski, S.L.; Streit, L.P.

    1983-04-01

    The objective of this study was to estimate the relationship between residential space conditioning energy use and building conservation programs in the Pacific Northwest. The study was divided into two primary tasks. In the first, the thermal relationship between space conditioning energy consumption under controlled conditions and the physical characteristics of the residence was estimated. In this task, behavioral characteristics such as occupant schedules and thermostat settings were controlled in order to isolate the physical relationships. In the second task, work from the first task was used to calculate the thermal efficiency of a residence's shell. Thermal efficiency was defined as the ability of a shell to prevent escapement of heat generated within a building. The relationship between actual space conditioning energy consumption and the shell thermal efficiency was then estimated. Separate thermal equations for mobile homes, single-family residences, and multi-family residences are presented. Estimates of the relationship between winter electricity consumption for heating and the building's thermal shell efficiency are presented for each of the three building categories.

  20. Energy Storage and Generation for Extreme Temperature and Pressure and Directional Measurement While Drilling Applications

    SciTech Connect (OSTI)

    Signorelli, Riccardo; Cooley, John

    2015-10-14

    FastCAP Systems Corporation has successfully completed all milestones defined by the award DE-EE0005503. Under this program, FastCAP developed three critical subassemblies to TRL3 demonstrating proof of concept of a geothermal MWD power source. This power source includes an energy harvester, electronics and a novel high temperature ultracapacitor (“ultracap”) rechargeable energy storage device suitable for geothermal exploration applications. FastCAP’s ruggedized ultracapacitor (ultracap) technology has been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. Characteristics of this technology are that it is rechargeable and relatively high power. This technology was the basis for the advancements in rechargeable energy storage under this project. The ultracap performs reliably at 250°C and beyond and operates over a wide operating temperature range: -5°C to 250°C. The ultracap has significantly higher power density than lithium thionyl chloride batteries, a non-rechargeable incumbent used in oil and gas drilling today. Several hermetically sealed, prototype devices were tested in our laboratories at constant temperatures of 250°C showing no significant degradation over 2000 hours of operation. Other prototypes were tested at Sandia National Lab in the month of April, 2015 for a third party performance validation. These devices showed outstanding performance over 1000 hours of operation at three rated temperatures, 200°C, 225°C and 250°C, with negligible capacitance degradation and minimal equivalent series resistance (ESR) increase. Similarly, FastCAP’s ruggedized electronics have been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. This technology was the basis for the advancements in downhole electronics under this project. Principal contributions here focused on design for manufacture innovations that have reduced the prototype build cycle time by a factor

  1. On-Road PM Mass Emission Measured with OBS-TRPM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PM Mass Emission Measured with OBS-TRPM On-Road PM Mass Emission Measured with OBS-TRPM Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-14_wei.pdf (310.84 KB) More Documents & Publications Performance of the Low-Efficiency Diesel Particulate Filter for Diesel PM Reduction Investigation of Direct Injection Vehicle Particulate Matter Emissions A High Temperature Direct Vehicle Exhaust Flowmeter for

  2. Spray Structure Measured with X-Ray Radiography | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spray Structure Measured with X-Ray Radiography Spray Structure Measured with X-Ray Radiography Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_kastengren.pdf (17.93 MB) More Documents & Publications Effect of Ambient Pressure on Diesel Spray Axial Velocity and Internal Structure X-Ray Characterization of Diesel Sprays and the Effects of Nozzle Geometry

  3. Poster — Thur Eve — 42: Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    SciTech Connect (OSTI)

    Morrison, H; Menon, G; Sloboda, R

    2014-08-15

    The purpose of this study was to investigate the accuracy of radiochromic film calibration procedures used in external beam radiotherapy when applied to I-125 brachytherapy sources delivering higher doses, and to determine any necessary modifications to achieve similar accuracy in absolute dose measurements. GafChromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 6 MV, 75 kVp and (∼28 keV) I-125 photon sources. A custom phantom was used for the I-125 irradiations to obtain a larger film area with nearly constant dose to reduce the effects of film heterogeneities on the optical density (OD) measurements. RGB transmission images were obtained with an Epson 10000XL flatbed scanner, and calibration curves relating OD and dose using a rational function were determined for each colour channel and at each energy using a non-linear least square minimization method. Differences found between the 6 MV calibration curve and those for the lower energy sources are large enough that 6 MV beams should not be used to calibrate film for low-energy sources. However, differences between the 75 kVp and I-125 calibration curves were quite small; indicating that 75 kVp is a good choice. Compared with I-125 irradiation, this gives the advantages of lower type B uncertainties and markedly reduced irradiation time. To obtain high accuracy calibration for the dose range up to 35 Gy, two-segment piece-wise fitting was required. This yielded absolute dose measurement accuracy above 1 Gy of ∼2% for 75 kVp and ∼5% for I-125 seed exposures.

