Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Commissioning Trial for Mechanical Ventilation System Installed in Houses  

E-Print Network [OSTI]

, commissioning process should be introduced more often. REFERENCES (1) Roger Anneling, The P-mark system for prefabricated houses in Sweden, 1998, CADDET (2) Hirai et al, Comparison between results from ventilation network model calculation...

Ohta, I.; Fukushima, A.

2004-01-01T23:59:59.000Z

2

Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems  

SciTech Connect (OSTI)

The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

Sherman, Max; Sherman, Max H.; Walker, Iain S.

2008-05-01T23:59:59.000Z

3

Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems  

E-Print Network [OSTI]

In Review J. Indoor Air) 2007 LBNL-63193 Tarantola, Albert,Gas Measurement to Determine Air Movements in a House,Measurement Techniques”, Air Infiltration and Ventilation

Sherman, Max H.

2008-01-01T23:59:59.000Z

4

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

SciTech Connect (OSTI)

Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

Sherman, Max H.; Walker, Iain S.

2011-04-01T23:59:59.000Z

5

Phase-change wallboard and mechanical night ventilation in commercial buildings: Potential for HVAC system downsizing  

SciTech Connect (OSTI)

As thermal storage media, phase-change materials (PCMs) such as paraffin, eutectic salts, etc. offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. By embedding PCMs in dypsum board, plaster, or other wall-covering materials, the building structure acquires latent storage properties. Structural elements containing PCMs can store large amounts of energy while maintaining the indoor temperature within a relatively narrow range. As heat storage takes place inside the building where the loads occur, rather than at a central exterior location, the internal loads are removed without the need for additional transport energy. Distributed latent storage can thus be used to reduce the peak power demand of a building, downsize the cooling system, and/or switch to low-energy cooling sources. The authors used RADCOOL, a thermal building simulation program based on the finite difference approach, to numerically evaluate the thermal performance of PCM wallboard coupled with mechanical night ventilation in office buildings offers the opportunity for system downsizing in climates where the outside air temperature drops below 18 C at night. In climates where the outside air temperature remains above 19 C at night, the use of PCM wallboard should be coupled with discharge mechanisms other than mechanical night ventilation with outside air.

Stetiu, C.; Feustel, H.E.

1998-07-01T23:59:59.000Z

6

Air Distribution Effectiveness for Different Mechanical Ventilation  

E-Print Network [OSTI]

LBNL-62700 Air Distribution Effectiveness for Different Mechanical Ventilation Systems Max H Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. #12;1 Air Distribution depending on the effectiveness of their air distribution systems and the location of sources and occupants

7

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

E-Print Network [OSTI]

Rudd. 2007. Review of residential ventilation technologies.2009. EISG Final Report: Residential Integrated VentilationDesign and Operation of Residential Cooling Systems. Proc.

Sherman, Max H.

2011-01-01T23:59:59.000Z

8

Ventilation Air Preconditioning Systems  

E-Print Network [OSTI]

capacity. Optional Morning Warm-up If connected to a liquid condenser bundle, the icemaking chiller can serve as a heat recovery heat pump. The chiller can freeze ice in the early morning to provide heat for morning warm-up, and use the ice... the cooling coil or drain pan re-evaporates and is delivered to occupied space during compressor off-cycles. Although heat recovery between the exhaust air and ventilation air can reduce the impact on the HVAC system, many buildings do not have central...

Khattar, M.; Brandemuehl, M. J.

1996-01-01T23:59:59.000Z

9

Results of the Evaluation Study DeAL Decentralized Facade Integrated Ventilation Systems  

E-Print Network [OSTI]

Most office buildings in Germany have either no mechanical ventilation system or a centralized ventilation system with fresh and exhaust air supply. Within the last 10 years some projects using decentralized ventilation systems (DVS) came up. Common...

Mahler, B.; Himmler, R.

10

Measure Guideline: Selecting Ventilation Systems for Existing Homes  

SciTech Connect (OSTI)

This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

Aldrich, R.

2014-02-01T23:59:59.000Z

11

E-Print Network 3.0 - ards mechanical ventilation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mechanical ventilation Search Powered by Explorit Topic List Advanced Search Sample search results for: ards mechanical ventilation Page: << < 1 2 3 4 5 > >> 1 Round table March...

12

Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control  

SciTech Connect (OSTI)

The DOE Building America program has been conducting research leading to cost effective high performance homes since the early 1990's. Optimizing whole house mechanical ventilation as part of the program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this white paper is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

Martin, E.

2014-01-01T23:59:59.000Z

13

Design of a Natural Ventilation System in the Dunhuang Museum  

E-Print Network [OSTI]

Fresh air and good air quality can be obtained by a natural ventilation system, to fulfill the requirement of near natural conditions for the psychological health of mankind. A natural ventilation system is an ecological, energy saving system...

Zhang, Y.; Guan, W.

2006-01-01T23:59:59.000Z

14

MODELING VENTILATION SYSTEM RESPONSE TO FIRE  

SciTech Connect (OSTI)

Fires in facilities containing nuclear material have the potential to transport radioactive contamination throughout buildings and may lead to widespread downwind dispersal threatening both worker and public safety. Development and implementation of control strategies capable of providing adequate protection from fire requires realistic characterization of ventilation system response which, in turn, depends on an understanding of fire development timing and suppression system response. This paper discusses work in which published HEPA filter data was combined with CFAST fire modeling predictions to evaluate protective control strategies for a hypothetical DOE non-reactor nuclear facility. The purpose of this effort was to evaluate when safety significant active ventilation coupled with safety class passive ventilation might be a viable control strategy.

Coutts, D

2007-04-17T23:59:59.000Z

15

Identifying Mathematical Models of the Mechanically Ventilated Lung Using Equation Discovery  

E-Print Network [OSTI]

of the respiratory system. Equation Discovery systems extract mathematical models from observed time series data knowledge. We introduce a modification of this system and apply it to data obtained during mechanical behavior of the respiratory sys- tem under the condition of mechanical ventilation. During the last decades

Kersting, Kristian

16

Usability Heuristics and Qualitative Indicators for the Usability Evaluation of Touch Screen Ventilator Systems  

E-Print Network [OSTI]

system provides respiratory support to critically ill patients in the Intensive Care Unit. Increasing, multi-parameter monitoring system, defibrillator, ECG analyzer, etc. Mechanical age medical equipments evaluation. A ventilator system gives respiratory support to critically ill patients [5]. Ventilators can

Boyer, Edmond

17

Measuring the mechanical properties of the respiratory system in patients  

E-Print Network [OSTI]

Measuring the mechanical properties of the respiratory system in patients on mechanical ventilators's lungs. · Only system capable of convenient, ongoing assessment of respiratory mechanical function is currently widely performed by measuring pressure and flow delivered by a mechanical ventilator. However

Hayden, Nancy J.

18

Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches  

SciTech Connect (OSTI)

The prevailing residential ventilation standard in North America, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 62.2, specifies volumetric airflow requirements as a function of the overall size of the home and the number of bedrooms, assumes a fixed, minimal amount of infiltration, and requires mechanical ventilation to achieve the remainder. The standard allows for infiltration credits and intermittent ventilation patterns that can be shown to provide comparable performance. Whole-house ventilation methods have a substantial effect on time-varying indoor pollutant concentrations. If alternatives specified by Standard 62.2, such as intermittent ventilation, are used, short-term pollutant concentrations could exceed acute health standards even if chronic health standards are met.The authors present a methodology for comparing ASHRAE- and non-ASHRAE-specified ventilation scenarios on relative indoor pollutant concentrations. We use numerical modeling to compare the maximum time-averaged concentrations for acute exposure relevant (1-hour, 8-hour, 24-hour ) and chronic exposure relevant (1-year) time periods for four different ventilation scenarios in six climates with a range of normalized leakage values. The results suggest that long-term concentrations are the most important metric for assessing the effectiveness of whole-house ventilation systems in meeting exposure standards and that, if chronic health exposure standards are met, acute standards will also be met.

Sherman, Max; Logue, Jennifer; Singer, Brett

2010-06-01T23:59:59.000Z

19

Application Study on Combined Ventilation System of Improving IAQ  

E-Print Network [OSTI]

A type of combined ventilating system is put forward in this paper. Through CFD simulation and testing of contaminant concentrations in a prototype residential room, the results demonstrate that the new ventilating system is advantageous...

Hu, S.; Li, G.; Zhang, C.; Ye, B.

2006-01-01T23:59:59.000Z

20

Building America Case Study: Selecting Ventilation Systems for Existing Homes (Fact Sheet)  

SciTech Connect (OSTI)

This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

Not Available

2014-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)  

SciTech Connect (OSTI)

The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

Not Available

2013-11-01T23:59:59.000Z

22

Ventilation Systems for Cooling | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-Type WaterTravelVentilation Systems for Cooling

23

Estimated costs of ventilation systems complying with the HUD ventilation standard for manufactured homes  

SciTech Connect (OSTI)

At the request of the US Department of Housing and Urban Development (HUD), the Pacific Northwest Laboratory estimated the material, labor, and operating costs for ventilation equipment needed for compliance with HUD`s proposed revision to the ventilation standard for manufactured housing. This was intended to bound the financial impacts of the ventilation standard revision. Researchers evaluated five possible prototype ventilation systems that met the proposed ventilation requirements. Of those five, two systems were determined to be the most likely used by housing manufacturers: System 1 combines a fresh air duct with the existing central forced-air system to supply and circulate fresh air to conditioned spaces. System 2 uses a separate exhaust fan to remove air from the manufactured home. The estimated material and labor costs for these two systems range from $200 to $300 per home. Annual operating costs for the two ventilation systems were estimated for 20 US cities. The estimated operating costs for System 1 ranged from $55/year in Las Vegas, Nevada, to $83/year in Bismarck, North Dakota. Operating costs for System 2 ranged from a low of $35/year in Las Vegas to $63/year in Bismarck. Thus, HUD`s proposed increase in ventilation requirements will add less than $100/year to the energy cost of a manufactured home.

Miller, J.D.; Conner, C.C.

1993-11-01T23:59:59.000Z

24

STATE OF CALIFORNIA INDOOR AIR QUALITY AND MECHANICAL VENTILATION  

E-Print Network [OSTI]

for selection of the whole-building ventilation fan and for the duct design for the whole-building ventilation

25

Position paper -- Tank ventilation system design air flow rates  

SciTech Connect (OSTI)

The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

Goolsby, G.K.

1995-01-04T23:59:59.000Z

26

Ventilation System to Improve Savannah River Site's Liquid Waste...  

Broader source: Energy.gov (indexed) [DOE]

A process vessel ventilation system is being installed in a facility that houses two tanks that will process decontaminated salt solution at the Saltstone Production Facility. A...

27

Advanced Controls for Residential Whole-House Ventilation Systems  

SciTech Connect (OSTI)

Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

Turner, William; Walker, Iain; Sherman, Max

2014-08-01T23:59:59.000Z

28

Design and prototyping of a low-cost portable mechanical ventilator  

E-Print Network [OSTI]

This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional ...

Powelson, Stephen K. (Stephen Kirby)

2010-01-01T23:59:59.000Z

29

Ventilation Systems Operating Experience Review for Fusion Applications  

SciTech Connect (OSTI)

This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection.

Cadwallader, Lee Charles

1999-12-01T23:59:59.000Z

30

Ventilation System Effectiveness and Tested Indoor Air Quality Impacts  

SciTech Connect (OSTI)

Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

Rudd, A.; Bergey, D.

2014-02-01T23:59:59.000Z

31

Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1  

E-Print Network [OSTI]

when the need is discovered, but a good preventive maintenance program will reduce the number. This fact sheet will emphasize corrective and preventive maintenance procedures for ventilation, evaporativeAE26 Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1 D. E

Watson, Craig A.

32

Floor-supply displacement ventilation system  

E-Print Network [OSTI]

Research on indoor environments has received more attention recently because reports of symptoms and other health complaints related to indoor environments have been increasing. Heating, ventilating, and air-conditioning ...

Kobayashi, Nobukazu, 1967-

2001-01-01T23:59:59.000Z

33

Comparison of Two Ventilation Systems in a Chinese Commercial Kitchen  

E-Print Network [OSTI]

A numerical simulation of an indoor thermal environment in a Chinese commercial kitchen has been carried out using indoor zero-equation turbulence model. Two different ventilation systems in a Chinese commercial kitchen have been simulated...

Wan, X.; Yu, L.; Hou, H.

2006-01-01T23:59:59.000Z

34

Key Factors in Displacement Ventilation Systems for Better IAQ  

E-Print Network [OSTI]

This paper sets up a mathematical model of three-dimensional steady turbulence heat transfer in an air-conditioned room of multi-polluting heat sources. Numerical simulation helps identify key factors in displacement ventilation systems that affect...

Wang, X.; Chen, J.; Li, Y.; Wang, Z.

2006-01-01T23:59:59.000Z

35

Assessment of Pollutant Spread from a Building Basement with three Ventilation Systems  

E-Print Network [OSTI]

Ventilation aims at providing a sufficient air renewal for ensuring a good indoor air quality (IAQ), yet building energy policies are leading to adapting various ventilation strategies minimising energy losses through air renewal. A recent IAQ evaluation campaign in French dwellings shows important pollution of living spaces by VOCs such as formaldehyde, acetaldehyde or hexanal, particularly in buildings equipped with a garage. Besides, radon emission from soil is a subject of concern in many countries. Several studies are done to understand its release mode and deal with the spread of this carcinogen gas. This paper aims to experimentally assess a contaminant spread from a house basement using mechanical exhaust and balanced ventilation systems, and natural ventilation.

Koffi, Juslin

2010-01-01T23:59:59.000Z

36

Dojat et al. International Journal of Clinical Monitoring and Computing. 1992;9:239-250. A KNOWLEDGE-BASED SYSTEM FOR ASSISTED VENTILATION OF  

E-Print Network [OSTI]

with respiratory insufficiency from mechanical ventilation may be complex and requires expertise obtained by long respiratory support and implemented a weaning procedure. The system is intended for patients whose spontaneous-based system, Medical decision-making, Process control, Real-time, Weaning from mechanical ventilation. inserm

Paris-Sud XI, Université de

37

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings  

E-Print Network [OSTI]

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings Tom Rogg REU Student to assist HVAC has the potential to significantly reduce life cycle cost and energy consumption and electrical system that will tie thermostats to controlled valves in the actual HVAC system. Based on results

Mountziaris, T. J.

38

Advanced Controls and Sustainable Systems for Residential Ventilation  

E-Print Network [OSTI]

..........................................................................................9 Passive and Hybrid Ventilation ....................................................................................................................................19 4. WHOLE-HOUSE VENTILATION STRATEGIES..........................................................................................................21 Strategy 1: Whole-House Exhaust

39

Water spray ventilator system for continuous mining machines  

DOE Patents [OSTI]

The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

Page, Steven J. (Pittsburgh, PA); Mal, Thomas (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

40

Experimental Evaluation of Ventilation Systems in a Single-Family Dwelling  

E-Print Network [OSTI]

The French regulation on residential building ventilation relies on an overall and continuous air renewal. The fresh air should enter the building through the "habitable rooms" while the polluted air is extracted in the service rooms. In this way, internal air is drained from the lowest polluted rooms to the highest polluted ones. However, internal pressure equilibrium and air movements in buildings result from the combined effects ventilation system and parameters such as wind, temperature difference or doors opening. This paper aims to analyse the influence of these parameters on pollutant transfer within buildings. In so doing, experiments are carried out using tracer gas release for representing pollution sources in an experimental house. Mechanical exhaust, balanced and natural ventilation systems are thus tested. Results show the followings: - For all cases, internal doors' opening causes the most important pollutant spread. - When doors are closed, the best performances are obtained with balanced venti...

Koffi, Juslin; Akoua, Jean-Jacques

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A web based CBR system for heating ventilation and air conditioning systems sales support  

E-Print Network [OSTI]

A web based CBR system for heating ventilation and air conditioning systems sales support D describes the implementation of a case-based reasoning (CBR) system to support heating ventilation and air conditioning systems (HVAC) sales staff operating in remote locations. The system operates on the world wide

Watson, Ian

42

Availability Analysis of the Ventilation Stack CAM Interlock System  

E-Print Network [OSTI]

Ventilation Stack Continuous Air Monitor (CAM) Interlock System failure modes, failure frequencies, and system availability have been evaluated for the RPP. The evaluation concludes that CAM availability is as high as assumed in the safety analysis and that the current routine system surveillance is adequate to maintain this availability credited in the safety analysis, nor is such an arrangement predicted to significantly improve system availability.

Young, J

2000-01-01T23:59:59.000Z

43

CO 2 - Based Demand-Controlled Ventilation Control Strategies for Multi-Zone HVAC Systems  

E-Print Network [OSTI]

CO 2-based demand-controlled ventilation DCV strategy offers a great opportunity to reduce energy consumption in HVAC systems while providing the required ventilation. However, implementing CO 2-based DCV under ASHRAE 62.1.2004 through 2010...

Nassif, N.

2011-01-01T23:59:59.000Z

44

Air flow and particle control with different ventilation systems in a classroom  

E-Print Network [OSTI]

Air flow and particle control with different ventilation systems in a classroom Sture Holmberg, Ph. For displacement ventilation systems, designers normally assume that all pollutants follow the buoyant air flow of the ventilation air flow are shown to play an important role in the control of air quality. Computer simulation

Chen, Qingyan "Yan"

45

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

SciTech Connect (OSTI)

Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

2011-07-01T23:59:59.000Z

46

Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures  

SciTech Connect (OSTI)

The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

Petithuguenin, T.D.P.; Sherman, M.H.

2009-05-01T23:59:59.000Z

47

Evaluating Ventilation Systems for Existing Homes  

SciTech Connect (OSTI)

During the course of this project, an affordable and high performance ductwork system to directly address the problems of thermal losses, poor efficiency, and air leakage was designed. To save space and enable direct connections between different floors of the building, the ductwork system was designed in such a way that it occupied interior or exterior frame wall cavities. The ductwork system satisfied building regulations for structural support when bridging multiple floors, the spread of fire and smoke, and insulation to reduce the heat flow into or out of the building. Retrofits of urban residential buildings will be the main focus for the application of this ductwork system. Highly reflective foils and insulating materials were used to aid in the increase of the overall R-value of the ductwork itself and the wall assembly. It is expected that the proposed system will increase the efficiency of the HVAC system and the thermal resistance of the building envelope. The performance of the proposed ductwork design was numerically evaluated in a number of different ways. Our results indicate that the duct method is a very cost attractive alternative to the conventional method.

Aldrich, R.; Arena, L.

2013-02-01T23:59:59.000Z

48

Ventilation System Basics | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri MechanicalofVehicles - ORNLVentilation System

49

Room air stratification in combined chilled ceiling and displacement ventilation systems.  

E-Print Network [OSTI]

Environments. Proceedings of Indoor Air 2005: 10 thInternational Conference on Indoor Air Quality and Climate,displacement ventilation hybrid air conditioning system-

Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

2012-01-01T23:59:59.000Z

50

Field Test of Room-to-Room Distribution of Outside Air with Two Residential Ventilation Systems  

SciTech Connect (OSTI)

Uniform distribution of outside air is one way to ensure that residential dilution ventilation systems will provide a known amount of fresh air to all rooms.

Hendron, R.; Anderson, R.; Barley, D.; Rudd, A.; Townsend, A.; Hancock, E.

2008-08-01T23:59:59.000Z

51

Modeling buoyancy-driven airflow in ventilation shafts  

E-Print Network [OSTI]

Naturally ventilated buildings can significantly reduce the required energy for cooling and ventilating buildings by drawing in outdoor air using non-mechanical forces. Buoyancy-driven systems are common in naturally ...

Ray, Stephen D. (Stephen Douglas)

2012-01-01T23:59:59.000Z

52

Air Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C. Diamond and Helmut E. Feustel  

E-Print Network [OSTI]

energy efficiency in public housing as part of a utility's Demand Side Management (DSM) Program of the supply ventilation register for each corridor. The building is exposed on all sides to the windAir Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C

Diamond, Richard

53

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

E-Print Network [OSTI]

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems Michael Wetter available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development

54

ENERGY IMPACTS OF VARIOUS RESIDENTIAL MECHANICAL VENTILATION STRATEGIES  

E-Print Network [OSTI]

The Building America program has been working with home builders for more than a decade using a variety of strategies for bringing fresh air into the homes. Many of these strategies utilize the central air handler fan from the HVAC system...

Vieira, R.; Parker, D.; Lixing, G.; Wichers, M.

55

Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency, Vol. IV-11-4 Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation Yanli Ren1, Deying Li2, Yufeng Zhang1 1...

Ren, Y.; Li, D.; Zhang, Y.

2006-01-01T23:59:59.000Z

56

Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences  

SciTech Connect (OSTI)

The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

Hoeschele, M.A.; D.A. Springer

2008-06-18T23:59:59.000Z

57

Measuring Residential Ventilation System Airflows: Part 1 Laboratory  

E-Print Network [OSTI]

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise airflows? Homes need ventilation to maintain acceptable indoor air quality (IAQ). In older homes

58

Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring  

SciTech Connect (OSTI)

This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

SEDERBURG, J.P.

1999-09-30T23:59:59.000Z

59

Noninvasive Positive Pressure Ventilation in the Emergency  

E-Print Network [OSTI]

of ventilatory assis- tance to the respiratory system without an invasive artificial airway. Nonin- vasive of the tank ventilator or the ``iron lung'' was the most common form of mechanical ventilation outside showed that he could improve the survival of patients who had respiratory paralysis by using invasive

60

Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model  

E-Print Network [OSTI]

Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

Walker, Christine E. (Christine Elaine)

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Development of a Residential Integrated Ventilation Controller  

SciTech Connect (OSTI)

The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

2011-12-01T23:59:59.000Z

62

ASME AG-1 REQUIREMENT EXEMPTION JUSTIFICATIONS FOR VENTILATION SYSTEMS AT NUCLEAR WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect (OSTI)

Washington State Department of Health regulations require compliance with the American Society of Mechanical Engineers (ASME) AG-1, ''Code on Nuclear Air and Gas Treatment,'' for all new radioactive air emission units. As a result, these requirements have been applied to systems that ventilate the radioactive waste storage tanks in the tank farm facilities on the U.S. Department of Energy's Hanford Site. ASME AG-1 is applied as a regulatory constraint to waste tank ventilation systems at the Hanford Site, even though the code was not intended for these systems. An assessment was performed to identify which requirements should be exempted for waste tank ventilation systems. The technical justifications for requirement exemptions were prepared and presented to the regulator. The technical justifications were documented so that select requirement exemptions for specific projects and systems can be sought through the regulator's permitting process. This paper presents the rationale for attempting to receive requirement exemption and presents examples of the technical justifications that form the basis for these exemptions.

GUSTAVSON, R.D.

2004-09-03T23:59:59.000Z

63

Software Verification & Validation Report for the 244-AR Vault Interim Stabilization Ventilation System  

SciTech Connect (OSTI)

This document reports on the analysis, testing and conclusions of the software verification and validation for the 244-AR Vault Interim Stabilization ventilation system. Automation control system will use the Allen-Bradley software tools for programming and programmable logic controller (PLC) configuration. The 244-AR Interim Stabilization Ventilation System will be used to control the release of radioactive particles to the environment in the containment tent, located inside the canyon of the 244-AR facility, and to assist the waste stabilization efforts. The HVAC equipment, ducts, instruments, PLC hardware, the ladder logic executable software (documented code), and message display terminal are considered part of the temporary ventilation system. The system consists of a supply air skid, temporary ductwork (to distribute airflow), and two skid-mounted, 500-cfm exhausters connected to the east filter building and the vessel vent system. The Interim Stabilization Ventilation System is a temporary, portable ventilation system consisting of supply side and exhaust side. Air is supplied to the containment tent from an air supply skid. This skid contains a constant speed fan, a pre-filter, an electric heating coil, a cooling coil, and a constant flow device (CFD). The CFD uses a passive component that allows a constant flow of air to pass through the device. Air is drawn out of the containment tent, cells, and tanks by two 500-cfm exhauster skids running in parallel. These skids are equipped with fans, filters, stack, stack monitoring instrumentation, and a PLC for control. The 500CFM exhaust skids were fabricated and tested previously for saltwell pumping activities. The objective of the temporary ventilation system is to maintain a higher pressure to the containment tent, relative to the canyon and cell areas, to prevent contaminants from reaching the containment tent.

YEH, T.

2002-11-20T23:59:59.000Z

64

Commissioning of a Coupled Earth Tube and Natural Ventilation System at the Design Phase  

E-Print Network [OSTI]

design simulation software DeST(8): combined simulation of natural and mechanical Ventilation??Journal of HVAC. 35(2) (In Chinese) Kato, S. 1997,1998. ?Application to indoor atmosphere of CFD (1?7)?, SHASE. 71(6?11),72(1) (In Japanese) Li, Y. 2002... coupled simulation method using this tool in conjunction with CFD (Computational Fluid Dynamics) to simultaneously calculate indoor air flow/temperature distribution and natural ventilation airflow rate. In this paper, at the design phase of an actual...

Yoshida, H.; Pan, S.; Zheng, M.

2007-01-01T23:59:59.000Z

65

Natural Ventilation in Buildings: Measurement in a Wind Tunnel and Numerical Simulation with Large Eddy Simulation  

E-Print Network [OSTI]

save energy compared to mechanical ventilation systems. In building design the prediction save energy consumed by the heating, ventilating, and air- conditioning systems in a building. In a naturally ventilated building, air is driven in and out due to pressure differences produced by wind

Chen, Qingyan "Yan"

66

ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS  

SciTech Connect (OSTI)

Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

Wiersma, B.; Hansen, A.

2013-11-13T23:59:59.000Z

67

TNKVNT: A model of the Tank 48 purge/ventilation exhaust system. Revision 1  

SciTech Connect (OSTI)

The waste tank purge ventilation system for Tank 48 is designed to prevent dangerous concentrations of hydrogen or benzene from accumulating in the gas space of the tank. Fans pull the gas/water vapor mixture from the tank gas space and pass it sequentially through a demister, a condenser, a reheater, and HEPA filters before discharging to the environment. Proper operation of the HEPA filters requires that the gas mixture passing through them has a low relative humidity. The ventilation system has been modified by increasing the capacity of the fans and changing the condenser from a two-pass heat exchanger to a single-pass heat exchanger. It is important to understand the impact of these modifications on the operation of the system. A hydraulic model of the ventilation exhaust system has been developed. This model predicts the properties of the air throughout the system and the flowrate through the system, as functions of the tank gas space and environmental conditions. This document serves as a Software Design Report, a Software Coding report, and a User`s Manual. All of the information required for understanding and using this code is herein contained: the governing equations are fully developed, the numerical algorithms are described in detail, and an extensively commented code listing is included. This updated version of the code models the entire purge ventilation system, and is therefore more general in its potential applications.

Shadday, M.A. Jr.

1996-04-01T23:59:59.000Z

68

Consideration of air jet angle in open surface tank push-pull ventilation system design  

E-Print Network [OSTI]

CONSIDERATION OF AIR JET ANGLE IN OPEN SURFACE TANK PUSH-PULL VENTILATION SYSTEM DESIGN A Thesis by WAI-HUNG DAVID CHAN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree o... MASTER OF SCIENCE May 1983 Major Subjeot: Industrial Hygiene CONSIDERATION OF AIR JET ANGLE IN OPEN SURFACE TANK PUSH-PULL VENTILATION STSTEM DESIGN A Thesis by WAI-HUNG DAVID CHAN Approved as to style and content by: (C an of mmittee) J. Suggs...

Chan, Wai-Hung David

1983-01-01T23:59:59.000Z

69

Expert system for the design of heating, ventilating, and air-conditioning systems. Master's thesis  

SciTech Connect (OSTI)

Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are needed and have been developed to join the separate knowledge bases into one simple-to-use program unit.

Camejo, P.J.

1989-12-01T23:59:59.000Z

70

Ventilation system consequence calculations to support salt well pumping single-shell tank 241-A-101  

SciTech Connect (OSTI)

This document presents the radiological dose and toxicological exposure calculations for an accident scenario involved with the ventilation system used to support salt well pumping single-shell tank 241-A-101. This tank has been listed on the Hydrogen Watch List.

Ryan, G.W.

