Sample records for mechanics analysis advanced

  1. The second skin approach : skin strain field analysis and mechanical counter pressure prototyping for advanced spacesuit design

    E-Print Network [OSTI]

    Bethke, Kristen (Kristen Ann)

    2005-01-01T23:59:59.000Z

    The primary aim of this thesis is to advance the theory of advanced locomotion mechanical counter pressure (MCP) spacesuits by studying the changes in the human body shape during joint motion. Two experiments take advantage ...

  2. External ionization mechanisms for advanced thermionic converters

    SciTech Connect (OSTI)

    Hatziprokopiou, M.E.

    1981-01-01T23:59:59.000Z

    This work investigates ion generation and recombination mechanisms in the cesium plasma as they pertain to the advanced mode thermionic energy converter. The changes in plasma density and temperature within the converter have been studied under the influence of several promising auxiliary ionization candidate sources. Three novel approaches of external cesium ion generation have been investigated in some detail, namely vibrationally excited N/sub 2/ as are energy source of ionization of Cs ions in a dc discharge, microwave power as a means of resonant sustenance of the cesium plasma, and ion generation in a pulse N/sub 2/-Cs mixture. The experimental data obtained and discussed in this work show that all three techniques - i.e. the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave power - have considerable promise as schemes in auxiliary ion generation applicable to the advanced thermionic energy converter.

  3. Advances in total scattering analysis

    SciTech Connect (OSTI)

    Proffen, Thomas E [Los Alamos National Laboratory; Kim, Hyunjeong [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    In recent years the analysis of the total scattering pattern has become an invaluable tool to study disordered crystalline and nanocrystalline materials. Traditional crystallographic structure determination is based on Bragg intensities and yields the long range average atomic structure. By including diffuse scattering into the analysis, the local and medium range atomic structure can be unravelled. Here we give an overview of recent experimental advances, using X-rays as well as neutron scattering as well as current trends in modelling of total scattering data.

  4. Advanced Vehicle Technology Analysis & Evaluation Team

    Broader source: Energy.gov [DOE]

    Presentation on Advanced Vehicle Technology Analysis & Evaluation Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  5. Characterization of Thermo-Mechanical Behaviors of Advanced High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Thermo-Mechanical Behaviors of Advanced High Strength Steels (AHSS) Presenter: Mark Smith Principal Investigator: Xin Sun Pacific Northwest National Laboratory Principal...

  6. advanced mechanical testing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerospace Composites Engineering Websites Summary: Recent Advances in the Analysis and Testing of Aerospace Composites Dr. Vinay Goyal Aerospace-disciplinary team of engineers at...

  7. Advanced Mechanical Heat Pump Technologies for Industrial Applications

    E-Print Network [OSTI]

    Mills, J. I.; Chappell, R. N.

    , advanced chemical and mechanical heat pump technologies are being developed for industrial application. Determining which technologies are appropriate for particular industrial applications and then developing those technologies is a stepped process which...

  8. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    SciTech Connect (OSTI)

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31T23:59:59.000Z

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity is dependent on the chemistry of the particle, it is possible to map chemically similar areas which can also be related to the viscosity of that compound at temperature. A second method was also developed to determine the elements associated with the organic matrix of the coals, which is currently determined by chemical fractionation. Mineral compositions and mineral densities can be determined for both included and excluded minerals, as well as the fraction of the ash that will be represented by that mineral on a frame-by-frame basis. The slag viscosity model was improved to provide improved predictions of slag viscosity and temperature of critical viscosity for representative Powder River Basin subbituminous and lignite coals.

  9. Advanced materials: Information and analysis needs

    SciTech Connect (OSTI)

    Curlee, T.R.; Das, S.; Lee, R.; Trumble, D.

    1990-09-01T23:59:59.000Z

    This report presents the findings of a study to identify the types of information and analysis that are needed for advanced materials. The project was sponsored by the US Bureau of Mines (BOM). It includes a conceptual description of information needs for advanced materials and the development and implementation of a questionnaire on the same subject. This report identifies twelve fundamental differences between advanced and traditional materials and discusses the implications of these differences for data and analysis needs. Advanced and traditional materials differ significantly in terms of physical and chemical properties. Advanced material properties can be customized more easily. The production of advanced materials may differ from traditional materials in terms of inputs, the importance of by-products, the importance of different processing steps (especially fabrication), and scale economies. The potential for change in advanced materials characteristics and markets is greater and is derived from the marriage of radically different materials and processes. In addition to the conceptual study, a questionnaire was developed and implemented to assess the opinions of people who are likely users of BOM information on advanced materials. The results of the questionnaire, which was sent to about 1000 people, generally confirm the propositions set forth in the conceptual part of the study. The results also provide data on the categories of advanced materials and the types of information that are of greatest interest to potential users. 32 refs., 1 fig., 12 tabs.

  10. Examination of the legal mechanisms to regulate advanced fision reactors

    SciTech Connect (OSTI)

    Brinig, M.F.; Repici, D.J.

    1988-12-01T23:59:59.000Z

    The George Mason University School of Law (GMUSL) located in Northern Virginia, and its subcontractor, The John Francis Company, Inc., of Fairfax, Virginia, conducted a study for the Department of Energy's Office of Nuclear Energy which examined the legal mechanisms for the regulation of advanced fision reactors. This report presents the research and findings conducted under that study.

  11. Advanced Statistical Mechanics: CHEM 646 Problem Set 1

    E-Print Network [OSTI]

    Ronis, David M.

    is a function of position, show that dI() d = d r I() ( r) ( r). Inverting the question, suppose weAdvanced Statistical Mechanics: CHEM 646 Problem Set 1 1. At low densities, the generic pair distribution function can be approximated as (2) ( r1, r2) = 2 e- u12(r12) , where u12 is the pair potential

  12. Advanced Analysis: Skeleton notes 1. Fourier Theory

    E-Print Network [OSTI]

    Davies, Christopher

    Advanced Analysis: Skeleton notes 1. Fourier Theory The Fourier series of a function f() on [-, ] is - anein , where an = an(f) = 1 2 - f()e-in d. The Fourier transform of a function f(x) on R is the function ^f() = 1 2 - f(x)e-ix dx, and the Fourier inversion formula is f(x) = - f()eix d. One circle

  13. Advanced Fuel Cycle Economic Sensitivity Analysis

    SciTech Connect (OSTI)

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01T23:59:59.000Z

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  14. Advanced Power Plant Development and Analysis Methodologies

    SciTech Connect (OSTI)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30T23:59:59.000Z

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  15. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

  16. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    farms with advanced coal generation facilities and operatingfarms with advanced coal generation facilities and operatingin the stand-alone coal generation option (IGCC+CCS plant)

  17. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Renewable Energy and Energy Efficiency, DOE. LBNL 275-E Advanced Coal Wind Hybrid:Renewable Energy Laboratory), and Ryan Wiser ( LBNL). i Advanced Coal Wind Hybrid:

  18. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

  19. Climate Change Mitigation: An Analysis of Advanced Technology Scenarios

    SciTech Connect (OSTI)

    Clarke, Leon E.; Wise, Marshall A.; Placet, Marylynn; Izaurralde, R Cesar; Lurz, Joshua P.; Kim, Son H.; Smith, Steven J.; Thomson, Allison M.

    2006-09-18T23:59:59.000Z

    This report documents a scenario analysis that explores three advanced technology pathways toward climate stabilization using the MiniCAM model.

  20. advanced system analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    based on metric Balazinska, Magdalena 3 Advanced holographic nondestructive testing system for residual stress analysis CERN Preprints Summary: The design and operating of a...

  1. advanced neutronic analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectral regions. Such regions are ... Solan, George Michael 1975-01-01 15 Advanced Analysis Methods in High Energy Physics HEP - Experiment (arXiv) Summary: During the...

  2. Department of Mechanical and Nuclear Engineering Fall 2010 Advanced Cooled Compressor Diaphragms

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical and Nuclear Engineering Fall 2010 Advanced Cooled Compressor compressor that is cooled by circulating water through its diaphragm (isothermal compression instead of each ANSYS run included deflection and principle stresses Material for advanced compressor

  3. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Alone IGCC+CCS Coal Plant The levelized cost of electricitythan advanced coal plants and hence their cost estimates areestimates of the costs of an advanced coal plant, since they

  4. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    site it operates at partial load in more hours Advanced Coalthe ACWH operates more often at partial load conditions to

  5. Advanced Coal Wind Hybrid: Economic Analysis

    SciTech Connect (OSTI)

    Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

    2008-11-28T23:59:59.000Z

    Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW transmission line. In the G+CC+CCS plant, coal is gasified into syngas and CO{sub 2} (which is captured). The syngas is burned in the combined cycle plant to produce electricity. The ACWH facility is operated in such a way that the transmission line is always utilized at its full capacity by backing down the combined cycle (CC) power generation units to accommodate wind generation. Operating the ACWH facility in this manner results in a constant power delivery of 3,000 MW to the load centers, in effect firming-up the wind generation at the project site.

  6. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Coal Wind Hybrid: Economic Analysis additional cost of fuelWind Hybrid: Economic Analysis Levelized Generation CostCoal Wind Hybrid: Economic Analysis Notes: All Cost are in

  7. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    advanced coal-wind hybrid combined cycle power plant naturalwhen the wind generation drops, the power plant needs toa CSP plant, a wind plant produces power during all hours of

  8. Advanced Coupled THM Analysis in Geomechanics

    E-Print Network [OSTI]

    Shastri, Ajay

    2014-08-11T23:59:59.000Z

    This dissertation is aimed at advancing current understating and modeling of problems involving the complex soils systems. A wide range of problems are tackled here including those in: frozen soils; gas hydrate bearing ...

  9. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    G+CC+CCS IGCC+CCS FT HVAC HVDC IGCC PC advanced coal-windthan the Base Case (HVDC Only Transmission) Sensitivity toused in the FEAST model. HVDC transmission lines have lower

  10. Advanced Vulnerability Analysis and Intrusion Detection Through Predictive Attack Graphs

    E-Print Network [OSTI]

    Noel, Steven

    Advanced Vulnerability Analysis and Intrusion Detection Through Predictive Attack Graphs Steven, without considering how they contribute to overall attack risk. Similarly, intrusion alarms are logged threats, complexity of security data, and network growth. Our approach to network defense applies attack

  11. analysis latest advances: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the TMVA ... Becherini, Y; Pita, S; Punch, M 2012-01-01 75 Advanced holographic nondestructive testing system for residual stress analysis CERN Preprints Summary: The design and...

  12. Geothermal: Sponsored by OSTI -- Advanced Seismic Data Analysis...

    Office of Scientific and Technical Information (OSTI)

    Advanced Seismic Data Analysis Program (The Hot Pot Project), DOE Award: DE-EE0002839, Phase 1 Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

  13. Advanced Vehicle Technology Analysis and Evaluation Team

    E-Print Network [OSTI]

    Set ­ Models · Conventional, hybrid and electric vehicles · Fuel consumption and performance Testing · Advanced Powertrain Research Facility · ReFuel Facility Fleet Testing · Industry/Government LabFuelReFuel FacilityFacility Fleet TestingFleet Testing ·· Industry/GovernmentIndustry/Government ModelModel Validation

  14. Majorana Electroformed Copper Mechanical Analysis

    SciTech Connect (OSTI)

    Overman, Nicole R.; Overman, Cory T.; Kafentzis, Tyler A.; Edwards, Danny J.; Hoppe, Eric W.

    2012-04-30T23:59:59.000Z

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay. The DEMONSTRATOR will utilize ultra high purity electroformed copper for a variety of detector components and shielding. A preliminary mechanical evaluation was performed on the Majorana prototype electroformed copper material. Several samples were removed from a variety of positions on the mandrel. Tensile testing, optical metallography, scanning electron microscopy, and hardness testing were conducted to evaluate mechanical response. Analyses carried out on the Majorana prototype copper to this point show consistent mechanical response from a variety of test locations. Evaluation shows the copper meets or exceeds the design specifications.

  15. Advanced Fingerprint Analysis Project Fingerprint Constituents

    SciTech Connect (OSTI)

    GM Mong; CE Petersen; TRW Clauss

    1999-10-29T23:59:59.000Z

    The work described in this report was focused on generating fundamental data on fingerprint components which will be used to develop advanced forensic techniques to enhance fluorescent detection, and visualization of latent fingerprints. Chemical components of sweat gland secretions are well documented in the medical literature and many chemical techniques are available to develop latent prints, but there have been no systematic forensic studies of fingerprint sweat components or of the chemical and physical changes these substances undergo over time.

  16. Advanced nuclear rocket engine mission analysis

    SciTech Connect (OSTI)

    Ramsthaler, J.; Farbman, G.; Sulmeisters, T.; Buden, D.; Harris, P.

    1987-12-01T23:59:59.000Z

    The use of a derivative of the NERVA engine developed from 1955 to 1973 was evluated for potential application to Air Force orbital transfer and maneuvering missions in the time period 1995 to 2020. The NERVA stge was found to have lower life cycle costs (LCC) than an advanced chemical stage for performing low earth orbit (LEO) to geosynchronous orbit (GEO0 missions at any level of activity greater than three missions per year. It had lower life cycle costs than a high performance nuclear electric engine at any level of LEO to GEO mission activity. An examination of all unmanned orbital transfer and maneuvering missions from the Space Transportation Architecture study (STAS 111-3) indicated a LCC advantage for the NERVA stage over the advanced chemical stage of fifteen million dollars. The cost advanced accured from both the orbital transfer and maneuvering missions. Parametric analyses showed that the specific impulse of the NERVA stage and the cost of delivering material to low earth orbit were the most significant factors in the LCC advantage over the chemical stage. Lower development costs and a higher thrust gave the NERVA engine an LCC advantage over the nuclear electric stage. An examination of technical data from the Rover/NERVA program indicated that development of the NERVA stage has a low technical risk, and the potential for high reliability and safe operation. The data indicated the NERVA engine had a great flexibility which would permit a single stage to perform all Air Force missions.

  17. Development of Advanced Thermal-Hydrological-Mechanical-Chemical...

    Broader source: Energy.gov (indexed) [DOE]

    simulator developed from this project is among the first rigorous fully couple hydro-thermal-mechanical- chemical (THMC) reservoir simulator in public domain. * This...

  18. Characterization of Thermo-Mechanical Behaviors of Advanced High...

    Energy Savers [EERE]

    "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08smith7.pdf More Documents & Publications Characterization of Thermo-Mechanical Behaviors of...

  19. Characterization of Thermo-Mechanical Behaviors of Advanced High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. lm25smith.pdf More Documents & Publications Characterization of Thermo-Mechanical Behaviors of...

  20. DOI: 10.1002/adfm.200600877 Nanoparticle Coating for Advanced Optical, Mechanical and

    E-Print Network [OSTI]

    George, Steven M.

    DOI: 10.1002/adfm.200600877 Nanoparticle Coating for Advanced Optical, Mechanical and Rheological such particles are coated with ultrathin inor- ganic films. The system composed by titania nanoparticles coat- ed are not affected. Nanoparticle coating could also be used to improve the mi- crostructure and mechanical properties

  1. Advancing Usability Evaluation through Human Reliability Analysis

    SciTech Connect (OSTI)

    Ronald L. Boring; David I. Gertman

    2005-07-01T23:59:59.000Z

    This paper introduces a novel augmentation to the current heuristic usability evaluation methodology. The SPAR-H human reliability analysis method was developed for categorizing human performance in nuclear power plants. Despite the specialized use of SPAR-H for safety critical scenarios, the method also holds promise for use in commercial off-the-shelf software usability evaluations. The SPAR-H method shares task analysis underpinnings with human-computer interaction, and it can be easily adapted to incorporate usability heuristics as performance shaping factors. By assigning probabilistic modifiers to heuristics, it is possible to arrive at the usability error probability (UEP). This UEP is not a literal probability of error but nonetheless provides a quantitative basis to heuristic evaluation. When combined with a consequence matrix for usability errors, this method affords ready prioritization of usability issues.

  2. Fall 2013 Course Announcement Advanced Soil MechanicsCEEN 510

    E-Print Network [OSTI]

    , Second Edition, Prentice Hall, 2011 "Soil Mechanics (SI Edition)", by T.W. Lambe and R.V. Whitman, Wiley, 1969 Assessment: Exam 1 0.4 Exam 2 0.4 Coursework 0.2 Exam dates TBA Practice questions will be handed

  3. Quantitative Financial Analysis of Alternative Energy Efficiency Shareholder Incentive Mechanisms

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    Analysis of Alternative Energy Efficiency ShareholderAnalysis of Alternative Energy Efficiency Shareholderof alternative shareholder incentive mechanisms for energy

  4. 2.25 Advanced Fluid Mechanics, Fall 2002

    E-Print Network [OSTI]

    Sonin, A. A.

    Survey of principal concepts and methods of fluid dynamics. Mass conservation, momentum, and energy equations for continua. Navier-Stokes equation for viscous flows. Similarity and dimensional analysis. Lubrication theory. ...

  5. Complex Fluid Analysis with the Advanced Distillation Curve Approach

    E-Print Network [OSTI]

    Complex Fluid Analysis with the Advanced Distillation Curve Approach Thomas J. Bruno, Lisa S. Ott for measuring distillation curves reveals the physicochemical properties of complex fluids such as fuels distillation curves of complex fluids. The distillation curve provides the only practical avenue to assess

  6. ADVANCES IN ADAPTIVE DATA ANALYSIS Volume 1 (2009)

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    for Hydraulic Fracture Mapping 3 (2009) 407 Costa, M., see Peng, C.-K. 1 (2009) 61 Dang, P., see Qian, T. 4ADVANCES IN ADAPTIVE DATA ANALYSIS Volume 1 (2009) Author Index Adhami, R. R., see Bhuiyan, S. M. A

  7. Advanced Studies in Pure Mathematics Probabilistic Analysis of Directed Polymers

    E-Print Network [OSTI]

    Yoshida, Nobuo

    Advanced Studies in Pure Mathematics pp. 0--0 Probabilistic Analysis of Directed Polymers in a Random Environment: a Review Francis Comets, Tokuzo Shiga, and Nobuo Yoshida Abstract. Directed polymers­ sults. The material covers the diffusive behavior of the polymers in weak disorder phase studied by J

  8. Advanced Studies in Pure Mathematics Probabilistic Analysis of Directed Polymers

    E-Print Network [OSTI]

    Yoshida, Nobuo

    Advanced Studies in Pure Mathematics pp. 0­0 Probabilistic Analysis of Directed Polymers in a Random Environment: a Review Francis Comets, Tokuzo Shiga, and Nobuo Yoshida Abstract. Directed polymers- sults. The material covers the diffusive behavior of the polymers in weak disorder phase studied by J

  9. Advanced Analysis Qualifying Examination Department of Mathematics and Statistics

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    be a continuous increasing invertible function. Let F and F be the Lebesgue-Stieljes measures associated to FNAME: Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University function or characteristic function of A. 2. If a measure is not specified, use Lebesgue measure on R

  10. Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report

    SciTech Connect (OSTI)

    Jeff Bryan; Bill Landman; Porter Hill

    2012-12-01T23:59:59.000Z

    An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities capabilities distributed among multiple locations ? Modify Existing DOE Facilities capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

  11. Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design

    E-Print Network [OSTI]

    Wong, Vincent

    meter. All smart meters are connected to not only the power grid but also a communication infrastructure. This allows two-way communication among smart meters and the utility company. We analytically model each user1 Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design Pedram Samadi

  12. A Nanoindentation Study on Grain-Boundary Contributions to Strengthening and Aging Degradation Mechanisms in Advanced 12Cr Ferritic Steel

    SciTech Connect (OSTI)

    Jang, Jae-il [Hanyang University, Korea; Shim, Sang Hoon [ORNL; Komazaki, Shin-ichi [Muroran Institute of Technology, Japan; Honda, Tetsuya [Muroran Institute of Technology, Japan

    2007-01-01T23:59:59.000Z

    Nanoindentation experiments and microstructural analysis were performed on advanced 12% Cr ferritic steel having extremely fine and complex martensitic microstructures, to answer unsolved questions on the contributions of grain boundaries to strengthening and aging degradation mechanisms in both as-tempered and thermally aged steels. Interesting features of the experimental results led us to suggest that among several high angle boundaries, block boundary is most effective in enhancing the macroscopic strength in as-tempered virgin sample, and that a decrease in matrix strength rather than reduction in grain-boundary strengthening effect is primarily responsible for the macroscopic softening behavior observed during thermal exposure.

  13. MECH 529 Syllabus and Course Introduction MECH 529 Advanced Mechanical Systems

    E-Print Network [OSTI]

    .Bradley@Colostate.edu Class Description Advanced System Dynamics and Control with Applications Class Times and Location, Analysis and Control of Dynamic Systems, 2nd Edition, by William J. Palm III ($190 at Amazon) Basic MATLAB, Simulink and Stateflow, Colgren ($95 at Amazon) Modern Control Engineering, 4th Edition

  14. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01T23:59:59.000Z

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  15. analysis advanced simulation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  16. RISMC ADVANCED SAFETY ANALYSIS WORKING PLAN FY 2015 FY 2019

    SciTech Connect (OSTI)

    Szilard, Ronaldo H; Smith, Curtis L

    2014-09-01T23:59:59.000Z

    SUMMARY In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: 1. A value proposition (why is this important?) that will make the case for stakeholders use of the ASAP research and development (R&D) products. 2. An identification of likely end users and pathway to adoption of enhanced tools by the end-users. 3. A proposed set of practical and achievable use case demonstrations. 4. A proposed plan to address ASAP verification and validation (V&V) needs. 5. A proposed schedule for the multi-year ASAP.

  17. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    SciTech Connect (OSTI)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01T23:59:59.000Z

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  18. Systems and Controls Analysis and Testing; Harvesting More Wind Energy with Advanced Controls Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01T23:59:59.000Z

    This fact sheet outlines the systems and controls analysis and testing that takes place at the NWTC on the Controls Advanced Research Turbines.

  19. PERFORMANCE ANALYSIS OF MECHANICAL DRAFT COOLING TOWER

    SciTech Connect (OSTI)

    Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L

    2009-02-10T23:59:59.000Z

    Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has cross-flow and counter-current MDCT's consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to simulate the cooling tower performance for the counter-current cooling tower and to conduct a parametric study under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model and performed the benchmarking analysis against the integral measurement results to accomplish the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of parametric calculations was performed to investigate the impact of wind speeds and ambient conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was also benchmarked against the literature data and the SRS integral test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be published here.

  20. advanced thermal analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jaski XFD Division Advanced Photon Source July 2005 Work sponsored by U.S. DEPARTMENT OF ENERGY---...

  1. Advanced Multiphysics Coupling for LWR Fuel Performance Analysis

    SciTech Connect (OSTI)

    J. D. Hales; M. R. Tonks; F. N. Gleicher; B. W. Spencer; S. R. Novascone; R. L. Williamson; G. Pastore; D. M. Perez

    2014-11-01T23:59:59.000Z

    The most basic nuclear fuel analysis considers heat conduction and mechanical deformation and is therefore a multiphysics under- taking. The interaction of these two physics, particularly related to the feedback effect associated with heat transfer and mechanical contact at the fuel/clad gap, provides numerous computational challenges. This paper firstly reviews an effective approach to manage the nonlinearities associated with an evolving gap using BISON, a nuclear fuel performance application. Another example of multiphysics coupling for LWR analysis is that of neutronics and thermomechanics. In this case, we show coupling DeCART, a high fidelity core analysis program (based on the method of characteristics), to our fuel performance modeling application. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during a depletion or a fast transient simulation. A method was developed for mapping the fission rate density and fast neutron flux from DeCART to BISON. The data transfer of fission rate density is shown to agree with the fission rate density obtained from an internal model in BISON. Two-way data transfer was established by mapping the temperature distribution from BISON to DeCART. A Picard iterative algorithm was developed to converge the two physics. In addition to coupling to DeCART, efforts are underway to couple BISON to other neutronics packages. As a final example, we consider the need for multiscale coupling. Fission gas production and evolution significantly impact fuel performance, causing swelling, a reduction in the thermal conductivity, and fission gas release. The mechanisms involved occur at the atomistic and grain scale and are therefore not the domain of a fuel performance code. However, it is possible to use lower-length-scale models such as the MARMOT code to compute average properties, such as swelling or thermal conductivity. These may then be used by an engineering-scale model. We show examples of this multiscale, multiphysics modeling.

  2. Advanced Combustion/Modeling and Analysis Toward HCCI/PCCI in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CombustionModeling and Analysis Toward HCCIPCCI in a 60% Efficient Free-Piston Engine Advanced CombustionModeling and Analysis Toward HCCIPCCI in a 60% Efficient Free-Piston...

  3. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A...

    Energy Savers [EERE]

    Well-to-Wheels Analysis of Advanced FuelVehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions Well-to-Wheels Analysis...

  4. Recent Advancements in the Electro-Mechanical (E/M) Impedance Method for Structural Health Monitoring and NDE

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    -mechanical impedance technology has high potential for in-situ health monitoring and NDE of structural systems infrastructure specimens under full-scale static testing. A simplified E/M impedance measuring technique1 Recent Advancements in the Electro-Mechanical (E/M) Impedance Method for Structural Health

  5. Nonlinear viscoelastic characterization of thin films using dynamic mechanical analysis

    E-Print Network [OSTI]

    Payne, Debbie Flowers

    1993-01-01T23:59:59.000Z

    manner similar to the traditional time temperature superposition principle for linear viscoelastic materials where stress systematically compresses or expands the time scale. From dynamic mechanical testing and analysis, the experimental viscoelastic.... D. Nonlinear Characterization of Thin Film Materials. . . . Nonlinear Viscoelastic Models . Dynamic Mechanical Testing. Summary of Literature Reviewed. 5 5 7 8 III THEORETICAL ANALYSIS . A. B. C. D. Conversion of Experimental Values...

  6. advanced fingerprint analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

  7. advanced analysis methods: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

  8. advanced analysis techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

  9. Integrating advanced materials simulation techniques into an automated data analysis workflow at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Borreguero Calvo, Jose M [ORNL] [ORNL; Campbell, Stuart I [ORNL] [ORNL; Delaire, Olivier A [ORNL] [ORNL; Doucet, Mathieu [ORNL] [ORNL; Goswami, Monojoy [ORNL] [ORNL; Hagen, Mark E [ORNL] [ORNL; Lynch, Vickie E [ORNL] [ORNL; Proffen, Thomas E [ORNL] [ORNL; Ren, Shelly [ORNL] [ORNL; Savici, Andrei T [ORNL] [ORNL; Sumpter, Bobby G [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    This presentation will review developments on the integration of advanced modeling and simulation techniques into the analysis step of experimental data obtained at the Spallation Neutron Source. A workflow framework for the purpose of refining molecular mechanics force-fields against quasi-elastic neutron scattering data is presented. The workflow combines software components to submit model simulations to remote high performance computers, a message broker interface for communications between the optimizer engine and the simulation production step, and tools to convolve the simulated data with the experimental resolution. A test application shows the correction to a popular fixed-charge water model in order to account polarization effects due to the presence of solvated ions. Future enhancements to the refinement workflow are discussed. This work is funded through the DOE Center for Accelerating Materials Modeling.

  10. Advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting for Advanced Workflows Jack

  11. FAQS Gap Analysis Qualification Card Mechanical Systems

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  12. Advances in constitutive modelling of jointed rock hydro mechanical interactions at laboratory scale

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ) INPL-LAEGO-ENSMN, Parc de Saurupt, Ecole des mines, 54000 Nancy, France) (2) INERIS, Parc de Saurupt. The hydro mechanical modelling performed using 3DEC code can be improved from the previous analysis through débit hydraulique dans la fracture. La modélisation hydromécanique réalisée à l'aide du code 3DEC peut

  13. Advance Seismic Data Analysis Program: (The "Hot Pot Project")

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: To improve geothermal well target selection and reduce drilling risk through an innovative and advanced analytical method for interpreting seismic data to locate deep geothermal structures.

  14. Behavior analysis and mechanism: One is not the other

    E-Print Network [OSTI]

    Morris, Edward K.

    1993-01-01T23:59:59.000Z

    Behavior analysts have been called mechanists, and behavior analysis is said to be mechanistic, that is, aligned with the philosophy of mechanism. What this means is analyzed by (1) examining standard and specialized ...

  15. Performance Analysis of Accumulator-based Revocation Mechanisms

    E-Print Network [OSTI]

    Boyer, Edmond

    Performance Analysis of Accumulator-based Revocation Mechanisms Jorn Lapon1, Markulf Kohlweiss3 issues is the efficient revocation of anonymous credentials. Currently, accumulator based re- vocation- cations. Keywords: Anonymous Credentials, Revocation, Accumulators 1 Introduction In an increasing

  16. Nonlinear viscoelastic characterization of thin films using dynamic mechanical analysis

    E-Print Network [OSTI]

    Payne, Debbie Flowers

    1993-01-01T23:59:59.000Z

    NONLINEAR VISCOELASTIC CHARACTERIZATION OF THIN FILMS USING DYNAMIC MECHANICAL ANALYSIS A Thesis by DEBBIE FLOWERS PAYNE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE AUGUST 1993 Major Subject: Aerospace Engineering NONLINEAR VISCOELASTIC CHARACTERIZATION OF THIN FILMS USING DYNAMIC MECHANICAL ANALYSIS A Thesis by DEBBIE FLOWERS PAYNE Approved as to style and content by: Thomas W...

  17. ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING

    SciTech Connect (OSTI)

    A.V.G. Chizmeshya; M.J. McKelvy; G.H. Wolf; R.W. Carpenter; D.A. Gormley; J.R. Diefenbacher; R. Marzke

    2006-03-01T23:59:59.000Z

    Fossil fuels currently provide 85% of the world's energy needs, with the majority coming from coal, due to its low cost, wide availability, and high energy content. The extensive use of coal-fired power assumes that the resulting CO2 emissions can be vented to the atmosphere. However, exponentially increasing atmospheric CO2 levels have brought this assumption under critical review. Over the last decade, this discussion has evolved from whether exponentially increasing anthropogenic CO2 emissions will adversely affect the global environment, to the timing and magnitude of their impact. A variety of sequestration technologies are being explored to mitigate CO2 emissions. These technologies must be both environmentally benign and economically viable. Mineral carbonation is an attractive candidate technology as it disposes of CO2 as geologically stable, environmentally benign mineral carbonates, clearly satisfying the first criteria. The primary challenge for mineral carbonation is cost-competitive process development. CO2 mineral sequestration--the conversion of stationary-source CO2 emissions into mineral carbonates (e.g., magnesium and calcium carbonate, MgCO3 and CaCO3)--has recently emerged as one of the most promising sequestration options, providing permanent CO2 disposal, rather than storage. In this approach a magnesium-bearing feedstock mineral (typically serpentine or olivine; available in vast quantities globally) is specially processed and allowed to react with CO2 under controlled conditions. This produces a mineral carbonate which (1) is environmentally benign, (2) already exists in nature in quantities far exceeding those that could result from carbonating the world's known fossil fuel reserves, and (3) is stable on a geological time scale. Minimizing the process cost via optimization of the reaction rate and degree of completion is the remaining challenge. As members of the DOE/NETL managed National Mineral Sequestration Working Group we have already significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO2 mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH)2. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO2 mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach has provided a deeper understanding of the key reaction mechanisms than either individual approach can alone. We used ab initio techniques to significantly advance our understanding of atomic-level processes at the solid/solution interface by elucidating the origin of vibrational, electronic, x-ray and electron energy loss sp

  18. Improving Surface Analysis Methods for Characterization of Advanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    useful information from a variety of different analysis tools. The International Organization for Standardization (ISO) Committee TC 201 on Surface Chemical Analysis and ASTM...

  19. UCL CENTRE FOR ADVANCED SPATIAL ANALYSIS Centre for Advanced Spatial Analysis University College London 1 -19 Torrington Place Gower St London WC1E 7HB

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    London 1 - 19 Torrington Place Gower St London WC1E 7HB Tel: +44 (0)20 7679 1782 casa@ucl.ac.uk www://www.gisagents.blogspot.com Centre for Advanced Spatial Analysis University College London, 1-19 Torrington Place, London, WC1E 6BT

  20. TESEC 2001, Genova, Italy ADVANCED TECHNIQUES FOR SAFETY ANALYSIS APPLIED TO

    E-Print Network [OSTI]

    Tronci, Enrico

    TESEC 2001, Genova, Italy 1 ADVANCED TECHNIQUES FOR SAFETY ANALYSIS APPLIED TO THE GAS TURBINE for safety analysis of complex computer based systems. Such approaches are applied to the gas turbine control and electrical power supply of the centre of ENEA CR Casaccia. The plant is based on a small gas turbine and has

  1. 3 RESERVOIR PERFORMANCE ANALYSIS 3.1 ANALYSIS OF IMBIBITION MECHANISM IN THE NATURALLY FRACTURED

    E-Print Network [OSTI]

    Schechter, David S.

    recovery mechanism in the West Texas Spraberry reservoir is evaluated. Waterflood recovery in the Spraberry waterflooding is performed in this type of reservoir, the intent is to fill the fractures with water to initiate89 3 RESERVOIR PERFORMANCE ANALYSIS 3.1 ANALYSIS OF IMBIBITION MECHANISM IN THE NATURALLY FRACTURED

  2. Advanced Data Analysis Capability and Surrogate Generation | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power andAdvanced Components andEnergy

  3. advanced image analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: We discuss computing issues for data analysis and image reconstruction of PET-TOF medical scanner or other medical scanning devices producing large volumes of data....