  4. Simulation and measurement of the electrostatic beam kicker in the low-energy undulator test line.

    SciTech Connect (OSTI)

    Waldschmidt, G. J.

    1998-10-27

    An electrostatic kicker has been constructed for use in the Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source (APS). The function of the kicker is to limit the amount of beam current to be accelerated by the APS linac. Two electrodes within the kicker create an electric field that adjusts the trajectory of the beam. This paper will explore the static fields that are set up between the offset electrode plates and determine the reaction of the beam to this field. The kicker was numerically simulated using the electromagnetic solver package MAFIA [1].

  5. Chapter 14: Chiller Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures: September 2011 … May 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Chiller Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 Alex Tiessen, Posterity Group Ottawa, Ontario NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-62431 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance

  6. Chapter 15: Commercial New Construction Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures: September 2011 … May 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Commercial New Construction Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 Steven Keates, ADM Associates, Inc. Sacramento, California NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-62432 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy

  7. Chapter 16: Retrocommissioning Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures: September 2011 … May 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Retrocommissioning Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 Alex Tiessen, Posterity Group Ottawa, Ontario NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-62430 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the

  8. Chapter 18: Variable Frequency Drive Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures: September 2011 … December 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Variable Frequency Drive Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 Jeff Romberger SBW Consulting, Inc. Bellevue, Washington NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-63166 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy

  9. Chapter 22: Compressed Air Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures: September 2011 … December 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Compressed Air Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 Nathanael Benton Nexant, Inc. San Francisco, California NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-63210 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by

  10. Measurement and simulation of the impact of coherent synchrotron radiation on the Jefferson Laboratory energy recovery linac electron beam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hall, C C.; Biedron, S G.; Edelen, A L.; Milton, S V.; Benson, S; Douglas, D; Li, R; Tennant, C D.; Carlsten, B E.

    2015-03-09

    In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with themore » measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed.« less

  11. Measured energy savings from the application of reflective roofsin 2 small non-residential buildings

    SciTech Connect (OSTI)

    Akbari, Hashem

    2003-01-14

    Energy use and environmental parameters were monitored in two small (14.9 m{sup 2}) non-residential buildings during the summer of 2000. The buildings were initially monitored for about 1 1/2 months to establish a base condition. The roofs of the buildings were then painted with a white coating and the monitoring was continued. The original solar reflectivities of the roofs were about 26%; after the application of roof coatings the reflectivities increased to about 72%. The monitored electricity savings were about 0.5kWh per day (33 Wh/m2 per day). The estimated annual savings are about 125kWh per year (8.4 kWh/m2); at a cost of $0.1/kWh, savings are about $0.86/m2 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote locations of these buildings. However, since the prefabricated roofs are already painted green at the factory, painting them a white (reflective) color would bring no additional cost. Hence, a reflective roof saves energy at no incremental cost.

  12. Derived annual estimates of manufacturing energy consumption, 1974--1988. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1992-08-05

    This report presents a complete series of annual estimates of purchased energy used by the manufacturing sector of the US economy, for the years 1974 to 1988. These estimates interpolate over gaps in the actual data collections, by deriving estimates for the missing years 1982--1984 and 1986--1987. For the purposes of this report, purchased'' energy is energy brought from offsite for use at manufacturing establishments, whether the energy is purchased from an energy vendor or procured from some other source. The actual data on purchased energy comes from two sources, the US Department of Commerce Bureau of the Census's Annual Survey of Manufactures (ASM) and EIA's Manufacturing Energy Consumption Survey (MECS). The ASM provides annual estimates for the years 1974 to 1981. However, in 1982 (and subsequent years) the scope of the ASM energy data was reduced to collect only electricity consumption and expenditures and total expenditures for other purchased energy. In 1985, EIA initiated the triennial MECS collecting complete energy data. The series equivalent to the ASM is referred to in the MECS as offsite-produced fuels.''

  13. In-Vessel Torsional Ultrasonic Wave-Based Level Measurement System - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search In-Vessel Torsional Ultrasonic Wave-Based Level Measurement System Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary At Three Mile Island in 1979, a partial meltdown of the core was caused by a sudden, undetected loss of reactor coolant water. In the past, a reactor's high temperature and pressure environment has complicated the implementation of level

  14. Wake Imaging Measurement System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Measurement System - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear ...