1997-05-07T23:59:59.000Z

71

Wireless Ventilation Control for Large-Scale Systems: the Mining Industrial Case  

E-Print Network [OSTI]

- University of L'Aquila, L'Aquila, Italy. 3 Automatic Control Department, SUPELEC, Gif sur Yvette, France. 4 strategies for fluid systems (pumps, fans and compressors) represent approximately 20 % of the total % or more of the energy consumed by the mining process may go into the ventilation (including heating

Boyer, Edmond

72

Particle transport in low-energy ventilation systems. Part 1: theory of steady states  

E-Print Network [OSTI]

of the global population. According to the Energy Information Administration (http://www.eia.doe.gov/) the US of this energy is spent on ventilation of buildings with summer time cooling account for almost 10% of the US total energy budget. To reduce energy consumption various low-energy systems such as displacement

Bolster, Diogo

73

Ventilation and Suppression Systems in Road Tunnels: Some Issues regarding their Appropriate Use in a Fire Emergency   

E-Print Network [OSTI]

Two important tunnel safety technologies are addressed. The majority of long road tunnels have ventilation systems. In the event of a fire in a tunnel, such systems will influence fire development in a number of different ...

Carvel, Ricky O; Rein, Guillermo; Torero, Jose L

74

LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation  

E-Print Network [OSTI]

LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating. Turner, Iain S. Walker, and Brett C. Singer Environmental Energy Technologies Division June 2012 LBNL-5796E #12;LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model

75

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS  

SciTech Connect (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

HAAS CC; KOVACH JL; KELLY SE; TURNER DA

2010-06-24T23:59:59.000Z

76

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS  

SciTech Connect (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

KELLY SE; HAASS CC; KOVACH JL; TURNER DA

2010-06-03T23:59:59.000Z

77

An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique  

SciTech Connect (OSTI)

In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r{sup 2} is equal to 0.997; for the bi-directional configuration, the coefficient of determination r{sup 2} is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty {delta}Q of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.

Battista, L.; Sciuto, S. A.; Scorza, A. [Department of Engineering, ROMA TRE University, via della Vasca Navale 79/81, Rome (Italy)

2013-03-15T23:59:59.000Z

78

Transition dynamics between the multiple steady states in natural ventilation systems : from theories to applications in optimal controls  

E-Print Network [OSTI]

In this study, we investigated the multiple steady state behavior, an important observation in numerical and experimental studies in natural ventilation systems. The-oretical models are developed and their applications in ...

Yuan, Jinchao

2007-01-01T23:59:59.000Z

79

A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits  

SciTech Connect (OSTI)

Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector's energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level. The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

Logue, J. M.; Turner, W. J.N.; Walker, I. S.; Singer, B. C.

2015-01-01T23:59:59.000Z

80

Commissioning Residential Ventilation Systems: A Combined Assessment of  

E-Print Network [OSTI]

, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product use and improving indoor air quality (IAQ) is poorly understood. Commissioning such systems when

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Multifamily Ventilation Retrofit Strategies  

SciTech Connect (OSTI)

In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

Ueno, K.; Lstiburek, J.; Bergey, D.

2012-12-01T23:59:59.000Z

82

DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION  

SciTech Connect (OSTI)

This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

2014-01-06T23:59:59.000Z

83

Ventilative cooling  

E-Print Network [OSTI]

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graça, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

84

Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

2014-01-01T23:59:59.000Z

85

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure

2012-01-01T23:59:59.000Z

86

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel  

E-Print Network [OSTI]

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

2012-01-01T23:59:59.000Z

87

In-depth survey report: Control technology for small business: Evaluation of a flexible duct ventilation system for radiator repair, at A-1 Radiator, Reno, Nevada  

SciTech Connect (OSTI)

An engineering control evaluation was conducted at a radiator repair shop which operated at a very high level of production. The shop had the potential for high exposures to lead (7439921) because of the high volume of work, the number of radiator repair stations, and repairs to huge radiators for mining equipment. Local exhaust ventilation which utilized adjustable arm elephant trunk exhaust hoods had been installed 18 months prior to the visit. The objective of the study was to evaluate the effectiveness of the local exhaust ventilation (LEV) system to control lead exposures during work operations. Time weighted average personal exposures for lead were at or below the OSHA permissible exposure level for ten of 15 mechanics during a high level of production. The elephant trunk ventilation system was capable of controlling lead fumes while shop doors were open, except at one tank in a corner. Work practices were found to be a source of excessive lead exposure. Emissions from a worker's own soldering and from soldering activity upwind of the worker were a major source of lead exposure. Collapse of flexible portions of ducts could reduce exhaust volume. Dampers also showed a tendency to close automatically.

Sheehy, J.W.; Cooper, T.C.; Hall, R.M.; Meier, R.M.

1990-02-01T23:59:59.000Z

88

CAN J ANESTH 55: 9 www.cja-jca.org September, 2008 Purpose: Variable ventilation is superior to control mode venti-  

E-Print Network [OSTI]

no differences between groups, at any time peri- od, for PaO2 , PaCO2 , and static or dynamic respiratory system, and mechanically ventilated. Oleic acid was infused to introduce lung injury. The animals were ventilated, chosen to drive the variable ventilator, had no effect on indices of gas exchange or respiratory

Scafetta, Nicola

89

M.H. Sherman, J.M. Logue, B.C. Singer, Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches -LBNL Report Number 3978-E  

E-Print Network [OSTI]

for Continuous and Intermittent Mechanical Ventilation Approaches - LBNL Report Number 3978-E M.H. Sherman, J and Intermittent Mechanical Ventilation Approaches - LBNL Report Number 3978-E 1 Infiltration Effects Energy Commission through Contract 500-08-06. LBNL Report Number 3978-E #12;M.H. Sherman, J.M. Logue, B

90

HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS  

SciTech Connect (OSTI)

This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OA ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.

Liu, Xiaobing [ORNL] [ORNL

2011-01-01T23:59:59.000Z

91

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

SciTech Connect (OSTI)

This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

Wetter, Michael

2009-06-17T23:59:59.000Z

92

Measurement of HVAC system performance and local ventilation using passive perfluorocarbon tracer technology  

SciTech Connect (OSTI)

In April of 1993, two (2) perfluorocarbon tracer (PFT) ventilation/indoor air quality assessment tests were performed in the Gleeson Hall building of the SUNY Farmingdale campus. The building was being modified, in part, as a result of significant occupant complaints of perceived poor air quality. The four story building had a basement first floor with air supplied normally by an HVAC system labelled as AC1. During this study, AC1 was inoperational and the basement interior rooms (walls) were primarily gone; the other three floors were still being used for classes. It is possible that a sense of poor air quality may have been perceived by first-floor occupants because they were working in the basement, but this issue could not be addressed. The second floor had two (2) lecture halls--Rm 202 (handled by AC4) and Rm 204 (handled by AC5); the balance of the second floor interior rooms and corridors was split between two other air handling systems, AC2 for the west side of the building and AC3 for the east side. The remaining 3rd and 4th floors were also split about evenly between AC2 and AC3. The perimeter rooms, equipped with wall units having their own outside air (OA) source plus centralized return air (RA) bypasses, were not included in this testing which was restricted to the basement floor (1st floor) and the four operating air handling systems, AC2 to AC5, during Test 1 and only AC2 to AC5 during Test 2. Two types of tests were performed using the full suite of 5 PFT types available. The first test was designed to measure the infiltration, exfiltration, and air exchange between the 5 AC zones above and the second test used the 5th tracer, which had been in the basement, as a distributed source throughout the four other zones to act as a surrogate pollutant source. This report provides final conclusions of both tests and suggestions regarding its usefulness in similar building ventilation and indoor air quality assessments.

Dietz, R.N.; Goodrich, R.W.

1995-06-01T23:59:59.000Z

93

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network [OSTI]

connected to the home’s central heating and cooling system.homes. For homes with electric heating, given the higher

Logue, J.M.

2012-01-01T23:59:59.000Z

94

The effects of mechanical ventilation on the development of Acute Respiratory Distress Syndrome  

E-Print Network [OSTI]

Acute Respiratory Distress Syndrome (ARDS) is a severe lung illness characterized by inflammation and fluid accumulation in the respiratory system. Historically, ARDS and other forms of respiratory failure have been treated ...

Jia, Xiaoming, M. Eng. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

95

Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors  

E-Print Network [OSTI]

Doctor Instructor Professor The key laboratory of clean coal power generation and combustion technology of the ministry of education, southeast university College of energy sources & environment, Inner Mongolia University of Science & Technology...ICEBO2006, Shenzhen, China Maximize Comfort: Temperature, Humidity and IAQ Vol.I-7-1 Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors Xuan Wu Jingfang Gao Wenfei Wu...

Wu, X.; Gao, J.; Wu, W.

2006-01-01T23:59:59.000Z

96

Conf Proc IEEE Eng Med Biol Soc. Author manuscript A model of ventilation used to interpret newborn lamb respiratory signals  

E-Print Network [OSTI]

Mechanics ; physiology ; Sheep Introduction Respiratory problems are particularly frequent in the neonatal of the neonatal respiratory system is yet available.. Mathematical modeling, which integrates interacting respiratory dynamics. Functionally, the mammalian respiratory system is made of three components: ventilation

Paris-Sud XI, Université de

97

Computer Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building  

E-Print Network [OSTI]

Computer Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building John Seryak Kelly Kissock Project Engineer Associate Professor Department of Mechanical and Aerospace Engineering... University of Dayton Dayton, Ohio ABSTRACT Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers...

Seryak, J.; Kissock, J. K.

2002-01-01T23:59:59.000Z

98

Integrated Demand Controlled Ventilation for Single Duct VAV System with Conference Rooms  

E-Print Network [OSTI]

acceptable indoor air quality (IAQ), the overall outside air (OA) intake ratio has to consider the demands from all the zones with the method provided by ASHRAE 62. Some high-ventilation required rooms make it difficult to use a low OA intake ratio...

Yu, Y.; Liu, M.; Cho, Y.; Xu, K.

2007-01-01T23:59:59.000Z

99

Simulation of wind driven ventilative cooling systems for an apartment building in Beijing and Shanghai  

E-Print Network [OSTI]

produce energy for buildings and industry. In order to reduce pollution and greenhouse gas emissions ventilation, CFD, Energy analysis 1. Introduction Throughout the entire world, buildings are major consumers of energy and major sources of greenhouse gas emissions. In China, buildings consume 17% of the total energy

Chen, Qingyan "Yan"

100

Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance  

SciTech Connect (OSTI)

The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

Wray, Craig; Wray, Craig P.; Sherman, Max H.; Walker, I.S.; Dickerhoff, D.J.; Federspiel, C.C.

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Measure Guideline: Ventilation Cooling  

SciTech Connect (OSTI)

The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

Springer, D.; Dakin, B.; German, A.

2012-04-01T23:59:59.000Z

102

System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System (Brochure)  

SciTech Connect (OSTI)

Technical briefing to report the outcomes of a data monitoring effort to determine the nature of solar vent preheat system performance problems at a U.S. military installation. The analysis reports up-to-date research and findings regarding system design, helping to clarify the issue as a factor of system design, rather than a shortcoming of SVP systems.

Not Available

2011-08-01T23:59:59.000Z

103

Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building  

E-Print Network [OSTI]

R.J. : Effect of ventilation rate in a healthy building.IAQ '91: Healthy Buildings, American Society of Heating,

Thatcher, Tracy L.

2011-01-01T23:59:59.000Z

104

Ventilating Existing Homes in the US Air Infiltration Review. 2010;31(2)  

E-Print Network [OSTI]

mechanical ventilation fan leads to reductions in other measures, such as adding insulation. This has led

105

E-Print Network 3.0 - airway pressure ventilation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators Summary: and airway occlusion pressure during assist-mode mechanical...

106

Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits  

SciTech Connect (OSTI)

Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr--1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 ?g/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 ?g/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

Less, Brennan; Walker, Iain

2014-06-01T23:59:59.000Z

107

Literature Review of Displacement Ventilation  

E-Print Network [OSTI]

is dependent on the flow rate from the diffuser, the temperature difference, and the diffuser type. #0;? The thermal plumes and supply air from diffusers play an important role in the displacement ventilation. #0;? It is necessary to carefully control... systems, although there are differences depending on the control strategies and the type of HVAC systems. In the energy calculation by Niu (1994), it is shown that the annual energy consumption of displacement ventilation with a water- cooled ceiling...

Cho, S.; Im, P.; Haberl, J. S.

108

Evaluation and design of ventilation systems for autopsy and surgical examination tables  

E-Print Network [OSTI]

)-TLV of 1 ppm and the 2 ppm Short Term Exposure Limit. '" NIOSH has also lowered its 8-hr TWA and Ceiling Level to 0. 016 ppm and 0. 1 ppm, respectively. "' Formaldehyde is a gas at room temperature. Its threshold of odor is approximately 1 ppm. It is a... double cone down-draft local exhaust ventilation (LEV) design produced by Shandon Lipshaw was evaluated in order to determine if personnel working at dissection tables are overexposed to formaldehyde. Mannequin exposure monitoring and static pressure...

Murgash, Mark John

1993-01-01T23:59:59.000Z

109

Study of natural ventilation in buildings with large eddy simulation  

E-Print Network [OSTI]

With the discovery of many economic, environmental, and health problems in sealed and mechanically ventilated buildings, the concept of natural ventilation has been revived. "Buildings that breathe" have become more and ...

Jiang, Yi, 1972-

2002-01-01T23:59:59.000Z

110

J. Koffi et al, F: Experimental Evaluation of Ventilation Systems in a Single-Family Dwelling 1 Experimental Evaluation of Ventilation Systems in a Single-  

E-Print Network [OSTI]

the building through the "habitable rooms" while the polluted air is extracted in the service rooms. In this way, internal air is drained from the lowest polluted rooms to the highest polluted ones. However the "habitable rooms" by natural air inlets or mechanical air supply. The polluted air is extracted

Boyer, Edmond

111

Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073  

SciTech Connect (OSTI)

Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and development associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)

Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)] [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)

2013-07-01T23:59:59.000Z

112

Ventilation Behavior and Household Characteristics in NewCalifornia Houses  

SciTech Connect (OSTI)

A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

Price, Phillip N.; Sherman, Max H.

2006-02-01T23:59:59.000Z

113

Ventilation | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-Type WaterTravelVentilation Systems for

114

Ventilation Model and Analysis Report  

SciTech Connect (OSTI)

This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity.

V. Chipman

2003-07-18T23:59:59.000Z

115

Ventilation Based on ASHRAE 62.2  

E-Print Network [OSTI]

July 2010 CEC-400-2010-006 Minimum Best Practices Guide #12;CALIFORNIA ENERGY COMMISSION Craig in this report. #12;1 2008 Building Energy Efficiency Standards Residential Indoor Air Quality and Mechanical Ventilation (ASHRAE 62.2) Minimum Best Practices Guide - Exhaust-Only Ventilation Introduction: The California

116

E-Print Network 3.0 - adaptive support ventilation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of the material on ventilation system design and maintenance is adapted from A Guide to Energy Efficient... Energy-Efficient Ventilation for Apartment Buildings 12......

117

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

E-Print Network [OSTI]

control with ventilation, given current ventilation and filtration system practices, are the indoor-sourced gaseous pollutants with low octanal-air

Mendell, Mark J.

2014-01-01T23:59:59.000Z

118

Dry Transfer Facility #1 - Ventilation Confinement Zoning Analysis  

SciTech Connect (OSTI)

The purpose of this analysis is to establish the preliminary Ventilation Confinement Zone (VCZ) for the Dry Transfer Facility (DTF). The results of this document is used to determine the air quantities for each VCZ that will eventually be reflected in the development of the Ventilation Flow Diagrams. The calculations contained in this document were developed by D and E/Mechanical-HVAC and are intended solely for the use of the D and E/Mechanical-HVAC department in its work regarding the HVAC system for the Dry Transfer Facility. Yucca Mountain Project personnel from the D and E/Mechanical-HVAC department should be consulted before use of the calculation for purposes other than those stated herein or used by individuals other than authorized personnel in D and E/Mechanical-HVAC department.

K.D. Draper

2005-03-23T23:59:59.000Z

119

A scale model study of displacement ventilation with chilled ceilings  

E-Print Network [OSTI]

Displacement ventilation is a form of air-conditioning which provides good air quality and some energy savings. The air quality is better than for a conventional mixed ventilation system. The maximum amount of cooling that ...

Holden, Katherine J. A. (Katherine Joan Adrienne)

1995-01-01T23:59:59.000Z

120

Midlevel Ventilation's Constraint on Tropical Cyclone Intensity  

E-Print Network [OSTI]

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclone’s intensity. An ...

Tang, Brian Hong-An

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Midlevel ventilation's constraint on tropical cyclone intensity  

E-Print Network [OSTI]

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a TC's intensity. An idealized ...

Tang, Brian Hong-An

2010-01-01T23:59:59.000Z

122

Energy and first costs analysis of displacement and mixing ventilation systems for U.S. buildings and climates  

E-Print Network [OSTI]

In the past two decades, displacement ventilation has been increasingly used in Scandinavia and Western Europe to improve indoor air quality and to save energy. By using a detailed computer simulation method, this study ...

Hu, ShiPing, 1970-

1999-01-01T23:59:59.000Z

123

Impact of Infiltration and Ventilation on Measured Space Conditioning...  

Broader source: Energy.gov (indexed) [DOE]

Hot-humid PERFORMANCE DATA Costs for reducing infiltration and incorporating mechanical ventilation in buildings will vary greatly depending on the condition and...

124

Physical features of small disperse coal dust fraction transportation and structurization processes in iodine air filters of absorption type in ventilation systems at nuclear power plants  

E-Print Network [OSTI]

The research on the physical features of transportation and structurization processes by the air-dust aerosol in the granular filtering medium with the cylindrical coal adsorbent granules in an air filter of the adsorption type in the heating ventilation and cooling (HVAC) system at the nuclear power plant is completed. The physical origins of the coal dust masses distribution along the absorber with the granular filtering medium with the cylindrical coal granules during the air-dust aerosol intake process in the near the surface layer of absorber are researched. The quantitative technical characteristics of air filtering elements, which have to be considered during the optimization of air filters designs for the application in the ventilation systems at the nuclear power plants, are obtained.

Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

2012-01-01T23:59:59.000Z

125

Effect of repository underground ventilation on emplacement drift temperature control  

SciTech Connect (OSTI)

The repository advanced conceptual design (ACD) is being conducted by the Civilian Radioactive Waste Management System, Management & Operating Contractor. Underground ventilation analyses during ACD have resulted in preliminary ventilation concepts and design methodologies. This paper discusses one of the recent evaluations -- effects of ventilation on emplacement drift temperature management.

Yang, H.; Sun, Y.; McKenzie, D.G.; Bhattacharyya, K.K. [Morrison Knudson Corporation, Las Vegas, NV (United States)

1996-02-01T23:59:59.000Z

126

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure

2012-01-01T23:59:59.000Z

127

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre

2012-01-01T23:59:59.000Z

128

VFD Technology's Energy Conservation Application at Metro Ventilation Air-conditioning System  

E-Print Network [OSTI]

Shenzhen metro has been applied the VFD control technique and close loop negative control logic to adjust and control the temperature and humidity of public area and conserve the energy on HVAC system of children palace station and Fumin station...

Li, G.

2006-01-01T23:59:59.000Z

129

Indoor Humidity Analysis of an Integrated Radiant Cooling and Desiccant Ventilation System  

E-Print Network [OSTI]

, the diameter and depth of the wheel, face flow velocity, rotational speed and other operating conditions. Bulk et al. [11] proposed NTU correlations for design calculation of latent and total effectiveness of enthalpy wheels coated with silica gel..., Wr Te1,We1 Space Fig.2. Passive desiccant system Enthalpy wheels normally use an aluminum substrate coated with a molecular sieve material or silica gel. The effectiveness of an enthalpy wheel depends on the load of desiccant materials...

Gong, X.; Claridge, D. E.

2006-01-01T23:59:59.000Z

130

Proceedings of the Intern. Conference on Passive and Low Energy Architecture (PLEA), Toulouse (2002) 577 Cost efficiency of ventilation systems  

E-Print Network [OSTI]

Proceedings of the Intern. Conference on Passive and Low Energy Architecture (PLEA), Toulouse (2002 of a corresponding low-energy house have been per- formed for a full heating period. They reproduce measurements from, air quality, control of humidity) [1, 2]. In such houses, the ventilation and infiltration losses

Gieseler, Udo D. J.

131

Building Science- Ventilation  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "What are the best ventilation techniques"

132

Lightweight ventilated facade prototype: acoustic performance evaluation when the ventilation surface of  

E-Print Network [OSTI]

Lightweight ventilated facade prototype: acoustic performance evaluation when the ventilation del Vall`es, 08173 Barcelona, Spain arquiniampira@yahoo.com Proceedings of the Acoustics 2012 Nantes potentially improve buildings protection against noise pollution from outside. However, in this system the air

Boyer, Edmond

133

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network [OSTI]

Energy and air quality implications of passive stack ventilation in residential buildings Laboratory is an equal opportunity employer. #12;Energy and air quality implications of passive stack in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however

134

Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House  

SciTech Connect (OSTI)

Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

Mallay, D.; Wiehagen, J.

2014-09-01T23:59:59.000Z

135

Underground and Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear

136

Underground and Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23, 2014 Meeting Agenda * Opening

137

Underground and Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23, 2014 Meeting Agenda *

138

Underground and Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23, 2014 Meeting Agenda *October 2,

139

Underground and Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23, 2014 Meeting Agenda *October

140

Underground and Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23, 2014 Meeting Agenda

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Underground and Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23, 2014 Meeting AgendaJanuary 8, 2015

142

Underground and Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23, 2014 Meeting AgendaJanuary 8,

143

Underground and Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23, 2014 Meeting AgendaJanuary 8,1,

144

Underground and Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23, 2014 Meeting AgendaJanuary

145

Underground and Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23, 2014 Meeting

146

Respiratory Mechanisms of Support  

E-Print Network [OSTI]

Respiratory Mechanisms of Support Nasal Cannula Hi Flow Nasal Cannula CPAP Continuous positive the respiratory system is working to compensate for a metabolic issue so as to normalize the blood pH. HCO3 - 22 uses PIP Mechanical Ventilation: Volume vs. Pressure: Volume Control Pressure Control Cycle Volume Time

Kay, Mark A.

147

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab  

SciTech Connect (OSTI)

This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab ({proportional_to}33 m{sup 2}). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. (author)

Chen, Yuxiang; Galal, Khaled; Athienitis, A.K. [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

148

Why We Ventilate  

SciTech Connect (OSTI)

It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

2011-09-01T23:59:59.000Z

149

Evaluation of Ventilation Strategies in New Construction Multifamily Buildings  

SciTech Connect (OSTI)

In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

Maxwell, S.; Berger, D.; Zuluaga, M.

2014-07-01T23:59:59.000Z

150

Particle deposition in ventilation ducts  

SciTech Connect (OSTI)

Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

Sippola, Mark R.

2002-09-01T23:59:59.000Z

151

Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systems—An overview: Part I: Hard control  

SciTech Connect (OSTI)

A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology “hard” and “soft” computing/control has nothing to do with the “hardware” and “software” that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

D. Subbaram Naidu; Craig G. Rieger

2011-02-01T23:59:59.000Z

152

Hybrid cavity mechanics with doped systems  

E-Print Network [OSTI]

We investigate the dynamics of a mechanical resonator in which is embedded an ensemble of two-level systems interacting with an optical cavity field. We show that this hybrid approach to optomechanics allows for enhanced effective interactions between the mechanics and the cavity field, leading for instance to ground state cooling of the mechanics, even in regimes, like the unresolved sideband regime, in which standard radiation pressure cooling would be inefficient.

Aurelien Dantan; Bhagya Nair; Guido Pupillo; Claudiu Genes

2014-06-27T23:59:59.000Z

153

Carbon-dioxide-controlled ventilation study  

SciTech Connect (OSTI)

The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

McMordie, K.L.; Carroll, D.M.

1994-05-01T23:59:59.000Z

154

Mental Mechanisms, Autonomous Systems, and Moral Agency William Bechtel (bechtel@mechanism.ucsd.edu)  

E-Print Network [OSTI]

Mental Mechanisms, Autonomous Systems, and Moral Agency William Bechtel (bechtel as a moral agent. Keywords: mechanistic explanation, mental mechanisms, autonomous systems, adaptive systems of mechanisms can best be understood in terms of autonomous systems and their components. Mechanistic

Bechtel, William

155

Ventilation technologies scoping study  

SciTech Connect (OSTI)

This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

Walker, Iain S.; Sherman, Max H.

2003-09-30T23:59:59.000Z

156

Natural ventilation in buildings : modeling, control and optimization  

E-Print Network [OSTI]

Natural ventilation in buildings has the potential to reduce the energy consumption usually associated with mechanical cooling while maintaining thermal comfort and air quality. It is important to know how building parameters, ...

Ip Kiun Chong, Karine

2014-01-01T23:59:59.000Z

157

Natural ventilation possibilities for buildings in the United States  

E-Print Network [OSTI]

In the United States, many of the commercial buildings built in the last few decades are completely mechanically air conditioned, without the capability to use natural ventilation. This habit has occurred in building designs ...

Dean, Brian N. (Brian Nathan), 1974-

2001-01-01T23:59:59.000Z

158

Natural ventilation generates building form  

E-Print Network [OSTI]

Natural ventilation is an efficient design strategy for thermal comfort in hot and humid climates. The building forms can generate different pressures and temperatures to induce natural ventilation. This thesis develops a ...

Chen, Shaw-Bing

1996-01-01T23:59:59.000Z

159

Natural Ventilation Design for Houses in Thailand Chalermwat Tantasavasdia  

E-Print Network [OSTI]

This paper explores the potential of using natural ventilation as a passive cooling system for new house windows in suburban houses can be opened. Passive cooling design elements are mostly ignored in modern1 Natural Ventilation Design for Houses in Thailand Chalermwat Tantasavasdia , Jelena Srebricb

Chen, Qingyan "Yan"

160

"We retrofitted mechanical systems in 8 buildings!"  

E-Print Network [OSTI]

"We retrofitted mechanical systems in 8 buildings!" LOW INTEREST RATE LOANS AVAILABLE NOW! County of Contra Costa California Energy Commission Apply Today! See Case Study on Back of Flyer "Our low interest and cooling systems in eight buildings. The energy efficient measures include replacing pneumatic controls

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Meeting Residential Ventilation Standards  

E-Print Network [OSTI]

, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark quality (IAQ), ventilation is a critical element for improving the energy efficiency of buildings. IAQ

162

ASHRAE and residential ventilation  

SciTech Connect (OSTI)

In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

Sherman, Max H.

2003-10-01T23:59:59.000Z

163

Hysteresis effects in hybrid building ventilation  

E-Print Network [OSTI]

of substandard quality · Poor IAQ is often due to external pollution e.g. industrial/automotive exhaust · However chloride, etc. Developing world: By-products of cooking or heating fires Ghiaus & Allard (2005) · Exposure of poor IAQ · In contrast to traditional HVAC systems, natural ventilation relies on freely

Flynn, Morris R.

164

Humidity Implications for Meeting Residential Ventilation Requirements  

E-Print Network [OSTI]

, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark for ventilation system design. These standards are increasingly used by reference in building energy and IAQ codes

165

Energy Savings Through Improved Mechanical Systems and Building...  

Office of Environmental Management (EM)

Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Energy Savings Through Improved Mechanical Systems and Building Envelope...

166

Micro electro mechanical system optical switching  

DOE Patents [OSTI]

The present disclosure includes apparatus, system, and method embodiments that provide micro electo mechanical system optical switching and methods of manufacturing switches. For example, one optical switch embodiment includes at least one micro electro mechanical system type pivot mirror structure disposed along a path of an optical signal, the structure having a mirror and an actuator, and the mirror having a pivot axis along a first edge and having a second edge rotatable with respect to the pivot axis, the mirror being capable of and arranged to be actuated to pivot betweeen a position parallel to a plane of an optical signal and a position substantially normal to the plane of the optical signal.

Thorson, Kevin J; Stevens, Rick C; Kryzak, Charles J; Leininger, Brian S; Kornrumpf, William P; Forman, Glenn A; Iannotti, Joseph A; Spahn, Olga B; Cowan, William D; Dagel, Daryl J

2013-12-17T23:59:59.000Z

167

Optics, Mechanics and Quantization of Reparametrization Systems  

E-Print Network [OSTI]

In this paper we regard the dynamics obtained from Fermat principle as begin the classical theory of light. We (first-)quantize the action and show how close we can get to the Maxwell theory. We show that Quantum Geometric Optics is not a theory of fields in curved space. Considering Classical Mechanics to be on the same footing, we show the parallelism between Quantum Mechanics and Quantum Geometric Optics. We show that, due to the reparametrization invariance of the classical theories, the dynamics of the quantum theories is given by a Hamiltonian constraint. Some implications of the above analogy in the quantization of true reparameterization invariant systems are discussed.

