National Library of Energy BETA

Sample records for measuring testing analyzing

  1. RGA-5 process gas analyzer test report

    SciTech Connect (OSTI)

    Weamer, J.L.

    1994-11-09

    The gas monitoring system, GMS-2, includes two gas monitors. GC-2 measures high hydrogen concentrations (0.2--10%) and GC-3 measures the lower concentration levels (10--100 ppm). Although redundant instruments are in place for accurately measuring the higher hydrogen concentrations, there are no redundant instruments to accurately measure the relatively low baseline hydrogen concentrations. The RGA-5 process gas analyzer is a two-column GC that will replace GC-2 and provide redundancy for GC-3. This upgrade will provide faster response time and reduce tank farm entries for routine operations because the RGA-5 is remotely operable. Tests were conducted according to WHC-SD-WM-TP-262, RGA-5 Process Gas Analyzer Test Plan. The first objective was to verify that the vendor-supplied RGA host data acquisition software allowed communication between the RGA-5 and an ISA bus personal computer. The second objective was to determine the capabilities of the RGA-5 process gas analyzer. The tests did the following: with a constant flow rate and pressure, determined the concentration range that each column can accurately and precisely measure; identified any uncorrected interferences from other tank gases such as ammonia, nitrous oxide, or methane; and determined the response and decay time.

  2. Stackable differential mobility analyzer for aerosol measurement

    DOE Patents [OSTI]

    Cheng, Meng-Dawn; Chen, Da-Ren

    2007-05-08

    A multi-stage differential mobility analyzer (MDMA) for aerosol measurements includes a first electrode or grid including at least one inlet or injection slit for receiving an aerosol including charged particles for analysis. A second electrode or grid is spaced apart from the first electrode. The second electrode has at least one sampling outlet disposed at a plurality different distances along its length. A volume between the first and the second electrode or grid between the inlet or injection slit and a distal one of the plurality of sampling outlets forms a classifying region, the first and second electrodes for charging to suitable potentials to create an electric field within the classifying region. At least one inlet or injection slit in the second electrode receives a sheath gas flow into an upstream end of the classifying region, wherein each sampling outlet functions as an independent DMA stage and classifies different size ranges of charged particles based on electric mobility simultaneously.

  3. Expert system for analyzing eddy current measurements

    DOE Patents [OSTI]

    Levy, Arthur J.; Oppenlander, Jane E.; Brudnoy, David M.; Englund, James M.; Loomis, Kent C.

    1994-01-01

    A method and apparatus (called DODGER) analyzes eddy current data for heat exchanger tubes or any other metallic object. DODGER uses an expert system to analyze eddy current data by reasoning with uncertainty and pattern recognition. The expert system permits DODGER to analyze eddy current data intelligently, and obviate operator uncertainty by analyzing the data in a uniform and consistent manner.

  4. Analyzing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analyzing the Effect of Different Programming Models Upon Performance and Memory Usage on Cray XT5 Platforms Hongzhang Shan Future Technology Group, Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Haoqiang Jin NAS Division, NASA Arms Research Center, Moffett Field, CA 94035-1000 Karl Fuerlinger University of California at Berkeley, EECS Department, Computer Science Division Berkeley, CA 94720 Alice Koniges, Nicholas J. Wright NERSC, Lawrence Berkeley

  5. Performance testing accountability measurements

    SciTech Connect (OSTI)

    Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.

    1993-12-31

    The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay) measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.

  6. Measuring, Analyzing and Improving Airline Efficiency | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring, Analyzing and Improving Airline Efficiency Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Measuring, Analyzing and Improving Airline Efficiency Michael Durling 2012.09.24 Hello - my name is Mike Durling. I manage the Supervisory Control & Systems Integration Lab at Global Research in Niskayuna, New York.

  7. Electrostatic analyzer measurements of ionospheric thermal ion populations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fernandes, P. A.; Lynch, K. A.

    2016-07-09

    Here, we define the observational parameter regime necessary for observing low-altitude ionospheric origins of high-latitude ion up ow/out ow. We present measurement challenges and identify a new analysis technique which mitigates these impediments. To probe the initiation of auroral ion up ow, it is necessary to examine the thermal ion population at 200{350 km, where typical thermal energies are tenths of eV. Interpretation of the thermal ion distribution function measurement requires removal of payload sheath and ram effects. We use a 3-D Maxwellian model to quantify how observed ionospheric parameters such as density, temperature, and flows affect in situ measurementsmore » of the thermal ion distribution function. We define the viable acceptance window of a typical top-hat electrostatic analyzer in this regime and show that the instrument's energy resolution prohibits it from directly observing the shape of the particle spectra. To extract detailed information about measured particle population, we define two intermediate parameters from the measured distribution function, then use a Maxwellian model to replicate possible measured parameters for comparison to the data. Liouville's theorem and the thin-sheath approximation allow us to couple the measured and modeled intermediate parameters such that measurements inside the sheath provide information about plasma out- side the sheath. We apply this technique to sounding rocket data to show that careful windowing of the data and Maxwellian models allows for extraction of the best choice of geophysical parameters. More widespread use of this analysis technique will help our community expand its observational database of the seed regions of ionospheric outflows.« less

  8. A Semi-automated Commissioning Tool for VAV Air Handling Units:Functional Test Analyzer

    SciTech Connect (OSTI)

    Haves, Philip; Kim, Moosung; Najafi, Massieh; Xu, Peng

    2007-01-01

    A software tool that automates the analysis of functional tests for air-handling units is described. The tool compares the performance observed during manual tests with the performance predicted by simple models of the components under test that are configured using design and of information catalog data. Significant differences between observed and expected performance indicate the presence faults. Fault diagnosis is performed by analyzing the variation of these differences with operating points using expert rules and fuzzy inferencing. The tool has a convenient user interface to facilitate manual entry of measurements made during a test. A graphical display compares the measured and expected performance, highlighting significant differences that indicate the presence of faults. The tool is designed to be used by commissioning providers conducting functional tests as part of either new building commissioning or retrocommissioning as well as by building owners and operators conducting routine tests to check the performance of their HVAC systems. This paper describes the input data requirements of the tool, the software structure, and the graphical interface and summarizes the development and testing process used.

  9. Accurately Analyzing Malaria Tests a Matter of Life and Death | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Accurately Analyzing Malaria Tests in Difficult Conditions is a Matter of Life and Death Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Accurately Analyzing Malaria Tests in Difficult Conditions is a Matter of Life and Death Ralf Lenigk 2015.02.13 Having lived for several years in Southeast Asia, I

  10. The mechanical design and dynamic testing of the IBEX-H1 electrostatic analyzer spacecraft instrument

    SciTech Connect (OSTI)

    Bernardin, John D; Baca, Allen G

    2009-01-01

    This paper presents the mechanical design, fabrication and dynamic testing of an electrostatic analyzer spacecraft instrument. The functional and environmental requirements combined with limited spacecraft accommodations, resulted in complex component geometries, unique material selections, and difficult fabrication processes. The challenging aspects of the mechanical design and several of the more difficult production processes are discussed. In addition, the successes, failures, and lessons learned from acoustic and random vibration testing of a full-scale prototype instrument are presented.

  11. SPARTA Stochastic Particle Real Time Analyzer Validation and Verification Test Suite.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Koehler, Timothy; Plimpton, Steven J.

    2014-10-01

    This report presents the test cases used to verify, validate and demonstrate the features and capabilities of the first release of the 3D Direct Simulation Monte Carlo ( DSMC ) code SPARTA (Stochastic Real Time Particle Analyzer). The test cases included in this report exercise the most critical capabilities of the code like the accurate representation of physical phenomena (molecular advection and collisions, energy conservation , etc.) and implementation of numerical methods (grid adaptation, load balancing, etc.) . Several test cases of simple flow examples are shown to demonstrate that the code can reproduce phenomena predicted by an alytical solutions and theory. A number of add itional test cases are presented to illustrate the ability of SPARTA to model flow around complicated shapes. In these cases, the results are compared to other well - est ablished codes or theoretical predictions. This compi lation of test cases is not exha u s t ive , and it is anticipated that more cases will be added in the future.

  12. Apparatus for measuring resistance change only in a cell analyzer and method for calibrating it

    DOE Patents [OSTI]

    Hoffman, Robert A.

    1980-01-01

    The disclosure relates to resistance only monitoring and calibration in an electrical cell analyzer. Sample and sheath fluid flows of different salinities are utilized, the sample flow being diameter modulated to produce a selected pattern which is compared to the resistance measured across the flows.

  13. Analyzing product test data in a relational database using SAS software

    SciTech Connect (OSTI)

    Orman, J.L.

    1991-01-01

    SAS software is being used to analyze product test data stored in an INGRES relational database. The database has been implemented at Allied-Signal in Kansas City on a Digital Equipment Corporation (DEC) VAX computer. The INGRES application development has been a joint project between Sandia National Laboratories and Allied-Signal. Application screens have been developed so that the user can query the database for selected data. Fourth generation language procedures are used to retrieve all data requested. FORTRAN and VAX/VMS DCL (DIGITAL Control Language) procedures are invoked from the application to create SAS data sets and dynamically build SAS programs that are executed to build custom reports or graphically display the retrieved test data along with control and specification limits. A retrieval screen has also been developed which invokes SAS software to calculate the mean and standard deviation of the retrieved data. These parameters are passed back into the application for display and may then be used as an aid in setting new control limits for future test runs. Screens have been developed to provide an interface for the user to select from a library of SAS programs, edit the selected program, and run the program with a user-defined SAS data set as input. This paper will give a brief description of the application screens and provide details of how information is passed between the application and SAS programs.

  14. Cold Test Measurements on the GTF Prototype RF Gun

    SciTech Connect (OSTI)

    Gierman, S.M.

    2010-12-03

    The SSRL Gun Test Facility (GTF) was built to develop a high brightness electron injector for the LCLS and has been operational since 1996. Based on longitudinal phase space measurements showing a correlated energy spread the gun was removed and re-characterized in 2002. The low power RF measurements performed on the gun are described below. Perturbative bead measurements were performed to determine the field ratio in the two-cell gun, and network analyzer measurements were made to characterize the mode structure. A second probe was installed to monitor the RF field in the first cell, and a diagnostic was developed to monitor the high-power field ratio. Calibration of the RF probes, a model for analyzing RF measurements, and Superfish simulations of bead and RF measurements are described.

  15. Analyzing degradation effects of organic light-emitting diodes via transient optical and electrical measurements

    SciTech Connect (OSTI)

    Schmidt, Tobias D. Jger, Lars; Brtting, Wolfgang; Noguchi, Yutaka; Ishii, Hisao

    2015-06-07

    Although the long-term stability of organic light-emitting diodes (OLEDs) under electrical operation made significant progress in recent years, the fundamental underlying mechanisms of the efficiency decrease during operation are not well understood. Hence, we present a comprehensive degradation study of an OLED structure comprising the well-known green phosphorescent emitter Ir(ppy){sub 3}. We use transient methods to analyze both electrical and optical changes during an accelerated aging protocol. Combining the results of displacement current measurements with time-resolved investigation of the excited states lifetimes of the emitter allows for a correlation of electrical (e.g., increase of the driving voltage due to trap formation) and optical (e.g., decrease of light-output) changes induced by degradation. Therewith, it is possible to identify two mechanisms resulting in the drop of the luminance: a decrease of the radiative quantum efficiency of the emitting system due to triplet-polaron-quenching at trapped charge carriers and a modified charge carrier injection and transport, as well as trap-assisted non-radiative recombination resulting in a deterioration of the charge carrier balance of the device.

  16. Measurement of Diameter Changes during Irradiation Testing

    SciTech Connect (OSTI)

    Davis, K. L.; Knudson, D. L.; Crepeau, J. C.; Solstad, S.

    2015-03-01

    New materials are being considered for fuel, cladding, and structures in advanced and existing nuclear reactors. Such materials can experience significant dimensional and physical changes during irradiation. Currently in the US, such changes are measured by repeatedly irradiating a specimen for a specified period of time and then removing it from the reactor for evaluation. The time and labor to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and handling may disturb the phenomena of interest. In-pile detection of changes in geometry is sorely needed to understand real-time behavior during irradiation testing of fuels and materials in high flux US Material and Test Reactors (MTRs). This paper presents development results of an advanced Linear Variable Differential Transformer-based test rig capable of detecting real-time changes in diameter of fuel rods or material samples during irradiation in US MTRs. This test rig is being developed at the Idaho National Laboratory and will provide experimenters with a unique capability to measure diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  17. Time-of-flight energy analyzer for the plasma potential measurements by a heavy ion beam diagnostic

    SciTech Connect (OSTI)

    Nedzelskiy, I.S.; Malaquias, A.; Goncalves, B.; Silva, C.; Varandas, C.A.F.; Cabral, J.A.C.

    2004-10-01

    A time-of-flight (TOF) technique for the plasma potential measurements by a heavy ion beam diagnostic (HIBD) with a multiple cell array detector has been elaborated on tokamak ISTTOK as an alternative to the traditional electrostatic energy analyzer. This article describes the design and operation of a four-channel TOF energy analyzer (TOFEA). First results of plasma potential measurements by TOFEA are presented proving the feasibility of this technique in experiments with HIBD.

  18. Study on space charge effect in an electrostatic ion analyzer applied to measure laser produced ions

    SciTech Connect (OSTI)

    Jin, Q. Y.; Li, Zh. M.; Liu, W.; Zhao, H. Y. Sha, S.; Zhang, J. J.; Zhang, X. Zh.; Sun, L. T.; Zhao, H. W.

    2014-03-15

    The abundance of different ions produced by laser ion sources is usually analyzed by an electrostatic ion analyzer (EIA). Ion current intensities in the range of several mA/cm{sup 2} at the position of the EIA have been achieved from the laser ion source developed by the Institute of Modern Physics; this indicates that a noticeable influence of space charge effect during the ion transmission will occur. Hence, while the parameters of the EIA or the beams are changed, such as ion species, current intensity, the ions’ transmission efficiency through the EIA is different, which will result in an uncertainty in the estimation of the ions’ yields. Special attention is focused on this issue in this paper. Ion's transmissions through the EIA under different circumstances are studied with simulations and experiments, the results of which are consistent with each other.

  19. Underground Flow Measurement and Particle Release Test | Department...

    Office of Environmental Management (EM)

    Underground Flow Measurement and Particle Release Test Underground Flow Measurement and Particle Release Test This document was used to determine facts and conditions during the ...

  20. Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Presented at the PV Module ...

  1. Test device for measuring permeability of a barrier material...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Test device for measuring permeability of a ... Marketing Summary: Electrical Calcium Test for Measuring Barrier Permeability ...

  2. CRAD, Measuring and Testing Equipment Assessment Plan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measuring and Testing Equipment Assessment Plan CRAD, Measuring and Testing Equipment Assessment Plan Performance Objective: The objective of this assessment is to determine ...

  3. TEST DEVICE FOR MEASURING PERMEABILITY OF A BARRIER MATERIAL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partners (27) Visual Patent Search Success Stories Return to Search TEST DEVICE FOR ... Transfer Website Abstract: A test device for measuring permeability of a barrier material. ...

  4. Pressure Change Measurement Leak Testing Errors

    SciTech Connect (OSTI)

    Pryor, Jeff M; Walker, William C

    2014-01-01

    A pressure change test is a common leak testing method used in construction and Non-Destructive Examination (NDE). The test is known as being a fast, simple, and easy to apply evaluation method. While this method may be fairly quick to conduct and require simple instrumentation, the engineering behind this type of test is more complex than is apparent on the surface. This paper intends to discuss some of the more common errors made during the application of a pressure change test and give the test engineer insight into how to correctly compensate for these factors. The principals discussed here apply to ideal gases such as air or other monoatomic or diatomic gasses; however these same principals can be applied to polyatomic gasses or liquid flow rate with altered formula specific to those types of tests using the same methodology.

  5. A comparison of ion beam measurements by retarding field energy analyzer and laser induced fluorescence in helicon plasma devices

    SciTech Connect (OSTI)

    Gulbrandsen, N. Fredriksen, Å.; Carr, J.; Scime, E.

    2015-03-15

    Both Laser-Induced Fluorescence (LIF) and Retarding Field Energy Analyzers (RFEA) have been applied to the investigation of beams formed in inductively coupled helicon plasmas. While the LIF technique provides a direct measurement of the velocity distribution in the plasma, the RFEA measures ion flux as a function of a retarding potential. In this paper, we present a method to compare the two techniques, by converting the LIF velocity distribution to an equivalent of a RFEA measurement. We applied this method to compare new LIF and RFEA measurements in two different experiments; the Hot Helicon Experiment (HELIX) - Large Experiment on Instabilities and Anisotropies (LEIA) at West Virginia University and Njord at University of Tromsø. We find good agreement between beam energies of the two methods. In agreement with earlier observations, the RFEA is found to measure ion beams with densities too low for the LIF to resolve. In addition, we present measurements of the axial development of the ion beam in both experiments. Beam densities drop exponentially with distance from the source, both in LIF and RFEA measurements. The effective quenching cross section from LIF in LEIA is found to be σ{sub b,*}=4×10{sup −19} m{sup 2}, and the effective beam collisional cross sections by RFEA in Njord to be σ{sub b}=1.7×10{sup −18} m{sup 2}.

  6. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source

    SciTech Connect (OSTI)

    Malapit, Giovanni M.; Mahinay, Christian Lorenz S.; Poral, Matthew D.; Ramos, Henry J.

    2012-02-15

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into the data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.

  7. Test device for measuring permeability of a barrier material

    SciTech Connect (OSTI)

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  8. Electrical Calcium Test for Measuring Barrier Permeability - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Electrical Calcium Test for Measuring Barrier Permeability National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication Electrical Calcium Test for Measuring Barrier Permeability, Webinar Presentation by Arrelaine A. Dameron (7,247 KB) PDF Document Publication NREL's e-Ca Test: A Scalable, High-Sensitivity Water Permeation Measurement Methodology (511

  9. Development of a system to perform, record, and analyze measurements of radon concentrations on a large scale. Master's thesis

    SciTech Connect (OSTI)

    Pierce, W.D.

    1990-10-01

    A system to process large numbers of radon samples of buildings on Wright-Patterson AFB was developed. The method for measuring the radon concentrations indoors have been developed previously by AFIT students; however, an integrated system was required to not only collect data but save and access data as well. A survey form based on the EPA's national radon survey form was designed and used to gather information on each building, including possible radon sources and methods of distribution. A large database was set up to facilitate storage of the information collected. Several programs were written to handle input, manipulation, and output of the data. A general user's manual was written to explain how the entire system and each program may be used. Some base buildings were tested and evaluated for indoor radon concentrations, in order to demonstrate the operation of the system. Most buildings tested had radon concentrations below the EPA's action level.

  10. Analyzing source apportioned methane in northern California during Discover-AQ-CA using airborne measurements and model simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Matthew S.; Yates, Emma L.; Iraci, Laura T.; Loewenstein, Max; Tadić, Jovan M.; Wecht, Kevin J.; Jeong, Seongeun; Fischer, Marc L.