  4. advanced organic analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modes of BEDT-TTF were reported and assigned Goddard III, William A. 183 FTIR ANALYSIS OF AEROGEL KEYSTONES FROM THE STARDUST INTERSTELLAR DUST COLLECTOR: ASSESSMENT OF TERRESTRIAL...

  5. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    SciTech Connect (OSTI)

    Sharp, G.L.; McCracken, R.T.

    2003-05-13T23:59:59.000Z

    The regulatory requirement to develop an upgraded safety basis for a DOE Nuclear Facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830). Subpart B of 10 CFR 830, ''Safety Basis Requirements,'' requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements. 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, ''Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants'' as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

  6. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    SciTech Connect (OSTI)

    Gregg L. Sharp; R. T. McCracken

    2003-06-01T23:59:59.000Z

    The regulatory requirement to develop an upgraded safety basis for a DOE nuclear facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830).1 Subpart B of 10 CFR 830, Safety Basis Requirements, requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements.1 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants2 as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

  7. Our MSc in Advanced Mechanical Engineering is designed to enhance your

    E-Print Network [OSTI]

    Li, Yi

    is to study the deformation and fracture behaviour of advanced high strength Dual Phase Steels used in car body panels. A Dual Phase Steel specimen provided by Tata Steel Europe (formerly CORUS Sweta Kadam Modelling the Deformation and Fracture of Automotive Advanced High Strength Steels "Dual

  8. advanced materials analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials analysis First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Analysis of Inorganic Materials...

  9. Advanced transport codes for nuclear thermal rocket analysis

    SciTech Connect (OSTI)

    Perry, R.T.; Buksa, J.J.; Houts, M.G. (Los Alamos National Lab., NM (United States))

    1992-01-01T23:59:59.000Z

    Nuclear thermal rocket (NTR) propulsion systems will enable the manned exploration of our solar system. In the context of current and future safety standards and environmental constraints, the likelihood of any large nuclear engine testing program similar in scope to the ROVER/NERVA program is remote. Consequently, extensive computational verification of the safety, reliability, and performance of the reactor and spacecraft will be required. Fortunately, the development of new codes coupled with computer hardware advances will make this feasible and cost-effective. Although coupled-phenomena and separate-effects modeling at the component and system levels will be necessary, this paper addresses only radiation transport modeling of NTR systems and reviews the status and applicability of several codes that Los Alamos National Laboratory (LANL) is using.

  10. Experimental and CFD Analysis of Advanced Convective Cooling Systems

    SciTech Connect (OSTI)

    Hassan, Yassin A; Ugaz, Victor M

    2012-06-27T23:59:59.000Z

    The objective of this project is to study the fundamental physical phenomena in the reactor cavity cooling system (RCCS) of very high-temperature reactors (VHTRs). One of the primary design objectives is to assure that RCCS acts as an ultimate heat sink capable of maintaining thermal integrity of the fuel, vessel, and equipment within the reactor cavity for the entire spectrum of postulated accident scenarios. Since construction of full-scale experimental test facilities to study these phenomena is impractical, it is logical to expect that computational fluid dynamics (CFD) simulations will play a key role in the RCCS design process. An important question then arises: To what extent are conventional CFD codes able to accurately capture the most important flow phenomena, and how can they be modified to improve their quantitative predictions? Researchers are working to tackle this problem in two ways. First, in the experimental phase, the research team plans to design and construct an innovative platform that will provide a standard test setting for validating CFD codes proposed for the RCCS design. This capability will significantly advance the state of knowledge in both liquid-cooled and gas-cooled (e.g., sodium fast reactor) reactor technology. This work will also extend flow measurements to micro-scale levels not obtainable in large-scale test facilities, thereby revealing previously undetectable phenomena that will complement the existing infrastructure. Second, in the computational phase of this work, numerical simulation of the flow and temperature profiles will be performed using advanced turbulence models to simulate the complex conditions of flows in critical zones of the cavity. These models will be validated and verified so that they can be implemented into commercially available CFD codes. Ultimately, the results of these validation studies can then be used to enable a more accurate design and safety evaluation of systems in actual nuclear power applications (both during normal operation and accident scenarios).

  11. Advancing clinical gait analysis through technology and policy

    E-Print Network [OSTI]

    Tan, Junjay

    2009-01-01T23:59:59.000Z

    Quantitatively analyzing human gait biomechanics will improve our ability to diagnose and treat disability and to measure the effectiveness of assistive devices. Gait analysis is one technology used to analyze walking, but ...

  12. Infrared Temperature Sensing of Mechanically Loaded Specimens: Thermal Analysis

    E-Print Network [OSTI]

    Rabin, Yoed

    , not the instantaneous effect of heating within a single loading cycle. KEY WORDS--Infrared, temperature measurement, meInfrared Temperature Sensing of Mechanically Loaded Specimens: Thermal Analysis by Y. Rabin and D. Rittel ABSTRACT--Infrared temperature-sensing techniques have the major advantages of virtually

  13. Chemical and mechanical analysis of tribofilms from fully formulated oils

    E-Print Network [OSTI]

    Gilbert, Pupa Gelsomina De Stasio

    the four major classes of solubilisates which are sludge, sludge precursors, acids and water in engine oilsChemical and mechanical analysis of tribofilms from fully formulated oils Part 1 Films on 52100 a fully formulated oil that is commercially available. Wear increases substantially when using the fully

  14. Statistical mechanical analysis of the dynamics of learning in perceptrons

    E-Print Network [OSTI]

    Coolen, ACC "Ton"

    with constant learning rate 2.5. Theory versus simulations 3. On-line learning: complete training setsStatistical mechanical analysis of the dynamics of learning in perceptrons C. W. H. MACE and A. C to analyse the dynamics of various classes of supervised learning rules in perceptrons. The character

  15. Advanced MR moisture sensor market feasibility analysis. Executive summary

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This paper briefly documents activities, background information, and results of marketing studies on the Magnetic Resonance Advanced Moisture Sensor (AMS). The main goals of the study are to identify industrial uses to guide development efforts, to become familiar with the industrial and magnetic resonance research capabilities/resources at the Southwest Research Institute (SwRI), and to develop a summary data sheet describing the AMS product for use with a broad mail survey of potential users. The studies are being performed through an alliance of Quantum Magnetics, US DOE, SwRI, The Townsend Agency, and PAI Partners. Efforts are being focused on NIR, Raman, and other optical spectroscopies as process measurement tools for onstream applications. Domestic and world markets for process analytical instrumentation, process moisture instrumentation, and nuclear magnetic resonance instrumentation are summarized. Three applications are identified as the most promising for magnetic resonance instrumentation: (1) polymer production, (2) pharmaceuticals preparation, and (3) prepared food processing. It is estimated that the process magnetic resonance market could reach $5 to $10 million annually by the end of this decade.

  16. Computing support for advanced medical data analysis and imaging

    E-Print Network [OSTI]

    Wi?licki, W; Bia?as, P; Czerwi?ski, E; Kap?on, ?; Kochanowski, A; Korcyl, G; Kowal, J; Kowalski, P; Kozik, T; Krzemie?, W; Molenda, M; Moskal, P; Nied?wiecki, S; Pa?ka, M; Pawlik, M; Raczy?ski, L; Rudy, Z; Salabura, P; Sharma, N G; Silarski, M; S?omski, A; Smyrski, J; Strzelecki, A; Wieczorek, A; Zieli?ski, M; Zo?, N

    2014-01-01T23:59:59.000Z

    We discuss computing issues for data analysis and image reconstruction of PET-TOF medical scanner or other medical scanning devices producing large volumes of data. Service architecture based on the grid and cloud concepts for distributed processing is proposed and critically discussed.

  17. Advanced analysis of metal distributions in human hair

    SciTech Connect (OSTI)

    Kempson, Ivan M.; Skinner, William M. (U. South Australia)

    2008-06-09T23:59:59.000Z

    A variety of techniques (secondary electron microscopy with energy dispersive X-ray analysis, time-of-flight-secondary ion mass spectrometry, and synchrotron X-ray fluorescence) were utilized to distinguish metal contamination occurring in hair arising from endogenous uptake from an individual exposed to a polluted environment, in this case a lead smelter. Evidence was sought for elements less affected by contamination and potentially indicative of biogenic activity. The unique combination of surface sensitivity, spatial resolution, and detection limits used here has provided new insight regarding hair analysis. Metals such as Ca, Fe, and Pb appeared to have little representative value of endogenous uptake and were mainly due to contamination. Cu and Zn, however, demonstrate behaviors worthy of further investigation into relating hair concentrations to endogenous function.

  18. Vehicle Technologies Office: Advanced Battery Development, System Analysis,

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems AnalysisVOLUME I A HISTORY OF THE UNITEDVehicle Technologiesand

  19. Test data will be used to validate advanced turbine design and analysis tools.

    E-Print Network [OSTI]

    Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize

  20. Sensitivity analysis of GSI based mechanical characterization of rock mass

    E-Print Network [OSTI]

    Vn, P

    2012-01-01T23:59:59.000Z

    Recently, the rock mechanical and rock engineering designs and calculations are frequently based on Geological Strength Index (GSI) method, because it is the only system that provides a complete set of mechanical properties for design purpose. Both the failure criteria and the deformation moduli of the rock mass can be calculated with GSI based equations, which consists of the disturbance factor, as well. The aim of this paper is the sensitivity analysis of GSI and disturbance factor dependent equations that characterize the mechanical properties of rock masses. The survey of the GSI system is not our purpose. The results show that the rock mass strength calculated by the Hoek-Brown failure criteria and both the Hoek-Diederichs and modified Hoek-Diederichs deformation moduli are highly sensitive to changes of both the GSI and the D factor, hence their exact determination is important for the rock engineering design.

  1. FIRESTRUC - Integrating advanced three-dimensional modelling methodologies for predicting thermo-mechanical behaviour of steel and composite structures subjected to natural fires

    E-Print Network [OSTI]

    Welch, Stephen; Miles, Steward; Kumar, Suresh; Lemaire, Tony; Chan, Alan

    A hierarchy of coupling strategies for integrating advanced three-dimensional modelling methodologies for prediction of the thermo-mechanical response of structures in fire has been developed and systematically assessed. ...

  2. Thermo-mechanical analysis of a DEMO divertor under the EFREMOV test conditions

    E-Print Network [OSTI]

    Cizelj, Leon

    Thermo-mechanical analysis of a DEMO divertor under the EFREMOV test conditions Igor Simonovski as a boundary condition in a thermo-mechanical analysis of the divertor. The analysis is performed for a number to Fusion Engineering and Design May 11, 2009 #12;Key words: thermo-mechanical analysis, divertor, He

  3. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe [NASA Marshall Space Flight Center, Nuclear Systems Branch/ER24, MSFC, AL 35812 (United States)

    2008-01-21T23:59:59.000Z

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  4. Analysis of Particle Size and Interface Effects on the Strength and Ductility of Advanced High Strength Steels

    E-Print Network [OSTI]

    Ettehad, Mahmood

    2013-03-14T23:59:59.000Z

    This thesis is devoted to the numerical investigation of mechanical behavior of Dual phase (DP) steels. Such grade of advanced high strength steels (AHSS) is favorable to the automotive industry due the unique properties such as high strength...

  5. Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Xoubi, Ned [ORNL; Primm, Trent [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

    2009-01-01T23:59:59.000Z

    This study presents the neutronic analysis of an advanced fuel design concept for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) that could significantly extend the current fuel cycle length under the existing design and safety criteria. A key advantage of the fuel design herein proposed is that it would not require structural changes to the present HFIR core, in other words, maintaining the same rated power and fuel geometry (i.e., fuel plate thickness and coolant channel dimensions). Of particular practical importance, as well, is the fact that the proposed change could be justified within the bounds of the existing nuclear safety basis. The simulations herein reported employed transport theory-based and exposure-dependent eigenvalue characterization to help improve the prediction of key fuel cycle parameters. These parameters were estimated by coupling a benchmarked three-dimensional MCNP5 model of the HFIR core to the depletion code ORIGEN via the MONTEBURNS interface. The design of an advanced HFIR core with an improved fuel loading is an idea that evolved from early studies by R. D. Cheverton, formerly of ORNL. This study contrasts a modified and increased core loading of 12 kg of 235U against the current core loading of 9.4 kg. The simulations performed predict a cycle length of 39 days for the proposed fuel design, which represents a 50% increase in the cycle length in response to a 25% increase in fissile loading, with an average fuel burnup increase of {approx}23%. The results suggest that the excess reactivity can be controlled with the present design and arrangement of control elements throughout the core's life. Also, the new power distribution is comparable or even improved relative to the current power distribution, displaying lower peak to average fission rate densities across the inner fuel element's centerline and bottom cells. In fact, the fission rate density in the outer fuel element also decreased at these key locations for the proposed design. Overall, it is estimated that the advanced core design could increase the availability of the HFIR facility by {approx}50% and generate {approx}33% more neutrons annually, which is expected to yield sizeable savings during the remaining life of HFIR, currently expected to operate through 2014. This study emphasizes the neutronics evaluation of a new fuel design. Although a number of other performance parameters of the proposed design check favorably against the current design, and most of the core design features remain identical to the reference, it is acknowledged that additional evaluations would be required to fully justify the thermal-hydraulic and thermal-mechanical performance of a new fuel design, including checks for cladding corrosion performance as well as for industrial and economic feasibility.

  6. Surge Nozzle NDE Specimen Mechanical Stress Improvement Analysis

    SciTech Connect (OSTI)

    Fredette, Lee F.

    2011-07-14T23:59:59.000Z

    The purpose of this project was to perform a finite element analysis of a pressurized water reactor pressurizer surge nozzle mock-up to predict both the weld residual stresses created in its construction and the final stress state after the application of the Mechanical Stress Improvement Process (MSIP). Strain gages were applied to the inner diameter of the mock-up to record strain changes during the MSIP. These strain readings were used in an attempt to calculate the final stress state of the mock-up as well.

  7. Quantitative Financial Analysis of Alternative Energy Efficiency Shareholder Incentive Mechanisms

    SciTech Connect (OSTI)

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2008-08-03T23:59:59.000Z

    Rising energy prices and climate change are central issues in the debate about our nation's energy policy. Many are demanding increased energy efficiency as a way to help reduce greenhouse gas emissions and lower the total cost of electricity and energy services for consumers and businesses. Yet, as the National Action Plan on Energy Efficiency (NAPEE) pointed out, many utilities continue to shy away from seriously expanding their energy efficiency program offerings because they claim there is insufficient profit-motivation, or even a financial disincentive, when compared to supply-side investments. With the recent introduction of Duke Energy's Save-a-Watt incentive mechanism and ongoing discussions about decoupling, regulators and policymakers are now faced with an expanded and diverse landscape of financial incentive mechanisms, Determining the 'right' way forward to promote deep and sustainable demand side resource programs is challenging. Due to the renaissance that energy efficiency is currently experiencing, many want to better understand the tradeoffs in stakeholder benefits between these alternative incentive structures before aggressively embarking on a path for which course corrections can be time-consuming and costly. Using a prototypical Southwest utility and a publicly available financial model, we show how various stakeholders (e.g. shareholders, ratepayers, etc.) are affected by these different types of shareholder incentive mechanisms under varying assumptions about program portfolios. This quantitative analysis compares the financial consequences associated with a wide range of alternative incentive structures. The results will help regulators and policymakers better understand the financial implications of DSR program incentive regulation.

  8. Deformation Microstructures and Creep Mechanisms in Advanced ZR-Based Cladding Under Biazal Loading

    SciTech Connect (OSTI)

    K. Linga (KL) Murty

    2008-08-11T23:59:59.000Z

    Investigate creep behavior of Zr-based cladding tubes with attention to basic creep mechanisms and transitions in them at low stresses and/or temperatures and study the dislocation microstructures of deformed samples for correlation with the underlying micromechanism of creep

  9. Optical layout and mechanical structure of polarimeter-interferometer system for Experimental Advanced Superconducting Tokamak

    SciTech Connect (OSTI)

    Zou, Z. Y.; Liu, H. Q., E-mail: hqliu@ipp.ac.cn; Jie, Y. X.; Wang, Z. X.; Shen, J. S.; An, Z. H.; Yang, Y.; Zeng, L.; Wei, X. C.; Li, G. S.; Zhu, X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Ding, W. X.; Brower, D. L. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States); Lan, T. [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-11-15T23:59:59.000Z

    A Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system for measurement current density profile and electron density profile is under development for the EAST tokamak. The FIR beams are transmitted from the laser room to the optical tower adjacent to EAST via ?20 m overmoded dielectric waveguide and then divided into 5 horizontal chords. The optical arrangement was designed using ZEMAX, which provides information on the beam spot size and energy distribution throughout the optical system. ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system.

  10. Dynamic Mechanical Thermal Analysis of Virgin TR-55 Silicone Rubber

    SciTech Connect (OSTI)

    Small IV, W; Wilson, T S

    2009-10-09T23:59:59.000Z

    Dynamic mechanical thermal analysis (DMTA) of virgin TR-55 silicone rubber specimens was conducted. Dynamic frequency/temperature sweep tests were conducted over the ranges 0.1-100 rad/s and 30-100 C using a parallel plate test geometry. A strain of 0.2% was used, which was near the upper limit of the linear viscoelastic region of the material based on initial dynamic strain sweep tests. Master curves of G{prime} and G{double_prime} as a function of frequency were generated using time-temperature superposition (horizontal shift with initial vertical correction). The activation energy calculated from an Arrhenius fit to the horizontal shift factors was 178-355 kJ/mol. The calculated percent load retention at {approx}50 years was 61-68%.

  11. Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis

    SciTech Connect (OSTI)

    Smith, Curtis L; Mandelli, Diego; Zhegang Ma

    2014-11-01T23:59:59.000Z

    As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a station blackout (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.

  12. Recent advances in hydraulic fracturing

    SciTech Connect (OSTI)

    Gidley, J.L.

    1989-01-01T23:59:59.000Z

    This book is a reference to the application of significant technological advances in hydraulic fracturing. It features illustrative problems to demonstrate specific applications of advanced technologies. Chapters examine pretreatment formation evaluation, rock mechanics and fracture geometry, 2D and 3D fracture-propagation models, propping agents and fracture conductivity, fracturing fluids and additives, fluid leakoff, flow behavior, proppant transport, treatment design, well completions, field implementation, fracturing-pressure analysis, postfracture formation evaluation, fracture azimuth and geometry determination, and economics of fracturing.

  13. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    SciTech Connect (OSTI)

    Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

    1997-12-31T23:59:59.000Z

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  14. Advanced simulation for analysis of critical infrastructure : abstract cascades, the electric power grid, and Fedwire.

    SciTech Connect (OSTI)

    Glass, Robert John, Jr.; Stamber, Kevin Louis; Beyeler, Walter Eugene

    2004-08-01T23:59:59.000Z

    Critical Infrastructures are formed by a large number of components that interact within complex networks. As a rule, infrastructures contain strong feedbacks either explicitly through the action of hardware/software control, or implicitly through the action/reaction of people. Individual infrastructures influence others and grow, adapt, and thus evolve in response to their multifaceted physical, economic, cultural, and political environments. Simply put, critical infrastructures are complex adaptive systems. In the Advanced Modeling and Techniques Investigations (AMTI) subgroup of the National Infrastructure Simulation and Analysis Center (NISAC), we are studying infrastructures as complex adaptive systems. In one of AMTI's efforts, we are focusing on cascading failure as can occur with devastating results within and between infrastructures. Over the past year we have synthesized and extended the large variety of abstract cascade models developed in the field of complexity science and have started to apply them to specific infrastructures that might experience cascading failure. In this report we introduce our comprehensive model, Polynet, which simulates cascading failure over a wide range of network topologies, interaction rules, and adaptive responses as well as multiple interacting and growing networks. We first demonstrate Polynet for the classical Bac, Tang, and Wiesenfeld or BTW sand-pile in several network topologies. We then apply Polynet to two very different critical infrastructures: the high voltage electric power transmission system which relays electricity from generators to groups of distribution-level consumers, and Fedwire which is a Federal Reserve service for sending large-value payments between banks and other large financial institutions. For these two applications, we tailor interaction rules to represent appropriate unit behavior and consider the influence of random transactions within two stylized networks: a regular homogeneous array and a heterogeneous scale-free (fractal) network. For the stylized electric power grid, our initial simulations demonstrate that the addition of geographically unrestricted random transactions can eventually push a grid to cascading failure, thus supporting the hypothesis that actions of unrestrained power markets (without proper security coordination on market actions) can undermine large scale system stability. We also find that network topology greatly influences system robustness. Homogeneous networks that are 'fish-net' like can withstand many more transaction perturbations before cascading than can scale-free networks. Interestingly, when the homogeneous network finally cascades, it tends to fail in its entirety, while the scale-free tends to compartmentalize failure and thus leads to smaller, more restricted outages. In the case of stylized Fedwire, initial simulations show that as banks adaptively set their individual reserves in response to random transactions, the ratio of the total volume of transactions to individual reserves, or 'turnover ratio', increases with increasing volume. The removal of a bank from interaction within the network then creates a cascade, its speed of propagation increasing as the turnover ratio increases. We also find that propagation is accelerated by patterned transactions (as expected to occur within real markets) and in scale-free networks, by the 'attack' of the most highly connected bank. These results suggest that the time scale for intervention by the Federal Reserve to divert a cascade in Fedwire may be quite short. Ongoing work in our cascade analysis effort is building on both these specific stylized applications to enhance their fidelity as well as embracing new applications. We are implementing markets and additional network interactions (e.g., social, telecommunication, information gathering, and control) that can impose structured drives (perturbations) comparable to those seen in real systems. Understanding the interaction of multiple networks, their interdependencies, and in particular, the underlying mechanisms f

  15. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    SciTech Connect (OSTI)

    Not Available

    1981-03-31T23:59:59.000Z

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  16. advanced test-analysis model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  17. Final LDRD report : nanoscale mechanisms in advanced aging of materials during storage of spent %22high burnup%22 nuclear fuel.

    SciTech Connect (OSTI)

    Clark, Blythe G.; Rajasekhara, Shreyas; Enos, David George; Dingreville, Remi Philippe Michel; Doyle, Barney Lee; Hattar, Khalid Mikhiel; Weiner, Ruth F.

    2013-09-01T23:59:59.000Z

    We present the results of a three-year LDRD project focused on understanding microstructural evolution and related property changes in Zr-based nuclear cladding materials towards the development of high fidelity predictive simulations for long term dry storage. Experiments and modeling efforts have focused on the effects of hydride formation and accumulation of irradiation defects. Key results include: determination of the influence of composition and defect structures on hydride formation; measurement of the electrochemical property differences between hydride and parent material for understanding and predicting corrosion resistance; in situ environmental transmission electron microscope observation of hydride formation; development of a predictive simulation for mechanical property changes as a function of irradiation dose; novel test method development for microtensile testing of ionirradiated material to simulate the effect of neutron irradiation on mechanical properties; and successful demonstration of an Idaho National Labs-based sample preparation and shipping method for subsequent Sandia-based analysis of post-reactor cladding.

  18. Advanced Integration in Multi-Scale Mechanics and Welding Process Simulation in Weld Integrity Assessment

    SciTech Connect (OSTI)

    Vitek, J.M.; Wilkowski, G.M.; Brust, F.W.; Babu, S.

    2008-01-30T23:59:59.000Z

    In this project, mathematical models that predict the microstructure in pipeline steel welds were to be developed. These models were to be integrated with thermal models that describe the time-temperature history in the weld as a function of location in order to derive the spatial variation of microstructure in the weld. The microstructure predictions were also to be combined with microstructure-hardness relations, based on the additivity principle, to determine the spatial variation of hardness in the weld. EMC2 also developed microstructural models based on empirical relationships. ORNL was to pursue the development of more fundamental, theoretically based models. ORNL applied a previously developed model for inclusion formation to predict the extent and nature of inclusions that form during weld cooling from the liquid. This inclusion model was directly integrated with computational thermodynamics capability. A convenient user interface was developed for both the inclusion model and the thermodynamic phase-stability calculations. The microstructure model was based on the simultaneous transformation theory analysis as applied to the transformation of austenite to various ferrite constituents during weld cooling. The model available on the Materials Algorithm Project web site was used. Extensive modification of this model was required to correct problems with compilation and calculations as a function of the computational platform (Unix, Linux, Windows, etc.) that was used. The user interface for the inclusion model and thermodynamic phase-stability calculations was delivered to EMC2 along with the modified and correct microstructure model. Evaluation of the theoretically based model will be carried out and the predictions will be compared with experimental results as well as predictions based on the empirical models developed by EMC2.

  19. Advanced Test Reactor Critical Facility safety analysis report five year currency review

    SciTech Connect (OSTI)

    Napper, P.R.; Carpenter, W.R.; Garner, R.W.

    1991-05-01T23:59:59.000Z

    By DOE-ID Order 5481.1A, a five year currency review is required of the Safety Analysis Reports of all ID or ID contractor operations having hazards of a type and magnitude not routinely encountered and/or accepted by the public. In keeping with this order, a currency review has been performed of the Advanced Test Reactor Critical Facility (ADTRC) Safety Analysis Report (SAR), Issue 003, 1990. The objectives of this currency review were to: evaluate the content, completeness, clarity of presentation and compliance with NRC Regulatory Guides and DOE Orders, etc., and evaluate the technical content of the SAR, particularly the Technical Specifications, and to evaluate the safety of continued operation of the ATRC. The reviewers concluded that although improvements may be needed in the overall content, clarity, and demonstration of compliance with current orders and regulations, the safety of the ATRC is in no way compromised and no unreviewed safety questions were identified. 6 figs., 3 tabs.

  20. The TEF modeling and analysis approach to advance thermionic space power technology

    SciTech Connect (OSTI)

    Marshall, A.C. [Defense Special Weapons Agency NMERI: 801 University Avenue SE Albuquerque, New Mexico 87106 (United States)

    1997-01-01T23:59:59.000Z

    Thermionics space power systems have been proposed as advanced power sources for future space missions that require electrical power levels significantly above the capabilities of current space power systems. The Defense Special Weapons Agency{close_quote}s (DSWA) Thermionic Evaluation Facility (TEF) is carrying out both experimental and analytical research to advance thermionic space power technology to meet this expected need. A Modeling and Analysis (M&A) project has been created at the TEF to develop analysis tools, evaluate concepts, and guide research. M&A activities are closely linked to the TEF experimental program, providing experiment support and using experimental data to validate models. A planning exercise has been completed for the M&A project, and a strategy for implementation was developed. All M&A activities will build on a framework provided by a system performance model for a baseline Thermionic Fuel Element (TFE) concept. The system model is composed of sub-models for each of the system components and sub-systems. Additional thermionic component options and model improvements will continue to be incorporated in the basic system model during the course of the program. All tasks are organized into four focus areas: 1) system models, 2) thermionic research, 3) alternative concepts, and 4) documentation and integration. The M&A project will provide a solid framework for future thermionic system development. {copyright} {ital 1997 American Institute of Physics.}

  1. The TEF modeling and analysis approach to advance thermionic space power technology

    SciTech Connect (OSTI)

    Marshall, Albert C. [Defense Special Weapons Agency NMERI: 801 University Avenue SE Albuquerque, New Mexico 87106 (United States)

    1997-01-10T23:59:59.000Z

    Thermionics space power systems have been proposed as advanced power sources for future space missions that require electrical power levels significantly above the capabilities of current space power systems. The Defense Special Weapons Agency's (DSWA) Thermionic Evaluation Facility (TEF) is carrying out both experimental and analytical research to advance thermionic space power technology to meet this expected need. A Modeling and Analysis (M and A) project has been created at the TEF to develop analysis tools, evaluate concepts, and guide research. M and A activities are closely linked to the TEF experimental program, providing experiment support and using experimental data to validate models. A planning exercise has been completed for the M and A project, and a strategy for implementation was developed. All M and A activities will build on a framework provided by a system performance model for a baseline Thermionic Fuel Element (TFE) concept. The system model is composed of sub-models for each of the system components and sub-systems. Additional thermionic component options and model improvements will continue to be incorporated in the basic system model during the course of the program. All tasks are organized into four focus areas: 1) system models, 2) thermionic research, 3) alternative concepts, and 4) documentation and integration. The M and A project will provide a solid framework for future thermionic system development.

  2. Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis

    SciTech Connect (OSTI)

    Wilson, Paul; Evans, Thomas; Tautges, Tim

    2012-12-24T23:59:59.000Z

    This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well-suited to coupling with the unstructured meshes that are used in other physics simulations.

  3. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01T23:59:59.000Z

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Programs understanding of the cost drivers that will determine nuclear powers cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  4. ADVANCED INTEGRATION OF MULTI-SCALE MECHANICS AND WELDING PROCESS SIMULATION IN WELD INTEGRITY ASSESSMENT

    SciTech Connect (OSTI)

    Wilkowski, Gery M.; Rudland, David L.; Shim, Do-Jun; Brust, Frederick W.; Babu, Sundarsanam

    2008-06-30T23:59:59.000Z

    The potential to save trillions of BTUs in energy usage and billions of dollars in cost on an annual basis based on use of higher strength steel in major oil and gas transmission pipeline construction is a compelling opportunity recognized by both the US Department of Energy (DOE). The use of high-strength steels (X100) is expected to result in energy savings across the spectrum, from manufacturing the pipe to transportation and fabrication, including welding of line pipe. Elementary examples of energy savings include more the 25 trillion BTUs saved annually based on lower energy costs to produce the thinner-walled high-strength steel pipe, with the potential for the US part of the Alaskan pipeline alone saving more than 7 trillion BTU in production and much more in transportation and assembling. Annual production, maintenance and installation of just US domestic transmission pipeline is likely to save 5 to 10 times this amount based on current planned and anticipated expansions of oil and gas lines in North America. Among the most important conclusions from these studies were: While computational weld models to predict residual stress and distortions are well-established and accurate, related microstructure models need improvement. Fracture Initiation Transition Temperature (FITT) Master Curve properly predicts surface-cracked pipe brittle-to-ductile initiation temperature. It has value in developing Codes and Standards to better correlate full-scale behavior from either CTOD or Charpy test results with the proper temperature shifts from the FITT master curve method. For stress-based flaw evaluation criteria, the new circumferentially cracked pipe limit-load solution in the 2007 API 1104 Appendix A approach is overly conservative by a factor of 4/?, which has additional implications. . For strain-based design of girth weld defects, the hoop stress effect is the most significant parameter impacting CTOD-driving force and can increase the crack-driving force by a factor of 2 depending on strain-hardening, pressure level as a % of SMYS, and flaw size. From years of experience in circumferential fracture analyses and experimentation, there has not been sufficient integration of work performed for other industries into analogous problems facing the oil and gas pipeline markets. Some very basic concepts and problems solved previously in these fields could have circumvented inconsistencies seen in the stress-based and strain-based analysis efforts. For example, in nuclear utility piping work, more detailed elastic-plastic fracture analyses were always validated in their ability to predict loads and displacements (stresses and strains). The eventual implementation of these methodologies will result in acceleration of the industry adoption of higher-strength line-pipe steels.

  5. Majorana Demonstrator Bolted Joint Mechanical and Thermal Analysis

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Reid, Douglas J.; Fast, James E.

    2012-06-01T23:59:59.000Z

    The MAJORANA DEMONSTRATOR is designed to probe for neutrinoless double-beta decay, an extremely rare process with a half-life in the order of 1026 years. The experiment uses an ultra-low background, high-purity germanium detector array. The germanium crystals are both the source and the detector in this experiment. Operating these crystals as ionizing radiation detectors requires having them under cryogenic conditions (below 90 K). A liquid nitrogen thermosyphon is used to extract the heat from the detectors. The detector channels are arranged in strings and thermally coupled to the thermosyphon through a cold plate. The cold plate is joined to the thermosyphon by a bolted joint. This circular plate is housed inside the cryostat can. This document provides a detailed study of the bolted joint that connects the cold plate and the thermosyphon. An analysis of the mechanical and thermal properties of this bolted joint is presented. The force applied to the joint is derived from the torque applied to each one of the six bolts that form the joint. The thermal conductivity of the joint is measured as a function of applied force. The required heat conductivity for a successful experiment is the combination of the thermal conductivity of the detector string and this joint. The thermal behavior of the joint is experimentally implemented and analyzed in this study.

  6. Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01T23:59:59.000Z

    costs. Energy Efficiency Incentives Analysis risks of under-Shareholder Risk/Reward Incentive Mechanism for Energyof the energy efficiency effort and the risk to the utility

  7. Work Domain Analysis and Operational Concepts for Advanced Nuclear Power Plants

    SciTech Connect (OSTI)

    Jacques Hugo

    2001-02-01T23:59:59.000Z

    The nuclear industry is currently designing and building a new generation of reactors that will differ in important respects from the older generation. Differences in new plants will include different structural, functional, and environmental aspects, all of which are likely to have a significant impact on the way these plants are operated. In order to meet economic and safety objectives, these new reactors will all use advanced technologies to some extent, including new materials and advanced digital instrumentation and control systems. Examples of these advances include distribution of load-following demand among multiple units, different product streams (steam, process heat, or electricity), increased use of passive safety systems, high levels of automation with humans in supervisory roles, integration of computerized procedures for control room and field work, and remote surveillance and on-line monitoring. New technologies will affect not only operational strategies, but will also require a new approach to how functions are allocated to humans or machines to ensure optimal performance. There is still much uncertainty about the effect of large scale changes in plant design on operations and human tasks, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. This uncertainty will remain until sound technical bases are developed for new operational concepts and strategies. Existing human factors and systems engineering design standards and methodologies are not current in terms of human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. Up-to-date models and guidance are required for the development of operational concepts for complex socio-technical systems. Designers need to be able to identify and evaluate specific human factors challenges related to non-traditional concepts of operations, and the associated changes in the allocation of functions to human and system agents. This paper describes how the classical Work Domain Analysis method was adapted to develop operational concept frameworks for new plants. This adaptation of the method is better able to deal with the uncertainty and incomplete information typical of first-of-a-kind designs. Practical examples are provided of the systematic application of the method in the operational analysis of sodium-cooled reactors. Insights from this application and its utility are reviewed and arguments for the formal adoption of Work Domain Analysis as a value-added part of the Systems Engineering process are presented.