M. Navarro; J. Guerrero; V. Aldaya

1994-04-20T23:59:59.000Z

168

Does Mixing Make Residential Ventilation More Effective?  

SciTech Connect (OSTI)

Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. The total ventilation rate is the most important factor in determining the exposure of occupants to given sources, but the zone- specific distribution of exhaust and supply air, and the mixing of ventilation air can have significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage through the building envelope, air distribution systems and the location of sources and occupants. This paper reports recent results of investigations to determine the impact that air mixing has on exposures of residential occupants to prototypical contaminants of concern. Evaluations of existing field measurements and simulations reported in the literature are combined with new analyses to provide an integrated overview of the topic. The results show that for extreme cases additional mixing can be a significant factor but for typical homes looking at average exposures mixing is not helpful and can even make exposures worse.

Sherman, Max; Walker, Iain

2010-08-16T23:59:59.000Z

169

Towards a Hamilton-Jacobi Theory for Nonholonomic Mechanical Systems  

E-Print Network [OSTI]

In this paper we obtain a Hamilton-Jacobi theory for nonholonomic mechanical systems. The results are applied to a large class of nonholonomic mechanical systems, the so-called \\v{C}aplygin systems.

D. Iglesias; M. de Leon; D. Martin de Diego

2007-05-25T23:59:59.000Z

170

RECOMMENDED VENTILATION STRATEGIES FOR ENERGY-EFFICIENT PRODUCTION HOMES  

E-Print Network [OSTI]

-port exhaust ventilation fan, and that builders offer balanced heat- recovery ventilation to buyers

171

Solar Ventilation Preheating Resources and Technologies | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ventilation Preheating Resources and Technologies Solar Ventilation Preheating Resources and Technologies Photo of a dark brown perforated metal wall is pictured on the side of an...

172

RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*  

E-Print Network [OSTI]

to provide this ventilation service, either directly for moving the air or indirectly for conditioning continue, the fraction of energy consumed by the conditioning of air may increase. Air-tightening programs Berkeley, California The role of ventilation in the housing stock is to provide fresh air and to dilute

173

Reverse ventilation--perfusion mismatch  

SciTech Connect (OSTI)

Patients having lobar airway obstruction or consolidation usually have decreases of both ventilation and perfusion on lung scans. We report three patients in whom hypoxic vasoconstriction was apparently incomplete, resulting in a ''reversed'' ventilation-perfusion mismatch. Perfusion of the hypoxic lobe on the radionuclide scan was associated with metabolic alkalosis, pulmonary venous and pulmonary arterial hypertension in these patients.

Palmaz, J.C.; Barnett, C.A.; Reich, S.B.; Krumpe, P.E.; Farrer, P.A.

1984-01-01T23:59:59.000Z

174

Optimization of Occupancy Based Demand Controlled Ventilation in Residences  

SciTech Connect (OSTI)

Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

2011-05-01T23:59:59.000Z

175

Mechanical Systems Overview Page 4-1 2008 Nonresidential Compliance Manual August 2009  

E-Print Network [OSTI]

losses of heating and cooling energy 3. Optimizing system control to minimize unnecessary operation the requirements for space conditioning, ventilating, and service water heating systems. It is organized in 11 for HVAC systems; including sizing and equipment selection, load calculations, economizers, electric

176

Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems  

SciTech Connect (OSTI)

This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R. [Pacific Northwest Lab., Richland, WA (United States)

1993-11-01T23:59:59.000Z

177

Cardiac gated ventilation  

SciTech Connect (OSTI)

There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart.

Hanson, C.W. III [Hospital of the Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. Anesthesia; Hoffman, E.A. [Univ. of Iowa College of Medicine, Iowa City, IA (United States). Div. of Physiologic Imaging

1995-12-31T23:59:59.000Z

178

Proposal for the award of a contract for the design, supply, installation and commissioning of a ventilation and air conditioning system for the ECN3 experimental area and the TCC8 and GHN300 service tunnels and for the dismantling of the existing system  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of a ventilation and air conditioning system for the ECN3 experimental area and the TCC8 and GHN300 service tunnels and for the dismantling of the existing system

2014-01-01T23:59:59.000Z

179

Air exchange effectiveness of conventional and task ventilation for offices  

SciTech Connect (OSTI)

Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant`s breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

Fisk, W.J.; Faulkner, D.; Prill, R.J.

1991-12-01T23:59:59.000Z

180

Air exchange effectiveness of conventional and task ventilation for offices  

SciTech Connect (OSTI)

Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant's breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

Fisk, W.J.; Faulkner, D.; Prill, R.J.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - air treatment system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Last Updated: 41702 Summary: , including refrigeration, air conditioning, heating systems, ventilating fans, roof ventilators, exhaust fans... , water treatment equipment,...

182

E-Print Network 3.0 - air handling systems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Last Updated: 41702 Summary: , including refrigeration, air conditioning, heating systems, ventilating fans, roof ventilators, exhaust fans... , water treatment equipment,...

183

Equivalence in Ventilation and Indoor Air Quality  

SciTech Connect (OSTI)

We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

Sherman, Max; Walker, Iain; Logue, Jennifer

2011-08-01T23:59:59.000Z

184

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

SciTech Connect (OSTI)

Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

2010-10-27T23:59:59.000Z

185

Capture and Use of Coal Mine Ventilation Air Methane  

SciTech Connect (OSTI)

CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

Deborah Kosmack

2008-10-31T23:59:59.000Z

186

Analytical energy spectrum for hybrid mechanical systems  

E-Print Network [OSTI]

We investigate the energy spectrum for hybrid mechanical systems described by non-parity-symmetric quantum Rabi models. A set of analytical solutions in terms of the confluent Heun functions and their analytical energy spectrum are obtained. The analytical energy spectrum includes regular and exceptional parts, which are both confirmed by direct numerical simulation. The regular part is determined by the zeros of the Wronskian for a pair of analytical solutions. The exceptional part is relevant to the isolated exact solutions and its energy eigenvalues are obtained by analyzing the truncation conditions for the confluent Heun functions. By analyzing the energy eigenvalues for exceptional points, we obtain the analytical conditions for the energy-level-crossings, which correspond to two-fold energy degeneracy.

Honghua Zhong; Qiongtao Xie; Xiwen Guan; Murray T. Batchelor; Kelin Gao; Chaohong Lee

2013-11-07T23:59:59.000Z

187

The WIPP Underground Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe MolecularPlaceThe publication of the Office,

188

Industrial Ventilation Statistics Confirm Energy Savings Opportunity  

E-Print Network [OSTI]

is based on installed on-demand ventilation systems, where sensors and PLC are installed with each system, so data is easily collected. Another critical factor for effective dust collecting is proper air velocities in duct system. Having measured air... of the cutting tool is active or not. Information from the sensor is transmitted to the Omron PLC. The Omron PLC saves data in binary form every 5 minutes (24/7) to the CompactFlash card (a similar card is used in digital cameras) along with the time...

Litomisky, A.

2006-01-01T23:59:59.000Z

189

Mechanical properties of thermal protection system materials.  

SciTech Connect (OSTI)

An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.

2005-06-01T23:59:59.000Z

190

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

E-Print Network [OSTI]

in this study. Classroom HVAC: Improving Ventilation andV8doc.sas.com/sashtml. Classroom HVAC: Improving VentilationBerkeley, CA 94720. Classroom HVAC: Improving Ventilation

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-01-01T23:59:59.000Z

191

C-106 tank process ventilation test  

SciTech Connect (OSTI)

Project W-320 Acceptance Test Report for tank 241-C-106, 296-C-006 Ventilation System Acceptance Test Procedure (ATP) HNF-SD-W320-012, C-106 Tank Process Ventilation Test, was an in depth test of the 296-C-006 ventilation system and ventilation support systems required to perform the sluicing of tank C-106. Systems involved included electrical, instrumentation, chiller and HVAC. Tests began at component level, moved to loop level, up to system level and finally to an integrated systems level test. One criteria was to perform the test with the least amount of risk from a radioactive contamination potential stand point. To accomplish this a temporary configuration was designed that would simulate operation of the systems, without being connected directly to the waste tank air space. This was done by blanking off ducting to the tank and connecting temporary ducting and an inlet air filter and housing to the recirculation system. This configuration would eventually become the possible cause of exceptions. During the performance of the test, there were points where the equipment did not function per the directions listed in the ATP. These events fell into several different categories. The first and easiest problems were field configurations that did not match the design documentation. This was corrected by modifying the field configuration to meet design documentation and reperforming the applicable sections of the ATP. A second type of problem encountered was associated with equipment which did not operate correctly, at which point an exception was written against the ATP, to be resolved later. A third type of problem was with equipment that actually operated correctly but the directions in the ATP were in error. These were corrected by generating an Engineering Change Notice (ECN) against the ATP. The ATP with corrected directions was then re-performed. A fourth type of problem was where the directions in the ATP were as the equipment should operate, but the design of the equipment was not correct for that type of operation. To correct this problem an ECN was generated against the design documents, the equipment modified accordingly, and the ATP re-performed. The last type of problem was where the equipment operated per the direct ions in the ATP, agreed with the design documents, yet violated requirements of the Basis of Interim Operation (BIO). In this instance a Non Conformance Report (NCR) was generated. To correct problems documented on an NCR, an ECN was generated to modify the design and field work performed, followed by retesting to verify modifications corrected noted deficiencies. To expedite the completion of testing and maintain project schedules, testing was performed concurrent with construct on, calibrations and the performance of other ATP`s.

Bailey, J.W.

1998-07-20T23:59:59.000Z

192

Residential ventilation standards scoping study  

SciTech Connect (OSTI)

The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

McKone, Thomas E.; Sherman, Max H.

2003-10-01T23:59:59.000Z

193

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept  

SciTech Connect (OSTI)

This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

194

The Principle of Hamilton for Mechanical Systems with Impacts and ...  

E-Print Network [OSTI]

Jul 27, 2014 ... The Principle of Hamilton for Mechanical Systems with Impacts and Unilateral Constraints. Kerim Yunt Yunt(kerimyunt ***at*** web.de).

Kerim Yunt Yunt

2014-07-27T23:59:59.000Z

195

Building America Webinar: Ventilation in Multifamily Buildings...  

Energy Savers [EERE]

Residential Buildings (CARB), and discussed ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design,...

196

Created: July, 2014 Laboratory Safety Design Guide Section 3 Laboratory Ventilation  

E-Print Network [OSTI]

Created: July, 2014 Laboratory Safety Design Guide Section 3 ­ Laboratory Ventilation 3-1 Section 3 ...................................................................................3-5 #12;Created: July, 2014 Laboratory Safety Design Guide Section 3 ­ Laboratory Ventilation 3-2 A without compromising safety or system integrity. The following should be included unless alternate design

Queitsch, Christine

197

Mechanical Energy and Power Systems Laboratory Mechanical Energy and Power Systems Laboratory Proceedings of the ASME 2009 International Mechanical Engineering Conference and  

E-Print Network [OSTI]

Mechanical Energy and Power Systems Laboratory Mechanical Energy and Power Systems Laboratory Proceedings of the ASME 2009 International Mechanical Engineering Conference and Exposition ASME/IMECE 2009 Copyright c 2009 by ASME Dr. James D. Van de Ven #12;seal, and several of it's important variables.C(3

Van de Ven, James D.

198

Micro-optical-mechanical system photoacoustic spectrometer  

DOE Patents [OSTI]

All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.

Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.

2013-01-01T23:59:59.000Z

199

Active noise canceling system for mechanically cooled germanium radiation detectors  

DOE Patents [OSTI]

A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

Nelson, Karl Einar; Burks, Morgan T

2014-04-22T23:59:59.000Z

200

Mechanical Engineering Industrial Energy Systems Laboratory  

E-Print Network [OSTI]

of District Heating and Cooling with an Electro-Thermal Energy Storage System Master Thesis ANURAG KUMAR of the district energy systems is performed and modifications are proposed in a district heating network. Based thermodynamic cycle, ETES suffers from the irreversibilities and excess thermal energy is required to dispose

Candea, George

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system  

E-Print Network [OSTI]

to HVAC operating cost based on recent energy markets forenergy market, UFAD still has the advantage on overall HVAC

Yu, Jong Keun

2010-01-01T23:59:59.000Z

202

A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system  

E-Print Network [OSTI]

kWh. The elec- tricity cost per kWh is obtained from U.S.Ad- ministration. The gas cost per kWh is calculated fromper kWh. The electricity cost per kWh is obtained from U.S.

Yu, Jong Keun

2010-01-01T23:59:59.000Z

203

A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system  

E-Print Network [OSTI]

climates, annual electricity consumption of UFAD is alwaysso the cooling electricity consumption has become importantsummers, the electricity consumption for air conditioning

Yu, Jong Keun

2010-01-01T23:59:59.000Z

204

A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system  

E-Print Network [OSTI]

heat transfer rate is explained by additional “free cooling” of the economizer of UFAD. The economizer which open

Yu, Jong Keun

2010-01-01T23:59:59.000Z

205

A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system  

E-Print Network [OSTI]

electricity demand responses in a building. The remedieselectricity demand responses for a building. An alternativedemand response (DR), is widely suggested for building HVAC

Yu, Jong Keun

2010-01-01T23:59:59.000Z

206

Submersible pumping system with heat transfer mechanism  

DOE Patents [OSTI]

A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

2014-04-15T23:59:59.000Z

207

AIR FLOW MODELING IN DEEP WELLS: APPLICATION TO MINING VENTILATION  

E-Print Network [OSTI]

consumption and increase of electricity prices in a context of worldwide competition also mo- tivate system control and energy consumption op- timization. Two different levels of complexity are pro- posed]. This short historical overview also illustrates the parallel evolution of magnetic ventilation modeling

Paris-Sud XI, Université de

208

Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet)  

SciTech Connect (OSTI)

In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

Not Available

2014-09-01T23:59:59.000Z

209

Multivariable isoperformance methodology for precision opto-mechanical systems  

E-Print Network [OSTI]

Precision opto-mechanical systems, such as space telescopes, combine structures, optics and controls in order to meet stringent pointing and phasing requirements. In this context a novel approach to the design of complex, ...

De Weck, Olivier Ladislas, 1968-

2001-01-01T23:59:59.000Z

210

Mechanical decontamination techniques for floor drain systems  

SciTech Connect (OSTI)

The unprecedented nature of cleanup activities at Three Mile Island Unit 2 (TMI-2) following the 1979 accident has necessitated the development of new techniques to deal with radiation and contamination in the plant. One of these problems was decontamination of floor drain systems, which had become highly contaminated with various forms of dirt and sludge containing high levels of fission products and fuel from the damaged reactor core. The bulk of this contamination is loosely adherent to the drain pipe walls; however, significant amounts of contamination have become incorporated into pipe wall oxide and corrosion layers and embedded in microscopic pits and fissures in the pipe wall material. The need to remove this contamination was recognized early in the TMI-2 cleanup effort. A program consisting of development and laboratory testing of floor drain decontamination techniques was undertaken early in the cleanup with support from the Electric Power Research Institute (EPRI). Based on this initial research, two techniques were judged to show promise for use at TMI-2: a rotating brush hone system and a high-pressure water mole nozzle system. Actual use of these devices to clean floor drains at TMI-2 has yielded mixed decontamination results. The decontamination effectiveness that has been obtained is highly dependent on the nature of the contamination in the drain pipe and the combination of decontamination techniques used.

Palau, G.L.; Saigusa, Moriyuki

1987-01-01T23:59:59.000Z

211

TECHNICAL BASIS FOR VENTILATION REQUIREMENTS IN TANK FARMS OPERATING SPECIFICATIONS DOCUMENTS  

SciTech Connect (OSTI)

This report provides the technical basis for high efficiency particulate air filter (HEPA) for Hanford tank farm ventilation systems (sometimes known as heating, ventilation and air conditioning [HVAC]) to support limits defined in Process Engineering Operating Specification Documents (OSDs). This technical basis included a review of older technical basis and provides clarifications, as necessary, to technical basis limit revisions or justification. This document provides an updated technical basis for tank farm ventilation systems related to Operation Specification Documents (OSDs) for double-shell tanks (DSTs), single-shell tanks (SSTs), double-contained receiver tanks (DCRTs), catch tanks, and various other miscellaneous facilities.

BERGLIN, E J

2003-06-23T23:59:59.000Z

212

Parametric self pulsing in a quantum opto-mechanical system  

E-Print Network [OSTI]

We describe an opto-mechanical system in which the coupling between optical and mechanical degrees of freedom takes the form of a fully quantised third-order parametric interaction. Two physical realisations are proposed: a harmonically trapped atom in a standing wave and the `membrane in the middle' model. The dominant resonant interaction corresponds to a stimulated Raman process in which two phonons are converted into a single cavity photon. We show that this system can exhibit a stable limit cycle in which energy is periodically exchanged between optical and mechanical degrees of freedom. This is equivalently described as a parametric self-pulsing.

Holmes, C A

2009-01-01T23:59:59.000Z

213

Statistical mechanics of gravitating systems: An Overview  

E-Print Network [OSTI]

I review several issues related to statistical description of gravitating systems in both static and expanding backgrounds. After briefly reviewing the results for the static background, I concentrate on gravitational clustering of collisionless particles in an expanding universe. In particular, I describe (a) how the non linear mode-mode coupling transfers power from one scale to another in the Fourier space if the initial power spectrum is sharply peaked at a given scale and (b) the asymptotic characteristics of gravitational clustering which are independent of the initial conditions. Numerical simulations as well as analytic work shows that power transfer leads to a universal power spectrum at late times, somewhat reminiscent of the existence of Kolmogorov spectrum in fluid turbulence.

T. Padmanabhan

2009-02-16T23:59:59.000Z

214

Solar Ventilation Preheating Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of solar ventilation preheating (SVP) technologies supplemented by specific information to apply SVP within the Federal sector.

215

Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems.  

SciTech Connect (OSTI)

Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.

Friedmann, Thomas Aquinas; Czaplewski, David A.; Sullivan, John Patrick; Modine, Normand Arthur; Wendt, Joel Robert; Aslam, Dean (Michigan State University, Lansing, MI); Sepulveda-Alancastro, Nelson (University of Puerto Rico, Mayaguez, PR)

2007-01-01T23:59:59.000Z

216

Power System Security in Market Clearing and Dispatch Mechanisms  

E-Print Network [OSTI]

congestion" levels, which have a direct effect on market transactions and energy prices. Thus, when result in curtailment of power transactions and increased prices for most market participants. System1 Power System Security in Market Clearing and Dispatch Mechanisms Claudio A. Ca~nizares, Senior

Cañizares, Claudio A.

217

Hottest spot temperatures in ventilated dry type transformers  

SciTech Connect (OSTI)

The hottest spot temperature allowance to be used for the different insulation system temperature classes is a major unknown facing IEEE Working Groups developing standards and loading guides for ventilated dry type transformers. In 1944, the hottest spot temperature allowance for ventilated dry type transformers was established as 30 C for 80 C average winding temperature rise. Since 1944, insulation temperature classes have increased to 220 C but IEEE standards continue to use a constant 30 C hottest spot temperature allowance. IEC standards use a variable hottest spot temperature allowance from 5 to 30 C. Six full size test windings were manufactured with imbedded thermocouples and 133 test runs performed to obtain temperature rise data. The test data indicated that the hottest spot temperature allowance used in IEEE standards for ventilated dry type transformers above 500 kVA is too low. This is due to the large thermal gradient from the bottom to the top of the windings caused by natural convection air flow through the cooling ducts. A constant ratio of hottest spot winding temperature rise to average winding temperature rise should be used in product standards for all insulation temperature classes. A ratio of 1.5 is suggested for ventilated dry type transformers above 500 kVA. This would increase the hottest spot temperature allowance from 30 C to 60 C and decrease the permissible average winding temperature rise from 150 C to 120 C for the 220 C insulation temperature class.

Pierce, L.W. (General Electric Co., Rome, GA (United States))

1994-01-01T23:59:59.000Z

218

Tampering detection system using quantum-mechanical systems  

DOE Patents [OSTI]

The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

Humble, Travis S. (Knoxville, TN); Bennink, Ryan S. (Knoxville, TN); Grice, Warren P. (Oak Ridge, TN)

2011-12-13T23:59:59.000Z

219

BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

and in new "energy-efficient design" hospitals. Developmentenergy-efficient ventilation standards and ventilation designs

Cairns, Elton J.

2011-01-01T23:59:59.000Z

220

Summer Infiltration/Ventilation Test Results from the FRTF Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Summer InfiltrationVentilation Test Results from the FRTF Laboratory Summer InfiltrationVentilation Test Results from the FRTF Laboratory This presentation was delivered at the...

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Screw Type Steam Compressors for Mechanical Vapor Recompression (MVR) Systems  

E-Print Network [OSTI]

to a usable pressure for reinjection into the process stream. Mycom has developed, designed and installed two large MVR systems using screw compressors: one for a brewery and the other for a whiskey plant. This paper discusses the system aspects... have been slowly adopted and restricted by the mechanical limitations of these compressors. Some of these limitations include: - Low Compression Ratio Poor Durability With Mist - Erosion - Corrosion, etc. The screw steam compression heat pump...

Kawamura, K.; Apaloo, Thomas-L.

222

Are Ventilation Filters Degrading Indoor Air Quality in California Classrooms?  

SciTech Connect (OSTI)

Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

Fisk, William J.; Destaillats, H.; Apte, M.G.; Destaillats,, Hugo; Fisk, Michael G. Apte and William J.

2008-10-01T23:59:59.000Z

223

Nanoelectro-mechanical systems based on carbon nanotubes  

E-Print Network [OSTI]

:" , : Nanoelectro-mechanical systems based on carbon nanotubes ,81.90.88,81:39 ( -) 81:99 , ' ", '" #12;"Atomistic simulations of vibration of carbon nanotubes: is it possible to measure the mass of single atom?" Polina Pine Supervisor: Joan Adler, Yuval E. Yaish Carbon nanotubes

Adler, Joan

224

School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University Energy Saving Control of Hydraulic SystemsEnergy Saving Control of Hydraulic Systems  

E-Print Network [OSTI]

School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University Energy Saving Control of Hydraulic Systems Principle Investigator: Bin Yao Research Assistant: Song Liu School of Mechanical Engineering Purdue

Yao, Bin

225

Extreme events in excitable systems and mechanisms of their generation  

E-Print Network [OSTI]

We study deterministic systems, composed of excitable units of FitzHugh-Nagumo type, that are capable of self-generating and self-terminating strong deviations from their regular dynamics without the influence of noise or parameter change. These deviations are rare, short-lasting, and recurrent and can therefore be regarded as extreme events. Employing a range of methods we analyze dynamical properties of the systems, identifying features in the systems' dynamics that may qualify as precursors to extreme events. We investigate these features and elucidate mechanisms that may be responsible for the generation of the extreme events.

Gerrit Ansmann; Rajat Karnatak; Klaus Lehnertz; Ulrike Feudel

2014-08-27T23:59:59.000Z

226

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

SciTech Connect (OSTI)

The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms (CRs) with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many CRs are under-ventilated, and public concerns about indoor environmental quality in CRs. This document provides a summary of the detailed plans developed for the field study that will take place in 2005 to evaluate the energy and IAQ performance of a new classroom HVAC technology. The field study will include measurements of HVAC energy use, ventilation rates, and IEQ conditions in 10 classrooms with the new HVAC technology and in six control classrooms with a standard HVAC system. Energy use and many IEQ parameters will be monitored continuously, while other IEQ measurements will be will be performed seasonally. Continuously monitored data will be remotely accessed via a LonWorks network. Instrument calibration plans that vary with the type of instrumentation used are established. Statistical tests will be employed to compare energy use and IEQ conditions with the new and standard HVAC systems. Strengths of this study plan include the collection of real time data for a full school year, the use of high quality instrumentation, the incorporation of many quality control measures, and the extensive collaborations with industry that limit costs to the sponsors.

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-10-14T23:59:59.000Z

227

Information thermodynamics in a hybrid opto-mechanical system  

E-Print Network [OSTI]

Information thermodynamics is a recent field that investigates the links between information and energy. Its most famous "Gedankenexperiments" are Landauer erasure and Szilard engine, that describe the reversible conversion of a single bit of information into an elementary amount of work between a system and a battery. So far, direct evidences of such reversible work exchanges by measuring the battery's energy has remained elusive. In this article, we show that a hybrid optomechanical transducer is a proper platform to monitor these conversions. Such devices consist in an optically active quantum emitter, playing the role of the bit, coupled to a mechanical resonator, playing the role of the battery. Heat is exchanged with the electromagnetic reservoir. Within a mechanical oscillation, we connect the entropy variations of the quantum emitter with the mechanical energy variations, that are identi?ed with work exchanges. These results pave the road towards experimental investigation of quantum information thermodynamics.

Cyril Elouard; Maxime Richard; Alexia Auffèves

2014-09-23T23:59:59.000Z

228

A Semi-Empirical Model for Studying the Impact of Thermal Mass and Cost-Return Analysis on Mixed-mode Ventilation in Office Buildings  

E-Print Network [OSTI]

Vertical location EME Energy consumption by mechanical ventilation z0 Vertical location of the neutral and cost-return analysis on mixed-mode ventilation in office buildings," Energy and Buildings, 67, 267 consume about 40% of total primary energy [1], and the energy consumption of office buildings comprises

Chen, Qingyan "Yan"

229

May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION  

E-Print Network [OSTI]

May 1999 LBNL - 42975 ASHRAE'S RESIDENTIAL VENTILATION STANDARD: EXEGESIS OF PROPOSED STANDARD 62 standard. 1 Max Sherman is a Senior Scientist at LBNL and the group leader of its Energy Performance

230

Development of a Residential Integrated Ventilation Controller  

E-Print Network [OSTI]

and Ventilation Center. Emmerich, S.J, Dols, W.S. , “LoopDA:8 Int. IPBSA Conf. (2003) Emmerich S.J. Nabinger, S. J. “53484. Wallace, L. A. , Emmerich, S. J. , and Howard-Reed,

Walker, Iain

2013-01-01T23:59:59.000Z

231

Performance Assessment of Photovoltaic Attic Ventilator Fans  

E-Print Network [OSTI]

has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance....

Parker, D. S.; Sherwin, J. R.

2000-01-01T23:59:59.000Z

232

Scale model studies of displacement ventilation  

E-Print Network [OSTI]

Displacement ventilation is an air conditioning method that provides conditioned air to indoor environments with the goal to improve air quality while reducing energy consumption. This study investigates the performance ...

Okutan, Galip Mehmet

1995-01-01T23:59:59.000Z

233

HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS  

SciTech Connect (OSTI)

Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

Leishear, R

2010-05-02T23:59:59.000Z

234

Heating mechanism affects equipartition in a binary granular system  

E-Print Network [OSTI]

Two species of particles in a binary granular system typically do not have the same mean kinetic energy, in contrast to the equipartition of energy required in equilibrium. We investigate the role of the heating mechanism in determining the extent of this non-equipartition of kinetic energy. In most experiments, different species of particle are unequally heated at the boundaries. We show by event-driven simulations that this differential heating at the boundary influences the level of non-equipartition even in the bulk of the system. This conclusion is fortified by studying a numerical model and a solvable stochastic model without spatial degrees of freedom. In both cases, even in the limit where heating events are rare compared to collisions, the effect of the heating mechanism persists.

Hong-Qiang Wang; Narayanan Menon

2007-10-19T23:59:59.000Z

235

Sensor-based demand controlled ventilation  

SciTech Connect (OSTI)

In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

1997-07-01T23:59:59.000Z

236

The Histoty of Ventilation and Air Conditioning is CERN Up to Date with the latest Technological Developments?  

E-Print Network [OSTI]

The invention of ventilation cannot be ascribed to a certain date. It started with simple aeration when man brought fire into his abode and continued through different stages including air cooling using ice to finally arrive at the time when ventilation and air conditioning has become an essential part of our life and plays an important role in human evolution. This paper presents the history of ventilation and air conditioning, explains the key constraints over the centuries, and shows its influence on everyday life. Some examples of previous air-conditioning plants are described and different approaches to the way of calculation of ventilation systems discussed. It gives an overview of the Heating, Ventilation and Air Conditioning (HVAC) installations at CERN and points out their particularities. It also compares them with the latest technological developments in the field as well as showing the new trends that are being applied at CERN.

