Sample records for mechanics classical mechanics

  1. Quantum Mechanical Clock and Classical Relativistic Clock

    E-Print Network [OSTI]

    Hitoshi Kitada

    2004-07-08T23:59:59.000Z

    A cyclic nature of quantum mechanical clock is discussed as ``quantization of time." Quantum mechanical clock is seen to be equivalent to the relativistic classical clock.

  2. The equivalence principle in classical mechanics and quantum mechanics

    E-Print Network [OSTI]

    Philip D. Mannheim

    2000-04-03T23:59:59.000Z

    We discuss our understanding of the equivalence principle in both classical mechanics and quantum mechanics. We show that not only does the equivalence principle hold for the trajectories of quantum particles in a background gravitational field, but also that it is only because of this that the equivalence principle is even to be expected to hold for classical particles at all.

  3. Thermodynamic integration from classical to quantum mechanics

    SciTech Connect (OSTI)

    Habershon, Scott [Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Manolopoulos, David E. [Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom)

    2011-12-14T23:59:59.000Z

    We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable.

  4. Topological mechanisms as classical spinor fields

    E-Print Network [OSTI]

    Vincenzo Vitelli; Nitin Upadhyaya; Bryan Gin-ge Chen

    2014-07-11T23:59:59.000Z

    A mechanism is a zero-energy motion of a mechanical structure that does not stretch or compress any of its components. Here, we focus on a special class of mechanisms that we dub topological because they are insensitive to smooth changes in material parameters. Topological mechanisms do not arise from local under-coordination, but they can be localized to solitons in the underlying structure. In this letter, we exploit supersymmetry to develop a real-space formalism whereby a topological mechanism can be described as a classical spinor whose real components are the soliton-induced displacement and stress fields. Our analytical approach goes beyond topological band theory by addressing the non-linearity and inhomogeneity of the underlying structure key to the very definition of a mechanism. We apply this general method to an activated mechanism, inspired by the organic molecule polyacetylene, that can propagate down an assembly line without deploying the whole structure.

  5. "Einstein's Dream" - Quantum Mechanics as Theory of Classical Random Fields

    E-Print Network [OSTI]

    Andrei Khrennikov

    2012-04-22T23:59:59.000Z

    This is an introductory chapter of the book in progress on quantum foundations and incompleteness of quantum mechanics. Quantum mechanics is represented as statistical mechanics of classical fields.

  6. Statistical mechanics of Yang-Mills classical mechanics

    SciTech Connect (OSTI)

    Bannur, Vishnu M. [Department of Physics, University of Calicut, Kerala-673 635 (India)

    2005-08-01T23:59:59.000Z

    Statistical mechanics (SM) of Yang-Mills classical mechanics is studied by using a toy model that resembles chaotic quartic oscillators. This nonlinear system attains the thermodynamic equilibrium not by collisions, which is generally assumed in SM, but by chaotic dynamics. This is a new mechanism of thermalization that may be relevent to the quark-gluon plasma (QGP) formation in relativistic heavy-ion collisions because the interactions governing QGP involve quantum chromodynamics (QCD), which is a Yang-Mills theory [SU(3)]. The thermalization time is estimated from the Lyapunov exponent. The Lyapunov exponent is evaluated using the recently developed monodromy matrix method. We also discuss the physical meaning of thermalization and SM in this system of few degrees in terms of chromo-electric and chromomagnetic fields. One of the consequence of thermalization, such as equipartition of energy and dynamical temperature, is also numerically verified.

  7. Wigner spacing distribution in classical mechanics

    E-Print Network [OSTI]

    Jamal Sakhr

    2014-07-09T23:59:59.000Z

    The Wigner spacing distribution has a long and illustrious history in nuclear physics and in the quantum mechanics of classically chaotic systems. In this paper, a long-overlooked connection between the Wigner distribution and classical chaos in two-degree-of-freedom (2D) conservative systems is introduced. In the specific context of fully chaotic 2D systems, the hypothesis that typical pseudotrajectories of a canonical Poincar\\'{e} map have a Wignerian nearest-neighbor spacing distribution (NNSD), is put forward and tested. Employing the 2D circular stadium billiard as a generic test case, the NNSD of a typical pseudotrajectory of the Birkhoff map is shown to be in excellent agreement with the Wigner distribution. The relevance of the higher-order Wigner surmises from random matrix theory are also illustrated.

  8. Physics 430, Classical Mechanics Exam 2,2010 Nov 09

    E-Print Network [OSTI]

    Gary, Dale E.

    E,*-dt7rno + gr=49' y(Q,-('f [# si^[,",+)+ o-ces&uP)J -1- 6 N"'l6 #12;Physics430,ClassicalMechanics Exam2Physics 430, Classical Mechanics Exam 2,2010 Nov 09 - l Name 5o I wt t 6h Instructions:No books,notes,or "cheatsheet"allowed. You may usea calculator,but no otherelectronicdevicesduring the exam. Pleasetum your cell

  9. Quantum Mechanics and Discrete Time from "Timeless" Classical Dynamics

    E-Print Network [OSTI]

    H. -T. Elze

    2003-07-03T23:59:59.000Z

    We study classical Hamiltonian systems in which the intrinsic proper time evolution parameter is related through a probability distribution to the physical time, which is assumed to be discrete. - This is motivated by the ``timeless'' reparametrization invariant model of a relativistic particle with two compactified extradimensions. In this example, discrete physical time is constructed based on quasi-local observables. - Generally, employing the path-integral formulation of classical mechanics developed by Gozzi et al., we show that these deterministic classical systems can be naturally described as unitary quantum mechanical models. The emergent quantum Hamiltonian is derived from the underlying classical one. It is closely related to the Liouville operator. We demonstrate in several examples the necessity of regularization, in order to arrive at quantum models with bounded spectrum and stable groundstate.

  10. Classical and quantum-mechanical phase space distributions

    E-Print Network [OSTI]

    Thomas Kiesel

    2013-06-21T23:59:59.000Z

    We examine the notion of nonclassicality in terms of quasiprobability distributions. In particular, we do not only ask if a specific quasiprobability can be interpreted as a classical probability density, but require that characteristic features of classical electrodynamics are resembled. We show that the only quasiprobabilities which correctly describe the superposition principle of classical electromagnetic fields are the $s$-parameterized quasiprobabilities. Furthermore, the Glauber-Sudarshan P function is the only quantum-mechanical quasiprobability which is transformed at a classical attenuator in the same way as a classical probability distribution. This result strengthens the definition of nonclassicality in terms of the P function, in contrast to possible definitions in terms of other quasiprobabilities.

  11. Symmetry and Relativity : From Classical Mechanics to Modern Particle Physics

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Symmetry and Relativity : From Classical Mechanics to Modern Particle Physics Z.J. Ajaltouni to modern particle physics will be given and some open questions will be raised. Keywords: Symmetry that symmetry represents a methodology followed by Modern Physics in order to build coherent and successful

  12. Twisting all the way: From classical mechanics to quantum fields

    SciTech Connect (OSTI)

    Aschieri, Paolo [Centro Studi e Ricerche 'Enrico Fermi' Compendio Viminale, 00184 Rome (Italy); Dipartimento di Scienze e Tecnologie Avanzate, Universita del Piemonte Orientale, and INFN, Sezione di Torino Via Bellini 25/G 15100 Alessandria (Italy); Lizzi, Fedele; Vitale, Patrizia [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II and INFN, Sezione di Napoli Monte S. Angelo, Via Cintia, 80126 Naples (Italy)

    2008-01-15T23:59:59.000Z

    We discuss the effects that a noncommutative geometry induced by a Drinfeld twist has on physical theories. We systematically deform all products and symmetries of the theory. We discuss noncommutative classical mechanics, in particular its deformed Poisson bracket and hence time evolution and symmetries. The twisting is then extended to classical fields, and then to the main interest of this work: quantum fields. This leads to a geometric formulation of quantization on noncommutative space-time, i.e., we establish a noncommutative correspondence principle from *-Poisson brackets to * commutators. In particular commutation relations among creation and annihilation operators are deduced.

  13. Bell's Experiment in Quantum Mechanics and Classical Physics

    E-Print Network [OSTI]

    Tom Rother

    2013-08-21T23:59:59.000Z

    Both the quantum mechanical and classical Bells experiment are within the focus of this paper. The fact that one measures different probabilities in both experiments is traced back to the superposition of two orthogonal but nonentangled substates in the quantum mechanical case. This superposition results in an interference term that can be splitted into two additional states representing a sink and a source of probabilities in the classical event space related to Bells experiment. As a consequence, a statistical operator can be related to the quantum mechanical Bells experiment that contains already negative quasi probabilities, as usually known from quantum optics in conjunction with the Glauber-Sudarshan equation. It is proven that the existence of such negative quasi probabilities are neither a sufficient nor a necessary condition for entanglement. The equivalence of using an interaction picture in a fixed basis or of employing a change of basis to describe Bells experiment is demonstrated afterwards. The discussion at the end of this paper regarding the application of the complementarity principle to the quantum mechanical Bells experiment is supported by very recent double slit experiments performed with polarization entangled photons.

  14. A classical, elementary approach to the foundations of Quantum Mechanics

    E-Print Network [OSTI]

    Rodriguez, David

    2011-01-01T23:59:59.000Z

    Perhaps Quantum Mechanics can be seen just as the simplest mathematical formalism where angular momentum (the magnitude of each of its three orthogonal projections) is by construction quantized: all possible values are taken from a discrete set. Indeed: (i) This idea finds support in very reasonable, completely classical physical arguments, if we place ourselves in the framework of Stochastic Electrodynamics (SED): there, all sustained periodic movement must satisfy a power balance that restricts the value of the average angular momentum, on each of its projections. (ii) It gives a natural explanation of the concept of "photon", as a constraint on the observable spectrum of energy-momentum exchanges between metastable physical states, in particular its discreteness. QM would be, in this picture, a semi-static theory, transparent to all the (micro)-dynamics taking place between apparently "discrete" events (transitions in the state of the system). For instance, (the magnitude of the projections of) quantum ang...

  15. The ramifications of diffusive volume transport in classical fluid mechanics

    E-Print Network [OSTI]

    Bielenberg, James R. (James Ronald), 1976-

    2004-01-01T23:59:59.000Z

    The thesis that follows consists of a collection of work supporting and extending a novel reformulation of fluid mechanics, wherein the linear momentum per unit mass in a fluid continuum, m, is supposed equal to the volume ...

  16. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos

    SciTech Connect (OSTI)

    Lee, Sang-Bong

    1993-09-01T23:59:59.000Z

    Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.

  17. Non-relativistic classical mechanics for spinning particles

    E-Print Network [OSTI]

    G. Salesi

    2005-07-11T23:59:59.000Z

    We study the classical dynamics of non-relativistic particles endowed with spin. Non-vanishing Zitterbewegung terms appear in the equation of motion also in the small momentum limit. We derive a generalized work-energy theorem which suggests classical interpretations for tunnel effect and quantum potential.

  18. Study of classical mechanical systems with complex potentials

    E-Print Network [OSTI]

    A. Sinha; D. Dutta; P. Roy

    2011-01-08T23:59:59.000Z

    We apply the factorization technique developed by Kuru and Negro [Ann. Phys. 323 (2008) 413] to study complex classical systems. As an illustration we apply the technique to study the classical analogue of the exactly solvable PT symmetric Scarf II model, which exhibits the interesting phenomenon of spontaneous breakdown of PT symmetry at some critical point. As the parameters are tuned such that energy switches from real to complex conjugate pairs, the corresponding classical trajectories display a distinct characteristic feature - the closed orbits become open ones.

  19. CO2 Adsorption in Fe2(dobdc): A Classical Force Field Parameterized from Quantum Mechanical

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CO2 Adsorption in Fe2(dobdc): A Classical Force Field Parameterized from Quantum Mechanical : 10.1021/jp500313j #12;Abstract Carbon dioxide adsorption isotherms have been computed for the Metal derived from quantum mechanical calculations has been used to model adsorption isotherms within a MOF

  20. Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior

    E-Print Network [OSTI]

    Dove, Patricia M.

    Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior processes was previously unknown for oxides or silicates, our mechanism-based findings are consistent, the geochemistry of earth systems is, in large part, controlled by the kinetics of silicate mineral dissolution

  1. Classical Mechanics of Collinear Positron-Hydrogen Scattering

    E-Print Network [OSTI]

    Lee, Min-Ho; Moon, Jin-Sung; Choi, Nark Nyul; Kim, Dae-Soung

    2015-01-01T23:59:59.000Z

    We study the classical dynamics of the collinear positron-hydrogen scattering system below the three-body breakup threshold. Observing the chaotic behavior of scattering time signals, we in- troduce a code system appropriate to a coarse grained description of the dynamics. And, for the purpose of systematic analysis of the phase space structure, a surface of section is introduced being chosen to match the code system. Partition of the surface of section leads us to a surprising conjec- ture that the topological structure of the phase space of the system is invariant under exchange of the dynamical variables of proton with those of positron. It is also found that there is a finite set of forbidden patterns of symbol sequences. And the shortest periodic orbit is found to be stable, around which invariant tori form an island of stability in the chaotic sea. Finally we discuss a possible quantum manifestation of the classical phase space structure relevant to resonances in scattering cross sections.

  2. On a Link between Classical Phenomenological Laws of Gases and Quantum Mechanics

    E-Print Network [OSTI]

    Yarman, Tolga; Korfali, Onder

    2008-01-01T23:59:59.000Z

    In this paper we find a connection between the macroscopic classical laws of gases and the quantum mechanical description of molecules, composing an ideal gas. In such a gas, the motion of each individual molecule can be considered independently on all other molecules, and thus the macroscopic parameters of ideal gas, like pressure P and temperature T, can be introduced as a result of simple averaging over all individual motions of molecules. It is shown that for an ideal gas enclosed in a macroscopic cubic box of volume V, the constant, in the classical law of adiabatic expansion, i.e.PV^5/3=const, can be derived, based on quantum mechanics. Physical implications of the result we disclose are discussed. In any case, our finding proves, seemingly for the first time, a macroscopic manifestation of a quantum mechanical behavior, and this in relation to classical thermodynamics.

  3. On a Link between Classical Phenomenological Laws of Gases and Quantum Mechanics

    E-Print Network [OSTI]

    Tolga Yarman; Alexander Kholmetskii; Onder Korfali

    2008-05-29T23:59:59.000Z

    In this paper we find a connection between the macroscopic classical laws of gases and the quantum mechanical description of molecules, composing an ideal gas. In such a gas, the motion of each individual molecule can be considered independently on all other molecules, and thus the macroscopic parameters of ideal gas, like pressure P and temperature T, can be introduced as a result of simple averaging over all individual motions of molecules. It is shown that for an ideal gas enclosed in a macroscopic cubic box of volume V, the constant, in the classical law of adiabatic expansion, i.e.PV^5/3=const, can be derived, based on quantum mechanics. Physical implications of the result we disclose are discussed. In any case, our finding proves, seemingly for the first time, a macroscopic manifestation of a quantum mechanical behavior, and this in relation to classical thermodynamics.

  4. Correlation Analysis of Chemical Bonds (CACB) II: Quantum Mechanical Operators for Classical Chemical Concepts

    E-Print Network [OSTI]

    Goddard III, William A.

    crossing in reactions still lags far behind. Theoretical approaches to extracting the underlying chemicalCorrelation Analysis of Chemical Bonds (CACB) II: Quantum Mechanical Operators for Classical of the statistical covariance of the previous operator. Here the bonds correlation relates to bond exchange processes

  5. Magnetic monopoles and dyons revisited: A useful contribution to the study of classical mechanics

    E-Print Network [OSTI]

    Santos, Renato P dos

    2015-01-01T23:59:59.000Z

    Graduate level physics curricula in many countries around the world, as well as senior-level undergraduate ones in some major institutions, include Classical Mechanics courses, mostly based on Goldstein's textbook masterpiece. During the discussion of central force motion, however, the Kepler problem is virtually the only serious application presented. In this paper, we present another problem that is also soluble, namely the interaction of Schwinger's dual-charged (dyon) particles. While the electromagnetic interaction of magnetic monopoles and electric charges was studied in detail some 40 years ago, we consider that a pedagogical discussion of it from an essentially classical mechanics point of view is a useful contribution for students. Following a path that generalizes Kepler's problem and Rutherford scattering, we show that they exhibit remarkable properties such as stable non-planar orbits, as well as rainbow and glory scattering, which are not present in the ordinary scattering of two singly charged p...

  6. Classical limits of quantum mechanics on a non-commutative configuration space

    SciTech Connect (OSTI)

    Benatti, Fabio [Department of Physics, University of Trieste and INFN, Sezione di Trieste, Strada Costiera 11, I-34051 Trieste (Italy)] [Department of Physics, University of Trieste and INFN, Sezione di Trieste, Strada Costiera 11, I-34051 Trieste (Italy); Gouba, Laure [The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 Trieste (Italy)] [The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 Trieste (Italy)

    2013-06-15T23:59:59.000Z

    We consider a model of non-commutative quantum mechanics given by two harmonic oscillators over a non-commutative two dimensional configuration space. We study possible ways of removing the non-commutativity based on the classical limit context known as anti-Wick quantization. We show that removal of non-commutativity from the configuration space and from the canonical operators is not commuting operation.

  7. Canonical quantization of classical mechanics in curvilinear coordinates. Invariant quantization procedure

    SciTech Connect (OSTI)

    B?aszak, Maciej, E-mail: blaszakm@amu.edu.pl; Doma?ski, Ziemowit, E-mail: ziemowit@amu.edu.pl

    2013-12-15T23:59:59.000Z

    In the paper is presented an invariant quantization procedure of classical mechanics on the phase space over flat configuration space. Then, the passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. An explicit form of position and momentum operators as well as their appropriate ordering in arbitrary curvilinear coordinates is demonstrated. Finally, the extension of presented formalism onto non-flat case and related ambiguities of the process of quantization are discussed. -- Highlights: •An invariant quantization procedure of classical mechanics on the phase space over flat configuration space is presented. •The passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. •Explicit form of position and momentum operators and their appropriate ordering in curvilinear coordinates is shown. •The invariant form of Hamiltonian operators quadratic and cubic in momenta is derived. •The extension of presented formalism onto non-flat case and related ambiguities of the quantization process are discussed.

  8. Physical process Mechanical mechanisms

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Physical process Generation · Mechanical mechanisms F = m·a · Electric/Magnetic mechanisms F = B·i·l · Fluid dynamic/Hydraulic mechanisms q, p, ij · Thermal/Optical #12;2 Source unit

  9. Quantum Theory of particles and fields as an extension of a probabilistic variational approach to classical mechanics and classical field theory. I

    E-Print Network [OSTI]

    Matteo Villani

    2009-07-28T23:59:59.000Z

    A theoretical scheme, based on a probabilistic generalization of the Hamilton's principle, is elaborated to obtain an unified description of more general dynamical behaviors determined both from a lagrangian function and by mechanisms not contemplated by this function. Within this scheme, quantum mechanics, classical field theory and a quantum theory for scalar fields are discussed. As a by-product of the probabilistic scheme for classical field theory, the equations of the De Donder-Weyl theory for multi-dimensional variational problems are recovered.

  10. How do quantum effects change conclusions about heterogeneous cluster behavior based on classical mechanics simulations?

    E-Print Network [OSTI]

    Le Roy, Robert J.

    February 1998 Comparisons of classical and quantum Monte Carlo simulation of SF6­ Ar n and SF6­ Ne n clusters are used to examine whether certain novel types of behavior seen in classical simulations of SF6­ Ar n and SF6­ Kr n persist when quantum effects are taken into account. For mixed clusters formed

  11. Quantum Mechanical Disclosure of the Classical Adiabatic Constancy of PVg for an Ideal Gas, and for a Photon Gas

    E-Print Network [OSTI]

    Arik, Metin; Kholmetskii, Alexander L

    2009-01-01T23:59:59.000Z

    Previously, we established a connection between the macroscopic classical laws of gases and the quantum mechanical description of molecules of an ideal gas (T. Yarman et al. arXiv:0805.4494). In such a gas, the motion of each molecule can be considered independently on all other molecules, and thus the macroscopic parameters of the ideal gas, like pressure P and temperature T, can be introduced as a result of simple averaging over all individual motions of the molecules. It was shown that for an ideal gas enclosed in a macroscopic cubic box of volume V, the constant, arising along with the classical law of adiabatic expansion, i.e. PV5/3=constant, can be explicitly derived based on quantum mechanics, so that the constant comes to be proportional to h^2/m; here h is the Planck Constant, and m is the relativistic mass of the molecule the gas is made of. In this article we show that the same holds for a photon gas, although the related setup is quite different than the previous ideal gas setup. At any rate, we c...

  12. Thermodynamics and equilibrium structure of Ne38 cluster: Quantum mechanics versus classical

    E-Print Network [OSTI]

    Mandelshtam, Vladimir A.

    . For example, although the heat capacity Cv T around the "solid-liquid" transition temperature T 10 K MC simulations are implemented in the parallel tempering framework. The classical heat capacity Cv do not play an essential role in the thermodynamics of Ne38, the quantum heat capacity

  13. The Classical and Quantum Mechanics of a Particle on a Knot

    E-Print Network [OSTI]

    V. V. Sreedhar

    2015-01-06T23:59:59.000Z

    A free particle is constrained to move on a knot obtained by winding around a putative torus. The classical equations of motion for this system are solved in a closed form. The exact energy eigenspectrum, in the thin torus limit, is obtained by mapping the time-independent Schrodinger equation to the Mathieu equation. In the general case, the eigenvalue problem is described by the Hill equation. Finite-thickness corrections are incorporated perturbatively by truncating the Hill equation. Comparisons and contrasts between this problem and the well-studied problem of a particle on a circle (planar rigid rotor) are performed throughout.

  14. & Mechanical Engineering

    E-Print Network [OSTI]

    Zhou, Chongwu

    , robotics, and the development of new tools for integrated approaches to concurrent engineeringAME Aerospace & Mechanical Engineering #12;Aerospace and Mechanical Engineers design complex Engineering (AME) students conduct basic and applied research within and across the usual disciplinary

  15. Approved Module Information for AM30ME, 2014/5 Module Title/Name: Classical Mechanics Module Code: AM30ME

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : AM30ME School: Engineering and Applied Science Module Type: Standard Module New Module? No Module in both written and oral form. 2. Structure, order and classify materials, information, dataApproved Module Information for AM30ME, 2014/5 Module Title/Name: Classical Mechanics Module Code

  16. Computational mechanics

    SciTech Connect (OSTI)

    Goudreau, G.L.

    1993-03-01T23:59:59.000Z

    The Computational Mechanics thrust area sponsors research into the underlying solid, structural and fluid mechanics and heat transfer necessary for the development of state-of-the-art general purpose computational software. The scale of computational capability spans office workstations, departmental computer servers, and Cray-class supercomputers. The DYNA, NIKE, and TOPAZ codes have achieved world fame through our broad collaborators program, in addition to their strong support of on-going Lawrence Livermore National Laboratory (LLNL) programs. Several technology transfer initiatives have been based on these established codes, teaming LLNL analysts and researchers with counterparts in industry, extending code capability to specific industrial interests of casting, metalforming, and automobile crash dynamics. The next-generation solid/structural mechanics code, ParaDyn, is targeted toward massively parallel computers, which will extend performance from gigaflop to teraflop power. Our work for FY-92 is described in the following eight articles: (1) Solution Strategies: New Approaches for Strongly Nonlinear Quasistatic Problems Using DYNA3D; (2) Enhanced Enforcement of Mechanical Contact: The Method of Augmented Lagrangians; (3) ParaDyn: New Generation Solid/Structural Mechanics Codes for Massively Parallel Processors; (4) Composite Damage Modeling; (5) HYDRA: A Parallel/Vector Flow Solver for Three-Dimensional, Transient, Incompressible Viscous How; (6) Development and Testing of the TRIM3D Radiation Heat Transfer Code; (7) A Methodology for Calculating the Seismic Response of Critical Structures; and (8) Reinforced Concrete Damage Modeling.

  17. Computational mechanics

    SciTech Connect (OSTI)

    Raboin, P J

    1998-01-01T23:59:59.000Z

    The Computational Mechanics thrust area is a vital and growing facet of the Mechanical Engineering Department at Lawrence Livermore National Laboratory (LLNL). This work supports the development of computational analysis tools in the areas of structural mechanics and heat transfer. Over 75 analysts depend on thrust area-supported software running on a variety of computing platforms to meet the demands of LLNL programs. Interactions with the Department of Defense (DOD) High Performance Computing and Modernization Program and the Defense Special Weapons Agency are of special importance as they support our ParaDyn project in its development of new parallel capabilities for DYNA3D. Working with DOD customers has been invaluable to driving this technology in directions mutually beneficial to the Department of Energy. Other projects associated with the Computational Mechanics thrust area include work with the Partnership for a New Generation Vehicle (PNGV) for ''Springback Predictability'' and with the Federal Aviation Administration (FAA) for the ''Development of Methodologies for Evaluating Containment and Mitigation of Uncontained Engine Debris.'' In this report for FY-97, there are five articles detailing three code development activities and two projects that synthesized new code capabilities with new analytic research in damage/failure and biomechanics. The article this year are: (1) Energy- and Momentum-Conserving Rigid-Body Contact for NIKE3D and DYNA3D; (2) Computational Modeling of Prosthetics: A New Approach to Implant Design; (3) Characterization of Laser-Induced Mechanical Failure Damage of Optical Components; (4) Parallel Algorithm Research for Solid Mechanics Applications Using Finite Element Analysis; and (5) An Accurate One-Step Elasto-Plasticity Algorithm for Shell Elements in DYNA3D.

  18. An experimental test of the non-classicality of quantum mechanics using an unmovable and indivisible system

    E-Print Network [OSTI]

    Xi Kong; Mingjun Shi; Fazhan Shi; Pengfei Wang; Pu Huang; Qi Zhang; Chenyong Ju; Changkui Duan; Sixia Yu; Jiangfeng Du

    2012-10-03T23:59:59.000Z

    Quantum mechanics provides a statistical description about nature, and thus would be incomplete if its statistical predictions could not be accounted for by some realistic models with hidden variables. There are, however, two powerful theorems against the hidden-variable theories showing that certain quantum features cannot be reproduced based on two rationale premises of locality, Bell's theorem, and noncontextuality, due to Bell, Kochen and Specker (BKS). Noncontextuality is independent of nonlocality, and the contextuality manifests itself even in a single object. Here we report an experimental verification of quantum contextuality by a single spin-1 electron system at room temperature. Such a three-level system is indivisible and then we close the compatibility loophole which exists in the experiments performed on bipartite systems. Our results confirm the quantum contextuality to be the intrinsic property of single particles.

  19. InGaAs tunnel diodes for the calibration of semi-classical and quantum mechanical band-to-band tunneling models

    SciTech Connect (OSTI)

    Smets, Quentin; Verreck, Devin; Vandervorst, Wilfried; Groeseneken, Guido; Heyns, Marc M. [Imec, Kapeldreef 75, 3001 Heverlee (Belgium); KULeuven, 3001 Leuven (Belgium); Verhulst, Anne S.; Rooyackers, Rita; Merckling, Clément; Simoen, Eddy; Collaert, Nadine; Thean, Voon Y. [Imec, Kapeldreef 75, 3001 Heverlee (Belgium); Van De Put, Maarten; Sorée, Bart [Imec, Kapeldreef 75, 3001 Heverlee (Belgium); Universiteit Antwerpen, 2020 Antwerpen (Belgium)

    2014-05-14T23:59:59.000Z

    Promising predictions are made for III-V tunnel-field-effect transistor (FET), but there is still uncertainty on the parameters used in the band-to-band tunneling models. Therefore, two simulators are calibrated in this paper; the first one uses a semi-classical tunneling model based on Kane's formalism, and the second one is a quantum mechanical simulator implemented with an envelope function formalism. The calibration is done for In{sub 0.53}Ga{sub 0.47}As using several p+/intrinsic/n+ diodes with different intrinsic region thicknesses. The dopant profile is determined by SIMS and capacitance-voltage measurements. Error bars are used based on statistical and systematic uncertainties in the measurement techniques. The obtained parameters are in close agreement with theoretically predicted values and validate the semi-classical and quantum mechanical models. Finally, the models are applied to predict the input characteristics of In{sub 0.53}Ga{sub 0.47}As n- and p-lineTFET, with the n-lineTFET showing competitive performance compared to MOSFET.

  20. Visualizing quantum mechanics in phase space

    E-Print Network [OSTI]

    Heiko Bauke; Noya Ruth Itzhak

    2011-01-11T23:59:59.000Z

    We examine the visualization of quantum mechanics in phase space by means of the Wigner function and the Wigner function flow as a complementary approach to illustrating quantum mechanics in configuration space by wave functions. The Wigner function formalism resembles the mathematical language of classical mechanics of non-interacting particles. Thus, it allows a more direct comparison between classical and quantum dynamical features.

  1. Qualitative insights on fundamental mechanics

    E-Print Network [OSTI]

    G. N. Mardari

    2006-11-10T23:59:59.000Z

    The gap between classical mechanics and quantum mechanics has an important interpretive implication: the Universe must have an irreducible fundamental level, which determines the properties of matter at higher levels of organization. We show that the main parameters of any fundamental model must be theory-independent. They cannot be predicted, because they cannot have internal causes. However, it is possible to describe them in the language of classical mechanics. We invoke philosophical reasons in favor of a specific model, which treats particles as sources of real waves. Experimental considerations for gravitational, electromagnetic, and quantum phenomena are outlined.

  2. Heavy Mobile Equipment Mechanic (One Mechanic Shop)

    Broader source: Energy.gov [DOE]

    The position is a Heavy Mobile Equipment Mechanic (One Mechanic Shop) located in Kent, Washington, and will be responsible for the safe and efficient operation of a field garage performing...

  3. Quantum mechanical Carnot engine

    E-Print Network [OSTI]

    Bender, C M; Meister, B K

    2000-01-01T23:59:59.000Z

    A cyclic thermodynamic heat engine runs most efficiently if it is reversible. Carnot constructed such a reversible heat engine by combining adiabatic and isothermal processes for a system containing an ideal gas. Here, we present an example of a cyclic engine based on a single quantum-mechanical particle confined to a potential well. The efficiency of this engine is shown to equal the Carnot efficiency because quantum dynamics is reversible. The quantum heat engine has a cycle consisting of adiabatic and isothermal quantum processes that are close analogues of the corresponding classical processes.

  4. Quantum mechanical Carnot engine

    E-Print Network [OSTI]

    C. M. Bender; D. C. Brody; B. K. Meister

    2000-07-03T23:59:59.000Z

    A cyclic thermodynamic heat engine runs most efficiently if it is reversible. Carnot constructed such a reversible heat engine by combining adiabatic and isothermal processes for a system containing an ideal gas. Here, we present an example of a cyclic engine based on a single quantum-mechanical particle confined to a potential well. The efficiency of this engine is shown to equal the Carnot efficiency because quantum dynamics is reversible. The quantum heat engine has a cycle consisting of adiabatic and isothermal quantum processes that are close analogues of the corresponding classical processes.

  5. auratus potential mechanisms: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group has specialized knowledge in the areas of: Opto-mechanical and integrated detector Mojzsis, Stephen J. 334 The algebraic entropy of classical mechanics Mathematical...

  6. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

  7. Mechanical Engineering & Thermal Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has · STOP (Structural, Thermal, and Optical Performance) analyses of optical systems Thermal engineers lead evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

  8. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    and the Department of Mechanical Engineering Tufts University Retooling Our Energy Ecosystem: challengesMechanical engineering Department Seminar Robert J. Hannemann The Gordon Institute and Chair of the Tufts Department of Mechanical Engineering. His technical and academic interests

  9. New interpretation of the atomic spectra and other quantum phenomena: A mixed mechanism of classical $LC$ circuits and quantum wave-particle duality

    E-Print Network [OSTI]

    X. Q. Huang

    2006-04-04T23:59:59.000Z

    We study the energy conversion laws of the macroscopic harmonic $LC $ oscillator, the electromagnetic wave (photon) and the hydrogen atom. As our analysis indicates that the energies of these apparently different systems obey exactly the same energy conversion law. Based on our results and the wave-particle duality of electron, we find that the atom in fact is a natural microscopic $LC$ oscillator. In the framework of classical electromagnetic field theory we analytically obtain, for the hydrogen atom, the quantized electron orbit radius. Without the adaptation of any other fundamental principles of quantum mechanics, we present a reasonable explanation of the polarization of photon, the Zeeman effect, Selection rules and Pauli exclusion principle. Particularly, it is found that a pairing Pauli electron can move closely and steadily in a DNA-like double helical electron orbit. Our results also reveal an essential connection between electron spin and the intrinsic helical movement of electron and indicate that the spin itself is the effect of quantum confinement. In addition, a possible physical mechanism of superconductivity and the deeper physical understandings of the electron mass, zero point energy, and the hardness property of electron are also provided. Finally, we show analytically that the Dirac's quantization of magnetic monopole is merely a special handed electron at absolute zero-temperature, which strongly suggests that any efforts to seek for the magneticmonopole in real space will be entirely in vain. Furthermore, it appears that the electron's spin and the magnetic monopole are actually two different concepts for one possible physical phenomenon.