    2014-12-01

    This study analyzes source apportioned methane (CH4) emissions and atmospheric mixing ratios in northern California during the Discover-AQ-CA field campaign using airborne measurement data and model simulations. Source apportioned CH4 emissions from the Emissions Database for Global Atmospheric Research (EDGAR) version 4.2 were applied in the 3-D chemical transport model GEOS-Chem and analyzed using airborne measurements taken as part of the Alpha Jet Atmospheric eXperiment over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV). During the time period of the Discover-AQ-CA field campaign EDGAR inventory CH4 emissions were ~5.30 Gg day –1 (Gg = 1.0 ×more » 109 g) (equating to ~1.90 × 103 Gg yr–1) for all of California. According to EDGAR, the SFBA and northern SJV region contributes ~30% of total CH4 emissions from California. Source apportionment analysis during this study shows that CH4 mixing ratios over this area of northern California are largely influenced by global emissions from wetlands and local/global emissions from gas and oil production and distribution, waste treatment processes, and livestock management. Model simulations, using EDGAR emissions, suggest that the model under-estimates CH4 mixing ratios in northern California (average normalized mean bias (NMB) = –5.2% and linear regression slope = 0.20). The largest negative biases in the model were calculated on days when large amounts of CH4 were measured over local emission sources and atmospheric CH4 mixing ratios reached values >2.5 parts per million. Sensitivity emission studies conducted during this research suggest that local emissions of CH4 from livestock management processes are likely the primary source of the negative model bias. These results indicate that a variety, and larger quantity, of measurement data needs to be obtained and additional research is necessary to better quantify source apportioned CH4 emissions in California.« less

  11. Analyzing source apportioned methane in northern California during Discover-AQ-CA using airborne measurements and model simulations

    SciTech Connect (OSTI)

    Johnson, Matthew S.; Yates, Emma L.; Iraci, Laura T.; Loewenstein, Max; Tadić, Jovan M.; Wecht, Kevin J.; Jeong, Seongeun; Fischer, Marc L.

    2014-12-01

    This study analyzes source apportioned methane (CH4) emissions and atmospheric mixing ratios in northern California during the Discover-AQ-CA field campaign using airborne measurement data and model simulations. Source apportioned CH4 emissions from the Emissions Database for Global Atmospheric Research (EDGAR) version 4.2 were applied in the 3-D chemical transport model GEOS-Chem and analyzed using airborne measurements taken as part of the Alpha Jet Atmospheric eXperiment over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV). During the time period of the Discover-AQ-CA field campaign EDGAR inventory CH4 emissions were ~5.30 Gg day –1 (Gg = 1.0 × 109 g) (equating to ~1.90 × 103 Gg yr–1) for all of California. According to EDGAR, the SFBA and northern SJV region contributes ~30% of total CH4 emissions from California. Source apportionment analysis during this study shows that CH4 mixing ratios over this area of northern California are largely influenced by global emissions from wetlands and local/global emissions from gas and oil production and distribution, waste treatment processes, and livestock management. Model simulations, using EDGAR emissions, suggest that the model under-estimates CH4 mixing ratios in northern California (average normalized mean bias (NMB) = –5.2% and linear regression slope = 0.20). The largest negative biases in the model were calculated on days when large amounts of CH4 were measured over local emission sources and atmospheric CH4 mixing ratios reached values >2.5 parts per million. Sensitivity emission studies conducted during this research suggest that local emissions of CH4 from livestock management processes are likely the primary source of the negative model bias. These results indicate that a variety, and larger quantity, of measurement data needs to be

  12. On-site cable testing with a resonant test set and an additional partial discharge measurement

    SciTech Connect (OSTI)

    Schichler, U.; Borsi, H.; Gockenbach, E.

    1996-12-31

    With an on-site voltage test it is possible to evaluate polymer insulated cables after laying, repairing or some years in operation. The on-site cable testing can be done easily with frequency tuned series resonant test sets which are still available for testing of medium and high voltage cables. Some tested cables failed after a short time in operation although they had passed the previous voltage test without breakdown. A combination of the voltage test with an additional partial discharge (PD) measurement can increase the test efficiency, but the on-site PD measurement has a lot of difficulties caused by ambient noise. The paper describes results of on-site medium voltage cable testing with a frequency tuned resonant test set and an additional PD measurement with a special PD measuring system.

  13. A numerical study of geometry dependent errors in velocity, temperature, and density measurements from single grid planar retarding potential analyzers

    SciTech Connect (OSTI)

    Davidson, R. L.; Earle, G. D.; Heelis, R. A.; Klenzing, J. H.

    2010-08-15

    Planar retarding potential analyzers (RPAs) have been utilized numerous times on high profile missions such as the Communications/Navigation Outage Forecast System and the Defense Meteorological Satellite Program to measure plasma composition, temperature, density, and the velocity component perpendicular to the plane of the instrument aperture. These instruments use biased grids to approximate ideal biased planes. These grids introduce perturbations in the electric potential distribution inside the instrument and when unaccounted for cause errors in the measured plasma parameters. Traditionally, the grids utilized in RPAs have been made of fine wires woven into a mesh. Previous studies on the errors caused by grids in RPAs have approximated woven grids with a truly flat grid. Using a commercial ion optics software package, errors in inferred parameters caused by both woven and flat grids are examined. A flat grid geometry shows the smallest temperature and density errors, while the double thick flat grid displays minimal errors for velocities over the temperature and velocity range used. Wire thickness along the dominant flow direction is found to be a critical design parameter in regard to errors in all three inferred plasma parameters. The results shown for each case provide valuable design guidelines for future RPA development.

  14. Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps2_epfl_galliano.pdf (448.66 KB) More Documents & Publications Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Hail Impact Testing on Crystalline Si Modules with Flexible Packaging

  15. Resistivity measurements before and after injection Test 5 at...

    Open Energy Info (EERE)

    measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Resistivity...

  16. ABSORPTION ANALYZER

    DOE Patents [OSTI]

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  17. Robust Design of Reliability Test Plans Using Degradation Measures.

    SciTech Connect (OSTI)

    Lane, Jonathan Wesley; Lane, Jonathan Wesley; Crowder, Stephen V.; Crowder, Stephen V.

    2014-10-01

    With short production development times, there is an increased need to demonstrate product reliability relatively quickly with minimal testing. In such cases there may be few if any observed failures. Thus, it may be difficult to assess reliability using the traditional reliability test plans that measure only time (or cycles) to failure. For many components, degradation measures will contain important information about performance and reliability. These measures can be used to design a minimal test plan, in terms of number of units placed on test and duration of the test, necessary to demonstrate a reliability goal. Generally, the assumption is made that the error associated with a degradation measure follows a known distribution, usually normal, although in practice cases may arise where that assumption is not valid. In this paper, we examine such degradation measures, both simulated and real, and present non-parametric methods to demonstrate reliability and to develop reliability test plans for the future production of components with this form of degradation.

  18. Rocky Flats CAAS System Recalibrated, Retested, and Analyzed to Install in the Criticality Experiments Facility at the Nevada Test Site

    SciTech Connect (OSTI)

    Kim, S; Heinrichs, D; Biswas, D; Huang, S; Dulik, G; Scorby, J; Boussoufi, M; Liu, B; Wilson, R

    2009-05-27

    Neutron detectors and control panels transferred from the Rocky Flats Plant (RFP) were recalibrated and retested for redeployment to the CEF. Testing and calibration were successful with no failure to any equipment. Detector sensitivity was tested at a TRIGA reactor, and the response to thermal neutron flux was satisfactory. MCNP calculated minimum fission yield ({approx} 2 x 10{sup 15} fissions) was applied to determine the thermal flux at selected detector positions at the CEF. Thermal flux levels were greater than 6.39 x 10{sup 6} (n/cm{sup 2}-sec), which was about four orders of magnitude greater than the minimum alarm flux. Calculations of detector survivable distances indicate that, to be out of lethal area, a detector needs to be placed greater than 15 ft away from a maximum credible source. MCNP calculated flux/dose results were independently verified by COG. CAAS calibration and the testing confirmed that the RFP CAAS system is performing its functions as expected. New criteria for the CAAS detector placement and 12-rad zone boundaries at the CEF are established. All of the CAAS related documents and hardware have been transferred from LLNL to NSTec for installation at the CEF high bay areas.

  19. DIFFERENTIAL ANALYZER

    DOE Patents [OSTI]

    Sorensen, E.G.; Gordon, C.M.

    1959-02-10

    Improvements in analog eomputing machines of the class capable of evaluating differential equations, commonly termed differential analyzers, are described. In general form, the analyzer embodies a plurality of basic computer mechanisms for performing integration, multiplication, and addition, and means for directing the result of any one operation to another computer mechanism performing a further operation. In the device, numerical quantities are represented by the rotation of shafts, or the electrical equivalent of shafts.

  20. ARM: Surface Radiation Measurement Quality Control testing, including climatologically configurable limits

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shi, Yan; Riihimaki, Laura

    1994-01-07

    Surface Radiation Measurement Quality Control testing, including climatologically configurable limits

  1. User's manual for ANALYZE: a variable-rate, multiple-well, least-squares matching routine for well-test analysis

    SciTech Connect (OSTI)

    McEdwards, D.G.; Benson, S.M.

    1981-07-01

    ANALYZE is a history-matching program designed for pressure-transient analysis of well tests in single-phase, fluid-saturated reservoirs. Both interference tests and production tests can be analyzed to yield reservoir transmissivity (kh/..mu..), storativity (phi ch), and hydrologic boundaries. An analytic solution is used to calculate the pressure drawdown/buildup in an idealized reservoir system. A schematic of the basic reservoir/well model assumed by the computational algorithm is shown. The reservoir is assumed to be an isothermal, isotropic, homogeneous, porous medium of constant thickness and infinite areal extent. The production well is modeled as a line source which fully penetrates the reservoir. The flow into the well is radial and uniformly distributed over the height of the well (gravity effects neglected).

  2. Oxygen analyzer

    DOE Patents [OSTI]

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  3. Oxygen analyzer

    DOE Patents [OSTI]

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  4. MULTICHANNEL ANALYZER

    DOE Patents [OSTI]

    Kelley, G.G.

    1959-11-10

    A multichannel pulse analyzer having several window amplifiers, each amplifier serving one group of channels, with a single fast pulse-lengthener and a single novel interrogation circuit serving all channels is described. A pulse followed too closely timewise by another pulse is disregarded by the interrogation circuit to prevent errors due to pulse pileup. The window amplifiers are connected to the pulse lengthener output, rather than the linear amplifier output, so need not have the fast response characteristic formerly required.

  5. Experience with the ground test accelerator beam-measurement instrumentation

    SciTech Connect (OSTI)

    Gilpatrick, J.D.; Johnson, K.F.; Connolly, R.C.; Power, J.F.; Rose, C.R.; Sander, O.R.; Shafer, R.E.; Sandoval, D.P.; Yuan, V.W. )

    1994-10-10

    During the past two years, the Ground Test Accelerator (GTA) has used a variety of off- and on-line beam diagnostic measurements to understand and verify the transverse and longitudinal phase space characteristics of a 35-mA, low-energy (2.5- to 3.2-MeV) H[sup [minus

  6. ETA-NAC007 - Control of Measuring and Test Equipment (M&TE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control of Measuring and Test Equipment (M&TE) Prepared by Electric Transportation ... of calibration standards and Measuring and Test Equipment (M&TE) used for measuring, ...

  7. ETA-UAC07 - Control of Measuring and Test Equipment (M&TE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Control of Measuring and Test Equipment (M&TE)" Prepared by Electric Transportation ... of calibration standards and Measuring and Test Equipment (M&TE) used for measuring, ...

  8. SU-E-T-472: A Multi-Dimensional Measurements Comparison to Analyze a 3D Patient Specific QA Tool

    SciTech Connect (OSTI)

    Ashmeg, S; Jackson, J; Zhang, Y; Oldham, M; Yin, F; Ren, L

    2014-06-01

    Purpose: To quantitatively evaluate a 3D patient specific QA tool using 2D film and 3D Presage dosimetry. Methods: A brain IMRT case was delivered to Delta4, EBT2 film and Presage plastic dosimeter. The film was inserted in the solid water slabs at 7.5cm depth for measurement. The Presage dosimeter was inserted into a head phantom for 3D dose measurement. Delta4's Anatomy software was used to calculate the corresponding dose to the film in solid water slabs and to Presage in the head phantom. The results from Anatomy were compared to both calculated results from Eclipse and measured dose from film and Presage to evaluate its accuracy. Using RIT software, we compared the Anatomy dose to the EBT2 film measurement and the film measurement to ECLIPSE calculation. For 3D analysis, DICOM file of Anatomy was extracted and imported to CERR software, which was used to compare the Presage dose to both Anatomy calculation and ECLIPSE calculation. Gamma criteria of 3% - 3mm and 5% - 5mm was used for comparison. Results: Gamma passing rates of film vs Anatomy, Anatomy vs ECLIPSE and film vs ECLIPSE were 82.8%, 70.9% and 87.6% respectively when 3% - 3mm criteria is used. When the criteria is changed to 5% - 5mm, the passing rates became 87.8%, 76.3% and 90.8% respectively. For 3D analysis, Anatomy vs ECLIPSE showed gamma passing rate of 86.4% and 93.3% for 3% - 3mm and 5% - 5mm respectively. The rate is 77.0% for Presage vs ECLIPSE analysis. The Anatomy vs ECLIPSE were absolute dose comparison. However, film and Presage analysis were relative comparison Conclusion: The results show higher passing rate in 3D than 2D in Anatomy software. This could be due to the higher degrees of freedom in 3D than in 2D for gamma analysis.

  9. In situ radiation measurements at the former Soviet Nuclear Test Site

    SciTech Connect (OSTI)

    Tipton, W.J.

    1996-06-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the former Soviet Nuclear Test Site near Semipalatinsk, Kazakhstan, during the period of July 21-30, 1994. The survey team measured the terrestrial gamma radiation at selected areas on the site to determine the levels of natural and man-made radiation. The survey was part of a cooperative effort between the United States team and teams of radiation scientists from the National Nuclear Center of the Republic of Kazakhstan and the V.G. Khlopin Radium Institute in St. Petersburg, Russia. In addition to in situ radiation measurements made by the United States and Russian teams, soil samples were collected and analyzed by the Russian and Kazakhstani teams. All teams conducted their measurements at ten locations within the test site. The United States team also made a number of additional measurements to locate and verify the positions of three potential fallout plumes containing plutonium contamination from nonnuclear tests. In addition, the United States team made several measurements in Kurchatov City, the housing area used by personnel and their families who work(ed) at the test sites. Comparisons between the United States and Russian in situ measurements and the soil sample results are presented as well as comparisons with a Soviet aerial survey conducted in 1990-1991. The agreement between the different types of measurements made by all three countries was quite good.

  10. Optical analyzer

    DOE Patents [OSTI]

    Hansen, A.D.

    1987-09-28

    An optical analyzer wherein a sample of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter is placed in a combustion tube, and light from a light source is passed through the sample. The temperature of the sample is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample is detected as the temperature is raised. A data processor, differentiator and a two pen recorder provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample. These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample. Additional information is obtained by repeating the run in different atmospheres and/or different rates or heating with other samples of the same particulate material collected on other filters. 7 figs.

  11. PULSE AMPLITUDE ANALYZER

    DOE Patents [OSTI]

    Gray, G.W.; Jensen, A.S.

    1957-10-22

    A pulse-height analyzer system of improved design for sorting and counting a series of pulses, such as provided by a scintillation detector in nuclear radiation measurements, is described. The analyzer comprises a main transmission line, a cathode-ray tube for each section of the line with its deflection plates acting as the line capacitance; means to bias the respective cathode ray tubes so that the beam strikes a target only when a prearranged pulse amplitude is applied, with each tube progressively biased to respond to smaller amplitudes; pulse generating and counting means associated with each tube to respond when the beam is deflected; a control transmission line having the same time constant as the first line per section with pulse generating means for each tube for initiating a pulse on the second transmission line when a pulse triggers the tube of corresponding amplitude response, the former pulse acting to prevent successive tubes from responding to the pulse under test. This arrangement permits greater deflection sensitivity in the cathode ray tube and overcomes many of the disadvantages of prior art pulse-height analyzer circuits.

  12. Optical analyzer

    DOE Patents [OSTI]

    Hansen, Anthony D.

    1989-01-01

    An optical analyzer (10) wherein a sample (19) of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter (20) is placed in a combustion tube (11), and light from a light source (14) is passed through the sample (19). The temperature of the sample (19) is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample (19) is detected (18) as the temperature is raised. A data processor (23), differentiator (28) and a two pen recorder (24) provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample (19). These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample (19). Additional information is obtained by repeating the run in different atmospheres and/or different rates of heating with other samples of the same particulate material collected on other filters.

  13. Compaction measurements on the Sweet Lake test well

    SciTech Connect (OSTI)

    Jogi, P.N.; Kalra, S.; Gray, K.E.; Thompson, T.W.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    Measurements of compressibilities, moduli, compaction coefficients, porosities, and permeabilities have been conducted on cores from Magma Gulf-Technadril/Department of Energy Amoco Fee No. 1 in the Sweet Lake Field in Cameron Parish, Louisiana. All rock parameters show nonlinear behavior with changing reservoir pressure. Compressibilities and uniaxial compaction coefficients decline rapidly with pore pressure reduction. Porosity reduction was generally less than 10%; permeability reduction was 30 to 40%. Additional tests are in progress.

  14. Measurements of charge state breeding efficiency at BNL test EBIS

    SciTech Connect (OSTI)

    Kondrashev, S.; Alessi, J.; Beebe, E.N.; Dickerson, C.; Ostroumov, P.N.; Pikin, A.; Savard, G.

    2011-04-02

    Charge breeding of singly charged ions is required to efficiently accelerate rare isotope ion beams for nuclear and astrophysics experiments, and to enhance the accuracy of low-energy Penning trap-assisted spectroscopy. An efficient charge breeder for the Californium Rare Isotope Breeder Upgrade (CARIBU) to the ANL Tandem Linear Accelerator System (ATLAS) facility is being developed using the BNL Test Electron Beam Ion Source (Test EBIS) as a prototype. Parameters of the CARIBU EBIS charge breeder are similar to those of the BNL Test EBIS except the electron beam current will be adjustable in the range from 1 to 2 {angstrom}. The electron beam current density in the CARIBU EBIS trap will be significantly higher than in existing operational charge state breeders based on the EBIS concept. The charge state breeding efficiency is expected to be about 25% for the isotope ions extracted from the CARIBU. For the success of our EBIS project, it is essential to demonstrate high breeding efficiency at the BNL Test EBIS tuned to the regime close to the parameters of the CARIBU EBIS at ANL. The breeding efficiency optimization and measurements have been successfully carried out using a Cs{sup +} surface ionization ion source for externally pulsed injection into the BNL Test EBIS. A Cs{sup +} ion beam with a total number of ions of 5 x 10{sup 8} and optimized pulse length of 70 {mu}s has been injected into the Test EBIS and charge-bred for 5.3 ms for two different electron beam currents 1 and 1.5 {angstrom}. In these experiments we have achieved 70% injection/extraction efficiency and breeding efficiency into the most abundant charge state 17%.