  8. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.

    SciTech Connect (OSTI)

    Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.; Ross, Kyle; Cardoni, Jeffrey N; Kalinich, Donald A.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Ghosh, S. Tina

    2014-02-01T23:59:59.000Z

    This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the model response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)

  9. An Analysis of Energy Savings Possible Through Advances in Automotive Tooling Technology

    SciTech Connect (OSTI)

    Rick Schmoyer, RLS

    2004-12-03T23:59:59.000Z

    The use of lightweight and highly formable advanced materials in automobile and truck manufacturing has the potential to save fuel. Advances in tooling technology would promote the use of these materials. This report describes an energy savings analysis performed to approximate the potential fuel savings and consequential carbon-emission reductions that would be possible because of advances in tooling in the manufacturing of, in particular, non-powertrain components of passenger cars and heavy trucks. Separate energy analyses are performed for cars and heavy trucks. Heavy trucks are considered to be Class 7 and 8 trucks (trucks rated over 26,000 lbs gross vehicle weight). A critical input to the analysis is a set of estimates of the percentage reductions in weight and drag that could be achieved by the implementation of advanced materials, as a consequence of improved tooling technology, which were obtained by surveying tooling industry experts who attended a DOE Workshop, Tooling Technology for Low-Volume Vehicle Production, held in Seattle and Detroit in October and November 2003. The analysis is also based on 2001 fuel consumption totals and on energy-audit component proportions of fuel use due to drag, rolling resistance, and braking. The consumption proportions are assumed constant over time, but an allowance is made for fleet growth. The savings for a particular component is then the product of total fuel consumption, the percentage reduction of the component, and the energy audit component proportion. Fuel savings estimates for trucks also account for weight-limited versus volume-limited operations. Energy savings are assumed to be of two types: (1) direct energy savings incurred through reduced forces that must be overcome to move the vehicle or to slow it down in braking. and (2) indirect energy savings through reductions in the required engine power, the production and transmission of which incur thermodynamic losses, internal friction, and other inefficiencies. Total savings for an energy use component are estimated by scaling up the direct savings with an approximate total-to-direct savings ratio. Market penetration for new technology vehicles is estimated from projections about scrappage. Retrofit savings are assumed negligible, but savings are also assumed to accrue with increases in the fleet size, based on economic growth forecasts. It is assumed that as vehicles in the current fleet are scrapped, they are replaced with advanced-technology vehicles. Saving estimates are based on proportions of new vehicles, rather than new-vehicle mileages. In practice, of course, scrapped vehicles are often replaced with used vehicles, and used vehicles are replaced with new vehicles. Because new vehicles are typically driven more than old, savings estimates based on count rather than mileage proportions tend to be biased down (i.e., conservative). Savings are expressed in terms of gallons of fuel saved, metric tons of CO2 emissions reductions, and percentages relative to 2001 levels of fuel and CO2. The sensitivity of the savings projections to inputs such as energy-audit proportions of fuel consumed for rolling resistance, drag, braking, etc. is assessed by considering different scenarios. Though based on many approximations, the estimates approximate the potential energy savings possible because of improvements in tooling. For heavy trucks, annual diesel savings of 2.4-6.8 percent, and cumulative savings on the order of 54-154 percent, of 2001 consumption could accrue by 2050. By 2050, annual gasoline savings of 2.8-12 percent, and cumulative savings on the order of 83-350 percent of 2001 consumption could accrue for cars.

  10. Analysis of thermo-mechanical processes and design sensitivities evaluation using an Eulerian formulation

    E-Print Network [OSTI]

    Michaleris, Panagiotis

    Analysis of thermo-mechanical processes and design sensitivities evaluation using an Eulerian for solving quasi-state three-dimensional thermo-mechanical material processes using nite element methods. The thermo-mechanical processes considered are governed by one-way coupled thermo-elasto-plastic response

  11. An Advanced Neutronic Analysis Toolkit with Inline Monte Carlo capability for BHTR Analysis

    SciTech Connect (OSTI)

    William R. Martin; John C. Lee

    2009-12-30T23:59:59.000Z

    Monte Carlo capability has been combined with a production LWR lattice physics code to allow analysis of high temperature gas reactor configurations, accounting for the double heterogeneity due to the TRISO fuel. The Monte Carlo code MCNP5 has been used in conjunction with CPM3, which was the testbench lattice physics code for this project. MCNP5 is used to perform two calculations for the geometry of interest, one with homogenized fuel compacts and the other with heterogeneous fuel compacts, where the TRISO fuel kernels are resolved by MCNP5.

  12. Analysis of core-concrete interaction event with flooding for the Advanced Neutron Source reactor

    SciTech Connect (OSTI)

    Kim, S.H.; Taleyarkhan, R.P.; Georgevich, V.; Navarro-Valenti, S.

    1993-11-01T23:59:59.000Z

    This paper discusses salient aspects of the methodology, assumptions, and modeling of various features related to estimation of source terms from an accident involving a molten core-concrete interaction event (with and without flooding) in the Advanced Neutron Source (ANS) reactor at the Oak Ridge National Laboratory. Various containment configurations are considered for this postulated severe accident. Several design features (such as rupture disks) are examined to study containment response during this severe accident. Also, thermal-hydraulic response of the containment and radionuclide transport and retention in the containment are studied. The results are described as transient variations of source terms, which are then used for studying off-site radiological consequences and health effects for the support of the Conceptual Safety Analysis Report for ANS. The results are also to be used to examine the effectiveness of subpile room flooding during this type of severe accident.

  13. Modeling & analysis of criticality-induced severe accidents during refueling for the Advanced Neutron Source Reactor

    SciTech Connect (OSTI)

    Georgevich, V.; Kim, S.H.; Taleyarkhan, R.P.; Jackson, S.

    1992-10-01T23:59:59.000Z

    This paper describes work done at the Oak Ridge National Laboratory (ORNL) for evaluating the potential and resulting consequences of a hypothetical criticality accident during refueling of the 330-MW Advanced Neutron Source (ANS) research reactor. The development of an analytical capability is described. Modeling and problem formulation were conducted using concepts of reactor neutronic theory for determining power level escalation, coupled with ORIGEN and MELCOR code simulations for radionuclide buildup and containment transport Gaussian plume transport modeling was done for determining off-site radiological consequences. Nuances associated with modeling this blast-type scenario are described. Analysis results for ANS containment response under a variety of postulated scenarios and containment failure modes are presented. It is demonstrated that individuals at the reactor site boundary will not receive doses beyond regulatory limits for any of the containment configurations studied.

  14. Wireless Network Coding: Analysis, Control Mechanisms, and Incentive Design

    E-Print Network [OSTI]

    Hsu, Yu-Pin

    2014-05-08T23:59:59.000Z

    by developing novel network controllers, packet schedulers, and incentive mechanisms that would encourage the clients to collaborate and contribute resources to the information transfer. Our contributions can be broadly divided into three research thrusts: (1...

  15. Synthesis and analysis of parallel Kinematic XY flexure mechanisms

    E-Print Network [OSTI]

    Awtar, Shorya, 1977-

    2004-01-01T23:59:59.000Z

    This thesis presents a family of XY flexure mechanisms with large ranges of motion, first-order decoupled degrees of freedom, and small parasitic error motions. Synthesis is based on an systematic and symmetric layout of ...

  16. Advisor 2.0: A Second-Generation Advanced Vehicle Simulator for Systems Analysis

    SciTech Connect (OSTI)

    Wipke, K.; Cuddy, M.; Bharathan, D.; Burch, S.; Johnson, V.; Markel, A.; Sprik, S.

    1999-03-23T23:59:59.000Z

    The National Renewable Energy Laboratory has recently publicly released its second-generation advanced vehicle simulator called ADVISOR 2.0. This software program was initially developed four years ago, and after several years of in-house usage and evolution, the tool is now available to the public through a new vehicle systems analysis World Wide Web page. ADVISOR has been applied to many different systems analysis problems, such as helping to develop the SAE J1711 test procedure for hybrid vehicles and helping to evaluate new technologies as part of the Partnership for a New Generation of Vehicles (PNGV) technology selection process. The model has been and will continue to be benchmarked and validated with other models and with real vehicle test data. After two months of being available on the Web, more than 100 users have downloaded ADVISOR. ADVISOR 2.0 has many new features, including an easy-to-use graphical user interface, a detailed exhaust aftertreatment thermal model, and complete browser-based documentation. Future work will include adding to the library of components available in ADVISOR, including optimization functionality, and linking with a more detailed fuel cell model.

  17. Analysis of the effectiveness of gas centrifuge enrichment plants advanced safeguards

    SciTech Connect (OSTI)

    Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Swinjoe, Martyn T [Los Alamos National Laboratory; Ianakiev, Kiril D [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched uranium (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and 235U enrichment of declared UF6 containers used in the process of enrichment at GCEPs. This paper contains an analysis of possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive assay (DA) of samples that could reduce the uncertainty of the inspector's measurements. These improvements could reduce the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We also explore how a few advanced safeguards systems could be assembled for unattended operation. The analysis will focus on how unannounced inspections (UIs), and the concept of information-driven inspections (IDS) can affect probability of detection of the diversion of nuclear materials when coupled to new GCEPs safeguards regimes augmented with unattended systems.

  18. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    SciTech Connect (OSTI)

    Cetiner, Mustafa Sacit; none,; Flanagan, George F. [ORNL] [ORNL; Poore III, Willis P. [ORNL] [ORNL; Muhlheim, Michael David [ORNL] [ORNL

    2014-07-30T23:59:59.000Z

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal ReactorPower Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

  19. Introduction to Finite Element Modeling Engineering analysis of mechanical systems have been addressed by deriving differential

    E-Print Network [OSTI]

    Lin, Liwei

    Introduction to Finite Element Modeling Engineering analysis of mechanical systems have been of the FEM (don't misuse the FEM - a numerical tool) Finite Element Analysis A typical finite element quantities (e.g., strains and stresses) at selected elements Basic Theory The way finite element analysis

  20. Comprehensive mechanisms for combustion chemistry: Experiment, modeling, and sensitivity analysis

    SciTech Connect (OSTI)

    Dryer, F.L.; Yetter, R.A. [Princeton Univ., NJ (United States)

    1993-12-01T23:59:59.000Z

    This research program is an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work are conducted in large diameter flow reactors, at pressures from one to twenty atmospheres, temperatures from 550 K to 1200 K, and with observed reaction times from 10{sup {minus}2} to 5 seconds. Gas sampling of stable reactant, intermediate, and product species concentrations provides not only substantial definition of the phenomenology of reaction mechanisms, but a significantly constrained set of kinetic information with negligible diffusive coupling. Analytical techniques used for detecting hydrocarbons and carbon oxides include gas chromatography (GC), and gas infrared (NDIR) and FTIR methods are utilized for continuous on-line sample detection of light absorption measurements of OH have also been performed in an atmospheric pressure flow reactor (APFR), and a variable pressure flow (VPFR) reactor is presently being instrumented to perform optical measurements of radicals and highly reactive molecular intermediates. The numerical aspects of the work utilize zero and one-dimensional pre-mixed, detailed kinetic studies, including path, elemental gradient sensitivity, and feature sensitivity analyses. The program emphasizes the use of hierarchical mechanistic construction to understand and develop detailed kinetic mechanisms. Numerical studies are utilized for guiding experimental parameter selections, for interpreting observations, for extending the predictive range of mechanism constructs, and to study the effects of diffusive transport coupling on reaction behavior in flames. Modeling using well defined and validated mechanisms for the CO/H{sub 2}/oxidant systems.

  1. Task 2.10 - Advanced Sampling and Analysis of Fine Particulates

    SciTech Connect (OSTI)

    Donald P. McCollor; Kurt E. Eyland

    1998-01-01T23:59:59.000Z

    The objectives of this study are to develop a sampling method to capture the fine particulate and classiyi the particulate according to their size and chemistry. When developing the sampling method, two criteria need to be met: 1) the particulate are randomly dispersed on the sampling media and 2) the sampling media can be put directly into a scanning electron microscope (SEM) for analysis to prevent any alteration of the particulate. Several methods for the sampling and analysis of fine particulate are to be tested. Each sampling test will be analyzed using the FPT technique for collecting the size, shape, and chemical composition of 1500 to 2000 individual fine particulate. The FPT data will be classified using cluster analysis and principal component analysis to provide a classification system for these particles. As reported previously, particulate samples were collected using the advanced hybrid particulate collector (AHPC) on the inlet port of the particulate test combustor (PTC) when the Absaloka coal was burned in early April. The samples were collected at the inlet rather than the outlet port because of the loading that was expected and the temperature at which the PTC was run. Samples at the inlet were expected to see a much greater particulate loading than at the outlet because of the efficiency of the particulate collection device on the PTC. Also, polycarbonate filters cannot withstand temperatures above 230oC for long periods of time; therefore, a quick loading time was required. The samples were briefly scanned and photographed using the SEM to determine the best particulate loading time. The particulate were too close together on the 20- and 30-second polycarbonate filters to be able to analyze individual particles. The particle dispersion on the vitreous carbon substrate appeared to be the best of the four samples. Aerosols were produced from pure 1.0 M aqueous solutions of NaCl, Na2S04, (NHq)2SOo, NHqNO~, and K20 (KOH) using a Tri-Jet Model 3460 aerosol generator and collected by direct impingement on a vitreous carbon substrate. Because NaCl is the normal aerosol produced with the generator, it was briefly examined using SEM to determine the degree of dispersion. Good dispersion with nearly all particulate size below 2 pm and the majority in the O.1-pm range was achieved with a substrate collection time of 2-3 minutes. The brief examination also demonstrated that the sample could be introduced directly into the SEM for analysis with no prior carbon coating or other preparation and that charging of the sample was minimal.

  2. Three-dimensional mixed mode linear elastic fracture mechanics analysis using domain interaction integrals

    E-Print Network [OSTI]

    Esmen, Ekrem Alp, 1977-

    2004-01-01T23:59:59.000Z

    Three-dimensional mixed-mode linear elastic fracture mechanics analysis is presented using domain interaction integrals. An out-of-plane sinusoidal crack was analyzed using a commercially available finite element package ...

  3. A Viscoelastic-Viscoplastic Analysis of Fiber Reinforced Polymer Composites Undergoing Mechanical Loading and Temperature Changes

    E-Print Network [OSTI]

    Jeon, Jaehyeuk

    2013-08-09T23:59:59.000Z

    This study presents a combined viscoelastic (VE)-viscoplastic (VP) analysis for Fiber Reinforced Polymer (FRP) composites subject to simultaneous mechanical load and conduction of heat. The studied FRP composites consist of unidirectional fibers...

  4. RIS-M-2586 ELASTIC-PLASTIC FRACTURE MECHANICS ANALYSIS OF A CT-SPECIMEN

    E-Print Network [OSTI]

    RIS-M-2586 ELASTIC-PLASTIC FRACTURE MECHANICS ANALYSIS OF A CT-SPECIMEN - A TWO-DIMENSIONAL APPROACH Gunner C. Larsen Abstract. This report documents the results obtained from an elastic-plastic

  5. Mechanical Analysis of Controls on Strain Partitioning in the Himalayas of Central Nepal

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Mechanical Analysis of Controls on Strain Partitioning in the Himalayas of Central Nepal V. Godard range. We focus on two structures in the Himalayas of central Nepal : the Main Himalayan Thrust (MHT

  6. An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation

    E-Print Network [OSTI]

    Rothstein, Jonathan

    An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical October 2009; accepted 22 April 2010; published online 11 June 2010 Superhydrophobic surfaces combine the drag reducing performance of superhydrophobic surfaces in turbulent channel flow. Slip velocities, wall

  7. Vehicle Technologies Office Merit Review 2014: Advanced Wireless Power Transfer and Infrastructure Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  8. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    passive safety cooling systems. To develop an understandingthe passive safety cooling system and recommend an approachof Passive Safety Cooling Systems for Advanced Nuclear

  9. Bioenergetics and mechanical actuation analysis with membrane transport experiments for use in biomimetic

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Bioenergetics and mechanical actuation analysis with membrane transport experiments for use considers the mechanics and bioenergetics of a prototype nastic structure system consisting of an array by the hydrolysis of adenosine triphosphate. After reviewing the biochemistry and bioenergetics of the active

  10. Analysis and Design of Book-ahead Bandwidth-Sharing Mechanisms

    E-Print Network [OSTI]

    Veeraraghavan, Malathi

    1 Analysis and Design of Book-ahead Bandwidth-Sharing Mechanisms Xiangfei Zhu, Student Member, IEEE-time Markov chain model of book-ahead bandwidth- sharing mechanisms. We use this analytical model and a simulation model to understand the benefits of book-ahead (BA) bandwidth-sharing when compared

  11. Free Body Analysis, Beam Mechanics, and Finite Element Modeling of the Mandible of Alligator

    E-Print Network [OSTI]

    Free Body Analysis, Beam Mechanics, and Finite Element Modeling of the Mandible of Alligator arm mechanics, 2D and 3D beam mod- els, and three high-resolution finite element models- pared with the beam models, the Alligator finite element models exhibited less spatial variability

  12. Current-based 4D shape analysis for the mechanical personalization of heart models

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Current-based 4D shape analysis for the mechanical personalization of heart models Loic Le Folgoc1. Abstract. Patient-specific models of the heart may lead to better understanding of cardiovascular diseases-mechanical model of the heart, from the kinematics of the endo- and epicardium, is presented in this paper. We use

  13. ANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE

    E-Print Network [OSTI]

    Li, Perry Y.

    for optimal engine management. The hydro-mechanical drive train splits the engine power through two pathsANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE Teck Ping, Sim Minneapolis, Minnesota 55455 Email: tpsim@me.umn.edu Perry Y. Li Center for Compact and Efficient Fluid Power

  14. Fracture mechanics analysis of slow crack growth in polyethylene

    E-Print Network [OSTI]

    Self, Robert Alan

    1997-01-01T23:59:59.000Z

    polyethylenes were used to evaluate the new test and analysis methods. Static loading of deeply notched three-point bend specimens was conducted at 26.7 'C, 40 'C, and 70 'C on 1.27 cm , 0.953 cm, and 0.635 cm material. The crack length as a function of time...

  15. Notes 00. Introduction to the analysis of vibrations in mechanical systems.

    E-Print Network [OSTI]

    San Andres, Luis

    2008-01-01T23:59:59.000Z

    MEEN 617 Notes: Introduction / ? Luis.San Andr?s (2008) 1 INTRODUCTION TO THE ANALYSIS OF VIBRATIONS IN MECHANICAL SYSTEMS The only constant is change! Motion (i.e. time varying changes) is ubiquitous in nature. All systems, small and large...: Measurement of the dynamic response on a real system or prototype to confirm analytical predictions. MEEN 617 Notes: Introduction / ? Luis.San Andr?s (2008) 2 STEPS in Modeling a Mechanical System: The steps to follow in the analysis of mechanical...

  16. High temperature mechanical strength and microstructural stability of advanced 9-12%Cr steels and ODS steels.

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    and ODS steels. B. Fournier,1 M. Salvi1 , C. Cas1 , J. Malaplate1 , F. Dalle1 , M. Sauzay1 , Y. de Carlan. In the framework of Generation IV nuclear reactors and for fusion reactors, oxide dispersion strengthened (ODS. In the present article advanced 9-12%Cr steels, including their ODS grades, are tested under creep, fatigue

  17. Department of Mechanical Engineering Fall 2011 Pratt & Whitney Engine Low Pressure Turbine Vane Cluster Analysis

    E-Print Network [OSTI]

    Demirel, Melik C.

    Turbine Vane Cluster Analysis Overview The goal was to provide Pratt & Whitney with a detailed finitePENNSTATE Department of Mechanical Engineering Fall 2011 Pratt & Whitney Engine Low Pressure 3D cloud data to useable CAD model Use finite element analysis to determine the areas of highest

  18. Generalized 3-D Tolerance Analysis of Mechanical Assemblies with Small Kinematic Adjustments

    E-Print Network [OSTI]

    ) for tolerance analysis of 3-D mechanical assemblies is presented. Vector assembly models are used, based on 3-D. Tolerance analysis procedures are formulated for both open and closed loop assembly models. The method generalizes assembly variation models to include small kinematic adjustments between mating parts. Open vector

  19. Analysis and Simulation of Mechanical Trains Driven by Variable Frequency Drive Systems

    E-Print Network [OSTI]

    Han, Xu

    2012-02-14T23:59:59.000Z

    2. Three-Phase Inverter and PWM Sidebands . . . . . . . . . . 45 C. Motor-Compressor Machinery Train . . . . . . . . . . . . . . . . . . 48 1. Electric Induction Motor . . . . . . . . . . . . . . . . . . . . . . . 48 2. Mechanical Components... . . . . . . . . . . . . . . . . . . . . . . . 77 4. DC Bus Harmonic Frequency = 120 Hz . . . . . . . . . . . . . 82 V ANALYSIS OF CLOSED-LOOP CONTROL-FOC : : : : : : : : : : : 87 A. Analysis for Harmonic Sources . . . . . . . . . . . . . . . . . . . . . . 87 B. Motor-Gearbox-Compressor...

  20. Analysis of a Third-Generation Princeton Tri-leaflet Mechanical Heart Valve

    E-Print Network [OSTI]

    Petta, Jason

    Analysis of a Third-Generation Princeton Tri-leaflet Mechanical Heart Valve Michael Hsu Advisor heart valve Static analysis of leaflet under uniform pressure of 10 MPa Summer Objectives Find Heart valve disease Over 5 million affected Over 225,000 valve- replacement surgeries performed

  1. Fracture analysis of debonding mechanism for FRP plates

    E-Print Network [OSTI]

    Achintha, Paththini Marakkala Mithila

    .1.5.3 Contour plots of critical crack lengths ....................... 156 6.1 .6 Qualitative discussion on the present analysis . ............. . ....... " 158 6.1.6.1 Element size independency of results ....... . ............. " 158 6.1.6.2 Localised nature... " applications and hence preparation techniques are not discussed. Near surface mounted FRP (NSF) bars or strips have also been used for flexural strengthening of RC beams (e.g. EI-Hacha & Rizkalla 2004). Here, the FRP bars (or strips) are placed in shallow...

  2. Analysis of advanced european nuclear fuel cycle scenarios including transmutation and economical estimates

    SciTech Connect (OSTI)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F. [CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain)

    2013-07-01T23:59:59.000Z

    In this work the transition from the existing Light Water Reactors (LWR) to the advanced reactors is analyzed, including Generation III+ reactors in a European framework. Four European fuel cycle scenarios involving transmutation options have been addressed. The first scenario (i.e., reference) is the current fleet using LWR technology and open fuel cycle. The second scenario assumes a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel. The third scenario is a modification of the second one introducing Minor Actinide (MA) transmutation in a fraction of the FR fleet. Finally, in the fourth scenario, the LWR fleet is replaced using FR with MOX fuel as well as Accelerator Driven Systems (ADS) for MA transmutation. All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for a period of 200 years looking for equilibrium mass flows. The simulations were made using the TR-EVOL code, a tool for fuel cycle studies developed by CIEMAT. The results reveal that all scenarios are feasible according to nuclear resources demand (U and Pu). Concerning to no transmutation cases, the second scenario reduces considerably the Pu inventory in repositories compared to the reference scenario, although the MA inventory increases. The transmutation scenarios show that elimination of the LWR MA legacy requires on one hand a maximum of 33% fraction (i.e., a peak value of 26 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation). On the other hand a maximum number of ADS plants accounting for 5% of electricity generation are predicted in the fourth scenario (i.e., 35 ADS units). Regarding the economic analysis, the estimations show an increase of LCOE (Levelized cost of electricity) - averaged over the whole period - with respect to the reference scenario of 21% and 29% for FR and FR with transmutation scenarios respectively, and 34% for the fourth scenario. (authors)

  3. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01T23:59:59.000Z

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  4. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    H. G. MacPherson The molten salt adventure Nuclear Scienceand P.F. Peterson, Molten-Salt-Cooled Advanced High-Clarno Assessment of candidate molten salt coolants for the

  5. Thermal-Hydraulic Analysis of Advanced Mixed-Oxide Fuel Assemblies with VIPRE-01

    E-Print Network [OSTI]

    Bingham, Adam R.

    2010-07-14T23:59:59.000Z

    Two new fuel assembly designs for light water reactors using advanced mixed-oxide fuels have been proposed to reduce the radiotoxicity of used nuclear fuel discharged from nuclear power plants. The research efforts of this thesis are the first...

  6. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    Average Reynolds shellside crossflow 624 C 90.6 (W/ m 2 C)transfer from tubes in crossflow. Advances in Heat Transfercalc-init- *-------pressure drop crossflow bundle segment

  7. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bartel, N.; Chen, M.; Utgikar, V. P.; Sun, X.; Kim, I. H.; Christensen, R.; Sabharwall, P.

    2015-07-01T23:59:59.000Z

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Heliumhelium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15 pitch angle was found to offer optimummorecombination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.less

  8. Analysis of Petroleum Technology Advances Through Applied Research by Independent Oil Producers

    SciTech Connect (OSTI)

    Brashear, Jerry P.; North, Walter B.; Thomas Charles P.; Becker, Alan B.; Faulder, David D.

    2000-01-12T23:59:59.000Z

    Petroleum Technology Advances Through Applied Research by Independent Oil Producers is a program of the National Oil Research Program, U.S. Department of Energy. Between 1995 and 1998, the program competitively selected and cost-shared twenty-two projects with small producers. The purpose was to involve small independent producers in testing technologies of interest to them that would advance (directly or indirectly) one or more of four national program objectives: (1) Extend the productive life of reservoirs; (2) Increase production and/or reserves; (3) Improve environmental performance; and (4) Broaden the exchange of technology information.

  9. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    L. J. Hamilton Nuclear Reactor Analysis John Wiley and Sons,R. J. Neuhold, Introductury Nuclear Reactor Dynamics. ANSL. J. Hamilton Nuclear Reactor Analysis John Wiley and Sons,

  10. Engineering design and analysis of advanced physical fine coal cleaning technologies

    SciTech Connect (OSTI)

    Gallier, P.W.

    1990-10-20T23:59:59.000Z

    The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cycloning, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level. The ASPEN PLUS process simulation package will be extended to handle coal cleaning applications. Algorithms for predicting the process performance, equipment size, and flowsheet economics of commercial coal cleaning devices and related ancillary equipment will be incorporated into the coal cleaning simulator. The work plan for the froth quarter called for completion of the washability interpolation routine, gravity separation models, and dewatering models. As these items were completed, work in the areas of size reduction, classification and froth flotation were scheduled to begin. As each model was completed, testing and validation procedures were scheduled to begin. Costing models were also planned to be implemented and tested as each of the gravity separation models were completed. 1 tab.

  11. ADVANCED VISUALIZATION OF ENGINE SIMULATION DATA USING TEXTURE SYNTHESIS AND TOPOLOGICAL ANALYSIS

    E-Print Network [OSTI]

    Chen, Guoning

    Figure 1: Idealized in-cylinder flow through a diesel engine (left) and a gas engine (right). ADVANCED motion found inside diesel and gas engines, respectively. Texture-based flow visualization techniques use at the simulation of in-cylinder flow, namely, the visualization of swirl and tumble motion found inside diesel

  12. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R. [NETL

    2013-03-11T23:59:59.000Z

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  13. Design analysis mechanisms for carbon auction market through electricity market coupling

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Design analysis mechanisms for carbon auction market through electricity market coupling Mireille electricity produc- ers selling their production on an electricity market and buying CO2 emission al- lowances functions of the electricity production. We set out a clear Nash equilibrium on the power market that can

  14. Correlation Analysis of Chemical Bonds (CACB) II: Quantum Mechanical Operators for Classical Chemical Concepts

    E-Print Network [OSTI]

    Goddard III, William A.

    crossing in reactions still lags far behind. Theoretical approaches to extracting the underlying chemicalCorrelation Analysis of Chemical Bonds (CACB) II: Quantum Mechanical Operators for Classical of the statistical covariance of the previous operator. Here the bonds correlation relates to bond exchange processes

  15. Aerobic enhanced oil recovery: analysis of the mechanisms and a pilot study

    E-Print Network [OSTI]

    Eide, Karen

    1998-01-01T23:59:59.000Z

    Injection Rate 5. 2. 3 Injection Pressure 5. 3 Fluid Analysis. 5. 3. 1 Oil Analysis. 5. 3. 2 Water Analysis. . . . . 5. 4 Corrosion. 5. 5 Scale 5. 6 HtS. 5. 7 Operational Problems. 83 85 85 99 100 103 103 104 105 106 107 108 CHAPTFR Page... VI DISCUSSION OF THE RESULTS. 109 6. 1 Incremental Oil Production 6. 2 Increase in Injection Pressure. 6. 3 Corrosion Rate. 109 111 112 VII SUMMARY, CONCLUSIONS AND RECOMMENDATIONS. . . . 114 7. 1 AMEOR Summary. . 7. 1. 1 Mechanisms. . 7. 1...

  16. Thermal And Mechanical Analysis of High-power Light-emitting Diodes with Ceramic Packages

    E-Print Network [OSTI]

    J. Hu; L. Yang; M. -W. Shin

    2008-01-07T23:59:59.000Z

    In this paper we present the thermal and mechanical analysis of high-power light-emitting diodes (LEDs) with ceramic packages. Transient thermal measurements and thermo-mechanical simulation were performed to study the thermal and mechanical characteristics of ceramic packages. Thermal resistance from the junction to the ambient was decreased from 76.1 oC/W to 45.3 oC/W by replacing plastic mould to ceramic mould for LED packages. Higher level of thermo-mechanical stresses in the chip were found for LEDs with ceramic packages despite of less mismatching coefficients of thermal expansion comparing with plastic packages. The results suggest that the thermal performance of LEDs can be improved by using ceramic packages, but the mounting process of the high power LEDs with ceramic packages is critically important and should be in charge of delaminating interface layers in the packages.

  17. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect (OSTI)

    Gallant, Tom [Pacific Northwest National Laboratory (PNNL); Franz, Jim [Pacific Northwest National Laboratory (PNNL); Alnajjar, Mikhail [Pacific Northwest National Laboratory (PNNL); Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Sluder, Scott [ORNL; Cannella, William C [Chevron, USA; Fairbridge, Craig [National Centre for Upgrading Technology, Canada; Hager, Darcy [National Centre for Upgrading Technology, Canada; Dettman, Heather [CANMET Energy; Luecke, Jon [National Renewable Energy Laboratory (NREL); Ratcliff, Matthew A. [National Renewable Energy Laboratory (NREL); Zigler, Brad [National Renewable Energy Laboratory (NREL)

    2009-01-01T23:59:59.000Z

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  18. Advances in Fast 2-D Camera Data Handling and Analysis on NSTX

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    4.8 800x600 150 32x32 12 Photron Fastcam 750 1500 2.0 1024x1024 120 128x16 10 Miro 2 50 2000 1.2 800 turbulence in gas puffs The propagation of ELMs and MARFEs Heat loading on plasma facing components Advances in Fast 2D Cameras on NSTX. Davis. 5June 15-19, 2009 ELM formation with and without background

  19. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    SciTech Connect (OSTI)

    Ragusa, Jean; Vierow, Karen

    2011-09-01T23:59:59.000Z

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

  20. Advanced application of the discrete generalized multigroup method and recondensation to reactor analysis

    E-Print Network [OSTI]

    Everson, Matthew S

    2014-01-01T23:59:59.000Z

    Fine-group whole-core reactor analysis remains one of the long sought goals of the reactor physics community. Such a detailed analysis is typically too computationally expensive to be realized on anything except the largest ...

  1. Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data

    SciTech Connect (OSTI)

    LaClair, Tim J [ORNL

    2012-01-01T23:59:59.000Z

    Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

  2. Mechanical-plowing-based high-speed patterning on hard material via advanced-control and ultrasonic probe vibration

    SciTech Connect (OSTI)

    Wang, Zhihua; Zou, Qingze, E-mail: qzzou@rci.rutgers.edu [Mechanical and Aerospace Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854 (United States)] [Mechanical and Aerospace Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854 (United States); Tan, Jun; Jiang, Wei [Electrical and Computer Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854 (United States)] [Electrical and Computer Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854 (United States)

    2013-11-15T23:59:59.000Z

    In this paper, we present a high-speed direct pattern fabrication on hard materials (e.g., a tungsten-coated quartz substrate) via mechanical plowing. Compared to other probe-based nanolithography techniques based on chemical- and/or physical-reactions (e.g., the Dip-pen technique), mechanical plowing is meritorious for its low cost, ease of process control, and capability of working with a wide variety of materials beyond conductive and/or soft materials. However, direct patterning on hard material faces two daunting challenges. First, the patterning throughput is ultimately hindered by the writing (plowing) speed, which, in turn, is limited by the adverse effects that can be excited/induced during high-speed, and/or large-range plowing, including the vibrational dynamics of the actuation system (the piezoelectric actuator, the cantilever, and the mechanical fixture connecting the cantilever to the actuator), the dynamic cross-axis coupling between different axes of motion, and the hysteresis and the drift effects related to the piezoelectric actuators. Secondly, it is very challenging to directly pattern on ultra-hard materials via plowing. Even with a diamond probe, the line depth of the pattern via continuous plowing on ultra-hard materials such as tungsten, is still rather small (<0.5 nm), particularly when the writing speed becomes high. To overcome these two challenges, we propose to utilize a novel iterative learning control technique to achieve precision tracking of the desired pattern during high-speed, large-range plowing, and introduce ultrasonic vibration of the probe in the normal (vertical) direction during the plowing process to enable direct patterning on ultra hard materials. The proposed approach was implemented to directly fabricate patterns on a mask with tungsten coating and quartz substrate. The experimental results demonstrated that a large-size pattern of four grooves (20 ?m in length with 300 nm spacing between lines) can be fabricated at a high speed of ?5 mm/s, with the line width and the line depth at ?95 nm and 2 nm, respectively. A fine pattern of the word NANO is also fabricated at the speed of ?5 mm/s.