Kühnl-Kinel, J

2000-01-01T23:59:59.000Z

237

Humidity Control Systems for Civil Buildings in Hot Summer and Cold Winter Zone in China  

E-Print Network [OSTI]

) systems. Based on our research, this paper further provides the rate and characteristics of moisture resources in civil buildings. Although the ventilation rate is limited with the minimum ventilation rate in the sanitation ventilation mode of the air...

Yu, X.

2006-01-01T23:59:59.000Z

238

Reversible work extraction in a hybrid opto-mechanical system  

E-Print Network [OSTI]

With the progress of nano-technology, thermodynamics also has to be scaled down, calling for specific protocols to extract and measure work. Usually, such protocols involve the action of an external, classical field (the battery) of infinite energy, that controls the energy levels of a small quantum system (the calorific fluid). Here we suggest a realistic device to reversibly extract work in a battery of finite energy : a hybrid optomechanical system. Such devices consist in an optically active two-level quantum system interacting strongly with a nano-mechanical oscillator that provides and stores mechanical work, playing the role of the battery. We identify protocols where the battery exchanges large, measurable amounts of work with the quantum emitter without getting entangled with it. When the quantum emitter is coupled to a thermal bath, we show that thermodynamic reversibility is attainable with state-of-the-art devices, paving the road towards the realization of a full cycle of information-to-energy conversion at the single bit level.

Cyril Elouard; Maxime Richard; Alexia Auffèves

2015-02-16T23:59:59.000Z

239

Simulating Natural Ventilation in and Around Buildings by Fast Fluid Mingang Jin1  

E-Print Network [OSTI]

]. It is preferred over mechanical ventilation for sustainable building design. However, the design of natural is a sustainable building technology that can provide a good indoor environment and save energy [1]. These factors should be thoroughly considered at the early stage of building design in order to achieve good

Chen, Qingyan "Yan"

240

Micro Electro-Mechanical System (MEMS) Pressure Sensor for Footwear  

DOE Patents [OSTI]

Footwear comprises a sole and a plurality of sealed cavities contained within the sole. The sealed cavities can be incorporated as deformable containers within an elastic medium, comprising the sole. A plurality of micro electro-mechanical system (MEMS) pressure sensors are respectively contained within the sealed cavity plurality, and can be adapted to measure static and dynamic pressure within each of the sealed cavities. The pressure measurements can provide information relating to the contact pressure distribution between the sole of the footwear and the wearer's environment.

Kholwadwala, Deepesh K. (Albuquerque, NM); Rohrer, Brandon R. (Albuquerque, NM); Spletzer, Barry L. (Albuquerque, NM); Galambos, Paul C. (Albuquerque, NM); Wheeler, Jason W. (Albuquerque, NM); Hobart, Clinton G. (Albuquerque, NM); Givler, Richard C. (Albuquerque, NM)

2008-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Kinematic Reduction and Planning using Symmetry for a Variable Inertia Mechanical System  

E-Print Network [OSTI]

reduction [11][7] using the system's symmetry for a simple mechanical system called the Yaw model (see FigKinematic Reduction and Planning using Symmetry for a Variable Inertia Mechanical System Ravi present controllability results and kinematic reduction for a variable inertia mechanical system. We show

242

Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?  

SciTech Connect (OSTI)

Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and new analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.

Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

2013-05-13T23:59:59.000Z

243

Investigation of Mechanical Activation on Li-N-H Systems Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanical Activation on Li-N-H Systems Using 6Li Magic Angle Spinning Nuclear Magnetic Resonance at Ultra-High Investigation of Mechanical Activation on Li-N-H Systems Using 6Li...

244

Natural ventilation : design for suburban houses in Thailand  

E-Print Network [OSTI]

Natural Ventilation is the most effective passive cooling design strategy for architecture in hot and humid climates. In Thailand, natural ventilation has been the most essential element in the vernacular architecture such ...

Tantasavasdi, Chalermwat, 1971-

1998-01-01T23:59:59.000Z

245

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

SciTech Connect (OSTI)

The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

2011-10-31T23:59:59.000Z

246

Procedures and Standards for Residential Ventilation System  

E-Print Network [OSTI]

, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product deficiencies and optimizing the tradeoff between energy use and acceptable IAQ. Work funded by the California

247

Microsoft Word - Ventilation System Sampling Results 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs535:UFC 2300.004/2013April

248

Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes  

SciTech Connect (OSTI)

High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

Hun, Diana E [ORNL; Jackson, Mark C [University of Texas at Austin; Shrestha, Som S [ORNL

2014-01-01T23:59:59.000Z

249

Energy Impact of Residential Ventilation Norms in the United States  

E-Print Network [OSTI]

LBNL 62341 Energy Impact of Residential Ventilation Norms in the United States Max H. Sherman of Residential Ventilation Norms in the United States Max Sherman and Iain Walker SUMMARY The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published

250

Summary of Workshop: Barriers to Energy Efficient Residential Ventilation  

SciTech Connect (OSTI)

The objectives for this workshop were to bring together those with different viewpoints on the implementation of energy efficient ventilation in homes to share their perspectives. The primary benefit of the workshop is to allow the participants to get a broader understanding of the issues involved and thereby make themselves more able to achieve their own goals in this area. In order to achieve this objective each participant was asked to address four objectives from their point of view: (1) Drivers for energy efficient residential ventilation: Why is this an important issue? Who cares about it? Where is the demand: occupants, utilities, regulation, programs, etc? What does sustainability mean in this context? (2) Markets & Technologies: What products, services and systems are out there? What kinds of things are in the pipeline? What is being installed now? Are there regional or other trends? What are the technology interactions with other equipment and the envelope? (3) Barriers to Implementation: What is stopping decision makers from implementing energy-efficient residential ventilation systems? What kind of barriers are there: technological, cost, informational, structural, etc. What is the critical path? (4) Solutions: What can be done to overcome the barriers and how can/should we do it? What is the role of public vs. private institutions? Where can investments be made to save energy while improving the indoor environment? Ten participants prepared presentations for the workshop. Those presentations are included in sections at the end of this workshop report. These presentations provided the principal context for the discussions that happened during the workshop. Critical path issues were raised and potential solutions discussed during the workshop. As a secondary objective they have listed key issues and some potential consensus items which resulted from the discussions.

Sherman, Max; Sherman, Max

2008-01-10T23:59:59.000Z

251

Experimental simulation of wind driven cross-ventilation in a naturally ventilated building  

E-Print Network [OSTI]

A device was designed and constructed to simulate cross-ventilation through a building due to natural wind. The wind driver device was designed for use with a one tenth scale model of an open floor plan office building in ...

Hult, Erin L. (Erin Luelle), 1982-

2004-01-01T23:59:59.000Z

252

A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators  

E-Print Network [OSTI]

. Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus patient's effort. On average, turbine-based ventilators performed better than conventional ventilators

Paris-Sud XI, Université de

253

Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates  

SciTech Connect (OSTI)

This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

Widder, Sarah H.; Martin, Eric

2013-03-15T23:59:59.000Z

254

CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS  

SciTech Connect (OSTI)

Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used, in a process called demand-controlled ventilation, to automatically modulate rates of outdoor air ventilation. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. Demand controlled ventilation is most often used in spaces with highly variable and sometime dense occupancy. Reasonably accurate CO{sub 2} measurements are needed for successful demand controlled ventilation; however, prior research has suggested substantial measurement errors. Accordingly, this study evaluated: (a) the accuracy of 208 CO{sub 2} single-location sensors located in 34 commercial buildings, (b) the accuracy of four multi-location CO{sub 2} measurement systems that utilize tubing, valves, and pumps to measure at multiple locations with single CO{sub 2} sensors, and (c) the spatial variability of CO{sub 2} concentrations within meeting rooms. The field studies of the accuracy of single-location CO{sub 2} sensors included multi-concentration calibration checks of 90 sensors in which sensor accuracy was checked at multiple CO{sub 2} concentrations using primary standard calibration gases. From these evaluations, average errors were small, -26 ppm and -9 ppm at 760 and 1010 ppm, respectively; however, the averages of the absolute values of error were 118 ppm (16%) and 138 ppm (14%), at concentrations of 760 and 1010 ppm, respectively. The calibration data are generally well fit by a straight line as indicated by high values of R{sup 2}. The Title 24 standard specifies that sensor error must be certified as no greater than 75 ppm for a period of five years after sensor installation. At 1010 ppm, 40% of sensors had errors greater than {+-}75 ppm and 31% of sensors has errors greater than {+-}100 ppm. At 760 ppm, 47% of sensors had errors greater than {+-}75 ppm and 37% of sensors had errors greater than {+-}100 ppm. A significant fraction of sensors had errors substantially larger than 100 ppm. For example, at 1010 ppm, 19% of sensors had an error greater than 200 ppm and 13% of sensors had errors greater than 300 ppm. The field studies also included single-concentration calibration checks of 118 sensors at the concentrations encountered in the buildings, which were normally less than 500 ppm during the testing. For analyses, these data were combined with data from the calibration challenges at 510 ppm obtained during the multi-concentration calibration checks. For the resulting data set, the average error was 60 ppm and the average of the absolute value of error was 154 ppm. Statistical analyses indicated that there were statistically significant differences between the average accuracies of sensors from different manufacturers. Sensors with a 'single lamp single wavelength' design tended to have a statistically significantly smaller average error than sensors with other designs except for 'single lamp dual wavelength' sensors, which did not have a statistically significantly lower accuracy. Sensor age was not consistently a statistically significant predictor of error.

Fisk, William J.; Sullivan, Douglas P.; Faulkner, David; Eliseeva, Ekaterina

2010-03-17T23:59:59.000Z

255

Nitrous Oxide Systems Maintenance in Clinical Areas  

E-Print Network [OSTI]

. It specifically speaks to maintenance of nitrous oxide delivery systems, preventive maintenance for house. Arrange with Facilities for regular preventive maintenance and annual performance check of ventilation). b. Provides preventive maintenance on ventilation system as necessary. c. Coordinates annual

Jia, Songtao

256

Notes 00. Introduction to the analysis of vibrations in mechanical systems.  

E-Print Network [OSTI]

Introduction to motion in mechanical systems. Definition of design, analysis, and testing. Steps in Modeling. Continuous and lumped parameter systems. Second Order Systems and differential equations of motion. Definitions of Free and Forced...

San Andres, Luis

2008-01-01T23:59:59.000Z

257

NUMERICAL ANALYSIS OF VENTILATION TEMPERATURES REGULATION BY ENERGY STORAGE IN PHASE CHANGE  

E-Print Network [OSTI]

NUMERICAL ANALYSIS OF VENTILATION TEMPERATURES REGULATION BY ENERGY STORAGE IN PHASE CHANGE, the use of thermal energy storage (TES) systems receives increasing interest. To allow high or low temperature thermal energy to be stored for later use, a heat or cool storage with PCM could be designed; Zhu

Paris-Sud XI, Université de

258

Performance Assessment of Photovoltaic Attic Ventilator Fans  

Broader source: Energy.gov [DOE]

A case study of photovoltaic attic ventilator fans was conducted on an occupied single family home in Central Florida. Two fans were installed at mid-summer in an instrumented home where attic air temperature, meteorological conditions and space cooling electric power were measured. The home already had an attic radiant barrier, but still experienced attic air temperatures in excess of 130oF.

259

Innovative Energy Efficient Industrial Ventilation  

E-Print Network [OSTI]

?, a law of physics, shows why electricity savings can be high (Figure 5). 0 10 20 30 40 50 60 70 80 90 100 0 102030405060708090100 Air volume [CFM %] Power [H.P. %] P o w e r [ H .P . % ] A i r v o l u m e [ C FM %] C F M = 50 % of b l ast... and dust could settle. An on-demand dust collecting system solves this problem by using a PLC (industrial computer) which calculates necessary air volume based on information from the sensors. The PLC is adjusting the RPM of the fan accordingly...

Litomisky, A.

2005-01-01T23:59:59.000Z

260

Microelectromechanical Systems and Nanomaterials: Experimental and Computational MechanicsAspects  

E-Print Network [OSTI]

microelectromechanical system nanomechanics nanowires Nanomechanical characterization of materials has recently attracted demonstrate a previously undescribed microelectromechanical system (MEMS) that accomplishes this goal

Espinosa, Horacio D.

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

MINI-SYMPOSIUM COMPDYN2011 RELIABILITY OF STRUCTURAL AND MECHANICAL SYSTEMS  

E-Print Network [OSTI]

MINI-SYMPOSIUM ­ COMPDYN2011 RELIABILITY OF STRUCTURAL AND MECHANICAL SYSTEMS FOR UNCERTAIN, structural mechanics, and wind engineering are appropriate for this mini-symposium. #12; University, 110V, Valparaiso, Chile 2 Institute of Engineering Mechanics, University of Innsbruck, A-6020

Kreinovich, Vladik

262

Postdoctoral opportunities are available immediately in a project investigating molecular mechanisms of neurogenic hypertension. We take a systems biology  

E-Print Network [OSTI]

mechanisms of neurogenic hypertension. We take a systems biology approach involving high-throughput data

Pillow, Jonathan

263

Radionuclide Releases During Normal Operations for Ventilated Tanks  

SciTech Connect (OSTI)

This calculation estimates the design emissions of radionuclides from Ventilated Tanks used by various facilities. The calculation includes emissions due to processing and storage of radionuclide material.

Blunt, B.

2001-09-24T23:59:59.000Z

264

2014-02-07 Issuance: Certification of Commercial Heating, Ventilation...  

Broader source: Energy.gov (indexed) [DOE]

Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking 2014-02-07 Issuance: Certification...

265

Kitchen Ventilation Should be High Performance (Not Optional...  

Broader source: Energy.gov (indexed) [DOE]

Simplified PROBLEM: * Cooking burners & cooking produce odors, moisture and pollutants SOLUTION: * Install and use extra exhaust ventilation in kitchen OPTIMAL SOLUTION: *...

266

200 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 13, NO. 2, APRIL 2004 Mechanical Characterization of Polysilicon Through  

E-Print Network [OSTI]

Design Synthesis of Microelectromechanical Systems Using Genetic Algorithms with Component Genotype Representation; Evolutionary Multiobjective Optimization. 1. INTRODUCTION Microelectromechanical systems (MEMS) are miniaturized mechanical devices and components fabricated with processes similar

Corigliano, Alberto

267

GASTRIC REFLUX IN MECHANICALLY VENTILATED GASTRIC FED ICU PATIENTS  

E-Print Network [OSTI]

Background: Reflux of gastric contents in gastric fed patients is a contributor to pulmonary aspiration. Aspiration events are reported in approximately 50-75% of patients with endotracheal tubes. Aspiration of oral and ...

Schallom, Marilyn

2013-08-31T23:59:59.000Z

268

GUIDELINE FOR THE WITHDRAWAL OF MECHANICAL VENTILATION/LIFE SUPPORT  

E-Print Network [OSTI]

and then assess. 6. Discontinue any unnecessary infusions or any other therapies that do not directly contribute Or Start opiod infusion and anxiolytic if needed. Assess after 10 minutes using objective markers - Upward Adjustment needed? YES NO · Repeat bolus, increase infusing rate · Reassess after 10 minutes · If adjustment

Acton, Scott

269

Effect of a Radiant Panel Cooling System on Indoor Air Quality of a Conditioned Space  

E-Print Network [OSTI]

This paper discusses the effect of a radiant cooling panel system on an indoor air quality (IAQ) of a conditioned space. In this study, ceiling radiant cooling panel, mechanical ventilation with fan coil unit (FCU) and 100% fresh air are used...

Mohamed, E.; Abdalla, K. N.

2010-01-01T23:59:59.000Z

270

Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels  

SciTech Connect (OSTI)

Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

2014-05-01T23:59:59.000Z

271

Systems and Control Systems and Control is an area of study within mechanical engineering that integrates the basic  

E-Print Network [OSTI]

Systems and Control Systems and Control is an area of study within mechanical engineering, into a methodology that can be used to design complex interdisciplinary systems. Examples include: position control of antenna, modeling of a train breaking system, modeling of a brushless DC motor, control of a remote

New Hampshire, University of

272

The effect of molecular architecture on the mechanical properties of epoxy resin systems  

E-Print Network [OSTI]

THE EFFECT OF MOLECULAR ARCHITECTURE ON THE MECHANICAL PROPERTIES OF EPOXY RESIN SYSTEMS A Thesis by GALE ANTRUS HOLMES Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1992 Major Subject: Mechanical Engineering THE EFFECT OF MOLECULAR ARCHITECTURE ON THE MECHANICAL PROPERTIES OF EPOXY RESIN SYSTEMS A Thesis bY GALE ANTRUS HOLMES Approved as to style an content by: Alan Let. ton...

Holmes, Gale Antrus

1992-01-01T23:59:59.000Z

273

Sensitivity of Tropical Cyclone Intensity to Ventilation in an Axisymmetric Model  

E-Print Network [OSTI]

The sensitivity of tropical cyclone intensity to ventilation of cooler, drier air into the inner core is examined using an axisymmetric tropical cyclone model with parameterized ventilation. Sufficiently strong ventilation ...

Tang, Brian

274

Guide to Closing and Conditioning Ventilated Crawlspaces  

SciTech Connect (OSTI)

This how-to guide explains the issues and concerns with conventional ventilated crawlspaces and provides prescriptive measures for improvements that will create healthier and more durable spaces. The methods described in this guide are not the only acceptable ways to treat a crawlspace but represent a proven strategy that works in many areas of the United States. The designs discussed in this guide may or may not meet the local building codes and as such will need to be researched before beginning the project.

Dickson, B.

2013-01-01T23:59:59.000Z

275

Whole-House Ventilation | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome to Energy.gov/DataEnergyVentilation

276

Multifamily Ventilation - Best Practice? | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department ofMoving Away fromMultifamily Ventilation - Best

277

Mechanically Cooled Large-Volume Germanium Detector Systems for Neclear Explosion Monitoring DOENA27323-2  

SciTech Connect (OSTI)

Compact maintenance free mechanical cooling systems are being developed to operate large volume high-resolution gamma-ray detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The maintenance-free operating lifetime of these detector systems will exceed 5 years. Three important factors affect the operation of mechanically cooled germanium detectors: temperature, vacuum, and vibration. These factors will be studied in the laboratory at the most fundamental levels to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system. Using this knowledge, mechanically cooled germanium detector prototype systems will be designed and fabricated.

Hull, E.L.

2006-10-30T23:59:59.000Z

278

E-Print Network 3.0 - air ventilation rate Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of ventilation rates and CO2-concentrations... : ventilation rates, carbon dioxide, health effects, SBS-symptoms, air exchange rate, relative risks. 12;LBNL... not indicate...

279

Buoyancy-Driven Ventilation of Hydrogen from Buildings: Laboratory Test and Model Validation  

SciTech Connect (OSTI)

Passive, buoyancy-driven ventilation is one approach to limiting hydrogen concentration. We explored the relationship between leak rate, ventilation design, and hydrogen concentrations.

Barley, C. D.; Gawlik, K.

2009-05-01T23:59:59.000Z

280

ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...  

Energy Savers [EERE]

Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings More Documents & Publications Low-Cost Ventilation in Production Housing -...

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CONFIDENTIAL: DO NOT QUOTE 1 Equivalence in Ventilation and  

E-Print Network [OSTI]

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American

282

TOP DOWN VENTILATION AND COOLING Stephen A. Gage  

E-Print Network [OSTI]

the problems inherent in passively ventilating and cooling low and medium rise urban buildings. We focus Gage entered a competition to design a passively ventilated and cooled building in Athens on overcoming numerous key issues, such as those of pollutant ingress associated with locating low-level intake

Linden, Paul F.

283

Evaluation of cracking in the 241-AZ tank farm ventilation line at the Hanford Site  

SciTech Connect (OSTI)

In the period from April to October of 1988, a series of welding operations on the outside of the AZ Tank Farm ventilation line piping at the Hanford Site produced unexpected and repeated cracking of the austenitic stainless steel base metal and of a seam weld in the pipe. The ventilation line is fabricated from type 304L stainless steel pipe of 24 inch diameter and 0.25 inch wall thickness. The pipe was wrapped in polyethylene bubble wrap and buried approximately 12 feet below grade. Except for the time period between 1980 and 1987, impressed current cathodic protection has been applied to the pipe since its installation in 1974. The paper describes the history of the cracking of the pipe, the probable cracking mechanisms, and the recommended future action for repair/replacement of the pipe.

ANANTATMULA, R.P.

1999-10-20T23:59:59.000Z

284

Energetic composite and system with enhanced mechanical sensitivity to initiation of self-sustained reaction  

DOE Patents [OSTI]

An energetic composition and system using amassed energetic multilayer pieces which are formed from the division, such as for example by cutting, scoring, breaking, crushing, shearing, etc., of a mechanically activatable monolithic energetic multilayer(s) (e.g. macro-scale sheets of multilayer films), for enhancing the sensitivity of the energetic composite and system to mechanical initiation of self-sustained reaction. In particular, mechanical initiation of the energetic composition may be achieved with significantly lower mechanical energy inputs than that typically required for initiating the monolithic energetic multilayers from which it is derived.

Gash, Alexander E. (Brentwood, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

2012-05-29T23:59:59.000Z

285

Cavitation methods in therapeutic ultrasound : techniques, mechanisms, and system design  

E-Print Network [OSTI]

Focused ultrasound is currently being developed as a non-invasive thermal ablation technique for benign and cancerous tumors in several organ systems. Although these therapies are designed to ablate tissue purely by thermal ...

Sokka, Shunmugavelu D. (Shunmugavelu Doraivelu), 1975-

2004-01-01T23:59:59.000Z

286

Micro-electro-mechanical systems phosphoric acid fuel cell  

DOE Patents [OSTI]

A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

Sopchak, David A. (Livermore, CA); Morse, Jeffrey D. (Martinez, CA); Upadhye, Ravindra S. (Pleasanton, CA); Kotovsky, Jack (Oakland, CA); Graff, Robert T. (Modesto, CA)

2010-12-21T23:59:59.000Z

287

Micro-electro-mechanical systems phosphoric acid fuel cell  

DOE Patents [OSTI]

A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

Sopchak, David A. (Livermore, CA); Morse, Jeffrey D. (Martinez, CA); Upadhye, Ravindra S. (Pleasanton, CA); Kotovsky, Jack (Oakland, CA); Graff, Robert T. (Modesto, CA)

2010-08-17T23:59:59.000Z

288

Thermal and mechanical development of the East African Rift System  

E-Print Network [OSTI]

The deep basins, uplifted flanks, and volcanoes of the Western and Kenya rift systems have developed along the western and eastern margins of the 1300 km-wide East African plateau. Structural patterns deduced from field, ...

Ebinger, Cynthia Joan

1988-01-01T23:59:59.000Z

289

The mechanism of void formation in initially subcooled systems  

E-Print Network [OSTI]

When an initially subcooled, water filled system undergoes a transient in heat flux or pressure such that bubbles form, the most important variable which determines the volume of the resulting void is the number of bubbles ...

Griffith, P.

1963-01-01T23:59:59.000Z

290

A reliable control system for measurement on film thickness in copper chemical mechanical planarization system  

SciTech Connect (OSTI)

In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to know the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules’ GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time.

Li, Hongkai; Qu, Zilian; Zhao, Qian; Tian, Fangxin; Zhao, Dewen; Meng, Yonggang; Lu, Xinchun [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)] [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

2013-12-15T23:59:59.000Z

291

Notes 02. Dynamic response of second order mechanical systems  

E-Print Network [OSTI]

frequency. Is this response the maximum ever expected? Explain. Recall that system periodic response is () ( )cos( ) s Xt XHr t ?=?+ Solution. From the amplitude of FRF () 2 22 1 () 1(2) s X Hr X rr? == ?+ Set r=r a = 1.2 and |X... that u=m e/M, where m is the imbalance mass and e is its radial location ( ) 2 cosM XDXKXMu t++=?? #0;#5;#0;#5; #0;#5; Recall that system periodic response is () ( )cos( )Xt uHr t ?=?+ a) What is the value of damping ? necessary so...

San Andres, Luis

2008-01-01T23:59:59.000Z

292

CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?  

SciTech Connect (OSTI)

This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

Fisk, William; Fisk, William J.

2007-08-01T23:59:59.000Z

293

Can We Improve Energy Efficiency of Secure Disk Systems without Modifying Security Mechanisms?  

E-Print Network [OSTI]

Can We Improve Energy Efficiency of Secure Disk Systems without Modifying Security Mechanisms--Improving energy efficiency of security-aware storage systems is challenging, because security and energy security and energy efficiency is to profile encryption algorithms to decide if storage systems would

Qin, Xiao

294

Remote Shopping Robot System -Development of a hand mechanism for grasping fresh foods in a supermarket  

E-Print Network [OSTI]

supermarkets, in this research, we propose "remote shopping robot system" as a concrete application efficiency. II. REMOTE SHOPPING ROBOT SYSTEM A. Concept In the case of industrial products, objects haveRemote Shopping Robot System -Development of a hand mechanism for grasping fresh foods

Ohya, Akihisa

295

Associative Memories Provide an Efficient Control Mechanism for a Parallel Production System Architecture  

E-Print Network [OSTI]

Associative Memories Provide an Efficient Control Mechanism for a Parallel Production System a parallel architecture for production systems [2, 3, 5]. This novel architecture allows parallel production. The elimination of global synchronization in production systems was made possible by the use of serializability

Amaral, José Nelson

296

Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring  

SciTech Connect (OSTI)

Compact maintenance free mechanical cooling systems are being developed to operate large volume (~570 cm3, ~3 kg, 140% or larger) germanium detectors for field applications. We are using a new generation of Stirling-cycle mechanical coolers for operating the very largest volume germanium detectors with absolutely no maintenance or liquid nitrogen requirements. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed five years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring (NEM). The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be utilized. These mechanically cooled germanium detector systems being developed here will provide the largest, most sensitive detectors possible for use with the RASA. To provide such systems, the appropriate technical fundamentals are being researched. Mechanical cooling of germanium detectors has historically been a difficult endeavor. The success or failure of mechanically cooled germanium detectors stems from three main technical issues: temperature, vacuum, and vibration. These factors affect one another. There is a particularly crucial relationship between vacuum and temperature. These factors will be experimentally studied both separately and together to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system for field use. Using this knowledge, a series of mechanically cooled germanium detector prototype systems are being designed and fabricated. Our collaborators at Pacific Northwest National Laboratory (PNNL) will evaluate these detector systems on the bench top and eventually in RASA systems to insure reliable and practical operation.

Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.; Bowyer, Ted W.

2006-09-21T23:59:59.000Z

297

Statistical mechanical theory for steady state systems. V. Nonequilibrium probability density  

E-Print Network [OSTI]

Statistical mechanical theory for steady state systems. V. Nonequilibrium probability density Phil is shown to be much more efficient for the thermal conductivity of a Lennard-Jones fluid than the Green probability densities for hydrodynamic transport, for time-dependent mechanical work, and for nonequilibrium

Attard, Phil

298

Statistical mechanical theory for steady state systems. II. Reciprocal relations and the second entropy  

E-Print Network [OSTI]

Statistical mechanical theory for steady state systems. II. Reciprocal relations and the second.1063/1.1873572 I. INTRODUCTION This is the second in a series of papers on the statistical mechanics of steady for the first energy moment of a Lennard-Jones fluid that develops in response to an applied temperature

Attard, Phil

299

Design of an electro-mechanical portable system using natural human body movements for electricity generation  

E-Print Network [OSTI]

environment. The mechanical energy produced during human movement, along the same lines as heat emitted of energy management, ergonomics and mechatronic technology. 2. The human walk: A natural motion Although TDesign of an electro-mechanical portable system using natural human body movements for electricity

Paris-Sud XI, Université de

300

Statistical mechanics of homogeneous partly pinned fluid systems  

E-Print Network [OSTI]

The homogeneous partly pinned fluid systems are simple models of a fluid confined in a disordered porous matrix obtained by arresting randomly chosen particles in a one-component bulk fluid or one of the two components of a binary mixture. In this paper, their configurational properties are investigated. It is shown that a peculiar complementarity exists between the mobile and immobile phases, which originates from the fact that the solid is prepared in presence of and in equilibrium with the adsorbed fluid. Simple identities follow, which connect different types of configurational averages, either relative to the fluid-matrix system or to the bulk fluid from which it is prepared. Crucial simplifications result for the computation of important structural quantities, both in computer simulations and in theoretical approaches. Finally, possible applications of the model in the field of dynamics in confinement or in strongly asymmetric mixtures are suggested.