  15. Emittance Measurements of the SSRL Gun Test Facility

    SciTech Connect (OSTI)

    Hernandez, Michael; Clendenin, James; Fisher, Alan; Miller, Roger; Palmer, Dennis; Park, Sam; Schmerge, John; Weaver, Jim; Wiedemann, Helmut; Winick, Herman; Yeremian, Dian; Meyerhofer, David; Reis, David; /Rochester U.

    2011-09-01

    A photocathode RF gun test stand is under construction in the injector vault of the Stanford Synchrotron Radiation Laboratory at SLAC. The goal of this facility is to produce an electron beam with a normalized emittance of 1-3[mm-mr], a longitudinal bunch duration of the order of 10[ps] FWHM and approximately 1[nC] of charge per bunch. The beam will be generated from a laser driven copper photocathode RF gun developed in collaboration with BNL, LBL and UCLA. The 3-5[MeV] beam from the gun will be accelerated using a SLAC three meter S-band accelerator section. The emittance of the electron beam will be measured through the use of quadrupole scans with phosphor screens and also a wire scanner. The details of the experimental setup will be discussed, and first measurements will be presented and compared with results from PARMELA simulations.

  16. Tests gauge LED sensors for fuel-dye measurements

    SciTech Connect (OSTI)

    Ozanich, Richard M.; Lucke, Richard B.; Melville, Angela M.; Wright, Bob W.

    2009-10-19

    The goal of this work was to develop a low cost, robust sensor to allow direct measurement of Solvent Red 164 dye concentration in off-road fuel at refineries and fuel terminals. Optical absorption sensors based on light emitting diodes (LEDs) are rugged, low-cost, have low power consumption, and can be designed to be intrinsically safe.LED-based systems have been used in a variety of chemical detection applications including heavy metals, pH, CO2, and O2. The approach for this work was to develop a sensor that could be mounted on a pipeline sight glass, precluding the need for direct contact of the sensor with the fuel. Below is described the design and testing of three different LED/photodiode sensors utilizing reflectance spectrometry for the measurement of dye concentration.

  17. SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY

    SciTech Connect (OSTI)

    MEACHAM JE

    2009-09-09

    Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

  18. Coordinate measuring machine test standard apparatus and method

    DOE Patents [OSTI]

    Bieg, L.F.

    1994-08-30

    A coordinate measuring machine test standard apparatus and method are disclosed which includes a rotary spindle having an upper phase plate and an axis of rotation, a kinematic ball mount attached to the phase plate concentric with the axis of rotation of the phase plate, a groove mounted at the circumference of the phase plate, and an arm assembly which rests in the groove. The arm assembly has a small sphere at one end and a large sphere at the other end. The small sphere may be a coordinate measuring machine probe tip and may have variable diameters. The large sphere is secured in the kinematic ball mount and the arm is held in the groove. The kinematic ball mount includes at least three mounting spheres and the groove is an angular locating groove including at least two locking spheres. The arm may have a hollow inner core and an outer layer. The rotary spindle may be a ratio reducer. The device is used to evaluate the measuring performance of a coordinate measuring machine for periodic recertification, including 2 and 3 dimensional accuracy, squareness, straightness, and angular accuracy. 5 figs.

  19. Coordinate measuring machine test standard apparatus and method

    DOE Patents [OSTI]

    Bieg, Lothar F.

    1994-08-30

    A coordinate measuring machine test standard apparatus and method which iudes a rotary spindle having an upper phase plate and an axis of rotation, a kinematic ball mount attached to the phase plate concentric with the axis of rotation of the phase plate, a groove mounted at the circumference of the phase plate, and an arm assembly which rests in the groove. The arm assembly has a small sphere at one end and a large sphere at the other end. The small sphere may be a coordinate measuring machine probe tip and may have variable diameters. The large sphere is secured in the kinematic ball mount and the arm is held in the groove. The kinematic ball mount includes at least three mounting spheres and the groove is an angular locating groove including at least two locking spheres. The arm may have a hollow inner core and an outer layer. The rotary spindle may be a ratio reducer. The device is used to evaluate the measuring performance of a coordinate measuring machine for periodic recertification, including 2 and 3 dimensional accuracy, squareness, straightness, and angular accuracy.

  20. ETA-HIAC07 - Control of Measuring and Test Equipment (M&TE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control of Measuring and Test Equipment (M&TE) Prepared by Electric Transportation ... The objective of this procedure is to assure that Measuring and Test Equipment (M&TE) used ...

  1. ETA-HAC07 - Control of Measuring and Test Equipment (M&TE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control of Measuring and Test Equipment (M&TE) Prepared by Electric Transportation ... The objective of this procedure is to assure that Measuring and Test Equipment (M&TE) used ...

  2. The Measurement of the Moisture Concentration of Selected Test Model Ore

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zones (April 1977) | Department of Energy The Measurement of the Moisture Concentration of Selected Test Model Ore Zones (April 1977) The Measurement of the Moisture Concentration of Selected Test Model Ore Zones (April 1977) The Measurement of the Moisture Concentration of Selected Test Model Ore Zones (April 1977) The Measurement of the Moisture Concentration of Selected Test Model Ore Zones (April 1977) (2.31 MB) More Documents & Publications Field Calibration Facilities for

  3. Fluorescence analyzer for lignin

    DOE Patents [OSTI]

    Berthold, John W.; Malito, Michael L.; Jeffers, Larry

    1993-01-01

    A method and apparatus for measuring lignin concentration in a sample of wood pulp or black liquor comprises a light emitting arrangement for emitting an excitation light through optical fiber bundles into a probe which has an undiluted sensing end facing the sample. The excitation light causes the lignin concentration to produce fluorescent emission light which is then conveyed through the probe to analyzing equipment which measures the intensity of the emission light. Measures a This invention was made with Government support under Contract Number DOE: DE-FC05-90CE40905 awarded by the Department of Energy (DOE). The Government has certain rights in this invention.

  4. Online PM Measurement for In-Use Testing

    Broader source: Energy.gov [DOE]

    Modern diesel aerosol and its measurement and correlation to laboratory reference PM using the MSS 483 Microsoot sensor iwth SOF and sulfate compensation

  5. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings

    SciTech Connect (OSTI)

    Sebastiani, Marco; Johanns, K. E.; Herbert, Erik G.; Carassiti, Fabio; Pharr, George Mathews

    2014-05-16

    Fracture toughness is an important material property that plays a role in determining the in-service mechanical performance and adhesion of thin ceramic films. Unfortunately, measuring thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these problems based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in the pillar’s upper portion is almost fully relaxed, and when indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behavior. Cohesive finite element simulations are used to analyze and develop, for a given material, a simple relation between the critical load at failure, pillar radius, and fracture toughness. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. Furthermore, the residual stress can be measured at the same time with toughness, by comparing the indentation results from the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings formed by physical vapor deposition: titanium nitride, chromium nitride, and a CrAlN/Si3N4 nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.

  6. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sebastiani, Marco; Johanns, K. E.; Herbert, Erik G.; Carassiti, Fabio; Pharr, George Mathews

    2014-05-16

    Fracture toughness is an important material property that plays a role in determining the in-service mechanical performance and adhesion of thin ceramic films. Unfortunately, measuring thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these problems based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in the pillar’s upper portion is almost fully relaxed, and whenmore » indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behavior. Cohesive finite element simulations are used to analyze and develop, for a given material, a simple relation between the critical load at failure, pillar radius, and fracture toughness. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. Furthermore, the residual stress can be measured at the same time with toughness, by comparing the indentation results from the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings formed by physical vapor deposition: titanium nitride, chromium nitride, and a CrAlN/Si3N4 nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.« less

  7. Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H2O and CO2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Metzger, Stefan; Burba, George; Burns, Sean P.; Blanken, Peter D.; Li, Jiahong; Luo, Hongyan; Zulueta, Rommel C.

    2016-03-31

    Several initiatives are currently emerging to observe the exchange of energy and matter between the earth's surface and atmosphere standardized over larger space and time domains. For example, the National Ecological Observatory Network (NEON) and the Integrated Carbon Observing System (ICOS) are set to provide the ability of unbiased ecological inference across ecoclimatic zones and decades by deploying highly scalable and robust instruments and data processing. In the construction of these observatories, enclosed infrared gas analyzers are widely employed for eddy covariance applications. While these sensors represent a substantial improvement compared to their open- and closed-path predecessors, remaining high-frequency attenuation variesmore » with site properties and gas sampling systems, and requires correction. Here, we show that components of the gas sampling system can substantially contribute to such high-frequency attenuation, but their effects can be significantly reduced by careful system design. From laboratory tests we determine the frequency at which signal attenuation reaches 50 % for individual parts of the gas sampling system. For different models of rain caps and particulate filters, this frequency falls into ranges of 2.5–16.5 Hz for CO2, 2.4–14.3 Hz for H2O, and 8.3–21.8 Hz for CO2, 1.4–19.9 Hz for H2O, respectively. A short and thin stainless steel intake tube was found to not limit frequency response, with 50 % attenuation occurring at frequencies well above 10 Hz for both H2O and CO2. From field tests we found that heating the intake tube and particulate filter continuously with 4 W was effective, and reduced the occurrence of problematic relative humidity levels (RH > 60 %) by 50 % in the infrared gas analyzer cell. No further improvement of H2O frequency response was found for heating in excess of 4 W. These laboratory and field tests were reconciled using resistor–capacitor theory, and NEON's final gas sampling system was

  8. Aerodynamic force measurement on a large-scale model in a short duration test facility

    SciTech Connect (OSTI)

    Tanno, H.; Kodera, M.; Komuro, T.; Sato, K.; Takahasi, M.; Itoh, K.

    2005-03-01

    A force measurement technique has been developed for large-scale aerodynamic models with a short test time. The technique is based on direct acceleration measurements, with miniature accelerometers mounted on a test model suspended by wires. Measuring acceleration at two different locations, the technique can eliminate oscillations from natural vibration of the model. The technique was used for drag force measurements on a 3 m long supersonic combustor model in the HIEST free-piston driven shock tunnel. A time resolution of 350 {mu}s is guaranteed during measurements, whose resolution is enough for ms order test time in HIEST. To evaluate measurement reliability and accuracy, measured values were compared with results from a three-dimensional Navier-Stokes numerical simulation. The difference between measured values and numerical simulation values was less than 5%. We conclude that this measurement technique is sufficiently reliable for measuring aerodynamic force within test durations of 1 ms.

  9. Front-end Electronics for Unattended Measurement (FEUM). Prototype Test Plan

    SciTech Connect (OSTI)

    Conrad, Ryan C.; Morris, Scott J.; Smith, Leon E.; Keller, Daniel T.

    2015-09-16

    The IAEA has requested that PNNL perform an initial set of tests on front-end electronics for unattended measurement (FEUM) prototypes. The FEUM prototype test plan details the tests to be performed, the criteria for evaluation, and the procedures used to execute the tests.

  10. Cost-Effectiveness Tests and Measuring Like a Utility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Effectiveness Tests and Measuring Like a Utility Cost-Effectiveness Tests and Measuring Like a Utility Better Buildings Residential Data and Evaluation Peer Exchange Call Series: Cost-Effectiveness Tests and Measuring Like a Utility, April 10, 2014. Call Slides and Discussion Summary (1.61 MB) More Documents & Publications DOE Webinar: Translating Behavior Change Research Into Consumer Action Cost-Effective, Customer-Focused, and Contractor-Focused Data Tracking Systems Trends in

  11. AMS Ground Truth Measurements: Calibration and Test Lines

    SciTech Connect (OSTI)

    Wasiolek, P.

    2013-11-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima nuclear power plant (NPP) accident in March-May 2011. To map ground contamination a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count rate data expressed in counts per second (cps) needs to be converted to the terrestrial component of the exposure rate 1 m above ground, or surface activity of isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, as the production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish very early into the event a common calibration line. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements. This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  12. MAS 10.2 Control of Measuring and Test Equipment, 3/9/95

    Office of Energy Efficiency and Renewable Energy (EERE)

    The objective of this surveillance is to verify that the contractor maintains adequate control of tools, gauges, instruments, devices or systems used to inspect, test, calibrate, measure or...

  13. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing: Preprint

    SciTech Connect (OSTI)

    Spataru, Sergiu; Hacke, Pater; Sera, Dezso

    2015-09-15

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. From the analysis we determine three main categories of failure modes associated with the module degradation consisting of: shunting, recombination losses, increased series resistance losses, and current mismatch losses associated with a decrease in photo-current generation by removal of some cell areas due to cell fractures. Based on the analysis, we propose an in-situ module power loss monitoring procedure that relies on dark current-voltage measurements taken during the stress test, and initial and final module flash testing, to determine the power degradation characteristic of the module.

  14. Measuring seasonal variations of moisture in a landfill with the partitioning gas tracer test

    SciTech Connect (OSTI)

    Han, Byunghyun; Jafarpour, Behnam; Gallagher, Victoria N.; Imhoff, Paul T. . E-mail: imhoff@udel.edu; Chiu, Pei C.; Fluman, Daniel A.

    2006-07-01

    Seven pilot-scale partitioning gas tracer tests (PGTTs) were conducted to assess the accuracy and reproducibility of this method for measuring water in municipal solid waste landfills. Tests were conducted in the same location over a 12-month period, and measured moisture conditions ranged from possible dry waste to refuse with a moisture content of 24.7%. The final moisture content of 24.7% was in reasonable agreement with gravimetric measurements of excavated refuse, where the moisture content was 26.5 {+-} 6.0CI%. Laboratory tests were used to assess the utility of the PGTT for measuring water in small pores, water sorbed to solid surfaces, and the influence of dry waste on PGTTs. These experiments indicated that when refuse surfaces are not completely solvated with water, PGTTs may produce misleading results (negative estimates) of water saturation and moisture content.

  15. The Envelope Thermal Test Unit (ETTU): Full Measurement of WallPerform ance

    SciTech Connect (OSTI)

    Sonderegger, R.C.; Sherman, M.H.; Adams, J.W.

    1981-10-01

    There are many ways of calculating the dynamic thermal performance of walls and many ways of measuring the performance of walls in the laboratory, relatively few field measurements have been made of the dynamic performance of wall in situ. Measuring the thermal performance of walls in situ poses two separate problems: measuring the heat fluxes and surface temperatures of the wall, and reducing this data set into usable parameters. We have solved the first problem by developing the Envelope Thermal Test Unit (ETTU). ETTU consists of two specially constructed polystyrene blankets, 1.2m square, placed on either side of the test wall that both control and measure the surface fluxes and surface temperatures of the wall. To solve the second problem we have developed a simplified dynamic model that describes the thermal performance of a wall in terms of its steady-state conductance, a time constant, and some storage terms. We have used ETTU in the field to measure the thermal performance of walls, and have applied our simplified analysis to calculate simplified thermal parameters from this data set. In this report, we present the in-situ measurements made to date using ETTU, and the resulting model predictions. The agreement between measured and predicted surface fluxes demonstrates the ability of our test unit and analytic model to describe the dynamic performance of walls in situ.

  16. MINERvA neutrino detector response measured with test beam data

    SciTech Connect (OSTI)

    Aliaga, L.; Altinok, O.; Araujo Del Castillo, C.; Bagby, L.; Bellantoni, L.; Bergan, W. F.; Bodek, A.; Bradford, R.; Bravar, A.; Budd, H.; Butkevich, A.; Martinez Caicedo, D. A.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Devan, J.; Daz, G. A.; Dytman, S. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Flight, R.; Gago, A. M.; Gingu, C.; Golan, T.; Gomez, A.; Gran, R.; Harris, D. A.; Higuera, A.; Howley, I. J.; Hurtado, K.; Kleykamp, J.; Kordosky, M.; Lanari, M.; Le, T.; Leister, A. J.; Lovlein, A.; Maher, E.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Miller, W.; Mislivec, A.; Morfn, J. G.; Mousseau, J.; Muhlbeier, T.; Naples, D.; Nelson, J. K.; Norrick, A.; Ochoa, N.; O?Connor, C. D.; Osmanov, B.; Osta, J.; Paolone, V.; Patrick, C. E.; Patrick, L.; Perdue, G. N.; Prez Lara, C. E.; Rakotondravohitra, L.; Ray, H.; Ren, L.; Rodrigues, P. A.; Rubinov, P.; Rude, C. R.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Urrutia, Z.; Valencia, E.; Walton, T.; Westerberg, A.; Wolcott, J.; Woodward, N.; Wospakrik, M.; Zavala, G.; Zhang, D.; Ziemer, B. P.

    2015-04-11

    The MINERvA collaboration operated a scaled-down replica of the solid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This paper reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons is obtained from these data. A measurement of the parameter in Birks law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions with agreements better than 4% for the calorimetric response, though some features of the data are not precisely modeled. These measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross-section measurement program.

  17. Accuracy of the European solar water heater test procedure. Part 1: Measurement errors and parameter estimates

    SciTech Connect (OSTI)

    Rabl, A.; Leide, B. ); Carvalho, M.J.; Collares-Pereira, M. ); Bourges, B.

    1991-01-01

    The Collector and System Testing Group (CSTG) of the European Community has developed a procedure for testing the performance of solar water heaters. This procedure treats a solar water heater as a black box with input-output parameters that are determined by all-day tests. In the present study the authors carry out a systematic analysis of the accuracy of this procedure, in order to answer the question: what tolerances should one impose for the measurements and how many days of testing should one demand under what meteorological conditions, in order to be able to quarantee a specified maximum error for the long term performance The methodology is applicable to other test procedures as well. The present paper (Part 1) examines the measurement tolerances of the current version of the procedure and derives a priori estimates of the errors of the parameters; these errors are then compared with the regression results of the Round Robin test series. The companion paper (Part 2) evaluates the consequences for the accuracy of the long term performance prediction. The authors conclude that the CSTG test procedure makes it possible to predict the long term performance with standard errors around 5% for sunny climates (10% for cloudy climates). The apparent precision of individual test sequences is deceptive because of large systematic discrepancies between different sequences. Better results could be obtained by imposing tighter control on the constancy of the cold water supply temperature and on the environment of the test, the latter by enforcing the recommendation for the ventilation of the collector.

  18. Spent Fuel Test - Climax: technical measurements. Interim report, fiscal year 1982

    SciTech Connect (OSTI)

    Patrick, W.C.; Ballou, L.B.; Butkovich, T.R.; Carlson, R.C.; Durham, W.B.; Hage, G.L.; Majer, E.L.; Montan, D.N.; Nyholm, R.A.; Rector, N.L.