  10. Mechanical & Aerospace Engineering

    E-Print Network [OSTI]

    Mechanical & Aerospace Engineering It is a new beginning for innovative fundamental and applied and consolidation of bulk nanocrystalline materials using mechanical alloying, the alloy development and synthesis

  11. 6When you heat a rubber band, it contracts. If you only know about point particles and ideal gases, this behavior is perplexing. But, a simple classical statistical mechanics model of a chain

    E-Print Network [OSTI]

    Ha, Taekjip

    gases, this behavior is perplexing. But, a simple classical statistical mechanics model of a chain for given N and M. Call the result (N,M). (b) Using Stirling's approximation in the form ln(N!) N ln(N) - N and extent R, in the regime Na >> R. Write down the expression for the free energy of the chain (in

  12. Combined Quantum Mechanical and Molecular Mechanics Studies of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical and Molecular Mechanics Studies of the Electron-Transfer Reactions Involving Carbon Tetrachloride in Combined Quantum Mechanical and Molecular Mechanics Studies of the...

  13. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    Lin, Xi

    Mechanical engineering Department Seminar Ju Li Professor MIT Electrochemical-mechanical actions computational and experimental research on mechanical properties of materials, and energy storage and conversion Refreshments served at 10:45 AM The creation of a nanoscale electrochemical and mechanical testing platform

  14. 8.334 Statistical Mechanics II: Statistical Mechanics of Fields, Spring 2004

    E-Print Network [OSTI]

    Kardar, Mehran

    A two-semester course on statistical mechanics. Basic principles are examined in 8.333: the laws of thermodynamics and the concepts of temperature, work, heat, and entropy. Postulates of classical statistical mechanics, ...

  15. Internal pipe attachment mechanism

    DOE Patents [OSTI]

    Bast, R.M.; Chesnut, D.A.; Henning, C.D.; Lennon, J.P.; Pastrnak, J.W.; Smith, J.A.

    1994-12-13T23:59:59.000Z

    An attachment mechanism is described for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection. 6 figures.

  16. Graduate School Engineering Mechanics

    E-Print Network [OSTI]

    Franssen, Michael

    Mechanics c/o Eindhoven University of Technology PO Box 513, building W-hoog 2.113 5600 MB Eindhoven NL Tel on Engineering Mechanics, a joint initiative of the Eindhoven and Delft Universities of Technology Mechanics c/o Eindhoven University of Technology PO Box 513, building W-hoog 2.113 5600 MB Eindhoven NL

  17. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

  18. UNSATURATED SOIL MECHANICS IMPLEMENTATION

    E-Print Network [OSTI]

    Minnesota, University of

    UNSATURATED SOIL MECHANICS IMPLEMENTATION DURING PAVEMENT CONSTRUCTION QUALITY ASSURANCE Mn !! Performance Based Construction QA !! Unsaturated Soil Mechanics !! What We've Learned !! Next Steps #12.6-6.0 5 - 7 19 0.8 5 7 - 9 24 1.1 4 9 - 11 28 1.2 4 #12;Unsaturated Soil Mechanics #12;Fundamentals

  19. Mechanical & Aerospace Engineering

    E-Print Network [OSTI]

    Mechanical & Aerospace Engineering An experimental methodology is presented for mechanism Yang is a second graduate student in the department of mechanical engineering of ASU. He received his Jian Yang School for Engineering of Matter, Transport and Energy Arizona State University October 5

  20. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    efficient energy systems. Evelyn N. Wang is an Associate Professor in the Mechanical Engineering DepartmentMechanical engineering Department Seminar Evelyn Wang Depaprtment of Mechanical Engineering MIT Nanoengineered Surfaces: Transport Phenomena and Energy Applications 11:00 AM Friday, 5 April 2013 Room 245, 110

  1. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    Mechanical engineering Department Seminar Domitilla Del Vecchio Department of Mechanical. A near future is envisioned in which re- engineered bacteria will turn waste into energy and kill cancer, she joined the Department of Mechanical Engineering and the Laboratory for Information and Decision

  2. Mechanical & Aerospace Engineering

    E-Print Network [OSTI]

    in Mechanical Engineering at the School for Engineering of Matter, Transport and Energy, working in Dr. MarcusMechanical & Aerospace Engineering The atomization of a liquid jet by a high speed cross.S.E. degree in mechanical engineering from Amirkabir University of Technology in 2006 and M.S. degree

  3. Mechanical seal assembly

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (Salt Lake City, UT)

    2001-01-01T23:59:59.000Z

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.

  4. Mechanical seal assembly

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (Salt Lake City, UT)

    2002-01-01T23:59:59.000Z

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transfering it to the mechanical diode.

  5. On the foundation of Mechanics

    E-Print Network [OSTI]

    Ricardo J. Alonso-Blanco; Jesús Muñoz-Díaz

    2014-12-09T23:59:59.000Z

    This note is an extended version of "A note on the foundations of Mechanics", arXiv: 1404.1321 [math-ph]. A presentation of its contents was given in a talk in memorial homage to the professor Juan B. Sancho Guimer\\'a. For this reason, it was written in spanish language. The matter of the note is a systematic foundation of the most classical part of Mechanics. The content by sections is: 0) Notions and basic results, 1) Conservative systems 2) Time. Time constraints, 3) Proper time. Relativistic forces, 4) Electromagnetic fields, 5) On the Hamilton-Noether Principle, 6) Schr\\"odinger equation.

  6. Schwinger Mechanism with Stochastic Quantization

    E-Print Network [OSTI]

    Kenji Fukushima; Tomoya Hayata

    2014-06-23T23:59:59.000Z

    We prescribe a formulation of the particle production with real-time Stochastic Quantization. To construct the retarded and the time-ordered propagators we decompose the stochastic variables into positive- and negative-energy parts. In this way we demonstrate how to derive a standard formula for the Schwinger mechanism under time-dependent electric fields. We discuss a mapping to the Schwinger-Keldysh formalism and a relation to the classical statistical simulation.

  7. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    Lin, Xi

    operating in microfluidic environment, which can dynamically diverge, collimate and focus surface plasmons in 2012, with a joint appointment in the Department of Mechanical & Industrial Engineering

  8. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    Research Center. Currently he is an Assistant Prof. in the Aerospace and Ocean Engineering DepartmentMechanical engineering Department Seminar Cornel Sultan Virginia Tech Design for Control

  9. MECHANICAL ENGINEERING Program of Study

    E-Print Network [OSTI]

    Thomas, Andrew

    offers graduate programs in the fields of thermal science and engineering mechanics. Current areasMECHANICAL ENGINEERING Program of Study Correspondence The Department of Mechanical Engineering of research activity include Biomedical Engineering, Biomimetics, Composite Materials, Computational Mechanics

  10. Yale University Mechanical Engineering

    E-Print Network [OSTI]

    Dollar, Aaron M.

    ) ­ #92474A029 (4x) #12;OpenHand Yale University Mechanical Engineering 3D Printer Requirements · Current · Majority of parts are designed to not require support material · Authors do not know how well alternate 3D printers will produce adequate components #12;OpenHand Yale University Mechanical Engineering Finger

  11. Respiratory Mechanisms of Support

    E-Print Network [OSTI]

    Kay, Mark A.

    Respiratory Mechanisms of Support Nasal Cannula Hi Flow Nasal Cannula CPAP Continuous positive the respiratory system is working to compensate for a metabolic issue so as to normalize the blood pH. HCO3 - 22 uses PIP Mechanical Ventilation: Volume vs. Pressure: Volume Control Pressure Control Cycle Volume Time

  12. Department of Mechanical Engineering

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    Explore and understand applicable science Create new materials #12;Indian Railways #12;Wheel Impact Load automated system for On-Line estimation of Wheel Impact Loads and detection of Wheel Flats of running trains Detection System (WILD) #12;Derailment Mechanism Laboratory Tests Lab Brake Mechanism Placement of Sensors

  13. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    Lin, Xi

    Mechanical engineering Department Seminar Junjie Niu Postdoctoral Associate MIT Engineering Nano nanomaterials in applications of energy storage, biomedicine and chemo-mechanics. In 2007, Dr.Niu received young-structured Materials for Energy Storage 11:00 AM Friday, 14 February 2014 Room 245, 110 Cummington Mall Refreshments

  14. Mechanical and Aerospace Engineering

    E-Print Network [OSTI]

    Mechanical and Aerospace Engineering Abstract Solid materials used in energy conversion and storage Department of Civil & Environmental Engineering, Department of Mechanical Engineering, Northwestern University April 6, 2012 at 2:00pm in SCOB 252 School for Engineering of Matter, Transport & Energy #12;

  15. Mechanical & Aerospace Engineering

    E-Print Network [OSTI]

    Mechanical & Aerospace Engineering The development of high-energy storage devices has been one energy capacity over 500 cycles. Teng Ma received his BS degree in Thermal and Power Engineering from Xi and Technology of China in 2009. He is currently a Ph.D. candidate in Mechanical Engineering at School

  16. periodica polytechnica Mechanical Engineering

    E-Print Network [OSTI]

    Gubicza, Jenõ

    structure. Keywords aluminium alloys · nanostructured materials · mechanical characterization · X-thickness texture gradient produced by the different routes of DSR have been studied in Al 1050 aluminium alloy [15 routes on the microstructure and mechanical properties of Al 7075 aluminium alloy. Microstructure

  17. Mechanical code comparator

    DOE Patents [OSTI]

    Peter, Frank J. (Albuquerque, NM); Dalton, Larry J. (Bernalillo, NM); Plummer, David W. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  18. 07SCHOOL OF MECHANICAL ENGINEERING

    E-Print Network [OSTI]

    Dimitrova, Vania

    07SCHOOL OF MECHANICAL ENGINEERING UNDERGRADUATE DEGREES School of Mechanical Engineering FACULTY OF ENGINEERING Undergraduate Degrees 2015 #12;www.engineering.leeds.ac.uk/mechanical UNDERGRADUATE DEGREES SCHOOL OF MECHANICAL ENGINEERING The School of Mechanical Engineering offers both a broad mechanical engineering degree

  19. Optics, Mechanics and Quantization of Reparametrization Systems

    E-Print Network [OSTI]

    M. Navarro; J. Guerrero; V. Aldaya

    1994-04-20T23:59:59.000Z

    In this paper we regard the dynamics obtained from Fermat principle as begin the classical theory of light. We (first-)quantize the action and show how close we can get to the Maxwell theory. We show that Quantum Geometric Optics is not a theory of fields in curved space. Considering Classical Mechanics to be on the same footing, we show the parallelism between Quantum Mechanics and Quantum Geometric Optics. We show that, due to the reparametrization invariance of the classical theories, the dynamics of the quantum theories is given by a Hamiltonian constraint. Some implications of the above analogy in the quantization of true reparameterization invariant systems are discussed.

  20. Electronic door locking mechanism

    DOE Patents [OSTI]

    Williams, G.L.; Kirby, P.G.

    1997-10-21T23:59:59.000Z

    The invention is a motorized linkage for engaging a thumb piece in a door mechanism. The device has an exterior lock assembly with a small battery cell and combination lock. Proper entry by a user of a security code allows the battery to operate a small motor within the exterior lock assembly. The small motor manipulates a cam-plunger which moves an actuator pin into a thumb piece. The user applies a force on to the thumb piece. This force is transmitted by the thumb piece to a latch engagement mechanism by the actuator pin. The latch engagement mechanism operates the door latch. 6 figs.

  1. Mechanism of Gravity Impulse

    E-Print Network [OSTI]

    Ning Wu

    2005-10-01T23:59:59.000Z

    It is well-known that energy-momentum is the source of gravitational field. For a long time, it is generally believed that only stars with huge masses can generate strong gravitational field. Based on the unified theory of gravitational interactions and electromagnetic interactions, a new mechanism of the generation of gravitational field is studied. According to this mechanism, in some special conditions, electromagnetic energy can be directly converted into gravitational energy, and strong gravitational field can be generated without massive stars. Gravity impulse found in experiments is generated by this mechanism.

  2. Rotary mechanical latch

    DOE Patents [OSTI]

    Spletzer, Barry L.; Martinez, Michael A.; Marron, Lisa C.

    2012-11-13T23:59:59.000Z

    A rotary mechanical latch for positive latching and unlatching of a rotary device with a latchable rotating assembly having a latching gear that can be driven to latched and unlatched states by a drive mechanism such as an electric motor. A cam arm affixed to the latching gear interfaces with leading and trailing latch cams affixed to a flange within the drive mechanism. The interaction of the cam arm with leading and trailing latch cams prevents rotation of the rotating assembly by external forces such as those due to vibration or tampering.

  3. Is Fresnel Optics Quantum Mechanics in Phase Space?

    E-Print Network [OSTI]

    O. Crasser; H. Mack; W. P. Schleich

    2004-02-17T23:59:59.000Z

    We formulate and argue in favor of the following conjecture: There exists an intimate connection between Wigner's quantum mechanical phase space distribution function and classical Fresnel optics.

  4. Ultralight, ultrastiff mechanical metamaterials

    E-Print Network [OSTI]

    Zheng, Xiaoyu

    The mechanical properties of ordinary materials degrade substantially with reduced density because their structural elements bend under applied load. We report a class of microarchitected materials that maintain a nearly ...

  5. Mechanical Compression Heat Pumps 

    E-Print Network [OSTI]

    Apaloo, T. L.; Kawamura, K.; Matsuda, J.

    1986-01-01T23:59:59.000Z

    to develop, design and test compressors built to meet the needs of the mechanically demanding industrial heat pump applications which often require high compression ratios and temperatures in excess of 200 degrees F. This paper will review the theoretical...

  6. Renewable Auction Mechanism (RAM)

    Broader source: Energy.gov [DOE]

    The Renewable Auction Mechanism (RAM), approved by the California Public Utilities Commission (CPUC) in December 2010, is expected to result in 1,299 megawatts (MW) of new distributed generation ...

  7. The continuum and wave mechanics

    E-Print Network [OSTI]

    Collins, Royal Eugene

    1954-01-01T23:59:59.000Z

    in the realm of our actual experience we find it possi? ble to define operational procedures for observing and 4 , and we A find that these procedures always yield values of ?f and "t . Further? more we always find that the observed values of the position... in our analysis of Classical Mechanics, therefore we now consider the following problem. If we consider w quantities iT HE M gnx DHqMyco and p? quantities-[ yO 4. to be defined by operations can we require that a function yA ? t j exists...

  8. Jar mechanism accelerator

    SciTech Connect (OSTI)

    Anderson, E.A.; Webb, D.D.

    1989-07-11T23:59:59.000Z

    This patent describes an accelerator for use with a jar mechanism in a well pipe string to enhance the jarring impact delivered to a stuck object wherein the jar mechanism includes inner and outer members for connection, respectively, between the well pipe string the stuck object. The jar mechanism members are constructed to (1) restrict relative longitudinal movement therebetween to build up energy in the well pipe string and accelerator and then (2) to release the jar mechanism members for unrestrained, free relative longitudinal movement therebetween to engage jarring surfaces on the jar mechanism members for delivering a jarring impact to the stuck object. The accelerator includes: inner and outer telescopically connected members relatively movable longitudinally to accumulate energy in the accelerator; the inner and outer accelerator members each having means for connecting the accelerator in the well pipe string; means associated with the inner and outer members for initially accomodating a predetermined minimum length of unrestrained, free relative longitudinal movement between the inner and outer accelerator members.

  9. Program Transformation Mechanics A Classification of Mechanisms for Program Transformation

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Program Transformation Mechanics A Classification of Mechanisms for Program Transformation with a Survey of Existing Transformation Systems Jonne van Wijngaarden Eelco Visser UU-CS-2003-048 Institute Transformation Mechanics A Classification of Mechanisms for Program Transformation with a Survey of Existing

  10. Statistical Mechanics of Developable Ribbons L. Giomi1,2

    E-Print Network [OSTI]

    Mahadevan, L.

    , carbon (graphene) and molybdenum ribbons, etc. A classical theoretical approach to the study for the statistical mechanics of ribbonlike objects based on a classical geometric formulation of developable surfacesStatistical Mechanics of Developable Ribbons L. Giomi1,2 and L. Mahadevan1 1 School of Engineering

  11. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    on the PI's current research on energy harvesting nanowires, Li-ion batteries, and PEM fuel cells. In energy nanowires from both modeling and in-situ quantitative microscopy perspectives. In Li-ion battery work, we-ion intercalation into nanowires. The last, electro-mechanical characterization of degraded and fresh electrode

  12. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    Mechanical engineering Department Seminar Wynter J. Duncanson Department of Aerospace and Ocean Engineering Virginia Tech Smart' Bubbles for Acoustic Contrast in Oil Reservoirs 11:00 AM Friday, 19 April engineering from Boston University. Her doctoral research was devoted to designing surface architectures

  13. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    Lin, Xi

    -electronics, soft robotics, and bio-integrated systems. Host: Basu #12;, Urbana-Champaign Mechanical Design and Fabrication Techniques for Bio-Electronic Systems 11:00 AM Friday, 7 February 2014 Room 245, 110 Cummington Mall Refreshments served at 10:45 AM Biological systems

  14. Mechanical & Biomedical Engineering

    E-Print Network [OSTI]

    Barrash, Warren

    * Engineering Statistics or Probability and Statistics* 3 ME 380 Kinematics & Machine Dynamics 4 ME, CE, or ENGRMechanical & Biomedical Engineering Department BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING COURSE Differential Equations and Matrix Theory 4 ENGR 245 Introduction to Materials Science & Engineering 3 ENGR 210

  15. Imaging the Antikythera Mechanism

    SciTech Connect (OSTI)

    Malzbender, Tom (Hewlett Packard Laboratories) [Hewlett Packard Laboratories

    2011-01-12T23:59:59.000Z

    In 1900, a party of sponge divers chanced on the wreck of a Roman merchant vessel between Crete and mainland Greece. It was found to contain numerous ancient Greek treasures, among them a mysterious lump of clay that split open to reveal 'mathematical gears' as it dried out. This object is now known as the Antikythera Mechanism, one of the most enlightening artifacts in terms of revealing the advanced nature of ancient Greek science and technology. In 2005 we travelled to the National Archeological Museum in Athens to apply our Reflectance Imaging methods to the mechanism in the hopes of revealing ancient writing on the device. We were successful, and along with the results of Microfocus CT imaging, we are able to decipher 3000 characters compared with the original 800 known. This lead to an understanding that the device was a mechanical, astronomical computer from 150 B.C.E. capable of predicting solar and lunar eclipses along with other celestial events. This talk will overview both the imaging methods as well as what they reveal about the Antikythera Mechanism.

  16. STUDENT HANDBOOK MECHANICAL ENGINEERING

    E-Print Network [OSTI]

    Krstic, Miroslav

    accredited programs) Aerospace and Mechanical Engineering: · An ability to apply knowledge of mathematics-long learning. · A knowledge of contemporary issues. · An ability to use modern engineering techniques, skills, and computing tools necessary for engineering practice. Additionally: Aerospace Engineering · Knowledge of key

  17. Mechanical & Aerospace Engineering

    E-Print Network [OSTI]

    implementation of predictive methods in commercial, numerical codes. Finally, opportunities for students University in 2007. During this time, he has been elected to several leadership positions within the ASME, including as the secretary of the ASME Research Committee on the Mechanics of Jointed Structures, he has

  18. ################### g VM Production Mechanisms

    E-Print Network [OSTI]

    Kai­C. Voss, Bonn University 1 Vector meson production at HERA ############################### ################# ############### ############ #################################### ######################################### ############################ #12; Kai­C. Voss, Bonn University 2 Vector meson production at HERA # ################################################## ############################## ## ####################################### # # ## # ######## ### #### # # #12; Kai­C. Voss, Bonn University 3 Vector meson production at HERA VM Production Mechanisms soft

  19. Department of Mechanical Engineering

    E-Print Network [OSTI]

    Li, Teng

    Department of Mechanical Engineering 2014 Fast Facts Faculty Based on 2013 statistics from Master's Degrees Awarded 45 Doctorate Degrees Awarded Funding Fiscal Year 2013 $20M Total Research for Energetic Concepts Development Center for Environmental Energy Engineering Center for Risk and Reliability

  20. MECHANICAL TEST LAB CAPABILITIES

    E-Print Network [OSTI]

    MECHANICAL TEST LAB CAPABILITIES · Static and cyclic testing (ASTM and non-standard) · Impact drop testing · Slow-cycle fatigue testing · High temperature testing to 2500°F · ASTM/ Boeing/ SACMA standard testing · Ability to design and fabricate non-standard test fixtures and perform non-standard tests

  1. Mechanical & Aerospace Engineering

    E-Print Network [OSTI]

    Reisslein, Martin

    conductivity. Coupled with its low thermal conductivity, polymer thermoelectric composites are attractive and thermoelectric applications. I will show that the thermal conductivity of ultra-thin polymer films can both conductivity and phonon transport mechanisms over the past 2 decades, owing much to the challenging needs

  2. Mechanical and Aerospace Engineering

    E-Print Network [OSTI]

    Integration Specialist in the Smart Grid Technologies and Strategy Division of the California IndependentMechanical and Aerospace Engineering seminar The Challenges of Renewable Energy Integration into the CAISO Grid Abstract I will be presenting who the CAISO is and what we do. We will also discuss where we

  3. Residential Mechanical Precooling

    SciTech Connect (OSTI)

    German, A.; Hoeschele, M.

    2014-12-01T23:59:59.000Z

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  4. Adsorption mechanisms and effect of temperature in reversed-phase liquid chromatography-Meaning of the classical Van't Hoff plot in chromatography

    SciTech Connect (OSTI)

    Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL

    2006-07-01T23:59:59.000Z

    The effect of temperature on the adsorption and retention behaviors of a low molecular weight compound (phenol) on a C{sub 18}-bonded silica column (C{sub 18}-Sunfire, Waters) from aqueous solutions of methanol (20%) or acetonitrile (15%) was investigated. The results of the measurements were interpreted successively on the basis of the linear (i.e., overall retention factors) and the nonlinear (i.e., adsorption isotherms, surface heterogeneity, saturation capacities, and equilibrium constants) chromatographic methods. The confrontation of these two approaches confirmed the impossibility of a sound physical interpretation of the conventional Van't Hoff plot. The classical linear chromatography theory assumes that retention is determined by the equilibrium thermodynamics of analytes between a homogeneous stationary phase and a homogeneous mobile phase (although there may be two or several types of interactions). From values of the experimental retention factors in a temperature interval and estimates of the activity coefficients at infinite dilution in the same temperature interval provided by the UNIFAC group contribution method, evidence is provided that such a retention model cannot hold. The classical Van't Hoff plot appears meaningless and its linear behavior a mere accident. Results from nonlinear chromatography confirm these conclusions and provide explanations. The retention factors seem to fulfill the Van't Hoff equation, not the Henry constants corresponding to the different types of adsorption sites. The saturation capacities and the adsorption energies are clearly temperature dependent. The temperature dependence of these characteristics of the different assorption sites are different in aqueous methanol and acetonitrile solutions.

  5. Mechanical Harvesting of Corn.

    E-Print Network [OSTI]

    Sorenson, J. W. (Jerome Wallace); Smith, H. P. (Harris Pearson)

    1948-01-01T23:59:59.000Z

    - - TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS, Director ' College Station, Texas BULLETIN 706 OCTOBER 1948 Mechanical Harvesting of Corn H. P. SMITH and J. W. SORENSON, JR. Department of Agricultural Engineering LlBRARY Atricaltr... of corn, from which they harvest about 77 million bushels valued at about 584 million. Most of the corn produced in Texas is harvested by hand. There were approximately 800 corn-picking machines of all types used in Texas in 1947. Texas farmers grow...

  6. WINTERTemplate Geochemical mechanisms of

    E-Print Network [OSTI]

    Borissova, Daniela

    WINTERTemplate 01 Geochemical mechanisms of carbonate equilibria in the system CO2 -H2O-CaCO3 #12 dissolved in soil · Dissolution of CaCO3 · Precipitation of CaCO3 · Physicochemical precipitation (prevention of the CO2 outgassing) #12;07Dissolution of CaCO3 H2CO3 HCO3 - CO3 2- H+ CO3 2- + H+ HCO3 - HCO3

  7. Mechanics of collective unfolding

    E-Print Network [OSTI]

    M Caruel; J. -M Allain; L Truskinovsky

    2015-01-07T23:59:59.000Z

    Mechanically induced unfolding of passive crosslinkers is a fundamental biological phenomenon encountered across the scales from individual macro-molecules to cytoskeletal actin networks. In this paper we study a conceptual model of athermal load-induced unfolding and use a minimalistic setting allowing one to emphasize the role of long-range interactions while maintaining full analytical transparency. Our model can be viewed as a description of a parallel bundle of N bistable units confined between two shared rigid backbones that are loaded through a series spring. We show that the ground states in this model correspond to synchronized, single phase configurations where all individual units are either folded or unfolded. We then study the fine structure of the wiggly energy landscape along the reaction coordinate linking the two coherent states and describing the optimal mechanism of cooperative unfolding. Quite remarkably, our study shows the fundamental difference in the size and structure of the folding-unfolding energy barriers in the hard (fixed displacements) and soft (fixed forces) loading devices which persists in the continuum limit. We argue that both, the synchronization and the non-equivalence of the mechanical responses in hard and soft devices, have their origin in the dominance of long-range interactions. We then apply our minimal model to skeletal muscles where the power-stroke in acto-myosin crossbridges can be interpreted as passive folding. A quantitative analysis of the muscle model shows that the relative rigidity of myosin backbone provides the long-range interaction mechanism allowing the system to effectively synchronize the power-stroke in individual crossbridges even in the presence of thermal fluctuations. In view of the prototypical nature of the proposed model, our general conclusions pertain to a variety of other biological systems where elastic interactions are mediated by effective backbones.

  8. ENGINEERING MECHANICS SEMINARSENGINEERING MECHANICS SEMINARS BIO COMPOSITES FOR AVIATION

    E-Print Network [OSTI]

    Ponce, V. Miguel

    carbon composite general aviation aircraft); and Manager of Materials and Structures Research at Sikorsky temperature and bio material composite programs. In bio composite material programs Ron frequently worksENGINEERING MECHANICS SEMINARSENGINEERING MECHANICS SEMINARS BIO COMPOSITES FOR AVIATION Ron

  9. MECHANICAL ENGINEERING Both faculty and students in mechanical engineering at

    E-Print Network [OSTI]

    Gelfond, Michael

    MECHANICAL ENGINEERING RESEARCH Both faculty and students in mechanical engineering at Texas Tech work on a variety of research projects including heat transfer, combustion, and energetic materials analysis; human- centric design research; control science and engineering; computational fluid dynamics

  10. Efficiency of stripping mechanisms

    E-Print Network [OSTI]

    F. Combes

    2003-08-18T23:59:59.000Z

    There are several physical processes to remove gas from galaxies in clusters, with subsequent starvation and star formation quenching: tidal interactions between galaxies, or tidal stripping from the cluster potential itself, interactions with the hot intra-cluster medium (ICM) through ram pressure, turbulent or viscous stripping, or also outflows from star formation of nuclear activity, We review the observational evidence for all processes, and numerical simulations of galaxies in clusters which support the respective mechanisms. This allows to compare their relative efficiencies, all along cluster formation.

  11. Mechanical engineering Mechanical engineering is about solving problems, designing processes,

    E-Print Network [OSTI]

    Waikato, University of

    the basic engineering sciences of thermal fluid science, separation processes, chemical reactions, unitMechanical engineering Mechanical engineering is about solving problems, designing processes, and making products to improve the quality of human life and shape the economy. Mechanical engineers apply

  12. Probable Inference and Quantum Mechanics

    SciTech Connect (OSTI)

    Grandy, W. T. Jr. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82070 (United States)

    2009-12-08T23:59:59.000Z

    In its current very successful interpretation the quantum theory is fundamentally statistical in nature. Although commonly viewed as a probability amplitude whose (complex) square is a probability, the wavefunction or state vector continues to defy consensus as to its exact meaning, primarily because it is not a physical observable. Rather than approach this problem directly, it is suggested that it is first necessary to clarify the precise role of probability theory in quantum mechanics, either as applied to, or as an intrinsic part of the quantum theory. When all is said and done the unsurprising conclusion is that quantum mechanics does not constitute a logic and probability unto itself, but adheres to the long-established rules of classical probability theory while providing a means within itself for calculating the relevant probabilities. In addition, the wavefunction is seen to be a description of the quantum state assigned by an observer based on definite information, such that the same state must be assigned by any other observer based on the same information, in much the same way that probabilities are assigned.

  13. Kowalevski top in quantum mechanics

    SciTech Connect (OSTI)

    Matsuyama, A., E-mail: spamatu@ipc.shizuoka.ac.jp

    2013-09-15T23:59:59.000Z

    The quantum mechanical Kowalevski top is studied by the direct diagonalization of the Hamiltonian. The spectra show different behaviors depending on the region divided by the bifurcation sets of the classical invariant tori. Some of these spectra are nearly degenerate due to the multiplicity of the invariant tori. The Kowalevski top has several symmetries and symmetry quantum numbers can be assigned to the eigenstates. We have also carried out the semiclassical quantization of the Kowalevski top by the EBK formulation. It is found that the semiclassical spectra are close to the exact values, thus the eigenstates can be also labeled by the integer quantum numbers. The symmetries of the system are shown to have close relations with the semiclassical quantum numbers and the near-degeneracy of the spectra. -- Highlights: •Quantum spectra of the Kowalevski top are calculated. •Semiclassical quantization is carried out by the EBK formulation. •Quantum states are labeled by the semiclassical integer quantum numbers. •Multiplicity of the classical torus makes the spectra nearly degenerate. •Symmetries, quantum numbers and near-degenerate spectra are closely related.

  14. The Mechanical Harvesting of Cotton.

    E-Print Network [OSTI]

    Smith, H. P.; Killough, D. T.; Byrom, M. H.; Scoates, D.; Jones, D. L.

    1932-01-01T23:59:59.000Z

    Stripping Rolls 45 Efficiency of the Texas Station Cotton Harvester --_-_.__---.__--___-.------- 47 --loping Varieties of Cotton to Meet the Needs of Mechanical Har- ~esting 54 owledgments 58 nary 58 List of Patents on Cotton Harvesters ' 60 ,ing ant... patent on a mechanical cotton picker, was apparently taken out in the year 1850. The development of a successful mechanical cotton harvester has been slow, due not only to the mechanical problems en- countered in handling the fiber, but also...

  15. Exploiting mechanical biomarkers in microfluidics

    E-Print Network [OSTI]

    Exploiting mechanical biomarkers in microfluidics Xiaole Maoa and Tony Jun Huang*b DOI: 10.1039/c2 mechanical biomarkers in microfluidic devices. This trend makes sense because microfluidic devices often of mechanical biomarker- based microfluidic applications. We believe that these examples are just the tip

  16. Mechanical engineering COLLEGE of ENGINEERING

    E-Print Network [OSTI]

    Berdichevsky, Victor

    . Mechanical engineering is a broad, versatile and creative discipline concerned with conversion of energyMechanical engineering COLLEGE of ENGINEERING DepartmentofMechanicalEngineering CollegeofEngineering t Home to nation's first electric-drive vehicle engineering program and alternative energy technology

  17. Mechanical Engineering "The Lindbergh Lectures"

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Mechanical Engineering Department "The Lindbergh Lectures" Thursday, November 20, 2014 12:00 ­ 12:50 PM Room 1106 Mechanical Engineering Building "Good Enough" Rapid Compression Machine Experiments Presented by: Dr. Casey Allen Assistant Professor at Mechanical Engineering, Marquette University Abstract

  18. Microfabricated therapeutic actuator mechanisms

    DOE Patents [OSTI]

    Northrup, Milton A. (Berkeley, CA); Ciarlo, Dino R. (Livermore, CA); Lee, Abraham P. (Walnut Creek, CA); Krulevitch, Peter A. (Los Altos, CA)

    1997-01-01T23:59:59.000Z

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The "micro" size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed.