Vincent Krakoviack

2010-12-05T23:59:59.000Z

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Complex Non-Linear Modal Analysis for Mechanical Systems: Application to Turbomachinery Bladings With Friction  

E-Print Network [OSTI]

Complex Non-Linear Modal Analysis for Mechanical Systems: Application to Turbomachinery Bladings of a turbomachinery blade, with dry-friction interfaces is proposed. In the latter, an original framework

Paris-Sud XI, Université de

302

Systems analysis of the CO[subscript 2] concentrating mechanism in cyanobacteria  

E-Print Network [OSTI]

Cyanobacteria are photosynthetic bacteria with a unique CO2 concentrating mechanism (CCM), enhancing carbon fixation. Understanding the CCM requires a systems level perspective of how molecular components work together to ...

Mangan, Niall Mari

303

Mechanical Systems on an almost Kähler model of a Finsler Manifold  

E-Print Network [OSTI]

In this study, we present a new analogue of Euler-Lagrange and Hamilton equations on an almost K\\"ahler model of a Finsler manifold. Also, we give some corollories about the related mechanical systems and equations.

Mehmet Tekkoyun; O?uzhan Çelik

2012-11-06T23:59:59.000Z

304

Reaction mechanisms for catalytic partial oxidation systems : application to ethylene epoxidation  

E-Print Network [OSTI]

With the rapid advances in kinetic modeling, building elementary surface mechanisms have become vital to understand the complex chemistry for catalytic partial oxidation systems. Given that there is selected experimental ...

Anantharaman, Bharthwaj

2005-01-01T23:59:59.000Z

305

Development of a mechanical counter pressure Bio-Suit System for planetary exploration  

E-Print Network [OSTI]

Extra-vehicular activity (EVA) is critical for human spaceflight and particularly for human planetary exploration. The MIT Man Vehicle Laboratory is developing a Bio-Suit EVA System, based on mechanical counterpressure ...

Sim, Zhe Liang

2006-01-01T23:59:59.000Z

306

Department of Mechanical Engineering Fall 2012 Improved hinge system for coupe doors  

E-Print Network [OSTI]

prototype and install on 2013 Chevrolet Camaro Approach Gathered customer needs from General Motors ReviewPENNSTATE Department of Mechanical Engineering Fall 2012 Improved hinge system for coupe doors

Demirel, Melik C.

307

Design of compliant mechanisms for attenuation of unidirectional vibrations in rotational systems  

E-Print Network [OSTI]

The purpose of this research was to generate the knowledge required to design compliant mechanisms that (1) attenuate undesired small-motion angular vibrations in rotational power transmission systems and (2) preserve the ...

Szczesny, Spencer E., 1981-

2005-01-01T23:59:59.000Z

308

Application of the 3-D Hydro-Mechanical Model GEOFRAC in enhanced geothermal systems  

E-Print Network [OSTI]

GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristic of GEOFRAC is that it is based on statistical input representing ...

Vecchiarelli, Alessandra

2013-01-01T23:59:59.000Z

309

Analysis and Simulation of Mechanical Trains Driven by Variable Frequency Drive Systems  

E-Print Network [OSTI]

Induction motors and Variable Frequency Drives (VFDs) are widely used in industry to drive machinery trains. However, some mechanical trains driven by VFD-motor systems have encountered torsional vibration problems. This vibration can induce large...

Han, Xu

2012-02-14T23:59:59.000Z

310

Harnessing waste heat and reducing wasted lighting : three mechanical structures for efficient energy systems  

E-Print Network [OSTI]

This thesis presents three mechanical structures designed for efficient energy systems. In [3], Cooley presents a modification of a fluorescent lamp which allows it to detect nearby occupants and dim itself automatically. ...

Stronger, Brad A

2008-01-01T23:59:59.000Z

311

E-Print Network 3.0 - air conditioning maintenance Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Last Updated: 41702 Summary: , including refrigeration, air conditioning, heating systems, ventilating fans, roof ventilators, exhaust fans... : Use of mechanical equipment...

312

Study of classical mechanical systems with complex potentials  

E-Print Network [OSTI]

We apply the factorization technique developed by Kuru and Negro [Ann. Phys. 323 (2008) 413] to study complex classical systems. As an illustration we apply the technique to study the classical analogue of the exactly solvable PT symmetric Scarf II model, which exhibits the interesting phenomenon of spontaneous breakdown of PT symmetry at some critical point. As the parameters are tuned such that energy switches from real to complex conjugate pairs, the corresponding classical trajectories display a distinct characteristic feature - the closed orbits become open ones.

A. Sinha; D. Dutta; P. Roy

2011-01-08T23:59:59.000Z

313

Ventilation Effectiveness Research at UT-Typer Lab Houses  

Broader source: Energy.gov (indexed) [DOE]

Research 30 April 2013 3 Testing Approach Building enclosure and building mechanical systems characterization by measurement of building enclosure air leakage, central...

314

Nonequilibrium statistical mechanics of weakly stochastically perturbed system of oscillators  

E-Print Network [OSTI]

We consider a finite region of a $d$-dimensional lattice, $d\\in\\mathbb{N}$, of weakly coupled harmonic oscillators. The coupling is provided by a nearest-neighbour potential (harmonic or not) of size $\\varepsilon$. Each rotator weakly interacts by force of order $\\varepsilon$ with its own stochastic Langevin thermostat of arbitrary positive temperature. We investigate limiting as $\\varepsilon\\rightarrow 0$ behaviour of solutions of the system and of the local energy of oscillators on long-time intervals of order $\\varepsilon^{-1}$ and in a stationary regime. We show that it is governed by an effective equation which is a dissipative SDE with nondegenerate diffusion. Next we assume that the interaction potential is of size $\\varepsilon\\lambda$, where $\\lambda$ is another small parameter, independent from $\\varepsilon$. Solutions corresponding to this scaling describe small law temperature oscillations. We prove that in a stationary regime, under the limit $\\varepsilon\\rightarrow 0$, the main order in $\\lambda$ of the averaged Hamiltonian energy flow is proportional to the gradient of temperature. We show that the coefficient of proportionality, which we call the conductivity, admits a representation through stationary space-time correlations of the energy flow. Most of the results and convergences we obtain are uniform with respect to the number of oscillators in the system.

A. Dymov

2015-01-17T23:59:59.000Z

315

Text-Alternative Version of Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements  

Broader source: Energy.gov [DOE]

Transcript of Building America webinar, "Multifamily Ventilation Strategies and Compartmentalization Requirements," held on Sept. 24, 2014.

316

Experimental and numerical VOC concentration field analysis from flooring material in a ventilated room  

E-Print Network [OSTI]

in "7th International Conference, Healthy Buildings 2003, Singapore : Singapore (2003)" #12;Ventilation

Paris-Sud XI, Université de

317

Experiments to Evaluate and Implement Passive Tracer Gas Methods to Measure Ventilation Rates in Homes  

E-Print Network [OSTI]

Pollutant Control Index: A New Method of Characterizing Ventilation in Commercial Buildings." Proceedings of Indoor Air'

Lunden, Melissa

2014-01-01T23:59:59.000Z

318

Hospital ventilation standards and energy conservation: chemical contamination of hospital air. Final report  

SciTech Connect (OSTI)

In an era of increasing energy conservation consciousness, a critical reassessment of the validity of hospital ventilation and thermal standards is made. If current standards are found to be excessively conservative, major energy conservation measures could be undertaken by rebalancing and/or modification of current HVAC systems. To establish whether or not reducing ventilation rates would increase airborne chemical contamination to unacceptable levels, a field survey was conducted to develop an inventory and dosage estimates of hospital generated airborne chemical contaminants to which patients, staff, and visitors are exposed. The results of the study are presented. Emphasis is on patient exposure, but an examination of occupational exposure was also made. An in-depth assessment of the laboratory air environment is documented. Housekeeping products used in survey hospitals, hazardous properties of housekeeping chemicals and probable product composition are discussed in the appendices.

Rainer, D.; Michaelsen, G.S.

1980-03-01T23:59:59.000Z

319

Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System  

SciTech Connect (OSTI)

On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project – Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the City’s hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the City’s Project Engineer, who had overseen the application, resigned and left the City’s employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently had an IMD installed. This further study of facilities revealed that the implementation of the project as originally described, while proving the benefits described in the original grant application, would likely intensify sand intake. Increased sand intake would lead to an increase in required shutdowns for maintenance and more rapid depreciation of key equipment which would result in a loss of generation capacity. A better solution to the problem, one that continued to meet the criteria for the original grant and ARRA standards, was developed. A supporting day trip was planned to visit other facilities located on the Arkansas River to determine how they were coping with the same strong amounts of sand, silt, and debris. Upon returning from the trip to other Arkansas River facilities it was extremely clear what direction to go in order to most efficiently address the issue of generator capacity and efficiency. Of the plants visited on the Arkansas River, every one of them was running what is called a rope packing shaft sealing system as opposed to mechanical shaft seals, which the facility was running. Rope packing is a time proven sealing method that has been around for centuries. It has proved to perform very well in dirty water situations just like that of the Arkansas River. In April of 2012 a scope change proposal was submitted to the DOE for approval. In August of 2012 the City received word that the change of scope had been approved. Plans were immediately set in motion to begin the conversion from mechanical seals to a packing box at the facility. Contractors arrived on October 1st, 2012 and the project team began unwatering the unit for disassembly. The seal conversion was completed on February 29th, 2013 with start-up of the unit. Further testing and adjusting was done throughout the first two weeks of March.

Stephens, Jessica D.

2013-05-29T23:59:59.000Z

320

Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards  

SciTech Connect (OSTI)

In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

2010-04-08T23:59:59.000Z

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Study of airflow and thermal stratification in naturally ventilated rooms  

E-Print Network [OSTI]

Natural ventilation (NV) can considerably contribute to reducing the cooling energy consumption of a building and increase occupant productivity, if correctly implemented. Such energy savings depend on the number of hours ...

Menchaca Brandan, María Alejandra

2012-01-01T23:59:59.000Z

322

SURFACE CIRCULATION AND VENTILATION Lynne D. Talley(1)  

E-Print Network [OSTI]

of autonomous subsurface profiling to include oxygen and turbulence profiling, and implementation of local of subsurface circulation in the wind-driven gyres (section 2), and (2) ventilation/upwelling processes

Talley, Lynne D.

323

Outside Air Ventilation Controller - Building America Top Innovation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to harness the natural day-night temperature swings in the U.S. Southwest to cut cooling energy peak demand with no compromise in comfort. This automated night-cooling ventilation...

324

Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional Study of Contaminant Levels, Source, Strengths, and Ventilation Rates in Retail Stores  

SciTech Connect (OSTI)

This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of California’s Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 ?m. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were then used to determine the ventilation rates, filtration strategies, or source reductions needed to maintain indoor contaminant concentrations below reference levels. Several scenarios of potential concern were considered: (i) formaldehyde levels in furniture/hardware stores, (ii) contaminants associated with cooking (e.g., PM, acrolein, and acetaldehyde) in grocery stores, and (iii) outdoor contaminants (e.g., PM and O{sub 3}) impacting stores that use natural ventilation. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California’s stringent formaldehyde reference level. Given the high costs of providing ventilation but only modest chronic health benefit is expected, effective source control is an attractive alternative, as demonstrated by some retail stores in this study. Predictions showed that grocery stores need MERV 13 air filters, instead of MERV 8 filters that are more commonly used, to maintain indoor PM at levels that meet the chronic health standards for PM. Exposure to acrolein is a potential health concern in grocery stores, and should be addressed by increasing the use of kitchen range hoods or improving their contaminant removal efficiency. In stores that rely on natural ventilation, indoor PM can be a health concern if the stores are located in areas with high outdoor PM. This concern may be addressed by switching to mechanical ventilation when the outdoor air quality is poor, while continuing natural ventilation when outdoor air quality is good.

Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William

2014-02-01T23:59:59.000Z

325

Granular temperature as an energy dissipation mechanism in bodies of the Solar System  

E-Print Network [OSTI]

Granular temperature as an energy dissipation mechanism in bodies of the Solar System BY JON KADISH Mary College, University of London, Mile End Road, London E1 4NS, UK There is theoretical grains to boulders. It is well known that energy added to such systems is dissipated by friction

Daly, Samantha

326

Department of Mechanical and Nuclear Engineering Spring 2012 Automatic Plant Watering System  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 Automatic Plant Watering System Overview The goal of this project was to design an automatic plant watering system for commercial in the soil of household plants and delivery water to those plants on a need-only basis. The overall design

Demirel, Melik C.

327

Design Alternative Evaluation No. 3: Post-Closure Ventilation  

SciTech Connect (OSTI)

The objective of this study is to provide input to the Enhanced Design Alternatives (EDA) for License Application Design Selection (LADS). Its purpose is to develop and evaluate conceptual designs for post-closure ventilation alternatives that enhance repository performance. Post-closure ventilation is expected to enhance repository performance by limiting the amount of water contacting the waste packages. Limiting the amount of water contacting the waste packages will reduce corrosion.

Logan, R.C.

1999-06-22T23:59:59.000Z

328

Evaluation of pulmonary ventilation in horses during methoxyflurane anesthesia  

E-Print Network [OSTI]

EVALUATION OF PULMONARY VENTILATION IN HORSES DURING METHOXYFLURANE ANESTHESIA A Thesis by DON REED McDONALD Submitted to the Graduate College of Texas A8M University in Partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE August 1976 Major Subject: Veterinary Medicine and Surgery EVALUATION OF PULMONARY VENTILATION IN HORSES DURING METHOXYFLURANE ANESTHESIA A Thesis by DON REED McDONALD Approved as to style and content by; Chairman o Committee Head...

McDonald, Don Reed

1976-01-01T23:59:59.000Z

329

Improving Ventilation and Saving Energy: Laboratory Study in aModular Classroom Test Bed  

SciTech Connect (OSTI)

The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms.

Apte, Michael G.; Buchanan, Ian S.; Faulkner, David; Fisk,William J.; Lai, Chi-Ming; Spears, Michael; Sullivan, Douglas P.

2005-08-01T23:59:59.000Z

330

AMEAerospace & Mechanical  

E-Print Network [OSTI]

AMEAerospace & Mechanical Engineering #12;Aerospace and Mechanical Engineers design complex mechanical, thermal, fluidic, acousti- cal, optical, and electronic systems, with char- acteristic sizes space. Aerospace and Mechanical Engineering (AME) students conduct basic and applied research within

Wang, Hai

331

Methods And Systms For Analyzing The Degradation And Failure Of Mechanical Systems  

DOE Patents [OSTI]

Methods and systems for identifying, understanding, and predicting the degradation and failure of mechanical systems are disclosed. The methods include measuring and quantifying stressors that are responsible for the activation of degradation mechanisms in the machine component of interest. The intensity of the stressor may be correlated with the rate of physical degradation according to some determinable function such that a derivative relationship exists between the machine performance, degradation, and the underlying stressor. The derivative relationship may be used to make diagnostic and prognostic calculations concerning the performance and projected life of the machine. These calculations may be performed in real time to allow the machine operator to quickly adjust the operational parameters of the machinery in order to help minimize or eliminate the effects of the degradation mechanism, thereby prolonging the life of the machine. Various systems implementing the methods are also disclosed.

Jarrell, Donald B. (Kennewick, WA); Sisk, Daniel R. (Richland, WA); Hatley, Darrel D. (Kennewick, WA); Kirihara, Leslie J. (Richland, WA); Peters, Timothy J. (Richland, WA)

2005-02-08T23:59:59.000Z

332

A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS  

SciTech Connect (OSTI)

Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

Leishear, R.

2013-03-28T23:59:59.000Z

333

Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring DOENA27323-1  

SciTech Connect (OSTI)

Compact maintenance free mechanical cooling systems are being developed to operate large volume germanium detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~ 1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed 5 years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring. The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be reliably utilized.

Hull, E.L.

2006-07-28T23:59:59.000Z

334

Mechanical sampling systems for coal quality control in Romanian power plants  

SciTech Connect (OSTI)

According to ISO 1988 samples must be taken from moving currents by using certain mechanical devices, and, only, exceptionally, by an understanding between party`s, by manually sampling. The principal requirements when designing and constructing a mechanical sampling system are that: it shall be capable of collecting and preparing increments or samples, as the case may be, that are free from relevant bias; it shall maintain this capability under all such conditions of sampling that are stipulated in the relevant specifications and without necessitating that sampling be interrupted for cleaning or maintenance. Actually, coal quality control in Romanian power plants are usually performed by a manual system. In order to meet ISO 1988 requirements, RENEL-GSCI (formerly ICEMENERG) has designed and achieved a falling stream sampler with cutter bucket in accordance with ISO 9411-1 (solid mineral fuels - Mechanical sampling from moving stream) provisions. This device has been installed in the Oradea 2 cogeneration power plant in the coal falling stream at the end of the belt conveyor. When the mechanical sampling installation was commissioned, experiments to check for precision and bias had been out for the installation as a whole. The method of checking for bias was by comparison with stopped-belt sampling. The mechanical sampling device is still under testing. The paper presents the result obtained during the preliminary test period in order to certify the mechanical sampler.

Matei, M. [Romanian Electricity Authority, Bucharest (Romania). Study, Research and Engineering Group

1998-12-31T23:59:59.000Z

335

Optical People Counting for Demand Controlled Ventilation: A Pilot Study of Counter Performance  

SciTech Connect (OSTI)

This pilot scale study evaluated the counting accuracy of two people counting systems that could be used in demand controlled ventilation systems to provide control signals for modulating outdoor air ventilation rates. The evaluations included controlled challenges of the people counting systems using pre-planned movements of occupants through doorways and evaluations of counting accuracies when naive occupants (i.e., occupants unaware of the counting systems) passed through the entrance doors of the building or room. The two people counting systems had high counting accuracy accuracies, with errors typically less than 10percent, for typical non-demanding counting events. However, counting errors were high in some highly challenging situations, such as multiple people passing simultaneously through a door. Counting errors, for at least one system, can be very high if people stand in the field of view of the sensor. Both counting system have limitations and would need to be used only at appropriate sites and where the demanding situations that led to counting errors were rare.

Fisk, William J.; Sullivan, Douglas

2009-12-26T23:59:59.000Z

336

Robust energy transfer mechanism via precession resonance in nonlinear turbulent wave systems  

E-Print Network [OSTI]

A robust energy transfer mechanism is found in nonlinear wave systems, which favours transfers towards modes interacting via triads with nonzero frequency mismatch, applicable in meteorology, nonlinear optics and plasma wave turbulence. We introduce the concepts of truly dynamical degrees of freedom and triad precession. Transfer efficiency is maximal when the triads' precession frequencies resonate with the system's nonlinear frequencies, leading to a collective state of synchronised triads with strong turbulent cascades at intermediate nonlinearity. Numerical simulations confirm analytical predictions.

Miguel D. Bustamante; Brenda Quinn; Dan Lucas

2014-04-30T23:59:59.000Z

337

Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study  

SciTech Connect (OSTI)

This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

Krstulovich, S.F.

1986-11-12T23:59:59.000Z

338

Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)  

SciTech Connect (OSTI)

Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season. ?

Not Available

2014-04-01T23:59:59.000Z

339

Functional requirements for portable exhauster system to be used during saltwell pumping  

SciTech Connect (OSTI)

This document defines functional requirements for portable exhausters used to ventilate primary tanks during saltwell pumping, and provide back-up to primary and annulus ventilation systems at C-106 and AY-102.

Nelson, O.D.

1998-07-25T23:59:59.000Z

340

Rotary Electrodynamics of a DC Motor: Motor as Mechanical Capacitor Lab 2: Modeling and System Identification  

E-Print Network [OSTI]

). · im is the current through the motor. Because the motor is in series with all other electrical). Because power is conserved, m = Kmim (motor efficiency is actually closer to 69%). Here, Km 0.00767 VRotary Electrodynamics of a DC Motor: Motor as Mechanical Capacitor Lab 2: Modeling and System

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mechanical Compliance Control System for A Pneumatic Robot Arm Kouichi Watanabe1  

E-Print Network [OSTI]

- 2789 - Mechanical Compliance Control System for A Pneumatic Robot Arm Kouichi Watanabe1 , Hisashi position and posture of the arm. Keywords: Pneumatic actuator, Humanoid robot arm, Compliance control 1 actuators have started gaining attention as robot actuators. We focused on the robot arm using a pneumatic

Tachi, Susumu

342

2010 International Conference on Power System Technology Renewable energy integration: mechanism for  

E-Print Network [OSTI]

capacity that can integrate the wind energy blocks. Both the new grids and upgrade grid must have a stepped2010 International Conference on Power System Technology Renewable energy integration: mechanism with high uncertainty, as it usually happens with renewable energies. This work faces this problem

Catholic University of Chile (Universidad Católica de Chile)

343

Department of Mechanical Engineering Spring 2013 Design of a Novel Endosurgical System  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Spring 2013 Design of a Novel Endosurgical System efficient manner for the endoscope to reach the site of surgery, thus expanding the scope of procedures an original site visit with surgeons in Hershey to permit the team to identify customer needs and create

Demirel, Melik C.

344

Noise and vibration for a self-excited mechanical system with friction  

E-Print Network [OSTI]

Noise and vibration for a self-excited mechanical system with friction K. Soobbarayen1,a , S. The contact is modelled by introducing several local contact elements at the friction interface and a cubic contact law is used to describe the contact force. The classical Coulomb law is applied to model friction

Boyer, Edmond

345

WKB and MAF Quantization Rules for Spatially Confined Quantum Mechanical Systems  

E-Print Network [OSTI]

A formalism is developed to obtain the energy eigenvalues of spatially confined quantum mechanical systems in the framework of The usual WKB and MAF methods. The technique is applied to three different cases,viz one dimensional Harmonic Oscillators,Quartic Oscillators and a boxed-in charged particle in electric field.

A. Sinha; R. Roychoudhury

1999-10-15T23:59:59.000Z

346

A Recurrent Neural Multi-Model for Mechanical Systems Dynamics Compensation  

E-Print Network [OSTI]

Mexico D.F., Mexico ** Institute of Information Technologies, 1113 Sofia Abstract: The paper proposed nonlinear mechanical plants with backlash. The parameters and states of the local recurrent neural network of the plant model. For example, N a r e n d r a and P a r t h a s a r a t h y [5], applied FFNN for system

Borissova, Daniela

347

Plasticity of intermediate mechanics students' coordinate system choice Eleanor C. Sayre  

E-Print Network [OSTI]

Plasticity of intermediate mechanics students' coordinate system choice Eleanor C. Sayre Department from solid. To describe our work more precisely, we define a scale of plasticity and several heuristics for defining resources and their plasticity. DOI: 10.1103/PhysRevSTPER.4.020105 PACS number s : 01.30.lb, 01

Zollman, Dean

348

Theory for hydrostatic gas journal bearings for micro-electro-mechanical systems  

E-Print Network [OSTI]

The goal of the MIT micro-engine project is to develop high-speed rotating Power MEMS (Micro-Electro-Mechanical Systems) using computer chip fabrication technologies. To produce high power (10-50 W) in a small volume (less ...

Liu, Lixian, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

349

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms  

SciTech Connect (OSTI)

An improved HVAC system for portable classrooms was specified to address key problems in existing units. These included low energy efficiency, poor control of and provision for adequate ventilation, and excessive acoustic noise. Working with industry, a prototype improved heat pump air conditioner was developed to meet the specification. A one-year measurement-intensive field-test of ten of these IHPAC systems was conducted in occupied classrooms in two distinct California climates. These measurements are compared to those made in parallel in side by side portable classrooms equipped with standard 10 SEER heat pump air conditioner equipment. The IHPAC units were found to work as designed, providing predicted annual energy efficiency improvements of about 36 percent to 42 percent across California's climate zones, relative to 10 SEER units. Classroom ventilation was vastly improved as evidenced by far lower indoor minus outdoor CO2 concentrations. TheIHPAC units were found to provide ventilation that meets both California State energy and occupational codes and the ASHRAE minimum ventilation requirements; the classrooms equipped with the 10 SEER equipment universally did not meet these targets. The IHPAC system provided a major improvement in indoor acoustic conditions. HVAC system generated background noise was reduced in fan-only and fan and compressor modes, reducing the nose levels to better than the design objective of 45 dB(A), and acceptable for additional design points by the Collaborative on High Performance Schools. The IHPAC provided superior ventilation, with indoor minus outdoor CO2 concentrations that showed that the Title 24 minimum ventilation requirement of 15 CFM per occupant was nearly always being met. The opposite was found in the classrooms utilizing the 10 SEER system, where the indoor minus outdoor CO2 concentrations frequently exceeded levels that reflect inadequate ventilation. Improved ventilation conditions in the IHPAC lead to effective removal of volatile organic compounds and aldehydes, on average lowering the concentrations by 57 percent relative to the levels in the 10 SEER classrooms. The average IHPAC to 10 SEER formaldehyde ratio was about 67 percent, indicating only a 33 percent reduction of this compound in indoor air. The IHPAC thermal control system provided less variability in occupied classroom temperature than the 10 SEER thermostats. The average room temperatures in all seasons tended to be slightly lower in the IHPAC classrooms, often below the lower limit of the ASHRAE 55 thermal comfort band. State-wide and national energy modeling provided conservative estimates of potential energy savings by use of the IHPAC system that would provide payback a the range of time far lower than the lifetime of the equipment. Assuming electricity costs of $0.15/kWh, the perclassroom range of savings is from about $85 to $195 per year in California, and about $89 to $250 per year in the U.S., depending upon the city. These modelsdid not include the non-energy benefits to the classrooms including better air quality and acoustic conditions that could lead to improved health and learning in school. Market connection efforts that were part of the study give all indication that this has been a very successful project. The successes include the specification of the IHPAC equipment in the CHPS portable classroom standards, the release of a commercial product based on the standards that is now being installed in schools around the U.S., and the fact that a public utility company is currently considering the addition of the technology to its customer incentive program. These successes indicate that the IHPAC may reach its potential to improve ventilation and save energy in classrooms.

Apte, Michael G.; Norman, Bourassa; Faulkner, David; Hodgson, Alfred T.; Hotchi, Toshfumi; Spears, Michael; Sullivan, Douglas P.; Wang, Duo

2008-04-04T23:59:59.000Z

350

Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems  

DOE Patents [OSTI]

A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

Rosenberg, Louis B. (Pleasanton, CA)

1998-01-01T23:59:59.000Z

351

Multiple degree-of-freedom mechanical interface to a computer system  

DOE Patents [OSTI]

A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

Rosenberg, Louis B. (Pleasanton, CA)

2001-01-01T23:59:59.000Z

352

A New Ventilation System Integrates Total Energy Recovery, Conventional Cooling and a Novel 'Passive' Dehumidification Wheel to Mitigate the Energy, Humidity Control and First Cost Concerns Often Raised when Designing for ASHRAE Standard 62-1999 Compliance  

E-Print Network [OSTI]

This paper introduces a novel, ''passive" desiccant based outdoor air preconditioning system (PDH) that is shown to be significantly more energy-efficient than all known alternatives, and has the unique ability to dehumidify outdoor air streams...

Fischer, J. C.

2000-01-01T23:59:59.000Z

353

X-ray tomography system to investigate granular materials during mechanical loading  

E-Print Network [OSTI]

We integrate a small and portable medical x-ray device with mechanical testing equipment to enable in-situ, non-invasive measurements of a granular material's response to mechanical loading. We employ an orthopedic C-arm as the x-ray source and detector to image samples mounted in the materials tester. We discuss the design of a custom rotation stage, which allows for sample rotation and tomographic reconstruction under applied compressive stress. We then discuss the calibration of the system for 3d computed tomography, as well as the subsequent image reconstruction process. Using this system to reconstruct packings of 3d-printed particles, we resolve packing features with 0.52 mm resolution in a (60 mm)$^3$ field of view. By analyzing the performance bounds of the system, we demonstrate that the reconstructions exhibit only moderate noise.

Athanassiadis, Athanasios G; Sidky, Emil; Pelizzari, Charles; Pan, Xiaochuan; Jaeger, Heinrich M

2014-01-01T23:59:59.000Z

354

Detecting invariant manifolds, attractors, and generalized KAM tori in aperiodically forced mechanical systems  

E-Print Network [OSTI]

We show how the recently developed theory of geodesic transport barriers for fluid flows can be used to uncover key invariant manifolds in externally forced, one-degree-of-freedom mechanical systems. Specifically, invariant sets in such systems turn out to be shadowed by least-stretching geodesics of the Cauchy-Green strain tensor computed from the flow map of the forced mechanical system. This approach enables the finite-time visualization of generalized stable and unstable manifolds, attractors and generalized KAM curves under arbitrary forcing, when Poincare maps are not available. We illustrate these results by detailed visualizations of the key finite-time invariant sets of conservatively and dissipatively forced Duffing oscillators.