    1983-02-01

    The Spent Fuel Test - Climax (SFT-C) is located 420 m below surface in the Climax stock granite on the Nevada Test Site. The test is being conducted for the US Department of Energy (DOE) under the technical direction of the Lawrence Livermore National Laboratory (LLNL). Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized April to May 1980, thus initiating a test with a planned 3- to 5-year fuel storage phase. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. Three exchanges of spent fuel between the SFT-C and a surface storage facility furthered this demonstration. Technical objectives of the test led to development of a technical measurements program, which is the subject of this and two previous interim reports. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the first 2-1/2 years of the test on more than 900 channels. Data continue to be acquired from the test. Some data are now available for analysis and are presented here. Highlights of activities this year include analysis of fracture data obtained during site characterization, laboratory studies of radiation effects and drilling damage in Climax granite, improved calculations of near-field heat transfer and thermomechanical response, a ventilation effects study, and further development of the data acquisition and management systems.

  19. Design and Laboratory Evaluation of Future Elongation and Diameter Measurements at the Advanced Test Reactor

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; J. C. Crepeau; S. Solstad

    2015-07-01

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status of INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  20. Spent fuel test - Climax: technical measurements. Interim report, fiscal year 1981

    SciTech Connect (OSTI)

    Patrick, W.C.; Ballou, L.B.; Butkovich, T.R.

    1982-04-30

    The Spent Fuel Test-Climax (SFT-C) is located 420 m below surface in the Climax granite stock on the Nevada Test Site. Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized from April to May 1980, initiating the 3- to 5-year-duration test. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. Technical objectives of the test led to development of a technical measurements program, which is the subject of this report. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the first 1-1/2 years of the test on more than 900 channels. Much of the acquired data are now available for analysis and are presented here. Highlights of activities this year include completion of site characterization field work, major modifications to the data acquisition and the management systems, and the addition of instrument evaluation as an explicit objective of the test.

  1. Real time infrared aerosol analyzer

    DOE Patents [OSTI]

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  2. Micro acoustic spectrum analyzer

    DOE Patents [OSTI]

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  3. List mode multichannel analyzer

    DOE Patents [OSTI]

    Archer, Daniel E.; Luke, S. John; Mauger, G. Joseph; Riot, Vincent J.; Knapp, David A.

    2007-08-07

    A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.

  4. Measurement of in-situ strength using projectile penetration: Tests of a new launching system

    SciTech Connect (OSTI)

    Hearst, J.R.; Newmark, R.L.; Charest, J.A.; Lynch, C.S.

    1987-10-01

    The Lawrence Livermore National Laboratory has a continuing need to measure rock strength in situ, both for simple prediction of cavity size, and as input to computational models. In a previous report we compared two methods for measuring formation strength in situ: projectile penetration and a cone penetrometer. We determined that the projectile method was more promising for application to our large-diameter (2-4-m) hole environment. A major practical problem has been the development of a launcher and an apparatus for measuring depth of penetration that would be suitable for use in large-diameter holes. We are developing a gas-gun launcher system that will be capable of measuring both depth of penetration and deceleration of a reusable projectile. The current version of the launcher is trailer-mounted for testing at our Nevada Test Site (NTS) in tunnels and outcrops, but its design is such that it can be readily adapted for emplacement hole use. We test the current launcher on 60-cm cubes of gypsum cement, mixed to provie a range of densities (1.64 to 2.0 g/cc) and strengths (3 to 17 MPa). We compared depth of penetration of a 84-g projectile from a ''Betsy'' seismic gun - traveling on the order of 500 m/s - with the depth of penetration of a 13-kg projectile from the gas gun - traveling on the order of 30 m/s. For projectiles with the same nose size and shape, impacting targets of approximately constant strength, penetration depth was proportional to projectile kinetic energy. The ratio of kinetic energy to penetration depth was approximately proportional to target strength. Tests in tuffs with a wide range of strengths at NTS gave a similar linear relationship between the ratio of kinetic energy to penetration and target strength, and also a linear relationship between deceleration and strength. It appears that penetration can indeed be used as a semiquantitative measure of strength.

  5. PULSE AMPLITUDE ANALYZER

    DOE Patents [OSTI]

    Greenblatt, M.H.

    1958-03-25

    This patent pertains to pulse amplitude analyzers for sorting and counting a serles of pulses, and specifically discloses an analyzer which ls simple in construction and presents the puise height distribution visually on an oscilloscope screen. According to the invention, the pulses are applied to the vertical deflection plates of an oscilloscope and trigger the horizontal sweep. Each pulse starts at the same point on the screen and has a maximum amplitude substantially along the same vertical line. A mask is placed over the screen except for a slot running along the line where the maximum amplitudes of the pulses appear. After the slot has been scanned by a photocell in combination with a slotted rotating disk, the photocell signal is displayed on an auxiliary oscilloscope as vertical deflection along a horizontal time base to portray the pulse amplitude distribution.

  6. Test plan for measuring ventilation rates and combustible gas levels in TWRS active catch tanks

    SciTech Connect (OSTI)

    NGUYEN, D.M.

    1999-05-20

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by Tank Waste Remediation System (TWRS). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  7. The effect of E{sub r} on MSE measurements of q, a new technique for measuring E{sub r}, and a test of the neoclassical electric field

    SciTech Connect (OSTI)

    Zarnstorff, M.C.; Synakowski, E.J.; Levinton, F.M.; Batha, S.H.

    1996-10-01

    Previous analysis of motional-Stark Effect (MSE) data to measure the q-profile ignored contributions from the plasma electric field. The MSE measurements are shown to be sensitive to the electric field and require significant corrections for plasmas with large rotation velocities or pressure gradients. MSE measurements from rotating plasmas on the Tokamak Fusion Test Reactor (TFTR) confirm the significance of these corrections and verify their magnitude. Several attractive configurations are considered for future MSE-based diagnostics for measuring the plasma radial electric field. MSE data from TFTR is analyzed to determine the change in the radial electric field between two plasmas. The measured electric field quantitatively agrees with the predictions of neoclassical theory. These results confirm the utility of a MSE electric field measurement.

  8. Eddy current nondestructive testing device for measuring variable characteristics of a sample utilizing Walsh functions

    DOE Patents [OSTI]

    Libby, Hugo L.; Hildebrand, Bernard P.

    1978-01-01

    An eddy current testing device for measuring variable characteristics of a sample generates a signal which varies with variations in such characteristics. A signal expander samples at least a portion of this generated signal and expands the sampled signal on a selected basis of square waves or Walsh functions to produce a plurality of signal components representative of the sampled signal. A network combines these components to provide a display of at least one of the characteristics of the sample.

  9. BENCHMARK EVALUATION OF THE INITIAL ISOTHERMAL PHYSICS MEASUREMENTS AT THE FAST FLUX TEST FACILITY

    SciTech Connect (OSTI)

    John Darrell Bess

    2010-05-01

    The benchmark evaluation of the initial isothermal physics tests performed at the Fast Flux Test Facility, in support of Fuel Cycle Research and Development and Generation-IV activities at the Idaho National Laboratory, has been completed. The evaluation was performed using MCNP5 with ENDF/B-VII.0 nuclear data libraries and according to guidelines provided for inclusion in the International Reactor Physics Experiment Evaluation Project Handbook. Results provided include evaluation of the initial fully-loaded core critical, two neutron spectra measurements near the axial core center, 32 reactivity effects measurements (21 control rod worths, two control rod bank worths, six differential control rod worths, two shutdown margins, and one excess reactivity), isothermal temperature coefficient, and low-energy electron and gamma spectra measurements at the core center. All measurements were performed at 400 ºF. There was good agreement between the calculated and benchmark values for the fully-loaded core critical eigenvalue, reactivity effects measurements, and isothermal temperature coefficient. General agreement between benchmark experiment measurements and calculated spectra for neutrons and low-energy gammas at the core midplane exists, but calculations of the neutron spectra below the core and the low-energy gamma spectra at core midplane did not agree well. Homogenization of core components may have had a significant impact upon computational assessment of these effects. Future work includes development of a fully-heterogeneous model for comprehensive evaluation. The reactor physics measurement data can be used in nuclear data adjustment and validation of computational methods for advanced fuel cycle and nuclear reactor systems using Liquid Metal Fast Reactor technology.

  10. DEEP WATER ISOTOPIC CURRENT ANALYZER

    DOE Patents [OSTI]

    Johnston, W.H.

    1964-04-21

    A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

  11. Fractional channel multichannel analyzer

    DOE Patents [OSTI]

    Brackenbush, Larry W.; Anderson, Gordon A.

    1994-01-01

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynscronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board.

  12. Fractional channel multichannel analyzer

    DOE Patents [OSTI]

    Brackenbush, L.W.; Anderson, G.A.

    1994-08-23

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.

  13. MINERvA neutrino detector response measured with test beam data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aliaga, L.; Altinok, O.; Araujo Del Castillo, C.; Bagby, L.; Bellantoni, L.; Bergan, W. F.; Bodek, A.; Bradford, R.; Bravar, A.; Budd, H.; et al

    2015-04-11

    The MINERvA collaboration operated a scaled-down replica of the solid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This paper reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons is obtained from these data. A measurement of the parameter in Birks law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactionsmorewith agreements better than 4% for the calorimetric response, though some features of the data are not precisely modeled. These measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross-section measurement program.less

  14. MINERvA neutrino detector response measured with test beam data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aliaga, L.; Altinok, O.; Araujo Del Castillo, C.; Bagby, L.; Bellantoni, L.; Bergan, W. F.; Bodek, A.; Bradford, R.; Bravar, A.; Budd, H.; et al

    2015-04-11

    The MINERvA collaboration operated a scaled-down replica of thesolid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This paper reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons is obtained from these data. A measurement of the parameter in Birks' law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions withmore » agreements better than 4% for the calorimetric response, though some features of the data are not precisely modeled. Furthermore, these measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross-section measurement program.« less

  15. Multiple capillary biochemical analyzer

    DOE Patents [OSTI]

    Dovichi, Norman J.; Zhang, Jian Z.

    1995-01-01

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibres to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands.

  16. Multiple capillary biochemical analyzer

    DOE Patents [OSTI]

    Dovichi, N.J.; Zhang, J.Z.

    1995-08-08

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.

  17. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings

    SciTech Connect (OSTI)

    Sebastiani, Marco; Johanns, K.; Herbert, Erik G.; Bemporad, Edoardo; Carassiti, Fabio; Pharr, George Mathews

    2015-01-01

    The fracture toughness of thin ceramic films is an important material property that plays a role in determining the in-service mechanical performance and adhesion of this important class of engineering materials. Unfortunately, measurement of thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these issues based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in the upper portion of the pillar is almost fully relaxed, and when indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behavior. Cohesive finite element simulations are used for analysis and development of a simple relationship between the critical load at failure, pillar radius, and fracture toughness for a given material. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. In addition, the residual stress can be measured at the same time with toughness, by comparison of the indentation results obtained on the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings created by physical vapor deposition, namely titanium nitride (TiN), chromium nitride (CrN) and a CrAlN-Si?N? nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.

  18. Design and calibration of a test facility for MLI thermal performance measurements below 80K

    SciTech Connect (OSTI)

    Boroski, W.; Kunzelman, R.; Ruschman, M.; Schoo, C.

    1992-04-01

    The design geometry of the SSC dipole cryostat includes active thermal radiation shields operating at 80K and 20K respectively. Extensive measurements conducted in a Heat Leak Test Facility (HLTF) have been used to evaluate the thermal performance of candidate multilayer insulation (MLI) systems for the 80K thermal shield, with the present system design based upon those measurement results. With the 80K MLI geometry established, efforts have focused on measuring the performance of MLI systems near 20K. A redesign of the HLTF has produced a measurement facility capable of conducting measurements with the warm boundary fixed at 80K and the cold boundary variable from 10K to 50K. Removing the 80K shield permits measurements with a warm boundary at 300K. The 80K boundary consists of a copper shield thermally anchored to a liquid nitrogen reservoir. The cold boundary consists of a copper anchor plate whose temperature is varied through boil-off gas from a 500 liter helium supply dewar. A transfer line heat exchanger supplies the boil-off gas to the anchor plate at a constant and controlled rate. The gas, which serves as cooling gas, is routed through a copper cooling tube soldered into the anchor plate. Varying the cooling gas flow rate varies the amount of refrigeration supplied to the anchor plate, thereby determining the plate temperature. A resistance heater installed on the anchor plate is regulated by a cryogenic temperature controller to provide final temperature control. Heat leak values are measured using a heatmeter which senses heat flow as a temperature gradient across a fixed thermal impedance. Since the thermal conductivity of the thermal impedance changes with temperature, the heatmeter is calibrated at key cold boundary temperatures. Thus, the system is capable of obtaining measurement data under a variety of system conditions. 7 refs.

  19. Motion detector and analyzer

    DOE Patents [OSTI]

    Unruh, W.P.

    1987-03-23

    Method and apparatus are provided for deriving positive and negative Doppler spectrum to enable analysis of objects in motion, and particularly, objects having rotary motion. First and second returned radar signals are mixed with internal signals to obtain an in-phase process signal and a quadrature process signal. A broad-band phase shifter shifts the quadrature signal through 90/degree/ relative to the in-phase signal over a predetermined frequency range. A pair of signals is output from the broad-band phase shifter which are then combined to provide a first side band signal which is functionally related to a negative Doppler shift spectrum. The distinct positive and negative Doppler spectra may then be analyzed for the motion characteristics of the object being examined.

  20. PULSE AMPLITUDE ANALYZERS

    DOE Patents [OSTI]

    Gray, G.W.; Jensen, A.S.

    1958-06-01

    An analyzer system incorporating a cathode-ray tube and linearly spaced targets masked by a plate having slits at points corresponding to the location of the targets is described. The advantages of the system include reduction in the required amplified band width and also the reduction in possible double counting of a pulse by striking two targets. The system comprises integrating means for each pulse, the signal from which is applied to a pair of deflection plates, and a control circuit for turning on the electron beam when the pulse has almost reached its maximum value. The mask prevents the beam from overlapping on a target adjacent to the proper one, while a control circuit responsive to the target output signals acts to cut off the beam immediately after the beam strikes a target to permit the beam to impinge on only one target.

  1. Silicon Carbide Temperature Monitor Measurements at the High Temperature Test Laboratory

    SciTech Connect (OSTI)

    J. L. Rempe; K. G. Condie; D. L. Knudson; L. L. Snead

    2010-01-01

    Silicon carbide (SiC) temperature monitors are now available for use as temperature sensors in Advanced Test Reactor (ATR) irradiation test capsules. Melt wires or paint spots, which are typically used as temperature sensors in ATR static capsules, are limited in that they can only detect whether a single temperature is or is not exceeded. SiC monitors are advantageous because a single monitor can be used to detect for a range of temperatures that may have occurred during irradiation. As part of the efforts initiated by the ATR National Scientific User Facility (NSUF) to make SiC temperature monitors available, a capability was developed to complete post-irradiation evaluations of these monitors. As discussed in this report, the Idaho National Laboratory (INL) selected the resistance measurement approach for detecting peak irradiation temperature from SiC temperature monitors. This document describes the INL efforts to develop the capability to complete these resistance measurements. In addition, the procedure is reported that was developed to assure that high quality measurements are made in a consistent fashion.

  2. Analyzing Atmospheric Neutrino Oscillations

    SciTech Connect (OSTI)

    Escamilla, J.; Ernst, D. J.; Latimer, D. C.

    2007-10-26

    We provide a pedagogic derivation of the formula needed to analyze atmospheric data and then derive, for the subset of the data that are fully-contained events, an analysis tool that is quantitative and numerically efficient. Results for the full set of neutrino oscillation data are then presented. We find the following preliminary results: 1.) the sub-dominant approximation provides reasonable values for the best fit parameters for {delta}{sub 32}, {theta}{sub 23}, and {theta}{sub 13} but does not quantitatively provide the errors for these three parameters; 2.) the size of the MSW effect is suppressed in the sub-dominant approximation; 3.) the MSW effect reduces somewhat the extracted error for {delta}{sub 32}, more so for {theta}{sub 23} and {theta}{sub 13}; 4.) atmospheric data alone constrains the allowed values of {theta}{sub 13} only in the sub-dominant approximation, the full three neutrino calculations requires CHOOZ to get a clean constraint; 5.) the linear in {theta}{sub 13} terms are not negligible; and 6.) the minimum value of {theta}{sub 13} is found to be negative, but at a statistically insignificant level.

  3. PULSE HEIGHT ANALYZER

    DOE Patents [OSTI]

    Johnstone, C.W.

    1958-01-21

    An anticoincidence device is described for a pair of adjacent channels of a multi-channel pulse height analyzer for preventing the lower channel from generating a count pulse in response to an input pulse when the input pulse has sufficient magnitude to reach the upper level channel. The anticoincidence circuit comprises a window amplifier, upper and lower level discriminators, and a biased-off amplifier. The output of the window amplifier is coupled to the inputs of the discriminators, the output of the upper level discriminator is connected to the resistance end of a series R-C network, the output of the lower level discriminator is coupled to the capacitance end of the R-C network, and the grid of the biased-off amplifier is coupled to the junction of the R-C network. In operation each discriminator produces a negative pulse output when the input pulse traverses its voltage setting. As a result of the connections to the R-C network, a trigger pulse will be sent to the biased-off amplifier when the incoming pulse level is sufficient to trigger only the lower level discriminator.

  4. PULSE HEIGHT ANALYZER

    DOE Patents [OSTI]

    Goldsworthy, W.W.

    1958-06-01

    A differential pulse-height discriminator circuit is described which is readily adaptable for operation in a single-channel pulse-height analyzer. The novel aspect of the circuit lies in the specific arrangement of differential pulse-height discriminator which includes two pulse-height discriminators having a comnnon input and an anticoincidence circuit having two interconnected vacuum tubes with a common cathode resistor. Pulses from the output of one discriminator circuit are delayed and coupled to the grid of one of the anticoincidence tubes by a resistor. The output pulses from the other discriminator circuit are coupled through a cathode follower circuit, which has a cathode resistor of such value as to provide a long time constant with the interelectrode capacitance of the tube, to lenthen the output pulses. The pulses are then fed to the grid of the other anticoincidence tube. With such connections of the circuits, only when the incoming pulse has a pesk value between the operating levels of the two discriminators does an output pulse occur from the anticoincidence circuit.

  5. Results of experimental tests and calibrations of the surface neutron moisture measurement probe

    SciTech Connect (OSTI)

    Watson, W.T.; Bussell, J.H., Westinghouse Hanford

    1996-08-13

    The surface neutron moisture probe has been tested both to demonstrate that is is able to operate in the expected in-tank temperature and gamma-ray fields and to provide detector responses to known moisture concentration materials. The probe will properly function in a simultaneous high temperature (80 degrees C) and high gamma radiation field (210 rad/hr)environment. Comparisons between computer model predicted and experimentally measured detector responses to changes in moisture provide a basis for the probe calibration to in-tank moisture concentrations.

  6. CONTINUOUS GAS ANALYZER

    DOE Patents [OSTI]

    Katz, S.; Weber, C.W.