  19. PEBBLES Mechanics Simulation Speedup

    SciTech Connect (OSTI)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2010-05-01T23:59:59.000Z

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. These simulations involve hundreds of thousands of pebbles and involve determining the entire core motion as pebbles are recirculated. Single processor algorithms for this are insufficient since they would take decades to centuries of wall-clock time. This paper describes the process of parallelizing and speeding up the PEBBLES pebble mechanics simulation code. Both shared memory programming with the Open Multi-Processing API and distributed memory programming with the Message Passing Interface API are used in simultaneously in this process. A new shared memory lock-less linear time collision detection algorithm is described. This method allows faster detection of pebbles in contact than generic methods. These combine to make full recirculations on AVR sized reactors possible in months of wall clock time.

  20. Mechanics of Isolated Horizons

    E-Print Network [OSTI]

    Abhay Ashtekar; Christopher Beetle; Stephen Fairhurst

    1999-11-04T23:59:59.000Z

    A set of boundary conditions defining an undistorted, non-rotating isolated horizon are specified in general relativity. A space-time representing a black hole which is itself in equilibrium but whose exterior contains radiation admits such a horizon. However, the definition is applicable in a more general context, such as cosmological horizons. Physically motivated, (quasi-)local definitions of the mass and surface gravity of an isolated horizon are introduced and their properties analyzed. Although their definitions do not refer to infinity, these quantities assume their standard values in the static black hole solutions. Finally, using these definitions, the zeroth and first laws of black hole mechanics are established for isolated horizons.

  1. Microfabricated therapeutic actuator mechanisms

    DOE Patents [OSTI]

    Northrup, M.A.; Ciarlo, D.R.; Lee, A.P.; Krulevitch, P.A.

    1997-07-08T23:59:59.000Z

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The ``micro`` size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed. 22 figs.

  2. Mechanisms of chemical phototoxicity

    SciTech Connect (OSTI)

    Yurkow, E.J.

    1989-01-01T23:59:59.000Z

    Psoralens in combination with ultraviolet light (PUVA) are phototoxic and potent modulators of epidermal cell growth and differentiation. Using an in vitro cell culture model, the effects of psoralens and UVA light on the growth of epidermal cells were investigated. It was found that psoralen and UVA light interact synergistically to inhibit the growth of cells in culture. This synergism was also observed in the ability of PUVA to inhibit DNA synthesis, decrease cell survival, cause mutations and form psoralen-DNA adducts. Using a cell culture model for the differentiation of melanocytes, PUVA was also found to be a potent inducer of melanogenesis as evidenced by its ability to increase cellular tyrosinase, the enzyme responsible for melanin biosynthesis. Results from these studies indicate that PUVA can induce dramatic alterations in the growth rate and differentiation state of cells at dosage levels which are associated with minimal DNA damage. These findings are in conflict with the general assumption that the biological effects of psoralens and UVA light are associated with their ability to bind covalently to and cross-link DNA. Therefore, the author investigated the possibility that sites of action, other than DNA, are involved in the mechanism(s) by which photoactivated psoralens modulate epidermal cell growth and differentiation. The author's laboratory has found that mammalian epidermal cells contain specific, saturable, high-affinity binding sites for the psoralens that are distinct from DNA. This receptor for the psoralens, photolabeled with ({sup 3}H)-8-methoxysporalen, was visualized following sodium dodecyl sulfatepolyacrylamide gel electrophoresis. The psoralen receptor is shown to be a 22,000 dalton protein located in nonnuclear fractions of cell extracts.

  3. Mechanics of dexterous manipulation

    E-Print Network [OSTI]

    Zeng, Chang

    1991-01-01T23:59:59.000Z

    Work . 1. Quasi-Statics ? Classical Analysis Approach 2. Quasi-Statics Variational Approach 3. Dynamics ? Inconsistency and Ambiguity C. Preview 2 4 4 6 8 9 II PROBLEM FORMULATION A. Fundamental Assumptions B. Mathematics . 1. Force... Equilibrium 2. Kinematic Constraints 3. Coulomb Model C, Problem Statement 11 11 12 13 14 14 III SOLUTION APPROACHES AND TIME COMPLEXITIES A. Classical Analysis Approach 1. One Linearly Independent Kinematic Equality 2. Two Linearly Independent...

  4. Classical Mechanics (Prof. P. L. Read)

    E-Print Network [OSTI]

    Read, Peter L.

    based on detailed observations by Tycho Brahe #12;Kepler's 2nd Law · Area swept out by radius vector r

  5. Testing foundations of quantum mechanics with photons

    E-Print Network [OSTI]

    Peter Shadbolt; Jonathan C. F. Matthews; Anthony Laing; Jeremy L. O'Brien

    2015-01-15T23:59:59.000Z

    The foundational ideas of quantum mechanics continue to give rise to counterintuitive theories and physical effects that are in conflict with a classical description of Nature. Experiments with light at the single photon level have historically been at the forefront of tests of fundamental quantum theory and new developments in photonics engineering continue to enable new experiments. Here we review recent photonic experiments to test two foundational themes in quantum mechanics: wave-particle duality, central to recent complementarity and delayed-choice experiments; and Bell nonlocality where recent theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different photonics experiments.

  6. Quantum Mechanical Coherence, Resonance, and Mind

    E-Print Network [OSTI]

    Henry P. Stapp

    1995-04-04T23:59:59.000Z

    Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.

  7. INL '@work' heavy equipment mechanic

    SciTech Connect (OSTI)

    Christensen, Cad

    2008-01-01T23:59:59.000Z

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  8. THERMODYNAMICS AND MECHANISMS OF SINTERING

    E-Print Network [OSTI]

    Pask, J.A.

    2011-01-01T23:59:59.000Z

    E. Hoge and Joseph A. Pask, "Thermodynamics of So:!.id StateJoseph A. Pask, "Thermodynamics and Geometric Considerations8419 r- ,y / ( /)~; - - I THERMODYNAMICS AND MECHANISMS OF

  9. COMPLEX BIOLOGICAL MECHANISMS: CYCLIC, OSCILLATORY,

    E-Print Network [OSTI]

    Bechtel, William

    COMPLEX BIOLOGICAL MECHANISMS: CYCLIC, OSCILLATORY, AND AUTONOMOUS William Bechtel and Adele- nomological framework and its focus on laws as the primary explanatory vehicle; for them, a scientific

  10. INL '@work' heavy equipment mechanic

    ScienceCinema (OSTI)

    Christensen, Cad

    2013-05-28T23:59:59.000Z

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  11. Unique Auxin Regulation Mechanism Discovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanism Discovered Print The plant hormone auxin regulates many plant growth and development processes, including shoot growth, root branching, fruit ripening, tropisms,...

  12. Department of Mechanical Engineering "From Compliant Mechanisms to

    E-Print Network [OSTI]

    Militzer, Burkhard

    in structural, mechanical, and electronic integration could lend themselves to advanced manufacturing techniques such as 3D printing with materials specialized in electro- mechanical sensing and actuation in addition Young Manufacturing Engineer Award from Society of Manufacturing Engineers, 1995; Boeing­A.D. Welliver

  13. MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS OF A COMMERCIALLY PURE TITANIUM

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS OF A COMMERCIALLY PURE TITANIUM S. NEMAT titanium (CP-Ti) is systematically investigated in quasi-static (Instron, servohydraulic) and dynamic (UCSD Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved. Keywords: Titanium

  14. Statistical Mechanics and Quantum Cosmology

    E-Print Network [OSTI]

    B. L. Hu

    1995-11-29T23:59:59.000Z

    Statistical mechanical concepts and processes such as decoherence, correlation, and dissipation can prove to be of basic importance to understanding some fundamental issues of quantum cosmology and theoretical physics such as the choice of initial states, quantum to classical transition and the emergence of time. Here we summarize our effort in 1) constructing a unified theoretical framework using techniques in interacting quantum field theory such as influence functional and coarse-grained effective action to discuss the interplay of noise, fluctuation, dissipation and decoherence; and 2) illustrating how these concepts when applied to quantum cosmology can alter the conventional views on some basic issues. Two questions we address are 1) the validity of minisuperspace truncation, which is usually assumed without proof in most discussions, and 2) the relevance of specific initial conditions, which is the prevailing view of the past decade. We also mention how some current ideas in chaotic dynamics, dissipative collective dynamics and complexity can alter our view of the quantum nature of the universe.

  15. The Möbius Symmetry of Quantum Mechanics

    E-Print Network [OSTI]

    Alon E. Faraggi; Marco Matone

    2015-02-16T23:59:59.000Z

    The equivalence postulate approach to quantum mechanics aims to formulate quantum mechanics from a fundamental geometrical principle. Underlying the formulation there exists a basic cocycle condition which is invariant under $D$--dimensional M\\"obius transformations with respect to the Euclidean or Minkowski metrics. The invariance under global M\\"obius transformations implies that spatial space is compact. Furthermore, it implies energy quantisation and undefinability of quantum trajectories without assuming any prior interpretation of the wave function. The approach may be viewed as conventional quantum mechanics with the caveat that spatial space is compact, as dictated by the M\\"obius symmetry, with the classical limit corresponding to the decompactification limit. Correspondingly, there exists a finite length scale in the formalism and consequently an intrinsic regularisation scheme. Evidence for the compactness of space may exist in the cosmic microwave background radiation.

  16. Statistical Mechanical Models and Topological Color Codes

    E-Print Network [OSTI]

    H. Bombin; M. A. Martin-Delgado

    2007-11-03T23:59:59.000Z

    We find that the overlapping of a topological quantum color code state, representing a quantum memory, with a factorized state of qubits can be written as the partition function of a 3-body classical Ising model on triangular or Union Jack lattices. This mapping allows us to test that different computational capabilities of color codes correspond to qualitatively different universality classes of their associated classical spin models. By generalizing these statistical mechanical models for arbitrary inhomogeneous and complex couplings, it is possible to study a measurement-based quantum computation with a color code state and we find that their classical simulatability remains an open problem. We complement the meaurement-based computation with the construction of a cluster state that yields the topological color code and this also gives the possibility to represent statistical models with external magnetic fields.

  17. Issues in the statistical mechanics of steady sedimentation Sriram Ramaswamy*

    E-Print Network [OSTI]

    Ramaswamy, Sriram

    is that of a practitioner of non-equilibrium statistical physics rather than classical ¯ uid mechanics. Contents page 1 and simulations in brief 303 2.1.3. Theoretical approaches: a summary 304 2.2. Sedimenting crystalline suspensions common history, beginning with the classic theoretical [1± 4] and experimental [5] studies of Brownian

  18. Department of Mechanical Engineering Undergraduate programmes

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    in one of five areas without giving up the breadth of knowledge needed by a practicing engineer. OurDepartment of Mechanical Engineering Undergraduate programmes Aerospace Engineering Automotive Engineering Mechanical Engineering Mechanical Engineering with Advanced Design & Innovation Mechanical

  19. UNDERGRADUATE STUDENT MANUAL Department of Mechanical Engineering

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    engineering (for example, computer-aided-design and manufacturing (CAD/CAM), energy engineering, mechanical1 UNDERGRADUATE STUDENT MANUAL Department of Mechanical Engineering and Applied Mechanics Engineering and Applied Mechanics? ........................................................................3

  20. Mechanical and Manufacturing Engineering Petroleum Engineering Minor

    E-Print Network [OSTI]

    Calgary, University of

    of Chemical and Petroleum Engineering for their petroleum engineering minor. As well, mechanical engineeringMechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major

  1. MASTER OF SCIENCE MECHANICAL ENGINEERING

    E-Print Network [OSTI]

    ;MECHANICAL ENGINEERING 70 REDUCTION OF MARINE GAS TURBINE EXHAUST INFRARED SIGNATURE Joseph D. Gombas radiation signature of the exhaust plume from a gas turbine powered ship. The concepts fell into three69 MASTER OF SCIENCE IN MECHANICAL ENGINEERING A PARAMETRIC DESIGN STUDY OF InGaAs MICRO

  2. Northern Illinois University Mechanical Engineering

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    and/or apply engineering knowledge to address societal needs; and to provide quality professionalNorthern Illinois University Mechanical Engineering Undergraduate Program 2013-2014 Engineering Building, room 226 Phone: 815-753-9979 www.niu.edu/me #12;DEPARTMENT OF MECHANICAL ENGINEERING NORTHERN

  3. Relativistic forces in Lagangian mechanics

    E-Print Network [OSTI]

    J. Muñoz Díaz

    2012-06-07T23:59:59.000Z

    We give a general definition of \\emph{relativistic force} in the context of Lagrangian mechanics. Once this is done we prove that the only relativistic forces which are linear on the velocities are those coming from differential 2-forms defined on the configuration space. In this sense, electromagnetic fields provide a mechanical system with the simplest type of relativistic forces.

  4. Integrated Mechanical & Electrical Engineering (IMEE)

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Integrated Mechanical & Electrical Engineering (IMEE) Department of Electronic & Electrical and electrical engineering are in great demand because of their ability to work on complex interdisciplinary and become an expert in the core areas of both mechanical and electrical engineering. Subject aims

  5. UNDERGRADUATE STUDENT MANUAL Department of Mechanical Engineering

    E-Print Network [OSTI]

    Carpick, Robert W.

    and Applied Mechanics? Mechanical engineering and applied mechanics is the study of energy conversion, forces or more areas in mechanical engineering such as computer-aided-design and manufacturing (CAD/CAM), energyUNDERGRADUATE STUDENT MANUAL Department of Mechanical Engineering and Applied Mechanics University

  6. Phase space quantum mechanics - Direct

    SciTech Connect (OSTI)

    Nasiri, S.; Sobouti, Y.; Taati, F. [Institute for Advanced Studies in Basic Sciences, Zanjan, 45195-1159 (Iran, Islamic Republic of) and Department of Physics, Zanjan University, Zanjan (Iran); Institute for Advanced Studies in Basic Sciences, Zanjan, 45195-1159 (Iran, Islamic Republic of); Institute for Advanced Studies in Basic Sciences, Zanjan, 45195-1159 (Iran, Islamic Republic of) and Department of Physics, University of Kurdistan, D-78457 Sanadaj (Iran)

    2006-09-15T23:59:59.000Z

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.

  7. Senior Mechanical Engineer Company Description

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    for manufacturability and familiarity with six-sigma tools preferred. · Strong analytical and problem solving skills-on experience developing and launching electro-mechanical products, preferable in military or automotive

  8. Mechanism design with approximate types

    E-Print Network [OSTI]

    Zhu, Zeyuan Allen

    2012-01-01T23:59:59.000Z

    In mechanism design, we replace the strong assumption that each player knows his own payoff type exactly with the more realistic assumption that he knows it only approximately: each player i only knows that his true type ...

  9. Quantum Mechanics of Neutrino Oscillations

    E-Print Network [OSTI]

    C. Giunti; C. W. Kim

    2000-11-06T23:59:59.000Z

    We present a simple but general treatment of neutrino oscillations in the framework of quantum mechanics using plane waves and intuitive wave packet principles when necessary. We attempt to clarify some confusing statements that have recently appeared in the literature.

  10. The Newton Wonder in Mechanics

    E-Print Network [OSTI]

    Donald Lynden-Bell

    2000-07-11T23:59:59.000Z

    Application of Newton's ideas from "Principia" gives many new results in mechanics. Here we explore the question ``What form of extra force will maintain the magnitude of a vector constant of the motion while changing its direction?''

  11. Mechanical Engineering Department Seminar Series

    E-Print Network [OSTI]

    Papalambros, Panos

    Challenges through Modeling, Control and Design Micheal Zinn Associate Professor, Mechanical & Biomedical overcome them, we have undertaken a coordinated effort to develop improved modeling, controls, and device manipulation approaches. The modeling investigation has focused on developing improved models by which

  12. Time Gravity and Quantum Mechanics

    E-Print Network [OSTI]

    W. G. Unruh

    1993-12-17T23:59:59.000Z

    Time plays different roles in quantum mechanics and gravity. These roles are examined and the problems that the conflict in the roles presents for quantum gravity are briefly summarised.

  13. Statistical mechanics of gene competition 

    E-Print Network [OSTI]

    Venegas-Ortiz, Juan; Ortiz, Juan Venegas

    2013-11-28T23:59:59.000Z

    Statistical mechanics has been applied to a wide range of systems in physics, biology, medicine and even anthropology. This theory has been recently used to model the complex biochemical processes of gene expression and ...

  14. STATISTICAL MECHANICS AND FIELD THEORY

    E-Print Network [OSTI]

    Samuel, S.A.

    2010-01-01T23:59:59.000Z

    York. K. Bardakci, Field Theory for Solitons, II, BerkeleyFart I Applications of Field Theory Methods to StatisticalStatistical Mechanics to Field Theory Chapter IV The Grand

  15. Renewable Auction Mechanism (RAM) (California)

    Broader source: Energy.gov [DOE]

    The Renewable Auction Mechanism (RAM), approved by the California Public Utilities Commission (CPUC) in December 2010, is expected to result in 1,299 megawatts (MW) of new distributed generation...

  16. FORESTRY COMMISSION Mechanical Engineering Services

    E-Print Network [OSTI]

    1 FORESTRY COMMISSION Mechanical Engineering Services TENDER SALE of surplus Forestry Commission to be in £ Sterling. 3. Tenders will be subject to VAT @ 20% 4. The Forestry Commission reserves the right

  17. Engineering Mechanics Annual Report 2001

    E-Print Network [OSTI]

    Franssen, Michael

    Engineering Mechanics Annual Report 2001 Graduate School Engineering Mechanics c/o Eindhoven themes 1.5 1.7 Education 1.7 1.8 General description of developments in 2001 1.9 1.9 Aggregated input and output for 2001 1.11 1.10 Overview of input and output per participating group, 2001 1.13 1.11 Overview

  18. Calibration of Cotton Planting Mechanisms.

    E-Print Network [OSTI]

    Smith, H. P. (Harris Pearson); Byrom, Mills H. (Mills Herbert)

    1936-01-01T23:59:59.000Z

    per foot. To obtain a perfect stand of one plant to Foot, a minimum of 1 to a maximum of 11 plants per foot wonld have to be thinned out. The number for picker wheel- drop planting mechanisms ranged from a minimum of 2 to a maxi- mum of 27 plants... per foot, requiring the removal of from 1 to 26 nlants per foot to leave one plant per foot. CONTENTS Introduction History of cotton planter development ------------.---------------------------------- Cottonseed planting mechanisms Requirements...

  19. Optomechanical conversion by mechanical turbines

    E-Print Network [OSTI]

    Milos Knezevic; Mark Warner

    2014-11-02T23:59:59.000Z

    Liquid crystal elastomers are rubbers with liquid crystal order. They contract along their nematic director when heated or illuminated. The shape changes are large and occur in a relatively narrow temperature interval, or at low illumination, around the nematic-isotropic transition. We present a conceptual design of a mechanical, turbine-based engine using photo-active liquid crystal elastomers to extract mechanical work from light. Its efficiency is estimated to be 40%.

  20. Enhancement Mechanisms of Low Energy Nuclear Reactions

    E-Print Network [OSTI]

    Gareev, F A

    2005-01-01T23:59:59.000Z

    The review of possible stimulation mechanisms of LENR (low energy nuclear reaction) is represented. We have concluded that transmutation of nuclei at low energies and excess heat are possible in the framework of the modern physical theory - the universal resonance synchronization principle [1] and based on its different enhancement mechanisms of reaction rates are responsible for these processes [2]. The excitation and ionization of atoms may play role as a trigger for LENR. Superlow energy of external fields may stimulate LENR [3]. Investigation of this phenomenon requires knowledge of different branches of science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics,... The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor reproducibility of experimental data is due to the fact that LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical ...

  1. Aerospace and Mechanical Engineers design and build unique, complex mechanical, optical,

    E-Print Network [OSTI]

    Rohs, Remo

    including control of turbulence, emerging fuel cell technologies, computational fluid mechanics, ground skills in the areas of mechanics, thermodynamics, fluid mechanics, heat transfer, materials and automatic

  2. Scalable Mechanisms for Rational Secret Sharing

    E-Print Network [OSTI]

    Dani, Varsha; Saia, Jared

    2012-01-01T23:59:59.000Z

    We consider the classical secret sharing problem in the case where all agents are selfish but rational. In recent work, Kol and Naor show that, when there are two players, in the non-simultaneous communication model, i.e. when rushing is possible, there is no Nash equilibrium that ensures both players learn the secret. However, they describe a mechanism for this problem, for any number of players, that is an epsilon-Nash equilibrium, in that no player can gain more than epsilon utility by deviating from it. Unfortunately, the Kol and Naor mechanism, and, to the best of our knowledge, all previous mechanisms for this problem require each agent to send O(n) messages in expectation, where n is the number of agents. This may be problematic for some applications of rational secret sharing such as secure multi-party computation and simulation of a mediator. We address this issue by describing mechanisms for rational secret sharing that are designed for large n. Both of our results hold for n > 2, and are Nash equil...

  3. Unstable trajectories and the quantum mechanical uncertainty

    SciTech Connect (OSTI)

    Moser, Hans R. [Physics Institute, University of Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland)], E-mail: moser@physik.uzh.ch

    2008-08-15T23:59:59.000Z

    There is still an ongoing discussion about various seemingly contradictory aspects of classical particle motion and its quantum mechanical counterpart. One of the best accepted viewpoints that intend to bridge the gap is the so-called Copenhagen Interpretation. A major issue there is to regard wave functions as probability amplitudes (usually for the position of a particle). However, the literature also reports on approaches that claim a trajectory for any quantum mechanical particle, Bohmian mechanics probably being the most prominent one among these ideas. We introduce a way to calculate trajectories as well, but our crucial ingredient is their well controlled local (thus also momentaneous) degree of instability. By construction, at every moment their unpredictability, i.e., their local separation rates of neighboring trajectories, is governed by the local value of the given modulus square of a wave function. We present extensive numerical simulations of the H and He atom, and for some velocity-related quantities, namely angular momentum and total energy, we inspect their agreement with the values appearing in wave mechanics. Further, we interpret the archetypal double slit interference experiment in the spirit of our findings. We also discuss many-particle problems far beyond He, which guides us to a variety of possible applications.

  4. Quantum Mechanics of a Rotating Billiard

    E-Print Network [OSTI]

    Nandan Jha; Sudhir R. Jain

    2014-06-12T23:59:59.000Z

    Integrability of a square billiard is spontaneously broken as it rotates about one of its corners. The system becomes quasi-integrable where the invariant tori are broken with respect to a certain parameter, $\\lambda = 2E/\\omega^{2}$ where E is the energy of the particle inside the billiard and $\\omega$ is the angular frequency of rotation of billiard. We study the system classically and quantum mechanically in view of obtaining a correspondence in the two descriptions. Classical phase space in Poincar\\'{e} surface of section shows transition from regular to chaotic motion as the parameter $\\lambda$ is decreased. In the Quantum counterpart, the spectral statistics shows a transition from Poisson to Wigner distribution as the system turns chaotic with decrease in $\\lambda$. The wavefunction statistics however show breakdown of time-reversal symmetry as $\\lambda$ decreases.

  5. Single-ion nonlinear mechanical oscillator

    SciTech Connect (OSTI)

    Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R. [Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2010-12-15T23:59:59.000Z

    We study the steady-state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate here the unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the laser-cooling parameters. Our observations pave the way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.

  6. A Global Optimization Approach to Quantum Mechanics

    E-Print Network [OSTI]

    Xiaofei Huang

    2006-05-25T23:59:59.000Z

    This paper presents a global optimization approach to quantum mechanics, which describes the most fundamental dynamics of the universe. It suggests that the wave-like behavior of (sub)atomic particles could be the critical characteristic of a global optimization method deployed by nature so that (sub)atomic systems can find their ground states corresponding to the global minimum of some energy function associated with the system. The classic time-independent Schrodinger equation is shown to be derivable from the global optimization method to support this argument.

  7. MECHANICAL ENGINEERING University of California at Berkeley

    E-Print Network [OSTI]

    Keaveny, Tony

    MECHANICAL ENGINEERING University of California at Berkeley http://me.berkeley.edu · Albert Pisano;MECHANICAL ENGINEERING University of California at Berkeley ·· 567567 Undergraduate Students Members24 Staff Members·· 24 Staff Members24 Staff Members #12;MECHANICAL ENGINEERING University

  8. Majorana Electroformed Copper Mechanical Analysis

    SciTech Connect (OSTI)

    Overman, Nicole R.; Overman, Cory T.; Kafentzis, Tyler A.; Edwards, Danny J.; Hoppe, Eric W.

    2012-04-30T23:59:59.000Z

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay. The DEMONSTRATOR will utilize ultra high purity electroformed copper for a variety of detector components and shielding. A preliminary mechanical evaluation was performed on the Majorana prototype electroformed copper material. Several samples were removed from a variety of positions on the mandrel. Tensile testing, optical metallography, scanning electron microscopy, and hardness testing were conducted to evaluate mechanical response. Analyses carried out on the Majorana prototype copper to this point show consistent mechanical response from a variety of test locations. Evaluation shows the copper meets or exceeds the design specifications.

  9. Mechanical instability at finite temperature

    E-Print Network [OSTI]

    Xiaoming Mao; Anton Souslov; Carlos I. Mendoza; T. C. Lubensky

    2014-07-08T23:59:59.000Z

    Many physical systems including lattices near structural phase transitions, glasses, jammed solids, and bio-polymer gels have coordination numbers that place them at the edge of mechanical instability. Their properties are determined by an interplay between soft mechanical modes and thermal fluctuations. In this paper we investigate a simple square-lattice model with a $\\phi^4$ potential between next-nearest-neighbor sites whose quadratic coefficient $\\kappa$ can be tuned from positive negative. We show that its zero-temperature ground state for $\\kappa power-law behavior of the shear modulus as a function of temperature. We expect our study to provide a general framework for the study of finite-temperature mechanical and phase behavior of other systems with a large number of floppy modes.

  10. Thermoelectric Materials By Design: Mechanical Reliability (Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    By Design: Mechanical Reliability (Agreement 14957) Thermoelectric Materials By Design: Mechanical Reliability (Agreement 14957) Presentation from the U.S. DOE Office of Vehicle...

  11. Shaoxing Jinggong Mechanical and Electrical Research Institute...

    Open Energy Info (EERE)

    Shaoxing Jinggong Mechanical and Electrical Research Institute Company SJMERI Jump to: navigation, search Name: Shaoxing Jinggong Mechanical and Electrical Research Institute...

  12. Durability Improvements Through Degradation Mechanism Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvements Through Degradation Mechanism Studies Durability Improvements Through Degradation Mechanism Studies Presented at the Department of Energy Fuel Cell Projects Kickoff...

  13. Financing Mechanisms for Renewable Energy Projects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Mechanisms for Renewable Energy Projects Financing Mechanisms for Renewable Energy Projects On December 5, 2013, the White House released Federal Leadership on Energy...

  14. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneo Matthew1, 20121+MechanicalMechanical

  15. Does Quantum Mechanics Save Free Will?

    E-Print Network [OSTI]

    Laszlo E. Szabo

    1995-06-28T23:59:59.000Z

    According to the widely accepted opinion, classical (statistical) physics does not support objective indeterminism, since the statistical laws of classical physics allow a deterministic hidden background, while --- as Arthur Fine writes polemizing with Gr\\"unbaum --- "{\\sl the antilibertarian position finds little room to breathe in a statistical world if we take laws of the quantum theory as exemplars of the statistical laws in such a world. So, it appears that, contrary to what Gr\\"unbaum claims, the libertarians' 'could have done otherwise' does indeed find support from indeterminism if we take the indeterministic laws to be of the sort found in the quantum theory.}" In this paper I will show that, quite the contrary, quantum mechanics does not save free will. For instance, the EPR experiments are compatible with a deterministic world. They admit a deterministic local hidden parameter description if the deterministic model is 'allowed' to describe not only the measurement outcomes, but also the outcomes of the 'decisions' whether this or that measurement will be performed. So, the derivation of the freedom of the will from quantum mechanics is a tautology: from the assumption that the world is indeterministic it is derived that the world cannot be deterministic.

  16. Mechanical Engineering Department Seminar Series

    E-Print Network [OSTI]

    Papalambros, Panos

    ­Madison as an Honorary Fellow in 2012 after retiring from General Motors Research & DevelopmentMechanical Engineering Department Seminar Series Ignition and Flame Growth in Spray-Guided Stratified-Charge Gasoline Engines Dr. Todd Fansler Engine Research Center University of Wisconsin - Madison

  17. Nonlinear friction in quantum mechanics

    E-Print Network [OSTI]

    Roumen Tsekov

    2013-03-10T23:59:59.000Z

    The effect of nonlinear friction forces in quantum mechanics is studied via dissipative Madelung hydrodynamics. A new thermo-quantum diffusion equation is derived, which is solved for the particular case of quantum Brownian motion with a cubic friction. It is extended also by a chemical reaction term to describe quantum reaction-diffusion systems with nonlinear friction as well.

  18. All are welcome! Mechanical Engineering

    E-Print Network [OSTI]

    Hickman, Mark

    Mechanical Engineering Seminar Room ­ E547 Bobbin Friction Stir Welding: Process Optimisation for Joining Wet-Deck Panels in Marine Applications Mohammad Sued, UC ME PhD-cand. Abstract: Friction stir welding (FSW although BFSW process and conventional friction stir welding (CFSW) process are similar but yet

  19. GETTING AROUND THE MECHANICAL ENGINEERING

    E-Print Network [OSTI]

    Goldwasser, Shafi

    GETTING AROUND THE MECHANICAL ENGINEERING DEPARTMENT G A M E D Keep this guide to the ME;2 Guide to Undergraduate Study in MechE #12;MechE Undergraduate Office 3 Contents CONTENTS 3 MECHE Requirement 39 SB Thesis Requirement 41 #12;4 Guide to Undergraduate Study in MechE SPECIAL PROGRAMS 43

  20. SCIENCE CHINA Physics, Mechanics & Astronomy

    E-Print Network [OSTI]

    Zhang, Guangyu

    SCIENCE CHINA Physics, Mechanics & Astronomy © Science China Press and Springer-Verlag Berlin.1007/s11433-012-4970-8 Carbon-based spintronics CHEN Peng & ZHANG GuangYu* Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

  1. From Quantum Mechanics to Thermodynamics?

    E-Print Network [OSTI]

    Steinhoff, Heinz-Jürgen

    From Quantum Mechanics to Thermodynamics? Dresden, 22.11.2004 Jochen Gemmer Universit¨at Osnabr to thermodynamical behavior · Quantum approach to thermodynamical behavior · The route to equilibrium · Summary of thermodynamical behavior entirely on the basis of Hamilton models and Schr¨odinger-type quantum dynamics. · define

  2. Mechanical scriber for semiconductor devices

    DOE Patents [OSTI]

    Lin, P.T.

    1985-03-05T23:59:59.000Z

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer. 5 figs.

  3. Mechanical scriber for semiconductor devices

    DOE Patents [OSTI]

    Lin, Peter T. (East Brunswick, NJ)

    1985-01-01T23:59:59.000Z

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer.

  4. Statistical mechanics of the vacuum

    E-Print Network [OSTI]

    Christian Beck

    2012-03-01T23:59:59.000Z

    The vacuum is full of virtual particles which exist for short moments of time. In this paper we construct a chaotic model of vacuum fluctuations associated with a fundamental entropic field that generates an arrow of time. The dynamics can be physically interpreted in terms of fluctuating virtual momenta. This model leads to a generalized statistical mechanics that distinguishes fundamental constants of nature.

  5. Battery Vent Mechanism And Method

    DOE Patents [OSTI]

    Ching, Larry K. W. (Littleton, CO)

    2000-02-15T23:59:59.000Z

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  6. Experiments Testing Multiobject Allocation Mechanisms

    E-Print Network [OSTI]

    Ledyard, John O.