Alireza Hadjighasem; Mohammad Farazmand; George Haller

2013-02-07T23:59:59.000Z

355

X-ray tomography system to investigate granular materials during mechanical loading  

E-Print Network [OSTI]

We integrate a small and portable medical x-ray device with mechanical testing equipment to enable in-situ, non-invasive measurements of a granular material's response to mechanical loading. We employ an orthopedic C-arm as the x-ray source and detector to image samples mounted in the materials tester. We discuss the design of a custom rotation stage, which allows for sample rotation and tomographic reconstruction under applied compressive stress. We then discuss the calibration of the system for 3d computed tomography, as well as the subsequent image reconstruction process. Using this system to reconstruct packings of 3d-printed particles, we resolve packing features with 0.52 mm resolution in a (60 mm)$^3$ field of view. By analyzing the performance bounds of the system, we demonstrate that the reconstructions exhibit only moderate noise.

Athanasios G Athanassiadis; Patrick J. La Rivière; Emil Sidky; Charles Pelizzari; Xiaochuan Pan; Heinrich M. Jaeger

2014-07-28T23:59:59.000Z

356

X-ray tomography system to investigate granular materials during mechanical loading  

SciTech Connect (OSTI)

We integrate a small and portable medical x-ray device with mechanical testing equipment to enable in situ, non-invasive measurements of a granular material's response to mechanical loading. We employ an orthopedic C-arm as the x-ray source and detector to image samples mounted in the materials tester. We discuss the design of a custom rotation stage, which allows for sample rotation and tomographic reconstruction under applied compressive stress. We then discuss the calibration of the system for 3D computed tomography, as well as the subsequent image reconstruction process. Using this system to reconstruct packings of 3D-printed particles, we resolve packing features with 0.52?mm resolution in a (60 mm){sup 3} field of view. By analyzing the performance bounds of the system, we demonstrate that the reconstructions exhibit only moderate noise.

Athanassiadis, Athanasios G. [James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); La Rivière, Patrick J.; Sidky, Emil; Pan, Xiaochuan [Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Pelizzari, Charles [Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637 (United States); Jaeger, Heinrich M., E-mail: h-jaeger@uchicago.edu [James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States)

2014-08-15T23:59:59.000Z

357

Noncommutative quantum mechanics of simple matter systems interacting with circularly polarized gravitational waves  

E-Print Network [OSTI]

The response of a test particle, both for the free case and under the harmonic oscillator potential, to circularly polarized gravitational waves is investigated in a noncommutative quantum mechanical setting. The system is quantized following the prescription in \\cite{ncgw1}. Standard algebraic techniques are then employed to solve the Hamiltonian of the system. The solutions, in both cases, show signatures of the coordinate noncommutativity. In the harmonic oscillator case, this signature plays a key role in altering the resonance point and the oscillation frequency of the system.

Sunandan Gangopadhyay; Anirban Saha; Swarup Saha

2014-09-11T23:59:59.000Z

358

Optical layout and mechanical structure of polarimeter-interferometer system for Experimental Advanced Superconducting Tokamak  

SciTech Connect (OSTI)

A Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system for measurement current density profile and electron density profile is under development for the EAST tokamak. The FIR beams are transmitted from the laser room to the optical tower adjacent to EAST via ?20 m overmoded dielectric waveguide and then divided into 5 horizontal chords. The optical arrangement was designed using ZEMAX, which provides information on the beam spot size and energy distribution throughout the optical system. ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system.

Zou, Z. Y.; Liu, H. Q., E-mail: hqliu@ipp.ac.cn; Jie, Y. X.; Wang, Z. X.; Shen, J. S.; An, Z. H.; Yang, Y.; Zeng, L.; Wei, X. C.; Li, G. S.; Zhu, X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Ding, W. X.; Brower, D. L. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States); Lan, T. [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2014-11-15T23:59:59.000Z

359

Coupling mechanism between microscopic two-level system and superconducting qubits  

SciTech Connect (OSTI)

We propose a scheme to clarify the coupling nature between superconducting Josephson qubits and microscopic two-level systems. Although dominant interest in studying two-level systems was in phase qubits previously, we find that the sensitivity of the generally used spectral method in phase qubits is not sufficient to evaluate the exact form of the coupling. On the contrary, our numerical calculation shows that the coupling strength changes remarkably with the flux bias for a flux qubit, providing a useful tool to investigate the coupling mechanism between the two-level systems and qubits.

Zhang Zhentao; Yu Yang [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China)

2011-12-15T23:59:59.000Z

360

ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2  

E-Print Network [OSTI]

In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review...

Sherman, M.

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Beyond blue and red arrows : optimizing natural ventilation in large buildings  

E-Print Network [OSTI]

Our growing understanding of technology and environment has expanded the complexities of producing large naturally ventilated buildings. While it may be argued that designing for natural ventilation is a straightforward, ...

Meguro, Wendy (Wendy Kei)

2005-01-01T23:59:59.000Z

362

Evaluating the performance of natural ventilation in buildings through simulation and on-site monitoring  

E-Print Network [OSTI]

Natural ventilation in buildings is capable of reducing energy consumption while maintaining a comfortable indoor at the same time. It is important that natural ventilation is taken into consideration in the early design ...

Cheng, Haofan

2013-01-01T23:59:59.000Z

363

A sweating model for the internal ventilation of a motorcycle Claudio Canutoa  

E-Print Network [OSTI]

A sweating model for the internal ventilation of a motorcycle helmet Claudio Canutoa , Flavio and optimization of the internal ventilation of a motorcycle hel- met, with the purpose of enhancing the comfort

Ceragioli, Francesca

364

Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Sean Maxwell  

Broader source: Energy.gov [DOE]

This presentation is included in the Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014.

365

46.1 Shear Viscosity An important mechanical property of fluids is viscosity. Physical systems and applications as diverse as  

E-Print Network [OSTI]

46-1 46.1 Shear Viscosity An important mechanical property of fluids is viscosity. Physical systems, the internal friction of a fluid is analogous to the macroscopic mechanical friction, which causes an object. Kostic Northern Illinois University #12;46-2 Mechanical Variables top plate causes the fluid adjacent

Kostic, Milivoje M.

366

Instability leading to coal bumps and nonlinear evolutionary mechanisms for a coal-pillar-and-roof system  

E-Print Network [OSTI]

Instability leading to coal bumps and nonlinear evolutionary mechanisms for a coal mechanisms of the mechanical system that is composed of the stiff hosts (roof and floor) and the coal pillar using catastrophe theory. It is assumed that the roof is an elastic beam and the coal pillar is a strain

Jiao, Jiu Jimmy

367

Microminiaturized minimally invasive intravascular micro-mechanical systems powered and controlled via fiber-optic cable  

DOE Patents [OSTI]

A micro-mechanical system for medical procedures is constructed in the basic form of a catheter having a distal end for insertion into and manipulation within a body and a near end providing for a user to control the manipulation of the distal end within the body. A fiberoptic cable is disposed within the catheter and having a distal end proximate to the distal end of the catheter and a near end for external coupling of laser light energy. A microgripper is attached to the distal end of the catheter and providing for the gripping or releasing of an object within the body. A laser-light-to-mechanical-power converter is connected to receive laser light from the distal end of the fiberoptic cable and connected to mechanically actuate the microgripper.

Fitch, Joseph P. (Livermore, CA); Hagans, Karla (Livermore, CA); Clough, Robert (Danville, CA); Matthews, Dennis L. (Moss Beach, CA); Lee, Abraham P. (Walnut Creek, CA); Krulevitch, Peter A. (Los Altos, CA); Benett, William J. (Livermore, CA); Da Silva, Luiz (Danville, CA); Celliers, Peter M. (Berkeley, CA)

1998-01-01T23:59:59.000Z

368

System dynamics based models for selecting HVAC systems for office buildings: a life cycle assessment from carbon emissions perspective.  

E-Print Network [OSTI]

??This study aims to explore the life cycle environmental impacts of typical heating ventilation and air condition (HVAC) systems including variable air volume (VAV) system,… (more)

Chen, S

2011-01-01T23:59:59.000Z

369

A geometric approach to the optimal control of nonholnomic mechanical systems  

E-Print Network [OSTI]

In this paper, we describe a constrained Lagrangian and Hamiltonian formalism for the optimal control of nonholonomic mechanical systems. In particular, we aim to minimize a cost functional, given initial and final conditions where the controlled dynamics is given by nonholonomic mechanical system. In our paper, the controlled equations are derived using a basis of vector fields adapted to the nonholonomic distribution and the Riemannian metric determined by the kinetic energy. Given a cost function, the optimal control problem is understood as a constrained problem or equivalently, under some mild regularity conditions, as a Hamiltonian problem on the cotangent bundle of the nonholonomic distribution. A suitable Lagrangian submanifold is also shown to lead to the correct dynamics. We demonstrate our techniques in several examples including a continuously variable transmission problem and motion planning for obstacle avoidance problems.

Anthony Bloch; Leonardo Colombo; Rohit Gupta; David Martin de Diego

2014-12-23T23:59:59.000Z

370

Modeling and Identification for HVAC Systems.  

E-Print Network [OSTI]

?? Heating, Ventilation and Air Conditioning (HVAC) systems consist of all the equipment that control the conditions and distribution of indoor air. Indoor air must… (more)

Scotton, Francesco

2012-01-01T23:59:59.000Z

371

LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation  

E-Print Network [OSTI]

LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation Max Sherman Energy and Community Programs under U.S. Department of Energy Contract No. DE-AC03- 76SF00098. #12;LBNL 53776 Table......................................................................................................12 2 #12;LBNL 53776 Introduction As HVAC&R professionals, our major concern is the engineering

372

Study on Influencing Factors of Night Ventilation in Office Rooms  

E-Print Network [OSTI]

& Environmental Engineering, Harbin Institute of Technology Harbin P.R.China, 150090 wzjw02@yahoo.com.cn Abstract: A mathematical and physical model on night ventilation is set up. The fields of indoor air temperature, air velocity and thermal comfort...

Wang, Z.; Sun, X.

2006-01-01T23:59:59.000Z

373

Optimal decision making in ventilation control Andrew Kusiak*, Mingyang Li  

E-Print Network [OSTI]

based on the maximum occupancy of a facility. To provide air quality guidelines, ASHRAE Standard 90.1 [2] specifies the minimum ventilation rate of 2.5 l/s per person, while ASHRAE Standard 62-2004 [3] has been

Kusiak, Andrew

374

A Dual Model-Free Control of Underactuated Mechanical Systems, Application to The Inertia Wheel Inverted Pendulum  

E-Print Network [OSTI]

A Dual Model-Free Control of Underactuated Mechanical Systems, Application to The Inertia Wheel underac- tuated mechanical system: the inertia wheel inverted pendulum. Numerical simulations as well: the ball and beam [9] (where the dynamics of the beam has not been taken into account) and the Planar

Paris-Sud XI, Université de

375

Improving the Thermal Output Availability of Reciprocating Engine Cogeneration Systems by Mechanical Vapor Compression  

E-Print Network [OSTI]

LOW?PRESSURE I WASTE STEAM r ... IMPROVING THE THERMAL OUTPUT AVAILABILITY OF RECIPROCATING ENGINE COGENERATION SYSTEMS BY MECHANICAL VAPOR COMPRESSION F.E. Becker and F.A. DiBella Tecogen, Inc., a Subsidiary of Thermo El~ctron Corporation...-user with electric power and process heat that is totally in the form of high-pressure steam. Current recipro cating engine systems can now provide only low pressure steam or hot water from the engine jacket, and this often is not needed or not the most appro...

Becker, F. E.; DiBella, F. A.; Lamphere, F.

376

Particle deposition in ventilation ducts: Connectors, bends anddeveloping flow  

SciTech Connect (OSTI)

In ventilation duct flow the turbulent flow profile is commonly disturbed or not fully developed and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90{sup o} duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8 and 13 {micro}m was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90{sup o} bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall than in steel ducts. Trends that were observed in steel ducts were present, but weaker, in insulated ducts.

Sippola, Mark R.; Nazaroff, William W.

2004-03-01T23:59:59.000Z

377

School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University EnergyEnergy--Saving Control of Hydraulic SystemsSaving Control of Hydraulic Systems  

E-Print Network [OSTI]

School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University EnergyEnergy--Saving Control of Hydraulic Principle Investigator: Bin Yao Research Assistant: Song Liu School of Mechanical Engineering Purdue

Yao, Bin

378

Fully coupled thermal-mechanical-fluid flow model for nonliner geologic systems  

SciTech Connect (OSTI)

A single model is presented which describes fully coupled thermal-mechanical-fluid flow behavior of highly nonlinear, dynamic or quasistatic, porous geologic systems. The mathematical formulation for the model utilizes the continuum theory of mixtures to describe the multiphase nature of the system, and incremental linear constitutive theory to describe the path dependency of nonlinear material behavior. The model, incorporated in an explicit finite difference numerical procedure, was implemented in two different computer codes. A special-purpose one-dimensional code, SNEAKY, was written for initial validation of the coupling mechanisms and testing of the coupled model logic. A general purpose commercially available code, STEALTH, developed for modeling dynamic nonlinear thermomechanical processes, was modified to include fluid flow behavior and the coupling constitutive model. The fully explicit approach in the coupled calculation facilitated the inclusion of the coupling mechanisms and complex constitutive behavior. Analytical solutions pertaining to consolidation theory for soils, thermoelasticity for solids, and hydrothermal convection theory provided verification of stress and fluid flow, stress and conductive heat transfer, and heat transfer and fluid flow couplings, respectively, in the coupled model. A limited validation of the adequacy of the coupling constitutive assumptions was also performed by comparison with the physical response from two laboratory tests. Finally, the full potential of the coupled model is illustrated for geotechnical applications in energy-resource related areas. Examples in the areas of nuclear waste isolation and cut-and-fill mining are cited.

Hart, R.D.

1981-01-01T23:59:59.000Z

379

Intensive Care Med . Author manuscript A bench study of intensive-care-unit ventilators: new versus old and  

E-Print Network [OSTI]

: new versus old and turbine-based versus compressed gas-based ventilators Arnaud W. Thille 1 2 turbine-based ventilators and nine conventional servo-valve compressed-gas ventilators were tested using a two-compartment lung model. Results Three levels of effort were simulated. Each ventilator

Paris-Sud XI, Université de

380

Natural ventilation - A new method based on the Walton model applied to cross-ventilated buildings having two large external openings  

E-Print Network [OSTI]

In order to provide comfort in a low energy consumption building, it is preferable to use natural ventilation rather than HVAC systems. To achieve this, engineers need tools that predict the heat and mass transfers between the building's interior and exterior. This article presents a method implemented in some building software, and the results are compared to CFD. The results show that the knowledge model is not sufficiently well-described to identify all the physical phenomena and the relationships between them. A model is developed which introduces a new building-dependent coefficient allowing the use of Walton's model, as extended by Roldan to large external openings, and which better represents the turbulent phenomena near large external openings. The formulation of the mass flow rates is inversed to identify modeling problems. It appears that the discharge coefficient is not the only or best parameter to obtain an indoor static pressure compatible with CFD results, or to calculate more realistic mass fl...

Bastide, Alain; Boyer, Harry

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Rock Mechanics and Enhanced Geothermal Systems: A DOE-sponsored Workshop to Explore Research Needs  

SciTech Connect (OSTI)

This workshop on rock mechanics and enhanced geothermal systems (EGS) was held in Cambridge, Mass., on June 20-21 2003, before the Soil and Rock America 2003 International Conference at MIT. Its purpose was to bring together experts in the field of rock mechanics and geothermal systems to encourage innovative thinking, explore new ideas, and identify research needs in the areas of rock mechanics and rock engineering applied to enhanced geothermal systems. The agenda is shown in Appendix A. The workshop included experts in the fields of rock mechanics and engineering, geological engineering, geophysics, drilling, the geothermal energy production from industry, universities and government agencies, and laboratories. The list of participants is shown is Appendix B. The first day consisted of formal presentations. These are summarized in Chapter 1 of the report. By the end of the first day, two broad topic areas were defined: reservoir characterization and reservoir performance. Working groups were formed for each topic. They met and reported in plenary on the second day. The working group summaries are described in Chapter 2. The final session of the workshop was devoted to reaching consensus recommendations. These recommendations are given in Chapter 3. That objective was achieved. All the working group recommendations were considered and, in order to arrive at a practical research agenda usable by the workshop sponsors, workshop recommendations were reduced to a total of seven topics. These topics were divided in three priority groups, as follows. First-priority research topics (2): {sm_bullet} Define the pre-existing and time-dependent geometry and physical characteristics of the reservoir and its fracture network. That includes the identification of hydraulically controlling fractures. {sm_bullet} Characterize the physical and chemical processes affecting the reservoir geophysical parameters and influencing the transport properties of fractures. Incorporate those processes in reservoir simulators. Second-priority research topics (4): {sm_bullet} Implement and proof-test enhanced fracture detection geophysical methods, such as 3-D surface seismics, borehole seismics, and imaging using earthquake data. {sm_bullet} Implement and proof-test enhanced stress measurement techniques, such as borehole breakout analysis, tilt-meters, and earthquake focal mechanism analysis. {sm_bullet} Implement and proof-test high-temperature down-hole tools for short-term and long-term diagnostics, such as borehole imaging, geophone arrays, packers, and electrical tools.

Francois Heuze; Peter Smeallie; Derek Elsworth; Joel L. Renner

2003-10-01T23:59:59.000Z

382

Demand Controlled Ventilation for Improved Humidity Control  

E-Print Network [OSTI]

only C02, the systems now being installed also monitor dew point (and relative humidity). The capability of including VOC monitoring has also been demonstrated in a recent installation. Other IAQ parameters such as CO, ozone, formaldehyde and SOX...

Rogers, J. K.

1996-01-01T23:59:59.000Z

383

System Voltage Potential-Induced Degradation Mechanisms in PV Modules and Methods for Test  

SciTech Connect (OSTI)

Over the past decade, degradation and power loss have been observed in PV modules resulting from the stress exerted by system voltage bias. This is due in part to qualification tests and standards that do not adequately evaluate for the durability of modules to the long-term effects of high voltage bias experienced in fielded arrays. High voltage can lead to module degradation by multiple mechanisms. The extent of the voltage bias degradation is linked to the leakage current or culombs passed from the silicon active layer through the encapsulant and glass to the grounded module frame, which can be experimentally determined; however, competing processes make the effect non-linear and history-dependent. Appropriate testing methods and stress levels are described that demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. This information, along with outdoor testing that is in progress, is used to estimate the acceleration factors needed to evaluate the durability of modules to system voltage stress. Na-rich precipitates are observed on the cell surface after stressing the module to induce PID in damp heat with negative bias applied to the active layer.

Hacke, P.; Terwilliger, K.; Smith, R.; Glick, S.; Pankow, J.; Kempe, M.; Kurtz, S.; Bennett, I.; Kloos, M.

2011-01-01T23:59:59.000Z

384

System Voltage Potential-Induced Degradation Mechanisms in PV Modules and Methods for Test: Preprint  

SciTech Connect (OSTI)

Over the past decade, degradation and power loss have been observed in PV modules resulting from the stress exerted by system voltage bias. This is due in part to qualification tests and standards that do not adequately evaluate for the durability of modules to the long-term effects of high voltage bias experienced in fielded arrays. High voltage can lead to module degradation by multiple mechanisms. The extent of the voltage bias degradation is linked to the leakage current or coulombs passed from the silicon active layer through the encapsulant and glass to the grounded module frame, which can be experimentally determined; however, competing processes make the effect non-linear and history-dependent. Appropriate testing methods and stress levels are described that demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. This information, along with outdoor testing that is in progress, is used to estimate the acceleration factors needed to evaluate the durability of modules to system voltage stress. Na-rich precipitates are observed on the cell surface after stressing the module to induce PID in damp heat with negative bias applied to the active layer.

Hacke, P.; Terwilliger, K.; Smith, R.; Glick, S.; Pankow, J.; Kempe, M.; Kurtz, S.; Bennett, I.; Kloos, M.

2011-07-01T23:59:59.000Z

385

The Intelligent Systems and Control Laboratory in the Mechanical Engineering -Engineering Mechanics Department at Michigan Technological University invites  

E-Print Network [OSTI]

Mechanics Department at Michigan Technological University invites applications for a PhD Student Fellowship resume to Professor Gordon Parker at ggparker@mtu.edu. Michigan Technological University is an equal control, optimal control, etc.). Michigan Tech is in the small community of Houghton, Michigan. It lies

Endres. William J.

386

Implementation and main results Ecient Management of HVAC Systems  

E-Print Network [OSTI]

water to remove heat from the air in the building. In HVAC system equipped with chillers, the electrical #12;Motivation Implementation and main results HVAC Systems Multiple-chiller systems Heating, Ventilation and Air-Conditioning System Heating, Ventilation and Air Conditioning Systems (HVAC) represents

Schenato, Luca

387

High throughput chemical munitions treatment system  

DOE Patents [OSTI]

A new High-Throughput Explosive Destruction System is disclosed. The new system is comprised of two side-by-side detonation containment vessels each comprising first and second halves that feed into a single agent treatment vessel. Both detonation containment vessels further comprise a surrounding ventilation facility. Moreover, the detonation containment vessels are designed to separate into two half-shells, wherein one shell can be moved axially away from the fixed, second half for ease of access and loading. The vessels are closed by means of a surrounding, clam-shell type locking seal mechanisms.

Haroldsen, Brent L. (Manteca, CA); Stofleth, Jerome H. (Albuquerque, NM); Didlake, Jr., John E. (Livermore, CA); Wu, Benjamin C-P (San Ramon, CA)

2011-11-01T23:59:59.000Z

388

Implementation of a Hybrid Controller for Ventilation Control Using Soft Computing  

SciTech Connect (OSTI)

Many industrial facilities utilize pressure control gradients to prevent migration of hazardous species from containment areas to occupied zones, often using Proportional-Integral-Derivative (PID) control systems. When operators rebalance the facility, variation from the desired gradients can occur and the operating conditions can change enough that the PID parameters are no longer adequate to maintain a stable system. As the goal of the ventilation control system is to optimize the pressure gradients and associated flows for the facility, Linear Quadratic Tracking (LQT) is a method that provides a time-based approach to guiding facility interactions. However, LQT methods are susceptible to modeling and measurement errors, and therefore the additional use of Soft Computing methods are proposed for implementation to account for these errors and nonlinearities.

Craig G. Rieger; D. Subbaram Naidu

2005-06-01T23:59:59.000Z

389

Improving Cooling performance of the mechanical resonator with the two-level-system defects  

E-Print Network [OSTI]

We study cooling performance of a realistic mechanical resonator containing defects. The normal cooling method through an optomechanical system does not work efficiently due to those defects. We show by employing periodical $\\sigma_z$ pulses, we can eliminate the interaction between defects and their surrounded heat baths up to the first order of time. Compared with the cooling performance of no $\\sigma_z$ pulses case, much better cooling results are obtained. Moreover, this pulse sequence has an ability to improve the cooling performance of the resonator with different defects energy gaps and different defects damping rates.

Tian Chen; Xiang-Bin Wang

2014-06-03T23:59:59.000Z

390

Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts  

SciTech Connect (OSTI)

Particle deposition in ventilation ducts influences particle exposures of building occupants and may lead to a variety of indoor air quality concerns. Experiments have been performed in a laboratory to study the effects of particle size and air speed on deposition rates of particles from turbulent air flows in galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. The duct systems were constructed of materials typically found in commercial heating, ventilating and air conditioning (HVAC) systems. In the steel duct system, experiments with nominal particle sizes of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition rates of particles with nominal sizes of 1, 3, 5, 8 and 13 {micro}m were measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces (floor, wall and ceiling) at two straight duct sections where the turbulent flow profile was fully developed. In steel ducts, deposition rates were higher to the duct floor than to the wall, which were, in turn, greater than to the ceiling. In insulated ducts, deposition was nearly the same to the duct floor, wall and ceiling for a given particle size and air speed. Deposition to duct walls and ceilings was greatly enhanced in insulated ducts compared to steel ducts. Deposition velocities to each of the three duct surface orientations in both systems were found to increase with increasing particle size or air velocity over the ranges studied. Deposition rates measured in the current experiments were in general agreement with the limited observations of similar systems by previous researchers.

Sippola, Mark R.; Nazaroff, William W.

2003-08-01T23:59:59.000Z

391

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

E-Print Network [OSTI]

1. Weschler. Cleaning products and air fresheners; exposurepollutants from cleaning product and air freshener use inand terpenes from cleaning products and air fresheners [27].

Morrison, G.C.

2011-01-01T23:59:59.000Z

392

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

E-Print Network [OSTI]

and 1. Ferris, B.G. Nitrogen dioxide inside and outside 137reactive chemicals, such as nitrogen dioxide from unvented

Morrison, G.C.

2011-01-01T23:59:59.000Z

393

Experiment on Residential Ventilation System In Actual House  

E-Print Network [OSTI]

?????????? ??????????????????? ??????????????????? ?????????????????? ??????????????????? ??????????????????? ??????????????????? ?????????????????? ?????????????? [1]? 1. ???? 1.1 ???? ????????????????? ???????????????????? ?????? 1 ??? ? 1 ?????? ???? ?? ?? ?? ?? ?? ??? ?? ?????? m2 13.4 9.4 8.1 4.5 2.4 37.8 ???? m3 36.2 25.4 21.9 12.2 6.5 102.1 ???? m3 2.8 1.5 1.2 0.8 1.1 7....4 ????? m3 33.4 23.9 20.7 11.3 5.4 94.7 1.2 ???? ???? CO2 ?????????? ??CO 2 ??????????????? ?? CO2 ?? CO2 ??????????? ?? CO2 ??????????????? ???? 1 ??? CO2 ????????? ???? 2?? 3 ??? ?? CO2 ?????????? CO2 ??? 2?4g/m 3???????????? ?????? [2...

Tiecheng, L.

2006-01-01T23:59:59.000Z

394

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

E-Print Network [OSTI]

controls 1 Introduction Indoor chemistry is now recognized as an important factor influencing occupant exposure to air pollutants,

Morrison, G.C.

2011-01-01T23:59:59.000Z

395

Case Study - The Challenge: Improving Ventilation System Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy-ChevronSeveral salesCarolyn L.in a Textile Plant |

396

Ventilation System to Improve Savannah River Site's Liquid Waste Operations  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is onModeling andReport ||StudentFuelVehicle and| Department

397

Indoor environmental quality and ventilation in U.S. office buildings: A view of current issues  

SciTech Connect (OSTI)

Much of the current focus on indoor environmental quality and ventilation in US office buildings is a response to sick building syndrome and occupant complaints about building-related health symptoms, poor indoor air quality, and thermal discomfort. The authors know that serious ``sick-building`` problems occur in a significant number of US office buildings and that a significant proportion of the occupants in many normal (non-sick) buildings report building-related health symptoms. Concerns about the health effects of environmental tobacco smoke have also focused attention on the indoor environment. The major responses of industry and governments, underway at the present time, are to restrict smoking in offices, to attempt to reduce the emissions of indoor pollutants, and to improve the operation of heating, ventilating and air conditioning (HVAC) systems. Better air filtration, improved HVAC commissioning and maintenance, and increased provisions for individual control of HVAC are some of the improvements in HVAC that are currently being, evaluated. In the future, the potential for improved productivity and reduced airborne transmission of infectious disease may become the major driving force for improved indoor environments.

Fisk, W.J.

1994-11-01T23:59:59.000Z

398

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

of mechanical systems, natural ventilation, and passive ventilation. Key parameters that are related to each/IEQ- 30090: Whole-House Vent : Evaluation of Whole-house Mechanical Ventilation System Options ­ Phase I

399

Contol of integrated mechanical dehumidification and passive cooling systems to produce energy efficient comfort  

SciTech Connect (OSTI)

Detailed computer simulations validated by full scale testing indicate that roof pond type passive cooling systems can provide acceptable residential temperature conditions in all climates of the United States. Passive cooling systems as presently conceived, however, require complementary dehumidification to carry existing latent loads. A study is made of the relative dehumidification efficiencies of conventional air conditioners and an improved mechanical dehumidifier which utilizes sensible cooling recovery. The effects of dew point and dry bulb temperatures, controller set point and humidity band width, infiltration, and climate are evaluated. A simple dehumidifier sizing procedure is presented. Results indicate that the improved dehumidifiers are several times as efficient as conventional air conditioners under desired steady state room conditions. It is also shown that dehumidifier capacities at AHAM test conditions may be misleading if used for design purposes.