    1960-02-16

    A reagent gas and a sample gas are chemically combined on a continuous basis in a reaction zone maintained at a selected temperature. The reagent gas and the sample gas are introduced to the reaction zone at preselected. constant molar rates of flow. The reagent gas and the selected gas in the sample mixture combine in the reaction zone to form a product gas having a different number of moles from the sum of the moles of the reactants. The difference in the total molar rates of flow into and out of the reaction zone is measured and indicated to determine the concentration of the selected gas.

  7. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    SciTech Connect (OSTI)

    Xufei, X. Fan, T.; Nocente, M.; Gorini, G.; Bonomo, F.; Franzen, P.; Fröschle, M.; Grosso, G.; Tardocchi, M.; Grünauer, F.; Pasqualotto, R.

    2014-11-15

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.

  8. Test Results of the AC Field Measurements of Fermilab Booster Corrector Magnets

    SciTech Connect (OSTI)

    DiMarco, E.Joseph; Harding, D.J.; Kashikhin, V.S.; Kotelnikov, S.K.; Lamm, M.J.; Makulski, A.; Nehring, R.; Orris, D.F.; Schlabach, P.; Sylvester, C.; Tartaglia, Michael Albert; /Fermilab

    2008-06-25

    Multi-element corrector magnets are being produced at Fermilab that enable correction of orbits and tunes through the entire cycle of the Booster, not just at injection. The corrector package includes six different corrector elements--normal and skew orientations of dipole, quadrupole, and sextupole--each independently powered. The magnets have been tested during typical AC ramping cycles at 15Hz using a fixed coil system to measure the dynamic field strength and field quality. The fixed coil is comprised of an array of inductive pick-up coils around the perimeter of a cylinder which are sampled simultaneously at 100 kHz with 24-bit ADC's. The performance of the measurement system and a summary of the field results are presented and discussed.

  9. Method for analyzing microbial communities

    DOE Patents [OSTI]

    Zhou, Jizhong [Oak Ridge, TN; Wu, Liyou [Oak Ridge, TN

    2010-07-20

    The present invention provides a method for quantitatively analyzing microbial genes, species, or strains in a sample that contains at least two species or strains of microorganisms. The method involves using an isothermal DNA polymerase to randomly and representatively amplify genomic DNA of the microorganisms in the sample, hybridizing the resultant polynucleotide amplification product to a polynucleotide microarray that can differentiate different genes, species, or strains of microorganisms of interest, and measuring hybridization signals on the microarray to quantify the genes, species, or strains of interest.

  10. Truck acoustic data analyzer system

    DOE Patents [OSTI]

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  11. Charged particle mobility refrigerant analyzer

    DOE Patents [OSTI]

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  12. Airborne Dust Cloud Measurements at the INL National Security Test Range

    SciTech Connect (OSTI)

    Michael L. Abbott; Norm Stanley; Larry Radke; Charles Smeltzer

    2007-09-01

    On July 11, 2007, a surface, high-explosive test (<20,000 lb TNT-equivalent) was carried out at the National Security Test Range (NSTR) on the Idaho National Laboratory (INL) Site. Aircraft-mounted rapid response (1-sec) particulate monitors were used to measure airborne PM-10 concentrations directly in the dust cloud and to develop a PM-10 emission factor that could be used for subsequent tests at the NSTR. The blast produced a mushroom-like dust cloud that rose approximately 2,500–3,000 ft above ground level, which quickly dissipated (within 5 miles of the source). In general, the cloud was smaller and less persistence than expected, or that might occur in other areas, likely due to the coarse sand and subsurface conditions that characterize the immediate NSTR area. Maximum short time-averaged (1-sec) PM-10 concentrations at the center of the cloud immediately after the event reached 421 µg m-3 but were rapidly reduced (by atmospheric dispersion and fallout) to near background levels (~10 µg m-3) after about 15 minutes. This occurred well within the INL Site boundary, about 8 km (5 miles) from the NSTR source. These findings demonstrate that maximum concentrations in ambient air beyond the INL Site boundary (closest is 11.2 km from NSTR) from these types of tests would be well within the 150 µg m-3 24-hour National Ambient Air Quality Standards for PM-10. Aircraft measurements and geostatistical techniques were used to successfully quantify the initial volume (1.64E+9 m3 or 1.64 km3) and mass (250 kg) of the PM-10 dust cloud, and a PM-10 emission factor (20 kg m-3 crater soil volume) was developed for this specific type of event at NSTR. The 250 kg of PM-10 mass estimated from this experiment is almost seven-times higher than the 36 kg estimated for the environmental assessment (DOE-ID 2007) using available Environmental Protection Agency (EPA 1995) emission factors. This experiment demonstrated that advanced aircraft-mounted instruments operated by

  13. PoroTomo Subtask 3.7 Analyzed Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thomas Coleman

    2015-06-24

    Analyzed DTS datasets from active heat injection experiments in Guelph, ON Canada is included. A .pdf file of images including borehole temperature distributions, temperature difference distributions, temperature profiles, and flow interpretations is included as the primary analyzed dataset. Analyzed data used to create the .pdf images are included as a matlab data file that contains the following 5 types of data: 1) Borehole Temperature (matrix of temperature data collected in the borehole), 2) Borehole Temperature Difference (matrix of temperature difference above ambient for each test), 3) Borehole Time (time in both min and sec since the start of a DTS test), 4) Borehole Depth (channel depth locations for the DTS measurements), 5) Temperature Profiles (ambient, active, active off early time, active off late time, and injection).

  14. PoroTomo Subtask 3.7 Analyzed Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thomas Coleman

    Analyzed DTS datasets from active heat injection experiments in Guelph, ON Canada is included. A .pdf file of images including borehole temperature distributions, temperature difference distributions, temperature profiles, and flow interpretations is included as the primary analyzed dataset. Analyzed data used to create the .pdf images are included as a matlab data file that contains the following 5 types of data: 1) Borehole Temperature (matrix of temperature data collected in the borehole), 2) Borehole Temperature Difference (matrix of temperature difference above ambient for each test), 3) Borehole Time (time in both min and sec since the start of a DTS test), 4) Borehole Depth (channel depth locations for the DTS measurements), 5) Temperature Profiles (ambient, active, active off early time, active off late time, and injection).

  15. Final Report Full-Scale Test of DWPF Advanced Liquid-Level and Density Measurement Bubblers

    SciTech Connect (OSTI)

    Duignan, M.R.; Weeks, G.E.

    1999-07-01

    As requested by the Technical Task Request (1), a full-scale test was carried out on several different liquid-level measurement bubblers as recommended from previous testing (2). This final report incorporates photographic evidence (Appendix B) of the bubblers at different stages of testing, along with the preliminary results (Appendix C) which were previously reported (3), and instrument calibration data (Appendix D); while this report contains more detailed information than previously reported (3) the conclusions remain the same. The test was performed under highly prototypic conditions from November 26, 1996 to January 23, 1997 using the full-scale SRAT/SME tank test facilities located in the 672-T building at TNX. Two different types of advanced bubblers were subjected to approximately 58 days of slurry operation; 14 days of which the slurry was brought to boiling temperatures.The test showed that the large diameter tube bubbler (2.64 inches inside diameter) operated successfully throughout the2-month test by not plugging with the glass-frit ladened slurry which was maintained at a minimum temperature of 50 deg Cand several days of boiling temperatures. However, a weekly blow-down with air or water is recommended to minimize the slurry which builds up.The small diameter porous tube bubbler (0.62 inch inside diameter; water flow {gt} 4 milliliters/hour = 1.5 gallons/day) operated successfully on a daily basis in the glass-frit ladened slurry which was maintained at a minimum temperature of 50 degrees C and several days of boiling temperatures. However, a daily blow-down with air, or air and water, is necessary to maintain accurate readings.For the small diameter porous tube bubbler (0.62 inch inside diameter; water flow {gt} 4 milliliters/hour = 1.5 gallons/day) there were varying levels of success with the lower water-flow tubes and these tubes would have to be cleaned by blowing with air, or air and water, several times a day to maintain them plug free. This

  16. Report on 240Am(n,x) surrogate cross section test measurement

    SciTech Connect (OSTI)

    Ressler, J J; Burke, J T; Gostic, J; Bleuel, D; Escher, J E; Henderson, R A; Koglin, J; Reed, T; Scielzo, N D; Stoyer, M A

    2012-02-01

    The main goal of the test measurement was to determine the feasibility of the {sup 243}Am(p,t) reaction as a surrogate for {sup 240}Am(n,f). No data cross section data exists for neutron induced reactions on {sup 240}Am; the half-life of this isotope is only 2.1 days making direct measurements difficult, if not impossible. The 48-hour experiment was conducted using the STARS/LIBERACE experimental facility located at the 88 Inch Cyclotron at Lawrence Berkeley National Laboratory in August 2011. A description of the experiment and results is given. The beam energy was initially chosen to be 39 MeV in order to measure an equivalent neutron energy range from 0 to 20 MeV. However, the proton beam was not stopped in the farady cup and the beam was deposited in the surrounding shielding material. The shielding material was not conductive, and a beam current, needed for proper tuning of the beam as well as experimental monitoring, could not be read. If the {sup 240}Am(n,f) surrogate experiment is to be run at LBNL, simple modifications to the beam collection site will need to be made. The beam energy was reduced to 29 MeV, which was within an energy regime of prior experiments and tuning conditions at STARS/LIBERACE. At this energy, the beam current was successfully tuned and measured. At 29 MeV, data was collected with both the {sup 243}Am and {sup 238}U targets. An example particle identification plot is shown in Fig. 1. The triton-fission coincidence rate for the {sup 243}Am target and {sup 238}U target were measured. Coincidence rates of 0.0233(1) cps and 0.150(6) cps were observed for the {sup 243}Am and {sup 238}U targets, respectively. The difference in count rate is largely attributed to the available target material - the {sup 238}U target contains approximately 7 times more atoms than the {sup 243}Am. A proton beam current of {approx}0.7 nA was used for measurements on both targets. Assuming a full experimental run under similar conditions, an estimate for the

  17. First Beam Waist Measurements in the Final Focus Beam Line at the KEK Accelerator Test Facility

    SciTech Connect (OSTI)

    Bai, Sha; Aryshev, Alexander; Bambade, Philip; McCormick, Doug; Bolzon, Benoit; Gao, Jie; Tauchi, Toshiaki; Zhou, Feng; /SLAC

    2012-06-22

    The ATF2 project is the final focus system prototype for the ILC and CLIC linear collider projects, with a purpose to reach a 37 nm vertical beam size at the interaction point using compact optics based on a novel scheme of local chromaticity correction. Construction of all components and installation were completed at the end of 2008. An initial commissioning phase followed in 2009, using larger than nominal {beta} functions at the interaction point, corresponding to reduced demagnification factors in comparison to the design, to limit effects from higher-order optical aberrations and hence simplify beam tuning procedures while key instrumentation was being tested and calibrated. In this paper, first measurements of dispersion and Twiss parameters are presented based on scanning the beam during this period with a set of tungsten wires located just behind the interaction point, using two complementary analysis methods.

  18. Measuring the Optical Performance of Evacuated Receivers via an Outdoor Thermal Transient Test: Preprint

    SciTech Connect (OSTI)

    Kutscher, C.; Burkholder, F.; Netter, J.

    2011-08-01

    Modern parabolic trough solar collectors operated at high temperatures to provide the heat input to Rankine steam power cycles employ evacuated receiver tubes along the collector focal line. High performance is achieved via the use of a selective surface with a high absorptance for incoming short-wave solar radiation and a low emittance for outgoing long-wave infrared radiation, as well as the use of a hard vacuum to essentially eliminate convective and conductive heat losses. This paper describes a new method that determines receiver overall optical efficiency by exposing a fluid-filled, pre-cooled receiver to one sun outdoors and measuring the slope of the temperature curve at the point where the receiver temperature passes the glass envelope temperature (that is, the point at which there is no heat gain or loss from the absorber). This transient test method offers the potential advantages of simplicity, high accuracy, and the use of the actual solar spectrum.

  19. Measured versus predicted performance of the SERI test house: a validation study

    SciTech Connect (OSTI)

    Judkoff, R.; Wortman, D.; Burch, J.

    1983-05-01

    For the past several years the United States Department of Energy (DOE) Passive and Hybrid Solar Division has sponsored work to improve the reliability of computerized building energy analysis simulations. Under the auspices of what has come to be called the Class A Monitoring and Validation program, the Solar Energy Research Institute (SERI) has engaged in several areas of research that includes: (1) developing a validation methodology; (2) developing a performance monitoring methodology designed to meet the specific data needs for validating analysis/design tools; (3) constructing and monitoring a 1000-ft/sup 2/, multizone, skin-load-dominated test building; (4) constructing and monitoring a two-zone test cell; and (5) making sample validation studies using the DOE-2.1, BLAST-3.0, and SERIRES-1.0 computer programs. This paper reports the results obtained in comparing the measured thermal performance of the building to the performance calculated by the building energy analysis simulations. It also describes the validation methodology and the class A data acquisition capabilities at SERI.

  20. Test results of a new detector system for gamma ray isotopic measurements

    SciTech Connect (OSTI)

    Malcom, J.E.; Bonner, C.A.; Hurd, J.R.; Fleissner,

    1993-08-01

    A new type of gamma-ray detector system for isotopic measurements has been developed. This new system, a ``Duo detector`` array, consists of two intrinsic germanium detectors, a planar followed by a coaxial mounted on the same axis within a single cryostat assembly. This configuration allows the isotopic analysis system to take advantage of spectral data results that are collected simultaneously from different gamma-ray energy regimes. Princeton Gamma Tech (PGT) produced several prototypes of this Duo detector array which were then tested by Rocky Flats personnel until the design was optimized. An application for this detector design is in automated, roboticized NDA systems such as those being developed at the Los Alamos TA-55 Plutonium Facility. The Duo detector design reduces the space necessary for the isotopic instrument by a factor of two (only one liquid nitrogen dewar is needed), and also reduces the complexity of the mechanical systems and controlling software. Data will be presented on measurements of nuclear material with a Duo detector for a wide variety of matrices. Results indicate that the maximum count rate can be increased up to 100,000 counts per second yet maintaining excellent resolution and energy rate product.

  1. test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teppei Katori Indiana University Rencontres de Moriond EW 2008 La Thuile, Italia, Mar., 05, 08 Neutrino cross section measurements for long-baseline neutrino oscillation...

  2. Thermo Scientific Sulfur Dioxide Analyzer Instrument Handbook...

    Office of Scientific and Technical Information (OSTI)

    in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program ...

  3. Measurement of fenestration net energy performance: Considerations leading to development of a Mobile Window Thermal Test (MoWitt) facility

    SciTech Connect (OSTI)

    Klems, J.H.

    1988-08-01

    The authors present a detailed consideration of the energy flows entering a building space and the effect of random measurement errors on determining fenestration performance. Estimates of error magnitudes are made for a passive test cell; they show that a more accurate test facility is needed for reliable measurements on fenestration systems with thermal resistance 2-10 times that of single glazing or with shading coefficients less than 0.7. A test facility of this type, built at Lawrence Berkeley Laboratory, is described. The effect of random errors in this facility is discussed and computer calculations of its performance are presented. The discussion shows that, for any measurement facility, random errors are most serious in nighttime measurements, and systematic errors are most important in daytime measurements. It is concluded that, for this facility, errors from both sources should be small.

  4. Apparatus and method for analyzing well fluid sag

    SciTech Connect (OSTI)

    Jamison, D.E.; Clements, W.R.

    1992-02-11

    This patent describes a method of analyzing sag phenomena in well fluids. It comprises: mounting an elongate container containing a sample of a fluid to be tested on a force responsive device which provides a measurable, variable indication of the center of mass of the container, at an angle with respect to vertical; holding the angle generally constant, but for small movements corresponding to changes in the center of mass of the container due to sagging of the contents of the sample, for a period of time sufficient for such sagging to occur, and measuring the indication.

  5. Measuring it Right: Best Practices in the Selection and Implementation of Cost-Effectiveness Tests

    Broader source: Energy.gov [DOE]

    Presents the National Home Performance Council's cost-effectiveness tests, stakeholder concerns, public policy issues, and best practices.

  6. Test procedure for measurement of performance vs temperature of Whittaker electrochemical cell

    SciTech Connect (OSTI)

    Vargo, G.F.

    1997-01-23

    This document is the test procedure to systematically test the Whittaker cells between the temperatures of -20 degrees F and +120 degrees F. These sensors are used on the Rotary Mode Core Sampling (RMCS) flammable gas interlock (FGI), to detect and quantify hydrogen gas. This procedure supports the testing, that is being performed after cold weather attempts on the Whittaker cell failed.

  7. Fluidization quality analyzer for fluidized beds

    DOE Patents [OSTI]

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  8. Fluidization quality analyzer for fluidized beds

    DOE Patents [OSTI]

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  9. NREL's e-Ca Test: A Scalable, High-Sensitivity Water Permeation Measurement Methodology (Poster)

    SciTech Connect (OSTI)

    Dameron, A.; Kempe, M.; Reese, M.

    2014-02-01

    A test method is described that uses the resistivity of a Calcium film to detect very small amounts of water permeating through a barrier material.

  10. NREL: Measurements and Characterization - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with Us The National Renewable Energy Laboratory's (NREL's) Measurement and Characterization (M&C) division tests and analyzes thousands of photovoltaic (PV) material and...

  11. Field test and evaluation of the IAEA coincidence collar for the measurement of unirradiated BWR fuel assemblies

    SciTech Connect (OSTI)

    Menlove, H.O.; Keddar, A.

    1982-12-01

    The neutron coincidence counter has been field tested and evaluated for the measurement of boiling-water-reactor (BWR) fuel assemblies at the ASEA-ATOM Fuel Fabrication Facility. The system measures the /sup 235/U content per unit length of full fuel assemblies using neutron interrogation and coincidence counting. The /sup 238/U content is measured in the passive mode without the AmLi neutron interrogatioin source. The field tests included both standard production movable fuel rods to investigate enrichment and absorber variations. Results gave a response standard deviation of 0.9% for the active case and 2.1% for the passive case in 1000-s measurement times. 10 figures, 2 tables.

  12. LANL analyzes meteor fragments nondestructively

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL analyzes meteor fragments nondestructively LANL analyzes meteor fragments nondestructively Researchers and collaborators used the Los Alamos Neutron Science Center User Facility to perform novel compositional tomography characterizing small samples of the Chelyabinsk meteor. April 1, 2015 Chelyabinsk meteor fragment shown next to a 1-cm scale cube. Chelyabinsk meteor fragment shown next to a 1-cm scale cube. The team employed a range of LANSCE probes to analyze Chelyabinsk fragments and two

  13. analyzing reliability and performance data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analyzing reliability and performance data - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  14. Compact fast analyzer of rotary cuvette type

    DOE Patents [OSTI]

    Thacker, Louis H.