    . The simultaneous discrete auction process used by the Federal Communications Commission to allocate Personal of the Federal Communications Commission (FCC) mechanism to sell the spectrum, over 130 auctions were run under Communications licenses was contrasted with a sequential auction and a combinatorial auction over a variety

  7. Department of Mechanical Engineering PENNPENNSSTATETATE

    E-Print Network [OSTI]

    Yang, Vigor

    · Frequency spectra of pressure oscillations in unstable combustors TimeElapsed Frequency #12;Department-mode expansion: Classical Approach for Combustor Stability Analysis (1/2)Classical Approach for Combustor PENNPENNSSTATETATE Classical Approach for Combustor Stability Analysis (2/2)Classical Approach for Combustor

  8. Mechanical and Industrial Engineering John Stuart

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical and Industrial Engineering John Stuart Paul Washburn Co-Chairs MIE IAB Meeting #12;2Mechanical and Industrial Engineering Dean Tim Anderson #12;3Mechanical and Industrial Engineering Strategic vision for growing College Goal Method Current resources #12;4Mechanical and Industrial Engineering

  9. QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS

    E-Print Network [OSTI]

    Forbus, Kenneth D.

    which include both me- chanical mechanisms and fluids, such as internal combustion engines and hydraulic

  10. UNDERGRADUATE STUDENT MANUAL Department of Mechanical Engineering

    E-Print Network [OSTI]

    Carpick, Robert W.

    engineering (for example, computer-aided-design and manufacturing (CAD/CAM), energy engineering, mechanicalUNDERGRADUATE STUDENT MANUAL Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania September 2009 www.me.upenn.edu #12;2 TABLE OF CONTENTS What is Mechanical Engineering and Applied

  11. Mechanical & Aerospace Engineering Turning Ideas into Reality

    E-Print Network [OSTI]

    Mottram, Nigel

    Mechanical & Aerospace Engineering Turning Ideas into Reality EnErgy Environ m Ent HEaltH mat Overview The Courses Mechanical Engineering (MEng / BEng) Mechanical Engineering With International Study (MEng / BEng) Aero-Mechanical Engineering (MEng / BEng) E N T r y F A Q S A p p l y i n g C a m p u

  12. Mechanical Engineering Larry L. Howell, Chair

    E-Print Network [OSTI]

    Hart, Gus

    with concepts, ideas, and products that are primarily mechanical or energy related. Mechanical engineeringMechanical Engineering Larry L. Howell, Chair 435-A CTB, (801) 422-2625 Ira A. Fulton College program in the Department of Mechanical Engineering carries special enrollment limitations at the junior

  13. Mechanical Engineering Department WORCESTER POLYTECHNIC INSTITUTE

    E-Print Network [OSTI]

    Furlong, Cosme

    -unload cycle #12;Mechanical Engineering Department Strain energy: z F U 2 Strain energy Average force energy density: 2 1 V U u (area) #12;Mechanical Engineering Department Strain energy: resilienceMechanical Engineering Department WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

  14. Mechanical Engineering Turning Ideas into Reality

    E-Print Network [OSTI]

    Mottram, Nigel

    Mechanical Engineering Turning Ideas into Reality EnErgy Environ m Ent HEaltH matEria ls transpo rt u r s e s ? Home The Department Overview The Courses Mechanical Engineering (MEng / BEng) Mechanical Engineering With International Study (MEng / BEng) Aero-Mechanical Engineering (MEng / BEng) #12;tHE DEpartm

  15. Mechanisms and models of effective thermal conductivities of nanofluids.

    SciTech Connect (OSTI)

    Yu, W.; France, D. M.; Singh, D.; Timofeeva, E. V.; Smith, D. S.; Routbort, J. L.; Univ. of Illinois

    2010-08-01T23:59:59.000Z

    The physical mechanisms and mathematical models of the effective thermal conductivities of nanofluids have long been of interest to the nanofluid research community because the effective thermal conductivities of nanofluids cannot generally be fully explained and predicted by classical effective medium theories. This review article summarizes considerable progress made on this topic. Specifically, the physical mechanisms and mathematical models of the effective thermal conductivities of nanofluids are reviewed, the potential contributions of those physical mechanisms are evaluated, and the comparisons of the theoretical predictions and experimental data are presented along with opportunities for future research.

  16. DOE fundamentals handbook: Mechanical science. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

  17. Locking mechanism for indexing device

    DOE Patents [OSTI]

    Lindemeyer, Carl W. (Aurora, IL)

    1984-01-01T23:59:59.000Z

    Disclosed is a locking mechanism for an indexing spindle. A conventional r gear having outwardly extending teeth is affixed to the spindle. Also included is a rotatably mounted camshaft whose axis is arranged in skewed relationship with the axis of the spindle. A disk-like wedge having opposing camming surfaces is eccentrically mounted on the camshaft. As the camshaft is rotated, the camming surfaces of the disc-like member are interposed between adjacent gear teeth with a wiping action that wedges the disc-like member between the gear teeth. A zero backlash engagement between disc-like member and gear results, with the engagement having a high mechanical advantage so as to effectively lock the spindle against bidirectional rotation.

  18. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-11-24T23:59:59.000Z

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  19. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R. (6006 Allentown Dr., Spring, TX 77389)

    1987-01-01T23:59:59.000Z

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  20. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R. (6006 Allentown Dr., Spring, TX 77379)

    1987-01-01T23:59:59.000Z

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  1. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-06-23T23:59:59.000Z

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  2. The Schwinger mechanism and graphene

    E-Print Network [OSTI]

    Danielle Allor; Thomas D. Cohen; David A. McGady

    2008-09-22T23:59:59.000Z

    The Schwinger mechanism, the production of charged particle-antiparticle pairs in a macroscopic external electric field, is derived for 2+1 dimensional theories. The rate of pair production per unit area for four species of massless fermions, with charge $q$, in a constant electric field $E$ is given by $ \\pi^{-2} \\hbar^{-3/2} \\tilde{c}^{-1/2} (q E)^{3/2} $ where $\\tilde{c}$ is the speed of light for the two-dimensional system. To the extent undoped graphene behaves like the quantum field-theoretic vacuum for massless fermions in 2+1 dimensions, the Schwinger mechanism should be testable experimentally. A possible experimental configuration for this is proposed. Effects due to deviations from this idealized picture of graphene are briefly considered. It is argued that with present day samples of graphene, tests of the Schwinger formula may be possible.

  3. Particle Suspension Mechanisms - Supplemental Material

    SciTech Connect (OSTI)

    Dillon, M B

    2011-03-03T23:59:59.000Z

    This supplemental material provides a brief introduction to particle suspension mechanisms that cause exfoliated skin cells to become and remain airborne. The material presented here provides additional context to the primary manuscript and serves as background for designing possible future studies to assess the impact of skin cells as a source of infectious aerosols. This introduction is not intended to be comprehensive and interested readers are encouraged to consult the references cited.

  4. Deformation mechanisms beneath shallow foundations

    E-Print Network [OSTI]

    McMahon, Brendan

    2013-02-05T23:59:59.000Z

    Nomenclature Roman Symbols A area b empirical exponent C methyl-cellulose concentration (%) C? secondary compression index cu undrained shear strength cv one-dimensional coefficient of consolidation D foundation diameter D10, D50, D90 sand grain diameter 10... . . . . . . . . . . . . . . . . . . . . 39 xiii LIST OF FIGURES 2.13 Method to find coefficient of secondary compression and time at end of primary consolidation (modified Augustesen et al., 2004) . . . . . . . . 42 2.14 Prandtl (1921) mechanism adopted for the displacement pattern (from...

  5. Mechanical Engineering Department Technical Review

    SciTech Connect (OSTI)

    Carr, R.B.; Denney, R.M. (eds.)

    1981-07-01T23:59:59.000Z

    The Mechanical Engineering Department Technical Review is published to inform readers of various technical activities within the Department, promote exchange of ideas, and give credit to personnel who are achieving the results. The report is presented in two parts: technical achievements and publication abstracts. The first is divided into seven sections, each of which reports on an engineering division and its specific activities related to nuclear tests, nuclear explosives, weapons, energy systems, engineering sciences, magnetic fusion, and materials fabrication.

  6. STATISTICAL MECHANICS PRACTICE EXAM 2005

    E-Print Network [OSTI]

    Dorlas, Teunis C.

    STATISTICAL MECHANICS PRACTICE EXAM 2005 Time allotted: 3 hours for 5 questions. 1. (i) Give density of a system of independent spins si = ±1 with energy levels given by E(s1, . . . , sN ) = -H N i=1 si. 2. (i) Derive the expression f() = - 1 ln eJ cosh H + e2J sinh2 H + e-2J for the free energy

  7. Mechanical Engineering Department technical abstracts

    SciTech Connect (OSTI)

    Denney, R.M. (ed.)

    1982-07-01T23:59:59.000Z

    The Mechanical Engineering Department publishes listings of technical abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). Overall information about current activities of each of the Department's seven divisions precedes the technical abstracts.

  8. Mechanical engineering department technical review

    SciTech Connect (OSTI)

    Carr, R.B. Denney, R.M. (eds.)

    1981-01-01T23:59:59.000Z

    The Mechanical Engineering Department Technical Review is published to: (1) inform the readers of various technical activities within the department, (2) promote exchange of ideas, and (3) give credit to the personnel who are achieving the results. The report is formatted into two parts: technical acievements and publication abstracts. The first is divided into eight sections, one for each division in the department providing the reader with the names of the personnel and the division accomplishing the work.

  9. Nonlocal models in continuum mechanics

    SciTech Connect (OSTI)

    Johnson, N.L. [Los Alamos National Lab., NM (United States); Phan-Thien, N. [Sydney Univ., NSW (Australia). Dept. of Mechanical Engineering

    1993-09-01T23:59:59.000Z

    The recent appearance of nonlocal methods is examined in the light of traditional continuum mechanics. A comparison of nonlocal approaches in the fields of solid and fluid mechanics reveals that no consistent definition of a nonlocal theory has been used. We suggest a definition based on the violation of the principle of local action in continuum mechanics. From the consideration of the implications of a nonlocal theory based on this definition, we conclude that constitutive relations with nonlocal terms can confuse the traditional separation of the roles between conservation laws and constitutive relations. The diversity of motivations for the nonlocal approaches are presented, resulting primarily from deficiencies in numerical solutions to practical problems. To illustrate these concepts, the history of nonlocal terms in the field of viscoelastic fluids is reviewed. A specific example of a viscoelastic constitutive relation that contains a stress diffusion term is applied to a simple shear flow and found not to be a physical description of any known fluid. We conclude by listing questions that should be asked of nonlocal approaches.

  10. Mechanical formalism for tissue dynamics

    E-Print Network [OSTI]

    Sham Tlili; Cyprien Gay; Francois Graner; Philippe Marcq; François Molino; Pierre Saramito

    2014-12-23T23:59:59.000Z

    The understanding of morphogenesis in living organisms has been renewed by tremendous progress in experimental techniques that provide access to cell-scale, quantitative information both on the shapes of cells within tissues and on the genes being expressed. This information suggests that our understanding of the respective contributions of gene expression and mechanics, and of their crucial entanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assist the design and interpretation of experiments, point out the main ingredients and assumptions, and ultimately lead to predictions. The newly accessible local information thus calls for a reflection on how to select suitable classes of mechanical models. We review both mechanical ingredients suggested by the current knowledge of tissue behaviour, and modelling methods that can help generate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell") and tissue scale ("inter-cell") contributions. We recall the mathematical framework developped for continuum materials and explain how to transform a constitutive equation into a set of partial differential equations amenable to numerical resolution. We show that when plastic behaviour is relevant, the dissipation function formalism appears appropriate to generate constitutive equations; its variational nature facilitates numerical implementation, and we discuss adaptations needed in the case of large deformations. The present article gathers theoretical methods that can readily enhance the significance of the data to be extracted from recent or future high throughput biomechanical experiments.

  11. Quasivelocities and Optimal Control for Underactuated Mechanical Systems

    E-Print Network [OSTI]

    L. Colombo; D. Martin de Diego

    2010-03-04T23:59:59.000Z

    This paper is concerned with the application of the theory of quasivelocities for optimal control for underactuated mechanical systems. Using this theory, we convert the original problem in a variational second-order lagrangian system subjected to constraints. The equations of motion are geometrically derived using an adaptation of the classical Skinner and Rusk formalism.

  12. Active noise canceling system for mechanically cooled germanium radiation detectors

    DOE Patents [OSTI]

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22T23:59:59.000Z

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  13. A different approach to introducing statistical mechanics

    E-Print Network [OSTI]

    Moore, Thomas A

    2015-01-01T23:59:59.000Z

    The basic notions of statistical mechanics (microstates, multiplicities) are quite simple, but understanding how the second law arises from these ideas requires working with cumbersomely large numbers. To avoid getting bogged down in mathematics, one can compute multiplicities numerically for a simple model system such as an Einstein solid -- a collection of identical quantum harmonic oscillators. A computer spreadsheet program or comparable software can compute the required combinatoric functions for systems containing a few hundred oscillators and units of energy. When two such systems can exchange energy, one immediately sees that some configurations are overwhelmingly more probable than others. Graphs of entropy vs. energy for the two systems can be used to motivate the theoretical definition of temperature, $T= (\\partial S/\\partial U)^{-1}$, thus bridging the gap between the classical and statistical approaches to entropy. Further spreadsheet exercises can be used to compute the heat capacity of an Einst...

  14. Optomechanical conversion by mechanical turbines

    E-Print Network [OSTI]

    Kneževi?, Miloš; Warner, Mark

    2014-10-30T23:59:59.000Z

    mechanical turbine-based engine to har- ness the contractions of soft, photo-responsive solids with a large stroke. We thus take photo-active nematic liq- uid crystal elastomers (LCEs) as our working material. Related engines have been proposed before... . ? mk684@cam.ac.uk material parameters of this turbine-based engine, along with the known photo-response of typical LCEs, suggests that its efficiency can be as high as 40%. The basis of these two-wheel and turbine engines is that a nematic rubber strip...

  15. Mechanics of Rotating Isolated Horizons

    E-Print Network [OSTI]

    Abhay Ashtekar; Christopher Beetle; Jerzy Lewandowski

    2001-04-11T23:59:59.000Z

    Black hole mechanics was recently extended by replacing the more commonly used event horizons in stationary space-times with isolated horizons in more general space-times (which may admit radiation arbitrarily close to black holes). However, so far the detailed analysis has been restricted to non-rotating black holes (although it incorporated arbitrary distortion, as well as electromagnetic, Yang-Mills and dilatonic charges). We now fill this gap by first introducing the notion of isolated horizon angular momentum and then extending the first law to the rotating case.

  16. New mechanism of membrane fusion

    E-Print Network [OSTI]

    M. Mueller; K. Katsov; M. Schick

    2001-10-10T23:59:59.000Z

    We have carried out Monte Carlo simulation of the fusion of bilayers of single chain amphiphiles which show phase behavior similar to that of biological lipids. The fusion mechanism we observe is very different from the ``stalk'' hypothesis. Stalks do form on the first stage of fusion, but they do not grow radially to form a hemifused state. Instead, stalk formation destabilizes the membranes and results in hole formation in the vicinity of the stalks. When holes in each bilayer nucleate spontaneously next to the same stalk, an incomplete fusion pore is formed. The fusion process is completed by propagation of the initial connection, the stalk, along the edges of the aligned holes.

  17. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneo Matthew1, 20121+Mechanical Behavior of

  18. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneo Matthew1, 20121+Mechanical Behavior

  19. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneo Matthew1, 20121+Mechanical

  20. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneo Matthew1,Mechanical Behavior of Indium

  1. GRADUATE STUDIES IN MECHANICAL AND AEROSPACE ENGINEERING Department of Mechanical and Aerospace Engineering

    E-Print Network [OSTI]

    Mohan, Chilukuri K.

    A Guide to GRADUATE STUDIES IN MECHANICAL AND AEROSPACE ENGINEERING at Department of Mechanical...................................................................................................... 3 2. Master of Science in Mechanical and Aerospace Engineering ........................................................................................................................ 6 4. Master of Science in Energy Systems Engineering (MSESE

  2. Enhancement Mechanisms of Low Energy Nuclear Reactions

    E-Print Network [OSTI]

    F. A. Gareev; I. E. Zhidkova

    2005-05-08T23:59:59.000Z

    The review of possible stimulation mechanisms of LENR (low energy nuclear reaction) is represented. We have concluded that transmutation of nuclei at low energies and excess heat are possible in the framework of the modern physical theory - the universal resonance synchronization principle [1] and based on its different enhancement mechanisms of reaction rates are responsible for these processes [2]. The excitation and ionization of atoms may play role as a trigger for LENR. Superlow energy of external fields may stimulate LENR [3]. Investigation of this phenomenon requires knowledge of different branches of science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics,... The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor reproducibility of experimental data is due to the fact that LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical reproducibility principle should be reconsidered for LENR experiments. Poor reproducibility and unexplained results do not means that the experiment is wrong. Our main conclusions:

  3. A New Approach to The Quantum Mechanics

    E-Print Network [OSTI]

    Yulei Feng

    2013-02-15T23:59:59.000Z

    In this paper, we try to give a new approach to the quantum mechanics(QM) on the framework of quantum field theory(QFT). Firstly, we make a detail study on the (non-relativistic) Schr\\"odinger field theory, obtaining the Schr\\"odinger equation as a field equation, after field quantization, the Heisenberg equations for the momentum and position operators of the particles excited from the (Schr\\"odinger) field and the Feynman path integral formula of QM are also obtained. We then give the probability concepts of quantum mechanics in terms of a statistical ensemble, realizing the ensemble(or statistical) interpretation. With these, we make a series of conceptual modifications to the standard quantum mechanics, especially propose a new assumption about the quantum measurement theory which can solve the EPR paradox from the view of the QFT. Besides, a field theoretical description to the double-slit interference experiment is developed, obtaining the required particle number distribution. In the end, we extend all the above concepts to the relativistic case so that the ensemble interpretation is still proper. Two extra topics are added, in the first one, an operable experiment is proposed to distinguish the Copenhagen interpretation from the ensemble one via very different experimental results. While the second topic concerns with the extensions of the concept of coherent state to both the Bosonic and Fermionic field cases, to obtain the corresponding classical fields. And in the concluding section, we make some general comparisons between the standard QM and the one derived from the QFT, from which we claim that the QFT is the fundamental theory.

  4. Doctoral Defense "Thermal-hydro-mechanical model

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Doctoral Defense "Thermal-hydro-mechanical model for freezing and thawing soils" Yao Zhang Date been implemented in a finite element system, with a thermal-hydro- mechanical framework being used

  5. Mechanical and Manufacturing Engineering Mechatronics Engineering Minor

    E-Print Network [OSTI]

    Calgary, University of

    appropriate technology. Mechatronics involves the study of dynamic systems and controlled injection systems and robotic systems. Modern devices contain mechanical, electrical ENME 585 Control Systems ENME 599 Vibrations (mechanical engineering) or ENMF

  6. Air Distribution Effectiveness for Different Mechanical Ventilation

    E-Print Network [OSTI]

    LBNL-62700 Air Distribution Effectiveness for Different Mechanical Ventilation Systems Max H Effectiveness for Different Mechanical Ventilation Systems Max H. Sherman and Iain S. Walker Lawrence Berkeley National Laboratory, USA ABSTRACT The purpose of ventilation is to dilute indoor contaminants

  7. Skeletal adaptation to reduced mechanical loading

    E-Print Network [OSTI]

    Eliman, Rachel

    2014-01-01T23:59:59.000Z

    Bone adapts its mass and architecture in response to its mechanical environment. Yet control of this process by mechanical cues is poorly understood, particularly for unloading. Defining the fundamental mechanoregulation ...

  8. College of Engineering ME Mechanical Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    College of Engineering ME Mechanical Engineering KEY: # = new course * = course changed = course ENGINEERING. (3) This course introduces the Mechanical Engineering profession including the skills and expectations required for success. Engineering applications of calculus are also presented. Prereq or concur

  9. Dynamics of mechanisms with elastic bodies

    E-Print Network [OSTI]

    Mirzahmedov, Ganijon Ahmedovich

    2001-01-01T23:59:59.000Z

    Belt drive mechanisms are alternatives to robotic actuators to obtain complex repetitive motions by simple actuation. By simply changing the dimensions of the mechanism, we can obtain different kinds of trajectories for the exit link...

  10. Solar mechanics thermal response capabilities.

    SciTech Connect (OSTI)

    Dobranich, Dean D.

    2009-07-01T23:59:59.000Z

    In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

  11. Assessment of HYGAS mechanical equipment

    SciTech Connect (OSTI)

    Albrecht, P.R.; Kramberger, F.E.; Recupero, R.M.; Verden, M.L.; Rees, K.

    1980-10-01T23:59:59.000Z

    The HYGAS process, which converts coal to substitute natural gas, is being developed by the Institute of Gas Technology (IGT) using an 80 ton per day pilot plant located in Chicago, Illinois. Plant design started in 1967 and testing began in October 1971. Since then, 18,000 tons of both Eastern and Western coal have been gasified. Assessment of the mechanical equipment was made by Mechanical Technology Incorporated (MTI) in collaboration with a DOE on-site representative and a representative from IGT, the operating contractor. Data for the assessment were obtained by reviewing all available maintenance records, by interviewing key personnel from maintenance and operations, and by observing repairs and maintenance procedures where possible. While operating the plant, a variety of equipment problems were addressed, many of which are generic to HYGAS as well as other coal conversion processes. Some problems were solved completely while others were solved to suit the limited needs of the pilot plant. Accordingly, the emphasis of this study is on the degree of success in dealing with equipment failures, the unresolved problems and the implication to future coal conversion plants.

  12. New mechanism for lightning initiation

    SciTech Connect (OSTI)

    Roussel-Dupre, R.; Buchwald, M.; Gurevich, A. [Lebedev Institute of Physical Sciences, Moscow (Russian Federation)] [and others

    1996-10-01T23:59:59.000Z

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). To distinguish radio-frequency (rf) signals generated by lightning from the electromagnetic pulse produced by a nuclear explosion, it is necessary to understand the fundamental nature of thunderstorm discharges. The recent debate surrounding the origin of transionospheric pulse pairs (TIPPs) detected by the BLACKBEARD experiment aboard the ALEXIS satellite illustrates this point. We have argued that TIPP events could originate from the upward propagating discharges recently identified by optical images taken from the ground, from airplanes, and from the space shuttle. In addition, the Gamma Ray Observatory (GRO) measurements of x-ray bursts originating from thunderstorms are almost certainly associated with these upward propagating discharges. When taken together, these three measurements point directly to the runaway electron mechanism as the source of the upward discharges. The primary goal of this research effort was to identify the specific role played by the runaway-air-breakdown mechanism in the general area of thunderstorm electricity and in so doing develop lightning models that predict the optical, rf, and x-ray emissions that are observable from space.

  13. Quantum mechanical time contradicts the uncertainty principle

    E-Print Network [OSTI]

    Hitoshi Kitada

    1999-11-17T23:59:59.000Z

    The a priori time in conventional quantum mechanics is shown to contradict the uncertainty principle. A possible solution is given.

  14. Tanvir R. Tanim Department of Mechanical and

    E-Print Network [OSTI]

    @psu.edu Chao-Yang Wang Professor William E. Diefenderfer Chair of Mechanical Engineering, and Director

  15. Mechanical Characterization of Fuel Injector Piezoactuators and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization of Fuel Injector Piezoactuators and their Piezoceramics Mechanical Characterization of Fuel Injector Piezoactuators and their Piezoceramics 2007 Diesel...

  16. STATE OF CALIFORNIA MECHANICAL VENTILATION AND REHEAT

    E-Print Network [OSTI]

    STATE OF CALIFORNIA MECHANICAL VENTILATION AND REHEAT CEC-MECH-3C (Revised 08/09) CALIFORNIA ENERGY COMMISSION MECHANICAL VENTILATION AND REHEAT MECH-3C PROJECT NAME DATE MECHANICAL VENTILATION §121(b)2 REHEAT'D V.A. Max of D or G Design Ventilation Air cfm 50% of Design Zone Supply cfm B x 0.4 cfm/ft² Max

  17. Quantum Mechanics and Representation Theory Columbia University

    E-Print Network [OSTI]

    Woit, Peter

    Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30, 1967 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 2 / 30

  18. Mechanisms of Fetal Alcohol Spectrum Disorders

    E-Print Network [OSTI]

    Wilson, Shannon Elizabeth

    2011-10-21T23:59:59.000Z

    MECHANISMS OF FETAL ALCOHOL SPECTRUM DISORDERS A Dissertation by SHANNON ELIZABETH WILSON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of DOCTOR OF PHILOSOPHY August 2010 Major Subject: Biomedical Sciences Mechanisms of Fetal Alcohol Spectrum Disorders Copyright 2010 Shannon Elizabeth Wilson MECHANISMS OF FETAL ALCOHOL...

  19. Mechanisms leading to electrically isolated cell

    E-Print Network [OSTI]

    Mechanisms leading to electrically isolated cell parts and power loss under mechanical loads F cracks are omnipresent #12;Power loss by cell cracks Humidity freeze cycle 0 50 100 150 200 Powerloss, isolated cell area Crack mode: #12;Power loss after mechanical load · Some solar cells with mode A cracks

  20. NEW FACULTY SEARCHES IN MECHANICAL ENGINEERING

    E-Print Network [OSTI]

    programs in both mechanical and nuclear engineering, as well as a concurrent B.S. degree programNEW FACULTY SEARCHES IN MECHANICAL ENGINEERING AND NUCLEAR ENGINEERING Through support from the Institute of Natural Gas Research (INGaR), The Department of Mechanical and Nuclear Engineering

  1. 4, 38293862, 2007 Mechanisms of soil

    E-Print Network [OSTI]

    Boyer, Edmond

    BGD 4, 3829­3862, 2007 Mechanisms of soil carbon storage S. Steinbeiss et al. Title Page Abstract Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Mechanisms of soil carbon­3862, 2007 Mechanisms of soil carbon storage S. Steinbeiss et al. Title Page Abstract Introduction

  2. Plant salt-tolerance mechanisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01T23:59:59.000Z

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore »and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  3. Plant salt-tolerance mechanisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01T23:59:59.000Z

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  4. Creep damage mechanisms in composites

    SciTech Connect (OSTI)

    Nutt, S.R.

    1994-10-17T23:59:59.000Z

    During the past year, research has focused on processing and characterization of intermetallic composites synthesized by plasma spray deposition. This versatile process allows rapid synthesis of a variety of different composite systems with potential applications for coatings, functionally gradient materials, rapid proto-typing and 3d printing, as well as near-net-shape processing of complex shapes. We have been pursuing an experimental program of research aimed at a fundamental understanding of the microstructural processes involved in the synthesis of intermetallic composites, including diffusion, heat transfer, grain boundary migration, and the dependence of these phenomena on deposition parameters. The work has been motivated by issues arising from composite materials manufacturing technologies. Recent progress is described in section B on the following topics: (1) Reactive atomization and deposition of intermetallic composites (Ni3Al); (2) Reactive synthesis of MoSi2-SiC composites; (3) Mechanical alloying of nanocrystalline alloys; (4) Tensile creep deformation of BMAS glass-ceramic composites.

  5. Fundamental mechanisms of micromachine reliability

    SciTech Connect (OSTI)

    DE BOER,MAARTEN P.; SNIEGOWSKI,JEFFRY J.; KNAPP,JAMES A.; REDMOND,JAMES M.; MICHALSKE,TERRY A.; MAYER,THOMAS K.

    2000-01-01T23:59:59.000Z

    Due to extreme surface to volume ratios, adhesion and friction are critical properties for reliability of Microelectromechanical Systems (MEMS), but are not well understood. In this LDRD the authors established test structures, metrology and numerical modeling to conduct studies on adhesion and friction in MEMS. They then concentrated on measuring the effect of environment on MEMS adhesion. Polycrystalline silicon (polysilicon) is the primary material of interest in MEMS because of its integrated circuit process compatibility, low stress, high strength and conformal deposition nature. A plethora of useful micromachined device concepts have been demonstrated using Sandia National Laboratories' sophisticated in-house capabilities. One drawback to polysilicon is that in air the surface oxidizes, is high energy and is hydrophilic (i.e., it wets easily). This can lead to catastrophic failure because surface forces can cause MEMS parts that are brought into contact to adhere rather than perform their intended function. A fundamental concern is how environmental constituents such as water will affect adhesion energies in MEMS. The authors first demonstrated an accurate method to measure adhesion as reported in Chapter 1. In Chapter 2 through 5, they then studied the effect of water on adhesion depending on the surface condition (hydrophilic or hydrophobic). As described in Chapter 2, they find that adhesion energy of hydrophilic MEMS surfaces is high and increases exponentially with relative humidity (RH). Surface roughness is the controlling mechanism for this relationship. Adhesion can be reduced by several orders of magnitude by silane coupling agents applied via solution processing. They decrease the surface energy and render the surface hydrophobic (i.e. does not wet easily). However, only a molecular monolayer coats the surface. In Chapters 3-5 the authors map out the extent to which the monolayer reduces adhesion versus RH. They find that adhesion is independent of RH up to a threshold value, depending on the coating chemistry. The mechanism for the adhesion increase beyond this threshold value is that the coupling agent reconfigures from a surface to a bulk phase (Chapter 3). To investigate the details of how the adhesion increase occurs, the authors developed the mechanics for adhesion hysteresis measurements. These revealed that near-crack tip compression is the underlying cause of the adhesion increase (Chapter 4). A vacuum deposition chamber for silane coupling agent deposition was constructed. Results indicate that vapor deposited coatings are less susceptible to degradation at high RH (Chapter 5). To address issues relating to surfaces in relative motion, a new test structure to measure friction was developed. In contrast to other surface micromachined friction test structures, uniform apparent pressure is applied in the frictional contact zone (Chapter 6). The test structure will enable friction studies over a large pressure and dynamic range. In this LDRD project, the authors established an infrastructure for MEMS adhesion and friction metrology. They then characterized in detail the performance of hydrophilic and hydrophobic films under humid conditions, and determined mechanisms which limit this performance. These studies contribute to a fundamental understanding for MEMS reliability design rules. They also provide valuable data for MEMS packaging requirements.

  6. Technical abstracts: Mechanical engineering, 1990

    SciTech Connect (OSTI)

    Broesius, J.Y. (comp.)

    1991-03-01T23:59:59.000Z

    This document is a compilation of the published, unclassified abstracts produced by mechanical engineers at Lawrence Livermore National Laboratory (LLNL) during the calendar year 1990. Many abstracts summarize work completed and published in report form. These are UCRL-JC series documents, which include the full text of articles to be published in journals and of papers to be presented at meetings, and UCID reports, which are informal documents. Not all UCIDs contain abstracts: short summaries were generated when abstracts were not included. Technical Abstracts also provides descriptions of those documents assigned to the UCRL-MI (miscellaneous) category. These are generally viewgraphs or photographs presented at meetings. An author index is provided at the back of this volume for cross referencing.

  7. Miniature mechanical transfer optical coupler

    SciTech Connect (OSTI)

    Abel, Philip (Overland Park, KS); Watterson, Carl (Kansas City, MO)

    2011-02-15T23:59:59.000Z

    A miniature mechanical transfer (MT) optical coupler ("MMTOC") for optically connecting a first plurality of optical fibers with at least one other plurality of optical fibers. The MMTOC may comprise a beam splitting element, a plurality of collimating lenses, and a plurality of alignment elements. The MMTOC may optically couple a first plurality of fibers disposed in a plurality of ferrules of a first MT connector with a second plurality of fibers disposed in a plurality of ferrules of a second MT connector and a third plurality of fibers disposed in a plurality of ferrules of a third MT connector. The beam splitting element may allow a portion of each beam of light from the first plurality of fibers to pass through to the second plurality of fibers and simultaneously reflect another portion of each beam of light from the first plurality of fibers to the third plurality of fibers.

  8. Mechanical, Materials, and Aerospace Engineering Department of Mechanical, Materials, and Aerospace Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    Interdisciplinary Programs Master of Science in Mechanical and Aerospace Engineering with specialization in Energy/Environment/Economics (E3 ) Master of Mechanical and Aerospace Engineering with specialization in EnergyMechanical, Materials, and Aerospace Engineering Department of Mechanical, Materials, and Aerospace

  9. Department of Mechanical, Materials, and Aerospace Engineering Department of Mechanical, Materials, and Aerospace Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    in Mechanical and Aerospace Engineering with specialization in Energy/Environment/Economics (E3 ) Master of Mechanical and Aerospace Enginering with specialization in Energy/Environment/Economics (E3 ) CertificateDepartment of Mechanical, Materials, and Aerospace Engineering Department of Mechanical, Materials

  10. Remark on laser linewidth hazard in opto-mechanical cooling

    E-Print Network [OSTI]

    Lajos Diósi

    2008-07-23T23:59:59.000Z

    I discuss the robustness of the pumped cavity dynamics against phase diffusion of the laser and conclude that opto-mechanical cooling has extreme sensitivity compared to laser cooling of atoms. Certain proposals of ground state opto-mechanical cooling by single cavity would require an unrealistic sharp laser linewidth or equivalently, a very low level of phase noise. A systematic way to cancel classical excess phase noise is the interferometric twin-cavity pumping, initiated for optically trapped macro-mirrors of future gravitational-wave detectors.