  3. A Multi-layer, Data-driven Advanced Reasoning Tool for Intelligent Data Mining and Analysis for Smart Grids

    SciTech Connect (OSTI)

    Lu, Ning; Du, Pengwei; Greitzer, Frank L.; Guo, Xinxin; Hohimer, Ryan E.; Pomiak, Yekaterina G.

    2012-12-31T23:59:59.000Z

    This paper presents the multi-layer, data-driven advanced reasoning tool (M-DART), a proof-of-principle decision support tool for improved power system operation. M-DART will cross-correlate and examine different data sources to assess anomalies, infer root causes, and anneal data into actionable information. By performing higher-level reasoning triage of diverse data sources, M-DART focuses on early detection of emerging power system events and identifies highest priority actions for the human decision maker. M-DART represents a significant advancement over todays grid monitoring technologies that apply offline analyses to derive model-based guidelines for online real-time operations and use isolated data processing mechanisms focusing on individual data domains. The development of the M-DART will bridge these gaps by reasoning about results obtained from multiple data sources that are enabled by the smart grid infrastructure. This hybrid approach integrates a knowledge base that is trained offline but tuned online to capture model-based relationships while revealing complex causal relationships among data from different domains.

  4. Technical analysis of US Army Weapons Systems and related advanced technologies of military interest. Final report

    SciTech Connect (OSTI)

    NONE

    1991-06-14T23:59:59.000Z

    This report summarizes the activities and accomplishments of an US Army technology security project designed to identify and develop effective policy guidelines for militarily critical technologies in specific Army systems and in broad generic technology areas of military interest, Individual systems analyses are documented in separate Weapons Systems Technical Assessments (WSTAs) and the general generic technology areas are evaluated in the Advanced Technology Assessment Reports (ATARs), However, specific details of these assessments are not addressed here, only recommendations regarding aspects of the defined approach, methodology, and format are provided and discussed.

  5. Designing and Operating Through Compromise: Architectural Analysis of CKMS for the Advanced Metering Infrastructure

    SciTech Connect (OSTI)

    Duren, Mike [Sypris Electronics, LLC] [Sypris Electronics, LLC; Aldridge, Hal [ORNL] [ORNL; Abercrombie, Robert K [ORNL] [ORNL; Sheldon, Frederick T [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Compromises attributable to the Advanced Persistent Threat (APT) highlight the necessity for constant vigilance. The APT provides a new perspective on security metrics (e.g., statistics based cyber security) and quantitative risk assessments. We consider design principals and models/tools that provide high assurance for energy delivery systems (EDS) operations regardless of the state of compromise. Cryptographic keys must be securely exchanged, then held and protected on either end of a communications link. This is challenging for a utility with numerous substations that must secure the intelligent electronic devices (IEDs) that may comprise complex control system of systems. For example, distribution and management of keys among the millions of intelligent meters within the Advanced Metering Infrastructure (AMI) is being implemented as part of the National Smart Grid initiative. Without a means for a secure cryptographic key management system (CKMS) no cryptographic solution can be widely deployed to protect the EDS infrastructure from cyber-attack. We consider 1) how security modeling is applied to key management and cyber security concerns on a continuous basis from design through operation, 2) how trusted models and key management architectures greatly impact failure scenarios, and 3) how hardware-enabled trust is a critical element to detecting, surviving, and recovering from attack.

  6. Automatic generation of skeletal mechanisms for ignition combustion based on level of importance analysis

    SciTech Connect (OSTI)

    Loevaas, Terese [School of Engineering and Materials Sciences, Queen Mary University of London, London E1 4NS (United Kingdom); Department of Engineering and Economy, University of Tromsoe, 9012 Tromsoe (Norway)

    2009-07-15T23:59:59.000Z

    A level of importance (LOI) selection parameter is employed in order to identify species with general low importance to the overall accuracy of a chemical model. This enables elimination of the minor reaction paths in which these species are involved. The generation of such skeletal mechanisms is performed automatically in a pre-processing step ranking species according to their level of importance. This selection criterion is a combined parameter based on a time scale and sensitivity analysis, identifying both short lived species and species with respect to which the observable of interest has low sensitivity. In this work a careful element flux analysis demonstrates that such species do not interact in major reaction paths. Employing the LOI procedure replaces the previous method of identifying redundant species through a two step procedure involving a reaction flow analysis followed by a sensitivity analysis. The flux analysis is performed using DARS {sup copyright}, a digital analysis tool modelling reactive systems. Simplified chemical models are generated based on a detailed ethylene mechanism involving 111 species and 784 reactions (1566 forward and backward reactions) proposed by Wang et al. Eliminating species from detailed mechanisms introduces errors in the predicted combustion parameters. In the present work these errors are systematically studied for a wide range of conditions, including temperature, pressure and mixtures. Results show that the accuracy of simplified models is particularly lowered when the initial temperatures are close to the transition between low- and high-temperature chemistry. A speed-up factor of 5 is observed when using a simplified model containing only 27% of the original species and 19% of the original reactions. (author)

  7. Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect (OSTI)

    Krstulovich, S.F.

    1986-11-12T23:59:59.000Z

    This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

  8. Advanced methods development for LWR trsansient analysis, final report : 1981-1982

    E-Print Network [OSTI]

    Griggs, D. P.

    1982-01-01T23:59:59.000Z

    The initial development of TITAN, a three-dimensional coupled neutronics/thermal-hydraulics code for LWR safety analysis, has been completed. The transient neutronics code QUANDRY has been joined to the two-fluid ...

  9. Advances in Filter Miniaturization and Design/Analysis of RF MEMS Tunable Filters

    E-Print Network [OSTI]

    Sekar, Vikram

    2012-10-19T23:59:59.000Z

    The main purpose of this dissertation was to address key issues in the design and analysis of RF/microwave filters for wireless applications. Since RF/microwave filters are one of the bulkiest parts of communication systems, their miniaturization...

  10. Analysis of Pebble-Bed VHTR Spectrum Shifting Capabilities for Advanced Fuel Cycles

    E-Print Network [OSTI]

    Pritchard, Megan

    2006-07-11T23:59:59.000Z

    (Very High Temperature Reactor) configurations by utilizing minor actinides as a fuel component. The present analysis takes into consideration and compares capabilities of pebble-bed core designs with various core and reflector configuration to allow...

  11. Analysis of the Pebble-Bed VHTR Spectrum Shifting Capabilities for Advanced Fuel Cycles

    E-Print Network [OSTI]

    Pritchard, Megan; Tsvetkov, Pavel

    2009-09-30T23:59:59.000Z

    (Very High Temperature Reactor) configurations by utilizing minor actinides as a fuel component. The present analysis takes into consideration and compares capabilities of pebble-bed core designs with various core and reflector configuration to allow...

  12. M. Siciliano PA 541 -Spring 2014 1 PA 541: Advanced Data Analysis I

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    to be covered in this course include standard OLS regression, regression with qualitative predictors, mediation, administrators--share the responsibility of insuring that these standards are upheld so that such an environment. Lastly, R is free. The R codes used to produce the data analysis examples and graphics in my lectures

  13. GEOSCIENCES 585 ADVANCED REMOTE SENSING

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    . Topics covered include: field methods, field spectroscopy, textural analysis, spectral mixture analysis analysis (3) Perform advanced concepts in digital image processing including texture analysis, atmospheric reasons (e.g. illness, accident, etc.), the instructor will, at her discretion, decide whether

  14. Workshop: Tcnicas Avanadas de Anlise de Imagens de Sensoriamento Remoto (Recent Advances in Image Analysis Techniques for Remote Sensing)

    E-Print Network [OSTI]

    Workshop: Tcnicas Avanadas de Anlise de Imagens de Sensoriamento Remoto (Recent Advances conjuntos de dados, vrias tcnicas avanadas de processamento e anlise de imagens tm sido desenvolvidas das abordagens mais convencionais para anlise de imagens de sensoriamento remoto. Recent advances

  15. Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment

    SciTech Connect (OSTI)

    Kleese van Dam, Kerstin; Lansing, Carina S.; Elsethagen, Todd O.; Hathaway, John E.; Guillen, Zoe C.; Dirks, James A.; Skorski, Daniel C.; Stephan, Eric G.; Gorrissen, Willy J.; Gorton, Ian; Liu, Yan

    2014-01-31T23:59:59.000Z

    Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create and execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern Interconnect domain, which they are now planning to extend to predict the demand for the complete century. The initial study raised their data demands from a few GBs to 400GB for the 3year study and expected tens of TBs for the full century.

  16. Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor

    SciTech Connect (OSTI)

    Stauff, N.E.; Klim, T.K.; Taiwo, T.A. [Argonne National Laboratory, Argonne, IL (United States); Fiorina, C. [Politecnico di Milano, Milan (Italy); Franceschini, F. [Westinghouse Electric Company LLC., Cranberry Township, Pennsylvania (United States)

    2013-07-01T23:59:59.000Z

    A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueled cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic or nitride Th fuels relative to the U counterpart fuels. (authors)

  17. Performance analysis of co-firing waste materials in an advanced pressurized fluidized-bed combustor

    SciTech Connect (OSTI)

    Bonk, D.L.; McDaniel, H.M. [USDOE Morgantown Energy Technology Center, WV (United States); DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

    1995-07-01T23:59:59.000Z

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal wastes. Leading this approach is the atmospheric fluidized-bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economical feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), sewage sludge, and industrial de-inking sludge. Conceptual designs of two power plants rated at 250 MWe and 150 MWe were developed. Heat and material balances were completed for each plant along with environmental issues. With the PFBC`s operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and Federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  18. European Congress and Exhibition on Advanced Materials and Processes

    E-Print Network [OSTI]

    Cambridge, University of

    . Advanced ODS Ferritic and Martensitic Steels 8. Mechanical Alloying and Consolidation 9. Combination

  19. Description of TASHA: Thermal Analysis of Steady-State-Heat Transfer for the Advanced Neutron Source Reactor

    SciTech Connect (OSTI)

    Morris, D.G.; Chen, N.C.; Nelson, W.R.; Yoder, G.L.

    1996-10-01T23:59:59.000Z

    This document describes the code used to perform Thermal Analysis of Steady-State-Heat-Transfer for the Advanced Neutron Source (ANS) Reactor (TASHA). More specifically, the code is designed for thermal analysis of the fuel elements. The new code reflects changes to the High Flux Isotope Reactor steady-state thermal-hydraulics code. These changes were aimed at both improving the code`s predictive ability and allowing statistical thermal-hydraulic uncertainty analysis to be performed. A significant portion of the changes were aimed at improving the correlation package in the code. This involved incorporating more recent correlations for both single-phase flow and two-phase flow thermal limits, including the addition of correlations to predict the phenomenon of flow excursion. Since the code was to be used in the design of the ANS, changes were made to allow the code to predict limiting powers for a variety of thermal limits, including critical heat flux, flow excursion, incipient boiling, oxide spallation, maximum centerline temperature, and surface temperature equal to the saturation temperature. Statistical uncertainty analysis also required several changes to the code itself as well as changes to the code input format. This report describes these changes in enough detail to allow the reader to interpret code results and also to understand where the changes were made in the code programming. This report is not intended to be a stand alone report for running the code, however, and should be used in concert with the two previous reports published on the original code. Sample input and output files are also included to help accomplish these goals. In addition, a section is included that describes requirements for a new, more modem code that the project planned to develop.

  20. Mechanical Engineering & Thermal Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has STOP (Structural, Thermal, and Optical Performance) analyses of optical systems Thermal engineers lead evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

  1. Uranium Isotopic and Quantitative Analysis Using a Mechanically-Cooled HPGe Detector

    SciTech Connect (OSTI)

    Solodov, Alexander A [ORNL

    2008-01-01T23:59:59.000Z

    A new, portable high-resolution spectroscopy system based on a high-purity germanium detector cooled with a miniature Stirling-cycle cooler, ORTEC trans-SPEC, has recently become commercially available. The use of a long-life mechanical cooling system eliminates the need for liquid nitrogen. The purpose of this study was to determine the applicability of this new instrument for isotopic and quantitative analyses of uranium samples. The results of the performance of the trans-SPEC with the combination of PC-FRAM and ISOTOPIC software packages are described in this paper. An optimal set of analysis parameters for uranium measurements is proposed.

  2. Numerical Modeling of Hydraulic Fracture Propagation Using Thermo-hydro-mechanical Analysis with Brittle Damage Model by Finite Element Method

    E-Print Network [OSTI]

    Min, Kyoung

    2013-07-16T23:59:59.000Z

    are studied using a coupled thermo-hydro-mechanical (THM) analysis. The models are used to simulate microscopic and macroscopic fracture behaviors of laboratory-scale uniaxial and triaxial experiments on rock using an elastic/brittle damage model considering...

  3. The interdisciplinary field of Biomedical Engineering combines elements of engineering (electronics, systems analysis, fluid mechanics) with the life

    E-Print Network [OSTI]

    Rohs, Remo

    34 The interdisciplinary field of Biomedical Engineering combines elements of engineering (electronics, systems analysis, fluid mechanics) with the life sciences (biology, physiology, biochemistry) to define and solve problems in biology and medicine. Students choose this growing branch of engineering

  4. Fermilab D-0 Experimental Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect (OSTI)

    Krstulovich, S.F.

    1987-10-31T23:59:59.000Z

    This report is developed as part of the Fermilab D-0 Experimental Facility Project Title II Design Documentation Update. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis.

  5. Proceedings of: X Convegno Tecnologie e Sistemi Energetici Complessi, (TESEC), June 2001, Genova, Italy ADVANCED TECHNIQUES FOR SAFETY ANALYSIS APPLIED TO

    E-Print Network [OSTI]

    Tronci, Enrico

    , Italy 1 ADVANCED TECHNIQUES FOR SAFETY ANALYSIS APPLIED TO THE GAS TURBINE CONTROL SYSTEM OF ICARO CO of complex computer based systems. Such approaches are applied to the gas turbine control system of ICARO co of the centre of ENEA CR Casaccia. The plant is based on a small gas turbine and has been specifically designed

  6. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    SciTech Connect (OSTI)

    Saffer, Shelley (Sam) I.

    2014-12-01T23:59:59.000Z

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  7. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    SciTech Connect (OSTI)

    E. R. Johnson; R. E. Best

    2009-12-28T23:59:59.000Z

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the UREX+3c fuel cycle and the Alternative Fuel Cycle (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount of the resulting MOX. The study considered two sub-cases within each of the two fuel cycles in which the uranium and plutonium from the first generation of MOX spent fuel (i) would not be recycled to produce a second generation of MOX for use in LWRs or (ii) would be recycled to produce a second generation of MOX fuel for use in LWRs. The study also investigated the effects of recycling MOX spent fuel multiple times in LWRs. The study assumed that both fuel cycles would store and then reprocess spent MOX fuel that is not recycled to produce a next generation of LWR MOX fuel and would use the recovered products to produce FR fuel. The study further assumed that FRs would begin to be brought on-line in 2043, eleven years after recycle begins in LWRs, when products from 5-year cooled spent MOX fuel would be available. Fuel for the FRs would be made using the uranium, plutonium, and minor actinides recovered from MOX. For the cases where LWR fuel was assumed to be recycled one time, the 1st generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. For the cases where the LWR fuel was assumed to be recycled two times, the 2nd generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. The number of FRs in operation was assumed to increase in successive years until the rate that actinides were recovered from permanently discharged spent MOX fuel equaled the rate the actinides were consumed by the operating fleet of FRs. To compare the two fuel cycles, the study analyzed recycle of nuclear fuel in LWRs and FRs and determined the radiological characteristics of irradiated nuclear fuel, nuclear waste products, and recycle nuclear fuels. It also developed a model to simulate the flows of nuclear materials that could occur in the two advanced nuclear fuel cycles over 81 years beginning in 2020 and ending in 2100. Simulations projected the flows of uranium, plutonium, and minor actinides as these nuclear fuel materials were produced and consumed in a fleet of 100 1,000 MWe LWRs and in FRs. The model als

  8. Advanced statistical methods for eye movement analysis and modeling: a gentle introduction

    E-Print Network [OSTI]

    Boccignone, Giuseppe

    2015-01-01T23:59:59.000Z

    In this Chapter we show that by considering eye movements, and in particular, the resulting sequence of gaze shifts, a stochastic process, a wide variety of tools become available for analyses and modelling beyond conventional statistical methods. Such tools encompass random walk analyses and more complex techniques borrowed from the pattern recognition and machine learning fields. After a brief, though critical, probabilistic tour of current computational models of eye movements and visual attention, we lay down the basis for gaze shift pattern analysis. To this end, the concepts of Markov Processes, the Wiener process and related random walks within the Gaussian framework of the Central Limit Theorem will be introduced. Then, we will deliberately violate fundamental assumptions of the Central Limit Theorem to elicit a larger perspective, rooted in statistical physics, for analysing and modelling eye movements in terms of anomalous, non-Gaussian, random walks and modern foraging theory. Eventually, by resort...

  9. A quantitative quantum-chemical analysis tool for the distribution of mechanical force in molecules

    SciTech Connect (OSTI)

    Stauch, Tim; Dreuw, Andreas, E-mail: dreuw@uni-heidelberg.de [Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg (Germany)] [Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg (Germany)

    2014-04-07T23:59:59.000Z

    The promising field of mechanochemistry suffers from a general lack of understanding of the distribution and propagation of force in a stretched molecule, which limits its applicability up to the present day. In this article, we introduce the JEDI (Judgement of Energy DIstribution) analysis, which is the first quantum chemical method that provides a quantitative understanding of the distribution of mechanical stress energy among all degrees of freedom in a molecule. The method is carried out on the basis of static or dynamic calculations under the influence of an external force and makes use of a Hessian matrix in redundant internal coordinates (bond lengths, bond angles, and dihedral angles), so that all relevant degrees of freedom of a molecule are included and mechanochemical processes can be interpreted in a chemically intuitive way. The JEDI method is characterized by its modest computational effort, with the calculation of the Hessian being the rate-determining step, and delivers, except for the harmonic approximation, exact ab initio results. We apply the JEDI analysis to several example molecules in both static quantum chemical calculations and Born-Oppenheimer Molecular Dynamics simulations in which molecules are subject to an external force, thus studying not only the distribution and the propagation of strain in mechanically deformed systems, but also gaining valuable insights into the mechanochemically induced isomerization of trans-3,4-dimethylcyclobutene to trans,trans-2,4-hexadiene. The JEDI analysis can potentially be used in the discussion of sonochemical reactions, molecular motors, mechanophores, and photoswitches as well as in the development of molecular force probes.

  10. The advancement of a technique using principal component analysis for the non-intrusive depth profiling of radioactive contamination

    SciTech Connect (OSTI)

    Adams, J. C.; Joyce, M. J. [Engineering Dept., Lancaster Univ., Lancaster. LA1 4YR (United Kingdom); Mellor, M. [Createc Ltd., Derwent Mills Commercial Park, Cockermouth, Cumbria. CA13 0HT (United Kingdom)

    2011-07-01T23:59:59.000Z

    A non-intrusive technique using principal component analysis, to infer the depth of the fission fragment caesium-137, when it is buried under silica sand has been described. Using energy variances within different {gamma}-ray spectra, a complete depth model was produced for a single caesium-137 source buried under 1 mm depths ranging between 5-50 mm. This was achieved using a cadmium telluride detector and a bespoke phantom. In this paper we describe the advancement of the technique by further validating it using blind tests for applications outside of the laboratory, where not only the depth (z) but also the surface (x, y) location of {gamma}-ray emitting contamination is often poorly characterised. At present the technique has been tested at the point of maximum activity above the entrained {gamma}-ray emitting source (where the optimal x, y location is known). This is not usually practical in poorly characterized environments where the detector cannot be conveniently placed at such an optimal location to begin with and scanning at multiple points around the region of interest is often required. Using a uniform scanning time, the point of maximum intensity can be located by sampling in terms of total count rate, and converging on this optimal point of maximum intensity. (authors)

  11. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    SciTech Connect (OSTI)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

    2013-11-29T23:59:59.000Z

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the codes versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research projects primary objective is to advance the state of the art for reactor analysis.

  12. Thermo-Hydrological-Mechanical Analysis of a Clay Barrier for Radioactive Waste Isolation: Probabilistic Calibration and Advanced Modeling

    E-Print Network [OSTI]

    Dontha, Lakshman

    2012-07-16T23:59:59.000Z

    Sanchez Co-Chairs of Committee, Zenon Medina-Cetina Committee Member, Frederick Chester Head of Department, John Niedzwecki May 2012 Major Subject: Civil Engineering iii ABSTRACT Thermo... Committee, Dr. Marcelo Sanchez Dr. Zenon Medina-Cetina The engineered barrier system is a basic element in the design of repository to isolate high level radioactive waste (HLW...

  13. Analysis of advanced biofuels.

    SciTech Connect (OSTI)

    Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

    2010-09-01T23:59:59.000Z

    Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

  14. Advanced CSP Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power and TransmissionAdolphus L.America |CSP

  15. Mechanical Behavior Analysis of a Test Coil for MICE Coupling Solenoid during Quench

    SciTech Connect (OSTI)

    Pan, Heng; Wang, Li; Guo, Xinglong; Wu, Hong; Green, M.A.

    2009-10-28T23:59:59.000Z

    The coupling magnet for the Muon Ionization Cooling Experiment has a self-inductance of 592 H and the magnet stored energy of 13 MJ at a full current of 210 A for the worst operation case of the MICE channel. The high level of stored energy in the magnet can cause high peak temperature during a quench and induce considerable impact of stresses. One test coil was built in order to validate the design method and to practice the stress and strain situation to occur in the coupling coil. In this study, the analysis on stress redistribution during a quench with sub-divided winding was performed. The stress variation may bring about failure of impregnating material such as epoxy resin, which is the curse of a new normal zone arising. Spring models for impregnating epoxy and fiber-glass cloth in the coil were used to evaluate the mechanical disturbance by impregnated materials failure. This paper presents the detailed dynamic stress and stability analysis to assess the stress distribution during the quench process and to check whether the transient loads are acceptable for the magnet.

  16. Tools for Accurate and Efficient Analysis of Complex Evolutionary Mechanisms in Microbial Genomes. Final Report

    SciTech Connect (OSTI)

    Nakhleh, Luay

    2014-03-12T23:59:59.000Z

    I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbial genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e#14;cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the #12;nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.

  17. Evaluation of hydrogen pressure vessels using slow strain rate testing and fracture mechanics analysis

    SciTech Connect (OSTI)

    Murray, S.H. [National Aeronautics and Space Administration, Kennedy Space Center, FL (United States). Materials Science Div.; Desai, V.H. [Univ. of Central Florida, Orlando, FL (United States)

    1998-12-31T23:59:59.000Z

    A total of 108 seamless, forged pressure vessels, fabricated from ASTM A372 type IV (UNS K14508) and type V low alloy steel, are currently in 4,200 psi (29 MPa) gaseous hydrogen (GH{sub 2}) service at the Kennedy Space Center`s (KSC) Space Shuttle Launch Complex 39 (LC-39). The vessels were originally used in 6,000 psi (41 MPa) GH{sub 2} service during the Apollo program. NASA recently received a letter of warning from the manufacturer of the vessels stating that the subject vessels should be now be removed from GH{sub 2} service due to the fact that the ultimate tensile strength (UTS) of many of the vessels exceeds the maximum limit of 126 ksi (869 MPa) now imposed on A372 steel intended for GH{sub 2} service, and therefore are susceptible to hydrogen environment embrittlement. Due to the expense associated with vessel replacement, it was decided to determine by testing and analysis whether or not the vessels needed to be removed from GH{sub 2} service. Slow strain rate testing was performed under hydrogen charging conditions to determine the value of the threshold fracture toughness for sustained loading crack growth in GH{sub 2}, (K{sub H}) for the vessel material, this value was then used in a fracture mechanics safe-life analysis (a 20-year service life was modeled) that indicated the vessels are safe for continued use.

  18. A unified method for the analysis of nonlinear viscoelasticity and fatigue cracking of asphalt mixtures using the dynamic mechanical analyzer

    E-Print Network [OSTI]

    Castelo Branco, Veronica Teixeira Franco

    2009-05-15T23:59:59.000Z

    A UNIFIED METHOD FOR THE ANALYSIS OF NONLINEAR VISCOELASTICITY AND FATIGUE CRACKING OF ASPHALT MIXTURES USING THE DYNAMIC MECHANICAL ANALYZER A Dissertation by VERONICA TEIXEIRA FRANCO CASTELO BRANCO Submitted to the Office... VISCOELASTICITY AND FATIGUE CRACKING OF ASPHALT MIXTURES USING THE DYNAMIC MECHANICAL ANALYZER A Dissertation by VERONICA TEIXEIRA FRANCO CASTELO BRANCO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  19. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    SciTech Connect (OSTI)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01T23:59:59.000Z

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.

  20. Investigation of moisture effects on interfacial properties of an epoxy matrix composite by dynamic mechanical analysis

    E-Print Network [OSTI]

    Wang, Jo-Yu

    1994-01-01T23:59:59.000Z

    properties of glass bead-epoxy composites by measuring mechanical properties obtained through dynamic mechanical testing. The viscoelastic material properties of glass bead-composites, including glassy and rubbery moduli and the loss tangent (tanb) were...

  1. Structural Analysis of a Ternary Complex of Allantoate Amidohydrolase from Escherichia Coli Reveals its Mechanics

    SciTech Connect (OSTI)

    Agarwal,R.; Burley, S.; Swaminathan, S.

    2007-01-01T23:59:59.000Z

    Purine metabolism plays a major role in regulating the availability of purine nucleotides destined for nucleic acid synthesis. Allantoate amidohydrolase catalyzes the conversion of allantoate to (S)-ureidoglycolate, one of the crucial alternate steps in purine metabolism. The crystal structure of a ternary complex of allantoate amidohydrolase with its substrate allantoate and an allosteric effector, a sulfate ion, from Escherichia coli was determined to understand better the catalytic mechanism and substrate specificity. The 2.25 {angstrom} resolution X-ray structure reveals an {alpha}/{beta} scaffold akin to zinc exopeptidases of the peptidase M20 family and lacks the ({beta}/{alpha}){sub 8}-barrel fold characteristic of the amidohydrolases. Arrangement of the substrate and the two co-catalytic zinc ions at the active site governs catalytic specificity for hydrolysis of N-carbamyl versus the peptide bond in exopeptidases. In its crystalline form, allantoate amidohydrolase adopts a relatively open conformation. However, structural analysis reveals the possibility of a significant movement of domains via rotation about two hinge regions upon allosteric effector and substrate binding resulting in a closed catalytically competent conformation by bringing the substrate allantoate closer to co-catalytic zinc ions. Two cis-prolyl peptide bonds found on either side of the dimerization domain in close proximity to the substrate and ligand-binding sites may be involved in protein folding and in preserving the integrity of the catalytic site.

  2. Resonance Raman Analysis of the Mechanism of Energy Storage and Chromophore Distortion in the Primary Visual Photoproduct

    E-Print Network [OSTI]

    Chang, Belinda

    Resonance Raman Analysis of the Mechanism of Energy Storage and Chromophore Distortion modes and their relation to energy storage in the primary photoproduct. Low-temperature (77 K) resonance interactions of the 9- and 13-methyl groups with surrounding residues. This distortion stores light energy

  3. Empirical Analysis of TCP Losses and Its Detection/Recovery Mechanisms Sushant Rewaskar Jasleen Kaur Don Smith

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Empirical Analysis of TCP Losses and Its Detection/Recovery Mechanisms Sushant Rewaskar Jasleen Kaur Don Smith Department of Computer Science University of North Carolina at Chapel Hill Technical signifi- cantly on experiencing packet losses, not much is known about the way in which TCP losses occur

  4. Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility

    SciTech Connect (OSTI)

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2009-03-04T23:59:59.000Z

    Many state regulatory commissions and policymakers want utilities to aggressively pursue energy efficiency as a strategy to mitigate demand and energy growth, diversify the resource mix, and provide an alternative to building new, costly generation. However, as the National Action Plan for Energy Efficiency (NAPEE 2007) points out, many utilities continue to shy away from aggressively expanding their energy efficiency efforts when their shareholder's fundamental financial interests are placed at risk by doing so. Thus, there is increased interest in developing effective ratemaking and policy approaches that address utility disincentives to pursue energy efficiency or lack of incentives for more aggressive energy efficiency efforts. New regulatory initiatives to promote increased utility energy efficiency efforts also affect the interests of consumers. Ratepayers and their advocates are concerned with issues of fairness, impacts on rates, and total consumer costs. From the perspective of energy efficiency advocates, the quid pro quo for utility shareholder incentives is the obligation to acquire all, or nearly all, achievable cost-effective energy efficiency. A key issue for state regulators and policymakers is how to maximize the cost-effective energy efficiency savings attained while achieving an equitable sharing of benefits, costs and risks among the various stakeholders. In this study, we modeled a prototypical vertically-integrated electric investor-owned utility in the southwestern US that is considering implementing several energy efficiency portfolios. We analyze the impact of these energy efficiency portfolios on utility shareholders and ratepayers as well as the incremental effect on each party when lost fixed cost recovery and/or utility shareholder incentive mechanisms are implemented. A primary goal of our quantitative modeling is to provide regulators and policymakers with an analytic framework and tools that assess the financial impacts of alternative incentive approaches on utility shareholders and customers if energy efficiency is implemented under various utility operating, cost, and supply conditions.We used and adapted a spreadsheet-based financial model (the Benefits Calculator) which was developed originally as a tool to support the National Action Plan for Energy Efficiency (NAPEE). The major steps in our analysis are displayed graphically in Figure ES- 1. Two main inputs are required: (1) characterization of the utility which includes its initial financial and physical market position, a forecast of the utility?s future sales, peak demand, and resource strategy to meet projected growth; and (2) characterization of the Demand-Side Resource (DSR) portfolio ? projected electricity and demand savings, costs and economic lifetime of a portfolio of energy efficiency (and/or demand response) programs that the utility is planning or considering implementing during the analysis period. The Benefits Calculator also estimates total resource costs and benefits of the DSR portfolio using a forecast of avoided capacity and energy costs. The Benefits Calculator then uses inputs provided in the Utility Characterization to produce a ?business-as usual? base case as well as alternative scenarios that include energy efficiency resources, including the corresponding utility financial budgets required in each case. If a decoupling and/or a shareholder incentive mechanism are instituted, the Benefits Calculator model readjusts the utility?s revenue requirement and retail rates accordingly. Finally, for each scenario, the Benefits Calculator produces several metrics that provides insights on how energy efficiency resources, decoupling and/or a shareholder incentive mechanism impacts utility shareholders (e.g. overall earnings, return on equity), ratepayers (e.g., average customer bills and rates) and society (e.g. net resource benefits).

  5. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis...

  6. Understanding Loss Mechanisms and Efficiency Improvement Options for HCCI Engines Using Detailed Exergy Analysis

    E-Print Network [OSTI]

    Saxena, Samveg

    2013-01-01T23:59:59.000Z

    Exergy Loss from Cylinder Gases Combustion Heat Loss Exhaustheptane and Natural Gas blends Combustion in HCCI Engines,from Cylinder Gases (%) Loss Mechanisms Combustion Heat Loss

  7. Mechanical analysis of a cross flow filter. Final report, January 31, 1995

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    A cross flow filter for particulate control is described. Objectives were to improve the reliability and mechanical integrity of the filter.

  8. Vehicle Technologies Office: 2011 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical...

  9. A FULLY COUPLED THERMO-HYDRO MECHANICAL ANALYSIS OF THE IMPACT OF TEMPERATURE AND HUMIDITY VARIATION ON THE STATE OF HISTORICAL STONE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A FULLY COUPLED THERMO-HYDRO MECHANICAL ANALYSIS OF THE IMPACT OF TEMPERATURE AND HUMIDITY Keywords: Thermo-hydro-mechanical coupling, modelling, inverse problem, tuffeau, monument, in situ measures initiation and growth due to the variation of climate conditions; thermo-hydro-mechanical incompatibility

  10. Dilatation-strain analysis of the effects of flaws on the mechanical behavior of a highly filled elastomer

    E-Print Network [OSTI]

    Smith, Benjamin Ray

    1966-01-01T23:59:59.000Z

    as to style and content by: (Chairman of Committee) (Head of Department) (Member) August 1966 460008 ABSTRACT Dilatation-Strain Analysis of the Effects of Flaws on the Mechanical Behavior of a Highly Filled Elastomer Benjamin Ray Smith, B. S. , Texas... and from plates of solid propellant milled to 0. 250 inches in thick- ness. These materials were supplied by the Rocketdyne Division of North American Aviation. Their designation for the propellant is RDS-500. Their properties, which were found in other...