Doderer, E.; Marcus, D.; Hoffner, J.

1982-01-01T23:59:59.000Z

400

Predicting hottest spot temperatures in ventilated dry type transformer windings  

SciTech Connect (OSTI)

Test data indicates that hottest spot allowances used in IEEE standards for ventilated dry type transformers above 500 kVA are too low. A mathematical model to predict hottest spot temperature rises in ventilated dry type transformers was developed. Data from six layer type test windings and a 2500 kva prototype was used to refine the model. A correlation for the local heat transfer coefficient in the cooling ducts was developed. The model was used to study the effect of various parameters on the ratio of hottest spot to average winding temperature rise. The number of conductor layers, insulation thickness, and conductor strand size were found to have only a minor effect on the ratio. Winding height was found to be the main parameter influencing the ratio of hottest spot to average winding temperature rise. The study based on the mathematical model confirmed previous conclusions based on test data that the hottest spot allowances used in IEEE standards for ventilated dry type transformers above 500 kVA should be revised.

Pierce, L.W. (General Electric Co., Rome, GA (United States))

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Statistical mechanical theory for steady-state systems. III. Heat flow in a Lennard-Jones fluid  

E-Print Network [OSTI]

Statistical mechanical theory for steady-state systems. III. Heat flow in a Lennard-Jones fluid March 2005; accepted 4 May 2005; published online 28 June 2005 A statistical mechanical theory for heat distribution for heat flow down an imposed thermal gradient is tested with simulations of a Lennard-Jones fluid

Attard, Phil

402

Fermilab D-0 Experimental Facility: Energy conservation report and mechanical systems design optimization and cost analysis study  

SciTech Connect (OSTI)

This report is developed as part of the Fermilab D-0 Experimental Facility Project Title II Design Documentation Update. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis.

Krstulovich, S.F.

1987-10-31T23:59:59.000Z

403

The interdisciplinary field of Biomedical Engineering combines elements of engineering (electronics, systems analysis, fluid mechanics) with the life  

E-Print Network [OSTI]

34 The interdisciplinary field of Biomedical Engineering combines elements of engineering (electronics, systems analysis, fluid mechanics) with the life sciences (biology, physiology, biochemistry) to define and solve problems in biology and medicine. Students choose this growing branch of engineering

Rohs, Remo

404

Ventilation Requirements in Hot Humid Climates  

E-Print Network [OSTI]

. At the beginning of each air conditioner cycle, the system takes three minutes to ramp-up to full latent capacity. The following calculation method is based on work by Henderson (1998) and Henderson and Rengarahan (1996). The mass flux of moisture onto... cumulative distributions for Houston. In addition to the outdoor data we have plotted the results of our indoor simulations for three cases. The Henderson (2006)) that upper indoor...

Walker, I. S.; Sherman, M. H.

2006-01-01T23:59:59.000Z

405

Development of a High Latent Effectiveness Energy Recovery Ventilator with Integration into Rooftop Package Equipment  

SciTech Connect (OSTI)

This Final Report covers the Cooperative Program carried out to design and optimize an enhanced flat-plate energy recovery ventilator and integrate it into a packaged unitary (rooftop) air conditioning unit. The project objective was to optimize the design of a flat plate energy recovery ventilator (ERV) core that compares favorably to flat plate air-to-air heat exchanger cores on the market and to cost wise to small enthalpy wheel devices. The benefits of an integrated unit incorporating an enhanced ERV core and a downsized heating/cooling unit were characterized and the design of an integrated unit considering performance and cost was optimized. Phase I was to develop and optimize the design of a membrane based heat exchanger core. Phase II was the creation and observation of a system integrated demonstrator unit consisting of the Enhanced Energy Recovery Ventilator (EERV) developed in Phase I coupled to a standard Carrier 50HJ rooftop packaged unitary air conditioning unit. Phase III was the optimization of the system prior to commercialization based on the knowledge gained in Phase II. To assure that the designs chosen have the possibility of meeting cost objectives, a preliminary manufacturability and production cost study was performed by the Center for Automation Technologies at RPI. Phase I also included a preliminary design for the integrated unit to be further developed in Phase II. This was to assure that the physical design of the heat exchanger designed in Phase I would be acceptable for use in Phase II. An extensive modeling program was performed by the Center for Building Performance & Diagnostics of CMU. Using EnergyPlus as the software, a typical office building with multiple system configurations in multiple climatic zones in the US was simulated. The performance of energy recovery technologies in packaged rooftop HVAC equipment was evaluated. The experimental program carried out in Phases II and III consisted of fabricating and testing a demonstrator unit using Carrier Comfort Network (CCN) based controls. Augmenting the control signals, CCN was also used to monitor and record additional performance data that supported modeling and conceptual understanding. The result of the testing showed that the EERV core developed in Phase I recovered energy in the demonstrator unit at the expected levels based on projections. In fact, at near-ARI conditions the core recovered about one ton of cooling enthalpy when operating with a three-ton rooftop packaged unit.

Gregory M. Dobbs; Norberto O. Lemcoff; Frederick J. Cogswell; Jeffrey T. Benolt

2006-03-01T23:59:59.000Z

406

Energy Impacts of Envelope Tightening and Mechanical  

E-Print Network [OSTI]

1 Energy Impacts of Envelope Tightening and Mechanical Ventilation for the U.S. Residential Sector Energy Commission through Contract 500-08-061. #12;3 ABSTRACT Effective residential envelope air sealing reduces infiltration and associated energy costs for thermal conditioning, yet often creates a need

407

Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Joe Lstiburek  

Broader source: Energy.gov [DOE]

This presentation will be delivered at the U.S. Department of Energy Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014. Joe...

408

Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages  

DOE Patents [OSTI]

An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

Boggs, David Lee (Bloomfield Hills, MI); Baraszu, Daniel James (Plymouth, MI); Foulkes, David Mark (Erfstadt, DE); Gomes, Enio Goyannes (Ann Arbor, MI)

1998-01-01T23:59:59.000Z

409

Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages  

DOE Patents [OSTI]

An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine`s crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages. 4 figs.

Boggs, D.L.; Baraszu, D.J.; Foulkes, D.M.; Gomes, E.G.

1998-12-29T23:59:59.000Z

410

THE IMPACT OF REDUCED VENTILATION ON INDOOR AIR QUALITY IN RESIDENTIAL BUILDINGS  

E-Print Network [OSTI]

carbon monoxide and nitrogen dioxide fron gas appliances;quality, infiltration, nitrogen dioxide, radon, ventilation.carbon monoxide (CO), nitrogen dioxide (N02)• formaldehyde (

Berk, James V.

2013-01-01T23:59:59.000Z

411

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

E-Print Network [OSTI]

quality survey. In: Healthy Buildings 2006. Lisbon,In: Proceedings of Healthy Buildings 2006. Lisbon, Portugal:as ventilation varies. In: Healthy Buildings 2012. Brisbane,

Mendell, Mark J.

2014-01-01T23:59:59.000Z

412

Structural, thermodynamic, mechanical, and magnetic properties of FeW system  

SciTech Connect (OSTI)

The Fe-W system is systematically investigated through a combined use of first-principles calculation, cluster expansion, special quasirandom structures, and experiments. It is revealed that the ferromagnetic state of BCC Fe-W solid solution has lower heat of formation than its nonmagnetic state within the entire composition range, and intermetallic ?-Fe{sub 2}W and ?-Fe{sub 7}W{sub 6} phases are energetically favorable with negative heats of formation. Calculations also show that the Fe-W solid solution has much lower coefficient of thermal expansion than its mechanical mixture, and that the descending sequence of temperature-dependent elastic moduli of each Fe-W solid solution is E?>?G?>?B. Moreover, magnetic state should have an important effect on mechanical properties of Fe-W phases, and electronic structures can provide a deeper understanding of various properties of Fe-W. The derived results agree well with experimental observations, and can clarify two experimental controversies regarding structural stability and magnetic property of Fe-W phases in the literature.

Ren, Q. Q.; Fan, J. L.; Han, Y.; Gong, H. R., E-mail: gonghr@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

2014-09-07T23:59:59.000Z

413

Apparatus and method for sensing motion in a microelectro-mechanical system  

DOE Patents [OSTI]

An apparatus and method are disclosed for optically sensing motion in a microelectromechanical system (also termed a MEMS device) formed by surface micromachining or LIGA. The apparatus operates by reflecting or scattering a light beam off a corrugated surface (e.g. gear teeth or a reference feature) of a moveable member (e.g. a gear, rack or linkage) within the MEMS device and detecting the reflected or scattered light. The apparatus can be used to characterize a MEMS device, measuring one or more performance characteristic such as spring and damping coefficients, torque and friction, or uniformity of motion of the moveable member. The apparatus can also be used to determine the direction and extent of motion of the moveable member; or to determine a particular mechanical state that a MEMS device is in. Finally, the apparatus and method can be used for providing feedback to the MEMS device to improve performance and reliability.

Dickey, Fred M. (Albuquerque, NM); Holswade, Scott C. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

414

Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer  

DOE Patents [OSTI]

A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.

Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Syed Asif, Syed Amanula

2014-07-29T23:59:59.000Z

415

Mechanics of Systems of Affine Bodies. Geometric Foundations and Applications in Dynamics of Structured Media  

E-Print Network [OSTI]

In the present paper we investigate the mechanics of systems of affinely-rigid bodies, i.e., bodies rigid in the sense of affine geometry. Certain physical applications are possible in modelling of molecular crystals, granular media, and other physical objects. Particularly interesting are dynamical models invariant under the group underlying geometry of degrees of freedom. In contrary to the single body case there exist nontrivial potentials invariant under this group (left and right acting). The concept of relative (mutual) deformation tensors of pairs of affine bodies is discussed. Scalar invariants built of such tensors are constructed. There is an essential novelty in comparison to deformation scalars of single affine bodies, i.e., there exist affinely-invariant scalars of mutual deformations. Hence, the hierarchy of interaction models according to their invariance group, from Euclidean to affine ones, can be considered.

J. J. S\\lawianowski; V. Kovalchuk; A. Martens; B. Go\\lubowska; E. E. Ro?ko

2010-11-24T23:59:59.000Z

416

Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer  

DOE Patents [OSTI]

A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.

Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Asif, Syed Amanula Syed

2013-05-07T23:59:59.000Z

417

MICRO-CHP System for Residential Applications  

SciTech Connect (OSTI)

This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

Joseph Gerstmann

2009-01-31T23:59:59.000Z

418

Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain  

E-Print Network [OSTI]

Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

Hughes, Douglas E.

2010-12-17T23:59:59.000Z

419

10/15/03 LBNL-53800 Residential Ventilation Standards Scoping Study  

E-Print Network [OSTI]

10/15/03 LBNL-53800 Residential Ventilation Standards Scoping Study T-01 Lawrence Berkeley National Laboratory Report Number: LBNL-53800 OVERVIEW This document presents contract no. DE-AC03-76SF00098. #12;VENTILATIONS STANDARDS SCOPING STUDY PAGE LBNL-53800 2 TABLE

420

SURVEY OF THE EXISTING APPROACHES TO ASSESS AND DESIGN NATURAL VENTILATION AND NEED FOR FURTHER DEVELOPMENTS  

E-Print Network [OSTI]

SURVEY OF THE EXISTING APPROACHES TO ASSESS AND DESIGN NATURAL VENTILATION AND NEED FOR FURTHER DEVELOPMENTS Marcello Caciolo, Dominique Marchio, Pascal Stabat Ecole des Mines de Paris- Center for Energy their attention to natural ventilation, due to the potential benefits in terms of energy consumption related

Boyer, Edmond

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A case study of boundary layer ventilation by convection and coastal processes  

E-Print Network [OSTI]

of the pollution in the atmosphere originates from emissions in the atmospheric boundary layer, the region; published 12 September 2007. [1] It is often assumed that ventilation of the atmospheric boundary layer responsible for ventilation of the atmospheric boundary layer during a nonfrontal day that occurred on 9 May

Dacre, Helen

422

Particle deposition from turbulent flow: Review of published research and its applicability to ventilation ducts in commercial buildings  

SciTech Connect (OSTI)

This report reviews published experimental and theoretical investigations of particle deposition from turbulent flows and considers the applicability of this body of work to the specific case of particle deposition from flows in the ducts of heating, ventilating and air conditioning (HVAC) systems. Particle deposition can detrimentally affect the performance of HVAC systems and it influences the exposure of building occupants to a variety of air pollutants. The first section of this report describes the types of HVAC systems under consideration and discusses the components, materials and operating parameters commonly found in these systems. The second section reviews published experimental investigations of particle deposition rates from turbulent flows and considers the ramifications of the experimental evidence with respect to HVAC ducts. The third section considers the structure of turbulent airflows in ventilation ducts with a particular emphasis on turbulence investigations that have been used as a basis for particle deposition models. The final section reviews published literature on predicting particle deposition rates from turbulent flows.

Sippola, Mark R.; Nazaroff, William W.

2002-06-01T23:59:59.000Z

423

Sandia National Laboratories: Mechanical Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyNuclear Energy Systems Laboratory (NESL) Brayton LabMechanical Testing Mechanical Testing Mechanical Testing Overview Mechanical 1-2 (2008). Standard Test Methods for...

424

E-Print Network 3.0 - automotive air-conditioning system Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EGTE456 Fundamentals of Heating, Ventilation and Air Conditioning ELEG420 Solar Electric Systems... CIEG351 Transportation Engineering MEEG425 Automotive Powertrain...

425

Energy Consumption Analyses of Frequently-used HVAC System Types in High Performance Office Buildings.  

E-Print Network [OSTI]

??The high energy consumption of heating, ventilation and air-conditioning (HVAC) systems in commercial buildings is a hot topic. Office buildings, a typical building set of… (more)

Yan, Liusheng

2014-01-01T23:59:59.000Z

426

OPTIMIZED CONTROL STRATEGIES FOR A TYPICAL WATER LOOP HEAT PUMP SYSTEM.  

E-Print Network [OSTI]

??Water Loop Heat Pump (WLHP) System has been widely utilized in the Heating, Ventilating and Air Conditioning (HVAC) industry for several decades. There is no… (more)

Lian, Xu

2011-01-01T23:59:59.000Z

427

Robust energy transfer mechanism and critically balanced turbulence via non-resonant triads in nonlinear wave systems  

E-Print Network [OSTI]

A robust energy transfer mechanism is found in nonlinear wave systems, which favours transfers towards modes interacting via non-resonant triads, applicable in meteorology, nonlinear optics and plasma wave turbulence. Transfer efficiency is maximal when the frequency mismatch of the non-resonant triad balances the system's nonlinear frequency: at intermediate levels of oscillation amplitudes an instability is triggered that explores unstable manifolds of periodic orbits, so turbulent cascades are most efficient at intermediate nonlinearity. Numerical simulations confirm analytical predictions.

Miguel D. Bustamante; Brenda Quinn

2013-09-02T23:59:59.000Z

428

Coupled Systems Mechanics, Vol. 1, No. 1 (2012) 99-113 99 Algorithm for solving fluid-structure interaction  

E-Print Network [OSTI]

Coupled Systems Mechanics, Vol. 1, No. 1 (2012) 99-113 99 Algorithm for solving fluid for solving fluid-structure interaction problem at small structural displacements. The algorithm uses one global mesh for the fluid-structure domain obtained by gluing the fluid and structure meshes which

Murea, Cornel

429

Statistical mechanics solution sheet 1 1. The solar system is open, as it transfers energy and particles to the environment.  

E-Print Network [OSTI]

of the second law is "A process whose only effect is the conversion of heat into work cannot occur." An example of an irreversible process is conduction of heat from a hot to a cold body. My favourite perpetual motionStatistical mechanics solution sheet 1 1. The solar system is open, as it transfers energy

Dettmann, Carl

430

Friction-induced vibration of a lubricated mechanical system J-J. Sinou*, J. Cayer-Barrioz and H. Berro  

E-Print Network [OSTI]

1 Friction-induced vibration of a lubricated mechanical system J-J. Sinou*, J. Cayer-Barrioz and H that incorporates realistic laws of local friction issued from previous experimental results. The objective or by themselves, such as friction-induced vibrations. In all cases, these vibrations are hardly controllable

Paris-Sud XI, Université de

431

The Impact of Above-Sheathing Ventilation on the Thermal and Moisture Performance of Steep-Slope Residential Roofs and Attics  

E-Print Network [OSTI]

France of the Building Technologies Program. The IrBCP project team members are Andre? Desjarlais, William Miller, Tom Petrie, Jan Kosny and Achilles Karagiozis, all of ORNL’s Buildings Envelope Program. The Metal Construction Association and its affiliate members.... Beal, D., and S. Chandra. 1995. “The Measured Summer Performance of Tile Roof Systems and Attic Ventilation Strategies in Hot Humid Climates.” In Proceedings of the Thermal Performance of the Exterior Envelopes of Buildings VI. U.S. DOE/ORNL...

Miller, W.; Karagiozis, A.; Wilson, J.

2006-01-01T23:59:59.000Z

432

Mechanical Engineer Company Description  

E-Print Network [OSTI]

Mechanical Engineer Company Description Control Solutions Inc. is a small, dynamic, and rapidly. Position Description The Mechanical Engineer is responsible for all aspects associated with the mechanical enclosures, brackets, cabling assemblies among others. Systems include mechanisms, sensors, hydraulics, among

Kostic, Milivoje M.

433

Diagnostic indicators for shipboard mechanical systems using Non-Intrusive Load Monitoring  

E-Print Network [OSTI]

This thesis examines the use of Non-intrusive Load Monitoring (NILM) in auxiliary shipboard systems, such as a low pressure air system, to determine the state of equipment in larger connected systems, such as the main ...

McKay, Thomas Duncan

2006-01-01T23:59:59.000Z

434

Quantum dynamics of two-optical modes and a single mechanical mode optomechanical system: selective energy exchange  

E-Print Network [OSTI]

We study the quantum dynamics of an optomechanical setup comprising two optical modes and one mechanical mode. We show that the same system can undergo a Dicke-Hepp-Lieb superradiant type phase transition. We found that the coupling between the momentum quadratures of the two optical fields give rise to a new critical point. We show that selective energy exchange between any two modes is possible by coherent control of the coupling parameters. In addition we also demonstrate the occurrence of Normal Mode Splitting (NMS) in the mechanical displacement spectrum.

Neha Aggarwal; Aranya B Bhattacherjee

2013-02-06T23:59:59.000Z

435

Solution-Verified Reliability Analysis and Design of Compliant Micro-Electro-Mechanical Systems  

E-Print Network [OSTI]

- strated by application to design optimization of microelectromechanical systems (MEMS), devices for which Pre-fabrication design optimization of microelectromechanical systems (MEMS) is an important emerging

436

MS in Mechanical Engineering with a certificate in Energy Systems Engineering  

E-Print Network [OSTI]

ATMS 420 Atmospheric Chemistry ATMS 421 Earth Systems Modeling ATMS 425 Air Quality Modeling ATMS 447

Thomas, Brian G.

437

Co-simulation for performance prediction of integrated building and HVAC systems -An analysis of solution  

E-Print Network [OSTI]

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis performance simulation of buildings and heating, ventilation and air- conditioning (HVAC) systems can help, heating, ventilation and air-conditioning (HVAC) systems are responsible for 10%-60% of the total building

438

Enthalpy Wheels Come of Age: Applying Energy Recovery Ventilation to Hospitality Venues in Hot, Humid Climate  

E-Print Network [OSTI]

ventilation to hospitality venues in hot, humid climates need not be complex. This paper proposes guidelines that can facilitate application of the technology by specifiers or other construction professionals. These guidelines address evaluation of typical...

Wellford, B. W.

2000-01-01T23:59:59.000Z

439

Recommendations for the analysis and design of naturally ventilated buildings in urban areas  

E-Print Network [OSTI]

The motivation behind this work was to obtain a better understanding of how a building's natural ventilation potential is affected by the complexities introduced by the urban environment. To this end, we have derived in ...

Truong, Phan Hue

2012-01-01T23:59:59.000Z

440

Study of natural ventilation design by integrating the multi-zone model with CFD simulation  

E-Print Network [OSTI]

Natural ventilation is widely applied in sustainable building design because of its energy saving, indoor air qualify and indoor thermal environment improvement. It is important for architects and engineers to accurately ...

Tan, Gang, 1974-

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Control of the microclimate around the head with opposing jet local ventilation  

E-Print Network [OSTI]

ventilation application. Healthy Buildings 2003, Singapore.21 (1996) 427-436. Healthy Buildings 2009, September 13-17,distance is 1.20m. Healthy Buildings 2009, September 13-17,

Liu, Chonghui; Higuchi, Hiroshi; Arens, Edward; Zhang, Hui Ph.D

2009-01-01T23:59:59.000Z

442

A New Empirical Model for Predicting Single-Sided, Wind-Driven Natural Ventilation in Buildings  

E-Print Network [OSTI]

in the United States, with a significant part of this energy being used to cool buildings [1]. As green buildings are becoming a trend in building design, natural ventilation has been drawing much attention

Chen, Qingyan "Yan"

443

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network [OSTI]

scaling the passive stack diameter with house size (floora single-story house ventilated by a passive stack with andTable 1: Passive stack diameters scaling with house size

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

444

The Potential for Wind Induced Ventilation to Meet Occupant Comfort Conditions  

E-Print Network [OSTI]

This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available...

Byrne, S. J.; Huang, Y. J.; Ritschard, R. L.; Foley, D. M.

1985-01-01T23:59:59.000Z

445

Optomechanical effects of two-level systems in a back-action evading measurement of micro-mechanical motion  

SciTech Connect (OSTI)

We show that the two-level systems (TLS) in lithographic superconducting circuits act as a power-dependent dielectric leading to non-linear responses in a parametrically coupled electromechanical system. Driven TLS shift the microwave resonance frequency and modulate the mechanical resonance through the optical spring effect. By pumping with two tones in a back-action evading measurement, these effects produce a mechanical parametric instability which limits single quadrature imprecision to 1.4 x{sub zp}. The microwave resonator noise is also consistent to a TLS-noise model. These observations suggest design strategies for minimizing TLS effects to improve ground-state cooling and quantum non-demolition measurements of motion.

Suh, J.; Weinstein, A. J.; Schwab, K. C. [Applied Physics, California Institute of Technology, Pasadena, California 91125 (United States)] [Applied Physics, California Institute of Technology, Pasadena, California 91125 (United States)

2013-07-29T23:59:59.000Z

446

Project title: Natural ventilation, solar heating and integrated low-energy building design  

E-Print Network [OSTI]

emissions targets. That is why the Cambridge-MIT Institute set up a project to design buildings that consume less energy. The Challenge Their work focuses on the design of energy efficient buildings that use natural ventilation processes, solar... Awards E-stack brings a breath of fresh air to UK schools HOME ABOUT US FUNDING OPPORTUNITIES PROJECTS EDUCATION NEWS EVENTS DOWNLOADS CONTACT US PROJECTS Natural Ventilation Solar Heating and Integrated Low-Energy Building Design SEARCH: Go Page 1...

2009-07-10T23:59:59.000Z

447

Improving Domotic Services Combining a Dialog System and a Resident Tracking System  

E-Print Network [OSTI]

equip a house nowadays include: alarm systems, HVAC systems (Heating, Ventilation, and Air Conditioning, consider a lights remote control: if the resident has a wireless remote control with which he can control

Instituto de Sistemas e Robotica

448

Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls  

DOE Patents [OSTI]

An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

Skeist, S. Merrill; Baker, Richard H.

2006-01-10T23:59:59.000Z

449

Development of Mechanical Systems for Automated Medical Slide Specimen Storage and Retrieval  

E-Print Network [OSTI]

and intriguing considering that improving medical systems can save the lives of patients. The Intelligent System and Automation Laboratory at the University of Kansas has created a prototype machine with the goal of making the process of medical slide specimen...

Wurtz, Joshua James

2014-05-31T23:59:59.000Z

450

Mechanical development of an actuation system for a parabolic solar trough collector  

E-Print Network [OSTI]

This thesis documents my personal contribution to the development of a hydraulic-based actuation system for a solar trough collector. The goal of this project was to design the actuation system using hydraulic actuators ...

Carrillo, Juan Felipe (Carrillo Salazar)

2013-01-01T23:59:59.000Z

451

Statistical mechanical theory for the structure of steady state systems: Application to a Lennard-Jones fluid with applied temperature gradient  

E-Print Network [OSTI]

Statistical mechanical theory for the structure of steady state systems: Application to a Lennard-Jones fluid with applied temperature gradient Phil Attard School of Chemistry F11, University of Sydney, New statistical mechanics for inhomogeneous systems may now be applied to determining the structure

Attard, Phil

452

Mechanism of fatigue in micron-scale films of polycrystalline silicon for microelectromechanical systems  

E-Print Network [OSTI]

to Microelectromechanical Systems · ENGR 296A: Design Project (includes a literature review and a report) This program

Ritchie, Robert

453

Energy Code Enforcement Training Manual : Covering the Washington State Energy Code and the Ventilation and Indoor Air Quality Code.  

SciTech Connect (OSTI)

This manual is designed to provide building department personnel with specific inspection and plan review skills and information on provisions of the 1991 edition of the Washington State Energy Code (WSEC). It also provides information on provisions of the new stand-alone Ventilation and Indoor Air Quality (VIAQ) Code.The intent of the WSEC is to reduce the amount of energy used by requiring energy-efficient construction. Such conservation reduces energy requirements, and, as a result, reduces the use of finite resources, such as gas or oil. Lowering energy demand helps everyone by keeping electricity costs down. (It is less expensive to use existing electrical capacity efficiently than it is to develop new and additional capacity needed to heat or cool inefficient buildings.) The new VIAQ Code (effective July, 1991) is a natural companion to the energy code. Whether energy-efficient or not, an homes have potential indoor air quality problems. Studies have shown that indoor air is often more polluted than outdoor air. The VIAQ Code provides a means of exchanging stale air for fresh, without compromising energy savings, by setting standards for a controlled ventilation system. It also offers requirements meant to prevent indoor air pollution from building products or radon.

Washington State Energy Code Program

1992-05-01T23:59:59.000Z

454

Effectiveness of Mechanical Aerationin Floating Aquatic Macrophyte-Based Wastewater Treatment Systems  

E-Print Network [OSTI]

Effectiveness of Mechanical Aerationin Floating Aquatic Macrophyte-Based Wastewater Treatment to evaluate its effect on wastewater treatment effi- ciency andplantgrowth. Light aeration (0.003 and0.021Lnr2 tanks. Heavy aeration (1.03 and 3.53 L nr2 min-1 ) raised wastewater dissolved oxygen(DO) concentrations

Florida, University of

455

Elsevier Editorial System(tm) for Mechanism and Machine Theory Manuscript Draft  

E-Print Network [OSTI]

and tolerancing; variational analysis; thermomechanics; performance criteria; gaz turbine Corresponding Author: Dr: application to a high pressure turbine Article Type: Research Paper Keywords: functional dimensioning into account: application to a high pressure turbine as a research paper for the regular Mechanism and Machine

Paris-Sud XI, Université de

456

Revised June 29, 2010 1 Mechanical and Systems Engineering Ph.D.  

E-Print Network [OSTI]

Engineering (2) Mechanical Engineering A Master of Science degree in engineering or a related field knowledge in mathematics, physics, and engineering subjects complimentary to the specialization track undergraduate/beginning graduate and determines the student's capability for advanced course work in engineering

Botte, Gerardine G.

457

Department of Mechanical and Nuclear Engineering Fall 2010 Wind Tunnel Automated Bicycle Adjustment System  

E-Print Network [OSTI]

PENN STATE Department of Mechanical and Nuclear Engineering Fall 2010 Wind Tunnel Automated Bicycle with the development of Aerofit's prototype portable wind tunnel used in the aerodynamic testing of bicycles was to automate this adjustment of the bicycle seat and aerobars in order to decrease the time for fitting each

Demirel, Melik C.

458

Department of Mechanical Engineering Spring 2012 HVAC Filter Sensor -Global  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Spring 2012 HVAC Filter Sensor - Global Overview The purpose of this project is to develop a heating, ventilation, and air conditioning (HVAC) monitoring a residential, forced flow, multi-zone HVAC filter needs to be replaced, and then alerts the users

Demirel, Melik C.

459

Department of Mechanical Engineering Fall 2012 Advanced Headrest System for Comfort and Support in Automobile Seats  

E-Print Network [OSTI]

and Support in Automobile Seats Overview Current designs of automobile headrests are uncomfortable vertical and angular adjustment · System was designed to be easily compatible in current automobiles

Demirel, Melik C.