  11. Mechanics of nanoscale beams in liquid electrolytes: beam deflections, pull-in instability, and stiction

    E-Print Network [OSTI]

    Lee, Jae Sang

    2009-05-15T23:59:59.000Z

    -based devices, is studied in a liquid environment, including elastic energy, electrochemical work done, van der Waals work done and surface adhesion energy. We extend the classical energy method of the beam peeling for micro-electro-mechanical systems (MEMS...

  12. Low speed control of a DC motor driving a mechanical system with fuzzy adaptive compensation 

    E-Print Network [OSTI]

    Hyun, Dongyoon

    1997-01-01T23:59:59.000Z

    A fuzzy adaptive feedforward control scheme in conjunction with classical feedback control is proposed for the low speed control of DC motors driving mechanical systems in the presence of friction. In the fuzzy adaptive scheme, a fuzzy logic based...

  13. Understanding Mechanisms of Radiological Contamination

    SciTech Connect (OSTI)

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01T23:59:59.000Z

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  14. Mechanical property scatter in CFCCs

    SciTech Connect (OSTI)

    Steen, M.; Filiou, C.

    2000-01-01T23:59:59.000Z

    The tensile response of continuous fiber reinforced ceramic matrix composites (CFCCs) is not expected to show the large variation in strength properties commonly observed for monolithic ceramics. Results of recent investigations on a number of two-dimensional reinforced CFCCs have nevertheless revealed a considerable scatter in the initial elastic modulus, in the first matrix cracking stress and in the failure stress. One school of thought considers that the observed variability is caused by experimental factors. Elaborate testing programs have been set up to clarify the origins of this scatter by investigation of the effects of control mode, loading rate, specimen shape, etc. Another school explains the scatter by the presence of (axial) residual stresses in the fibers and in the matrix. Although plausible, this hypothesis is difficult to verify because experimental determination of the residual stress state in CFCCs is not straightforward. In addition, with the available methods it is impractical to determine the residual stresses in every test specimen. This approach is indeed required for establishing the relationship between the magnitude of the residual stresses and the experimentally observed scatter. At IAM a method has been developed and validated which allows to quantify the axial residual stress state in individual CFCC specimens by subjecting them to intermittent unloading-reloading cycles. The method as well as the derived relationship between residual stress state and scatter in mechanical response will be presented.

  15. Quantum Mechanical Pressure Frank Rioux

    E-Print Network [OSTI]

    Rioux, Frank

    by the kinetic theory of gases for an individual gas molecule. #12; Planck's constant. Using de Broglie's equation in the classical expression for kinetic energy converts provides, as we see now, a quantum interpretation for gas pressure. #12;To show this we will consider

  16. 3.22 Mechanical Properties of Materials, Spring 2003

    E-Print Network [OSTI]

    Gibson, Lorna J.

    Phenomenology of mechanical behavior of materials at the macroscopic level. Relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics include: elasticity, viscoelasticity, ...

  17. Understanding mechanisms for C-H bond activation

    E-Print Network [OSTI]

    Vastine, Benjamin Alan

    2009-05-15T23:59:59.000Z

    is unclear as electrophilic and oxidative addition / reductive elimination (OA/RE) pathways have been proposed, and the research into this problem and other related aspects of this chemistry have been extensively considered in several books 18 and reviews... been proposed that lie between the two classic mechanisms that were discussed above; Lin has recently reviewed the current work in this field. 41 Webster and coworkers proposed metal-assisted ?-bond metathesis (MA?BM), 42 Lin and coworkers...

  18. Tampering detection system using quantum-mechanical systems

    DOE Patents [OSTI]

    Humble, Travis S. (Knoxville, TN); Bennink, Ryan S. (Knoxville, TN); Grice, Warren P. (Oak Ridge, TN)

    2011-12-13T23:59:59.000Z

    The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

  19. Eccentric crank variable compression ratio mechanism

    DOE Patents [OSTI]

    Lawrence, Keith Edward (Kobe, JP); Moser, William Elliott (Peoria, IL); Roozenboom, Stephan Donald (Washington, IL); Knox, Kevin Jay (Peoria, IL)

    2008-05-13T23:59:59.000Z

    A variable compression ratio mechanism for an internal combustion engine that has an engine block and a crankshaft is disclosed. The variable compression ratio mechanism has a plurality of eccentric disks configured to support the crankshaft. Each of the plurality of eccentric disks has at least one cylindrical portion annularly surrounded by the engine block. The variable compression ratio mechanism also has at least one actuator configured to rotate the plurality of eccentric disks.

  20. Quantum Statistical Mechanics. III. Equilibrium Probability

    E-Print Network [OSTI]

    Phil Attard

    2014-04-10T23:59:59.000Z

    Given are a first principles derivation and formulation of the probabilistic concepts that underly equilibrium quantum statistical mechanics. The transition to non-equilibrium probability is traversed briefly.

  1. Microstructure and Thermoelectric Properties of Mechanically...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites Home Author: J. R. Sootsman, J. He, V. P. Dravid, S. Ballikaya, D. Vermeulen, C....

  2. Small Specimen Mechanical Property Testing at PNNL

    E-Print Network [OSTI]

    McDonald, Kirk

    Small Specimen Mechanical Property Testing at PNNL Mychailo Toloczko, Dave Senor Pacific Northwest National Laboratory December, 2013 1 #12;Overview of PNNL Capabilities for Small Specimen Testing Long

  3. Sandia National Laboratories: graphene mechanical strength

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    graphene mechanical strength Three-Dimensional Graphene Architectures On July 29, 2013, in Capabilities, Materials Science, News, News & Events, Office of Science, Research &...

  4. Wave-Corpuscle Mechanics for Electric Charges

    E-Print Network [OSTI]

    Babin, Anatoli; Figotin, Alexander

    2010-01-01T23:59:59.000Z

    superposition in nonlinear wave dynamics. Rev. Math. Phys.6. Babin, A. , Figotin, A. : Wave-corpuscle mechanics forV. , Fortunato, D. : Solitary waves in the nonlinear wave

  5. Sandia National Laboratories: American Society of Mechanical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper Presented at American Society of Mechanical Engineers' (ASME) 2012 Internal Combustion Engine Division (ICED) Conference On August 28, 2013, in CRF, Energy, Energy...

  6. Giant Protease TPP II's Structure, Mechanism Uncovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    endogenous satiety agent cholecystokinin-8, making TPP II a target in the treatment of obesity. To gain insight into this molecular machine's mechanisms of activation and...

  7. Mechanical Design Engineer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Requisition Number: 1500015 The Mechanical Design Engineer will be expected to develop engineering designs of large, state-of-the-art resistive (and possibly superconducting)...

  8. 1.050 Solid Mechanics, Fall 2002

    E-Print Network [OSTI]

    Bucciarelli, Louis

    This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures ...

  9. A Process Model of Quantum Mechanics

    E-Print Network [OSTI]

    William Sulis

    2014-04-21T23:59:59.000Z

    A process model of quantum mechanics utilizes a combinatorial game to generate a discrete and finite causal space upon which can be defined a self-consistent quantum mechanics. An emergent space-time M and continuous wave function arise through a non-uniform interpolation process. Standard non-relativistic quantum mechanics emerges under the limit of infinite information (the causal space grows to infinity) and infinitesimal scale (the separation between points goes to zero). The model has the potential to address several paradoxes in quantum mechanics while remaining computationally powerful.

  10. Fundamental Mechanisms of Interface Roughness

    SciTech Connect (OSTI)

    Randall L. Headrick

    2009-01-06T23:59:59.000Z

    Publication quality results were obtained for several experiments and materials systems including: (i) Patterning and smoothening of sapphire surfaces by energetic Ar+ ions. Grazing Incidence Small Angle X-ray Scattering (GISAXS) experiments were performed in the system at the National Synchrotron Light Source (NSLS) X21 beamline. Ar+ ions in the energy range from 300 eV to 1000 eV were used to produce ripples on the surfaces of single-crystal sapphire. It was found that the ripple wavelength varies strongly with the angle of incidence of the ions, which increase significantly as the angle from normal is varied from 55° to 35°. A smooth region was found for ion incidence less than 35° away from normal incidence. In this region a strong smoothening mechanism with strength proportional to the second derivative of the height of the surface was found to be responsible for the effect. The discovery of this phase transition between stable and unstable regimes as the angle of incidence is varied has also stimulated new work by other groups in the field. (ii) Growth of Ge quantum dots on Si(100) and (111). We discovered the formation of quantum wires on 4° misoriented Si(111) using real-time GISAXS during the deposition of Ge. The results represent the first time-resolved GISAXS study of Ge quantum dot formation. (iii) Sputter deposition of amorphous thin films and multilayers composed of WSi2 and Si. Our in-situ GISAXS experiments reveal fundamental roughening and smoothing phenomena on surfaces during film deposition. The main results of this work is that the WSi2 layers actually become smoother during deposition due to the smoothening effect of energetic particles in the sputter deposition process.

  11. Treating Time Travel Quantum Mechanically

    E-Print Network [OSTI]

    John-Mark A. Allen

    2014-10-10T23:59:59.000Z

    The fact that closed timelike curves (CTCs) are permitted by general relativity raises the question as to how quantum systems behave when time travel to the past occurs. Research into answering this question by utilising the quantum circuit formalism has given rise to two theories: Deutschian-CTCs (D-CTCs) and "postselected" CTCs (P-CTCs). In this paper the quantum circuit approach is thoroughly reviewed, and the strengths and shortcomings of D-CTCs and P-CTCs are presented in view of their non-linearity and time travel paradoxes. In particular, the "equivalent circuit model"---which aims to make equivalent predictions to D-CTCs, while avoiding some of the difficulties of the original theory---is shown to contain errors. The discussion of D-CTCs and P-CTCs is used to motivate an analysis of the features one might require of a theory of quantum time travel, following which two overlapping classes of new theories are identified. One such theory, the theory of "transition probability" CTCs (T-CTCs), is fully developed. The theory of T-CTCs is shown not to have certain undesirable features---such as time travel paradoxes, the ability to distinguish non-orthogonal states with certainty, and the ability to clone or delete arbitrary pure states---that are present with D-CTCs and P-CTCs. The problems with non-linear extensions to quantum mechanics are discussed in relation to the interpretation of these theories, and the physical motivations of all three theories are discussed and compared.

  12. Quantum mechanics and the direction of time

    SciTech Connect (OSTI)

    Hasegawa, H.; Petrosky, T. (Univ. of Texas, Austin (United States)); Prigogine, I. (Univ. of Texas, Austin (United States) International Solvay Inst. for Physics and Chemistry, Brussels (Belgium)); Tasaki, S. (International Solvay Inst. for Physics and Chemistry, Brussels (Belgium))

    1991-03-01T23:59:59.000Z

    In recent papers the authors have discussed the dynamical properties of large Poincare systems (LPS), that is, nonintegrable systems with a continuous spectrum (both classical and quantum). An interesting example of LPS is given by the Friedrichs model of field theory. As is well known, perturbation methods analytic in the coupling constant diverge because of resonant denominators. They show that this Poincare catastrophe can be eliminated by a natural time ordering of the dynamical states. They obtain then a dynamical theory which incorporates a privileged direction of time (and therefore the second law of thermodynamics). However, it is only in very simple situations that his time ordering can be performed in an extended Hilbert space. In general, they need to go to the Liouville space (superspace) and introduce a time ordering of dynamical states according to the number of particles involved in correlations. This leads then to a generalization of quantum mechanics in which the usual Heisenberg's eigenvalue problem is replaced by a complex eigenvalue problem in the Liouville space.

  13. A Process Algebra Approach to Quantum Mechanics

    E-Print Network [OSTI]

    William H. Sulis

    2014-09-07T23:59:59.000Z

    The process approach to NRQM offers a fourth framework for the quantization of physical systems. Unlike the standard approaches (Schrodinger-Heisenberg, Feynman, Wigner-Gronewald-Moyal), the process approach is not merely equivalent to NRQM and is not merely a re-interpretation. The process approach provides a dynamical completion of NRQM. Standard NRQM arises as a asymptotic quotient by means of a set-valued process covering map, which links the process algebra to the usual space of wave functions and operators on Hilbert space. The process approach offers an emergentist, discrete, finite, quasi-non-local and quasi-non-contextual realist interpretation which appears to resolve many of the paradoxes and is free of divergences. Nevertheless, it retains the computational power of NRQM and possesses an emergent probability structure which agrees with NRQM in the asymptotic quotient. The paper describes the process algebra, the process covering map for single systems and the configuration process covering map for multiple systems. It demonstrates the link to NRQM through a toy model. Applications of the process algebra to various quantum mechanical situations - superpositions, two-slit experiments, entanglement, Schrodinger's cat - are presented along with an approach to the paradoxes and the issue of classicality.

  14. The M\\"obius Symmetry of Quantum Mechanics

    E-Print Network [OSTI]

    Faraggi, Alon E

    2015-01-01T23:59:59.000Z

    The equivalence postulate approach to quantum mechanics aims to formulate quantum mechanics from a fundamental geometrical principle. Underlying the formulation there exists a basic cocycle condition which is invariant under $D$--dimensional M\\"obius transformations with respect to the Euclidean or Minkowski metrics. The invariance under global M\\"obius transformations implies that spatial space is compact. Furthermore, it implies energy quantisation and undefinability of quantum trajectories without assuming any prior interpretation of the wave function. The approach may be viewed as conventional quantum mechanics with the caveat that spatial space is compact, as dictated by the M\\"obius symmetry, with the classical limit corresponding to the decompactification limit. Correspondingly, there exists a finite length scale in the formalism and consequently an intrinsic regularisation scheme. Evidence for the compactness of space may exist in the cosmic microwave background radiation.

  15. Quantum mechanical aspects of friction and electric resistance in microscopic problems with applications to radiation physics

    E-Print Network [OSTI]

    Ulmer, W

    2015-01-01T23:59:59.000Z

    Friction incorporates the close connection between classical mechanics in irreversible thermodynamics. The translation to a quantum mechanical foundation is not trivial and requires a generalization of the Lagrange function. A change to electromagnetic circuits appears to more adequate, since the electric analogue (Ohms law) is related to scatter of electrons at lattice vibrations.

  16. Department of Mechanical and Aerospace Engineering Updated: Spring 2012

    E-Print Network [OSTI]

    Krstic, Miroslav

    Department of Mechanical and Aerospace Engineering Updated: Spring 2012 MECHANICAL ENGINEERING TECHNICAL ELECTIVES Mechanical Engineering Majors are required to complete four (4) Technical Electives Century Energy Technologies II MAE 135 Computational Mechanics MAE 180A Spacecraft Guidance MAE 181 Space

  17. West Virginia University 1 Department of Mechanical and Aerospace

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    , solid mechanics, energy systems, engineering materials, automatic controls, mechatronicsWest Virginia University 1 Department of Mechanical and Aerospace Engineering Degrees Offered · Master of science in mechanical engineering · Master of science in engineering with a major in mechanical

  18. Department of Mechanics KTH, SE-100 44 Stockholm, Sweden

    E-Print Network [OSTI]

    Haviland, David

    project descriptions 6.1 Theoretical and applied mechanics 6.2 Fluid mechanics 6.3 Education didactics 7

  19. Department of Mechanics KTH, S-100 44 Stockholm, Sweden

    E-Print Network [OSTI]

    Haviland, David

    project descriptions 6.1 Theoretical and applied mechanics 6.2 Fluid mechanics 6.3 Education didactics 7

  20. Quantum mechanical effects from deformation theory

    SciTech Connect (OSTI)

    Much, A. [Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany and Institute for Theoretical Physics, University of Leipzig, 04009 Leipzig (Germany)] [Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany and Institute for Theoretical Physics, University of Leipzig, 04009 Leipzig (Germany)

    2014-02-15T23:59:59.000Z

    We consider deformations of quantum mechanical operators by using the novel construction tool of warped convolutions. The deformation enables us to obtain several quantum mechanical effects where electromagnetic and gravitomagnetic fields play a role. Furthermore, a quantum plane can be defined by using the deformation techniques. This in turn gives an experimentally verifiable effect.

  1. Mechanical Engineering Department 04 November 2013

    E-Print Network [OSTI]

    Furlong, Cosme

    Department Light Sources Light emitting diode (LED) When a light-emitting diode is forward biased (switched a p-n junction #12;Mechanical Engineering Department Light Sources Light emitting diode (LED the p-n junction #12;Mechanical Engineering Department Light Sources Light emitting diode (LED) #12

  2. Mechanical Engineering Department "The Lindbergh Lectures"

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    for micromachining processes and equipment. In addition, other micro-scale manufacturing processes are investigated:00 ­ 12:50 PM Room 1106 Mechanical Engineering Building MECHANICAL MICRO-MANUFACTURING RESEARCH micromachining, including micromilling and microdrilling, has emerged as a leading micro-manufacturing technique

  3. Sibley School of Mechanical and Aerospace Engineering

    E-Print Network [OSTI]

    Bonassar, Larry

    design; sustainable design; additive manufacturing; manufacturing of advanced and multifunctional 607 255-0813 mc288@cornell.edu October 2014 Faculty Position in Design and Manufacturing Mechanical and Manufacturing, as related strongly to the disciplines within Mechanical and Aerospace Engineering. Candidates

  4. NEW FACULTY SEARCHES IN MECHANICAL ENGINEERING

    E-Print Network [OSTI]

    for nuclear engineering include, but are not limited to: nuclear power and science, reactor physics, nuclear engineering, or a related field. The Department is home to 50 faculty, 270 graduate students, and 1000NEW FACULTY SEARCHES IN MECHANICAL ENGINEERING AND NUCLEAR ENGINEERING The Department of Mechanical

  5. Team Assembly Mechanisms Determine Collaboration Network

    E-Print Network [OSTI]

    Kuzmanovic, Aleksandar

    Team Assembly Mechanisms Determine Collaboration Network Structure and Team Performance Roger the mechanisms by which creative teams self-assemble determine the structure of these collaboration networks. We propose a model for the self-assembly of creative teams that has its basis in three parameters: team size

  6. Mechanical Engineering Department "The Lindbergh Lectures"

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Mechanical Engineering Department "The Lindbergh Lectures" Thursday, October 3rd , 2013 12:00 ­ 12:50 PM Room 1106 Mechanical Engineering Building Role of Safety Presented by: Ms. Tara Cordes Risk and illnesses in the workplace. The program conducts outreach, training, and consultation as well as site

  7. The Bachelor of Science Degree MECHANICAL ENGINEERING

    E-Print Network [OSTI]

    Chen, Wei

    Mechanical Engineering undergraduates must attain: a. an ability to apply knowledge of math, engineering, manufacturing and engineering science. Graduates will use their knowledge to think critically, formulateThe Bachelor of Science Degree in MECHANICAL ENGINEERING at NORTHWESTERN UNIVERSITY June 2011 #12

  8. Neural Mechanisms Underlying Selective Attention to Threat

    E-Print Network [OSTI]

    Bishop, Sonia

    Neural Mechanisms Underlying Selective Attention to Threat SONIA J. BISHOP Behavioural and Clinical. This provides a framework for inves- tigating the neural mechanisms underlying selective attention to threat. Both subcortical regions implicated in threat detection--specifically the amygdala--and prefrontal

  9. Original article Mechanisms of resistance to acrolein

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Mechanisms of resistance to acrolein in Drosophila melanogaster L.M. Sierra M Oviedo, Spain (received 29 November 1988; accepted 26 May 1989) Summary - The mechanisms of acrolein of acrolein entering the flies, and the other is an increase in aldehyde dehydrogenase activity; probably

  10. Superconformal quantum mechanics and the exterior algebra

    E-Print Network [OSTI]

    Andrew Singleton

    2014-09-11T23:59:59.000Z

    We extend the differential form representation of N = (n,n) supersymmetric quantum mechanics to the superconformal case. We identify the superalgebras occurring for n = 1,2,4, give necessary and sufficient conditions for their existence, and give explicit geometric constructions of their generators and commutation relations. Quantum mechanics on the moduli space of instantons is considered as an example.

  11. Dept. of Mechanical Engineering 1500 Engineering Dr.

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Dept. of Mechanical Engineering 1500 Engineering Dr. University of Wisconsin ­ Madison Madison, WI. of Mechanical Engineering 2008 ­ Present Director of Engine Research Center 2003 ­ 2007 Associate Professor ­ 1995 Research Assistant Stanford University, Stanford, CA 1984 ­ 1989 Research Engineer Flow Research

  12. Regulation mechanisms in spatial stochastic development models

    E-Print Network [OSTI]

    Dmitri Finkelshtein; Yuri Kondratiev

    2008-09-04T23:59:59.000Z

    The aim of this paper is to analyze different regulation mechanisms in spatial continuous stochastic development models. We describe the density behavior for models with global mortality and local establishment rates. We prove that the local self-regulation via a competition mechanism (density dependent mortality) may suppress a unbounded growth of the averaged density if the competition kernel is superstable.

  13. Enhancement of mechanical properties of 123 superconductors

    DOE Patents [OSTI]

    Balachandran, U.

    1995-04-25T23:59:59.000Z

    A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.

  14. Enhancement of mechanical properties of 123 superconductors

    DOE Patents [OSTI]

    Balachandran, Uthamalingam (Hinsdale, IL)

    1995-01-01T23:59:59.000Z

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  15. Faculty of Engineering Mechanical, Automotive and

    E-Print Network [OSTI]

    the aerospace industry. 2) Automotive Option - study topics such as vehicle dynamics, internal combustionFaculty of Engineering Mechanical, Automotive and Materials Engineering The field of Mechanical, Automotive and Materials Engineering offers a multi-faceted program where you tackle real-world problems

  16. NONEQUILIBRIUM QUANTUM STATISTICAL MECHANICS AND THERMODYNAMICS #

    E-Print Network [OSTI]

    NONEQUILIBRIUM QUANTUM STATISTICAL MECHANICS AND THERMODYNAMICS # Walid K. Abou Salem + Institut f recent progress in deriving the fundamental laws of thermodynamics (0 th , 1 st and 2 nd ­law) from nonequilibrium quantum statistical mechanics. Basic thermodynamic notions are clarified and di#erent reversible

  17. On statistical mechanics in noncommutative spaces

    E-Print Network [OSTI]

    S. A. Alavi

    2007-09-26T23:59:59.000Z

    We study the formulation of quantum statistical mechanics in noncommutative spaces. We construct microcanonical and canonical ensemble theory in noncommutative spaces. We consider for illustration some basic and important examples in the framework of noncommutative statistical mechanics : (i). An electron in a magnetic field. (ii). A free particle in a box. (iii). A linear harmonic oscillator.

  18. Coordination Mechanisms in Human-Robot Collaboration

    E-Print Network [OSTI]

    Mutlu, Bilge

    and an apprentice might both be engaged in the action of cleaning the parts of the transmission before assembly, carrying out the same action on different parts. Alternatively, the mechanic and the apprentice might carry out complementary actions, the mechanic installing gears on the shaft while the apprentice prepares

  19. Lawrence E. Carlson Professor of Mechanical Engineering

    E-Print Network [OSTI]

    Carlson, Lawrence E.

    Education, American Society of Mechanical Engineers, pp. 31-33. Solar Stirling Engine 2Cam Rock ClimbingPortfolio Lawrence E. Carlson Professor of Mechanical Engineering Founding Co-Director, Integrated Teaching and Learning Program and Laboratory University of Colorado at Boulder #12;ENGINEERING EDUCATION

  20. Build Something That Moves Mechanical Engineering

    E-Print Network [OSTI]

    Provancher, William

    that Mechanical Engineers build up the energy at the beginning of the ride by raising them to a high pointBuild Something That Moves Mechanical Engineering Objective This lesson helps students learn how to create potential energy: through rolling, torque, pressure, springs, etc. Students learn how to create

  1. ASSISTANT PROFESSOR OF MECHANICAL ENGINEERING COMPUTATIONAL MODELING

    E-Print Network [OSTI]

    ASSISTANT PROFESSOR OF MECHANICAL ENGINEERING COMPUTATIONAL MODELING COLLEGE OF ENGINEERING The Department of Mechanical Engineering at Colorado State University invites applications for a tenure processes with emphasis on applying the models to engineering systems of interest in the energy or materials

  2. California Institute of Technology Mechanical Engineering

    E-Print Network [OSTI]

    Heaton, Thomas H.

    California Institute of Technology Mechanical Engineering PhD Coursework Planning Matrix and Record) Math/Advanced Math Advanced Math (27) Engineering Seminar (3) Research summer summer (54) Total Units course requirements for the Ph.D. in Mechanical Engineering, provided that the student takes and passes

  3. Budget Feasible Mechanism Design YARON SINGER

    E-Print Network [OSTI]

    Chen, Yiling

    Budget Feasible Mechanism Design YARON SINGER Harvard University In this letter we sketch a brief introduction to budget feasible mechanism design. This framework captures scenarios where the goal is to buy that arise from the tension between incentive compatibility and the budget constraint, and leaves many

  4. Mechanism of Selective Oxidation of Propene to Acrolein on Bismuth Molybdates from Quantum Mechanical Calculations

    E-Print Network [OSTI]

    Goddard III, William A.

    Mechanism of Selective Oxidation of Propene to Acrolein on Bismuth Molybdates from Quantum for understanding the fundamental chemical mechanisms underlying the selective oxidation of propene to acrolein to form acrolein, and acrolein desorption. The formation of -allyl intermediate is reversible

  5. Thermal/MechanicalThermal/Mechanical Properties of WoodProperties of Wood--PVCPVC

    E-Print Network [OSTI]

    .composites. Heat flow, heat capacity, andHeat flow, heat capacity, and enthalpyenthalpy Glass transition/Mechanical Analysis TechniquesThermal/Mechanical Analysis Techniques #12;Rubbery Leathery Viscous liquid Rigid (Semi

  6. Aerospace and Mechanical Engineers design and build unique, complex mechanical, optical, and electronic

    E-Print Network [OSTI]

    Rohs, Remo

    20 Aerospace and Mechanical Engineers design and build unique, complex mechanical, optical Engineering students conduct extensive basic and applied research within and crossing usual disciplinary vehicle aerodynamics, combustion, robotics, heat transfer and nonlinear dynamics. In addition, recent

  7. Department of Mechanical, Materials, and Aerospace Engineering Department of Mechanical, Materials, and Aerospace Engineering

    E-Print Network [OSTI]

    Saniie, Jafar

    instrumentation, com- bustion, internal combustion engines, two-phase flow and heat-transfer, electrohydrodynamics mobile and stationary combustion sources. Materials science and engineering laboratories includeDepartment of Mechanical, Materials, and Aerospace Engineering Department of Mechanical, Materials

  8. Aerospace and Mechanical Engineers design and build unique, complex mechanical, optical, and

    E-Print Network [OSTI]

    Rohs, Remo

    20 Aerospace and Mechanical Engineers design and build unique, complex mechanical, optical Engineering students conduct extensive basic and applied research within and crossing usual disciplinary vehicle aerodynamics, combustion, robotics, heat transfer and nonlinear dynamics. In addition, recent

  9. Basic mechanisms for the new millennium

    SciTech Connect (OSTI)

    Dressendorfer, P.V.

    1998-09-01T23:59:59.000Z

    This part of the Short Course will review the basic mechanisms for radiation effects in semiconductor devices. All three areas of radiation damage will be considered -- total dose, displacement effects, and single event effects. Each of these areas will be discussed in turn. First an overview and background will be provided on the historical understanding of the damage mechanism. Then there will be a discussion of recent enhancements to the understanding of those mechanisms and an up-to-date picture provided of the current state of knowledge. Next the potential impact of each of these damage mechanisms on devices in emerging technologies and how the mechanisms may be used to understand device performance will be described, with an emphasis on those likely to be of importance in the new millennium. Finally some additional thoughts will be presented on how device scaling expected into the next century may impact radiation hardness.

  10. Purely Mechanical Memristors and the Missing Memristor

    E-Print Network [OSTI]

    Sascha Vongehr

    2015-03-21T23:59:59.000Z

    Oscillating LRC-circuits have mechanical analogies such as the damped harmonic oscillator made from a mass attached to a spring. We first construct the mechanical counterpart of the electrical basic circuit element M = d{\\phi}/dQ, namely the ideal mechanical memristance M = dp/dx. We then construct a mechanical memory resistor: a very light (effectively m = 0), 1 cm radius sphere dragged by a 1mN amplitude periodic force inside a heavy fuel oil with a 10 degrees Celsius per meter gradient, leading to a pinched hysteretic loop that collapses at high frequency. It is a perfect memristor. However, memristor devices hypothesized on grounds of physical symmetries require more. The mechanical missing memristor needs to be crucially mass-involving (MI); the 1971 implied memristor device needs magnetism. Discussing MI memristive systems clarifies why such perfect MI memristors and EM memristors have not been discovered and may be impossible.

  11. Purely Mechanical Memristors and the Missing Memristor

    E-Print Network [OSTI]

    Vongehr, Sascha

    2015-01-01T23:59:59.000Z

    Oscillating LRC-circuits have mechanical analogies such as the damped harmonic oscillator made from a mass attached to a spring. We first construct the mechanical counterpart of the electrical basic circuit element M = d{\\phi}/dQ, namely the ideal mechanical memristance M = dp/dx. We then construct a mechanical memory resistor: a very light (effectively m = 0), 1 cm radius sphere dragged by a 1mN amplitude periodic force inside a heavy fuel oil with a 10 degrees Celsius per meter gradient, leading to a pinched hysteretic loop that collapses at high frequency. It is a perfect memristor. However, memristor devices hypothesized on grounds of physical symmetries require more. The mechanical missing memristor needs to be crucially mass-involving (MI); the 1971 implied memristor device needs magnetism. Discussing MI memristive systems clarifies why such perfect MI memristors and EM memristors have not been discovered and may be impossible.

  12. Mehrdad Negahban, Associate Chair for Graduate Studies and Research Mechanical Engineering, Engineering Mechanics, Materials Engineering, Biomedical Engineering

    E-Print Network [OSTI]

    Farritor, Shane

    Wave Propagation · Solar Engineering · Thermal-Fluids Engineering 3 John P. Barton #12;MechanicalMehrdad Negahban, Associate Chair for Graduate Studies and Research #12;Mechanical Engineering, Engineering Mechanics, Materials Engineering, Biomedical Engineering The graduate program in Mechanical

  13. Department of Mechanical and Aerospace Engineering The Department of Mechanical and Aerospace Engineering (MAE) at the University of Florida invites

    E-Print Network [OSTI]

    Roy, Subrata

    and aerospace sciences, (4) cellular mechanics and engineering, (5) energy, with emphasis on renewable Department of Mechanical and Aerospace Engineering The Department of Mechanical of the above areas. Applicants must have a Ph.D. in mechanical or aerospace engineering

  14. Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell

    E-Print Network [OSTI]

    Hudspeth, A. James

    Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell P. Hudspeth, August 15, 2000 Hearing and balance rely on the ability of hair cells in the inner ear to sense miniscule mechanical stimuli. In each cell, sound or acceleration deflects the mechanosensitive hair bundle

  15. Apparatus for loading shape memory gripper mechanisms

    DOE Patents [OSTI]

    Lee, Abraham P. (Walnut Creek, CA); Benett, William J. (Livermore, CA); Schumann, Daniel L. (Concord, CA); Krulevitch, Peter A. (Pleasanton, CA); Fitch, Joseph P. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    A method and apparatus for loading deposit material, such as an embolic coil, into a shape memory polymer (SMP) gripping/release mechanism. The apparatus enables the application of uniform pressure to secure a grip by the SMP mechanism on the deposit material via differential pressure between, for example, vacuum within the SMP mechanism and hydrostatic water pressure on the exterior of the SMP mechanism. The SMP tubing material of the mechanism is heated to above the glass transformation temperature (Tg) while reshaping, and subsequently cooled to below Tg to freeze the shape. The heating and/or cooling may, for example, be provided by the same water applied for pressurization or the heating can be applied by optical fibers packaged to the SMP mechanism for directing a laser beam, for example, thereunto. At a point of use, the deposit material is released from the SMP mechanism by reheating the SMP material to above the temperature Tg whereby it returns to its initial shape. The reheating of the SM material may be carried out by injecting heated fluid (water) through an associated catheter or by optical fibers and an associated beam of laser light, for example.