  11. Saltstone Disposal Facility Mechanically Stabilized Earth Vault Closure Cap Degradation: Sensitivity Analysis

    SciTech Connect (OSTI)

    PHIFER, MARK

    2004-03-19T23:59:59.000Z

    As part of the current Saltstone Disposal Facility (SDF) Performance Assessment (PA) revision, Mechanically Stabilized Earth (MSE) vault closure cap degradation mechanisms and their impact upon filtration through the MSE vault closure cap were evaluated for the base case land use scenario (i.e. institutional control to pine forest). The degradation mechanisms evaluated included pine forest succession, erosion, and colloidal clay migration (Phifer 2003). Infiltration through the upper hydraulic barrier layer of the closure cap as determined by this evaluation will be utilized as the infiltration input to subsequent PORFLOW vadose zone contaminant transport modeling, which will also be performed as part of the PA revision.

  12. Nonlinear Analysis of Conventional and Microstructure Dependent Functionally Graded Beams under Thermo-mechanical Loads

    E-Print Network [OSTI]

    Arbind, Archana

    2012-10-19T23:59:59.000Z

    nonlinear strain. Finite element models of the three beam theories have been developed. The thermo-mechanical coupling as well as the bending-stretching coupling play significant role in the deflection response. Numerical results are presented to show...

  13. A Viscoelastic-Viscoplastic Analysis of Fiber Reinforced Polymer Composites Undergoing Mechanical Loading and Temperature Changes

    E-Print Network [OSTI]

    Jeon, Jaehyeuk

    2013-08-09T23:59:59.000Z

    of thermal stresses, due to the mismatches in the coefficient of thermal expansions of the fibers and polymeric matrix, and stress concentrations/discontinuities near the fiber and matrix interfaces on the overall thermo-mechanical deformation of FRP...

  14. Magneto-Thermo-Mechanical Coupling, Stability Analysis and Phenomenological Constitutive Modeling of Magnetic Shape Memory Alloys

    E-Print Network [OSTI]

    Haldar, Krishnendu 1978-

    2012-12-06T23:59:59.000Z

    Magnetic shape memory alloys (MSMAs) are a class of active materials that de- form under magnetic and mechanical loading conditions. This work is concerned with the modeling of MSMAs constitutive responses. The hysteretic magneto...

  15. Fracture mechanics analysis on the resistance of welded details under variable amplitude long life loading

    E-Print Network [OSTI]

    Zhou, Minjian

    1993-01-01T23:59:59.000Z

    Fracture mechanics approach has been used to analyze the behavior of fatigue resistance of welded details existing in highway steel bridges under variable amplitude long life loading which means most of the stress ranges will be below constant...

  16. Analysis and sourcing of the mechanical equipment required for a ceramic pot filter production facility

    E-Print Network [OSTI]

    Getachew, Julian (Julian B.)

    2011-01-01T23:59:59.000Z

    Research was done into identifying and sourcing the mechanical equipment required for manufacturing ceramic pot filters, specifically for use in the Pure Home Water factory in Northern Ghana. The pieces of equipment ...

  17. Systems analysis of the CO[subscript 2] concentrating mechanism in cyanobacteria

    E-Print Network [OSTI]

    Mangan, Niall Mari

    Cyanobacteria are photosynthetic bacteria with a unique CO2 concentrating mechanism (CCM), enhancing carbon fixation. Understanding the CCM requires a systems level perspective of how molecular components work together to ...

  18. Automated Protocol for the Analysis of Dynamic Mechanical Analyzer Date from Fine Aggregate Asphalt Mixes

    E-Print Network [OSTI]

    Cavalcanti De Sousa, Pedro

    2010-10-12T23:59:59.000Z

    Fatigue cracking and moisture damage are two important modes of distresses in asphalt pavements. Recently, the Dynamic Mechanical Analyzer (DMA) was used to characterize fatigue cracking and evaluate the effects of moisture ...

  19. Technical Readiness and Gaps Analysis of Commercial Optical Materials and Measurement Systems for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong (Amy); Andersen, Eric S.; Berglin, Eric J.; Bliss, Mary; Cannon, Bret D.; Devanathan, Ramaswami; Mendoza, Albert; Sheen, David M.

    2013-08-06T23:59:59.000Z

    This report intends to support Department of Energys Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in terms of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nations energy security.

  20. Characterization of core debris/concrete interactions for the Advanced Neutron Source. ANS Severe Accident Analysis Program

    SciTech Connect (OSTI)

    Hyman, C.R.; Taleyarkhan, R.P.

    1992-02-01T23:59:59.000Z

    This report provides the results of a recent study conducted to explore the molten core/concrete interaction (MCCI) issue for the Advanced Neutron Source (ANS). The need for such a study arises from the potential threats to reactor system integrity posed by MCCI. These threats include direct attack of the concrete basemat of the containment; generation and release of large quantities of gas that can pressurize the containment; the combustion threat of these gases; and the potential generation, release, and transport of radioactive aerosols to the environment.

  1. Department of Mechanical Engineering Undergraduate programmes

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    in one of five areas without giving up the breadth of knowledge needed by a practicing engineer. OurDepartment of Mechanical Engineering Undergraduate programmes Aerospace Engineering Automotive Engineering Mechanical Engineering Mechanical Engineering with Advanced Design & Innovation Mechanical

  2. The Significance of Tumoral ERCC1 Status in Patients With Locally Advanced Cervical Cancer Treated With Chemoradiation Therapy: A Multicenter Clinicopathologic Analysis

    SciTech Connect (OSTI)

    Doll, Corinne M., E-mail: Corinne.Doll@albertahealthservices.ca [Department of Oncology, University of Calgary, Calgary, AB (Canada); Aquino-Parsons, Christina [Department of Radiation Oncology, University of British Columbia, Vancouver, BC (Canada)] [Department of Radiation Oncology, University of British Columbia, Vancouver, BC (Canada); Pintilie, Melania [Department of Biostatistics, Ontario Cancer Institute/Princess Margaret Hospital, University of Toronto, Toronto, ON (Canada)] [Department of Biostatistics, Ontario Cancer Institute/Princess Margaret Hospital, University of Toronto, Toronto, ON (Canada); Klimowicz, Alexander C. [Department of Oncology, University of Calgary, Calgary, AB (Canada)] [Department of Oncology, University of Calgary, Calgary, AB (Canada); Petrillo, Stephanie K. [Department of Pathology, University of Calgary, Calgary, AB (Canada)] [Department of Pathology, University of Calgary, Calgary, AB (Canada); Milosevic, Michael [Department of Radiation Oncology, University Health Network, University of Toronto, Toronto, ON (Canada)] [Department of Radiation Oncology, University Health Network, University of Toronto, Toronto, ON (Canada); Craighead, Peter S. [Department of Oncology, University of Calgary, Calgary, AB (Canada)] [Department of Oncology, University of Calgary, Calgary, AB (Canada); Clarke, Blaise [Department of Pathology, University of Toronto, Toronto, ON (Canada)] [Department of Pathology, University of Toronto, Toronto, ON (Canada); Lees-Miller, Susan P. [Departments of Biochemistry and Molecular Biology, and Oncology, University of Calgary, Calgary, AB (Canada)] [Departments of Biochemistry and Molecular Biology, and Oncology, University of Calgary, Calgary, AB (Canada); Fyles, Anthony W. [Department of Radiation Oncology, University Health Network, University of Toronto, Toronto, ON (Canada)] [Department of Radiation Oncology, University Health Network, University of Toronto, Toronto, ON (Canada); Magliocco, Anthony M. [Department of Pathology, Lee Moffitt Cancer Center, Tampa, Florida (United States)] [Department of Pathology, Lee Moffitt Cancer Center, Tampa, Florida (United States)

    2013-03-01T23:59:59.000Z

    Purpose: ERCC1 (excision repair cross-complementation group 1) expression has been shown to be a molecular marker of cisplatin resistance in many tumor sites, but has not been well studied in cervical cancer patients. The purpose of this study was to measure tumoral ERCC1 in patients with locally advanced cervical cancer treated with chemoradiation therapy (CRT) in a large multicenter cohort, and to correlate expression with clinical outcome parameters. Methods and Materials: A total of 264 patients with locally advanced cervical cancer, treated with curative-intent radical CRT from 3 major Canadian cancer centers were evaluated. Pretreatment formalin-fixed, paraffin-embedded tumor specimens were retrieved, and tissue microarrays were constructed. Tumoral ERCC1 (FL297 antibody) was measured using AQUA (R) technology. Statistical analysis was performed to determine the significance of clinical factors and ERCC1 status with progression-free survival (PFS) and overall survival (OS) at 5 years. Results: The majority of patients had International Federation of Gynecology and Obstetrics (FIGO) stage II disease (n=119, 45%); median tumor size was 5 cm. OS was associated with tumor size (HR 1.16, P=.018), pretreatment hemoglobin status (HR 2.33, P=.00027), and FIGO stage. In addition, tumoral ERCC1 status (nuclear to cytoplasmic ratio) was associated with PFS (HR 2.33 [1.05-5.18], P=.038) and OS (HR 3.13 [1.27-7.71], P=.013). ERCC1 status was not significant on multivariate analysis when the model was adjusted for the clinical factors: for PFS (HR 1.49 [0.61-3.6], P=.38); for OS (HR 2.42 [0.94-6.24] P=.067). Conclusions: In this large multicenter cohort of locally advanced cervical cancer patients treated with radical CRT, stage, tumor size, and pretreatment hemoglobin status were significantly associated with PFS and OS. ERCC1 status appears to have prognostic impact on univariate analysis in these patients, but was not independently associated with outcome on multivariate analysis.

  3. Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01T23:59:59.000Z

    Analysis 4.5 Energy Efficiency Business Models: Conceptual38 Figure 23. Energy efficiency business model conceptualmanagement. Energy Efficiency Business Models: Conceptual

  4. Mechanical design and analysis of an eight-pole superconducting vector magnet for soft x-ray magnetic dichroism measurements

    SciTech Connect (OSTI)

    Arbelaez, D.; Black, A.; Prestemon, S.O.; Wang, S.; Chen, J.; Arenholz, E.

    2010-01-13T23:59:59.000Z

    An eight-pole superconducting magnet is being developed for soft x-ray magnetic dichroism (XMD) experiments at the Advanced Light Source, Lawrence Berkley National Laboratory (LBNL). Eight conical Nb{sub 3}Sn coils with Holmium poles are arranged in octahedral symmetry to form four dipole pairs that provide magnetic fields of up to 5 T in any direction relative to the incoming x-ray beam. The dimensions of the magnet yoke as well as pole taper, diameter, and length were optimized for maximum peak field in the magnet center using the software package TOSCA. The structural analysis of the magnet is performed using ANSYS with the coil properties derived using a numerical homogenization scheme. It is found that the use of orthotropic material properties for the coil has an important influence in the design of the magnet.

  5. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01T23:59:59.000Z

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when must-take wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  6. Complex Non-Linear Modal Analysis for Mechanical Systems: Application to Turbomachinery Bladings With Friction

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    -conservative mechanical systems is proposed. In particular, dry-friction non-linearities are considered although degrees-of-freedom example featuring dry-friction illustrates the method and highlights the effects of a turbomachinery blade, with dry-friction interfaces is proposed. In the latter, an original framework

  7. Comparative analysis of electrical and mechanical fault signatures in induction motors

    E-Print Network [OSTI]

    Venugopal, Arvind Madabushi

    2005-02-17T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . 83 3. Two Broken Rotor Bars . . . . . . . . . . . . . . . . . 88 4. Four Broken Rotor Bars . . . . . . . . . . . . . . . . . 103 C. Fault III: Air-Gap Eccentricity . . . . . . . . . . . . . . . . 114 1. Air-Gap Eccentricity - Case 1... . . . . . . . . . . . . . . 114 2. Air-Gap Eccentricity - Case 2 . . . . . . . . . . . . . . 125 D. Fault IV: Mechanical Imbalance . . . . . . . . . . . . . . . 136 E. Summary of the Comparison Based on the Load Levels . . 147 F. Summary of the Comparison Based on Motor Ratings...

  8. Gas-bubble growth mechanisms in the analysis of metal fuel swelling

    SciTech Connect (OSTI)

    Gruber, E.E.; Kramer, J.M.

    1986-06-01T23:59:59.000Z

    During steady-state irradiation, swelling rates associated with growth of fission-gas bubbles in metallic fast reactor fuels may be expected to remain small. As a consequence, bubble-growth mechanisms are not a major consideration in modeling the steady-state fuel behavior, and it is usually adequate to consider the gas pressure to be in equilibrium with the external pressure and surface tension restraint. On transient time scales, however, various bubble-growth mechanisms become important components of the swelling rate. These mechanisms include growth by diffusion, for bubbles within grains and on grain boundaries; dislocation nucleation at the bubble surface, or ''punchout''; and bubble growth by creep. Analyses of these mechanisms are presented and applied to provide information on the conditions and the relative time scales for which the various processes should dominate fuel swelling. The results are compared to a series of experiments in which the swelling of irradiated metal fuel was determined after annealing at various temperatures and pressures. The diffusive growth of bubbles on grain boundaries is concluded to be dominant in these experiments.

  9. TITAN : an advanced three dimensional coupled neutronicthermal-hydraulics code for light water nuclear reactor core analysis

    E-Print Network [OSTI]

    Griggs, D. P.

    1984-01-01T23:59:59.000Z

    The accurate analysis of nuclear reactor transients frequently requires that neutronics, thermal-hydraulics and feedback be included. A number of coupled neutronics/thermal-hydraulics codes have been developed for this ...

  10. Error analysis of motion transmission mechanisms : design of a parabolic solar trough

    E-Print Network [OSTI]

    Koniski, Cyril (Cyril A.)

    2009-01-01T23:59:59.000Z

    This thesis presents the error analysis pertaining to the design of an innovative solar trough for use in solar thermal energy generation fields. The research was a collaborative effort between Stacy Figueredo from Prof. ...

  11. Advanced Policy Practice Spring 2014

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Advanced Policy Practice Spring 2014 SW 548-001 Instructor course that focuses on the theory and evidence-based skill sets of policy analysis, development, implementation, and change. The course focuses on policy

  12. Comprehensive Mechanisms for Combustion Chemistry: An Experimental and Numerical Study with Emphasis on Applied Sensitivity Analysis

    SciTech Connect (OSTI)

    Dryer, Frederick L.

    2009-04-10T23:59:59.000Z

    This project was an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work were conducted in large-diameter flow reactors, at 0.3 to 18 atm pressure, 500 to 1100 K temperature, and 10-2 to 2 seconds reaction time. Experiments were also conducted to determine reference laminar flame speeds using a premixed laminar stagnation flame experiment and particle image velocimetry, as well as pressurized bomb experiments. Flow reactor data for oxidation experiments include: (1)adiabatic/isothermal species time-histories of a reaction under fixed initial pressure, temperature, and composition; to determine the species present after a fixed reaction time, initial pressure; (2)species distributions with varying initial reaction temperature; (3)perturbations of a well-defined reaction systems (e.g. CO/H2/O2 or H2/O2)by the addition of small amounts of an additive species. Radical scavenging techniques are applied to determine unimolecular decomposition rates from pyrolysis experiments. Laminar flame speed measurements are determined as a function of equivalence ratio, dilution, and unburned gas temperature at 1 atm pressure. Hierarchical, comprehensive mechanistic construction methods were applied to develop detailed kinetic mechanisms which describe the measurements and literature kinetic data. Modeling using well-defined and validated mechanisms for the CO/H2/Oxidant systems and perturbations of oxidation experiments by small amounts of additives were also used to derive absolute reaction rates and to investigate the compatibility of published elementary kinetic and thermochemical information. Numerical tools were developed and applied to assess the importance of individual elementary reactions to the predictive performance of the developed mechanisms and to assess the uncertainties in elementary rate constant evaluations.

  13. Analysis of a proposed fuel freezing mechanism in a rod bundle

    E-Print Network [OSTI]

    Nguyen-Wayne, David Loc

    1983-01-01T23:59:59.000Z

    A. Erdman A proposed fuel freezing mechanism for molten U02 fuel penetrating a steel channel was investigated in the course of liquid-metal-cooled fast breeder reactor hypothetical core disruptive accident safety studies. The fuel crust... the developing length for an undeveloped flow, the crust is not stable and under these conditions, the melted wall material can be entrained. Zn fast reactor safety studies, a relatively high temperature molten fuel (about 3400 K) is considered to flow...

  14. An accident analysis of the physical plant of the Agricultural and Mechanical College of Texas

    E-Print Network [OSTI]

    Allen, Gary James

    1963-01-01T23:59:59.000Z

    to the gzeatest advantage by providing them with information about the principal hazards and unsafe practices in their departments. 8. Permit an objective evaluation of the progress of a safety program by noting in continuing analyses the effect of different... Insurance and Safety, of the Texas Agricultural and Mechanical College System, made this study possible by making available the injury records of the Physical Plant Department. The writer also wishes to thank the other members of his graduate committee...

  15. CO2 Emissions Mitigation and Technological Advance: An

    E-Print Network [OSTI]

    PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology of atmospheric CO2 concentrations at 450 parts per million by volume (ppmv) and 550 ppmv in MiniCAM. Each

  16. Computational analysis of whole body CT documents a bone structure alteration in adult advanced chronic lymphocytic leukemia

    E-Print Network [OSTI]

    Piana, Michele

    progression. PET/CT images were analyzed using dedicated software, able to recognize an external 2-pixel bone ring whose Hounsfield coefficient served as cut off to recognize trabecular and compact bone. PET/CT of the disease. Keywords: Image Analysis, Bone Marrow, Skeletal Structure, ACLL, PET/CT #12;3 Introduction

  17. Mechanisms of neutrinoless double-beta decay: A comparative analysis of several nuclei

    SciTech Connect (OSTI)

    Ali, A. [DESY, Deutsches Elektronen-Synchrotron (Germany); Borisov, A. V., E-mail: borisov@phys.msu.r [Moscow State University (Russian Federation); Zhuridov, D. V. [Scuola Normale Superiore (Italy)

    2010-12-15T23:59:59.000Z

    The neutrinoless double beta decay of several nuclei that are of interest from the experimental point of view ({sup 76}Ge, {sup 82}Se, {sup 100}Mo, {sup 130}Te, and {sup 136}Xe) is investigated on the basis of a general Lorentzinvariant effective Lagrangian describing physics effects beyond the Standard Model. The half-lives and angular-correlation coefficients for electrons are calculated for various decay mechanisms associated, in particular, with the exchange of Majorana neutrinos, supersymmetric particles (with R-parity violation), leptoquarks, and right-handed W{sub R} bosons. The effect of theoretical uncertainties in the values of relevant nuclear matrix elements on decay features is considered.

  18. Automated Protocol for the Analysis of Dynamic Mechanical Analyzer Date from Fine Aggregate Asphalt Mixes

    E-Print Network [OSTI]

    Cavalcanti De Sousa, Pedro

    2010-10-12T23:59:59.000Z

    of this study was to develop software to analyze the data from DMA test. Such software will enable engineers and researchers to perform the complex analysis in very short time. This is Microsoft Windows based software, executable in any hardware configuration...

  19. Vehicle Technologies Office: Advanced Battery Development, System...

    Broader source: Energy.gov (indexed) [DOE]

    materials and applied battery research into full battery systems for vehicles. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and...

  20. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

  1. Canonical Duality-Triality Theory: Bridge Between Nonconvex Analysis/Mechanics and Global Optimization in Complex Systems

    E-Print Network [OSTI]

    David Y Gao; Ning Ruan; Vittorio Latorre

    2014-11-26T23:59:59.000Z

    Canonical duality-triality is a breakthrough methodological theory, which can be used not only for modeling complex systems within a unified framework, but also for solving a wide class of challenging problems from real-world applications. This paper presents a brief review on this theory, its philosophical origin, physics foundation, and mathematical statements in both finite and infinite dimensional spaces, with emphasizing on its role for bridging the gap between nonconvex analysis/mechanics and global optimization. Special attentions are paid on unified understanding the fundamental difficulties in large deformation mechanics, bifurcation/chaos in nonlinear science, and the NP-hard problems in global optimization, as well as the theorems, methods, and algorithms for solving these challenging problems. Misunderstandings and confusions on some basic concepts, such as objectivity, nonlinearity, Lagrangian, and generalized convexities are discussed and classified. Breakthrough from recent challenges and conceptual mistakes by M. Voisei, C. Zalinescu and his co-worker are addressed. Some open problems and future works in global optimization and nonconvex mechanics are proposed.

  2. Preoperative Intensity Modulated Radiation Therapy and Chemotherapy for Locally Advanced Vulvar Carcinoma: Analysis of Pattern of Relapse

    SciTech Connect (OSTI)

    Beriwal, Sushil, E-mail: beriwals@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States)] [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Shukla, Gaurav; Shinde, Ashwin; Heron, Dwight E. [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States)] [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Kelley, Joseph L.; Edwards, Robert P.; Sukumvanich, Paniti; Richards, Scott; Olawaiye, Alexander B.; Krivak, Thomas C. [Division of Gynecologic Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States)] [Division of Gynecologic Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States)

    2013-04-01T23:59:59.000Z

    Purpose: To examine clinical outcomes and relapse patterns in locally advanced vulvar carcinoma treated using preoperative chemotherapy and intensity modulated radiation therapy (IMRT). Methods and Materials: Forty-two patients with stage I-IV{sub A} (stage I, n=3; stage II, n=13; stage III, n=23; stage IV{sub A}, n=3) vulvar cancer were treated with chemotherapy and IMRT via a modified Gynecological Oncology Group schema using 5-fluorouracil and cisplatin with twice-daily IMRT during the first and last weeks of treatment or weekly cisplatin with daily radiation therapy. Median dose of radiation was 46.4 Gy. Results: Thirty-three patients (78.6%) had surgery for resection of vulva; 13 of these patients also had inguinal lymph node dissection. Complete pathologic response was seen in 48.5% (n=16) of these patients. Of these, 15 had no recurrence at a median time of 26.5 months. Of the 17 patients with partial pathological response, 8 (47.1%) developed recurrence in the vulvar surgical site within a median of 8 (range, 5-34) months. No patient had grade ?3 chronic gastrointestinal/genitourinary toxicity. Of those having surgery, 8 (24.2%) developed wound infections requiring debridement. Conclusions: Preoperative chemotherapy/IMRT was well tolerated, with good pathologic response and clinical outcome. The most common pattern of recurrence was local in patients with partial response, and strategies to increase pathologic response rate with increasing dose or adding different chemotherapy need to be explored to help further improve outcomes.

  3. EVALUATION OF CORE PHYSICS ANALYSIS METHODS FOR CONVERSION OF THE INL ADVANCED TEST REACTOR TO LOW-ENRICHMENT FUEL

    SciTech Connect (OSTI)

    Mark DeHart; Gray S. Chang

    2012-04-01T23:59:59.000Z

    Computational neutronics studies to support the possible conversion of the ATR to LEU are underway. Simultaneously, INL is engaged in a physics methods upgrade project to put into place modern computational neutronics tools for future support of ATR fuel cycle and experiment analysis. A number of experimental measurements have been performed in the ATRC in support of the methods upgrade project, and are being used to validate the new core physics methods. The current computational neutronics work is focused on performance of scoping calculations for the ATR core loaded with a candidate LEU fuel design. This will serve as independent confirmation of analyses that have been performed previously, and will evaluate some of the new computational methods for analysis of a candidate LEU fuel for ATR.

  4. Mechanism for high hydrogen storage capacity on metal-coated carbon nanotubes: A first principle analysis

    SciTech Connect (OSTI)

    Lu, Jinlian; Xiao, Hong [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China); Cao, Juexian, E-mail: jxcao@xtu.edu.cn [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)

    2012-12-15T23:59:59.000Z

    The hydrogen adsorption and binding mechanism on metals (Ca, Sc, Ti and V) decorated single walled carbon nanotubes (SWCNTs) are investigated using first principle calculations. Our results show that those metals coated on SWCNTs can uptake over 8 wt% hydrogen molecules with binding energy range -0.2--0.6 eV, promising potential high density hydrogen storage material. The binding mechanism is originated from the electrostatic Coulomb attraction, which is induced by the electric field due to the charge transfer from metal 4s to 3d. Moreover, we found that the interaction between the H{sub 2}-H{sub 2} further lowers the binding energy. - Graphical abstract: Five hydrogen molecules bound to individual Ca decorated (8, 0) SWCNT : a potential hydrogen-storage material. Highlights: Black-Right-Pointing-Pointer Each transition metal atom can adsorb more than four hydrogen molecules. Black-Right-Pointing-Pointer The interation between metal and hydrogen molecule is electrostatic coulomb attraction. Black-Right-Pointing-Pointer The electric field is induced by the charge transfer from metal 4s to metal 3d. Black-Right-Pointing-Pointer The adsorbed hydrogen molecules which form supermolecule can further lower the binding energy.

  5. Statistical analysis of the mechanical properties of thin walled ductile iron castings

    SciTech Connect (OSTI)

    Schrems, Karol K.; Hawk, Jeffrey A.; Dogan, Omer N.; Druschitz, A.P. (Intermet)

    2003-01-01T23:59:59.000Z

    Ductile iron castings have long been used in the automotive market. Ductile iron is inexpensive to produce and has desirable fracture resistance and mechanical properties. However, the weight of ductile iron is driving an effort to reduce wall thickness in order to increase fuel economy. Traditionally, cast iron has been cast into thick, bulky shapes. Reducing the section size of cast iron can be done, but pushes foundry practice into new areas. A consortium of foundries, foundry suppliers, and automotive manufacturers has been pursuing the use of thin walled ductile cast iron. This paper investigates the mechanical behavior of three experimental heats of thin-wall castings in order to evaluate property trends and limits. Castings as thin as 1.7 mm (0.07 in) have been successfully cast. The study was designed to investigate the effects of thickness and different casting heats on the dependent variables of ultimate tensile strength, yield strength, elongation-to-failure, reduction in area, and hardness. The ultimate tensile strength of the castings is found to increase as the casting thickness decreases. Conversely, the elongation-to-failure is found to decrease as the casting thickness decreases. Heat-to-heat differences were found, but they were usually within the scatter of the data.

  6. Advances in X-Ray Chemical Analysis, Japan, 43 (2012) ISSN 0911-7806 Reviews on Forensic Analysis of Wakayama Arsenic Case

    E-Print Network [OSTI]

    Jun, Kawai

    in the legal advices submitted to the court was reviewed. Though it was believed that SPring-8 XRF has a large-ray fluorescence analysis (SR-XRF) is used for forensic analysis. It has been clarified that the SPring- 8 SR-XRF was not a major contribution, and if the SR-XRF were too much depended on, it is pointed out that the decision may

  7. Analysis of containment performance and radiological consequences under severe accident conditions for the Advanced Neutron Source Reactor at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kim, S.H.; Taleyarkhan, R.P.

    1994-01-01T23:59:59.000Z

    A severe accident study was conducted to evaluate conservatively scoped source terms and radiological consequences to support the Advanced Neutron Source (ANS) Conceptual Safety Analysis Report (CSAR). Three different types of severe accident scenarios were postulated with a view of evaluating conservatively scoped source terms. The first scenario evaluates maximum possible steaming loads and associated radionuclide transport, whereas the next scenario is geared towards evaluating conservative containment loads from releases of radionuclide vapors and aerosols with associated generation of combustible gases. The third scenario follows the prescriptions given by the 10 CFR 100 guidelines. It was included in the CSAR for demonstrating site-suitability characteristics of the ANS. Various containment configurations are considered for the study of thermal-hydraulic and radiological behaviors of the ANS containment. Severe accident mitigative design features such as the use of rupture disks were accounted for. This report describes the postulated severe accident scenarios, methodology for analysis, modeling assumptions, modeling of several severe accident phenomena, and evaluation of the resulting source term and radiological consequences.

  8. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    SciTech Connect (OSTI)

    Brown, D L

    2009-05-01T23:59:59.000Z

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex networked systems, and (4) design, situational awareness and control of complex networks. The program elements consist of a group of Complex Networked Systems Research Institutes (CNSRI), tightly coupled to an associated individual-investigator-based Complex Networked Systems Basic Research (CNSBR) program. The CNSRI's will be principally located at the DOE National Laboratories and are responsible for identifying research priorities, developing and maintaining a networked systems modeling and simulation software infrastructure, operating summer schools, workshops and conferences and coordinating with the CNSBR individual investigators. The CNSBR individual investigator projects will focus on specific challenges for networked systems. Relevancy of CNSBR research to DOE needs will be assured through the strong coupling provided between the CNSBR grants and the CNSRI's.

  9. Theoretical analysis of degradation mechanisms in the formation of morphogen gradients

    E-Print Network [OSTI]

    Bozorgui, Behnaz; Kolomeisky, Anatoly B

    2015-01-01T23:59:59.000Z

    The fundamental biological processes of development of tissues and organs in multicellular organisms is governed by various signaling molecules, which are called morphogens. It is known that spatial and temporal variations in concentration profiles of signaling molecules, which are frequently referred as morphogen gradients, lead to cell differentiation via activating specific genes in a concentration-dependent manner. It is widely accepted that the establishment of the morphogen gradients involves multiple biochemical reactions and diffusion processes. One of the critical elements in the formation of morphogen gradients is a degradation of signaling molecules. We develop a new theoretical approach that provides a comprehensive description of the degradation mechanisms. It is based on the idea that the degradation works as an effective potential that drives the signaling molecules away from the source region. Utilizing the method of first-passage processes, the dynamics of the formation of morphogen gradients...

  10. Magnetic and Mechanical Analysis of the HQ Model Quadrupole Designs for LARP

    SciTech Connect (OSTI)

    Felice, Helene; Caspi, Shlomo; Ferracin, Paolo; Kashikhin, Vadim; Novitski, Igor; Sabbi, GianLuca; Zlobin, Alexander

    2008-06-01T23:59:59.000Z

    Insertion quadrupoles with large bore and high gradient are required to upgrade the luminosity of the Large Hadron Collider (LHC). The US LHC Accelerator Research Program is developing Nb{sub 3}Sn technology for the upgrade. This effort includes a series of 1 m long Technology Quadrupoles (TQ), to demonstrate the reproducibility at moderate field, and High-gradient Quadrupoles (HQ) to explore the magnet performance limits in terms of peak fields, forces and stresses. The HQ models are expected to achieve peak fields of 15 T or higher. A coil aperture of 90 mm, corresponding to gradients above 300 T/m, was chosen as the baseline. Peak stresses above 150 MPa are expected. Progress on the magnetic and mechanical design of the HQ models will be reported.

  11. An Advanced Integrated Diffusion/Transport Method for the Design, Analysis and Optimization of the Very-High-Temperature Reactors

    SciTech Connect (OSTI)

    Farzad Rahnema; Dingkang Zhang; Abderrafi Ougouag; Frederick Gleicher

    2011-04-04T23:59:59.000Z

    The main objective of this research is to develop an integrated diffusion/transport (IDT) method to substantially improve the accuracy of nodal diffusion methods for the design and analysis of Very High Temperature Reactors (VHTR). Because of the presence of control rods in the reflector regions in the Pebble Bed Reactor (PBR-VHTR), traditional nodal diffusion methods do not accurately model these regions, within which diffusion theory breaks down in the vicinity of high neutron absorption and steep flux gradients. The IDT method uses a local transport solver based on a new incident flux response expansion method in the controlled nodes. Diffusion theory is used in the rest of the core. This approach improves the accuracy of the core solution by generating transport solutions of controlled nodes while maintaining computational efficiency by using diffusion solutions in nodes where such a treatment is sufficient. The transport method is initially developed and coupled to the reformulated 3-D nodal diffusion model in the CYNOD code for PBR core design and fuel cycle analysis. This method is also extended to the prismatic VHTR. The new method accurately captures transport effects in highly heterogeneous regions with steep flux gradients. The calculations of these nodes with transport theory avoid errors associated with spatial homogenization commonly used in diffusion methods in reactor core simulators

  12. Benchmark data for a large reprocessing plant for evaluation of advanced data analysis algorithms and safeguards system design

    SciTech Connect (OSTI)

    Burr, T.L.; Coulter, C.A.; Wangen, L.E.

    1998-02-01T23:59:59.000Z

    This report describes the simulation and analysis of solution level and density (L,D) in all key main process tanks in a large reprocessing plant. In addition, initial provisions were made to include temperature (T) data in the analysis at a later time. FacSim, a simulation program developed at Los Alamos, was used to generate simulated process operating data for the Rokkasho Reprocessing Plant (RRP) that is now under construction in Japan. Both normal facility operation and more than thirty abrupt diversion scenarios were modeled over 25-day periods of simulated operation beginning with clean startup of the facility. The simulation tracked uranium, plutonium (both +3 and +4 oxidation states), HNO{sub 3} diluent, and tributyl phosphate from the input accountability vessel to the plutonium output accountability vessel, with the status of each process vessel and many pipes recorded at intervals of approximately four minutes. These data were used to determine solution volume and density values in each process vessel as a function of time.