460

The multiple migratory mechanisms of systemically infused mesenchymal stem cells to sites of inflammation  

E-Print Network [OSTI]

Systemically infused mesenchymal stem cells (MSC) are being explored for their immunomodulatory therapeutic potential in multiple inflammatory pathologies. This therapeutic potential has been associated with the ability ...

Teo, Grace Sock Leng

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures  

E-Print Network [OSTI]

previous studies (SJ Emmerich, NISTIR-7212) the generationcity Housing Steven J. Emmerich, Cynthia Howard-Reed, Arpita

Petithuguenin, T.D.P.

2009-01-01T23:59:59.000Z

462

Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches  

E-Print Network [OSTI]

Environment 35: 4531-4543. Emmerich, S. J. (2001). "air quality models (Emmerich 2001) to simple numerical

Sherman, Max

2010-01-01T23:59:59.000Z

463

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network [OSTI]

heating, given the higher cost per KWh for electricity, aaverage cost of electrical energy per kilowatt-hour (kWh) is

Logue, J.M.

2012-01-01T23:59:59.000Z

464

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network [OSTI]

the analysis, most importantly acrolein, NO 2 , and PM 2.5 .concentrations found that acrolein concentrations were onof PM 2.5 , NO 2 , and acrolein requires a substantially

Logue, J.M.

2012-01-01T23:59:59.000Z

465

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network [OSTI]

Lurmann.2010. "Air pollution, health and economic benefits-health impact factors from the literature are used to quantify total harm attributable to indoor air pollution.

Logue, J.M.

2012-01-01T23:59:59.000Z

466

Full-scale study of a building equipped with phase change material wallboards and a multi-layer rack latent heat thermal energy store system  

E-Print Network [OSTI]

-layer rack latent heat thermal energy store system Julien Borderon1 , Joseph Virgone2 , Richard Cantin1 installed as wallboard and as latent heat thermal energy storage system coupled with the ventilation system for the ventilation air is efficient. INTRODUCTION Nowadays, thermal energy storage systems are one way for reducing

Paris-Sud XI, Université de

467

OBSERVE: Occupancy-Based System for Efficient Reduction of HVAC Energy  

E-Print Network [OSTI]

OBSERVE: Occupancy-Based System for Efficient Reduction of HVAC Energy Varick L. Erickson, Miguel Á & control General Terms Algorithms, Machine Learning, Measurement Keywords Occupancy, HVAC, Ventilation for heating, ventilation, and air-conditioning (HVAC) systems[2]. Studies suggest that 15% to 25% of HVAC

Carreira-Perpiñán, Miguel Á.

468

Optical bistability and cooling of a mechanical oscillator induced by radiation pressure in a hybrid optomechanical system  

E-Print Network [OSTI]

We investigate theoretically the effect of optical feedback from a cavity containing an ultracold two level atomic ensemble, on the bistable behavior shown by mean intracavity optical field and the ground state cooling effect of the mechanical oscillator in an optomechanical cavity resonator. The optical bistability can be controlled by tuning the frequency and power of the single driving laser as well as by varying the atom-cavity coupling strength in the atomic cavity. Study of the cooling of the mechanical oscillator, in both good and bad cavity limits, reveals that the hybrid system is more efficient in cooling in comparison to a generic optomechanical setup, even at room temperature. In essence, our work emphasizes the impact of the coupling with the atomic cavity on the radiation pressure effects in the optomechanical cavity.

Sarma, Bijita

2015-01-01T23:59:59.000Z

469

Phase lag deduced information in photo-thermal actuation for nano-mechanical systems characterization  

SciTech Connect (OSTI)

In photo-thermal actuation, heat is added locally to a micro-cantilever by means of a laser. A fraction of the irradiation is absorbed, yielding thermal stresses and deformations in the structure. Harmonic modulation of the laser power causes the cantilever to oscillate. Moreover, a phase lag is introduced which is very sensitive to the spot location and the cantilever properties. This phase lag is theoretically predicted and experimentally verified. Combined with thermo-mechanical properties of the cantilever and its geometry, the location of the laser spot, the thermal diffusivity, and the layer thicknesses of the cantilever can be extracted.

Bijster, R. J. F., E-mail: roy.bijster@tno.nl; Vreugd, J. de [Department of Optomechatronics, TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Sadeghian, H. [Department of Optomechatronics, TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Department of Precision and Microsystems Engineering, Delft University of Technology, 2628 CD Delft (Netherlands)

2014-08-18T23:59:59.000Z

470

Thermal runaway reaction hazard and decomposition mechanism of the hydroxylamine system  

E-Print Network [OSTI]

of 50 wt% HA/water solutions [7-9]. These studies show that HA decomposition is highly exothermic with a large pressure build-up in a contained environment [8]. The presence of air or oxygen is not necessary to initiate the decomposition because HA... in water are of interest. Several groups have investigated the kinetics and mechanism of the HAN decomposition using various techniques and under different conditions [13-16]. However, due to its highly exothermic and rapid behavior of the reaction...

Wei, Chunyang

2006-10-30T23:59:59.000Z

471

Micro-opto-mechanical switching and tuning for integrated optical systems  

E-Print Network [OSTI]

Integrated optical circuits have the potential to lower manufacturing and operating costs and enhance the functionality of optical systems in a manner similar to what has been achieved by integrating electronic circuits. ...

Nielson, Gregory Nolan, 1974-

2004-01-01T23:59:59.000Z

472

Mechanical development of the actuation system of a parabolic solar trough  

E-Print Network [OSTI]

This thesis documents my personal contribution to the engineering and design of an actuation system with the purpose of rotating a parabolic solar trough to track the sun throughout the day. The primary focus of the design ...

O'Rourke, Conor R. (Conor Rakis)

2011-01-01T23:59:59.000Z

473

Microscopy imaging system and method employing stimulated raman spectroscopy as a contrast mechanism  

DOE Patents [OSTI]

A microscopy imaging system includes a first light source for providing a first train of pulses at a first center optical frequency .omega..sub.1, a second light source for providing a second train of pulses at a second center optical frequency .omega..sub.2, a modulator system, an optical detector, and a processor. The modulator system is for modulating a beam property of the second train of pulses at a modulation frequency f of at least 100 kHz. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of the first train of pulses from the common focal volume by blocking the second train of pulses being modulated. The processor is for detecting, a modulation at the modulation frequency f, of the integrated intensity of the optical frequency components of the first train of pulses to provide a pixel of an image for the microscopy imaging system.

Xie, Xiaoliang Sunney (Lexington, MA); Freudiger, Christian (Boston, MA); Min, Wei (Cambridge, MA)

2011-09-27T23:59:59.000Z

474

Aging mechanisms in the Westinghouse PWR (Pressurized Water Reactor) Control Rod Drive system  

SciTech Connect (OSTI)

An aging assessment of the Westinghouse Pressurized Water Reactor (PWR) Control Rod System (CRD) has been completed as part of the US NRC's Nuclear Plant Aging Research, (NPAR) Program. This study examined the design, construction, maintenance, and operation of the system to determine its potential for degradation as the plant ages. Selected results from this study are presented in this paper. The operating experience data were evaluated to identify the predominant failure modes, causes, and effects. From our evaluation of the data, coupled with an assessment of the materials of construction and the operating environment, we conclude that the Westinghouse CRD system is subject to degradation which, if unchecked, could affect its safety function as a plant ages. Ways to detect and mitigate the effects of aging are included in this paper. The current maintenance for the control rod drive system at fifteen Westinghouse PWRs was obtained through a survey conducted in cooperation with EPRI and NUMARC. The results of the survey indicate that some plants have modified the system, replaced components, or expanded preventive maintenance. Several of these activities have effectively addressed the aging issue. 2 refs., 2 figs., 2 tabs.

Gunther, W.; Sullivan, K.

1991-01-01T23:59:59.000Z

475

Calculating and visualizing the density of states for simple quantum mechanical systems  

E-Print Network [OSTI]

We present a graphical approach to understanding the degeneracy, density of states, and cumulative state number for some simple quantum systems. By taking advantage of basic computing operations we define a straightforward procedure for determining the relationship between discrete quantum energy levels and the corresponding density of states and cumulative level number. The density of states for a particle in a rigid box of various shapes and dimensions is examined and graphed. It is seen that the dimension of the box, rather than its shape, is the most important feature. In addition, we look at the density of states for a multi-particle system of identical bosons built on the single-particle spectra of those boxes. A simple model is used to explain how the $N$-particle density of states arises from the single particle system it is based on.

Declan Mulhall; Matthew Moelter

2014-06-27T23:59:59.000Z

476

Physical process Mechanical mechanisms  

E-Print Network [OSTI]

1 Physical process Generation · Mechanical mechanisms F = m·a · Electric/Magnetic mechanisms F ­ Quadrupoles......shear stress fluctuations ­ High order poles...... phys. interpretation difficult Governing

Berlin,Technische Universität

477

Theoretical Minimum Energy Use of a Building HVAC System  

E-Print Network [OSTI]

This paper investigates the theoretical minimum energy use required by the HVAC system in a particular code compliant office building. This limit might be viewed as the "Carnot Efficiency" for HVAC system. It assumes that all ventilation and air...

Tanskyi, O.

2011-01-01T23:59:59.000Z

478

Flocking of Multi-agent Dynamical Systems Based on Pseudo-leader Mechanism  

E-Print Network [OSTI]

Flocking behavior of multiple agents can be widely observed in nature such as schooling fish and flocking birds. Recent literature has proposed the possibility that flocking is possible even only a small fraction of agents are informed of the desired position and velocity. However, it is still a challenging problem to determine which agents should be informed or have the ability to detect the desired information. This paper aims to address this problem. By combining the ideas of virtual force and pseudo-leader mechanism, where a pseudo-leader represents an agent who can detect the desired information, we propose a scheme for choosing pseudo-leaders in a multi-agent group. The presented scheme can be applied to a multi-agent group even with an unconnected or switching neighbor graph. Experiments are given to show that the methods presented in this paper are of high accuracy and perform well.

Jin Zhou; Wenwu Yu; Xiaoqun Wu; Michael Small; Jun-an Lu

2009-05-07T23:59:59.000Z

479

Continuous Energy Management of the HVAC&R System in an Office Building System Operation and Energy Consumption for the Eight Years after Building Completion  

E-Print Network [OSTI]

The authors continuously studied the energy consumption of a heating, ventilating, air- conditioning and refrigerating (HVAC&R) system in an office for the operation of the system in terms of its expected performance. A fault in the system control...

Akashi, Y.; Shinozaki, M.; Kusuda, R.; Ito, S.

2006-01-01T23:59:59.000Z

480

Worker performance and ventilation in a call center: Analyses of work performance data for registered nurses  

SciTech Connect (OSTI)

We investigated the relationship between ventilation rates and individual work performance in a call center, and controlled for other factors of the indoor environment. We randomized the position of the outdoor air control dampers, and measured ventilation rate, differential (indoor minus outdoor) carbon dioxide ({Delta}CO{sub 2}) concentration, supply air velocity, temperature, humidity, occupant density, degree of under-staffing, shift length, time of day, and time required to complete two different work performance tasks (talking with clients and post-talk wrap-up to process information). {Delta}CO{sub 2} concentrations ranged from 13 to 611 ppm. We used multi-variable regression to model the association between the predictors and the responses. We found that agents performed talk tasks fastest when the ventilation rate was highest, but that the relationship between talk performance and ventilation was not strong or monotonic. We did not find a statistically significant association between wrap-up performance and ventilation rate. Agents were slower at the wrap-up task when the temperature was high (>25.4 C). Agents were slower at wrap-up during long shifts and when the call center was under-staffed.

Federspiel, C.C.; Fisk, W.J.; Price, P.N.; Liu, G.; Faulkner, D.; Dibartolomeo, D.L.; Sullivan, D.P.; Lahiff, M.

2004-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "mechanical ventilation systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Experimental Determination of ETS Particle Deposition in a Low Ventilation Room  

SciTech Connect (OSTI)

Deposition on indoor surfaces is an important removal mechanism for tobacco smoke particles. We report measurements of deposition rates of environmental tobacco smoke particles in a room-size chamber. The deposition rates were determined from the changes in measured concentrations by correcting for the effects of coagulation and ventilation. The air flow turbulent intensity parameter was determined independently by measuring the air velocities in the chamber. Particles with diameters smaller than 0.25 {micro}m coagulate to form larger particles of sizes between 0.25-0.5 {micro}m. The effect of coagulation on the particles larger than 0.5 {micro}m was found to be negligible. Comparison between our measurements and calculations using Crump and Seinfeld's theory showed smaller measured deposition rates for particles from 0.1 to 0.3 {micro}m in diameter and greater measured deposition rates for particles larger than 0.6 {micro}m at three mixing intensities. Comparison of Nazaroff and Cass model for natural convection flow showed good agreement with the measurements for particles larger than 0.1 {micro}m in diameter, however, measured deposition rates exceeded model prediction by a factor of approximately four for particles in size range 0.05-0.1 {micro}m diameter. These results were used to predict deposition of sidestream smoke particles on interior surfaces. Calculations predict that in 10 hours after smoking one cigarette, 22% of total sidestream particles by mass will deposit on interior surfaces at 0.03 air change per hour (ACH), 6% will deposit at 0.5 ACH, and 3% will deposit at 1 ACH.

Xu, M.; Nematollahi, M.; Sextro, R.G.; Gadgil, A.J.; Nazaroff, W.W.

1993-05-01T23:59:59.000Z

482

How to Successfully Implement a Knowledge Management System for the Mechanical Engineering Department at Gating Incorporated  

E-Print Network [OSTI]

. With this explosive growth, it has become imperative that Gating Incorporated instill a Knowledge Management System to retain the vast amount of tacit knowledge. New products are critical for consumer product companies, so finding ways to capture the knowledge of a...

Mudd, John

2009-05-15T23:59:59.000Z

483

Low speed control of a DC motor driving a mechanical system with fuzzy adaptive compensation  

E-Print Network [OSTI]

and lubricated sliding junctions. For experiments, an IBM PC, a DSPACE DSP board, SE uLM and Real Time Workshop are used. All three control systems can achieve such a very low sustainable speed as 0.005 rad/sec without stick-slip oscillations, which appear when...

Hyun, Dongyoon

1997-01-01T23:59:59.000Z

484

ASCE Engineering Mechanics Division Conference, Baltimore Maryland, 1999. VIBRATION OF DYNAMIC SYSTEMS UNDER CYCLOSTATIONARY  

E-Print Network [OSTI]

constant statistical properties. Systems like a submarine propeller, a turbine blade and an internal-uniform flow field. For example, as the blades of a gas turbine rotate, they encounter a random velocity field of a turbine blade, one will find a significantly larger maximum displacement over a period than if one uses

Nikolaidis, Efstratios

485

Mechanical Air Distribution Interactions with the House System in Hot and Humid Climates  

E-Print Network [OSTI]

and the resulting air flows that are occurring in our homes. These powerful driving forces or pressures are caused by the fans in HVAC systems and venting appliances. Other contributory factors are today's tight building envelopes. door closure and badly leaking...

Garrett, D. A.

1994-01-01T23:59:59.000Z

486

Computational Studies of the Electronic Structures and Mechanisms of Late Transition Metal Systems  

E-Print Network [OSTI]

that were studied. The first system focuses on the formation of a carbon-bromine bond from the reaction of Ni(Ar)(Br)(pic) (Ar = 2-phenylpyridine, pic = 2-picoloine) with Br2. Unlike the typical behavior of heavier group 10 metals that have a wider range...

Pitts, Amanda

2013-08-27T23:59:59.000Z

487

Multi-Configuration Model Tuning for Precision Opto-Mechanical Systems  

E-Print Network [OSTI]

on a testbed at the MIT Space Systems Lab (SSL) in order to gauge its usefulness. The traditional model tuning will be performed by a colleague in the SSL who will use such methods as trial-and- error parameter updating comments. Thanks to the DOCS team at MIT's SSL, esp

488

SEQUENTIAL REGULARIZATION METHODS FOR SIMULATING MECHANICAL SYSTEMS WITH MANY CLOSED LOOPS  

E-Print Network [OSTI]

discretiza- tion schemes can generally be used, although in many applications in robotics and graphics ASCHER AND PING LIN SIAM J. SCI. COMPUT. c 1999 Society for Industrial and Applied Mathematics Vol. 21- body systems, robot simulation, constraint singularities AMS subject classifications. 65L10, 65L20 PII

Lin, Ping

489

Development of a novel technique to assess the vulnerability of micro-mechanical system components to environmentally assisted cracking.  

SciTech Connect (OSTI)

Microelectromechanical systems (MEMS) will play an important functional role in future DOE weapon and Homeland Security applications. If these emerging technologies are to be applied successfully, it is imperative that the long-term degradation of the materials of construction be understood. Unlike electrical devices, MEMS devices have a mechanical aspect to their function. Some components (e.g., springs) will be subjected to stresses beyond whatever residual stresses exist from fabrication. These stresses, combined with possible abnormal exposure environments (e.g., humidity, contamination), introduce a vulnerability to environmentally assisted cracking (EAC). EAC is manifested as the nucleation and propagation of a stable crack at mechanical loads/stresses far below what would be expected based solely upon the materials mechanical properties. If not addressed, EAC can lead to sudden, catastrophic failure. Considering the materials of construction and the very small feature size, EAC represents a high-risk environmentally induced degradation mode for MEMS devices. Currently, the lack of applicable characterization techniques is preventing the needed vulnerability assessment. The objective of this work is to address this deficiency by developing techniques to detect and quantify EAC in MEMS materials and structures. Such techniques will allow real-time detection of crack initiation and propagation. The information gained will establish the appropriate combinations of environment (defining packaging requirements), local stress levels, and metallurgical factors (composition, grain size and orientation) that must be achieved to prevent EAC.

Enos, David George; Goods, Steven Howard

2006-11-01T23:59:59.000Z

490

Canonical Duality-Triality Theory: Bridge Between Nonconvex Analysis/Mechanics and Global Optimization in Complex Systems  

E-Print Network [OSTI]

Canonical duality-triality is a breakthrough methodological theory, which can be used not only for modeling complex systems within a unified framework, but also for solving a wide class of challenging problems from real-world applications. This paper presents a brief review on this theory, its philosophical origin, physics foundation, and mathematical statements in both finite and infinite dimensional spaces, with emphasizing on its role for bridging the gap between nonconvex analysis/mechanics and global optimization. Special attentions are paid on unified understanding the fundamental difficulties in large deformation mechanics, bifurcation/chaos in nonlinear science, and the NP-hard problems in global optimization, as well as the theorems, methods, and algorithms for solving these challenging problems. Misunderstandings and confusions on some basic concepts, such as objectivity, nonlinearity, Lagrangian, and generalized convexities are discussed and classified. Breakthrough from recent challenges and conceptual mistakes by M. Voisei, C. Zalinescu and his co-worker are addressed. Some open problems and future works in global optimization and nonconvex mechanics are proposed.

David Y Gao; Ning Ruan; Vittorio Latorre

2014-11-26T23:59:59.000Z

491

Kinetics and mechanism of bimolecular electron transfer reaction in quinone-amine systems in micellar solution  

SciTech Connect (OSTI)

Photoinduced electron transfer (ET) reactions between anthraquinone derivatives and aromatic amines have been investigated in sodium dodecyl sulphate (SDS) micellar solutions. Significant static quenching of the quinone fluorescence due to high amine concentration in the micellar phase has been observed in steady-state measurements. The bimolecular rate constants for the dynamic quenching in the present systems k{sub q}{sup TR}, as estimated from the time-resolved measurements, have been correlated with the free energy changes {delta}G{sup 0} for the ET reactions. Interestingly it is seen that the k{sub q}{sup TR} vs {delta}G{sup 0} plot displays an inversion behavior with maximum k{sub q}{sup TR} at around 0.7 eV, a trend similar to that predicted in Marcus ET theory. Like the present results, Marcus inversion in the k{sub q}{sup TR} values was also observed earlier in coumarin-amine systems in SDS and TX-100 micellar solutions, with maximum k{sub q}{sup TR} at around the same exergonicity. These results thus suggest that Marcus inversion in bimolecular ET reaction is a general phenomenon in micellar media. Present observations have been rationalized on the basis of the two-dimensional ET (2DET) theory, which seems to be more suitable for micellar ET reactions than the conventional ET theory. For the quinone-amine systems, it is interestingly seen that k{sub q}{sup TR} vs {delta}G{sup 0} plot is somewhat wider in comparison to that of the coumarin-amine systems, even though the maxima in the k{sub q}{sup TR} vs {delta}G{sup 0} plots appear at almost similar exergonicity for both the acceptor-donor systems. These observations have been rationalized on the basis of the differences in the reaction windows along the solvation axis, as envisaged within the framework of the 2DET theory, and arise due to the differences in the locations of the quinones and coumarin dyes in the micellar phase.

Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

2005-02-22T23:59:59.000Z

492

Laser heating of aqueous samples on a micro-optical-electro-mechanical system  

DOE Patents [OSTI]

A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channel wherein the carrier fluid is not appreciably heated by the laser beam.

Beer, Neil Reginald; Kennedy, Ian

2013-02-05T23:59:59.000Z

493

Laser heating of aqueous samples on a micro-optical-electro-mechanical system  

DOE Patents [OSTI]

A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channel wherein the carrier fluid is not appreciably heated by the laser beam.

Beer, Neil Reginald; Kennedy, Ian

2013-12-17T23:59:59.000Z

494

Worker productivity and ventilation rate in a call center: Analyses of time-series data for a group of workers  

SciTech Connect (OSTI)

In previous studies, increased ventilation rates and reduced indoor carbon dioxide concentrations have been associated with improvements in health at work and increased performance in work-related tasks. Very few studies have assessed whether ventilation rates influence performance of real work. This paper describes part one of a two-part analysis from a productivity study performed in a call center operated by a health maintenance organization. Outside air ventilation rates were manipulated, indoor air temperatures, humidities, and carbon dioxide concentrations were monitored, and worker performance data for advice nurses, with 30-minute resolution, were analyzed via multivariate linear regression to look for an association of performance with building ventilation rate, or with indoor carbon dioxide concentration (which is related to ventilation rate per worker). Results suggest that the effect of ventilation rate on worker performance in this call center was very small (probably less than 1%) or nil, over most of the range of ventilation rate experienced during the study (roughly 12 L s{sup -1} to 48 L s{sup -1} per person). However, there is some evidence suggesting performance improvements of 2% or more when the ventilation rate per person is very high, as indicated by indoor CO{sub 2} concentrations exceeding outdoor concentrations by less than 75 ppm.

Fisk, William J.; Price, Phillip; Faulkner, David; Sullivan, Douglas; Dibartolomeo, Dennis; Federspiel, Cliff; Liu, Gang; Lahiff, Maureen

2002-01-01T23:59:59.000Z

495

For natural ventilation to work, solar gains through the facade needed to be reduced by approximately 80% from  

E-Print Network [OSTI]

Engineers, Inc. Laboratory Consultant: Research Facilities Design Energy Modeling: SOLARC ArchitectureFor natural ventilation to work, solar gains through the facade needed to be reduced--largely due to the enormous ventilation demands and the energy associated with moving and conditioning

Hochberg, Michael

496

On the production mechanism of Sigma-hypernuclear systems in A(K-,pi+-) reactions  

E-Print Network [OSTI]

It is shown that the new data on the excitation energy Eex spectrum of the residual nuclear system in the Sigma-hypernuclear region in the reactions (K-,pi+-) on Be-9 and in the reaction (K-,pi+) on He-4 and C-12 can be described without the supposition on the existence of excited Sigma-hypernuclear states. The basis is formed by a simultaneous consideration of the quasi-free Sigma production and Sigma-nuclear rescattering (elastic and with Sigma -> Lambda conversion) with account of interference of the respective amplitudes. For final decision of the question about the nature of the irregularities in Eex spectrum, it is proposed to study the picture corresponding to the so-called moving complex singularity of the triangle graph with Sigma rescattering: the position and the width of the peak in Eex distribution must appreciably change with momentum transferred from the initial kaon to the final pion.

O. D. Dalkarov; V. M. Kolybasov

1999-01-15T23:59:59.000Z

497

Summary of Field Measurement on UF6 Cylinders Using Electro-Mechanically Cooled Systems  

SciTech Connect (OSTI)

Measurement of the enrichment of solid state UF6 stored within large metal cylinders is a task commonly performed by plant operators and inspectors. The measurement technologies typically used range from low-resolution, high-efficiency sodium iodide detectors to high-resolution, moderate-efficiency high-purity germanium (HPGe) detectors. The technology used and methods deployed are dependent upon the material being measured, environmental conditions, time constraints, and measurement-precision requirements. Operators and inspectors typically use specially designed, HPGe detectors that are cooled with liquid nitrogen in situations where high-resolution measurements are required. However, the requirement for periodically refilling the system with liquid nitrogen makes remote usage cumbersome and slow. The task of cooling the detector reduces the available time for the inspector to perform other safeguards activities while on site. If the inspector has to reduce the count time for each selected cylinder to ensure that all preselected cylinders are measured during the inspection, the resulting measurement uncertainties may be increased, making it more difficult to detect and verify potential discrepancies in the operator's declarations. However, recent advances in electromechanically cooled HPGe detectors may provide the inspector with an improved verification tool by eliminating the need for liquid nitrogen. This report provides a summary of test results for field measurements performed using electromechanically cooled HPGe detectors on depleted, natural, and low-enriched uranium cylinders. The results of the study provide valuable information to inspectors and operators regarding the capabilities and limitations of electromechanically cooled systems based on true field-measurement conditions.

McGinnis, Brent R [ORNL; Smith, Steven E [ORNL; Solodov, Alexander A [ORNL; Whitaker, J Michael [ORNL; Morgan, James B [ORNL; MayerII, Richard L. [USEC, Inc.; Montgomery, J. Brent [U.S. Enrichment Corporation Paducah Gaseous Diffusion Plant

2009-01-01T23:59:59.000Z

498

Evaporation-Driven Fast Crystallization of 3D Micro- and Nano-particle Assemblies via Micro Mechanical Systems  

E-Print Network [OSTI]

Deposition Means, Microelectromechanical Systems, Journalvarious MEMS (microelectromechanical systems) applicationsin Bio-MEMS (microelectromechanical systems), chromatography

Choi, Sun

2012-01-01T23:59:59.000Z

499

Mechanical characterization of thin TiO{sub 2} films by means of microelectromechanical systems-based cantilevers  

SciTech Connect (OSTI)

The measurement of mechanical parameters by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, especially when dealing with thin films, which are extensively used in microfabrication technology and nanotechnology. In this work, microelectromechanical systems (MEMS)-based piezoresistive cantilevers were realized and used for the determination of Young's modulus and residual stress of thin titanium dioxide (TiO{sub 2}) deposited by sputtering from a TiO{sub 2} target using a rf plasma discharge. Films were deposited at different thicknesses, ranging from a few to a hundred nanometers. Dedicated silicon microcantilevers were designed through an optimization of geometrical parameters with the development of analytical as well as numerical models. Young's modulus and residual stress of sputtered TiO{sub 2} films were assessed by using both mechanical characterization based on scanning profilometers and piezoresistive sensing elements integrated in the silicon cantilevers. Results of MEMS-based characterization were combined with the tribological and morphological properties measured by microscratch test and x-ray diffraction analysis.

Adami, A.; Decarli, M.; Bartali, R.; Micheli, V.; Laidani, N.; Lorenzelli, L. [FBK-CMM: Fondazione Bruno Kessler-Center for Materials and MicroSystems, via Sommarive 18, Trento 38123 (Italy)

2010-01-15T23:59:59.000Z

500

Generic Mechanism of Optimal Energy Transfer Efficiency: A Scaling Theory of the Mean First Passage Time in Exciton Systems  

E-Print Network [OSTI]

An asymptotic scaling theory is presented using the conceptual basis of trapping-free subspace (i.e., orthogonal subspace) to establish the generic mechanism of optimal efficiency of excitation energy transfer (EET) in light-harvesting systems. Analogous to Kramers' turnover in classical rate theory, the enhanced efficiency in the weak damping limit and the suppressed efficiency in the strong damping limit define two asymptotic scaling regimes, which are interpolated to predict the functional form of optimal efficiency of the trapping-free subspace. In the presence of static disorder, the scaling law of transfer time with respect to dephasing rate changes from linear to square root, suggesting a weaker dependence on the environment. Though formulated in the context of EET, the analysis and conclusions apply in general to open quantum processes, including electron transfer, fluorescence emission, and heat conduction.

Wu, Jianlan; Silbey, Robert J

2013-01-01T23:59:59.000Z