  16. Water Assisted Reaction Mechanism of OH- with CCl4 in Aqueous Solution - Hybrid Quantum Mechanical and Molecular Mechanics Investigation

    SciTech Connect (OSTI)

    Chen, Jie; Yin, Hongyun; Wang, Dunyou; Valiev, Marat

    2013-02-20T23:59:59.000Z

    The OH- (H2O) + CCl4 reaction in aqueous solution was investigated using the combined quantum mechanical and molecular mechanics approach. The reaction mechanism of OH- (H2O) + CCl4 consists of two concerted steps - formation of OH- in the favorable attack conformation via the proton transfer process, and the nucleophilic substitution process in which the newly formed OH- attacks the CCl4. The free energy activation barrier is 38.2 kcal/mol at CCSD(T)/MM level of theory for this reaction, which is about 10.3 kcal/mol higher than that of the direct nucleophilic substitution mechanism of the OH- + CCl4 reaction in aqueous solution.

  17. Dissipation induced Instabilities and the Mechanical Laser

    E-Print Network [OSTI]

    Marcel G. Clerc; Jerrold E. Marsden

    2001-03-26T23:59:59.000Z

    We study the 1:1 resonance for perturbed Hamiltonian systems with small dissipative and energy injection terms. These perturbations of the 1:1 resonance exhibit dissipation induced instabilities. This mechanism allow us to show that a slightly pumping optical cavity is unstable when one takes into account the dissipative effects. The Maxwell-Bloch equations are the asymptotic normal form that describe this instability when energy is injected through forcing at zero frequency. We display a simple mechanical system, close to the 1:1 resonance, which is a mechanical analog of the Laser.

  18. Mechanical bone strength in the proximal tibia 

    E-Print Network [OSTI]

    Prommin, Danu

    2000-01-01T23:59:59.000Z

    KNEE REPLACEMENT 3 2. 1 Mechanics of the Knee 2. 1. 1 knee Structure. 2. 1. 2 Bone Strength of Proximal Tibia. 2. 2 Total Knee Replacement. '2. 3 Research Prospective III MECHANICS OF MATERIALS. . 3 3 5 7 8 10 3. 1 Normal Stress and Strain... Specimens. 4. 1. 2 Mechanical Test. . 4. 2 Statistical Analysis. . . . . . . . . . . . . 18 18 18 19 V RESULTS AND CONCLUSIONS. 20 5. 1 Results. . 20 5. 2 Discussion and Conclusions. Page 24 REFERENCES. 27 VITA. 29 LIST OF FIGURES FIGURE 2. 1...

  19. A steering mechanism for phototaxis in Chlamydomonas

    E-Print Network [OSTI]

    Rachel R. Bennett; Ramin Golestanian

    2014-12-19T23:59:59.000Z

    Chlamydomonas shows both positive and negative phototaxis. It has a single eyespot near its equator and as the cell rotates during forward motion the light signal received by the eyespot varies. We use a simple mechanical model of Chlamydomonas that couples the flagellar beat pattern to the light intensity at the eyespot to demonstrate a mechanism for phototactic steering that is consistent with observations. The direction of phototaxis is controlled by a parameter in our model and the steering mechanism is robust to noise. Our model shows switching between directed phototaxis when the light is on and run-and-tumble behaviour in the dark.

  20. Wave Packet under Continuous Measurement via Bohmian Mechanics

    E-Print Network [OSTI]

    Antonio B. Nassar

    2010-01-25T23:59:59.000Z

    A new quantum mechanical description of the dynamics of wave packet under continuous measurement is formulated via Bohmian mechanics. The solution to this equation is found through a wave packet approach which establishes a direct correlation between a classical variable with a quantum variable describing the dynamics of the center of mass and the width of the wave packet. The approach presented in this paper gives a comparatively clearer picture than approaches using restrited path integrals and master equation approaches. This work shows how the extremely irregular character of classical chaos can be reconciled with the smooth and wavelike nature of phenomena on the atomic scale. It is demonstrated that a wave packet under continuous quantum measurement displays both chaotic and non-chaotic features. The Lyapunov characteristic exponents for the trajectories of classical particle and the quantum wave packet center of mass are calculated and their chaoticities are demonstrated to be about the same. Nonetheless, the width of the wave packet exhibits a non-chaotic behavior and allows for the possibility to beat the standard quantum limit by means of transient, contractive states.

  1. Logical Control Theory Applied to Mechanical Arms

    E-Print Network [OSTI]

    Pankiewicz, Ronald Joseph

    A new control algorithm based upon Logical Control Theory is developed for mechanical manipulators. The controller uses discrete tesselations of state space and a finite set of fixed torques to regulate non-rehearsed ...

  2. The Mechanized Verification of Garbage Collector Implementations

    E-Print Network [OSTI]

    Abstract The Mechanized Verification of Garbage Collector Implementations Andrew Evan Mc complex, requiring a garbage collector. Garbage collectors are becoming increasingly sophis- ticated to adapt them to high-performance, concurrent and real-time applications, making internal collector

  3. Incentive Games and Mechanisms for Risk Management

    E-Print Network [OSTI]

    Alpcan, Tansu

    2010-01-01T23:59:59.000Z

    Incentives play an important role in (security and IT) risk management of a large-scale organization with multiple autonomous divisions. This paper presents an incentive mechanism design framework for risk management based on a game-theoretic approach. The risk manager acts as a mechanism designer providing rules and incentive factors such as assistance or subsidies to divisions or units, which are modeled as selfish players of a strategic (noncooperative) game. Based on this model, incentive mechanisms with various objectives are developed that satisfy efficiency, preference-compatibility, and strategy-proofness criteria. In addition, iterative and distributed algorithms are presented, which can be implemented under information limitations such as the risk manager not knowing the individual units' preferences. An example scenario illustrates the framework and results numerically. The incentive mechanism design approach presented is useful for not only deriving guidelines but also developing computer-assistan...

  4. Faculty Position in Mechanical Engineering Additive Manufacturing

    E-Print Network [OSTI]

    Faculty Position in Mechanical Engineering Additive Manufacturing University of Kansas of additive manufacturing. Exceptional candidates with outstanding qualifications could be considered using additive manufacturing in applications such as, but not limited to the net shape manufacture of

  5. OKLAHOMA STATE UNIVERSITY Mechanical and Aerospace Engineering

    E-Print Network [OSTI]

    OKLAHOMA STATE UNIVERSITY Mechanical and Aerospace Engineering Assistant Professor The School (6) tenure-track faculty positions at the Assistant Professor rank. Exceptional candidates in all precision manufacturing, HVAC&R, vibrations, aircraft and spacecraft, robotics, unmanned systems, autonomy

  6. Essays on dynamic games and mechanism design

    E-Print Network [OSTI]

    Lang, Ruitian

    2014-01-01T23:59:59.000Z

    The dissertation considers three topics in dynamic games and mechanism design. In both problems, asymmetric information causes inefficiency in production and allocation. The first chapter considers the inefficiency from ...

  7. Development of a Mechanics Reasoning Inventory

    E-Print Network [OSTI]

    Pawl, Andrew

    2012-01-01T23:59:59.000Z

    Strategic knowledge is required to appropriately organize procedures and concepts to solve problems. We are developing a standardized instrument assessing strategic knowledge in the domain of introductory mechanics. This ...

  8. Tall building collapse mechanisms initiated by fire 

    E-Print Network [OSTI]

    Usmani, Asif; Roben, Charlotte; Johnston, Louise; Flint, Graeme

    This paper introduces the hypothesis of two possible failure mechanisms for tall buildings in multiple floor fires. This paper extends the previous work done on the WTC towers by investigating more "generic" tall building frames made of standard...

  9. Rock Slopes from Mechanics to Decision Making

    E-Print Network [OSTI]

    Einstein, Herbert H.

    Rock slope instabilities are discussed in the context of decision making for risk assessment and management. Hence, the state of the slope and possible failure mechanism need to be defined first. This is done with geometrical ...

  10. Aspects of the mechanics of metallic glasses

    E-Print Network [OSTI]

    Henann, David Lee

    2011-01-01T23:59:59.000Z

    Metallic glasses are amorphous materials that possess unique mechanical properties, such as high tensile strengths and good fracture toughnesses. Also, since they are amorphous, metallic glasses exhibit a glass transition, ...

  11. Quantum Leap Quantum Mechanics' Killer App

    E-Print Network [OSTI]

    Bigelow, Stephen

    Quantum Leap Quantum Mechanics' Killer App Q&A with Craig Hawker Director of the Materials Research. Q&A with Craig Hawker LEAP The Materials Research Laboratory is the only Wes

  12. Mechanics and Design, Manufacturing Professor Hani Naguib

    E-Print Network [OSTI]

    Mechanical and Industrial Engineering Manufacturing What is Manufacturing? The transformation of materials. Apple Canada(Se12), Revenue: $5,067,109 9. CGI Group(Se12), Revenue: $4,786,857 10. Siemens Canada(Se12

  13. Identification of mechanisms of Salmonella gallinarum virulence

    E-Print Network [OSTI]

    Edwards, Emmerson Wendell

    1998-01-01T23:59:59.000Z

    The purpose of the following studies was to Micrographics. investigate the virulence and mechanisms of prevention of Salmonella gallinarum (SG) in the commercial poultry. Salmonella gallinarum is a pathogen that is strongly adapted to fowl...

  14. Mechanical behavior of elastic rods under constraint

    E-Print Network [OSTI]

    Miller, James Thomas, Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    We present the results of an experimental investigation of the mechanics of thin elastic rods under a variety of loading conditions. Four scenarios are explored, with increasing complexity: i) the shape of a naturally ...

  15. Micromechanical actuators for insect flight mechanics

    E-Print Network [OSTI]

    Zhou, Hui, M.S. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    This project aims to develop MEMS actuators to aid in the study of insect flight mechanics. Specifically, we are developing actuators that can stimulate the antennae of the crepuscular hawk moth Manduca Sexta. The possible ...

  16. Introduction 5 Mechanism of Irradiation Hardening 5

    E-Print Network [OSTI]

    these obstacles either by the Orowan mechanism , in which the dislocations bow out between the obstacles, thermal activation can help in overcoming the energy barrier caused by the obstacles. This thermal

  17. Mechanics of amorphous polymers and polymer gels

    E-Print Network [OSTI]

    Chester, Shawn Alexander

    2011-01-01T23:59:59.000Z

    Many applications of amorphous polymers require a thermo-mechanically coupled large-deformation elasto-viscoplasticity theory which models the strain rate and temperature dependent response of amorphous polymeric materials ...

  18. Mechanism of acquired temozolomide resistance in glioblastoma

    E-Print Network [OSTI]

    McFaline-Figueroa, José L

    2014-01-01T23:59:59.000Z

    Glioblastoma (GBM) is the most common and malignant form of brain cancer. After aggressive treatment, therapy resistant tumors inevitably recur. However, the molecular mechanisms underlying such resistance remain unclear. ...

  19. GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING

    E-Print Network [OSTI]

    Mountziaris, T. J.

    GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2011/2012 September).................1 REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH (30).....................................................................................................2 DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING (72 CREDITS

  20. GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING

    E-Print Network [OSTI]

    Mountziaris, T. J.

    GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2010/2011 September).................1 . REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH)...................................................................................................1 DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING (72 CREDITS

  1. GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING

    E-Print Network [OSTI]

    Mountziaris, T. J.

    GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2009/2010 September).................1 . REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING (30 CREDITS)...............1 DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING (72 CREDITS

  2. GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2013/2014 September..............................3 C. COURSE REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING AND OPERATIONS............................4 E. DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH

  3. Montana State University 1 Mechanical Engineering

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    improvement, HVAC systems design and installation, project management, and energy exploration. The mechanical for the past several years, and average starting salaries are very competitive; indications are that this trend

  4. Edgar I. Ergueta Department of Mechanical Engineering,

    E-Print Network [OSTI]

    Horowitz, Roberto

    Edgar I. Ergueta Mem. ASME Department of Mechanical Engineering, University of California, Berkeley, CA 94720 e-mail: edgar.ergueta@wdc.com Robert Seifried Professor Institute of Engineering

  5. Interfacial forces in chemical-mechanical polishing

    E-Print Network [OSTI]

    Ng, Dedy

    2009-05-15T23:59:59.000Z

    for planarization. The process takes place at the interface of a substrate, a polishing pad, and an abrasive containing slurry. This synergetic process involves several forces in multi-length scales and multi-mechanisms. This research contributes fundamental...

  6. An examination of the mechanisms of incubation

    E-Print Network [OSTI]

    Kohn, Nicholas William

    2007-04-25T23:59:59.000Z

    Several hypotheses have been offered to explain the mechanisms involved in incubation, the phenomenon in which resolution of a problem benefits more from interruption than continuous solution attempts. The predictions of three hypotheses were tested...

  7. Remote Store Programming: Mechanisms and Performance

    E-Print Network [OSTI]

    Wentzlaff, David

    2009-05-05T23:59:59.000Z

    This paper presents remote store programming (RSP). This paradigm combines usability and efficiency through the exploitation of a simple hardware mechanism, the remote store, which can easily be added to existing ...

  8. Applied Fluid Mechanics I) Course goals

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    design. #12;2 Textbook " Applied Fluid Mechanics" by Robert L. Mott, Sixth Edition in SI unit 1 Exam 30 Final Exam 30 (Total of 100) (30%)(&10%) () PDF lecture notes if any can be downloaded from

  9. Mechanisms of impaired osteoblast function during disuse

    E-Print Network [OSTI]

    Allen, Matthew Robert

    2004-11-15T23:59:59.000Z

    the mechanisms responsible for this decline are unclear. To investigate the limitations of osteoblasts during disuse, marrow ablation was superimposed on hindlimb unloaded mice. Marrow ablation is a useful model to study osteoblast functionality as new...

  10. Exploring the mechanisms of protein folding

    E-Print Network [OSTI]

    Xu, Ji; Ren, Ying; Li, Jinghai

    2013-01-01T23:59:59.000Z

    Neither of the two prevalent theories, namely thermodynamic stability and kinetic stability, provides a comprehensive understanding of protein folding. The thermodynamic theory is misleading because it assumes that free energy is the exclusive dominant mechanism of protein folding, and attributes the structural transition from one characteristic state to another to energy barriers. Conversely, the concept of kinetic stability overemphasizes dominant mechanisms that are related to kinetic factors. This article explores the stability condition of protein structures from the viewpoint of meso-science, paying attention to the compromise in the competition between minimum free energy and other dominant mechanisms. Based on our study of complex systems, we propose that protein folding is a meso-scale, dissipative, nonlinear and non-equilibrium process that is dominated by the compromise between free energy and other dominant mechanisms such as environmental factors. Consequently, a protein shows dynamic structures,...

  11. Mechanical and Industrial Engineering 230 Spring 2012

    E-Print Network [OSTI]

    Rothstein, Jonathan

    cycles Refrigeration and heat pump systems Final Exam (Date and time TBA) Suggested Reading Chapter 1Mechanical and Industrial Engineering 230 Spring 2012 Thermodynamics Course Syllabus Date Week 1 (1

  12. Determination of mechanical properties of reservoir rock

    E-Print Network [OSTI]

    Barnett, Ashley

    1993-01-01T23:59:59.000Z

    Apparatus, experimental procedure, and methodology have been developed to determine the mechanical response of reservoir rock. The apparatus is capable of subjecting cylindrical core specimens to triaxial stress states and temperatures...

  13. Loss mechanisms in turbine tip clearance flows

    E-Print Network [OSTI]

    Huang, Arthur (Arthur C.)

    2011-01-01T23:59:59.000Z

    Numerical simulations of tip clearance ow have been carried out to dene the loss generation mechanisms associated with tip leakage in unshrouded axial turbines. Mix- ing loss between the leakage, which takes the form of a ...

  14. Mechanical energy storage in carbon nanotube springs

    E-Print Network [OSTI]

    Hill, Frances Ann

    2011-01-01T23:59:59.000Z

    Energy storage in mechanical springs made of carbon nanotubes is a promising new technology. Springs made of dense, ordered arrays of carbon nanotubes have the potential to surpass both the energy density of electrochemical ...

  15. Mechanics of deformation of carbon nanotubes

    E-Print Network [OSTI]

    Garg, Mohit, S.M. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    The deformation mechanics of multi-walled carbon nanotubes (MWCNT) and vertically aligned carbon nanotube (VACNT) arrays were studied using analytical and numerical methods. An equivalent orthotropic representation (EOR) ...

  16. Key Physical Mechanisms in Nanostructured Solar Cells

    SciTech Connect (OSTI)

    Dr Stephan Bremner

    2010-07-21T23:59:59.000Z

    The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

  17. Remote controlled vacuum joint closure mechanism

    DOE Patents [OSTI]

    Doll, David W. (San Diego, CA); Hager, E. Randolph (La Jolla, CA)

    1986-01-01T23:59:59.000Z

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange.

  18. A quantum mechanical version of Price's theorem for Gaussian states

    E-Print Network [OSTI]

    Igor G. Vladimirov

    2014-09-15T23:59:59.000Z

    This paper is concerned with integro-differential identities which are known in statistical signal processing as Price's theorem for expectations of nonlinear functions of jointly Gaussian random variables. We revisit these relations for classical variables by using the Frechet differentiation with respect to covariance matrices, and then show that Price's theorem carries over to a quantum mechanical setting. The quantum counterpart of the theorem is established for Gaussian quantum states in the framework of the Weyl functional calculus for quantum variables satisfying the Heisenberg canonical commutation relations. The quantum mechanical version of Price's theorem relates the Frechet derivative of the generalized moment of such variables with respect to the real part of their quantum covariance matrix with other moments. As an illustrative example, we consider these relations for quadratic-exponential moments which are relevant to risk-sensitive quantum control.

  19. Mechanism of vacancy formation induced by hydrogen in tungsten

    SciTech Connect (OSTI)

    Liu, Yi-Nan [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191 (China) [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191 (China); Association EURATOM-TEKES, University of Helsinki, Helsinki, PO Box 64, 00560 (Finland); Ahlgren, T.; Bukonte, L.; Nordlund, K. [Association EURATOM-TEKES, University of Helsinki, Helsinki, PO Box 64, 00560 (Finland)] [Association EURATOM-TEKES, University of Helsinki, Helsinki, PO Box 64, 00560 (Finland); Shu, Xiaolin; Yu, Yi; Lu, Guang-Hong, E-mail: LGH@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191 (China)] [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191 (China); Li, Xiao-Chun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)] [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2013-12-15T23:59:59.000Z

    We report a hydrogen induced vacancy formation mechanism in tungsten based on classical molecular dynamics simulations. We demonstrate the vacancy formation in tungsten due to the presence of hydrogen associated directly with a stable hexagonal self-interstitial cluster as well as a linear crowdion. The stability of different self-interstitial structures has been further studied and it is particularly shown that hydrogen plays a crucial role in determining the configuration of SIAs, in which the hexagonal cluster structure is preferred. Energetic analysis has been carried out to prove that the formation of SIA clusters facilitates the formation of vacancies. Such a mechanism contributes to the understanding of the early stage of the hydrogen blistering in tungsten under a fusion reactor environment.

  20. Mechanical Engineering 1 Faculty of engineering, Department of

    E-Print Network [OSTI]

    Mechanical Engineering 1 Faculty of engineering, Department of --Mechanical Engineering;2 Undergraduate syllabuses Mechanical Engineering The Mechanical Engineering Department of Imperial College London is widely rated as the best in the UK. The Mechanical Engineering building is situated on Exhibition Road

  1. Unification of fluctuation theorems and one-shot statistical mechanics

    E-Print Network [OSTI]

    Nicole Yunger Halpern; Andrew J. P. Garner; Oscar C. O. Dahlsten; Vlatko Vedral

    2014-09-12T23:59:59.000Z

    Fluctuation-dissipation relations, such as Crooks' Theorem and Jarzynski's Equality, are powerful tools in quantum and classical nonequilibrium statistical mechanics. We link these relations to a newer approach known as "one-shot statistical mechanics." Rooted in one-shot information theory, one-shot statistical mechanics concerns statements true of every implementation of a protocol, not only of averages. We show that two general models for work extraction in the presence of heat baths obey fluctuation relations and one-shot results. We demonstrate the usefulness of this bridge between frameworks in several ways. Using Crooks' Theorem, we derive a bound on one-shot work quantities. These bounds are tighter, in certain parameter regimes, than a bound in the fluctuation literature and a bound in the one-shot literature. Our bounds withstand tests by numerical simulations of an information-theoretic Carnot engine. By analyzing data from DNA-hairpin experiments, we show that experiments used to test fluctuation theorems also test one-shot results. Additionally, we derive one-shot analogs of a known equality between a relative entropy and the average work dissipated as heat. Our unification of experimentally tested fluctuation relations with one-shot statistical mechanics is intended to bridge one-shot theory to applications.

  2. Optimal Control of Underactuated Mechanical Systems: A Geometric Approach

    E-Print Network [OSTI]

    L. Colombo; D. Martin de Diego; M. Zuccalli

    2009-12-10T23:59:59.000Z

    In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.

  3. Micro electromechanical systems (MEMS) for mechanical engineers

    SciTech Connect (OSTI)

    Lee, A. P., LLNL

    1996-11-18T23:59:59.000Z

    The ongoing advances in Microelectromechanical Systems (MEMS) are providing man-kind the freedom to travel to dimensional spaces never before conceivable. Advances include new fabrication processes, new materials, tailored modeling tools, new fabrication machines, systems integration, and more detailed studies of physics and surface chemistry as applied to the micro scale. In the ten years since its inauguration, MEMS technology is penetrating industries of automobile, healthcare, biotechnology, sports/entertainment, measurement systems, data storage, photonics/optics, computer, aerospace, precision instruments/robotics, and environment monitoring. It is projected that by the turn of the century, MEMS will impact every individual in the industrial world, totaling sales up to $14 billion (source: System Planning Corp.). MEMS programs in major universities have spawned up all over the United States, preparing the brain-power and expertise for the next wave of MEMS breakthroughs. It should be pointed out that although MEMS has been initiated by electrical engineering researchers through the involvement of IC fabrication techniques, today it has evolved such that it requires a totally multi-disciplinary team to develop useful devices. Mechanical engineers are especially crucial to the success of MEMS development, since 90% of the physical realm involved is mechanical. Mechanical engineers are needed for the design of MEMS, the analysis of the mechanical system, the design of testing apparatus, the implementation of analytical tools, and the packaging process. Every single aspect of mechanical engineering is being utilized in the MEMS field today, however, the impact could be more substantial if more mechanical engineers are involved in the systems level designing. In this paper, an attempt is made to create the pathways for a mechanical engineer to enter in the MEMS field. Examples of application in optics and medical devices will be used to illustrate how mechanical engineers made impact. Through a basic understanding of the history of MEMS, the background physics and scaling in micromechanical systems, and an introduction to baseline MEMS processes, a mechanical engineer should be well on his way to Alice's wonderland in the ever-exciting playground of MEMS.

  4. College of Engineering | Mechanical and Industrial Engineering Department

    E-Print Network [OSTI]

    Mountziaris, T. J.

    College of Engineering | Mechanical and Industrial Engineering Department Are you up for a challenge? In the Mechanical and Industrial Engineering Innovation Shop at UMass Amherst, we challenge, instruments, and computers to support mechanical and industrial engineering projects ­ including all

  5. THE DEPARTMENT OF Mechanical & Industrial Engineering's graduate programs ed-

    E-Print Network [OSTI]

    Kusiak, Andrew

    THE DEPARTMENT OF Mechanical & Industrial Engineering's graduate programs ed- ucate students Mechanical and Industrial Engineering faculty members conduct research in affiliation with vari- ous College I N Industrial Engineering Department of Mechanical & Industrial Engineering 3131 Seamans Center

  6. Standard Quantum Limit for Probing Mechanical Energy Quantization

    E-Print Network [OSTI]

    Corbitt, Thomas R.

    We derive a standard quantum limit for probing mechanical energy quantization in a class of systems with mechanical modes parametrically coupled to external degrees of freedom. To resolve a single mechanical quantum, it ...

  7. A Review of Student Difficulties in Upper-Level Quantum Mechanics

    E-Print Network [OSTI]

    Singh, Chandralekha

    2015-01-01T23:59:59.000Z

    Learning advanced physics, in general, is challenging not only due to the increased mathematical sophistication but also because one must continue to build on all of the prior knowledge acquired at the introductory and intermediate levels. In addition, learning quantum mechanics can be especially challenging because the paradigms of classical mechanics and quantum mechanics are very different. Here, we review research on student reasoning difficulties in learning upper-level quantum mechanics and research on students' problem-solving and metacognitive skills in these courses. Some of these studies were multi-university investigations. The investigations suggest that there is large diversity in student performance in upper-level quantum mechanics regardless of the university, textbook, or instructor and many students in these courses have not acquired a functional understanding of the fundamental concepts. The nature of reasoning difficulties in learning quantum mechanics is analogous to reasoning difficulties...

  8. Full Nexus between Newtonian and Relativistic Mechanics

    E-Print Network [OSTI]

    G. Sardin

    2008-06-01T23:59:59.000Z

    A full nexus between Newtonian and relativistic mechanics is set. Contrarily to what is commonly thought, Newtonian mechanics can be amended to suit all speeds up to c. It is demonstrated that when introducing the fact that the pulse of oscillators, i.e. emitters and clocks, is sensitive to speed, the Newtonian framework can be extended to all speeds. For this aim, it is formulated the concept of actor scenario vs. observer scenario. This differentiation is essential to avoid confusion between effective reality (actor scenario) and appearance (observer scenario). Measurements are subjected to kinematical aberrations, the observer scenario being inertial. These must be removed to attain intrinsic reality, i.e. that of actors. The lack of demarcation between the two scenarios leads to conceptual confusions. The amended Newtonian mechanics is of full application. Here, it has been mainly applied to the Newtonian Doppler effect, amended to suit all speeds.

  9. Polymer Quantum Mechanics and its Continuum Limit

    E-Print Network [OSTI]

    Alejandro Corichi; Tatjana Vukasinac; Jose A. Zapata

    2007-08-22T23:59:59.000Z

    A rather non-standard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle and a simple cosmological model.

  10. Remote controlled vacuum joint closure mechanism

    DOE Patents [OSTI]

    Doll, D.W.; Hager, E.R.

    1984-02-22T23:59:59.000Z

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange and maintain the high vacuum seal established by the displacement of the flange assembly and extension of the bellows without displacing the entire duct.

  11. Mechanical Properties of Aerogels. Final Report

    SciTech Connect (OSTI)

    Parmenter, K.E.; Milstein, F.

    1995-01-01T23:59:59.000Z

    Aerogels are extremely low density solids that are characterized by a high porosity and pore sizes on the order of nanometers. Their low thermal conductivity and sometimes transparent appearance make them desirable for applications such as insulation in cryogenic vessels and between double paned glass in solar architecture. An understanding of the mechanical properties of aerogels is necessary before aerogels can be used in load bearing applications. In the present study, the mechanical behavior of various types of fiber-reinforced silica aerogels was investigated with hardness, compression, tension and shear tests. Particular attention was paid to the effects of processing parameters, testing conditions, storage environment, and age on the aerogels` mechanical response. The results indicate that the addition of fibers to the aerogel matrix generally resulted in softer, weaker materials with smaller elastic moduli. Furthermore, the testing environment significantly affected compression results. Tests in ethanol show an appreciable amount of scatter, and are not consistent with results for tests in air. In fact, the compression specimens appeared to crack and begin to dissolve upon exposure to the ethanol solution. This is consistent with the inherent hydrophobic nature of these aerogels. In addition, the aging process affected the aerogels` mechanical behavior by increasing their compressive strength and elastic moduli while decreasing their strain at fracture. However, desiccation of the specimens did not appreciably affect the mechanical properties, even though it reduced the aerogel density by removing trapped moisture. Finally, tension and shear test results indicate that the shear strength of the aerogels exceeds the tensile strength. This is consistent with the response of brittle materials. Future work should concentrate on mechanical testing at cryogenic temperatures, and should involve more extensive tensile tests.

  12. Public Finance Mechanisms to Mobilize Investment in Climate Change...

    Open Energy Info (EERE)

    Public Finance Mechanisms to Mobilize Investment in Climate Change Mitigation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Public Finance Mechanisms to Mobilize...

  13. adaptive mechanisms regulate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alexandra I. Cristea 265 Statistical Mechanics: A Possible Model for Market-based Electric Power Control CiteSeer Summary: Statistical mechanics provides a useful analog for...

  14. Transition Path Sampling of Water Exchange Rates and Mechanisms...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Path Sampling of Water Exchange Rates and Mechanisms around Aqueous Ions . Transition Path Sampling of Water Exchange Rates and Mechanisms around Aqueous Ions . Abstract: The rates...

  15. Decoupling: Mechanics and Issues, Presentation to the New Mexico...

    Broader source: Energy.gov (indexed) [DOE]

    Decoupling: Mechanics and Issues, Presentation to the New Mexico Public Regulation Commission Energy Efficiency Incentives Workshop Decoupling: Mechanics and Issues, Presentation...

  16. Development and Validation of a Reduced Mechanism for Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Validation of a Reduced Mechanism for Biodiesel Surrogates for Compression Ignition Engine Applications Development and Validation of a Reduced Mechanism for Biodiesel Surrogates...

  17. Promotion of Hydrogen Release from Ammonia Borane with Mechanically...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promotion of Hydrogen Release from Ammonia Borane with Mechanically Activated Hexagonal Boron Nitride. Promotion of Hydrogen Release from Ammonia Borane with Mechanically Activated...

  18. A Survey of Process Migration Mechanisms Jonathan M. Smith

    E-Print Network [OSTI]

    Smith, Jonathan M.

    A Survey of Process Migration Mechanisms Jonathan M. Smith Computer Science Department Columbia Migration Mechanisms Jonathan M. Smith Computer Science Department Columbia University New York, NY 10027

  19. Deactivation mechanisms of NOx storage materials arising from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mechanisms of NOx storage materials arising from thermal aging and sulfur poisoning Deactivation mechanisms of NOx storage materials arising from thermal aging and sulfur poisoning...

  20. Project Profile: Degradation Mechanisms for Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Degradation Mechanisms for Thermal Energy Storage and Heat Transfer Fluid Containment Materials Project Profile: Degradation Mechanisms for Thermal Energy Storage and Heat Transfer...

  1. Attractive Noncovalent Interactions inthe Mechanism ofGrubbsSecond...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Attractive Noncovalent Interactions inthe Mechanism of GrubbsSecond-Generation Ru Catalysts forOlefin Metathesis. Attractive Noncovalent Interactions inthe Mechanism of...

  2. antimicrobial resistance mechanisms: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (more) Myers, Cullen Lucan 2013-01-01 31 Original article Mechanisms of resistance to acrolein Physics Websites Summary: Original article Mechanisms of resistance to acrolein in...

  3. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective...

    Broader source: Energy.gov (indexed) [DOE]

    peden16807.pdf More Documents & Publications Understanding the Deactivation Mechanisms of CuZeolite SCR Catalysts in Diesel Application Deactivation Mechanisms of Base Metal...

  4. Probing the Degradation Mechanisms in Electrolyte Solutions for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy. Probing the Degradation Mechanisms in Electrolyte Solutions for...

  5. Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer 2011 DOE...

  6. auction mechanism design: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engines Gatti, Nicola 9 Design analysis mechanisms for carbon auction market through electricity market coupling Physics Websites Summary: Design analysis mechanisms for...

  7. Contingency in the Direction and Mechanics of Soil Organic Matter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contingency in the Direction and Mechanics of Soil Organic Matter Responses to Increased Rainfall. Contingency in the Direction and Mechanics of Soil Organic Matter Responses to...

  8. The Mechanisms of Oxygen Reduction and Evolution Reactions in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries. The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous...

  9. Mechanisms controlling soil carbon turnover and their potential...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration . Mechanisms controlling soil carbon turnover and their potential...

  10. agricultural mechanical engineering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology Websites Summary: College of Engineering Mechanical Engineering Core 2.0 Completion Checklist Mechanical Engineering Science IN CHMY 141 (CHEM 131) 6 Research...

  11. Reconstruction of Sedimentary Rock Based on Mechanical Properties

    E-Print Network [OSTI]

    Jin, Guodong; Patzek, Tad W.; Silin, Dmitry B.