    1976-01-01

    A compact fast analyzer of the rotary cuvette type is provided for simultaneously determining concentrations in a multiplicity of discrete samples using either absorbance or fluorescence measurement techniques. A rigid, generally rectangular frame defines optical passageways for the absorbance and fluorescence measurement systems. The frame also serves as a mounting structure for various optical components as well as for the cuvette rotor mount and drive system. A single light source and photodetector are used in making both absorbance and fluorescence measurements. Rotor removal and insertion are facilitated by a swing-out drive motor and rotor mount. BACKGROUND OF THE INVENTION The invention relates generally to concentration measuring instruments and more specifically to a compact fast analyzer of the rotary cuvette type which is suitable for making either absorbance or fluorescence measurements. It was made in the course of, or under, a contract with the U.S. Atomic Energy Commission.

  15. Calculated and measured drift closure during the spent-fuel test in Climax granite

    SciTech Connect (OSTI)

    Yow, J.L. Jr.; Butkovich, T.R.

    1982-04-01

    Horizontal and vertical measurements of drift closures have been made with a manually operated tape extensometer since about 6 weeks after the emplacement of the spent fuel at various locations along the length of the drifts. The averaged closures are less than 0.6 mm from the onset of measurements through about two years after the spent fuel emplacement. These results have been compared with thermo-elastic finite element calculations using measured medium properties. The comparisons show that most of the closure of the drifts occurred between the time the spent fuel was emplaced and the time of first measurement. The comparisons show that the results track each other, in that where closure followed by dilation is measured, the calculations also show this effect. The agreement is excellent, although where closures of less than 0.2 mm are measured the comparison with calculations is limited by measurement reproducability. Once measurements commenced the averaged measured closures remain to within 30% of the calculated total closure in each drift. 9 figures, 1 table.

  16. High-precision Penning trap mass measurements for tests of the Standard Model

    SciTech Connect (OSTI)

    Blaum, Klaus; Eliseev, Sergey; Nagy, Szilard

    2010-08-04

    With the nowadays achievable accuracy in Penning trap mass spectrometry on short-lived exotic nuclides as well as stable atoms, precision fundamental tests can be performed, among them a test of the Standard Model, in particular with regard to the weak interaction, the CPT symmetry conservation, and the unitarity of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. In addition, accurate mass values of specific nuclides are important for neutrino physics. The presently best tests of the Standard Model with high-precision Penning trap mass spectrometry will be reviewed.

  17. Operations of the Automated Radioxenon Sampler/Analyzer - ARSA

    SciTech Connect (OSTI)

    Hayes, James C.; Abel, Keith H.; Bowyer, Ted W.; Heimbigner, Tom R.; Panisko, Mark E.; Reeder, Paul L.; McIntyre, Justin I.; Thompson, Robert C.; Todd, Lindsay C.; Warner, Ray A.

    1999-09-01

    The Automated Radioxenon Sampler/ Analyzer (ARSA), designed and built by Pacific Northwest National Laboratory (PNNL), for the Department of Energy, has exceeded measurement requirements for noble gas measurement systems established by the Comprehensive Nuclear-Test-Ban Treaty. Two units, one at PNNL and a second, sent to DME Corp. of Florida, were built and extensively tested. Both systems have successfully demonstrated stable xenon yields greater than 1.5 cm3 for an eight-hour collection period, corresponding to minimum detectable concentrations for 133Xe on the order of 0.1 mBq/m3 three times per day. High stable xenon yields are critical in obtaining these low minimum detectable concentrations. A history of testing and results that led to the high xenon yields of the ARSA system is presented. A compilation of field tests, laboratory tests and baseline tests that led to cost reduction, power savings and size reduction of the ARSA are also discussed. Lastly, the type of data generated from the ARSA of interest to data center personnel are discussed.

  18. Clip gage attachment for frictionless measurement of displacement during high-temperature mechanical testing

    DOE Patents [OSTI]

    Alexander, D.J.

    1994-01-04

    An attachment for placement between a test specimen and a remote clip gage extensometer providing improved fracture toughness tests of materials at elevated temperature is described. Using a cylindrical tube and axial rod in new relationship, the device transfers the displacement signal of the fracture toughness test specimen directly to a clip gage extensometer located outside the high temperature furnace. Virtually frictionless operation is assured by having the test specimen center one end of the rod in one end of the tube, while the clip gage extensometer arms center the other end of the rod in the other end of the tube. By providing positive control over both ends of both rod and tube, the attachment may be operated in orientations other than vertical. 1 figure.

  19. Clip gage attachment for frictionless measurement of displacement during high-temperature mechanical testing

    DOE Patents [OSTI]

    Alexander, David J.

    1994-01-01

    An attachment for placement between a test specimen and a remote clip gage extensometer providing improved fracture toughness tests of materials at elevated temperature. Using a cylindrical tube and axial rod in new relationship, the device transfers the displacement signal of the fracture toughness test specimen directly to a clip gage extensometer located outside the high temperature furnace. Virtually frictionless operation is assured by having the test specimen center one end of the rod in one end of the tube, while the clip gage extensometer arms center the other end of the rod in the other end of the tube. By providing positive control over both ends of both rod and tube, the attachment may be operated in orientations other than vertical.

  20. Exhaust Analyzer | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exhaust Analyzer Technology available for licensing: Aids in development of advanced technologies for reducing particulate emissions, thereby reducing human exposure Diesel engine makers can use to evaluate diesel particulate emissions; refining companies can use it for evaluating fuel quality; and regulatory agencies can use for checking on-road vehicle compliance for emissions PDF icon Exhaust_Analyzer

  1. Frequency spectrum analyzer with phase-lock

    DOE Patents [OSTI]

    Boland, Thomas J.

    1984-01-01

    A frequency-spectrum analyzer with phase-lock for analyzing the frequency and amplitude of an input signal is comprised of a voltage controlled oscillator (VCO) which is driven by a ramp generator, and a phase error detector circuit. The phase error detector circuit measures the difference in phase between the VCO and the input signal, and drives the VCO locking it in phase momentarily with the input signal. The input signal and the output of the VCO are fed into a correlator which transfers the input signal to a frequency domain, while providing an accurate absolute amplitude measurement of each frequency component of the input signal.

  2. Field Test Results from Lidar Measured Yaw Control for Improved Yaw Alignment with the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Scholbrock, A.; Fleming, P.; Wright, A.; Slinger, C.; Medley, J.; Harris, M.

    2014-12-01

    This paper describes field tests of a light detection and ranging (lidar) device placed forward looking on the nacelle of a wind turbine and used as a wind direction measurement to directly control the yaw position of a wind turbine. Conventionally, a wind turbine controls its yaw direction using a nacelle-mounted wind vane. If there is a bias in the measurement from the nacelle-mounted wind vane, a reduction in power production will be observed. This bias could be caused by a number of issues such as: poor calibration, electromagnetic interference, rotor wake, or other effects. With a lidar mounted on the nacelle, a measurement of the wind could be made upstream of the wind turbine where the wind is not being influenced by the rotor's wake or induction zone. Field tests were conducted with the lidar measured yaw system and the nacelle wind vane measured yaw system. Results show that a lidar can be used to effectively measure the yaw error of the wind turbine, and for this experiment, they also showed an improvement in power capture because of reduced yaw misalignment when compared to the nacelle wind vane measured yaw system.

  3. Nuclear fuel microsphere gamma analyzer

    DOE Patents [OSTI]

    Valentine, Kenneth H.; Long, Jr., Ernest L.; Willey, Melvin G.

    1977-01-01

    A gamma analyzer system is provided for the analysis of nuclear fuel microspheres and other radioactive particles. The system consists of an analysis turntable with means for loading, in sequence, a plurality of stations within the turntable; a gamma ray detector for determining the spectrum of a sample in one section; means for analyzing the spectrum; and a receiver turntable to collect the analyzed material in stations according to the spectrum analysis. Accordingly, particles may be sorted according to their quality; e.g., fuel particles with fractured coatings may be separated from those that are not fractured, or according to other properties.

  4. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use: Preprint

    SciTech Connect (OSTI)

    Rugh, J.

    2010-02-01

    A procedure is described to measure approximate real-world air conditioning fuel use and assess the impact of thermal load reduction strategies in plug-in hybrid electric vehicles.

  5. Test report for measurement of performance vs temperature of Whittaker Electrochemical Cell

    SciTech Connect (OSTI)

    Vargo, G.F., Fluor Daniel Hanford

    1997-02-13

    This document is the test report that summarizes the results of the tests on the Whittaker cells between the temperatures of -20{degrees}F and +120{degrees}F. These sensors are used on the Rotary Mode Core Sampling (RMCS) flammable gas interlock (FGI), to detect and quantify hydrogen gas. The test consisted of operating five Whittaker electrochemical cells in an environmental chamber that was varied in temperature from -20{degrees}F to +120{degrees}F. As the rate rise of the voltage from the cells changed, after exposure to a gas concentration of 1% hydrogen at the different temperatures, the voltage was recorded on a computer controlled data acquisition system. Analysis of the data was made to determine if the cells maximum output voltages and rise times were effected by temperature.

  6. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect (OSTI)

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  7. Testing X-ray measurements of galaxy cluster outskirts with cosmological simulations

    SciTech Connect (OSTI)

    Avestruz, Camille; Lau, Erwin T.; Nagai, Daisuke; Vikhlinin, Alexey

    2014-08-20

    The study of galaxy cluster outskirts has emerged as one of the new frontiers in extragalactic astrophysics and cosmology with the advent of new observations in X-ray and microwave. However, the thermodynamic properties and chemical enrichment of this diffuse and azimuthally asymmetric component of the intracluster medium (ICM) are still not well understood. This work, for the first time, systematically explores potential observational biases in these regions. To assess X-ray measurements of galaxy cluster properties at large radii (>R {sub 500c}), we use mock Chandra analyses of cosmological galaxy cluster simulations. The pipeline is identical to that used for Chandra observations, but the biases discussed in this paper are relevant for all X-ray observations outside of R {sub 500c}. We find the following from our analysis: (1) filament regions can contribute as much as 50% at R {sub 200c} to the emission measure; (2) X-ray temperatures and metal abundances from model fitted mock X-ray spectra in a multi-temperature ICM respectively vary to the level of 10% and 50%; (3) resulting density profiles vary to within 10% out to R {sub 200c}, and gas mass, total mass, and baryon fractions all vary to within a few percent; (4) the bias from a metal abundance extrapolated a factor of five higher than the true metal abundance results in total mass measurements biased high by 20% and total gas measurements biased low by 10%; and (5) differences in projection and dynamical state of a cluster can lead to gas density slope measurements that differ by a factor of 15% and 30%, respectively. The presented results can partially account for some of the recent gas profile measurements in cluster outskirts by, e.g., Suzaku. Our findings are pertinent to future X-ray cosmological constraints from cluster outskirts, which are least affected by non-gravitational gas physics, as well as to measurements probing gas properties in filamentary structures.

  8. Spent Fuel Test-Climax: technical measurements data management system description and data presentation

    SciTech Connect (OSTI)

    Carlson, R.C.

    1985-08-01

    The Spent Fuel Test-Climax (SFT-C) was located 420 m below surface in the Climax Stock granite on the Nevada Test Site. The test was conducted under the technical direction of the Lawrence Livermore National Laboratory (LLNL) as part of the Nevada Nuclear Waste Storage Investigations (NNWSI) for the US Department of Energy. Eleven canisters of spent nuclear reactor fuel were emplaced, along with six electrical simulators, in April-May 1980. The spent fuel canisters were retrieved and the electrical simulators de-energized in March-April 1983. During the test, just over 1000 MW-hr of thermal energy was deposited in the site, causing temperature changes 100{sup 0}C near the canisters, and about 5{sup 0} in the tunnels. More than 900 channels of geotechnical, seismological, and test status data were recorded on nearly continuous basis for about 3-1/2 years, ending in September 1983. Most geotechnical instrumentation was known to be temperature sensitive, and thus would require temperature compensation before interpretation. Accordingly, a 10-in. reel of digital tape was off-loaded and shipped to Livermore every 4 to 8 weeks, where the data were verified, organized into 45 one-million-word files, and temperature corrected. The purpose of this report is to document the receipt and processing of the data by LLNL Livermore personnel, present facts about the history of the instruments which may be important to the interpretation of the data, present the data themselves in graphical form for each instrument over its operating lifetime, document the forms and locations in which the data will be archived, and offer the data to the geotechnical community for future use in understanding and predicting the effects of the storage of heat-generating waste in hard rocks such as granite.

  9. Split Hopkinson Resonant Bar Test for Sonic-Frequency Acoustic Velocity and Attenuation Measurements of Small, Isotropic Geologic Samples

    SciTech Connect (OSTI)

    Nakagawa, S.

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.

  10. Testing the Standard Model by precision measurement of the weak charges of quarks

    SciTech Connect (OSTI)

    Ross Young; Roger Carlini; Anthony Thomas; Julie Roche

    2007-05-01

    In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low-energy. The precision of this new result, combined with earlier atomic parity-violation measurements, limits the magnitude of possible contributions from physics beyond the Standard Model - setting a model-independent, lower-bound on the scale of new physics at ~1 TeV.

  11. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Heating Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    2013-09-01

    Two identical laboratory homes designed to model existing Florida building stock were sealed and tested to 2.5 ACH50. Then, one was made leaky with 70% leakage through the attic and 30% through windows, to a tested value of 9 ACH50. Reduced energy use was measured in the tighter home (2.5 ACH50) in the range of 15% to 16.5% relative to the leaky (9 ACH50) home. Internal moisture loads resulted in higher dew points inside the tight home than the leaky home. Window condensation and mold growth occurred inside the tight home.

  12. Development and Test of a GEM-Based TEPC System for In-Phantom Dose Measurements

    SciTech Connect (OSTI)

    C-K Chris Wang

    2007-03-13

    The objectives of this project include: (1) to construct a minature tissue equivalent proportional counter (TEPC) using a gas-electron-multiplier (GEM) foil, and (2) to conduct neutron and gamma-ray dose measurements with the detector embedded in a phantom

  13. Design and commissioning of vertical test cryostats for XFEL superconducting cavities measurements

    SciTech Connect (OSTI)

    Polinski, J.; Chorowski, M.; Duda, P.; Bozhko, Y.; Petersen, B.; Schaffran, J.

    2014-01-29

    The European X-ray Free Electron Laser (XFEL), now under construction at DESY in Hamburg, will make an extensive use of 1.3 GHz superconducting cavities aimed at accelerating the electrons to the energy of 17.5 GeV. The cavities will be operated at 2 K with the use of saturated HeII. Prior to their assembly in accelerator cryomodules, the RF performance of the cavities will be cold-tested in two dedicated vertical cryostats. Each cryostat allows a simultaneous testing of 4 cavities mounted on a dedicated insert. The cryostats are equipped with external lines allowing their supply with liquid helium and further conversion of the helium into superfluid He II. The paper describes the test stand flow scheme, the technical key elements, including a recuperative heat exchanger, and the cold commissioning. The thermodynamic analysis of the cryostat cool down and steady-state operation is given. A Second Law of Thermodynamics based theoretical model of the heat exchanger performance, and the model experimental validation, is presented.

  14. Methodology for testing metal detectors using variables test data

    SciTech Connect (OSTI)

    Spencer, D.D.; Murray, D.W.

    1993-08-01

    By extracting and analyzing measurement (variables) data from portal metal detectors whenever possible instead of the more typical ``alarm``/``no-alarm`` (attributes or binomial) data, we can be more informed about metal detector health with fewer tests. This testing methodology discussed in this report is an alternative to the typical binomial testing and in many ways is far superior.

  15. Rotor for centrifugal fast analyzers

    DOE Patents [OSTI]

    Lee, Norman E.

    1985-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  16. Rotor for centrifugal fast analyzers

    DOE Patents [OSTI]

    Lee, N.E.

    1984-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  17. Measured Whole-House Performance of TaC Studios Test Home

    SciTech Connect (OSTI)

    Butler, T.; Curtis, O.; Stephenson, R.

    2013-12-01

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta-based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach topotential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaCStudios and was ensured by a third party review process. Post-construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowners wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this homewas evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored todetermine their impact on overall energy consumption.

  18. Measured Whole-House Performance of TaC Studios Test Home

    SciTech Connect (OSTI)

    Butler, T.; Curtis, O.; Stephenson, R.

    2013-12-01

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta-based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA, in the mixed humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post-construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowners wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.

  19. Simulation and measurement of the electrostatic beam kicker in the low-energy undulator test line.

    SciTech Connect (OSTI)

    Waldschmidt, G. J.

    1998-10-27

    An electrostatic kicker has been constructed for use in the Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source (APS). The function of the kicker is to limit the amount of beam current to be accelerated by the APS linac. Two electrodes within the kicker create an electric field that adjusts the trajectory of the beam. This paper will explore the static fields that are set up between the offset electrode plates and determine the reaction of the beam to this field. The kicker was numerically simulated using the electromagnetic solver package MAFIA [1].

  20. A STATISTICAL METHOD FOR MEASURING THE GALACTIC POTENTIAL AND TESTING GRAVITY WITH COLD TIDAL STREAMS

    SciTech Connect (OSTI)

    Penarrubia, Jorge; Walker, Matthew G.

    2012-11-20

    We introduce the Minimum Entropy Method, a simple statistical technique for constraining the Milky Way gravitational potential and simultaneously testing different gravity theories directly from 6D phase-space surveys and without adopting dynamical models. We demonstrate that orbital energy distributions that are separable (i.e., independent of position) have an associated entropy that increases under wrong assumptions about the gravitational potential and/or gravity theory. Of known objects, 'cold' tidal streams from low-mass progenitors follow orbital distributions that most nearly satisfy the condition of separability. Although the orbits of tidally stripped stars are perturbed by the progenitor's self-gravity, systematic variations of the energy distribution can be quantified in terms of the cross-entropy of individual tails, giving further sensitivity to theoretical biases in the host potential. The feasibility of using the Minimum Entropy Method to test a wide range of gravity theories is illustrated by evolving restricted N-body models in a Newtonian potential and examining the changes in entropy introduced by Dirac, MONDian, and f(R) gravity modifications.

  1. Note: Inhibiting bottleneck corrosion in electrical calcium tests for ultra-barrier measurements

    SciTech Connect (OSTI)

    Nehm, F. Müller-Meskamp, L.; Klumbies, H.; Leo, K.

    2015-12-15

    A major failure mechanism is identified in electrical calcium corrosion tests for quality assessment of high-end application moisture barriers. Accelerated calcium corrosion is found at the calcium/electrode junction, leading to an electrical bottleneck. This causes test failure not related to overall calcium loss. The likely cause is a difference in electrochemical potential between the aluminum electrodes and the calcium sensor, resulting in a corrosion element. As a solution, a thin, full-area copper layer is introduced below the calcium, shifting the corrosion element to the calcium/copper junction and inhibiting bottleneck degradation. Using the copper layer improves the level of sensitivity for the water vapor transmission rate (WVTR) by over one order of magnitude. Thin-film encapsulated samples with 20 nm of atomic layer deposited alumina barriers this way exhibit WVTRs of 6 × 10{sup −5} g(H{sub 2}O)/m{sup 2}/d at 38 °C, 90% relative humidity.