  15. Online Luminosity Measurement at CMS for Energy Frontier Physics after LS1

    SciTech Connect (OSTI)

    Stickland, David P.

    2015-09-20

    This proposal was directed towards the measurement of Bunch-by-Bunch and Total Luminosity in the CMS experiment using Single-Crystal Diamond (sCVD) installed close to the Interaction Point - known as the Fast Beam Conditions Monitor, or BCM1F detector. The proposal was successfully carried out and in February 2015 CMS installed its upgraded BCM1F detector. At first collisions in June 2015 the BCM1F was used as the primary luminometer, then in August 2015 a Van De Meer scan has been carried out and the detailed luminometer calibration is under study. In all aspects of performance measurement the upgraded detector has satisfied its design parameters and as an overview of its performance in this report will show, we have high expectations that the detector will be a powerful addition to the luminosity measurement at CMS and LHC. The proposed upgrade of BCM1F was a collaboration of CMS Institutes in Germany (DESY-Zeuthen) and the USA (Princeton) and of CERN itself.

  16. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Energy Overview Charlie McMillan, Director of Los Alamos National Laboratory 0:50 Director McMillan on energy security With energy use increasing across the nation and the world, Los Alamos National Laboratory is using its world-class scientific capabilities to enhance

  17. Measured Energy Savings from the Application of Reflective Roofs in 3 AT and T Regeneration Buildings

    SciTech Connect (OSTI)

    Akbari, Hashen; Rainer, Leo

    2000-11-01

    Energy use and environmental parameters were monitored in three AT and T regeneration buildings during the summer of 2000. These buildings are constructed with concrete and are about 14.9 m2 (160 f2; 10x16 ft)in size. The buildings were initially monitored for about 1 1/2 months to establish a base condition. Then, the roofs of the buildings were painted with a white coating and the monitoring was continued. The original roof reflectances were about 26 percent; after the application of roof coatings the reflectivities increased to about 72 percent. In two of these buildings, we monitored savings of about 0.5kWh per day (8.6 kWh/m2 [0.8 kWh/ft2]). The third building showed a reduction in air-conditioning energy use of about 13kWh per day. These savings probably resulted from the differences in the performance (EER) of the two dissimilar AC units in this building. The estimated annual savings for two of the buildings are about 125kWh per year; at a cost of dollar 0.1/kWh, savings are about dollar 12.5 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote location of the buildings. However, since the prefabricated roofs are already painted green at the factory, painting them with white (reflective) color would bring no additional cost. Hence the payback time for having reflective roofs is nil, and the reflective roofs save an accumulated 370kWh over 30 years of the life of the roof.

  18. System for measuring temporal profiles of scintillation at high and different linear energy transfers by using pulsed ion beams

    SciTech Connect (OSTI)

    Koshimizu, Masanori Asai, Keisuke; Kurashima, Satoshi; Taguchi, Mitsumasa; Kimura, Atsushi; Iwamatsu, Kazuhiro

    2015-01-15

    We have developed a system for measuring the temporal profiles of scintillation at high linear energy transfer (LET) by using pulsed ion beams from a cyclotron. The half width at half maximum time resolution was estimated to be 1.52.2 ns, which we attributed mainly to the duration of the pulsed ion beam and timing jitter between the trigger signal and the arrival of the ion pulse. The temporal profiles of scintillation of BaF{sub 2} at different LETs were successfully observed. These results indicate that the proposed system is a powerful tool for analyzing the LET effects in temporal profiles of scintillation.

  19. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Heating Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    2013-09-01

    Two identical laboratory homes designed to model existing Florida building stock were sealed and tested to 2.5 ACH50. Then, one was made leaky with 70% leakage through the attic and 30% through windows, to a tested value of 9 ACH50. Reduced energy use was measured in the tighter home (2.5 ACH50) in the range of 15% to 16.5% relative to the leaky (9 ACH50) home. Internal moisture loads resulted in higher dew points inside the tight home than the leaky home. Window condensation and mold growth occurred inside the tight home.

  20. Using inertial fusion implosions to measure the T+He3 fusion cross section at nucleosynthesis-relevant energies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Herrmann, H. W.; Johnson, M. Gatu; Kim, Y. H.; Frenje, J. A.; Hale, G.; Li, C. K.; Rubery, M.; Paris, M.; Bacher, A.; et al

    2016-07-11

    Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of 6Li in low-metallicity stars. Using high energy-density plasmas we measure the T(3He,γ)6Li reaction rate, a candidate for anomalously high 6Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. In conclusion, this is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.