    2008-01-01T23:59:59.000Z

    the veri?cation of rock mechanical properties. The dynamicis white. IV. ROCK MECHANICAL PROPERTIES FIG. 9: Cementationextracting meaningful rock transport properties from these

  12. Chelation: A Fundamental Mechanism of Action of AGE Inhibitors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanism of Action of AGE Inhibitors, AGE Breakers, and Other Inhibitors of Diabetes Complications. Chelation: A Fundamental Mechanism of Action of AGE Inhibitors, AGE...

  13. Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments...

    Broader source: Energy.gov (indexed) [DOE]

    Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization of Enhanced Geothermal System Development and Production Coupled Thermal-Hydrological-Mechan...

  14. Mechanisms of interaction of radiation with matter

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This progress report is a summary and update of the research performed under DOE grant FG-02086-ER60405 from September 1, 1989 to August 31, 1990. Part I deals with mechanisms of photoemission from organic particulates, theoretical studied of the photoemission of electrons into atmospheres containing scavenger molecules, and theoretical studies of the possible existence of excitonic ions. Part II deals with the mechanisms of electrolytic reactions which occur at solid anthracene/aqueous electrolyte interfaces. Part III describes our most recent results on the physico-chemical interactions of mutagenic and carcinogenic polycyclic aromatic hydrocarbon (PAH) derivatives with nucleic acids. 3 refs., 14 figs., 2 tabs.

  15. Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading

    SciTech Connect (OSTI)

    Schaaf, A., E-mail: alexander.schaaf@de.bosch.com; De Monte, M., E-mail: alexander.schaaf@de.bosch.com; Hoffmann, C., E-mail: alexander.schaaf@de.bosch.com [Robert Bosch GmbH, Corporate Sector Research and Advance Engineering - Advance Production Technology 1 - Plastics Engineering (CR/APP), Postbox 1131, 71301 Waiblingen (Germany); Vormwald, M., E-mail: vormwald@wm.tu-darmstadt.de [Department of Material Science, Darmstadt University of Technology (Germany); Quaresimin, M., E-mail: marino.quaresimin@unipd.it [Department of Management and Engineering, University of Padova (Italy)

    2014-05-15T23:59:59.000Z

    The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology.

  16. Mechanics of Contact and Lubrication, MTM G230 Department of Mechanical & Industrial Enineering

    E-Print Network [OSTI]

    Müftü, Sinan

    is a fiber reinforced polymer. Due to its light weight and strength, it is used in many applications, fromMechanics of Contact and Lubrication, MTM G230 Department of Mechanical & Industrial Enineering on the same machine in the same environmental conditions for comparison. The machine to be used is the Umax

  17. Erwin Schroedinger and the rise of Wave mechanics. II. The creation of wave mechanics

    SciTech Connect (OSTI)

    Mehra, J.

    1987-12-01T23:59:59.000Z

    This article (Part II) deals with the creation of the theory of wave mechanics by Erwin Schroedinger in Zurich during the early months of 1926; he laid the foundations of this theory in his first two communications to Annalen der Physik. The background of Schroedinger's work on, and his actual creation of, wave mechanics are analyzed.

  18. Epoxy Nanocomposites with Highly Exfoliated Clay: Mechanical Properties and Fracture Mechanisms

    E-Print Network [OSTI]

    George, Steven C.

    Epoxy Nanocomposites with Highly Exfoliated Clay: Mechanical Properties and Fracture Mechanisms Ke; Revised Manuscript Received November 9, 2004 ABSTRACT: Epoxy/clay nanocomposites with a better exfoliated and transmission electron microscopy (TEM). It was found that clay was highly exfoliated and uniformly dispersed

  19. Characterizing motion contour detection mechanisms and equivalent mechanisms in the luminance domain

    E-Print Network [OSTI]

    Zanker, Johannes M.

    Characterizing motion contour detection mechanisms and equivalent mechanisms in the luminance with sparsely defined luminance Gabor patterns and found similar results, but only at low sampling densities. The nature of the information and the strength of the signal influence the properties of luminance contour

  20. Observation of non-Markovian micro-mechanical Brownian motion

    E-Print Network [OSTI]

    S. Groeblacher; A. Trubarov; N. Prigge; M. Aspelmeyer; J. Eisert

    2015-02-22T23:59:59.000Z

    At the heart of understanding the emergence of a classical world from quantum theory is the insight that all macroscopic quantum systems are to some extent coupled to an environment and hence are open systems. The associated loss of quantum coherence, i.e. decoherence, is also detrimental for quantum information processing applications. In contrast, properly engineered quantum noise can counteract decoherence and can even be used in robust quantum state generation. To exploit the detailed dynamics of a quantum system it is therefore crucial to obtain both good knowledge and control over its environment. An explicit modelling of the environment, however, may often not be possible. In this case, simplifying assumptions concerning the nature of the underlying quantum noise are being made that do not necessarily hold for real devices. Micro- and nano-mechanical resonators constitute prominent examples. They are now emerging as promising devices for quantum science. Because of their complex solid-state nature, the properties of their intrinsic decoherence mechanisms have been the subject of intense research for decades. Here we present a method to reconstruct the relevant properties of the environment, that is, its spectral density, of the centre of mass motion of a micro-mechanical oscillator. We observe a clear signature of non-Markovian Brownian motion, which is in contrast to the current paradigm to treat the thermal environment of mechanical quantum resonators as fully Markovian. The presented method, inspired by methods of system identification, can easily be transferred to other harmonic systems that are embedded in a complex environment, for example electronic or nuclear spin states in a solid state matrix. Our results also open up a route for mechanical quantum state engineering via coupling to unorthodox reservoirs.

  1. EIT-related phenomena and their mechanical analogs

    E-Print Network [OSTI]

    J. A. Souza; L. Cabral; R. R. Oliveira; C. J. Villas-Boas

    2015-06-19T23:59:59.000Z

    Systems of interacting classical harmonic oscillators have received considerable attention in the last years as analog models for describing electromagnetically induced transparency (EIT) and associated phenomenona. We review these models and investigate their validity for a variety of physical systems using two and three coupled harmonic oscillators. From the simplest EIT-$\\Lambda$ configuration and two coupled single cavity modes we show that each atomic dipole-allowed transition and a single cavity mode can be represented by a damped harmonic oscillator. In this way, a one-to-one correspondence between the classical and quantum dynamical variables is established. We show the limiting conditions and what is the equivalent for the EIT dark state in the mechanical system. This correspondence is extended to other systems which present EIT-related phenomena such as two and three-level (cavity EIT) atoms interacting with a single mode of an optical cavity, and four-level atoms in a inverted-Y and tripod configurations. The achieved mechanical equivalence for the cavity EIT system, presented for the first time, is corroborated by experimental data. The analysis of the probe response of all these systems also brings to light a physical interpretation for the expectation value of the photon annihilation operator $\\left\\langle a\\right\\rangle$. We show it can be directly related to the electric susceptibility of systems which composition includes a driven cavity field mode.

  2. Nano-Machines Achieve Huge Mechanical Breakthrough

    E-Print Network [OSTI]

    Leigh, David A.

    NANO TECH Nano-Machines Achieve Huge Mechanical Breakthrough Dublin, Ireland (SPX) Sep 08, 2005 that use molecular 'nano'-machines of this kind to help perform physical tasks. Nano-machines could also owners set to return to battered Orleans l Six dead, two missing after heavy rains hit Page 1 of 3Nano

  3. Huntington's disease: underlying molecular mechanisms and emerging

    E-Print Network [OSTI]

    Morimoto, Richard

    transcriptional mechanism also dictates the expression of polygluta- mine proteins. Here, we summarize the key with no disease modifying treatments available [1]. At the molecular level, HD is caused by a CAG trinu- cleotide is composed of proteins involved in transcription, DNA maintenance, cell cycle regulation, cellular orga

  4. Guosong Lin Department of Mechanical Engineering,

    E-Print Network [OSTI]

    Li, Jing

    Arbor, MI 48109 Wayne Cai Manufacturing Systems Research Laboratory, General Motors R&D Center, WarrenGuosong Lin Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109 e-mail: guosongl@umich.edu Jing Li Department of Industrial and Operations Engineering, The University of Michigan

  5. MECHANICAL BEHAVIOUR OF PVC: MODEL EVALUATION

    E-Print Network [OSTI]

    Miroshnychenko, Dmitri

    MECHANICAL BEHAVIOUR OF PVC: MODEL EVALUATION BY DMYTRO MIROSHNYCHENKO A MASTER'S THESIS SUBMITTED in the prediction of the Treloar data . . . 60 3 The yield stress of oriented PVC and its prediction 66 3 of oriented PVC . . . . . . 69 3.4 Prediction of the yield stress of oriented PVC . . . . . . . . . . . . . 73

  6. Mechanical Engineering Department "The Lindbergh Lectures"

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    :00 ­ 12:50 PM Room 1106 Mechanical Engineering Building CONNECTING ART AND SCIENCE TO DETERMINE CLIMATE CHANGE EFFECTS ON SEA TURTLE NESTING AND OCEANIC DISTRIBUTIONS Warren Porter, University of Wisconsin of the ultimate "green machine", the leatherback sea turtle, a species that has been around for the last 170

  7. KTH Mechanics SE-100 44 Stockholm, Sweden

    E-Print Network [OSTI]

    Haviland, David

    Graduate courses 5. Research activities 5. 1 Doctoral theses defended 2008 5. 2 Licentiate theses presented doctoral theses and presentations of five licentiate theses during 2008. The publication list their Licentiate theses. The department also, together with the Department of Solid Mechanics, serves as host

  8. KTH Mechanics SE-100 44 Stockholm, Sweden

    E-Print Network [OSTI]

    Haviland, David

    Graduate courses 5. Research activities 5. 1 Doctoral theses defended 5. 2 Licentiate theses presented 5. 3 activity of the department resulted in the defences of 7 doctoral theses and presentations of 6 licentiate their Licentiate theses. The department also, together with the Department of Solid Mechanics and the Marcus

  9. MECHANICAL & INDUSTRIAL ENGINEERING COLLOQUIUM: ME 794

    E-Print Network [OSTI]

    Bieber, Michael

    MEC Particle transport along and across the streamlines in microfluidic devices Dr. Shahab Shojaei-Zadeh Mechanical and Aerospace Engineering Rutgers University, New Jersey Flow in microfluidic devices are usually regarded based on the consideration of Stokes flow condition. Inertial microfluidics, however, has recently

  10. Wind Turbines Electrical and Mechanical Engineering

    E-Print Network [OSTI]

    Provancher, William

    Wind Turbines Electrical and Mechanical Engineering Objective · Introduce students to the concept of alternative energy. · Explain the math and scientific principles behind engineering wind turbines. Standards and how it applies to wind energy · About how surface area and shape effects wind turbine efficiency

  11. Mechanical Engineering Department "The Lindbergh Lectures"

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    :00 ­ 12:50 PM 1800 Engineering Hall MINIMALLY INVASIVE ROBOTIC CATHETERS: ADDRESSING CHALLENGES THROUGH MODELING, CONTROL, AND DESIGN Michael Zinn Assistant Professor, Mechanical Engineering Department, UW-Madison Abstract: In recent years, minimally-invasive surgical systems based on flexible robotic manipulators have

  12. Durability Improvements Through Degradation Mechanism Studies

    E-Print Network [OSTI]

    ) and carbon corrosion measurements #12;Budget DOE Cost Share Recipient Cost Share TOTAL $8,225,000 $501,263 $8 of an integrated comprehensive model of cell degradation · Methods to mitigate degradation of components #12 and mechanical stabilized ionomers. M4: LANL: Completion of drive cycle (load) life testing with start

  13. A Mechanized Theory for Microprocessor Correctness Statements

    E-Print Network [OSTI]

    Day, Nancy

    A Mechanized Theory for Microprocessor Correctness Statements Nancy A. Day 1 , Mark D. Aagaard 2 Microprocessor verification has become increasingly challenging with the use of optimizations such as out­of­order execution. Because of the complex­ ity of the implementations, a wide variety of microprocessor correctness

  14. A Mechanized Theory for Microprocessor Correctness Statements

    E-Print Network [OSTI]

    Waterloo, University of

    A Mechanized Theory for Microprocessor Correctness Statements Nancy A. Day1 , Mark D. Aagaard2 Microprocessor verification has become increasingly challenging with the use of optimizations such as out-of-order execution. Because of the complex- ity of the implementations, a wide variety of microprocessor correctness

  15. MECHANICAL & BIOMEDICAL ENGINEERING COURSE PLAN BY SEMESTER

    E-Print Network [OSTI]

    Barrash, Warren

    Mechanics of Materials 3 ME 320 Heat Transfer 3 MATH 360 or MATH 361 Engineering Statistics or Probability ENGR 245 Intro to Materials Science & Engineering 3 MATH 360 or MATH 361* Engineering Statistics or Probability and Statistics* 3 ENGR 245L Intro to Materials Science & Engr. Lab 1 ENGL 202 Technical

  16. Optomechanical laser cooling with mechanical modulations

    E-Print Network [OSTI]

    Marc Bienert; Pablo Barberis-Blostein

    2014-12-15T23:59:59.000Z

    We theoretically study the laser cooling of cavity optomechanics when the mechanical resonance frequency and damping depend on time. In the regime of weak optomechanical coupling we extend the theory of laser cooling using an adiabatic approximation. We discuss the modifications of the cooling dynamics and compare it with numerical simulations in a wide range of modulation frequencies.

  17. R. A. Wirtz Mechanical Engineering Department,

    E-Print Network [OSTI]

    Wirtz, Richard A.

    89557 A Hybrid Thermal Energy Storage Device, Part 2: Thermal Performance Figures of Merit Two figures of merit for hybrid Thermal Energy Storage (TES) units are developed: the volumetric figure of merit, V be designed for peak power operation. Incorporation of a Thermal Energy Storage TES mechanism into the module

  18. Mental Models of Physical Mechanisms and Their

    E-Print Network [OSTI]

    de Kleer, Johan

    is that of mechanistic devices, including physical machines, electronic and hydraulic systems, and even hybrids such as electro--mechanical systems. Our top-level goals are: (1) to investigate what it means for a person to understand a complex system, in particular, the mental models that experts form of how a system functions

  19. Acrolein-Mediated Mechanisms of Neuronal Death

    E-Print Network [OSTI]

    Shi, Riyi

    Acrolein-Mediated Mechanisms of Neuronal Death Peishan Liu-Snyder,1 Helen McNally,1 Riyi Shi,1 stress lead to breakdown of membrane lipids (lipid peroxidation) during secondary injury. Acrolein certain fea- tures of cell death induced by acrolein on PC12 cells as well as cells from dorsal root

  20. Saptarshi Basu Department of Mechanical, Aerospace and

    E-Print Network [OSTI]

    Peles, Yoav

    it an attractive heat transfer mechanism for use with electronics cooling in the near future. Increasing integrated cooling technologies, which could involve a heat flux controlled flow boil- ing setup. Such a system can circuit IC packaging density has resulted in very high power dissipation rates, and the present air-cooled

  1. Wave Mechanics and the Fifth Dimension

    E-Print Network [OSTI]

    Paul S. Wesson; James M. Overduin

    2013-01-28T23:59:59.000Z

    Replacing 4D Minkowski space by 5D canonical space leads to a clearer derivation of the main features of wave mechanics, including the wave function and the velocity of de Broglie waves. Recent tests of wave-particle duality could be adapted to investigate whether de Broglie waves are basically 4D or 5D in nature.

  2. Electrical resistivity mechanism in magnetorheological elastomer

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    polymer. Once the polymer is cured, this anisotropic structure is kept, giving to the composite new the conduction mechanism in such composite, the influence of pressure on the electrical resistivity of metal of the insulating polymer layer strongly adsorbed on the surface of particles. 1. Introduction Conductive polymer

  3. MECHANICS AND NONLINEAR CONTROL: MAKING UNDERWATER VEHICLES

    E-Print Network [OSTI]

    Leonard, Naomi

    which pro­ vide powerful means to understand and describe mechanical system behavior. Methods incorporat performance and efficient use of on­board power. We highlight the underwater vehicle control sys­ tem both torques that mimic the stabilizing moment associated with gravitational and buoy­ ant forces, using

  4. Energy Impacts of Envelope Tightening and Mechanical

    E-Print Network [OSTI]

    1 Energy Impacts of Envelope Tightening and Mechanical Ventilation for the U.S. Residential Sector Energy Commission through Contract 500-08-061. #12;3 ABSTRACT Effective residential envelope air sealing reduces infiltration and associated energy costs for thermal conditioning, yet often creates a need

  5. Department of Mechanical & Nuclear Engineering PENNPENNSSTATETATE

    E-Print Network [OSTI]

    Yang, Vigor

    Department of Mechanical & Nuclear Engineering PENNPENNSSTATETATE Introduction to Micro://www.onera.fr/conferences/micropropulsion/ For "Power MEMS" devices, typically in applications where batteries are currently used. - high power density For "Power MEMS" devices, typically in applications where batteries are currently used. - high power density

  6. THE DEVELOPMENTAL SPECIFICITY OF PHYSICAL MECHANISMS

    E-Print Network [OSTI]

    Newman, Stuart A.

    THE DEVELOPMENTAL SPECIFICITY OF PHYSICAL MECHANISMS STUART A. NEWMAN Marta Linde understanding was bumpy and tortuous, with not everybody arriving at the same place (Linde-Medina 2010). Among populations. The molding of the forms by functional requirements leads Linde-Medina to term this school

  7. DNA Twist Elasticity: Mechanics and Thermal Fluctuations

    E-Print Network [OSTI]

    Supurna Sinha; Joseph Samuel

    2010-11-30T23:59:59.000Z

    The elastic properties of semiflexible polymers are of great importance in biology. There are experiments on biopolymers like double stranded DNA, which twist and stretch single molecules to probe their elastic properties. It is known that thermal fluctuations play an important role in determining molecular elastic properties, but a full theoretical treatment of the problem of twist elasticity of fluctuating ribbons using the simplest worm like chain model (WLC) remains elusive. In this paper, we approach this problem by taking first a mechanical approach and then incorporating thermal effects in a quadratic approximation applying the Gelfand-Yaglom (GY) method for computing fluctuation determinants. Our study interpolates between mechanics and statistical mechanics in a controlled way and shows how profoundly thermal fluctuations affect the elasticity of semiflexible polymers. The new results contained here are: 1) a detailed study of the minimum energy configurations with explicit expressions for their energy and writhe and plots of the extension versus Link for these configurations. 2) a study of fluctuations around the local minima of energy and approximate analytical formulae for the free energy of stretched twisted polymers derived by the Gelfand Yaglom method. We use insights derived from our mechanical approach to suggest calculational schemes that lead to an improved treatment of thermal fluctuations. From the derived formulae, predictions of the WLC model for molecular elasticity can be worked out for comparison against numerical simulations and experiments.

  8. On diagram algebras and statistical mechanics

    E-Print Network [OSTI]

    Haase, Markus

    to discuss relationship structures of towers of diagram algebras statistical mechanical models of many body framework H may have interpretation of Energy (ergodic hypothesis) (as in, the more energy required to sustain a state s, the less likely we are to be in it -- idea being that high energy states are less

  9. Stochastic mechanism of color confinement V. Kuvshinov

    E-Print Network [OSTI]

    Heller, Barbara

    Stochastic mechanism of color confinement V. Kuvshinov Joint Institute for Power and Nuclear, for example inside a hadron or deconfined QGP. QCD vacuum is the environment for color quantum particles whose into the pieces transformed under trivial and adjoint representations [4]. As is known due to Casimir scaling

  10. A. Kornilov Department of Mechanical Engineering,

    E-Print Network [OSTI]

    Elperin, Tov

    transformation into a surface microcrack. The results of thermal stresses analysis are in an agreement is important to the electronic industry. Since chips often operate at a high power level Bar-Cohen 1 , Suhir 2 critical size propagate inside the wafer and result in mechanical failure of an electronic assembly. Thus

  11. Microfluidic Cell Electroporation Using a Mechanical Valve

    E-Print Network [OSTI]

    Lu, Chang

    Microfluidic Cell Electroporation Using a Mechanical Valve Jun Wang, M. Jane Stine, and Chang Lu Center, and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907 A microfluidic of integrating electroporation as a unit operation in large- scale microfluidic systems with the increasing

  12. Mechanical and Industrial Engineering UMassAmherst

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical and Industrial Engineering UMassAmherst OFFSHORE WIND ENERGY COST MODEL Charlene energy can be and the changes in the cost of energy as the design of the wind turbine changes. The wind, the cost of offshore wind energy generated by 100 wind turbines in 60m or more of water depth with a rating

  13. Department of Mechanical Engineering 2014 Seminar Series

    E-Print Network [OSTI]

    Shapiro, Benjamin

    Professor Mechanical Engineering Texas A&M University, Corpus Christi Thermal-fluids and Energy Conversion such as solar energy harvesting and enhanced energy transfer device development. Firstly, a label. Secondly, surface plasmon resonance technology is applied into energy conversion such as solar energy

  14. Mechanical Engineering Department "The Lindbergh Lectures"

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    of Cryogenic Thermosyphon Abstract: Cooling systems for superconducting magnets are required to reach liquid the cryocooler to maximize the cooling power of the system. Third Presenter: Jake Riederer (12:30) Title: Vehicle Room 1106 Mechanical Engineering Building 1513 University Avenue Final Research Presentations

  15. "We retrofitted mechanical systems in 8 buildings!"

    E-Print Network [OSTI]

    "We retrofitted mechanical systems in 8 buildings!" LOW INTEREST RATE LOANS AVAILABLE NOW! County of Contra Costa California Energy Commission Apply Today! See Case Study on Back of Flyer "Our low interest and cooling systems in eight buildings. The energy efficient measures include replacing pneumatic controls

  16. JOURNAL OF THEORETICAL AND APPLIED MECHANICS

    E-Print Network [OSTI]

    Krivtsov, Anton M.

    of this mechanism can been seen as new generation percussive drilling tools. Key words: vibration, energy transfer for Marine and Petroleum Technology entitled 'Enhanced Resonance Drilling' (Wiercigroch, 1999), which TRANSFER VIA MODULATED IMPACTS FOR PERCUSSIVE DRILLING Marian Wiercigroch University of Aberdeen, Centre

  17. Complex Dynamics of Nano-Mechanical Membrane in Cavity Optomechanics

    E-Print Network [OSTI]

    Muhammad Javed Akram; Farhan Saif

    2014-11-03T23:59:59.000Z

    Theoretical analysis of a suspended nano-mechanical membrane subject to an optical driving field in cavity optomechanics is presented, which is confirmed through numerical simulations. In the presence of an optical field between its mirrors a high finesse nano-mechanical resonator acts as an oscillator driven by radiation pressure force. The periodic nature of the radiation pressure force makes the nano-mechanical membrane in the optomechanical system as kicked harmonic oscillator. Mathematically the physical system displays a stochastic web map that helps to understand several properties of the kicked membrane in classical phase space. We find that our web map is area preserving, and displays quasi-periodic symmetrical structures in phase space which we express as q-fold symmetry. It is shown that under appropriate control of certain parameters, namely the frequency ratio (q) and the kicking strength (K), the dynamics of kicked membrane exhibits chaotic dynamics. We provide the stability analysis by means of Lyapunov exponent and survival probability.

  18. Abstract. We present a method to treat the solvent ef-ficiently in hybrid quantum mechanical/molecular me-

    E-Print Network [OSTI]

    Dinner, Aaron

    Abstract. We present a method to treat the solvent ef- ficiently in hybrid quantum mechanical, the central reactive region is treated quan- tum mechanically to allow key bonds to be made and broken, while the surrounding non-reactive region is treated classically to make the calculations computa- tionally feasible

  19. Highlighting the mechanism of the quantum speedup by time-symmetric and relational quantum mechanics

    E-Print Network [OSTI]

    Giuseppe Castagnoli

    2014-12-11T23:59:59.000Z

    Bob hides a ball in one of four drawers. Alice is to locate it. Classically she has to open up to three drawers, quantally just one. The fundamental reason for this quantum speedup is not known. We explain it by extending the usual representation of the quantum algorithm, limited to the process of solving the problem, to the process of setting the problem. The number of the drawer with the ball becomes a unitary transformation of the random outcome of the preparation measurement. This brings in relational quantum mechanics: the extension is with respect to Bob and cannot be with respect to Alice. It would tell her the drawer number before she opens any drawer. To Alice, the projection of the quantum state due to the preparation measurement should be retarded at the end of her search; in the input state of the search, the drawer number is determined to Bob and undetermined to Alice. A second consequence is the emergence of an ambiguity. Either the preparation measurement or the final one required to read the solution selects the solution. For reasons of symmetry, we assume that the selection shares evenly between the two measurements. All is as if Alice, by reading the solution, selected half of the information that specifies the drawer number. This selection leaves the input state to Bob unaltered and projects that to Alice on a state of lower entropy where she knows that half in advance. The quantum algorithm is a sum over histories in each of which Alice knows in advance that the ball is in a pair of drawers and locates it by opening one of the two. More in general, given an oracle problem, this explanation of the speedup predicts the number of queries required to solve it in an optimal quantum way.

  20. 8.333 Statistical Mechanics I: Statistical Mechanics of Particles, Fall 2007

    E-Print Network [OSTI]

    Kardar, Mehran

    Statistical Mechanics is a probabilistic approach to equilibrium properties of large numbers of degrees of freedom. In this two-semester course, basic principles are examined. Topics include: thermodynamics, probability ...

  1. 8.333 Statistical Mechanics I: Statistical Mechanics of Particles, Fall 2005

    E-Print Network [OSTI]

    Kardar, Mehran

    Statistical Mechanics is a probabilistic approach to equilibrium properties of large numbers of degrees of freedom. In this two-semester course, basic principles are examined. Topics include: thermodynamics, probability ...

  2. Nanocrystalline alloys : enhanced strengthening mechanisms and mechanically-driven structural evolution

    E-Print Network [OSTI]

    Rupert, Timothy J. (Timothy John)

    2011-01-01T23:59:59.000Z

    Nanocrystalline materials have experienced a great deal of attention in recent years, largely due to their impressive array of physical properties. In particular, nanocrystalline mechanical behavior has been of interest, ...

  3. Mechanics of Contact and Lubrication, Richards 275 Department of Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Müftü, Sinan

    . But as a person ages, the water content of the cartilage decreases as a result of a reduced proteoglycan content and varied sources of mechanical stress, including misalignments of bones caused by congenital or pathogenic

  4. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    SciTech Connect (OSTI)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05T23:59:59.000Z

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  5. Helium Migration Mechanisms in Polycrystalline Uranium Dioxide

    SciTech Connect (OSTI)

    Martin, Guillaume; Desgardin, Pierre; Sauvage, Thierry; Barthe, Marie-France [CERI, CNRS, 3 A rue de la Ferollerie, ORLEANS, 45071 (France); Garcia, Philippe; Carlot, Gaelle [DEN/DEC/SESC/LLCC, CEA Cadarache, Saint Paul Lez Durance, 13108 (France)

    2007-07-01T23:59:59.000Z

    This study aims at identifying the release mechanisms of helium in uranium dioxide. Two sets of polycrystalline UO{sub 2} sintered samples presenting different microstructures were implanted with {sup 3}He ions at concentrations in the region of 0.1 at.%. Changes in helium concentrations were monitored using two Nuclear Reaction Analysis (NRA) techniques based on the {sup 3}He(d,{alpha}){sup 1}H reaction. {sup 3}He release is measured in-situ during sample annealing at temperatures ranging between 700 deg. C and 1000 deg. C. Accurate helium depth profiles are generated after each annealing stage. Results that provide data for further understanding helium release mechanisms are discussed. It is found that helium diffusion appears to be enhanced above 900 deg. C in the vicinity of grain boundaries possibly as a result of the presence of defects. (authors)

  6. Rheological and Mechanical Considerations for Photovoltaic Encapsulants

    SciTech Connect (OSTI)

    Kempe, M. D.

    2005-11-01T23:59:59.000Z

    Photovoltaic (pv) devices are encapsulated in polymeric materials not only for corrosion protection, but also for mechanical support. Even though ethylene-vinyl acetate (EVA) suffers from having both glass and melting phase transitions at temperatures experienced under environmental exposure, its low cost and good optical transmission made EVA the most commonly used material for PV modules. These transitions, however, cause EVA to embrittle at low temperatures (~ -15 deg C) and to be very soft at high temperatures (>40 deg C). From mechanical considerations, one would prefer a material that was relatively unchanged under a wide temperature range. This would produce a more predictable and reliable package. These concerns are likely to become more important as silicon based cells are made thinner.

  7. Chimera States in Mechanical Oscillator Networks

    E-Print Network [OSTI]

    Martens, Erik Andreas; Fourrière, Antoine; Hallatschek, Oskar

    2013-01-01T23:59:59.000Z

    The synchronization of coupled oscillators is a fascinating manifestation of self-organization that nature employs to orchestrate essential processes of life, such as the beating of the heart. While it was long thought that synchrony or disorder were mutually exclusive steady states for a network of identical oscillators, numerous theoretical studies in recent years revealed the intriguing possibility of 'chimera states', in which the symmetry of the oscillator population is broken into a synchronous and an asynchronous part. However, a striking lack of empirical evidence raises the question of whether chimeras are indeed characteristic to natural systems. This calls for a palpable realization of chimera states without any fine-tuning, from which physical mechanisms underlying their emergence can be uncovered. Here, we devise a simple experiment with mechanical oscillators coupled in a hierarchical network to show that chimeras emerge naturally from a competition between two antagonistic synchronization patte...

  8. Mechanical switching of ferro-electric rubber

    E-Print Network [OSTI]

    J. M. Adams; M. Warner

    2008-12-09T23:59:59.000Z

    At the A to C transition, smectic elastomers have recently been observed to undergo $\\sim$35% spontaneous shear strains. We first explicitly describe how strains of up to twice this value could be mechanically or electrically induced in Sm-$C$ elastomers by rotation of the director on a cone around the layer normal at various elastic costs depending on constraints. Secondly, for typical sample geometries, we give the various microstructures in Sm-$C$ akin to those seen in nematic elastomers under distortions with constraints. It is possible to give explicit results for the nature of the textures. Chiral Sm-$C$ elastomers are ferro-electric. We calculate how the polarization could be mechanically reversed by large, hard or soft strains of the rubber, depending upon sample geometry.

  9. Fundamental mechanisms in flue-gas conditioning

    SciTech Connect (OSTI)

    Dahlin, R.S.; Vann Bush, P.; Snyder, T.R.

    1992-01-09T23:59:59.000Z

    The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ash properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

  10. Quantum Mechanics, Gravity, and the Multiverse

    E-Print Network [OSTI]

    Yasunori Nomura

    2012-07-30T23:59:59.000Z

    The discovery of accelerating expansion of the universe has led us to take the dramatic view that our universe may be one of the many universes in which low energy physical laws take different forms: the multiverse. I explain why/how this view is supported both observationally and theoretically, especially by string theory and eternal inflation. I then describe how quantum mechanics plays a crucial role in understanding the multiverse, even at the largest distance scales. The resulting picture leads to a revolutionary change of our view of spacetime and gravity, and completely unifies the paradigm of the eternally inflating multiverse with the many worlds interpretation of quantum mechanics. The picture also provides a solution to a long-standing problem in eternal inflation, called the measure problem, which I briefly describe.

  11. Professor C. N. Yang and Statistical Mechanics

    E-Print Network [OSTI]

    F. Y. Wu

    2010-10-09T23:59:59.000Z

    Professor Chen Ning Yang has made seminal and influential contributions in many different areas in theoretical physics. This talk focuses on his contributions in statistical mechanics, a field in which Professor Yang has held a continual interest for over sixty years. His Master's thesis was on a theory of binary alloys with multi-site interactions, some 30 years before others studied the problem. Likewise, his other works opened the door and led to subsequent developments in many areas of modern day statistical mechanics and mathematical physics. He made seminal contributions in a wide array of topics, ranging from the fundamental theory of phase transitions, the Ising model, Heisenberg spin chains, lattice models, and the Yang-Baxter equation, to the emergence of Yangian in quantum groups. These topics and their ramifications will be discussed in this talk.

  12. Falsification of dark energy by fluid mechanics

    E-Print Network [OSTI]

    Gibson, Carl H

    2012-01-01T23:59:59.000Z

    The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating supernovae dimness, suggesting a remarkable change in the expansion rate of the Universe from a decrease since the big bang to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanical considerations falsify both the accelerating expansion and dark energy concepts. Kinematic viscosity is neglected in current standard models of self-gravitational structure formation, which rely on cold dark matter CDM condensations and clusterings that are also falsified by fluid mechanics. Weakly collisional CDM particles do not condense but diffuse away. Photon viscosity predicts superclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the plasma fragments into Earth-mass gas planets in trillion planet clumps (proto-globular-star-cluster PGCs). The hydrogen planets freeze to form the dark matter of galaxies ...