  13. Cole-cole analysis and electrical conduction mechanism of N{sup +} implanted polycarbonate

    SciTech Connect (OSTI)

    Chawla, Mahak; Shekhawat, Nidhi; Aggarwal, Sanjeev, E-mail: write2sa@gmail.com; Sharma, Annu [Department of Physics, Kurukshetra University, Kurukshetra 136119 (India); Nair, K. G. M. [Consultant, UGC-DAE Consortium for Scientific Research, Kalpakkam Node, Kokilamedu 603104, Tamil Nadu (India)

    2014-05-14T23:59:59.000Z

    In this paper, we present the analysis of the dielectric (dielectric constant, dielectric loss, a.c. conductivity) and electrical properties (IV characteristics) of pristine and nitrogen ion implanted polycarbonate. The samples of polycarbonate were implanted with 100?keV N{sup +} ions with fluence ranging from 1??10{sup 15} to 1??10{sup 17} ions cm{sup ?2}. The dielectric measurements of these samples were performed in the frequency range of 100 kHz to 100 MHz. It has been observed that dielectric constant decreases whereas dielectric loss and a.c. conductivity increases with increasing ion fluence. An analysis of real and imaginary parts of dielectric permittivity has been elucidated using Cole-Cole plot of the complex permittivity. With the help of Cole-Cole plot, we determined the values of static dielectric constant (?{sub s}), optical dielectric constant (?{sub ?}), spreading factor (?), average relaxation time (?{sub 0}), and molecular relaxation time (?). The IV characteristics were studied using Keithley (6517) electrometer. The electrical conduction behaviour of pristine and implanted polycarbonate specimens has been explained using various models of conduction.

  14. Advances in X-Ray Chemical Analysis, Japan, 41 (2010) ISSN 0911-7806 Analysis of Compound Ratios of Titanium Dioxides with

    E-Print Network [OSTI]

    Jun, Kawai

    2010-01-01T23:59:59.000Z

    Ratios of Titanium Dioxides with Various Crystallite Sizes Using X-Ray Diffraction Broadenings Hiroya-Ray. Chem. Anal., Japan 41, pp.75-84 (2010) 134 600-8813 606-8501 X Analysis of Compound Ratios of Titanium 2009, Revised 25 December 2009, Accepted 30 December 2009) Compound ratios of titanium dioxides

  15. Advances in X-Ray Chemical Analysis, Japan, 41 (2010) ISSN 0911-7806 Theoretical Analysis of X-Ray Waveguide Using Fresnel Diffraction

    E-Print Network [OSTI]

    Jun, Kawai

    2010-01-01T23:59:59.000Z

    -Ray Waveguide Using Fresnel Diffraction Yusuke MORIKAWA and Jun KAWAI #12;#12;41 145 X Adv. X-Ray. Chem. Anal., Japan 41, pp.145-150 (2010) 606-8501 X Theoretical Analysis of X-Ray Waveguide Using Fresnel Diffraction symmetrical pattern. We regard it as a slit and calculated the Fresnel diffraction. We find

  16. A comparative analysis of numerical approaches to the mechanics of elastic sheets

    E-Print Network [OSTI]

    Michael Taylor; Benny Davidovitch; Zhanlong Qiu; Katia Bertoldi

    2014-11-25T23:59:59.000Z

    Numerically simulating deformations in thin elastic sheets is a challenging problem in computational mechanics due to destabilizing compressive stresses that result in wrinkling. Determining the location, structure, and evolution of wrinkles in these problems have important implications in design and is an area of increasing interest in the fields of physics and engineering. In this work, several numerical approaches previously proposed to model equilibrium deformations in thin elastic sheets are compared. These include standard finite element-based static post-buckling approaches as well as a recently proposed method based on dynamic relaxation, which are applied to the problem of an annular sheet with opposed tractions where wrinkling is a key feature. Numerical solutions are compared to analytic predictions, enabling a quantitative evaluation of the predictive power of the various methods. Results indicate that static finite element approaches are highly sensitive to initial imperfections, relying on \\textit{a priori} knowledge of the equilibrium wrinkling pattern to generate optimal results. In contrast, dynamic relaxation is much less sensitive to initial imperfections and can generate solutions for a wide variety of loading conditions without requiring knowledge of the equilibrium solution beforehand.

  17. Systematic analysis of Persson's contact mechanics theory of randomly rough elastic surfaces

    E-Print Network [OSTI]

    Wolf B. Dapp; Nikolay Prodanov; Martin H. Mser

    2014-06-24T23:59:59.000Z

    We systematically check explicit and implicit assumptions of Persson's contact mechanics theory. It casts the evolution of the pressure distribution ${\\rm Pr}(p)$ with increasing resolution of surface roughness as a diffusive process, in which resolution plays the role of time. The tested key assumptions of the theory are: (a) the diffusion coefficient is independent of pressure $p$, (b) the diffusion process is drift-free at any value of $p$, (c) the point $p=0$ acts as an absorbing barrier, i.e., once a point falls out of contact, it never reenters again, (d) the Fourier component of the elastic energy is only populated if the appropriate wave vector is resolved, and (e) it no longer changes when even smaller wavelengths are resolved. Using high-resolution numerical simulations, we quantify deviations from these approximations and find quite significant discrepancies in some cases. For example, the drift becomes substantial for small values of $p$, which typically represent points in real space close to a contact line. On the other hand, there is a significant flux of points reentering contact. These and other identified deviations cancel each other to a large degree, resulting in an overall excellent description for contact area, contact geometry, and gap distribution functions. Similar fortuitous error cancellations cannot be guaranteed under different circumstances, for instance when investigating rubber friction. The results of the simulations may provide guidelines for a systematic improvement of the theory.

  18. Fracture mechanics analysis of cast duplex stainless steel elbows containing a surface crack

    SciTech Connect (OSTI)

    Delliou, P.A. le; Semete, P. [Electricite de France, Moret Sur Loing (France). Direction des Etudes et Recherches; Ignaccolo, S. [Electricite de France, Villeurbanne (France). Direction de l`Equipement

    1998-12-31T23:59:59.000Z

    Some components of the primary loop of a PWR are made of cast duplex stainless steel. This kind of steel may age even at relatively low temperatures, (below 400 C, which is within the temperature range of PWR service conditions), leading to a significant decrease of its toughness. This is why a large research program was initiated on the fracture behavior of aged duplex stainless steel elbows in France. The main task of this program was to test three 2/3-scale models of aged PWR primary loop elbows. The first two tests (called SEM1 and SEM2) were conducted under in-plane closure bending at 320 C; the third (called SEM3) was conducted under constant internal pressure and in-plane closure bending at 60 C. The first two elbows contained a semi-elliptical notch machined into the outer surface of one flank, oriented either longitudinally (SEM1 test) or circumferentially (SEM2 test); the third elbow contained both notches described above, one on each flank. This paper presents the results of the experiments, the finite element calculations and the ductile fracture mechanics analyses that were performed.

  19. Physical process Mechanical mechanisms

    E-Print Network [OSTI]

    Berlin,Technische Universitt

    1 Physical process Generation Mechanical mechanisms F = ma Electric/Magnetic mechanisms F = Bil Fluid dynamic/Hydraulic mechanisms q, p, ij Thermal/Optical #12;2 Source unit

  20. Mechanical Analysis of the 400 MHz RF-Dipole Crabbing Cavity Prototype for LHC High Luminosity Upgrade

    SciTech Connect (OSTI)

    De Silva, Subashini U. [ODU; Park, HyeKyoung [ODU, JLAB; Delayen, Jean R. [ODU, JLAB; Li, Z. [SLAC

    2013-12-01T23:59:59.000Z

    The proposed LHC high luminosity upgrade requires two crabbing systems in increasing the peak luminosity, operating both vertically and horizontally at two interaction points of IP1 and IP5. The required system has tight dimensional constraints and needs to achieve higher operational gradients. A proof-of-principle 400 MHz crabbing cavity design has been successfully tested and has proven to be an ideal candidate for the crabbing system. The cylindrical proof-of-principle rf-dipole design has been adapted in to a square shaped design to further meet the dimensional requirements. The new rf-dipole design has been optimized in meeting the requirements in rf-properties, higher order mode damping, and multipole components. A crabbing system in a cryomodule is expected to be tested on the SPS beam line prior to the test at LHC. The new prototype is required to achieve the mechanical and thermal specifications of the SPS test followed by the test at LHC. This paper discusses the detailed mechanical and thermal analysis in minimizing Lorentz force detuning and sensitivity to liquid He pressure fluctuations.

  1. Advanced LD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LD Engine Systems and Emissions Control Modeling and Analysis Advanced LD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and...

  2. Advanced PHEV Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine Systems and Emissions Control Modeling and Analysis Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis 2011 DOE Hydrogen and Fuel Cells Program,...

  3. Advanced HD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HD Engine Systems and Emissions Control Modeling and Analysis Advanced HD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and...

  4. Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source Reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

    1995-09-01T23:59:59.000Z

    This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at the Oak Ridge National Laboratory (ORNL). Damage propagation is postulated to occur from thermal conduction between damaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur because of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A scoping study was conducted to learn what parameters are important for core damage propagation, and to obtain initial estimates of core melt mass for addressing recriticality and steam explosion events. The study included investigating the effects of the plate contact area, the convective heat transfer coefficient, thermal conductivity upon fuel swelling, and the initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects on damage propagation. The results provide useful insights into how various uncertain parameters affect damage propagation.

  5. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    SciTech Connect (OSTI)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01T23:59:59.000Z

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  6. Precursory signatures of protein folding/unfolding: From time series correlation analysis to atomistic mechanisms

    SciTech Connect (OSTI)

    Hsu, P. J.; Lai, S. K., E-mail: sklai@coll.phy.ncu.edu.tw [Complex Liquids Laboratory, Department of Physics, National Central University, Chungli 320 Taiwan (China); Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan (China); Cheong, S. A. [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2014-05-28T23:59:59.000Z

    Folded conformations of proteins in thermodynamically stable states have long lifetimes. Before it folds into a stable conformation, or after unfolding from a stable conformation, the protein will generally stray from one random conformation to another leading thus to rapid fluctuations. Brief structural changes therefore occur before folding and unfolding events. These short-lived movements are easily overlooked in studies of folding/unfolding for they represent momentary excursions of the protein to explore conformations in the neighborhood of the stable conformation. The present study looks for precursory signatures of protein folding/unfolding within these rapid fluctuations through a combination of three techniques: (1) ultrafast shape recognition, (2) time series segmentation, and (3) time series correlation analysis. The first procedure measures the differences between statistical distance distributions of atoms in different conformations by calculating shape similarity indices from molecular dynamics simulation trajectories. The second procedure is used to discover the times at which the protein makes transitions from one conformation to another. Finally, we employ the third technique to exploit spatial fingerprints of the stable conformations; this procedure is to map out the sequences of changes preceding the actual folding and unfolding events, since strongly correlated atoms in different conformations are different due to bond and steric constraints. The aforementioned high-frequency fluctuations are therefore characterized by distinct correlational and structural changes that are associated with rate-limiting precursors that translate into brief segments. Guided by these technical procedures, we choose a model system, a fragment of the protein transthyretin, for identifying in this system not only the precursory signatures of transitions associated with ? helix and ? hairpin, but also the important role played by weaker correlations in such protein folding dynamics.

  7. Advanced fuel chemistry for advanced engines.

    SciTech Connect (OSTI)

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01T23:59:59.000Z

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  8. Westinghouse advanced particle filter system

    SciTech Connect (OSTI)

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1995-11-01T23:59:59.000Z

    Integrated Gasification Combined Cycles (IGCC), Pressurized Fluidized Bed Combustion (PFBC) and Advanced PFBC (APFB) are being developed and demonstrated for commercial power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC, PFBC and APFB in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of these advanced, solid fuel power generation cycles.

  9. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power and TransmissionAdolphusAdvanced Energy

  10. SERI advanced wind turbine blades

    SciTech Connect (OSTI)

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01T23:59:59.000Z

    The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  11. SERI advanced wind turbine blades

    SciTech Connect (OSTI)

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01T23:59:59.000Z

    The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  12. TUM Institute for Advanced Study

    E-Print Network [OSTI]

    Haug, Stephan

    , 85748 Garching When October 21, 2010, 9.00 a.m. With the new home for the TUM Institute for Advanced in Smart Grids Prof. Sandra Hirche (TUM) Dr. Dragan Obradovic (Siemens AG) Electrochemistry and the Future of the Automobile Dr. Frederick T. Wagner (General Motors R&D) 12:00 Lunch Ideas Market (Faculty of Mechanical

  13. Advanced drilling systems study.

    SciTech Connect (OSTI)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

    1996-05-01T23:59:59.000Z

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  14. advanced bar steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This thesis is devoted to the numerical investigation of mechanical behavior of Dual phase (DP) steels. Such grade of advanced high strength steels (AHSS) is favorable to the...

  15. advanced heat engines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project is funded by the Singapore National Research Foundation 16 Advanced Mechanical Heat Pump Technologies for Industrial Applications Texas A&M University - TxSpace Summary:...

  16. advanced heat engine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project is funded by the Singapore National Research Foundation 16 Advanced Mechanical Heat Pump Technologies for Industrial Applications Texas A&M University - TxSpace Summary:...

  17. Advanced Turbine Systems Program conceptual design and product development. Annual report, August 1993--July 1994

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The stated objective of the project was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems (GFATS) in order to select one that would achieve all of the ATS Program goals. Detailed cycle performance, cost of electricity, and RAM analysis were carried out to provide information on the final selection of the GFATS cycle. To achieve the very challenging goals, innovative approaches and technological advances are required, especially in combustion, aerodynamic design, cooling design, mechanical design, leakage control, materials, and coating technologies.

  18. Advanced Search news and analysis

    E-Print Network [OSTI]

    LaMeres, Brock J.

    is useless without a sound probing connection to a system under test. If you approach the problem carefully, Agilent Technologies Inc., Palo Alto, Calif. Logic analyzer probing can be classified into two groups Subscribe to Wall Street & Technology Week Renew Wall Street & Technology Week Search our TechLibrary: Go

  19. STATISTICAL ANALYSIS OF PROTEIN FOLDING KINETICS

    E-Print Network [OSTI]

    Dinner, Aaron

    STATISTICAL ANALYSIS OF PROTEIN FOLDING KINETICS AARON R. DINNER New Chemistry Laboratory for Protein Folding: Advances in Chemical Physics, Volume 120. Edited by Richard A. Friesner. Series Editors Experimental and theoretical studies have led to the emergence of a unified general mechanism for protein

  20. Analysis of the quantum-mechanical equivalence of the metrics of a centrally symmetric uncharged gravitational field

    E-Print Network [OSTI]

    M. V. Gorbatenko; V. P. Neznamov

    2014-11-08T23:59:59.000Z

    In the paper we analyze the quantum-mechanical equivalence of the metrics of a centrally symmetric uncharged gravitational field. We consider the Schwarzschild metrics in the spherical, isotropic and harmonic coordinates, and the Eddington-Finkelstein, Painleve-Gullstrand, Lemaitre-Finkelstein, Kruskal metrics. The scope of the analysis includes domains of the wave functions of Dirac's equation, hermiticity of Hamiltonians, and the possibility of existence of stationary bound states of spin-half particles. The constraint on the domain of the wave functions of the Hamiltonian in a Schwarzschild field in spherical coordinates (r > r_{0}) resulting from the fulfillment of Hilbert's condition g_{00} > 0 also holds in other coordinates for all the metrics considered. The self-adjoint Hamiltonians for the Schwarzschild metrics in the spherical, isotropic and harmonic coordinates and also for the Eddington-Finkelstein and Painleve-Gullstrand metrics are Hermitian, and for them the existence of stationary bound states of spin-half particles is possible. The self-adjoint Hamiltonians for non-stationary Lemaitre-Finkelstein and Kruskal metrics have the explicit dependence on the temporal coordinates and stationary bound states of spin-half particles cannot be defined for these Hamiltonians. The results of this study can be useful when addressing the issues related to the evolution of the universe and interaction of collapsars with surrounding matter.

  1. Crystallization Behavior of Virgin TR-55 Silicone Rubber Measured Using Dynamic Mechanical Thermal Analysis with Liquid Nitrogen Cooling

    SciTech Connect (OSTI)

    Small IV, W; Wilson, T S

    2010-02-11T23:59:59.000Z

    Dynamic mechanical thermal analysis (DMTA) of virgin TR-55 silicone rubber specimens was conducted. Two dynamic temperature sweep tests, 25 to -100 C and 25 to -70 to 0 C (ramp rate = 1 C/min), were conducted at a frequency of 6.28 rad/s (1 Hz) using a torsion rectangular test geometry. A strain of 0.1% was used, which was near the upper limit of the linear viscoelastic region of the material based on an initial dynamic strain sweep test. Storage (G{prime}) and loss (G{double_prime}) moduli, the ratio G{double_prime}/G{prime} (tan {delta}), and the coefficient of linear thermal expansion ({alpha}) were determined as a function of temperature. Crystallization occurred between -40 and -60 C, with G{prime} increasing from {approx}6 x 10{sup 6} to {approx}4 x 10{sup 8} Pa. The value of {alpha} was fairly constant before ({approx}4 x 10{sup -4} mm/mm- C) and after ({approx}3 x 10{sup -4} mm/mm- C) the transition, and peaked during the transition ({approx}3 x 10{sup -3} mm/mm- C). Melting occurred around -30 C upon heating.

  2. Simulation and performance analysis of basic GAX and advanced GAX cycles with ammonia/water and ammonia/water/LiBr absorption fluids

    SciTech Connect (OSTI)

    Zaltash, A.; Grossman, G.

    1996-03-01T23:59:59.000Z

    The generator-absorber heat exchange (GAX) and branched GAX cycles are generally considered with NH{sub 3}/H{sub 2}O as their working fluid. The potential consequences of using a ternary mixture of NH{sub 3}/H{sub 2}O/LiBr (advanced fluids) in the GAX and Branched GAX (advanced cycles) are discussed in this study. A modular steady state absorption simulation model(ABSIM) was used to investigate the potential of combining the above advanced cycles with the advanced fluids. ABSIM is capable of modeling varying cycle configurations with different working fluids. Performance parameters of the cycles, including coefficient of performance (COP) and heat duties, were investigated as functions of different operating parameters in the cooling mode for both the NH {sub 3}/H{sub 2}O binary and the NH{sub 3}/H{sub 2}O/LiBr ternary mixtures. High performance potential of GAX and branched GAX cycles using the NH{sub 3}/H{sub 2}O/LiBr ternary fluid mixture was achieved especially at the high range of firing temperatures exceeding 400{degrees}F. The cooling COP`s have been improved by approximately 21% over the COP achieved with the NH{sub 3}/H{sub 2}O binary mixtures. These results show the potential of using advanced cycles with advanced fluid mixtures (ternary or quaternary fluid mixtures).

  3. CO2 Emissions Mitigation and Technological Advance: An

    E-Print Network [OSTI]

    PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology electricity 16.9 29.0 44.7 65.7 89.2 114.3 145.2 174.8 EJ/yr building trad biomass 23.5 29.9 32.1 27.9 22.9 17

  4. Geothermal: Advanced Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You...

  5. ASME Material Challenges for Advanced Reactor Concepts

    SciTech Connect (OSTI)

    Piyush Sabharwall; Ali Siahpush

    2013-07-01T23:59:59.000Z

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  6. Uncertainty Analyses of Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

    2008-12-12T23:59:59.000Z

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

  7. Computational mechanics

    SciTech Connect (OSTI)

    Raboin, P J

    1998-01-01T23:59:59.000Z

    The Computational Mechanics thrust area is a vital and growing facet of the Mechanical Engineering Department at Lawrence Livermore National Laboratory (LLNL). This work supports the development of computational analysis tools in the areas of structural mechanics and heat transfer. Over 75 analysts depend on thrust area-supported software running on a variety of computing platforms to meet the demands of LLNL programs. Interactions with the Department of Defense (DOD) High Performance Computing and Modernization Program and the Defense Special Weapons Agency are of special importance as they support our ParaDyn project in its development of new parallel capabilities for DYNA3D. Working with DOD customers has been invaluable to driving this technology in directions mutually beneficial to the Department of Energy. Other projects associated with the Computational Mechanics thrust area include work with the Partnership for a New Generation Vehicle (PNGV) for ''Springback Predictability'' and with the Federal Aviation Administration (FAA) for the ''Development of Methodologies for Evaluating Containment and Mitigation of Uncontained Engine Debris.'' In this report for FY-97, there are five articles detailing three code development activities and two projects that synthesized new code capabilities with new analytic research in damage/failure and biomechanics. The article this year are: (1) Energy- and Momentum-Conserving Rigid-Body Contact for NIKE3D and DYNA3D; (2) Computational Modeling of Prosthetics: A New Approach to Implant Design; (3) Characterization of Laser-Induced Mechanical Failure Damage of Optical Components; (4) Parallel Algorithm Research for Solid Mechanics Applications Using Finite Element Analysis; and (5) An Accurate One-Step Elasto-Plasticity Algorithm for Shell Elements in DYNA3D.

  8. 2012 Advanced Applications Research & Development Peer Review...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Review - Real-Time Wide-Area Montoring Tool Based on CELL Method - Yuri Makarov, PNNL 2012 Advanced Applications R&D Peer Review - Modal Analysis for Grid Operations (MANGO)...

  9. Overview of ASTM standard activities in support of advanced structural ceramics development

    SciTech Connect (OSTI)

    Brinkman, C.R. [Oak Ridge National Lab., TN (United States); Quinn, G.D. [NIST, Gaithersburg, MD (United States); McClung, R.W.

    1995-07-01T23:59:59.000Z

    An overview is presented of the activities of ASTM Committee C-28 on Advanced Ceramics. This activity originated in 1986 when it became apparent that advanced ceramics were being considered for extensive use in applications such as advanced heat engines, heat exchangers, combustors, etc. in aerospace and energy conservation activities. These applications require optimum material behavior with physical and mechanical property reproducibility, component reliability, and well defined methods of data treatment and material analysis for both monolithic and composite ceramic materials. As new materials are introduced into the market place, these issues are best dealt with via standard methods. Therefore, a progress report is given describing activities of the five standard writing subcommittees who support the ASTM Committee C-28 effort. Accomplishments to date are given, as well as likely future activities, including a brief summary of joint cooperative efforts with international standard formulating organizations.

  10. California Institute of Technology Mechanical Engineering

    E-Print Network [OSTI]

    Heaton, Thomas H.

    California Institute of Technology Mechanical Engineering PhD Coursework Planning Matrix and Record) Math/Advanced Math Advanced Math (27) Engineering Seminar (3) Research summer summer (54) Total Units course requirements for the Ph.D. in Mechanical Engineering, provided that the student takes and passes

  11. advanced high chromium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Engineering, Uni Delaware, University of 3 Advanced Analysis Methods in High Energy Physics HEP - Experiment (arXiv) Summary: During the coming decade, high energy...

  12. advanced testing techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for validation Paris-Sud XI, Universit de 120 Advanced holographic nondestructive testing system for residual stress analysis CERN Preprints Summary: The design and operating...

  13. advanced pattern recognition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edinburgh, University of - Research Archive Summary: Two basic models of human pattern recognition have been advanced: feature analysis and hypothesis testing. These can...

  14. CSCE 6933/5933 Advanced Topics in VLSI Systems

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    is shown. 6-bit ADC has similar structure. Advanced Topics in VLSI Systems 9 #12;Threshold Inverter increases. Advanced Topics in VLSI Systems 10 #12;TIQ Comparator Formed by four cascaded inverters. Provide. Advanced Topics in VLSI Systems 12 #12;Functional Simulation Transient analysis carried out. Ramp generated

  15. Application of the LBB regulatory approach to the steamlines of advanced WWER 1000 reactor

    SciTech Connect (OSTI)

    Kiselyov, V.A.; Sokov, L.M.

    1997-04-01T23:59:59.000Z

    The LBB regulatory approach adopted in Russia in 1993 as an extra safety barrier is described for advanced WWER 1000 reactor steamline. The application of LBB concept requires the following additional protections. First, the steamline should be a highly qualified piping, performed in accordance with the applicable regulations and guidelines, carefully screened to verify that it is not subjected to any disqualifying failure mechanism. Second, a deterministic fracture mechanics analysis and leak rate evaluation have been performed to demonstrate that postulated through-wall crack that yields 95 1/min at normal operation conditions is stable even under seismic loads. Finally, it has been verified that the leak detection systems are sufficiently reliable, diverse and sensitive, and that adequate margins exist to detect a through wall crack smaller than the critical size. The obtained results are encouraging and show the possibility of the application of the LBB case to the steamline of advanced WWER 1000 reactor.

  16. Technical and economic assessment of processes for the production of butanol and acetone. Phase two: analysis of research advances. Energy Conversion and Utilization Technologies Program

    SciTech Connect (OSTI)

    None

    1984-08-01T23:59:59.000Z

    The initial objective of this work was to develop a methodology for analyzing the impact of technological advances as a tool to help establish priorities for R and D options in the field of biocatalysis. As an example of a biocatalyzed process, butanol/acetone fermentation (ABE process) was selected as the specific topic of study. A base case model characterizing the technology and economics associated with the ABE process was developed in the previous first phase of study. The project objectives were broadened in this second phase of work to provide parametric estimates of the economic and energy impacts of a variety of research advances in the hydrolysis, fermentation and purification sections of the process. The research advances analyzed in this study were based on a comprehensive literature review. The six process options analyzed were: continuous ABE fermentaton; vacuum ABE fermentation; Baelene solvent extraction; HRI's Lignol process; improved prehydrolysis/dual enzyme hydrolysis; and improved microorganism tolerance to butanol toxicity. Of the six options analyzed, only improved microorganism tolerance to butanol toxicity had a significant positive effect on energy efficiency and economics. This particular process option reduced the base case production cost (including 10% DCF return) by 20% and energy consumption by 16%. Figures and tables.

  17. Department of Mechanical Engineering "From Compliant Mechanisms to

    E-Print Network [OSTI]

    Militzer, Burkhard

    in structural, mechanical, and electronic integration could lend themselves to advanced manufacturing techniques such as 3D printing with materials specialized in electro- mechanical sensing and actuation in addition Young Manufacturing Engineer Award from Society of Manufacturing Engineers, 1995; BoeingA.D. Welliver

  18. Mechanistic study of dielectric chemical mechanical polishing by spectral and scaling analysis of atomic force microscope images

    SciTech Connect (OSTI)

    Verhoff, M.L.

    1999-12-22T23:59:59.000Z

    Thermal oxide and PETEOS oxide surfaces, polished on an IPEC 472 with different combinations of polish pad, slurry, and polishing conditions, were studied with ex situ atomic force microscopy. The post polish surfaces were analyzed qualitatively by visual inspection and quantitatively by spectral and scaling analyses. Spectral and scaling analyses gave consistent interpretations of morphology evolution. Polishing with either a fixed abrasive pad or alumina-based slurry occurred via a mechanism for which asperities are removed and recesses are filled. A sputtering-type mechanism may contribute to material removal when polishing with silica- or ceria-based slurries.

  19. Institute for ADVANCED STUDY

    E-Print Network [OSTI]

    OF EVENTS 91 REPORT OF THE INSTITUTE LIBRARIES 93 INSTITUTE FOR ADVANCED STUDY/PARK CITY MATHEMATICS. The Institute for Advanced Study has sustained this founding principle for more than sixty-five years

  20. Institute Jor ADVANCED STUDY

    E-Print Network [OSTI]

    for advanced study HELENE L. KAPLAN Of Counsel Skiiddcn Arps Slate Meagher & Flam PETER R. KANN Chairman

  1. Italian Academy Advanced Studies

    E-Print Network [OSTI]

    Qian, Ning

    The Italian Academy for Advanced Studies in America at Columbia University Annual Report 20062007 The Italian Academy for Advanced Studies in America at Columbia University Annual Report 20062007 #12;italian academy for advanced studies in america 1161 Amsterdam Avenue New York, NY 10027 tel: (212) 854-2306 fax

  2. Symposium on Advanced Energy Systems Symposium Chair: Xianguo Li, University of Waterloo (x6li@uwaterloo.ca)

    E-Print Network [OSTI]

    and hydrogen Advanced energy storage and energy distribution technologies Energy conservation and analysis Green and renewable energy resources and technologies Advanced energy conversion technologies and management Micro/Nanotechnology for energy applications Advanced environmental protection technologies

  3. Multi-criteria analysis of the mechanism of degradation of Portland cement based mortars exposed to external sulphate attack

    SciTech Connect (OSTI)

    El-Hachem, R.; Roziere, E.; Grondin, F.; Loukili, A., E-mail: ahmed.loukili@ec-nantes.fr

    2012-10-15T23:59:59.000Z

    This work aims to contribute to the design of durable concrete structures exposed to external sulphate attacks (ESA). Following a preliminary study aimed at designing a representative test, the present paper suggests a study on the effect of the water-to-cement (w/c) ratio and the cement composition in order to understand the degradation mechanisms. Length and mass measurements were registered continuously, leached calcium and hydroxide ions were also quantified. In parallel, scanning electron microscopy observations as well as X-ray microtomography were realised at different times to identify the formed products and the crack morphology. Test results provide information on the basic aspects of the degradation mechanism, such as the main role of leaching and diffusion in the sulphate attack process. The mortar composition with a low w/c ratio leads to a better resistance to sulphate attack because the microstructure is less permeable. Reducing the C{sub 3}A content results in a macro-cracking decrease but it does not prevent expansion, which suggests the contribution of other expansive products, such as gypsum, in damage due to ESA. The observation of the cracks network in the microstructure helps to understand the micro-mechanisms of the degradation process.

  4. Advanced robot locomotion.

    SciTech Connect (OSTI)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01T23:59:59.000Z

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  5. Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).

    SciTech Connect (OSTI)

    Kim, Jung-Taek (Korea Atomic Energy Research Institute, Daejon, Korea); Luk, Vincent K.

    2005-05-01T23:59:59.000Z

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

  6. Genome, transcriptome, and secretome analysis of wood decay fungus postia placenta supports unique mechanisms of lignocellulose conversion

    SciTech Connect (OSTI)

    Martinez, Diego [Los Alamos National Laboratory; Challacombe, Jean F [Los Alamos National Laboratory; Misra, Monica [Los Alamos National Laboratory; Xie, Gary [Los Alamos National Laboratory; Brettin, Thomas [Los Alamos National Laboratory; Morgenstern, Ingo [CLARK UNIV; Hibbett, David [CLARK UNIV.; Schmoll, Monika [UNIV WIEN; Kubicek, Christian P [UNIV WIEN; Ferreira, Patricia [CIB, CSIC, MADRID; Ruiz - Duenase, Francisco J [CIB, CSIC, MADRID; Martinez, Angel T [CIB, CSIC, MADRID; Kersten, Phil [FOREST PRODUCTS LAB; Hammel, Kenneth E [FOREST PRODUCTS LAB; Vanden Wymelenberg, Amber [U. WISCONSIN; Gaskell, Jill [FOREST PRODUCTS LAB; Lindquist, Erika [DOE JGI; Sabati, Grzegorz [U. WISCONSIN; Bondurant, Sandra S [U. WISCONSIN; Larrondo, Luis F [U. CATHOLICA DE CHILE; Canessa, Paulo [U. CATHOLICA DE CHILE; Vicunna, Rafael [U. CATHOLICA DE CHILE; Yadavk, Jagiit [U. CINCINATTI; Doddapaneni, Harshavardhan [U. CINCINATTI; Subramaniank, Venkataramanan [U. CINCINATTI; Pisabarro, Antonio G [PUBLIC U. NAVARRE; Lavin, Jose L [PUBLIC U. NAVARRE; Oguiza, Jose A [PUBLIC U. NAVARRE; Master, Emma [U. TORONTO; Henrissat, Bernard [CNRS, MARSEILLE; Coutinho, Pedro M [CNRS, MARSEILLE; Harris, Paul [NOVOZYMES, INC.; Magnuson, Jon K [PNNL; Baker, Scott [PNNL; Bruno, Kenneth [PNNL; Kenealy, William [MASCOMA, INC.; Hoegger, Patrik J [GEORG-AUGUST-U.; Kues, Ursula [GEORG-AUGUST-U; Ramaiva, Preethi [NOVOZYMES, INC.; Lucas, Susan [DOE JGI; Salamov, Asaf [DOE JGI; Shapiro, Harris [DOE JGI; Tuh, Hank [DOE JGI; Chee, Christine L [UNM; Teter, Sarah [NOVOZYMES, INC.; Yaver, Debbie [NOVOZYMES, INC.; James, Tim [MCMASTER U.; Mokrejs, Martin [CHARLES U.; Pospisek, Martin [CHARLES U.; Grigoriev, Igor [DOE JGI; Rokhsar, Dan [DOE JGI; Berka, Randy [NOVOZYMES; Cullen, Dan [FOREST PRODUCTS LAB

    2008-01-01T23:59:59.000Z

    Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative {beta}-1-4 endoglucanase were expressed at high levels relative to glucose grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC{center_dot}MSIMS). Also upregulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H202. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H202 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons to the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.