  2. Determining initial enrichment, burnup, and cooling time of pressurized-water reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Favalli, Andrea; Vo, D.; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Schwalbach, P.; Sjoland, A.; Tobin, Stephen J.; Trellue, Holly; et al

    2016-02-26

    The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuelmore » assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.« less

  3. EVALUATION OF ZERO-POWER, ELEVATED-TEMPERATURE MEASUREMENTS AT JAPANS HIGH TEMPERATURE ENGINEERING TEST REACTOR

    SciTech Connect (OSTI)

    John D. Bess; Nozomu Fujimoto; James W. Sterbentz; Luka Snoj; Atsushi Zukeran

    2011-03-01

    The High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Agency (JAEA) is a 30 MWth, graphite-moderated, helium-cooled reactor that was constructed with the objectives to establish and upgrade the technological basis for advanced high-temperature gas-cooled reactors (HTGRs) as well as to conduct various irradiation tests for innovative high-temperature research. The core size of the HTTR represents about one-half of that of future HTGRs, and the high excess reactivity of the HTTR, necessary for compensation of temperature, xenon, and burnup effects during power operations, is similar to that of future HTGRs. During the start-up core physics tests of the HTTR, various annular cores were formed to provide experimental data for verification of design codes for future HTGRs. The experimental benchmark performed and currently evaluated in this report pertains to the data available for two zero-power, warm-critical measurements with the fully-loaded HTTR core. Six isothermal temperature coefficients for the fully-loaded core from approximately 340 to 740 K have also been evaluated. These experiments were performed as part of the power-up tests (References 1 and 2). Evaluation of the start-up core physics tests specific to the fully-loaded core (HTTR-GCR-RESR-001) and annular start-up core loadings (HTTR-GCR-RESR-002) have been previously evaluated.

  4. Development of BWR plant analyzer

    SciTech Connect (OSTI)

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Stritar, A.; Mallen, A.N.

    1984-01-01

    The BWR Plant Analyzer has been developed for realistic and accurate simulations of normal and severe abnormal transients in BWR power plants at high simulation speeds, low capital and operating costs and with outstanding user conveniences. The simulation encompasses neutron kinetics, heat conduction in fuel structures, nonequilibrium, nonhomogeneous coolant dynamics, steam line acoustics, and the dynamics of turbines, condensers, feedwater pumps and heaters, of the suppression pool, the control systems and the plant protection systems. These objectives have been achieved. Advanced modeling, using extensively analytical integration and dynamic evaluation of analytical solutions, has been combined with modern minicomputer technology for high-speed simulation of complex systems. The High-Speed Interactive Plant Analyzer code HIPA-BWR has been implemented on the AD10 peripheral parallel processor.

  5. Damage measurements on the NWTC direct-drive, variable-speed test bed

    SciTech Connect (OSTI)

    Sutherland, H.J.; Carlin, P.W.

    1998-12-31

    The NWTC (National Wind Technology Center) Variable-Speed Test Bed turbine is a three-bladed, 10-meter, downwind machine that can be run in either fixed-speed or variable-speed mode. In the variable-speed mode, the generator torque is regulated, using a discrete-stepped load bank to maximize the turbine`s power coefficient. At rated power, a second control loop that uses blade pitch to maintain rotor speed essentially as before, i.e., using the load bank to maintain either generator power or (optionally) generator torque. In this paper, the authors will use this turbine to study the effect of variable-speed operation on blade damage. Using time-series data obtained from blade flap and edge strain gauges, the load spectrum for the turbine is developed using rainflow counting techniques. Miner`s rule is then used to determine the damage rates for variable-speed and fixed-speed operation. The results illustrate that the controller algorithm used with this turbine introduces relatively large load cycles into the blade that significantly reduce its service lifetime, while power production is only marginally increased.

  6. Design and calibration of a test facility for MLI thermal performance measurements below 80K. [Multilayer insulation (MLI)

    SciTech Connect (OSTI)

    Boroski, W.; Kunzelman, R.; Ruschman, M.; Schoo, C.

    1992-04-01

    The design geometry of the SSC dipole cryostat includes active thermal radiation shields operating at 80K and 20K respectively. Extensive measurements conducted in a Heat Leak Test Facility (HLTF) have been used to evaluate the thermal performance of candidate multilayer insulation (MLI) systems for the 80K thermal shield, with the present system design based upon those measurement results. With the 80K MLI geometry established, efforts have focused on measuring the performance of MLI systems near 20K. A redesign of the HLTF has produced a measurement facility capable of conducting measurements with the warm boundary fixed at 80K and the cold boundary variable from 10K to 50K. Removing the 80K shield permits measurements with a warm boundary at 300K. The 80K boundary consists of a copper shield thermally anchored to a liquid nitrogen reservoir. The cold boundary consists of a copper anchor plate whose temperature is varied through boil-off gas from a 500 liter helium supply dewar. A transfer line heat exchanger supplies the boil-off gas to the anchor plate at a constant and controlled rate. The gas, which serves as cooling gas, is routed through a copper cooling tube soldered into the anchor plate. Varying the cooling gas flow rate varies the amount of refrigeration supplied to the anchor plate, thereby determining the plate temperature. A resistance heater installed on the anchor plate is regulated by a cryogenic temperature controller to provide final temperature control. Heat leak values are measured using a heatmeter which senses heat flow as a temperature gradient across a fixed thermal impedance. Since the thermal conductivity of the thermal impedance changes with temperature, the heatmeter is calibrated at key cold boundary temperatures. Thus, the system is capable of obtaining measurement data under a variety of system conditions. 7 refs.

  7. DESIGN AND TEST OF AN INSTRUMENT FOR MEASURING MICROTHERMAL SEEING ON THE MAGDALENA RIDGE

    SciTech Connect (OSTI)

    Jorgensen, A. M.; Klinglesmith, D. A.; Speights, J.; Clements, A.; Patel, J.

    2009-05-15

    We have constructed and operated an automated instrument for measuring ground-level microthermal seeing at the Magdalena Ridge Observatory (MRO). The MRO is located at an altitude of 10500' in the Cibola National Forest in New Mexico, USA. It is the planned site for the MRO Optical Interferometer (MROI) planned for up to 10 collecting elements, each with a diameter of 1.4 m, and baselines eventually up to approximately 400 m. As part of the preparation for construction we deployed a system to characterize the ground-level seeing across the observatory site. The instrument is built largely of off-the-shelf components, with only the sensor head and power supply requiring electronic board assembly. Even in those cases the board architecture is very simple. The first proof-of-concept system was deployed for several weeks in the autumn of 2004, and has since undergone several iterations. The latest configuration operates entirely off batteries, incorporates wireless data acquisition, and is thus able to operate in an area with no shelter, power, or communications. In this paper we present the design of the instrument, and show initial data. The microthermal tower has four sensor pairs at heights from 0.8 to 4.41 m, significantly lower than other microthermal experiments, because of the need to characterize the seeing near the ground. We find significant variation in the contribution of this range of heights to the seeing, contributing up to 0.''3 of the seeing at some times and only 0.''02 at other times. The individual sensor power spectra have a slope in the range of 1.4--1.5, which is lower than the 1.67 slope predicted by Kolmogorov turbulence theory. We measure the well known effect of improved seeing immediately around sunset. While we find significant variation in the microthermal seeing, we did not find a pattern of corresponding variations in weather conditions, suggesting that a complicated set of factors control microthermal turbulence.

  8. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 2, delayed gamma-ray measurements. Part 1. Gamma-ray spectrum measurements (abridged)

    SciTech Connect (OSTI)

    Gibson, H.F.; Miller, W.; Motz, J.W.; Smeltzer, J.C.; Wyckoff, H.O.

    1985-09-01

    The measurement of bomb efficiencies from the number of gamma rays requires fundamentally two separate experiments. The average number of gamma rays emitted from the fission fragments (delayed gamma rays) per fission must be determined. This experiment can be carried out in the laboratory, a second experiment, the absolute determination of the number of gamma rays from the bomb are also attempted. Because gamma rays are not directly observable but are measured only through their secondary effects, and because the probability of occurrence of the secondary effects depends upon the gamma ray energy, it is not usually possible to count directly the number of gamma rays in a heterochromatic spectrum. A spectral distribution must be first obtained from which the actual total number of gamma rays may be computed. This volume discusses the planning for the experiment and the spectral distribution of collimated gamma rays determined from the Greenhouse tests on two shots. A discussion of measurement of build-up factor which is needed to estimate the effect of collimation is also given.

  9. The OpenSHMEM Analyzer

    Energy Science and Technology Software Center (OSTI)

    2014-07-30

    The OpenSHMEM Analyzer is a compiler-based tool that can help users detect errors and provide useful analyses about their OpenSHMEM applications. The tool is built on top of the OpenUH compiler (a branch of Open64 compiler) and presents OpenSHMEM information as feedback to the user. Some of the analyses it provides include checks for correct usage of symmetric variables in OpenSHMEM calls, out-of-bounds checks for symmetric data, checks for the correct initialization of pointers tomore » symmetric data, and symmetric data alias information.« less

  10. MULTICHANNEL PULSE-HEIGHT ANALYZER

    DOE Patents [OSTI]

    Russell, J.T.; Lefevre, H.W.

    1958-01-21

    This patent deals with electronic computing circuits and more particularly to pulse-height analyzers used for classifying variable amplitude pulses into groups of different amplitudes. The device accomplishes this pulse allocation by by converting the pulses into frequencies corresponding to the amplitudes of the pulses, which frequencies are filtered in channels individually pretuned to a particular frequency and then detected and recorded in the responsive channel. This circuit substantially overcomes the disadvantages of prior annlyzers incorporating discriminators pre-set to respond to certain voltage levels, since small variation in component values is not as critical to satisfactory circuit operation.

  11. Accurately Analyzing Malaria Tests a Matter of Life and Death...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Life and Death Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn ...

  12. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Heating Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    Vieira, R.; Parker, D.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.

    2013-09-01

    Two identical laboratory homes designed to model existing Florida building stock were sealed and tested to 2.5 ACH50. Then, one was made leaky with 70% leakage through the attic and 30% through windows, to a tested value of 9 ACH50. Reduced energy use was measured in the tighter home (2.5 ACH50) in the range of 15% to 16.5% relative to the leaky (9 ACH50) home. Internal moisture loads resulted in higher dew points inside the tight home than the leaky home. Window condensation and mold growth occurred inside the tight home. Even cutting internal moisture gains in half to 6.05 lbs/day, the dew point of the tight home was more than 15 degrees F higher than the outside dry bulb temperature. The homes have single pane glass representative of older Central Florida homes.

  13. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    SciTech Connect (OSTI)

    Duffó, Gustavo; Gaillard, Natalia; Mariscotti, Mario; Ruffolo, Marcelo

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cement ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.

  14. 0.22 THz wideband sheet electron beam traveling wave tube amplifier: Cold test measurements and beam wave interaction analysis

    SciTech Connect (OSTI)

    Baig, Anisullah; Gamzina, Diana; Barchfeld, Robert; Domier, Calvin; Barnett, Larry R.; Luhmann, Neville C. Jr.

    2012-09-15

    In this paper, we describe micro-fabrication, RF measurements, and particle-in-cell (PIC) simulation modeling analysis of the 0.22 THz double-vane half period staggered traveling wave tube amplifier (TWTA) circuit. The TWTA slow wave structure comprised of two sections separated by two sever ports loaded by loss material, with integrated broadband input/output couplers. The micro-metallic structures were fabricated using nano-CNC milling and diffusion bonded in a three layer process. The 3D optical microscopy and SEM analysis showed that the fabrication error was within 2-3 {mu}m and surface roughness was measured within 30-50 nm. The RF measurements were conducted with an Agilent PNA-X network analyzer employing WR5.1 T/R modules with a frequency range of 178-228 GHz. The in-band insertion loss (S{sub 21}) for both the short section and long section (separated by a sever) was measured as {approx}-5 dB while the return loss was generally around {approx}-15 dB or better. The measurements matched well with the S-matrix simulation analysis that predicted a 3 dB bandwidth of {approx}45 GHz with an operating frequency at 220 GHz. However, the measured S{sub 21} was {approx}3 dB less than the design values, and is attributed to surface roughness and alignment issues. The confirmation measurements were conducted over the full frequency band up to 270 GHz employing a backward wave oscillator (BWO) scalar network analyzer setup employing a BWO in the frequency range 190 GHz-270 GHz. PIC simulations were conducted for the realistic TWT output power performance analysis with incorporation of corner radius of 127 {mu}m, which is inevitably induced by nano-machining. Furthermore, the S{sub 21} value in both sections of the TWT structure was reduced to correspond to the measurements by using a degraded conductivity of 10% International Annealed Copper Standard. At 220 GHz, for an elliptic sheet electron beam of 20 kV and 0.25 A, the average output power of the tube was predicted

  15. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetic fluctuation-induced particle flux "invited... a... W. X. Ding, D. L. Brower, and T. Y. Yates Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA ͑Presented 13 May 2008; received 12 May 2008; accepted 16 May 2008; published online 31 October 2008͒ Magnetic field fluctuation-induced particle transport has been directly measured in the high-temperature core of the MST reversed field pinch plasma. Measurement of radial

  16. Airborne measurements of total sulfur gases during NASA global tropospheric experiment/chemical instrumentation test and evaluation 3

    SciTech Connect (OSTI)

    Farwell, S.O.; MacTaggart, D.L.; Chatham, W.H.

    1995-04-20

    A metal foil collection/flash desorption/flame photometric detection (MFC/FD/FPD) technique was used by investigators from the University of Idaho (UI) to measure ambient total sulfur gas concentrations from an aircraft platform during the NASA Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation 3 (GTE/CITE 3) program. The MFC/FD/FPD technique allowed rapid quantitation of tropospheric background air masses using sample integration times of 1-3 min with little or no gap between measurements. The rapid and continual sampling nature of this technique yielded data covering approximately 75% of the entire CITE 3 program`s air track. Ambient air measurement data obtained during northern hemisphere (NH) flights often exhibited relatively high total sulfur gas values (up to 19 ppb) and an extremely high degree of sample heterogeneity, especially in coastal locations. Data from southern hemisphere (SH) flights typically exhibited relatively low total sulfur gas concentrations and a low degree of sample heterogeneity. A bimodal interhemispheric total sulfur gas gradient was observed using data obtained during transit flights between the two CITE 3 program ground bases. Comparisons were made of UI total sulfur gas measurements with composite sulfur gas values generated using speciated sulfur gas measurements from other CITE 3 participants. Only a relatively small number of overlap periods for comparison were obtained from all the available CITE 3 data because of large differences in measurement integration times and lack of synchronization of sample start/stop times for the various investigators. These effects were compounded with extreme sample heterogeneity in the NH and the speed at which the aircraft traversed the air masses being sampled. Comparison of NH UI total with composite sulfur gas values showed excellent correlation and linear curve fit, indicating substantial qualitative agreement. 20 refs., 10 figs., 7 tabs.

  17. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    SciTech Connect (OSTI)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  18. Calibration of optical particle-size analyzer

    DOE Patents [OSTI]

    Pechin, William H.; Thacker, Louis H.; Turner, Lloyd J.

    1979-01-01

    This invention relates to a system for the calibration of an optical particle-size analyzer of the light-intercepting type for spherical particles, wherein a rotary wheel or disc is provided with radially-extending wires of differing diameters, each wire corresponding to a particular equivalent spherical particle diameter. These wires are passed at an appropriate frequency between the light source and the light detector of the analyzer. The reduction of light as received at the detector is a measure of the size of the wire, and the electronic signal may then be adjusted to provide the desired signal for corresponding spherical particles. This calibrator may be operated at any time without interrupting other processing.

  19. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Induced, Charged Current, Charged Pion Production by Michael Joseph Wilking B.Ch.E., University of Minnesota, 2001 M.S., University of Colorado, 2007 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2009 This thesis entitled: Measurement of Neutrino Induced, Charged Current, Charged Pion Production written by Michael Joseph Wilking has been

  20. Laser Transmission Measurements and Plume Particle Size Distributions for Propellant Burn Tests at ATK Elkton in May 2012

    SciTech Connect (OSTI)

    Willitsford, Adam H.; Brown, David M.; Brown, Andrea M.; Airola, Marc B.; Dinello-Fass, Ryan P.; Thomas, Michael E.; Siegrist, Karen M.

    2014-08-28

    Multi-wavelength laser transmittance was measured during a series of open-air propellant burn tests at Alliant Techsystems, Inc., in Elkton, MD, in May 2012. A Mie scattering model was combined with an alumina optical properties model in a simple single-scatter approach to fitting plume transmittance. Wavelength-dependent plume transmission curves were fit to the measured multi-wave- length transmittance data to infer plume particle size distributions at several heights in the plume. Tri-modal lognormal distributions described transmittance data well at all heights. Overall distributions included a mode with nanometer-scale diameter, a second mode at a diameter of ~0.5 µm, and a third, larger particle mode. Larger parti- cles measured 2.5 µm in diameter at 34 cm (14 in.) above the burning propellant surface, but grew to 4 µm in diameter at a height of 57 cm (22 in.), indicative of particle agglomeration in progress as the plume rises. This report presents data, analysis, and results from the study.

  1. Arms Control and nonproliferation technologies: Technology options and associated measures for monitoring a Comprehensive Test Ban, Second quarter

    SciTech Connect (OSTI)

    Casey, Leslie A.

    1994-01-01

    This newsletter contains reprinted papers discussing technology options and associated measures for monitoring a Comprehensive Test Ban Treaty (CTBT). These papers were presented to the Conference on Disarmament (CD) in May and June 1994. An interagency Verification Monitoring Task Force developed the papers. The task force included participants from the Arms Control and Disarmament Agency, the Department of Defense, the Department of Energy, the Intelligence Community, the Department of Interior, and the Department of State. The purpose of this edition of Arms Control and Nonproliferation Technologies is to share these papers with the broad base of stakeholders in a CTBT and to facilitate future technology discussions. The papers in the first group discuss possible technology options for monitoring a CTBT in all environments (underground, underwater, atmosphere, and space). These technologies, along with on-site inspections, would facilitate CTBT monitoring by treaty participants. The papers in the second group present possible associated measures, e.g., information exchanges and transparency measures, that would build confidence among states participating in a CTBT.