  13. Net-Baryon Physics: Basic Mechanisms

    E-Print Network [OSTI]

    J. Alvarez-Muniz; R. Conceicao; J. Dias de Deus; M. C. Espirito Santo; J. G. Milhano; M. Pimenta

    2007-11-12T23:59:59.000Z

    It is well known that, in nuclear collisions, a sizable fraction of the available energy is carried away by baryons. As the baryon number is conserved, the net-baryon $B-\\bar{B}$ retains information on the energy-momentum carried by the incoming nuclei. A simple but consistent model for net-baryon production in high energy hadron-hadron, hadron-nucleus and nucleus-nucleus collisions is presented. The basic ingredients of the model are valence string formation based on standard PDFs with QCD evolution and string fragmentation via the Schwinger mechanism. The results of the model are presented and compared with both data and existing models. These results show that a good description of the main features of net-baryon data is possible on the framework of a simplistic model, with the advantage of making the fundamental production mechanisms manifest.

  14. Micro electro mechanical system optical switching

    DOE Patents [OSTI]

    Thorson, Kevin J; Stevens, Rick C; Kryzak, Charles J; Leininger, Brian S; Kornrumpf, William P; Forman, Glenn A; Iannotti, Joseph A; Spahn, Olga B; Cowan, William D; Dagel, Daryl J

    2013-12-17T23:59:59.000Z

    The present disclosure includes apparatus, system, and method embodiments that provide micro electo mechanical system optical switching and methods of manufacturing switches. For example, one optical switch embodiment includes at least one micro electro mechanical system type pivot mirror structure disposed along a path of an optical signal, the structure having a mirror and an actuator, and the mirror having a pivot axis along a first edge and having a second edge rotatable with respect to the pivot axis, the mirror being capable of and arranged to be actuated to pivot betweeen a position parallel to a plane of an optical signal and a position substantially normal to the plane of the optical signal.

  15. Stirling engine control mechanism and method

    DOE Patents [OSTI]

    Dineen, John J. (Durham, NH)

    1983-01-01T23:59:59.000Z

    A reciprocating-to-rotating motion conversion and power control device for a Stirling engine includes a hub mounted on an offset portion of the output shaft for rotation relative to the shaft and for sliding motion therealong which causes the hub to tilt relative to the axis of rotation of the shaft. This changes the angle of inclination of the hub relative to the shaft axis and changes the axial stroke of a set of arms connected to the hub and nutating therewith. A hydraulic actuating mechanism is connected to the hub for moving its axial position along the shaft. A balancing wheel is linked to the hub and changes its angle of inclination as the angle of inclination of the hub changes to maintain the mechanism in perfect balance throughout its range of motion.

  16. Two-axis tracking solar collector mechanism

    DOE Patents [OSTI]

    Johnson, Kenneth C. (201 W. California Ave., #401, Sunnyvale, CA 94086)

    1990-01-01T23:59:59.000Z

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  17. Two-axis tracking solar collector mechanism

    DOE Patents [OSTI]

    Johnson, Kenneth C. (201 W. California Ave. #705, Sunnyvale, CA 94086)

    1992-01-01T23:59:59.000Z

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  18. Two-axis tracking solar collector mechanism

    DOE Patents [OSTI]

    Johnson, K.C.

    1992-12-08T23:59:59.000Z

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion. 16 figs.

  19. Mechanical Energy and Power Systems Laboratory Mechanical Energy and Power Systems Laboratory Proceedings of the ASME 2009 International Mechanical Engineering Conference and

    E-Print Network [OSTI]

    Van de Ven, James D.

    Mechanical Energy and Power Systems Laboratory Mechanical Energy and Power Systems Laboratory Proceedings of the ASME 2009 International Mechanical Engineering Conference and Exposition ASME/IMECE 2009 Copyright c 2009 by ASME Dr. James D. Van de Ven #12;seal, and several of it's important variables.C(3

  20. Strange Bedfellows: Quantum Mechanics and Data Mining

    E-Print Network [OSTI]

    Marvin Weinstein

    2009-11-03T23:59:59.000Z

    Last year, in 2008, I gave a talk titled {\\it Quantum Calisthenics}. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.

  1. A microscopic mechanism for increasing thermoelectric efficiency

    E-Print Network [OSTI]

    Keiji Saito; Giuliano Benenti; Giulio Casati

    2010-05-26T23:59:59.000Z

    We study the coupled particle and energy transport in a prototype model of interacting one-dimensional system: the disordered hard-point gas, for which numerical data suggest that the thermoelectric figure of merit ZT diverges with the system size. This result is explained in terms of a microscopic mechanism, namely the local equilibrium is characterized by the emergence of a broad stationary "modified Maxwell-Boltzmann velocity distribution", of width much larger than the mean velocity of the particle flow.

  2. Molecular Mechanism of Biological Proton Transport

    SciTech Connect (OSTI)

    Pomes, R.

    1998-09-01T23:59:59.000Z

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  3. Mechanical characteristics of a flanged prosthesis

    E-Print Network [OSTI]

    Araujo, Tatiana Ivonne

    1982-01-01T23:59:59.000Z

    IECHANICAL CHARACTERISTICS OF A FLF':ED PROSTHESIS A Thesis by TATIANA IVONNE ARAUJO Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1982 Flajot... Subfect: gioengineering MECHANICAL CHARACTERISTICS OF A FLANGED PROSTHESIS A Thesis by TATIANA IVONNE ARAUJO Approved as to style and content by: (Chairman of Co ittee) (Member) (Member) (Member) (Head of Department) August 1982 ABST. RACT...

  4. Nonlinear Quantum Mechanics at the Planck Scale

    E-Print Network [OSTI]

    George Svetlichny

    2004-10-27T23:59:59.000Z

    I argue that the linearity of quantum mechanics is an emergent feature at the Planck scale, along with the manifold structure of space-time. In this regime the usual causality violation objections to nonlinearity do not apply, and nonlinear effects can be of comparable magnitude to the linear ones and still be highly suppressed at low energies. This can offer alternative approaches to quantum gravity and to the evolution of the early universe.

  5. Lock open mechanism for downhole safety valve

    SciTech Connect (OSTI)

    Shirk, S.H.

    1990-11-06T23:59:59.000Z

    This patent describes a wireline operable lock open mechanism for use in a downhole safety valve for a subterranean well conduit having an axially shiftable valve member movable downwardly between a closed and an open position relative to the conduit bore and biased to the closed position. The safety valve including a tubular housing assemblage defining an upwardly facing no-go shoulder in its upper end and a downwardly facing locking shoulder in its lower end above the valve member.

  6. Carbon Nanotube DNA Sensor and Sensing Mechanism

    E-Print Network [OSTI]

    Le Roy, Robert J.

    nanotube (SWNT) DNA sensors and the sensing mechanism. The simple and generic protocol for label for direct label-free detection of DNA hybridization in a biocompatible buffer solution. We also carried out is a field effect device, which has a typical on-current of 3-6 µA at 10 mV source- drain bias and an on-off

  7. Treatment of dredged sludge by mechanical dehydration

    SciTech Connect (OSTI)

    Maekawa, T.

    1992-03-01T23:59:59.000Z

    Sludge deposits in the water area damage the ecosystems and environments; their elimination has always been an urgent task for human communities. Generally, sludge deposits are dredged out of the bottom of the water area, transported to, and discharged at a large disposal area on land. Recently, however, it has become increasingly difficult to secure disposal areas and routes of speedy transportation for disposal of dredged sludge. Accordingly, there is an urgent need to reduce both the volume of dredged sludge and the size of the disposal area. This mechanical method is different from the conventional engineering dehydration by loading, consolidation, and drainage in that the dredged sludge is separated into sludge cakes and clean water that can be returned to the water area through mechanical centrifugal dehydration. Sludge deposits are distributed thin and wide on the bottom of the water area, and a pump dredge has been proved effective in many cases for dredging the upper layers of sludge deposits accurately and without creating turbidity in water. This mechanical sludge treatment technique can be most efficient when used in combination with a pump dredge. This method offers the following advantages: (a) It requires smaller space for treatment and disposal of dredged sludge than the conventional method. (b) Facilities and costs for transportation can be reduced. (c) Various systems can be adopted for transportation of sludge cakes. (d) This system is transportable and compact and can be constructed anywhere either on land or on water.

  8. Stress controls the mechanics of collagen networks

    E-Print Network [OSTI]

    Albert James Licup; Stefan Münster; Abhinav Sharma; Michael Sheinman; Louise M. Jawerth; Ben Fabry; David A. Weitz; Fred C. MacKintosh

    2015-03-09T23:59:59.000Z

    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress-strain relationship (Fung YC, Am J Physiol 213(6),1967; Humphrey JD, Proc R Soc Lond A: Math Phys Eng Sci 459(2029),2003), although the origins of this nonlinearity remain unknown (McMahon TA, Lec Math Life Sci 13,1980). Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress, and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues (Fung YC, Am J Physiol 213(6),1967). This further suggests new principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks.

  9. A Signal Processing Model of Quantum Mechanics

    E-Print Network [OSTI]

    Chris Thron; Johnny Watts

    2012-05-08T23:59:59.000Z

    This paper develops a deterministic model of quantum mechanics as an accumulation-and-threshold process. The model arises from an analogy with signal processing in wireless communications. Complex wavefunctions are interpreted as expressing the amplitude and phase information of a modulated carrier wave. Particle transmission events are modeled as the outcome of a process of signal accumulation that occurs in an extra (non-spacetime) dimension. Besides giving a natural interpretation of the wavefunction and the Born rule, the model accommodates the collapse of the wave packet and other quantum paradoxes such as EPR and the Ahanorov-Bohm effect. The model also gives a new perspective on the 'relational' nature of quantum mechanics: that is, whether the wave function of a physical system is "real" or simply reflects the observer's partial knowledge of the system. We simulate the model for a 2-slit experiment, and indicate possible deviations of the model's predictions from conventional quantum mechanics. We also indicate how the theory may be extended to a field theory.

  10. Fundamental mechanisms in flue gas conditioning

    SciTech Connect (OSTI)

    Snyder, T.R.; Robinson, M.S.; Bush, P.V.

    1992-04-27T23:59:59.000Z

    This project is divided into four tasks. The Management Plan was developed in task 1. Task 2, Evaluation of Mechanisms in FGD Sorbent and Ash Interactions, focuses on the characteristics of binary mixtures of these distinct powders. Task 3, Evaluation of Mechanisms in Conditioning Agents and Ash, is designed to examine the effects of various conditioning agents on fine ash particles to determine the mechanisms by which these agents alter the physical properties of the ash. Tasks 2 and 3 began with an extensive literature search and the assembly of existing theories. This phase of the project is now complete. During the past quarter, initial preparations of laboratory equipment for laboratory testing have been made. A plan for initial laboratory tests has been submitted to the Project Manager for review. Laboratory testing will commence once these laboratory plans have been formally approved. The results of the work performed under task 2 and 3 will be included in a Flue Gas Conditioning Model that will be issued under task 4. The Final Report for the project will also be prepared under task 4.

  11. Hybrid Car-Parrinello/Molecular Mechanics Modelling of Transition Metal Complexes: Structure, Dynamics and Reactivity

    E-Print Network [OSTI]

    Guidoni, Leonardo

    Hybrid Car-Parrinello/Molecular Mechanics Modelling of Transition Metal Complexes: Structure). We have recently developed a QM/MM extension of a Car-Parrinello scheme [5]. These hybrid Car functional theory embedded in a classical force field description. The power of such a combined Car

  12. Noise and vibration for a self-excited mechanical system with friction

    E-Print Network [OSTI]

    Boyer, Edmond

    Noise and vibration for a self-excited mechanical system with friction K. Soobbarayen1,a , S. The contact is modelled by introducing several local contact elements at the friction interface and a cubic contact law is used to describe the contact force. The classical Coulomb law is applied to model friction

  13. Forced oil-water displacement and spontaneous countercurrent imbibition are the crucial mechanisms of secondary oil

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Abstract Forced oil-water displacement and spontaneous countercurrent imbibition are the crucial mechanisms of secondary oil recovery. Classical mathematical models of both these unsteady flows are based on the fundamental assumption of local phase equilibrium. Thus, the water and oil flows are locally redistributed

  14. Entanglement in Classical Optics

    E-Print Network [OSTI]

    Partha Ghose; Anirban Mukherjee

    2013-09-12T23:59:59.000Z

    The emerging field of entanglement or nonseparability in classical optics is reviewed, and its similarities with and differences from quantum entanglement clearly pointed out through a recapitulation of Hilbert spaces in general, the special restrictions on Hilbert spaces imposed in quantum mechanics and the role of Hilbert spaces in classical polarization optics. The production of Bell-like states in classical polarization optics is discussed, and new theorems are proved to discriminate between separable and nonseparable states in classical wave optics where no discreteness is involved. The influence of the Pancharatnam phase on a classical Bell-like state is deived. Finally, to what extent classical polarization optics can be used to simulate quantum information processing tasks is also discussed. This should be of great practical importance because coherence and entanglement are robust in classical optics but not in quantum systems.

  15. Combined hydrophobicity and mechanical durability through surface nanoengineering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elliott, Paul R.; Stagon, Stephen P.; Huang, Hanchen; Furrer, David U.; Burlatsky, Sergei F.; Filburn, Thomas P.

    2015-04-08T23:59:59.000Z

    This paper reports combined hydrophobicity and mechanical durability through the nanoscale engineering of surfaces in the form of nanorod-polymer composites. Specifically, the hydrophobicity derives from nanoscale features of mechanically hard ZnO nanorods and the mechanical durability derives from the composite structure of a hard ZnO nanorod core and soft polymer shell. Experimental characterization correlates the morphology of the nanoengineered surfaces with the combined hydrophobicity and mechanical durability, and reveals the responsible mechanisms. Such surfaces may find use in applications, such as boat hulls, that benefit from hydrophobicity and require mechanical durability.

  16. The Multiverse Interpretation of Quantum Mechanics

    E-Print Network [OSTI]

    Raphael Bousso; Leonard Susskind

    2011-07-22T23:59:59.000Z

    We argue that the many-worlds of quantum mechanics and the many worlds of the multiverse are the same thing, and that the multiverse is necessary to give exact operational meaning to probabilistic predictions from quantum mechanics. Decoherence - the modern version of wave-function collapse - is subjective in that it depends on the choice of a set of unmonitored degrees of freedom, the "environment". In fact decoherence is absent in the complete description of any region larger than the future light-cone of a measurement event. However, if one restricts to the causal diamond - the largest region that can be causally probed - then the boundary of the diamond acts as a one-way membrane and thus provides a preferred choice of environment. We argue that the global multiverse is a representation of the many-worlds (all possible decoherent causal diamond histories) in a single geometry. We propose that it must be possible in principle to verify quantum-mechanical predictions exactly. This requires not only the existence of exact observables but two additional postulates: a single observer within the universe can access infinitely many identical experiments; and the outcome of each experiment must be completely definite. In causal diamonds with finite surface area, holographic entropy bounds imply that no exact observables exist, and both postulates fail: experiments cannot be repeated infinitely many times; and decoherence is not completely irreversible, so outcomes are not definite. We argue that our postulates can be satisfied in "hats" (supersymmetric multiverse regions with vanishing cosmological constant). We propose a complementarity principle that relates the approximate observables associated with finite causal diamonds to exact observables in the hat.

  17. Mechanical stabilization of BSCCO-2223 superconducting tapes

    SciTech Connect (OSTI)

    King, C.G.; Grey, D.A.; Mantone, A. [GE Medical Systems, Florence, SC (United States)] [and others

    1996-12-31T23:59:59.000Z

    A system to provide mechanical stabilization to high temperature BSCCO-2223 superconducting tape by laminating 0.081 mm thick, spring hard, copper foil to both sides with lead-tin eutectic solder has been successfully optimized. This system has been applied as a method to create a strong, windable composite from pure silver BSCCO tapes with a minimum of critical current (I{sub c}) degradation. The {open_quotes}as received{close_quotes} conductor is evaluated for physical consistency of width and thickness over the 3000 meters that were later strengthened, insulated and wound into a demonstration coil. Electrical degradation in the strengthened tape as a result of lamination was found to average 24 percent with a range from 4 to 51 percent. This was less than the degradation that would have occurred in an unstrengthened tape during subsequent insulation and coil winding processes. Additional work was performed to evaluate the mechanical properties of the strengthened tapes. The copper can double the ultimate tensile strength of the pure silver tapes. Additionally, pure silver and dispersion strengthened silver matrix tapes are laminated with 0.025 mm thick copper and 304 stainless steel foil to investigate minimization of the cross sectional area of the strengthening component. The stainless steel can increase the UTS of the pure silver tapes sixfold. Metallography is used to examine the laminate and the conductor. Mechanical properties and critical currents of these tapes are also reported both before and after strengthening. The I{sub c} is also measured as a function of strain on the laminated tapes.

  18. Clocks And Dynamics In Quantum Mechanics

    E-Print Network [OSTI]

    Michael York

    2014-07-11T23:59:59.000Z

    We argue that (1) our perception of time through change and (2) the gap between reality and our observation of it are at the heart of both quantum mechanics and the dynamical mechanism of physical systems. We suggest that the origin of quantum uncertainty lies with the absence of infinities or infinitesimals in observational data and that our concept of time derives from observing changing data (events). We argue that the fundamentally important content of the Superposition Principle is not the "probability amplitude" of posterior state observation but future state availability conditional only on prior information. Since event detection also implies posterior conditions (e.g. a specific type of detectable event occurred) as well as prior conditions, the probabilities of detected outcomes are also conditional on properties of the posterior properties of the observation. Such posterior conditions cannot affect the prior state availabilities and this implies violation of counter-factual definiteness. A component of a quantum system may be chosen to represent a clock and changes in other components can then be expected to be correlated with clocks with which they are entangled. Instead of traditional time-dependent equations of motion we provide a specific mechanism whereby evolution of data is instead quasi-causally related to the relative \\availability\\ of states and equations of motion are expressed in terms of quantized clock variables. We also suggest that time-reversal symmetry-breaking in weak interactions is an artifice of a conventional choice of co-ordinate time-function. Analysis of a "free" particle suggests that conventional co-ordinate space-time emerges from how we measure the separation of objects and events.

  19. Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems.

    SciTech Connect (OSTI)

    Friedmann, Thomas Aquinas; Czaplewski, David A.; Sullivan, John Patrick; Modine, Normand Arthur; Wendt, Joel Robert; Aslam, Dean (Michigan State University, Lansing, MI); Sepulveda-Alancastro, Nelson (University of Puerto Rico, Mayaguez, PR)

    2007-01-01T23:59:59.000Z

    Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.

  20. Mechanical Characterization of Rigid Polyurethane Foams.

    SciTech Connect (OSTI)

    Lu, Wei-Yang

    2014-12-01T23:59:59.000Z

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  1. Use of chemical mechanical polishing in micromachining

    DOE Patents [OSTI]

    Nasby, R.D.; Hetherington, D.L.; Sniegowski, J.J.; McWhorter, P.J.; Apblett, C.A.

    1998-09-08T23:59:59.000Z

    A process for removing topography effects during fabrication of micromachines. A sacrificial oxide layer is deposited over a level containing functional elements with etched valleys between the elements such that the sacrificial layer has sufficient thickness to fill the valleys and extend in thickness upwards to the extent that the lowest point on the upper surface of the oxide layer is at least as high as the top surface of the functional elements in the covered level. The sacrificial oxide layer is then polished down and planarized by chemical-mechanical polishing. Another layer of functional elements is then formed upon this new planarized surface. 4 figs.

  2. Use of chemical mechanical polishing in micromachining

    DOE Patents [OSTI]

    Nasby, Robert D. (Albuquerque, NM); Hetherington, Dale L. (Albuquerque, NM); Sniegowski, Jeffry J. (Albuquerque, NM); McWhorter, Paul J. (Albuquerque, NM); Apblett, Christopher A. (Cedar Crest, NM)

    1998-01-01T23:59:59.000Z

    A process for removing topography effects during fabrication of micromachines. A sacrificial oxide layer is deposited over a level containing functional elements with etched valleys between the elements such that the sacrificial layer has sufficient thickness to fill the valleys and extend in thickness upwards to the extent that the lowest point on the upper surface of the oxide layer is at least as high as the top surface of the functional elements in the covered level. The sacrificial oxide layer is then polished down and planarized by chemical-mechanical polishing. Another layer of functional elements is then formed upon this new planarized surface.

  3. SSC collider dipole magnet end mechanical design

    SciTech Connect (OSTI)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, S.M. (Fermi National Accelerator Lab., Batavia, IL (USA)); Leung, K.K. (Superconducting Super Collider Lab., Dallas, TX (USA))

    1991-05-01T23:59:59.000Z

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described. 8 refs., 3 figs.

  4. The Cleaning of Mechanically Harvested Cotton.

    E-Print Network [OSTI]

    Miller, H. F. (Herbert F.); Jones, D. L. (Don. L.); Smith, H. P. (Harris Pearson)

    1950-01-01T23:59:59.000Z

    The Cleaning of. Mechanically Harvested Cotton H. P. SMITH, D. L. JONES and H. F. MILLER, JR. 3lank Page in Original Bulletin] Preface For many years cotton growers in the High Plains area have found that cotton harvested late in the season... contained an excessive amount of foreign matter, and that the quality of the cotton was much lower than that of cotton harvested early in the season. This bulletin gives the results of a study conducted at Lubbock and College Station to determine...

  5. Consistency relations for the conformal mechanism

    SciTech Connect (OSTI)

    Creminelli, Paolo [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Joyce, Austin; Khoury, Justin [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Simonovi?, Marko, E-mail: creminel@ictp.it, E-mail: joyceau@sas.upenn.edu, E-mail: jkhoury@sas.upenn.edu, E-mail: marko.simonovic@sissa.it [SISSA, via Bonomea 265, 34136, Trieste (Italy)

    2013-04-01T23:59:59.000Z

    We systematically derive the consistency relations associated to the non-linearly realized symmetries of theories with spontaneously broken conformal symmetry but with a linearly-realized de Sitter subalgebra. These identities relate (N+1)-point correlation functions with a soft external Goldstone to N-point functions. These relations have direct implications for the recently proposed conformal mechanism for generating density perturbations in the early universe. We study the observational consequences, in particular a novel one-loop contribution to the four-point function, relevant for the stochastic scale-dependent bias and CMB ?-distortion.

  6. Non-representative quantum mechanical weak values

    E-Print Network [OSTI]

    B. E. Y. Svensson

    2015-03-06T23:59:59.000Z

    The operational definition of a weak value for a quantum mechanical system involves the limit of the weak measurement strength tending to zero. I study how this limit compares to the situation for the undisturbed (no weak measurement) system. Under certain conditions, which I investigate, this limit is discontinuous in the sense that it does not merge smoothly to the Hilbert space description of the undisturbed system. Hence, in these discontinuous cases, the weak value does not represent the undisturbed system. As a result, conclusions drawn from such weak values regarding the properties of the studied system cannot be upheld. Examples are given.

  7. Voltage instability: Mechanisms and control strategies

    SciTech Connect (OSTI)

    Vu, K.T. [ABB Transmission Technology Inst., Raleigh, NC (United States). Power Systems Center] [ABB Transmission Technology Inst., Raleigh, NC (United States). Power Systems Center; Liu, C.C. [Univ. of Washington, Seattle, WA (United States)] [Univ. of Washington, Seattle, WA (United States); Taylor, C.W. [Bonneville Power Administration, Portland, OR (United States)] [Bonneville Power Administration, Portland, OR (United States); Jimma, K.M. [Puget Sound Power and Light Co., Bellevue, WA (United States)] [Puget Sound Power and Light Co., Bellevue, WA (United States)

    1995-11-01T23:59:59.000Z

    One of the main objectives in operating an electric power system is to maintain a proper voltage level throughout a system. Failure to do so can lead to equipment damage and blackout. The article discusses the nonlinear aspects of power systems, with emphasis on voltage instability. It provides an overview of the state-of-the-art on the analysis and control of voltage dynamics. Dynamic mechanisms and control strategies are discussed from both theoretical and practical standpoints. The remedial controls implemented in the Puget Sound region of the Pacific Northwest indicate the practical significance of the research area.

  8. Studies of combustion kinetics and mechanisms

    SciTech Connect (OSTI)

    Gutman, D. [Catholic Univ. of America, Washington, DC (United States)

    1993-12-01T23:59:59.000Z

    The objective of the current research is to gain new quantitative knowledge of the kinetics and mechanisms of polyatomic free radicals which are important in hydrocarbon combustion processes. The special facility designed and built for these (which includes a heatable tubular reactor coupled to a photoionization mass spectrometer) is continually being improved. Where possible, these experimental studies are coupled with theoretical ones, sometimes conducted in collaboration with others, to obtain an improved understanding of the factors determining reactivity. The decomposition of acetyl radicals, isopropyl radicals, and n-propyl radicals have been studied as well as the oxidation of methylpropargyl radicals.

  9. Mechanical Models of Fault-Related Folding

    SciTech Connect (OSTI)

    Johnson, A. M.

    2003-01-09T23:59:59.000Z

    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  10. Mechanical Production of Cotton in Texas.

    E-Print Network [OSTI]

    Smith, H. P. (Harris Pearson); Jones, D. L. (Don L.)

    1948-01-01T23:59:59.000Z

    miles per hour should cover 50 to 70 acres in a 10-hour day. In exceed- ingly heavy crop residue this type of machine fails to thoroughly chop all the vegetation. In Northwestern Texas, the 4 and 5- MECHANIZED PRODUCTION OF COTTON IN TEXAS 7 row... of these tractors are used in the production of cotton, but surely the majority are being used on farms producing cotton. The production of a cotton crop can be divided into nine operations : disposal of crop residue and cover crops, preparation of the seedbed...

  11. Spacer grid assembly and locking mechanism

    DOE Patents [OSTI]

    Snyder, Jr., Harold J. (Rancho Santa Fe, CA); Veca, Anthony R. (San Diego, CA); Donck, Harry A. (San Diego, CA)

    1982-01-01T23:59:59.000Z

    A spacer grid assembly is disclosed for retaining a plurality of fuel rods in substantially parallel spaced relation, the spacer grids being formed with rhombic openings defining contact means for engaging from one to four fuel rods arranged in each opening, the spacer grids being of symmetric configuration with their rhombic openings being asymmetrically offset to permit inversion and relative rotation of the similar spacer grids for improved support of the fuel rods. An improved locking mechanism includes tie bars having chordal surfaces to facilitate their installation in slotted circular openings of the spacer grids, the tie rods being rotatable into locking engagement with the slotted openings.

  12. Scattering in PT-symmetric quantum mechanics

    SciTech Connect (OSTI)

    Cannata, Francesco [Istituto Nazionale di Fisica Nucleare, Sezione di Bologna and Dipartimento di Fisica dell' Universita, Via Irnerio 46, I 40126 Bologna (Italy)]. E-mail: Francesco.Cannata@bo.infn.it; Dedonder, Jean-Pierre [GMPIB Universite Paris 7 - Denis-Diderot, 2 Place Jussieu, F-75251, Paris Cedex 05 (France)]. E-mail: dedonder@paris7.jussieu.fr; Ventura, Alberto [Ente Nuove Tecnologie, Energia e Ambiente, Bologna and Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy)]. E-mail: Alberto.Ventura@bologna.enea.it

    2007-02-15T23:59:59.000Z

    A general formalism is worked out for the description of one-dimensional scattering in non-hermitian quantum mechanics and constraints on transmission and reflection coefficients are derived in the cases of P, T or PT invariance of the Hamiltonian. Applications to some solvable PT-symmetric potentials are shown in detail. Our main original results concern the association of reflectionless potentials with asymptotic exact PT symmetry and the peculiarities of separable kernels of non-local potentials in connection with Hermiticity, T invariance and PT invariance.

  13. FORTE antenna element and release mechanism design

    SciTech Connect (OSTI)

    Rohweller, D.J. [Astro Aerospace Corp., Carpinteria, CA (United States); Butler, T.Af. [Los Alamos National Lab., NM (United States)

    1995-02-01T23:59:59.000Z

    The Fast On-Orbit Recording of Transient Events (FORTE) satellite being built by Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL) has as its most prominent feature a large deployable (11 m by 5 m) log periodic antenna to monitor emissions from electrical storms on the Earth. This paper describes the antenna and the design for the long elements and explains the dynamics of their deployment and the damping system employed. It also describes the unique paraffin-actuated reusable tie-down and release mechanism employed in the system.

  14. Career Map: Mechanical Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirst Report toFrequently AskedMechanical Engineer

  15. School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University Energy Saving Control of Hydraulic SystemsEnergy Saving Control of Hydraulic Systems

    E-Print Network [OSTI]

    Yao, Bin

    School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University Energy Saving Control of Hydraulic Systems Principle Investigator: Bin Yao Research Assistant: Song Liu School of Mechanical Engineering Purdue

  16. School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University EnergyEnergy--Saving Control of Hydraulic SystemsSaving Control of Hydraulic Systems

    E-Print Network [OSTI]

    Yao, Bin

    School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University EnergyEnergy--Saving Control of Hydraulic Principle Investigator: Bin Yao Research Assistant: Song Liu School of Mechanical Engineering Purdue

  17. Damage mechanisms in the dynamic fracture of nominally brittle polymers

    E-Print Network [OSTI]

    Davy Dalmas; Claudia Guerra; Julien Scheibert; Daniel Bonamy

    2013-04-23T23:59:59.000Z

    Linear Elastic Fracture Mechanics (LEFM) provides a consistent framework to evaluate quantitatively the energy flux released to the tip of a growing crack. Still, the way in which the crack selects its velocity in response to this energy flux remains far from completely understood. To uncover the underlying mechanisms, we experimentally studied damage and dissipation processes that develop during the dynamic failure of polymethylmethacrylate (PMMA), classically considered as the archetype of brittle amorphous materials. We evidenced a well-defined critical velocity along which failure switches from nominally-brittle to quasi-brittle, where crack propagation goes hand in hand with the nucleation and growth of microcracks. Via post-mortem analysis of the fracture surfaces, we were able to reconstruct the complete spatiotemporal microcracking dynamics with micrometer/nanosecond resolution. We demonstrated that the true local propagation speed of individual crack fronts is limited to a fairly low value, which can be much smaller than the apparent speed measured at the continuum-level scale. By coalescing with the main front, microcracks boost the macroscale velocity through an acceleration factor of geometrical origin. We discuss the key role of damage-related internal variables in the selection of macroscale fracture dynamics.

  18. Reversible work extraction in a hybrid opto-mechanical system

    E-Print Network [OSTI]

    Cyril Elouard; Maxime Richard; Alexia Auffèves

    2015-02-16T23:59:59.000Z

    With the progress of nano-technology, thermodynamics also has to be scaled down, calling for specific protocols to extract and measure work. Usually, such protocols involve the action of an external, classical field (the battery) of infinite energy, that controls the energy levels of a small quantum system (the calorific fluid). Here we suggest a realistic device to reversibly extract work in a battery of finite energy : a hybrid optomechanical system. Such devices consist in an optically active two-level quantum system interacting strongly with a nano-mechanical oscillator that provides and stores mechanical work, playing the role of the battery. We identify protocols where the battery exchanges large, measurable amounts of work with the quantum emitter without getting entangled with it. When the quantum emitter is coupled to a thermal bath, we show that thermodynamic reversibility is attainable with state-of-the-art devices, paving the road towards the realization of a full cycle of information-to-energy conversion at the single bit level.

  19. Experimental and theoretical investigation of mechanism of Kinesin motility

    E-Print Network [OSTI]

    Labno, Anna Kinga

    2007-01-01T23:59:59.000Z

    Kinesin is a motor protein capable of utilizing chemical energy from ATP hydrolysis to generate mechanical force to power its progressive motility along a microtubule track. The mechanism of motility has been a subject of ...

  20. The normal basilar artery: structural properties and mechanical behavior 

    E-Print Network [OSTI]

    Wicker, Bethany Kay

    2009-05-15T23:59:59.000Z

    is a well established model for vasospasm. However, surprisingly little is known about the mechanical properties of the rabbit basilar artery. Using an in vitro custom organ culture and mechanical testing device, acute and cultured basilar arteries from...