  7. Micro electromechanical systems (MEMS) for mechanical engineers

    SciTech Connect (OSTI)

    Lee, A. P., LLNL

    1996-11-18T23:59:59.000Z

    The ongoing advances in Microelectromechanical Systems (MEMS) are providing man-kind the freedom to travel to dimensional spaces never before conceivable. Advances include new fabrication processes, new materials, tailored modeling tools, new fabrication machines, systems integration, and more detailed studies of physics and surface chemistry as applied to the micro scale. In the ten years since its inauguration, MEMS technology is penetrating industries of automobile, healthcare, biotechnology, sports/entertainment, measurement systems, data storage, photonics/optics, computer, aerospace, precision instruments/robotics, and environment monitoring. It is projected that by the turn of the century, MEMS will impact every individual in the industrial world, totaling sales up to $14 billion (source: System Planning Corp.). MEMS programs in major universities have spawned up all over the United States, preparing the brain-power and expertise for the next wave of MEMS breakthroughs. It should be pointed out that although MEMS has been initiated by electrical engineering researchers through the involvement of IC fabrication techniques, today it has evolved such that it requires a totally multi-disciplinary team to develop useful devices. Mechanical engineers are especially crucial to the success of MEMS development, since 90% of the physical realm involved is mechanical. Mechanical engineers are needed for the design of MEMS, the analysis of the mechanical system, the design of testing apparatus, the implementation of analytical tools, and the packaging process. Every single aspect of mechanical engineering is being utilized in the MEMS field today, however, the impact could be more substantial if more mechanical engineers are involved in the systems level designing. In this paper, an attempt is made to create the pathways for a mechanical engineer to enter in the MEMS field. Examples of application in optics and medical devices will be used to illustrate how mechanical engineers made impact. Through a basic understanding of the history of MEMS, the background physics and scaling in micromechanical systems, and an introduction to baseline MEMS processes, a mechanical engineer should be well on his way to Alice's wonderland in the ever-exciting playground of MEMS.

  8. Vehicle Technologies Office Merit Review 2015: Analysis of Film Formation Chemistry on Silicon Anodes by Advanced In Situ and Operando Vibrational Spectroscopy

    Broader source: Energy.gov [DOE]

    Presentation given by UC Berkeley at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about analysis of film formation...

  9. Vehicle Technologies Office Merit Review 2014: Analysis of Film Formation Chemistry on Silicon Anodes by Advanced in-situ and operando Vibrational Spectroscopy

    Broader source: Energy.gov [DOE]

    Presentation given by UC Berkeley at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the analysis of film formation...

  10. Analysis of mechanical effects caused by plasma disruptions in the European BOT solid breeder blanket design with MANET as structural material

    SciTech Connect (OSTI)

    Boccaccini, L.V.; Ruatto, P. [Institut fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany)

    1994-12-31T23:59:59.000Z

    The Karlsruhe Nuclear Center is developing, through design and experimental work, a BOT (Breeder Out of Tube) Helium Cooled Solid Breeder Blanket for a DEMO application. One of the crucial problems in the blanket design is to demonstrate the capability of the structure to withstand the mechanical effects of a major plasma disruption as extrapolated to DEMO from the experience of present machines. In this paper the results of the assessment work are presented; the acceptability of the design is discussed on the basis of a stress analysis of the structure under combined thermal and electromagnetic loads. The martensitic steel MANET has been chosen as structural material, because it is able to withstand the high neutron fluence in Demo (70 dpa) without appreciably swelling and has good thermal-mechanical properties - lower thermal expansion and higher strength - in comparison to AISI 316L steel. As far as it concerns the mechanical effects of plasma disruptions, MANET presents two important features which have been carefully investigated in the assessment: the magnetic properties of the material and the degradation of the fracture toughness behavior under irradiation.

  11. Stress Analysis and Structural Optimization of a Three-Layer Composite Cladding Tube Under Thermo-Mechanical Loads

    SciTech Connect (OSTI)

    S.-S. Zhou; X.-L. Gao; G. W. Griffith

    2012-07-01T23:59:59.000Z

    A general solution for the stress and strain fields in a three-layer composite tube subjected to internal and external pressures and temperature changes is first derived using thermo-elasticity. The material in each layer is treated as orthotropic, and the composite tube is regarded to be in a generalized plane strain state. A three-layer ZRY4-SiCf/SiCSiC composite cladding tube under a combined pressure and thermal loading is then analyzed and optimized by applying the general solution. The effects of temperature changes, applied pressures, and layer thickness on the mechanical behavior of the tube are quantitatively studied. The von Mises failure criterion for isotropic materials and the Tsai-Wu's failure theory for composites are used, respectively, to predict the failure behavior of the monolithic ZRY4 (i.e., Zircaloy-4) inner layer and SiC outer layer and the composite SiCf/SiC core layer of the three-layer tube. The numerical results reveal that the maximum radial and circumferential stresses in each layer always occur on the bonding surfaces. By adjusting the thickness of each layer, the effective stress in the three-layer cladding tube under the prescribed thermal-mechanical loading can be changed, thereby making it possible to optimally design the cladding tube.

  12. advanced proliferation resistant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-01-01 20 Resistance Spot Welding Characteristic of Ferrite-Martensite DP600 Dual Phase Advanced High Strength Steel-Part III: Mechanical Properties CiteSeer Summary:...

  13. advanced recurrent resistant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F 2000-01-01 66 Resistance Spot Welding Characteristic of Ferrite-Martensite DP600 Dual Phase Advanced High Strength Steel-Part III: Mechanical Properties CiteSeer Summary:...

  14. advanced internal film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L, Baley C. Influence of the sampling area of the stem on the mechanical properties of hemp fibers Paris-Sud XI, Universit de 36 International Journal of Advanced Robotic...

  15. advanced international training: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L, Baley C. Influence of the sampling area of the stem on the mechanical properties of hemp fibers Paris-Sud XI, Universit de 48 International Journal of Advanced Robotic...

  16. advanced stationary natural: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L, Baley C. Influence of the sampling area of the stem on the mechanical properties of hemp fibers Paris-Sud XI, Universit de 36 Invited review article Advances in Fourier...

  17. advanced liquid natural: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L, Baley C. Influence of the sampling area of the stem on the mechanical properties of hemp fibers Paris-Sud XI, Universit de 47 Invited review article Advances in Fourier...

  18. advanced dti fiber: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L, Baley C. Influence of the sampling area of the stem on the mechanical properties of hemp fibers Paris-Sud XI, Universit de 27 Fiber Optic Sensor Interrogation Advancements...

  19. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    E.S. Connolly; G.D. Forsythe

    2000-09-30T23:59:59.000Z

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests being conducted by Westinghouse at Foster-Wheeler's Pressurized Circulating Fluidized Bed (PCFBC) test facility in Karhula, Finland. Task 5 was designed to demonstrate the improvements implemented in Task 4 by fabricating fifty 1.5-meter hot gas filters. These filters were to be made available for DOE-sponsored field trials at the Power Systems Development Facility (PSDF), operated by Southern Company Services in Wilsonville, Alabama.

  20. MECHANICAL ENGINEERING Both faculty and students in mechanical engineering at

    E-Print Network [OSTI]

    Gelfond, Michael

    MECHANICAL ENGINEERING RESEARCH Both faculty and students in mechanical engineering at Texas Tech work on a variety of research projects including heat transfer, combustion, and energetic materials analysis; human- centric design research; control science and engineering; computational fluid dynamics

  1. 3rd International Symposium on Advanced Fluid/Solid Science and Technology in Experimental Mechanics, 7-10 December. 2008, Tainan, Taiwan Detection of wave propagation by a nonstationary cross-spectral density technique

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Mechanics, 7-10 December. 2008, Tainan, Taiwan Detection of wave propagation by a nonstationary cross for the propagation time, and was applied to a shock and a detonation wave. The results show that by including prone to error than the cross-correlation technique. Key words Wave propagation, Cross-spectrum, Time

  2. The Department offers MS, MEng and PhD graduate degrees in mechanical engineering. The master of science (MS) program provides a balance of advanced theory and practical knowledge necessary for

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    , Deloitte & Touche LLP, DfR, Dover Technologies, Ford Motor Co., General Electric, IBM, Intel, Lockheed Technologies, General Electric, Intel, NIH, NSF, NYSTAR, Samsung, Texas Instruments, Unisys, Universal, WelchD. Faculty include researchers from the departments of Mechanical Engineering, Electrical Engineering

  3. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced-Rooftop-Unit-Control Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  4. DOE Advanced Protection Project

    Broader source: Energy.gov (indexed) [DOE]

    protection logic in each relay 17 Copyright 2010, Southern California Edison Advanced Protection on the System of the Future * Use fault-interrupting switches with relays...

  5. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Institute Advanced Studies Institute Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

  6. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Thermal Control Technologies Advanced Vehicle Systems Technology Transfer Jet Cooling Alternative Coolants TIM Low R Structure Phase Change Spray Cooling Air Cooling...

  7. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Sources) Hydrogen Time ADVANCED PROPULSION TECHNOLOGY STRATEGY DOWNSIZED TURBO GAS ENGINE CHEVROLET CRUZE 1.4L TURBO ECOTEC Downsized SIDI Turbo Boosting HCCI -...

  8. Flow instabilities in the core and the coolant circuit of advances low-boiling light water reacto: classification of causes and development of simulator for the future analysis

    E-Print Network [OSTI]

    Rezvyi, Aleksey

    2002-01-01T23:59:59.000Z

    . . 1. 3. Analysis method determination. 2. THEORETICAL ASPECTS OF DIFFERENT TYPES OF THE THERMO-HYDRAULIC INSTABILITIES. . 2. 1. Static instability of loading charactenstic. . . . . . . . . . . . . . . . . . . . . . . 2. 2. Resonance instability... in the 1C L-BWR during heat-up process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagram of components hierarchy of the Thermo-Hydraulic instabilities phenomenon. . The steam generating heating channels instability area, mass flow vs...

  9. Assessment of the effectiveness of the advanced programmatic risk analysis and management model (apram) as a decision support tool for construction projects

    E-Print Network [OSTI]

    Imbeah, William Kweku Ansah

    2007-09-17T23:59:59.000Z

    to determine the best construction system that can minimize the expected cost of failure. A risk analysis performed using a more standard approach yielded an expected cost of failure that is almost eight times the expected cost of failure yielded by APRAM...

  10. Algorithms and statistics for advanced DNA analysis For the first time in history, humankind has the ability to easily read and write DNA sequence, a code

    E-Print Network [OSTI]

    University of Technology, Sydney

    , humankind has the ability to easily read and write DNA sequence, a code which describes the very essence of life itself. Global DNA sequencing operations currently generate 30TB data every day and the rate of this data generation more than doubles every year, outpacing Moore's Law. Sequence analysis has entered

  11. Development of ASTM standards in support of advanced ceramics -- continuing efforts

    SciTech Connect (OSTI)

    Brinkman, C.R.

    1998-02-01T23:59:59.000Z

    An update is presented of the activities of the American Society for Testing and Materials (ASTM) Committee C-28 on Advanced Ceramics. Since its inception in 1986, this committee, which has five standard producing subcommittees, has written and published over 32 consensus standards. These standards are concerned with mechanical testing of monolithic and composite ceramics, nondestructive examination, statistical analysis and design, powder characterization, quantitative microscopy, fractography, and terminology. These standards ensure optimum material behavior with physical and mechanical property reproducibility, component reliability, and well-defined methods of data treatment and material analysis for both monolithic and composite materials. Committee C-28 continues to sponsor technical symposia and to cooperate in the development of international standards. An update of recent and current activities as well as possible new areas of standardization work will be presented.

  12. ADVANCED REACTOR SAFETY PROGRAM STAKEHOLDER INTERACTION AND FEEDBACK

    SciTech Connect (OSTI)

    Spencer, Benjamin W; Huang, Hai

    2014-08-01T23:59:59.000Z

    In the Spring of 2013, we began discussions with our industry stakeholders on how to upgrade our safety analysis capabilities. The focus of these improvements would primarily be on advanced safety analysis capabilities that could help the nuclear industry analyze, understand, and better predict complex safety problems. The current environment in the DOE complex is such that recent successes in high performance computer modeling could lead the nuclear industry to benefit from these advances, as long as an effort to translate these advances into realistic applications is made. Upgrading the nuclear industry modeling analysis capabilities is a significant effort that would require substantial participation and coordination from all industry segments: research, engineering, vendors, and operations. We focus here on interactions with industry stakeholders to develop sound advanced safety analysis applications propositions that could have a positive impact on industry long term operation, hence advancing the state of nuclear safety.

  13. auction mechanism design: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engines Gatti, Nicola 9 Design analysis mechanisms for carbon auction market through electricity market coupling Physics Websites Summary: Design analysis mechanisms for...

  14. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  15. Kansas Advanced Semiconductor Project

    SciTech Connect (OSTI)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21T23:59:59.000Z

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  16. Mechanical analysis and simulation of in-motion vehicle scales. Final report/project accomplishments summary, CRADA Number 95-KCP-1013

    SciTech Connect (OSTI)

    Hower, B.

    1997-02-01T23:59:59.000Z

    A mechanical analysis and simulation was conducted on a weigh-in-motion vehicle scale used to weight motor trucks traveling at speeds of 2 to 45 mph. The objective of this project was to develop a detailed understanding of weigh-in-motion vehicle scale operation and system response to dynamic loading. AlliedSignal FM and T worked together with Cardinal Scale Manufacturing Company as a design team to determine the scale structure`s resonant frequency, determine a relationship between static and dynamic weights, determine variables that have significant influence on the accuracy of the scale, and design an algorithm that can be used to optimize the performance and simulate the operation of the scale. This project provided a detailed understanding of the weigh-in-motion scale operation and system response to dynamic loading. Weigh-in-motion scale engineers will use this knowledge to improve current scales and design new, improved scales. The project was completed as scheduled.

  17. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 5. Probabilistic fracture mechanics analysis. Load Combination Program Project I final report

    SciTech Connect (OSTI)

    Harris, D.O.; Lim, E.Y.; Dedhia, D.D.

    1981-06-01T23:59:59.000Z

    The primary purpose of the Load Combination Program covered in this report is to estimate the probability of a seismic induced LOCA in the primary piping of a commercial pressurized water reactor (PWR). Best estimates, rather than upper bound results are desired. This was accomplished by use of a fracture mechanics model that employs a random distribution of initial cracks in the piping welds. Estimates of the probability of cracks of various sizes initially existing in the welds are combined with fracture mechanics calculations of how these cracks would grow during service. This then leads to direct estimates of the probability of failure as a function of time and location within the piping system. The influence of varying the stress history to which the piping is subjected is easily determined. Seismic events enter into the analysis through the stresses they impose on the pipes. Hence, the influence of various seismic events on the piping failure probability can be determined, thereby providing the desired information.

  18. Suggestions for Functional Analysis Basics (FAB) Seminar

    E-Print Network [OSTI]

    2014-08-14T23:59:59.000Z

    Aug 14, 2014 ... Page 1 ... Functional analysis is a central topic in analysis at an advanced level and is at the foundation of many parts of analysis, including...

  19. Advanced engineering environment pilot project.

    SciTech Connect (OSTI)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty (Parametric Technology Corporation, Needham, MA)

    2006-10-01T23:59:59.000Z

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  20. Advanced Motion Control: From Classical PID to Nonlinear Adaptive Robust Control

    E-Print Network [OSTI]

    Yao, Bin

    performance re- quirements of modern mechanical systems have forced control engineers to look beyond controllers in implementation. I. INTRODUCTION Modern mechanical systems such as microelectronics manAdvanced Motion Control: From Classical PID to Nonlinear Adaptive Robust Control (Plenary Paper

  1. Thermogravimetric Analysis of Modified Hematite by Methane (CH{sub 4}) for Chemical-Looping Combustion: A Global Kinetics Mechanism

    SciTech Connect (OSTI)

    Monazam, Esmail R.; Breault, Ronald W.; Siriwardane, Ranjani; Miller, Duane D.

    2013-10-01T23:59:59.000Z

    Iron oxide (Fe{sub 2}O{sub 3}) or in its natural form (hematite) is a potential material to capture CO{sub 2} through the chemical-looping combustion (CLC) process. It is known that magnesium (Mg) is an effective methyl cleaving catalyst and as such it has been combined with hematite to assess any possible enhancement to the kinetic rate for the reduction of Fe{sub 2}O{sub 3} with methane. Therefore, in order to evaluate its effectiveness as a hematite additive, the behaviors of Mg-modified hematite samples (hematite 5% Mg(OH){sub 2}) have been analyzed with regard to assessing any enhancement to the kinetic rate process. The Mg-modified hematite was prepared by hydrothermal synthesis. The reactivity experiments were conducted in a thermogravimetric analyzer (TGA) using continuous stream of CH{sub 4} (5, 10, and 20%) at temperatures ranging from 700 to 825 {degrees}C over ten reduction cycles. The mass spectroscopy analysis of product gas indicated the presence of CO{sub 2}, H{sub 2}O, H{sub 2} and CO in the gaseous product. The kinetic data at reduction step obtained by isothermal experiments could be well fitted by two parallel rate equations. The modified hematite samples showed higher reactivity as compared to unmodified hematite samples during reduction at all investigated temperatures.

  2. College of Engineering and Computational Sciences Department of Mechanical Engineering

    E-Print Network [OSTI]

    applicants with expertise in one or more of the following areas: additive manufacturing, advanced candidate will have research interests in additive manufacturing processes, advanced manufacturing in the Department of Mechanical Engineering in the area of advanced manufacturing at the Associate Professor level

  3. K. S. Telang, R. W. Pike, F. C. Knopf, J. R. Hopper, J. Saleh, S. Waghchoure, S. C. Hedge and T. A. Hertwig,"An Advanced Process Analysis System for Improving Chemical and Refinery Processes," Computers and Chemical Engineering, Vol. 23, p. S727-730 (1999

    E-Print Network [OSTI]

    Pike, Ralph W.

    . Hertwig,"An Advanced Process Analysis System for Improving Chemical and Refinery Processes," Computers Chemical and Refinery Processes K. S. Telang, X. Chen, R. W. Pike and F. C. Knopf Louisiana State and refineries for process improvements. The system integrates programs for on-line optimization, chemical

  4. Faculty Expertise Index Advanced Artificial Intelligence, Technology, & Control Systems Development for Biological &

    E-Print Network [OSTI]

    Amin, S. Massoud

    Faculty Expertise Index Advanced Artificial Intelligence, Technology, & Control Systems Development-Paul Schirle-Keller Food Additives Artificial Sweeteners Ted Labuza Food Analysis Chromatographic Processing (see Phytochemicals, Advanced Artificial Intelligence) Canning Technology Ted Labuza Cheese

  5. advanced reactors advanced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  6. advanced ceramics advanced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  7. Advanced Experimental Analysis of Controls on Microbial Fe(III) Oxide Reduction - Final Report - 09/16/1996 - 03/16/2001

    SciTech Connect (OSTI)

    Roden, Eric E.

    2001-03-16T23:59:59.000Z

    Considering the broad influence that microbial Fe(III) oxide reduction can have on subsurface metal/organic contaminant biogeochemistry, understanding the mechanisms that control this process is critical for predicting the behavior and fate of these contaminants in anaerobic subsurface environments. Knowledge of the factors that influence the rates of growth and activity of Fe(III) oxide-reducing bacteria is critical for predicting (i.e., modeling) the long-term influence of these organisms on the fate of contaminants in the subsurface, and for effectively utilizing Fe(III) oxide reduction and associated geochemical affects for the purpose of subsurface metal/organic contamination bioremediation. This research project will refine existing models for microbiological and geochemical controls on Fe(III) oxide reduction, using laboratory reactor systems that mimic, to varying degrees, the physical and chemical conditions of the subsurface. Novel experimental methods for studying the kinetics of microbial Fe(III) oxide reduction and measuring growth rates of Fe(III) oxide-reducing bacteria will be developed. These new methodologies will be directly applicable to studies on subsurface contaminant transformations directly coupled to or influenced by microbial Fe(III) oxide reduction.

  8. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  9. Renewable Chemicals and Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & PolicyBrett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

  10. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

  11. PROTON RADIOGRAPHY FOR AN ADVANCED HYDROTEST FACILITY

    SciTech Connect (OSTI)

    C. MORRIS

    2000-11-01T23:59:59.000Z

    Analysis of data from BNL experiment 933 is presented. Results demonstrate that proton radiography can meet many of the requirements for an Advanced Hydrotest Facility (AHF). Results for background, position resolution, metrology, quantitative radiography, material identification, and edge resolution are presented.

  12. Institute /or ADVANCED STUDY

    E-Print Network [OSTI]

    OF THE INSTITUTE LIBRARIES 63 INSTITUTE FOR ADVANCED STUDY/PARK CITY MATHEMATICS INSTITUTE 66 MENTORING PROGRAM sustained and has yielded an unsurpassed record of definitive scholarship. Although small in scale

  13. Institute for ADVANCED STUDY

    E-Print Network [OSTI]

    PROGRAM IN THEORETICAL BIOLOGY 103 REPORT OF THE INSTITUTE LIBRARIES 107 INSTITUTE FOR ADVANCED STUDY Study has sustained its founding principle for seventy years. This com- mitment his yielded

  14. The Advanced Manufacturing Partnership

    E-Print Network [OSTI]

    Das, Suman

    ;ve Manufacturing Technologies (led by Dow, Honeywell and MIT) Manufacturing Ins;tutes (led, Honeywell and MIT GOALS To launch public-private ini:a:ves to advance transforma

  15. Advanced Review Geometry optimization

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Advanced Review Geometry optimization H. Bernhard Schlegel Geometry optimization is an important part of most quantum chemical calcu- lations. This article surveys methods for optimizing equilibrium geometries, lo- cating transition structures, and following reaction paths. The emphasis is on optimizations

  16. Advanced Energy Design Guides

    Energy Savers [EERE]

    hotels up to 80 rooms and 4 stories Advanced Energy Design Guide for Small Hospitals and Health- care Facilities ASHE, ASHRAE, AIA, IES, USGBC, DOE Small healthcare facilities up...

  17. & Mechanical Engineering

    E-Print Network [OSTI]

    Zhou, Chongwu

    , robotics, and the development of new tools for integrated approaches to concurrent engineeringAME Aerospace & Mechanical Engineering #12;Aerospace and Mechanical Engineers design complex Engineering (AME) students conduct basic and applied research within and across the usual disciplinary

  18. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Not Available

    1990-08-01T23:59:59.000Z

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  19. Annual Report: Advanced Combustion (30 September 2012)

    SciTech Connect (OSTI)

    Hawk, Jeffrey [NETL] [NETL; Richards, George

    2012-09-30T23:59:59.000Z

    The Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion and materials performance in oxy-fuel combustion environments and provides an integrated approach into understanding the environmental and mechanical behavior such that environmental degradation can be ameliorated and long-term microstructural stability, and thus, mechanical performance can lead to longer lasting components and extended power plant life. The technical tasks of this effort are Oxy-combustion Environment Characterization, Alloy Modeling and Life Prediction, and Alloy Manufacturing and Process Development.

  20. Advanced reactor safety research, quarterly report, October-December 1980

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Information is presented concerning advanced reactor core phenomenology; light water reactor severe core damage phenomenology; core debris behavior; containment analysis; elevated temperature design assessment; LMFBR accident delineation; and test and facility technology.

  1. advanced modular high: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integrals. E. Getzler; M. M. Kapranov 1996-10-31 27 Advanced Analysis Methods in High Energy Physics HEP - Experiment (arXiv) Summary: During the coming decade, high energy...

  2. advanced system design: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to each other cause the surface to become nonspecular. Hans J. Dehne 1991-01-01 30 Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors...

  3. advanced reactor design: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 21 22 23 24 25 Next Page Last Page Topic Index 1 Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors University of California...

  4. advanced reactor designs: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 21 22 23 24 25 Next Page Last Page Topic Index 1 Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors University of California...

  5. advanced reactor systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 21 22 23 24 25 Next Page Last Page Topic Index 1 Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors University of California...

  6. Chemical Sciences Division | Advanced Materials |ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the Rotating 2015AnalysisChemicalChemical

  7. Sibley School of Mechanical and Aerospace Engineering

    E-Print Network [OSTI]

    Bonassar, Larry

    design; sustainable design; additive manufacturing; manufacturing of advanced and multifunctional 607 255-0813 mc288@cornell.edu October 2014 Faculty Position in Design and Manufacturing Mechanical and Manufacturing, as related strongly to the disciplines within Mechanical and Aerospace Engineering. Candidates

  8. Advanced Worker Protection System

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), and was demonstrated at their facility in Houston, TX as well as at Kansas State University, Manhattan. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment. The prototype unit development and testing under Phase 1 has demonstrated that AWPS has the ability to meet performance criteria. These criteria were developed with an understanding of both the AWPS capabilities and the DOE decontamination and decommissioning (D and D) activities protection needs.

  9. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-01-01T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  10. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-12-31T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  11. Thermal/MechanicalThermal/Mechanical Properties of WoodProperties of Wood--PVCPVC

    E-Print Network [OSTI]

    .composites. Heat flow, heat capacity, andHeat flow, heat capacity, and enthalpyenthalpy Glass transition/Mechanical Analysis TechniquesThermal/Mechanical Analysis Techniques #12;Rubbery Leathery Viscous liquid Rigid (Semi

  12. Development of Advanced Alarm System for SMART

    SciTech Connect (OSTI)

    Jang, Gwi-sook; Seoung, Duk-hyun; Suh, Sang-moon; Lee, Jong-bok; Park, Geun-ok; Koo, In-soo [SMART-P MMIS Department, Korea Atomic Energy Research Institute 150, Duckjin-dong, Yusung-ku, Taejon 305-353 (Korea, Republic of)

    2004-07-01T23:59:59.000Z

    A SMART-Alarm System (SMART-AS) is a new system being developed as part of the SMART (System-integrated Modular Advanced Reactor) project. The SMART-AS employs modern digital technology to implement the alarm functions of the SMART. The use of modern digital technology can provide advanced alarm processing in which new algorithms such as a signal validation, advanced alarm processing logic and other features are applied to improve the control room man-machine interfaces. This paper will describe the design process of the SMART-AS, improving the system reliability and availability using the reliability prediction tool, design strategies regarding the human performance topics associated with a computer-based SMART-AS and the results of the performance analysis using a prototype of the SMART-AS. (authors)

  13. ADVANCED WORKER PROTECTION SYSTEM

    SciTech Connect (OSTI)

    Judson Hedgehock

    2001-03-16T23:59:59.000Z

    From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify the design, OSS was able to develop and successfully test, in both the lab and in the field, a prototype AWPS. They clearly demonstrated that a system which provides cooling can significantly increase worker productivity by extending the time they can function in a protective garment. They were also able to develop mature outer garment and LCG designs that provide considerable benefits over current protective equipment, such as self donning and doffing, better visibility, and machine washable. A thorough discussion of the activities performed during Phase 1 and Phase 2 is presented in the AWPS Final Report. The report also describes the current system design, outlines the steps needed to certify the AWPS, discusses the technical and programmatic issues that prevented the system from being certified, and presents conclusions and recommendations based upon the seven year effort.

  14. AGATA - Advanced Gamma Tracking Array

    E-Print Network [OSTI]

    S. Akkoyun; A. Algora; B. Alikhani; F. Ameil; G. de Angelis; L. Arnold; A. Astier; A. Ata; Y. Aubert; C. Aufranc; A. Austin; S. Aydin; F. Azaiez; S. Badoer; D. L. Balabanski; D. Barrientos; G. Baulieu; R. Baumann; D. Bazzacco; F. A. Beck; T. Beck; P. Bednarczyk; M. Bellato; M. A. Bentley; G. Benzoni; R. Berthier; L. Berti; R. Beunard; G. Lo Bianco; B. Birkenbach; P. G. Bizzeti; A. M. Bizzeti-Sona; F. Le Blanc; J. M. Blasco; N. Blasi; D. Bloor; C. Boiano; M. Borsato; D. Bortolato; A. J. Boston; H. C. Boston; P. Bourgault; P. Boutachkov; A. Bouty; A. Bracco; S. Brambilla; I. P. Brawn; A. Brondi; S. Broussard; B. Bruyneel; D. Bucurescu; I. Burrows; A. Brger; S. Cabaret; B. Cahan; E. Calore; F. Camera; A. Capsoni; F. Carri; G. Casati; M. Castoldi; B. Cederwall; J. -L. Cercus; V. Chambert; M. El Chambit; R. Chapman; L. Charles; J. Chavas; E. Clment; P. Cocconi; S. Coelli; P. J. Coleman-Smith; A. Colombo; S. Colosimo; C. Commeaux; D. Conventi; R. J. Cooper; A. Corsi; A. Cortesi; L. Costa; F. C. L. Crespi; J. R. Cresswell; D. M. Cullen; D. Curien; A. Czermak; D. Delbourg; R. Depalo; T. Descombes; P. Dsesquelles; P. Detistov; C. Diarra; F. Didierjean; M. R. Dimmock; Q. T. Doan; C. Domingo-Pardo; M. Doncel; F. Dorangeville; N. Dosme; Y. Drouen; G. Duchne; B. Dulny; J. Eberth; P. Edelbruck; J. Egea; T. Engert; M. N. Erduran; S. Ertrk; C. Fanin; S. Fantinel; E. Farnea; T. Faul; M. Filliger; F. Filmer; Ch. Finck; G. de France; A. Gadea; W. Gast; A. Geraci; J. Gerl; R. Gernhuser; A. Giannatiempo; A. Giaz; L. Gibelin; A. Givechev; N. Goel; V. Gonzlez; A. Gottardo; X. Grave; J. Gr?bosz; R. Griffiths; A. N. Grint; P. Gros; L. Guevara; M. Gulmini; A. Grgen; H. T. M. Ha; T. Habermann; L. J. Harkness; H. Harroch; K. Hauschild; C. He; A. Hernndez-Prieto; B. Hervieu; H. Hess; T. Hyk; E. Ince; R. Isocrate; G. Jaworski; A. Johnson; J. Jolie; P. Jones; B. Jonson; P. Joshi; D. S. Judson; A. Jungclaus; M. Kaci; N. Karkour; M. Karolak; A. Ka?ka?; M. Kebbiri; R. S. Kempley; A. Khaplanov; S. Klupp; M. Kogimtzis; I. Kojouharov; A. Korichi; W. Korten; Th. Krll; R. Krcken; N. Kurz; B. Y. Ky; M. Labiche; X. Lafay; L. Lavergne; I. H. Lazarus; S. Leboutelier; F. Lefebvre; E. Legay; L. Legeard; F. Lelli; S. M. Lenzi; S. Leoni; A. Lermitage; D. Lersch; J. Leske; S. C. Letts; S. Lhenoret; R. M. Lieder; D. Linget; J. Ljungvall; A. Lopez-Martens; A. Lotod; S. Lunardi; A. Maj; J. van der Marel; Y. Mariette; N. Marginean; R. Marginean; G. Maron; A. R. Mather; W. M?czy?ski; V. Mendz; P. Medina; B. Melon; R. Menegazzo; D. Mengoni; E. Merchan; L. Mihailescu; C. Michelagnoli; J. Mierzejewski; L. Milechina; B. Million; K. Mitev; P. Molini; D. Montanari; S. Moon; F. Morbiducci; R. Moro; P. S. Morrall; O. Mller; A. Nannini; D. R. Napoli; L. Nelson; M. Nespolo; V. L. Ngo; M. Nicoletto; R. Nicolini; Y. Le Noa; P. J. Nolan; M. Norman; J. Nyberg; A. Obertelli; A. Olariu; R. Orlandi; D. C. Oxley; C. zben; M. Ozille; C. Oziol; E. Pachoud; M. Palacz; J. Palin; J. Pancin; C. Parisel; P. Pariset; G. Pascovici; R. Peghin; L. Pellegri; A. Perego; S. Perrier; M. Petcu; P. Petkov; C. Petrache; E. Pierre; N. Pietralla; S. Pietri; M. Pignanelli; I. Piqueras; Z. Podolyak; P. Le Pouhalec; J. Pouthas; D. Pugnre; V. F. E. Pucknell; A. Pullia; B. Quintana; R. Raine; G. Rainovski; L. Ramina; G. Rampazzo; G. La Rana; M. Rebeschini; F. Recchia; N. Redon; M. Reese; P. Reiter; P. H. Regan; S. Riboldi; M. Richer; M. Rigato; S. Rigby; G. Ripamonti; A. P. Robinson; J. Robin; J. Roccaz; J. -A. Ropert; B. Ross; C. Rossi Alvarez; D. Rosso; B. Rubio; D. Rudolph; F. Saillant; E. ?ahin; F. Salomon; M. -D. Salsac; J. Salt; G. Salvato; J. Sampson; E. Sanchis; C. Santos; H. Schaffner; M. Schlarb; D. P. Scraggs; D. Seddon; M. ?enyi?it; M. -H. Sigward; G. Simpson; J. Simpson; M. Slee; J. F. Smith; P. Sona; B. Sowicki; P. Spolaore; C. Stahl; T. Stanios; E. Stefanova; O. Stzowski; J. Strachan; G. Suliman; P. -A. Sderstrm; J. L. Tain; S. Tanguy; S. Tashenov; Ch. Theisen; J. Thornhill; F. Tomasi; N. Toniolo; R. Touzery; B. Travers; A. Triossi; M. Tripon; K. M. M. Tun-Lano; M. Turcato; C. Unsworth; C. A. Ur; J. J. Valiente-Dobon; V. Vandone; E. Vardaci; R. Venturelli; F. Veronese; Ch. Veyssiere; E. Viscione; R. Wadsworth; P. M. Walker; N. Warr; C. Weber; D. Weisshaar; D. Wells; O. Wieland; A. Wiens; G. Wittwer; H. J. Wollersheim; F. Zocca; N. V. Zamfir; M. Zi?bli?ski; A. Zucchiatti

    2012-09-17T23:59:59.000Z

    The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realization of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly-segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterization of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximize its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.

  15. Advanced configurations for leakage reduction in a labyrinth seal

    E-Print Network [OSTI]

    Veldanda, Sharath B.

    1992-01-01T23:59:59.000Z

    ADVANCED CONFIGURATIONS FOR LEAKAGE REDUCTION IN A LABYRINTH SEAL A Thesis by SHARATH B. VELDANDA Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1992 Major Subject: Mechanical Engineering ADVANCED CONFIGURATION FOR LEAKAGE REDUCTION IN A LABYRINTH SEAL A Thesis by SHARATH B. VELDANDA Approved as to style and content by: David L. Rhode y~~ (Member) K. D. Korkan (Member...

  16. Experimental and life cycle assessment analysis of gas emission from mechanicallybiologically pretreated waste in a landfill with energy recovery

    SciTech Connect (OSTI)

    Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Sordi, Alessio; Micale, Caterina

    2013-11-15T23:59:59.000Z

    Highlights: Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup ?1}) was evaluated. k ranged from 0.436 to 0.308 year{sup ?1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.

  17. 6.854J / 18.415J Advanced Algorithms, Fall 2001

    E-Print Network [OSTI]

    Goemans, Michel

    A first-year graduate course in algorithms. Emphasizes fundamental algorithms and advanced methods of algorithmic design, analysis, and implementation. Data structures. Network flows. Linear programming. Computational ...

  18. 6.854J / 18.415J Advanced Algorithms, Fall 1999

    E-Print Network [OSTI]

    Karger, David

    A first-year graduate course in algorithms. Emphasizes fundamental algorithms and advanced methods of algorithmic design, analysis, and implementation. Data structures. Network flows. Linear programming. Computational ...

  19. Gills Onions Advanced Energy

    E-Print Network [OSTI]

    !!! One-third incoming onions discarded as tail, top, and peel! #12;The Solution... Advanced Energy honor from the American CouncilThe highest honor from the American Council of Engineering Companies Residential & Food Service Anaerobic Digestion Fats, Oil, and Grease (FOG) from Food Service Anaerobic Methane

  20. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01T23:59:59.000Z

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  1. Search Asia Advanced Search

    E-Print Network [OSTI]

    on state-run forestry companies. Illegal logging activities have cost the Indonesian government some US$600Asia Times Search Asia Times Advanced Search Southeast Asia Indonesia looks to curb log smuggling to discuss the issue of log smuggling, Forestry Minister M Prakosa said. "We will hold bilateral dialogues

  2. Advanced fossil energy utilization

    SciTech Connect (OSTI)

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01T23:59:59.000Z

    This special issue of Fuel is a selection of papers presented at the symposium Advanced Fossil Energy Utilization co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 2630, 2009.

  3. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28T23:59:59.000Z

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  4. Advances in Lung Volume

    E-Print Network [OSTI]

    Jones, Michelle

    Advances in Lung Volume Reduction Surgery The Ohio University Medical Center Lung Volume Reduction LungVolumeReductionSurgery Spring 2010 2010 The Ohio State University Medical Center 04 Consult Ohio State's #12;The Ohio State University Medical Center Lung Volume Reduction Surgery Patient

  5. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    experience in using CO2 for EOR, there is limitedportion of the CO2 storage potential for EOR, then the shareand EOR Revenues The cost of transporting CO2 is about $

  6. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Wind Generation2006. Integrating Wind Generation into Utility Systems.Stand-Alone Wind Generation . 60

  7. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    emissions from electricity generation and fuel production (Electricity Generation . 48 D.2 Additional Cost of Fuelfuel production facility costs that should be allocated to electricity generation

  8. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Wind Integration Costs ..adequacy costs. Wind generation costs are also significantlyvalue. 3. We add wind integration cost to the levelized cost

  9. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    located in Wyoming using PRB coal. These costs take intolocated in Wyoming using PRB coal and take into account the2007 forecast for coal prices for PRB coal. Transmission We

  10. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    turbine power plant carbon capture and storage combustioncycle power plant with carbon capture and sequestration usedcycle power plant with carbon capture and sequestration

  11. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Numerous entities forecast natural gas prices. Natural gasrepresents the best forecast of natural gas prices but wein the AEO forecast about the natural gas demand and supply

  12. Advanced Data Analysis Capability and Surrogate Generation |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the sensitive properties in the original dataset and remove. For example, with geospatial data, if the location is sensitive, then translate and randomize the points across a...

  13. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Diesel Fuel and Naphtha Crude Oil Production/ Transportationwith crude oil and natural gas production respectively toEmissions from Production and Refining Crude Oil into Low-

  14. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    2008) find estimates of capital cost of wind projectsHowever, our estimates of costs (e.g. , capital costs) ofin capital costs. 26 Heat Rate Heat rate estimates for the

  15. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    52 Table D-4. Oil Price and EORAlthough the current oil price is below $60/bbl, the currentestimated the levelized oil price during 2015-45, based on

  16. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    or more). EOR Potential A 3,000 MW IGCC+CCS or G+CC+CCSG+CC+CCS plant (IPCC, 2005). There are many potential sites

  17. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    such as synthetic crude gasification combined cycle powerstand-alone integrated gasification combined cycle powertransmission integrated gasification, combined cycle power

  18. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Production Fuel Electricity Figure 15. CO2 Emissions fromelectricity generation and fuel production (shown separately in the stacked bars in Figure 15). CO2 Emissions (

  19. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    application of new clean coal technologies with near zeroapplication of new clean coal technologies with near zero

  20. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    CO2 Emissions from Production and Refining Crude Oil into Low-Sulfur Diesel Fuel and Naphtha Crude Oil Production/ Transportation Refining Refining Non- Combustion

  1. Advanced Coupled THM Analysis in Geomechanics

    E-Print Network [OSTI]

    Shastri, Ajay

    2014-08-11T23:59:59.000Z

    of DOCTOR OF PHILOSOPHY Chair of Committee, Marcelo Sanchez Committee Members, Jean Louis Briaud Charles Aubeny Maria Barrufet Head of Department, Robin Autenrieth August 2014 Major Subject: Civil Engineering... of my advisor Dr. Marcelo Sanchez, for being a guide, mentor over the course of the last four years. His perseverance and dedication to the field of engineering has been a source of inspiration for me. Finally, his patience for putting with the many...

  2. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Price Projections ..gas prices. Natural gas price projections by the EnergyD-2. Natural Gas Price Projections Note: Prices in 2007 real

  3. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    22 Table 6. Extra Costs of Fuel Production or Syngas51 Table D-2. Syngas StorageFuel Production or Syngas Storage in ACWH Configurations50

  4. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Strategies for CO2 Enhanced Oil Recovery: Rocky Mountainis combined with enhanced oil recovery (EOR), enhanced gascombustion turbine enhanced oil recovery production of

  5. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    ACWH consists of a 3,000 MW coal gasification combined cycleconsists of a 3,000 MW coal gasification, combined cycleless expensive in a coal gasification, combined cycle power

  6. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    34 Figure 15. CO2 Emissions from ACWH and Competing28 Table 10. CO2 Emissions from Production and RefiningCarbon Price ($/Ton CO2) Emissions (Ton CO2/MWh) Costs

  7. Advanced Tower Analysis and Design System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENAAdministrative80-AAAdvancedof

  8. Imaging the Antikythera Mechanism

    SciTech Connect (OSTI)

    Malzbender, Tom (Hewlett Packard Laboratories) [Hewlett Packard Laboratories

    2011-01-12T23:59:59.000Z

    In 1900, a party of sponge divers chanced on the wreck of a Roman merchant vessel between Crete and mainland Greece. It was found to contain numerous ancient Greek treasures, among them a mysterious lump of clay that split open to reveal 'mathematical gears' as it dried out. This object is now known as the Antikythera Mechanism, one of the most enlightening artifacts in terms of revealing the advanced nature of ancient Greek science and technology. In 2005 we travelled to the National Archeological Museum in Athens to apply our Reflectance Imaging methods to the mechanism in the hopes of revealing ancient writing on the device. We were successful, and along with the results of Microfocus CT imaging, we are able to decipher 3000 characters compared with the original 800 known. This lead to an understanding that the device was a mechanical, astronomical computer from 150 B.C.E. capable of predicting solar and lunar eclipses along with other celestial events. This talk will overview both the imaging methods as well as what they reveal about the Antikythera Mechanism.

  9. Prognostic Significance of Carbohydrate Antigen 19-9 in Unresectable Locally Advanced Pancreatic Cancer Treated With Dose-Escalated Intensity Modulated Radiation Therapy and Concurrent Full-Dose Gemcitabine: Analysis of a Prospective Phase 1/2 Dose Escalation Study

    SciTech Connect (OSTI)

    Vainshtein, Jeffrey M., E-mail: jvainsh@med.umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Schipper, Matthew [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Zalupski, Mark M. [Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States)] [Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Abrams, Ross [Department of Radiation Oncology, Rush Medical Center, Chicago, Illinois (United States)] [Department of Radiation Oncology, Rush Medical Center, Chicago, Illinois (United States); Francis, Isaac R. [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Khan, Gazala [Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States)] [Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States); Leslie, William [Division of Hematology Oncology, Department of Internal Medicine, Rush Medical Center, Chicago, Illinois (United States)] [Division of Hematology Oncology, Department of Internal Medicine, Rush Medical Center, Chicago, Illinois (United States); Ben-Josef, Edgar [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)] [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2013-05-01T23:59:59.000Z

    Purpose: Although established in the postresection setting, the prognostic value of carbohydrate antigen 19-9 (CA19-9) in unresectable locally advanced pancreatic cancer (LAPC) is less clear. We examined the prognostic utility of CA19-9 in patients with unresectable LAPC treated on a prospective trial of intensity modulated radiation therapy (IMRT) dose escalation with concurrent gemcitabine. Methods and Materials: Forty-six patients with unresectable LAPC were treated at the University of Michigan on a phase 1/2 trial of IMRT dose escalation with concurrent gemcitabine. CA19-9 was obtained at baseline and during routine follow-up. Cox models were used to assess the effect of baseline factors on freedom from local progression (FFLP), distant progression (FFDP), progression-free survival (PFS), and overall survival (OS). Stepwise forward regression was used to build multivariate predictive models for each endpoint. Results: Thirty-eight patients were eligible for the present analysis. On univariate analysis, baseline CA19-9 and age predicted OS, CA19-9 at baseline and 3 months predicted PFS, gross tumor volume (GTV) and black race predicted FFLP, and CA19-9 at 3 months predicted FFDP. On stepwise multivariate regression modeling, baseline CA19-9, age, and female sex predicted OS; baseline CA19-9 and female sex predicted both PFS and FFDP; and GTV predicted FFLP. Patients with baseline CA19-9 ?90 U/mL had improved OS (median 23.0 vs 11.1 months, HR 2.88, P<.01) and PFS (14.4 vs 7.0 months, HR 3.61, P=.001). CA19-9 progression over 90 U/mL was prognostic for both OS (HR 3.65, P=.001) and PFS (HR 3.04, P=.001), and it was a stronger predictor of death than either local progression (HR 1.46, P=.42) or distant progression (HR 3.31, P=.004). Conclusions: In patients with unresectable LAPC undergoing definitive chemoradiation therapy, baseline CA19-9 was independently prognostic even after established prognostic factors were controlled for, whereas CA19-9 progression strongly predicted disease progression and death. Future trials should stratify by baseline CA19-9 and incorporate CA19-9 progression as a criterion for progressive disease.

  10. Advanced thermally stable jet fuels

    SciTech Connect (OSTI)

    Schobert, H.H.

    1999-01-31T23:59:59.000Z

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

  11. Microstructural studies of advanced austenitic steels

    SciTech Connect (OSTI)

    Todd, J. A.; Ren, Jyh-Ching [University of Southern California, Los Angeles, CA (USA). Dept. of Materials Science

    1989-11-15T23:59:59.000Z

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  12. Herty Advanced Materials Development Center

    Broader source: Energy.gov [DOE]

    Session 1-B: Advancing Alternative Fuels for the Military and Aviation Sector Breakout Session 1: New Developments and Hot Topics Jill Stuckey, Acting Director, Herty Advanced Materials Development Center

  13. ADVANCE! Leadership Experience Project Guidelines

    E-Print Network [OSTI]

    Hone, James

    ADVANCE! Leadership Experience Project Guidelines Fieldwork Practicum Description: The fieldwork component of the ADVANCE! leadership program offers students the opportunity to integrate theory exposure to that industry. Together, they design a leadership project in which the student takes an active

  14. Advanced Photon Source Upgrade Project

    ScienceCinema (OSTI)

    Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

    2013-04-19T23:59:59.000Z

    Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

  15. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and...

  16. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05132011 Project...

  17. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05182012 Project...

  18. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 06192014 Project...

  19. Advanced Energy Design Guides | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Energy Design Guides Advanced Energy Design Guides EERE Building Technologies Program - This fact sheet discusses the Advanced Energy Design Guides (AEDGs) and how they...

  20. Advanced Separation Consortium

    SciTech Connect (OSTI)

    NONE

    2006-01-01T23:59:59.000Z

    The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

  1. Advanced Polymer Processing Facility

    SciTech Connect (OSTI)

    Muenchausen, Ross E. [Los Alamos National Laboratory

    2012-07-25T23:59:59.000Z

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  2. Advanced worker protection system

    SciTech Connect (OSTI)

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01T23:59:59.000Z

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  3. Advanced thyristor valve project

    SciTech Connect (OSTI)

    Damsky, B.L.

    1984-01-01T23:59:59.000Z

    General Electrics's thyristor valve project incorporates the most advanced technologies available. With joint funding from the Electric Power Research Institute, commercial application of the separate light-triggered thyristor is now underway. The cesium vapor lamp source to trigger the light sensitive thyristors will reduce component complexity and cost. A unique thermal management feature relies on forced vaporization cooling with Freon-113, which equals the thermal performance of water without posing insulation reliability problems. 7 figures.

  4. Development of Advanced Thermal-Hydrological-Mechanical-Chemical...

    Open Energy Info (EERE)

    Objectives Develop a comprehensive and efficient reservoir simulator for modeling multiphase fluid and heat flow, coupled with effects of rock deformation and chemical reaction,...

  5. Characterization of Thermo-Mechanical Behaviors of Advanced High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forming Integrated Forming Induced Phase Transformation in TRIP Steel Side Induced Phase Transformation in TRIP Steel Side Rail Crash Simulations Rail Crash Simulations (a)...

  6. Development of Advanced Thermal-Hydrological-Mechanical-Chemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    presentation at the April 2013 peer review meeting held in Denver, Colorado. yushuwuthmcmodelingpeer2013.pdf More Documents & Publications Coupled Thermal-Hydrological-Me...

  7. Development of Advanced Thermal-Hydrological-Mechanical-Chemical...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering Department (2008-Current) * Lawrence Berkeley National Laboratory (LBNL) - Staff Geological Scientist (1995-2008): One of the developers of the LBNL's...

  8. Advanced Mechanical Heat Pump Technologies for Industrial Applications

    E-Print Network [OSTI]

    Mills, J. I.; Chappell, R. N.

    1985-01-01T23:59:59.000Z

    is currently being jointly explored by MTI, DOE, and the Electric Power Research Institute (EPRI). Marketing efforts are currently under way to place this hybrid heat pump in an industrial application. Companies who need help in determining whether...

  9. Development of Advanced Thermal-Hydrological-Mechanical-Chemical...

    Broader source: Energy.gov (indexed) [DOE]

    Systems Project objectives: Develop a general framework for effective flow of water, steam and heat in in porous and fractured geothermal formations. Develop a computational...

  10. Characterization of Thermo-Mechanical Behaviors of Advanced High Strength

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-DesertofSuccess Stories from

  11. Characterization of Thermo-Mechanical Behaviors of Advanced High Strength

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-DesertofSuccess Stories fromSteels (AHSS) |

  12. Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I ETechnology |Department ofofModeling

  13. Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: EnergyKansas:DetroitOpen Energy1987)issues

  14. Recent advances in modeling stellar interiors (u)

    SciTech Connect (OSTI)

    Guzik, Joyce Ann [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: (1) updates to input physics of stellar models; (2) progress in two and three-dimensional evolution and hydrodynamic models; (3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid {gamma} Dor/{delta} Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as {eta} Car and P Cyg, and the solar abundance problem.

  15. IPIRG programs - advances in pipe fracture technology

    SciTech Connect (OSTI)

    Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)

    1997-04-01T23:59:59.000Z

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  16. Advanced Microturbine Systems

    SciTech Connect (OSTI)

    None

    2005-12-31T23:59:59.000Z

    Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. ?? Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

  17. Mechanical behavior of tissue simulants and soft tissues under extreme loading conditions

    E-Print Network [OSTI]

    Kalcioglu, Zeynep Ilke

    2013-01-01T23:59:59.000Z

    Recent developments in computer-integrated surgery and in tissue-engineered constructs necessitate advances in experimental and analytical techniques in characterizing properties of mechanically compliant materials such ...

  18. Influence of material property variability on the mechanical behaviour of carotid atherosclerotic plaques: A 3D fluid-structure interaction analysis

    E-Print Network [OSTI]

    Yuan, Jianmin; Teng, Zhongzhao; Feng, Jiaxuan; Zhang, Yongxue; Brown, Adam J.; Gillard, Jonathan H.; Jing, Zaiping; Lu, Qingsheng

    2015-05-28T23:59:59.000Z

    . Testing of small connective tissue specimens for the determination of the mechanical behaviour of atherosclerotic plaques. Journal of Biomedical Engineering 1993; 15:2733. 46. Holzapfel GA, Sommer G, Gasser CT, Regitnig P. Determination of layer...

  19. Advanced engineering environment collaboration project.

    SciTech Connect (OSTI)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-12-01T23:59:59.000Z

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

  20. DOD's advanced thermionics program an overview

    SciTech Connect (OSTI)

    Drake, T.R.

    1998-07-01T23:59:59.000Z

    The Defense Special Weapons Agency (DSWA) manages a congressionally mandated program in advanced thermionics research. Guided by congressional language to advance the state-of-the-art in the US and support the Integrated Solar Upper Stage (ISUS) program, DSWA efforts concentrate on four areas: an electrically testable design of a high-performance, in-core thermionic fuel element (TFE), the ISUS program, a microminiature thermionic converter and several modeling efforts. The DSWA domestic program is augmented by several small contracts with Russian institutes, awarded under the former TOPAZ International Program that the Ballistic Missile Defense Organization transferred to DSWA. The design effort at General Atomics will result in an electrically testable, multi-cell TFE for in-core conversion, involving system design and advanced collector and emitter technologies. For the ISUS program, DSWA funded a portion of the engine ground demonstration, including development of the power management system and the planar diodes. Current efforts supporting ISUS include continued diode testing and developing an advanced planar diode. The MTC program seeks to design a mass producable, close-spaced thermionic converter using integrated circuit technologies. Modeling and analysis at DSWA involves development of the Reactor System Mass with Thermionics estimation model (RSMASS-T), developing a new thermionic theory, and reviewing applications for the MTC technology. The Russian deliverables include several reports and associated hardware that describe many of its state-of-the-art thermionic technologies and processes.

  1. Computational mechanics

    SciTech Connect (OSTI)

    Goudreau, G.L.

    1993-03-01T23:59:59.000Z

    The Computational Mechanics thrust area sponsors research into the underlying solid, structural and fluid mechanics and heat transfer necessary for the development of state-of-the-art general purpose computational software. The scale of computational capability spans office workstations, departmental computer servers, and Cray-class supercomputers. The DYNA, NIKE, and TOPAZ codes have achieved world fame through our broad collaborators program, in addition to their strong support of on-going Lawrence Livermore National Laboratory (LLNL) programs. Several technology transfer initiatives have been based on these established codes, teaming LLNL analysts and researchers with counterparts in industry, extending code capability to specific industrial interests of casting, metalforming, and automobile crash dynamics. The next-generation solid/structural mechanics code, ParaDyn, is targeted toward massively parallel computers, which will extend performance from gigaflop to teraflop power. Our work for FY-92 is described in the following eight articles: (1) Solution Strategies: New Approaches for Strongly Nonlinear Quasistatic Problems Using DYNA3D; (2) Enhanced Enforcement of Mechanical Contact: The Method of Augmented Lagrangians; (3) ParaDyn: New Generation Solid/Structural Mechanics Codes for Massively Parallel Processors; (4) Composite Damage Modeling; (5) HYDRA: A Parallel/Vector Flow Solver for Three-Dimensional, Transient, Incompressible Viscous How; (6) Development and Testing of the TRIM3D Radiation Heat Transfer Code; (7) A Methodology for Calculating the Seismic Response of Critical Structures; and (8) Reinforced Concrete Damage Modeling.

  2. Draft Advanced Nuclear Energy Projects Solicitation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Federal loan guarantee solicitation announcement -- Advanced Nuclear Energy Projects. Draft Advanced Nuclear Energy Projects Solicitation More Documents & Publications Draft...

  3. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast Energy Efficiency Partnerships: Advanced Lighting Controls - 2015 Peer Review Northeast Energy Efficiency Partnerships: Advanced Lighting Controls - 2015 Peer Review...

  4. Southface Energy Institute: Advanced Commercial Buildings Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review...

  5. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005...

  6. Advanced Battery Materials Characterization: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success...

  7. Department of Mathematics: Advanced Graduate Course ...

    E-Print Network [OSTI]

    Advanced Graduate Course Advertisements. Descriptions of advanced graduate courses for specific semesters. The course advertisements are PDF documents.

  8. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  9. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electrolytes - Advanced Electrolyte and Electrolyte Additives Electrolytes - Advanced Electrolyte and Electrolyte Additives Develop & Evaluate...

  10. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced Electrolyte and Electrolyte Additives Develop & evaluate...

  11. Advanced reactor safety research. Quarterly report, July-September 1981

    SciTech Connect (OSTI)

    Not Available

    1982-10-01T23:59:59.000Z

    Sandia National Laboratories, Albuquerque, New Mexico, is conducting the Advanced Reactor Safety Research Program on behalf of the US Nuclear Regulatory Commission (NRC). Sandia has been given the task to investigate seven major areas of interest which are intimately related to over-all NRC needs. These are: core debris behavior - inherent retention; containment analysis; elevated temperature design assessment; LMFBR accident delineation; advanced reactor core phenomenology; light water reactor (LWR) fuel damage phenomenology; and test and facility technology.

  12. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01T23:59:59.000Z

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  13. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  14. Horizontal Advanced Tensiometer

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2004-06-22T23:59:59.000Z

    An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

  15. Advanced NTR options. [Ta

    SciTech Connect (OSTI)

    Davis, J.W.; Mills, J.C.; Glass, J.F.; Tu, W. (Rockwell International/Rocketdyne Division, 6633 Canoga Avenue, MS HB23 Canoga Park, California 81303 (US))

    1991-01-05T23:59:59.000Z

    Advanced NTR concepts which offer performance improvements over the ROVER/NERVA designs have been investigated. In addition, the deliverable performance of low pressure operation and materials issues have been investigated. Based on current experience, a maximum exit gas temperature of 3200 K is likely achievable with a ZrC based PBR design. At 3200 K a low pressure NTR would have marginal performance advantage (Isp) over a high pressure system. If tantalum or other high melting point carbides are used then an exit gas temperature of 3500 K may be feasible. At 3500 K low pressure operation offers more significant performance improvements which could outweigh associated size and mass penalties.

  16. Advanced Simulation Capability

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth SitePresentations |StateNuclear Energy Projects4 Status Report The Advanced

  17. Advanced Simulation Capability

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth SitePresentations |StateNuclear Energy Projects4 Status Report The Advanced2

  18. Advanced Conversion Roadmap Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001Energy Efficiency Grants |Energy|AdvancedLeslie

  19. Advanced Combustion FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power and TransmissionAdolphusAdvanced

  20. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power andAdvancedCMWG

  1. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvanced ModelingNuclear

  2. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvanced

  3. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvancedInstitute Engineering Institute

  4. Advanced Target Effects Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvancedInstitute Engineering

  5. Advanced Feedstock Supply System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartmentDevelopment and1 | BioenergyAdvanced

  6. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    SciTech Connect (OSTI)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01T23:59:59.000Z

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity. Retrofit technologies that address the challenges of slow-speed integral compression are: (1) optimum turndown using a combination of speed and clearance with single-acting operation as a last resort; (2) if single-acting is required, implement infinite length nozzles to address nozzle pulsation and tunable side branch absorbers for 1x lateral pulsations; and (3) advanced valves, either the semi-active plate valve or the passive rotary valve, to extend valve life to three years with half the pressure drop. This next generation of slow-speed compression should attain 95% efficiency, a three-year valve life, and expanded turndown. New equipment technologies that address the challenges of large-horsepower, high-speed compression are: (1) optimum turndown with unit speed; (2) tapered nozzles to effectively reduce nozzle pulsation with half the pressure drop and minimization of mechanical cylinder stretch induced vibrations; (3) tunable side branch absorber or higher-order filter bottle to address lateral piping pulsations over the entire extended speed range with minimal pressure drop; and (4) semi-active plate valves or passive rotary valves to extend valve life with half the pressure drop. This next generation of large-horsepower, high-speed compression should attain 90% efficiency, a two-year valve life, 50% turndown, and less than 0.75 IPS vibration. This program has generated proof-of-concept technologies with the potential to meet these ambitious goals. Full development of these identified technologies is underway. The GMRC has committed to pursue the most promising enabling technologies for their industry.

  7. Mechanical Design of the Magdalena Ridge Observatory Interferometer

    E-Print Network [OSTI]

    Young, John

    and transporter, fast tip-tilt system, beam relay system, delay line system, beam compressor, automated alignment and testing inside the integration hall at Advanced Mechanical and Optical System (AMOS) test facility

  8. For Publication in: ASME Journal of Mechanical Design

    E-Print Network [OSTI]

    Verschelde, Jan

    For Publication in: ASME Journal of Mechanical Design February 26, 2003 ADVANCES IN POLYNOMIAL R&D Center Mail Code 480-106-359 30500 Mound Road Warren, MI 48090-9055 E: charles

  9. Advanced thermochemical hydrogen cycles

    SciTech Connect (OSTI)

    Hollabaugh, C.M.; Bowman, M.G.

    1981-01-01T23:59:59.000Z

    The overall objective of this program is to contribute to the development of practical thermochemical cycles for the production of hydrogen from water. Specific goals are: investigate and evaluate the technical and economic viability of thermochemical cycles as an advanced technology for producing hydrogen from water; investigate and evaluate the engineering principles involved in interfacing individual thermochemical cycles with the different thermal energy sources (high temperature fission, solar, and fusion); and conduct a continuing research and development effort to evaluate the use of solid sulfates, oxides and other compounds as potentially advanced cycles and as alternates to H/sub 2/SO/sub 4/ based cycles. Basic thermochemistry studies have been completed for two different steps in the decomposition of bismuth sulfate. Two different bismuth sulfate cycles have been defined for different sulfuric acid strengths. The eventual best cycle will depend on energy required to form sulfuric acid at different concentrations. A solids decomposition facility has been constructed and practical studies of solid decompositions are being conducted. The facility includes a rotary kiln system and a dual-particle fluidized bed system. Evaluation of different types of cycles for coupling with different heat sources is continuing.

  10. 2013 Wisconsin Forum on Advanced Computing in Engineering ~ Poster Session Overview ~

    E-Print Network [OSTI]

    Evans, Paul G.

    2013 Wisconsin Forum on Advanced Computing in Engineering ~ Poster and Thermal Mixing in Desuperheating Applications Mario Trujillo Employed at General Motors Eelco Gehring Numerical Simulation of Heat Transfer Mechanisms in Spray

  11. 1.050 Solid Mechanics, Fall 2002

    E-Print Network [OSTI]

    Bucciarelli, Louis

    This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures ...

  12. AHTR Mechanical, Structural, and Neutronic Preconceptual Design

    SciTech Connect (OSTI)

    Varma, V.K.; Holcomb, D.E.; Peretz, F.J.; Bradley, E.C.; Ilas, D.; Qualls, A.L.; Zaharia, N.M.

    2012-09-15T23:59:59.000Z

    This report provides an overview of the mechanical, structural, and neutronic aspects of the Advanced High Temperature Reactor (AHTR) design concept. The AHTR is a design concept for a large output Fluoride salt cooled High-temperature Reactor (FHR) that is being developed to enable evaluation of the technology hurdles remaining to be overcome prior to FHRs becoming an option for commercial reactor deployment. This report documents the incremental AHTR design maturation performed over the past year and is focused on advancing the design concept to a level of a functional, self-consistent system. The reactor concept development remains at a preconceptual level of maturity. While the overall appearance of an AHTR design is anticipated to be similar to the current concept, optimized dimensions will differ from those presented here. The AHTR employs plate type coated particle fuel assemblies with rapid, off-line refueling. Neutronic analysis of the core has confirmed the viability of a 6-month two-batch cycle with 9 wt. % enriched uranium fuel. Refueling is intended to be performed automatically under visual guidance using dedicated robotic manipulators. The report includes a preconceptual design of the manipulators, the fuel transfer system, and the used fuel storage system. The present design intent is for used fuel to be stored inside of containment for at least six months and then transferred to local dry wells for intermediate term, on-site storage. The mechanical and structural concept development effort has included an emphasis on transportation and constructability to minimize construction costs and schedule. The design intent is that all components be factory fabricated into rail transportable modules that are assembled into subsystems at an on-site workshop prior to being lifted into position using a heavy-lift crane in an open-top style construction. While detailed accident identification and response sequence analysis has yet to be performed, the design concept incorporates fully passive responses to all identified design basis or non-very-low frequency beyond design basis accidents as well as multiple levels of radioactive material containment. Key building design elements include (1) below grade siting to minimize vulnerability to aircraft impact, (2) multiple natural circulation decay heat rejection chimneys, (3) seismic base isolation, and (4) decay heat powered back-up electricity generation.

  13. Measuring Advances in HVAC Distribution System Design

    SciTech Connect (OSTI)

    Franconi, E.

    1998-05-01T23:59:59.000Z

    Substantial commercial building energy savings have been achieved by improving the performance of the HV AC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

  14. Advanced Power Plant Development and Analyses Methodologies

    SciTech Connect (OSTI)

    G.S. Samuelsen; A.D. Rao

    2006-02-06T23:59:59.000Z

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  15. Task 8.9 - Advanced ceramic materials

    SciTech Connect (OSTI)

    NONE

    1997-06-30T23:59:59.000Z

    Advanced ceramic materials such as Continuous Fiber Reinforced Ceramic Matrix Composites (CFCCs) have had promising results on the companion program entitled ``Ceramic Stationary Gas Turbine`` (CSGT). In particular, CFCCs have outperformed monolithic tiles in structural integrity as a combustor liner. Also, CFCCs have provided the higher temperature operation and improved emissions performance that is required for the ATS combustor. The demonstrated advantages on CSGT justified work to explore the use of advanced ceramic composite materials in other gas turbine components. Sub-tasks include development of a practical, cost effective component fabrication process, development of finite element stress analysis to assure 30,000 hours of component life, and fabrication of a demonstration article.

  16. ADVANCED SECOND GENERATION CERAMIC CANDLE FILTERS

    SciTech Connect (OSTI)

    M.A. Alvin

    2002-01-31T23:59:59.000Z

    Through sponsorship from the Department of Energy's National Energy Technology Laboratory (DOE/NETL), development and manufacture of advanced second generation candle filters was undertaken in the early 1990's. Efforts were primarily focused on the manufacture of fracture toughened, 1.5 m, continuous fiber ceramic composite (CFCC) and filament wound candle filters by 3M, McDermott, DuPont Lanxide Composites, and Techniweave. In order to demonstrate long-term thermal, chemical, and mechanical stability of the advanced second generation candle filter materials, Siemens Westinghouse initiated high temperature, bench-scale, corrosion testing of 3M's CVI-SiC and DuPont's PRD-66 mini-candles, and DuPont's CFCC SiC-SiC and IF&P Fibrosic{sup TM} coupons under simulated, pressurized fluidized-bed combustion (PFBC) conditions. This effort was followed by an evaluation of the mechanical and filtration performance of the advanced second generation filter elements in Siemens Westinghouse's bench-scale PFBC test facility in Pittsburgh, Pennsylvania. Arrays of 1.4-1.5 m 3M CVI-SiC, DuPont PRD-66, DuPont SiC-SiC, and IF&P Fibrosic{sup TM} candles were subjected to steady state process operating conditions, increased severity thermal transients, and accelerated pulse cycling test campaigns which represented {approx}1760 hours of equivalent filter operating life. Siemens Westinghouse subsequently participated in early material surveillance programs which marked entry of the 3M CVI-SiC and DuPont PRD-66 candle filters in Siemens Westinghouse Advanced Particulate Filtration (APF) system at the American Electric Power (AEP) Tidd Demonstration Plant in Brilliant, Ohio. Siemens Westinghouse then conducted an extended, accelerated life, qualification program, evaluating the performance of the 3M, McDermott, and Techniweave oxide-based CFCC filter elements, modified DuPont PRD-66 elements, and the Blasch, Scapa Cerafil{sup TM}, and Specific Surface monolithic candles for use in the APF system at the Foster Wheeler pressurized circulating fluidized-bed combustion (PCFBC), pilot-scale, test facility in Karhula, Finland. This report presents a summary of these efforts, defining the stability of the various porous ceramic filter materials, as well as component performance and extended life for use in advanced coal-based power systems.

  17. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21T23:59:59.000Z

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  18. Sandia National Laboratories: advanced combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combustion Sandia and General Motors: Advancing Clean Combustion Engines with Predictive Simulation Tools On February 14, 2013, in CRF, Energy, Partnership, Transportation Energy...

  19. Advanced Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Advanced Combustion Combustion engines drive a large percentage of our nation's transportation vehicles and power generation and manufacturing facilities. Today's...

  20. ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE

    Broader source: Energy.gov (indexed) [DOE]

    AND ENGINEERING Under the Advanced Fuels Cycle Initiative, Transmutation Science and Engineering is divided into four subprograms: Physics, Structural Materials, Materials...