  2. Analyzes Data from Semiconductor Wafers

    Energy Science and Technology Software Center (OSTI)

    2002-07-23

    This program analyzes reflectance data from semiconductor wafers taken during the deposition or evolution of a thin film, typically via chemical vapor deposition (CVD) or molecular beam epitaxy (MBE). It is used to determine the growth rate and optical constants of the deposited thin films using a virtual interface concept. Growth rates and optical constants of multiple-layer structures is possible by selecting appropriate sections in the reflectance vs time waveform. No prior information or estimatesmore » of growth rates and materials properties is required if an absolute reflectance waveform is used. If the optical constants of a thin film are known, then the growth rate may be extracted from a relative reflectance data set. The analysis is valid for either s or p polarized light at any incidence angle and wavelength. The analysis package is contained within an easy-to-use graphical user interface. The program is based on the algorighm described in the following two publications: W.G. Breiland and K.P. Killen, J. Appl. Phys. 78 (1995) 6726, and W. G. Breiland, H.Q. Hou, B.E. Hammons, and J.F. Klem, Proc. XXVIII SOTAPOCS Symp. Electrochem. Soc. San Diego, May 3-8, 1998. It relies on the fact that any multiple-layer system has a reflectance spectrum that is mathematically equivalent to a single-layer thin film on a virtual substrate. The program fits the thin film reflectance with five adjustable parameters: 1) growth rate, 2) real part of complex refractive index, 3) imaginary part of refractive index, 4) amplitude of virtual interface reflectance, 5) phase of virtual interface reflectance.« less

  3. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    core velocity fluctuations and the dynamo in a reversed-field pinch * D. J. Den Hartog, †,a) J. T. Chapman, b) D. Craig, G. Fiksel, P. W. Fontana, S. C. Prager, and J. S. Sarff Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 ͑Received 16 November 1998; accepted 20 January 1999͒ Plasma flow velocity fluctuations have been directly measured in the high-temperature magnetically confined plasma in the Madison Symmetric Torus ͑MST͒

  4. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 H( 7 Be, 8 B)γ cross section by Ryan P. Fitzgerald A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics & Astronomy. Chapel Hill 2005 Approved: A. E. Champagne, Advisor J. C. Blackmon, Reader C. Iliadis, Reader ABSTRACT Ryan P. Fitzgerald: Measurement of the 1 H( 7 Be, 8 B)γ cross section (Under the Direction of A. E. Champagne) The fusion

  5. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interpretation of micro benchmark and application energy use on the Cray XC30 Brian Austin, and Nicholas J. Wright ⇤ August 29, 2014 Abstract Understanding patterns of application energy use is key to reaching future HPC e ciency goals. We have measured the sensitivity of en- ergy use to CPU frequency for several microbenchmarks and applications on a Cray XC30. First order fits to the performance and power data are su cient to describe the energy used by these applications. Exam- ination of

  6. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronegative Contaminants and Drift Electron Lifetime in the MicroBooNE Experiment The MicroBooNE Collaboration May 19, 2016 Abstract High-purity liquid argon is critical for the operation of a liquid argon time projec- tion chamber (LArTPC). At MicroBooNE, we have achieved an electron drift lifetime of at least 6 ms without evacuation of the detector vessel. Measurements of the elec- tronegative contaminants oxygen and water are described and shown as the gas and liquid argon stages of

  7. Analyzing PICL trace data with MEDEA

    SciTech Connect (OSTI)

    Merlo, A.P.; Worley, P.H.

    1994-04-01

    Execution traces and performance statistics can be collected for parallel applications on a variety of multiprocessor platforms by using the Portable Instrumented Communication Library (PICL). The static and dynamic performance characteristics of performance characteristics of performance data can be analyzed easily and effectively with the facilities provided within the MEasurements Description Evaluation and Analysis tool (MEDEA). A case study is then outlined that uses PICL and MEDEA to characterize the performance of a parallel benchmark code executed on different hardware platforms and using different parallel algorithms and communication protocols.

  8. Analyzing PICL trace data with MEDEA

    SciTech Connect (OSTI)

    Merlo, A.P.; Worley, P.H.

    1993-11-01

    Execution traces and performance statistics can be collected for parallel applications on a variety of multiprocessor platforms by using the Portable Instrumented Communication Library (PICL). The static and dynamic performance characteristics of performance data can be analyzed easily and effectively with the facilities provided within the MEasurements Description Evaluation and Analysis tool (MEDEA). This report describes the integration of the PICL trace file format into MEDEA. A case study is then outlined that uses PICL and MEDEA to characterize the performance of a parallel benchmark code executed on different hardware platforms and using different parallel algorithms and communication protocols.

  9. Gaseous trace impurity analyzer and method

    DOE Patents [OSTI]

    Edwards, Jr., David (Bellport, NY); Schneider, William (Setauket, NY)

    1980-01-01

    Simple apparatus for analyzing trace impurities in a gas, such as helium or hydrogen, comprises means for drawing a measured volume of the gas as sample into a heated zone. A segregable portion of the zone is then chilled to condense trace impurities in the gas in the chilled portion. The gas sample is evacuated from the heated zone including the chilled portion. Finally, the chilled portion is warmed to vaporize the condensed impurities in the order of their boiling points. As the temperature of the chilled portion rises, pressure will develop in the evacuated, heated zone by the vaporization of an impurity. The temperature at which the pressure increase occurs identifies that impurity and the pressure increase attained until the vaporization of the next impurity causes a further pressure increase is a measure of the quantity of the preceding impurity.

  10. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 5. Neutron measurements. Part 3. High-energy spectrum (time-of-flight method)

    SciTech Connect (OSTI)

    Hall, W.C.

    1985-09-01

    This report describes the experiments performed to measure the energy spectrum of neutrons released in certain atomic-weapons tests in Operation Greenhouse. The measurements were made of two types: (1) the time-of-flight measurements designed to establish the fission neutron spectrum down to about 3 MeV energy, and (2) the so-called Tenex (Temperature-Neutron Experiment) measurements designed to obtain the velocity distribution of neutrons produced by the deuterium-tritium fusion reactions.

  11. Field-usable portable analyzer for chlorinated organic compounds

    SciTech Connect (OSTI)

    Buttner, W.J.; Penrose, W.R.; Stetter, J.R.

    1995-10-01

    Transducer Research, Inc. (TRI) has been working with the DOE Morgantown Energy Technology Center to develop a new chemical monitor based on a unique sensor which responds selectively to vapors of chlorinated solvents. We are also developing field applications for the monitor in actual DOE cleanup operations. During the initial phase, prototype instruments were built and field tested. Because of the high degree of selectivity that is obtained, no response was observed with common hydrocarbon organic compounds such as BTX (benzene, toluene, xylene) or POLs (petroleum, oil, lubricants), and in fact, no non-halogen-containing chemical has been identified which induces a measurable response. By the end of the Phase I effort, a finished instrument system was developed and test marketed. This instrument, called the RCL MONITOR, was designed to analyze individual samples or monitor an area with automated repetitive analyses. Vapor levels between 0 and 500 ppm can be determined in 90 s with a lower detection limit of 0.2 ppm using the handportable instrument. In addition to the development of the RCL MONITOR, advanced sampler systems are being developed to: (1) extend the dynamic range of the instrument through autodilution of the vapor and (2) allow chemical analyses to be performed on aqueous samples. When interfaced to the samplers, the RCL MONITOR is capable of measuring chlorinated solvent contamination in the vapor phase up to 5000 ppm and in water and other condensed media from 10 to over 10,000 ppb(wt)--without hydrocarbon and other organic interferences.

  12. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 1. Prompt-gamma-ray measurements. Part 3. The measurement of transit time

    SciTech Connect (OSTI)

    Hall, W.C.

    1985-04-01

    This report describes the procedures followed in measuring the transit time of the atomic explosions evaluated in Operation Greenhouse. It includes a description of the equipment used, the installations made, and the results obtained. Transmit time measurements were obtainded for the Easy, George and Item Shots; and on the whole, the transit-time recording equipment performed well.

  13. Polarized 3He Gas Circulating Technologies for Neutron Analyzers

    SciTech Connect (OSTI)

    Watt, David; Hersman, Bill

    2014-12-10

    We describe the development of an integrated system for quasi-continuous operation of a large volume neutron analyzer. The system consists of a non-magnetic diaphragm compressor, a prototype large volume helium polarizer, a surrogate neutron analyzer, a non-depolarizing gas storage reservoir, a non-ferrous valve manifold for handling gas distribution, a custom rubidium-vapor gas return purifier, and wire-wound transfer lines, all of which are immersed in a two-meter external magnetic field. Over the Phase II period we focused on three major tasks required for the successful deployment of these types of systems: 1) design and implementation of gas handling hardware, 2) automation for long-term operation, and 3) improvements in polarizer performance, specifically fabrication of aluminosilicate optical pumping cells. In this report we describe the design, implementation, and testing of the gas handling hardware. We describe improved polarizer performance resulting from improved cell materials and fabrication methods. These improvements yielded valved 8.5 liter cells with relaxation times greater than 12 hours. Pumping this cell with 1500W laser power with 1.25nm linewidth yielded peak polarizations of 60%, measured both inside and outside the polarizer. Fully narrowing this laser to 0.25nm, demonstrated separately on one stack of the four, would have allowed 70% polarization with this cell. We demonstrated the removal of 5 liters of polarized helium from the polarizer with no measured loss of polarization. We circulated the gas through a titanium-clad compressor with polarization loss below 3% per pass. We also prepared for the next phase of development by refining the design of the polarizer so that it can be engineer-certified for pressurized operation. The performance of our system far exceeds comparable efforts elsewhere.

  14. Operation Greenhouse. Scientific Director's report of atomic-weapon tests at Eniwetok, 1951. Annex 1. 6. Blast measurements. Part 4. Pressure-time measurements in the Mach region. Sections 1 and 2

    SciTech Connect (OSTI)

    Price, J.F.; Sokol, G.M.; Anastasion, S.N.; Vader, R.L.; Walthall, E.R.

    1985-09-01

    The objective of the laboratory and field work described in this report was to make accurate measurements of air blast in the Mach region from two explosions of Operation Greenhouse. Measurements were made at constant height along a single radius on Test Dog and along two different radii for test Easy. In addition, diaphragm-type inductance gages were installed at five different heights on approximately the same radii on test Easy. The spring-piston gage successfully did the job it was designed to do. The diaphragm-type inductance-gage measuring system had an accuracy of 2% in pressure and a resolving time of approximately 1 musec. Complete details concerning equipment design, field operation, and recommendations for future use of the systems are presented.

  15. The National Fuel End-Use Efficiency Field Test: Energy Savings and Performance of an Improved Energy Conservation Measure Selection Technique

    SciTech Connect (OSTI)

    Ternes, M.P.

    1991-01-01

    The performance of an advanced residential energy conservation measure (ECM) selection technique was tested in Buffalo, New York, to verify the energy savings and program improvements achieved from use of the technique in conservation programs and provide input into determining whether utility investments in residential gas end-use conservation are cost effective. The technique analyzes a house to identify all ECMs that are cost effective in the building envelope, space-heating system, and water-heating system. The benefit-to-cost ratio (BCR) for each ECM is determined and cost-effective ECMs (BCR > 1.0) are selected once interactions between ECMs are taken into account. Eighty-nine houses with the following characteristics were monitored for the duration of the field test: occupants were low-income, houses were single-family detached houses but not mobile homes, and primary space- and water-heating systems were gas-fired. Forty-five houses received a mix of ECMs as selected by the measure selection technique (audit houses) and 44 served as a control group. Pre-weatherization data were collected from January to April 1988 and post-weatherization data were collected from December 1988 to April 1989. Space- and waterheating gas consumption and indoor temperature were monitored weekly during the two winters. A house energy consumption model and regression analysis were employed to normalize the space-heating energy savings to average outdoor temperature conditions and a 68 F indoor temperature. Space and water-heating energy savings for the audit houses were adjusted by the savings for the control houses. The average savings of 257 therms/year for the audit houses was 17% of the average pre-weatherization house gas consumption and 78% of that predicted. Average space-heating energy savings was 252 therms/year (25% of pre-weatherization space-heating energy consumption and 85% of the predicted value) and average water-heating savings was 5 therms/year (2% of pre

  16. DESIGN, FABRICATION AND BENCH TESTING OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF GASIFIER REACTION CHAMBER TEMPERATURE

    SciTech Connect (OSTI)

    Thomas F. Leininger; Hua-Min Huang

    2004-01-01

    ChevronTexaco has shipped the pyrometer system to Tampa, Florida. Polk Power is in the process of installing the mechanical, electrical and instrumentation of the pyrometer system as well as integrating the instrumentation to the test site Distributed Control System. The startup and field testing of the system will begin afterwards.

  17. A Small Area In-Situ MEMS Test Structure to Accurately Measure Fracture Strength by Electrostatic Probing

    SciTech Connect (OSTI)

    Bitsie, Fernando; Jensen, Brian D.; de Boer, Maarten

    1999-07-15

    We have designed, fabricated, tested and modeled a first generation small area test structure for MEMS fracture studies by electrostatic rather than mechanical probing. Because of its small area, this device has potential applications as a lot monitor of strength or fatigue of the MEMS structural material. By matching deflection versus applied voltage data to a 3-D model of the test structure, we develop high confidence that the local stresses achieved in the gage section are greater than 1 GPa. Brittle failure of the polycrystalline silicon was observed.

  18. AnalyzeHOLE: An Integrated Wellbore Flow Analysis Tool

    SciTech Connect (OSTI)

    Keith J. Halford

    2009-10-01

    Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically

  19. Measurements of radioxenon in ground level air in South Korea following the claimed nuclear test in North Korea on October 9, 2006

    SciTech Connect (OSTI)

    Ringbom, Anders; Elmgren, K.; Lindh, Karin; Peterson, Jenny; Bowyer, Ted W.; Hayes, James C.; McIntyre, Justin I.; Panisko, Mark E.; Williams, Richard M.

    2009-12-03

    Abstract Following the claimed nuclear test in the Democratic People’s Republic of Korea (DPRK) on October 9, 2006, and a reported seismic event, a mobile system for sampling of atmospheric xenon was transported to the Republic of South Korea (ROK) in an attempt to detect possible emissions of radioxenon in the region from a presumed test. Five samples were collected in the ROK during October 11–14, 2006 near the ROK–DPRK border, and thereafter transported to the Swedish Defense Research Agency (FOI) in Stockholm, Sweden, for analysis. Following the initial measurements, an automatic radioxenon sampling and analysis system was installed at the same location in the ROK, and measurements on the ambient atmospheric radioxenon background in the region were performed during November 2006 to February 2007. The measured radioxenon concentrations strongly indicate that the explosion in October 9, 2006 was a nuclear test. The conclusion is further strengthened by atmospheric transport models. Radioactive xenon measurement was the only independent confirmation that the supposed test was in fact a nuclear explosion and not a conventional (chemical) explosive.

  20. Web-based multi-channel analyzer

    DOE Patents [OSTI]

    Gritzo, Russ E.

    2003-12-23

    The present invention provides an improved multi-channel analyzer designed to conveniently gather, process, and distribute spectrographic pulse data. The multi-channel analyzer may operate on a computer system having memory, a processor, and the capability to connect to a network and to receive digitized spectrographic pulses. The multi-channel analyzer may have a software module integrated with a general-purpose operating system that may receive digitized spectrographic pulses for at least 10,000 pulses per second. The multi-channel analyzer may further have a user-level software module that may receive user-specified controls dictating the operation of the multi-channel analyzer, making the multi-channel analyzer customizable by the end-user. The user-level software may further categorize and conveniently distribute spectrographic pulse data employing non-proprietary, standard communication protocols and formats.

  1. Hydrogen Policy and Analyzing the Transition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy and Analyzing the Transition Paul N. Leiby, David L. Greene, Zhenhong Lin, David Bowman, Sujit Das Oak Ridge National Laboratory November 16, 2009 Presented at the Workshop, "Delivering Renewable Hydrogen," NREL/CaFCP, Palm Springs, CA 2 Overview: Hydrogen Policy and Analyzing the Transition * Some lessons learned from analyzing fuel transitions - Find barriers to transitions significant, but progress being made - Review work by DOE-sponsored team, highlighting key factors *

  2. DESIGN, FABRICATION AND BENCH TESTING OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF GASIFIER REACTION CHAMBER TEMPERATURE

    SciTech Connect (OSTI)

    Thomas F. Leininger; Hua-Min Huang

    2003-10-01

    Polk Power and ChevronTexaco have signed the cooperative agreement at the end of reporting period. ChevronTexaco is shipping the pyrometer system to Tampa, Florida. Polk Power will start the modification fieldwork and installation of the system. The testing will start when the next opportunity is available.

  3. PCA-multiport, a universal computer-based multichannel analyzer

    SciTech Connect (OSTI)

    Seymour, R.; Bedwell, M.; Stockton, S.; Beal, T.; Ahsan, Z.

    1991-11-01

    Nearly a decade has passed since Tennelec/Nucleus introduced the first personal-computer-based multichannel analyzer (MCA). These new MCA architectures, including plug-in cards, nuclear instrumentation module (NIM), and non-NIM versions, have revolutionized spectroscopy measurements and virtually replaced conventional one-box MCAs. The Tennelec personal computer analyzer (PCA)-Multiport is a third-generation system capable of interfacing with virtually any computer. It is designed to be used for most energy and timing measurements commonly encountered in nuclear spectroscopy.

  4. DESIGN, FABRICATION AND BENCH TESTING OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF GASIFIER REACTION CHAMBER TEMPERATURE

    SciTech Connect (OSTI)

    Thomas F. Leininger; Hua-Min Huang

    2003-07-01

    Polk Power has decided that the Texaco gasification unit will not be sold to a third party. Therefore, including the ownership transfer of the Texaco gasification unit in the agreement is not an issue any more. The cooperative agreement between Texaco and Polk Power has been revised several times in this quarter. Polk power is making comments on the last draft that Texaco sent to them. The modification fieldwork and testing will start once the cooperative agreement is signed with Polk Power.

  5. Evaluation of select heat and pressure measurement gauges for potential use in the NRC/OECD High Energy Arc Fault (HEAF) test program.

    SciTech Connect (OSTI)

    Lopez, Carlos; Wente, William Baker; Figueroa, Victor G.

    2014-01-01

    In an effort to improve the current state of the art in fire probabilistic risk assessment methodology, the U.S. Nuclear Regulatory Commission, Office of Regulatory Research, contracted Sandia National Laboratories (SNL) to conduct a series of scoping tests to identify thermal and mechanical probes that could be used to characterize the zone of influence (ZOI) during high energy arc fault (HEAF) testing. For the thermal evaluation, passive and active probes were exposed to HEAF-like heat fluxes for a period of 2 seconds at the SNLs National Solar Thermal Test Facility to determine their ability to survive and measure such an extreme environment. Thermal probes tested included temperature lacquers (passive), NANMAC thermocouples, directional flame thermometers, modified plate thermometers, infrared temperature sensors, and a Gardon heat flux gauge. Similarly, passive and active pressure probes were evaluated by exposing them to pressures resulting from various high-explosive detonations at the Sandia Terminal Ballistic Facility. Pressure probes included bikini pressure gauges (passive) and pressure transducers. Results from these tests provided good insight to determine which probes should be considered for use during future HEAF testing.

  6. System for analyzing coal liquefaction products

    DOE Patents [OSTI]

    Dinsmore, Stanley R.; Mrochek, John E.

    1984-01-01

    A system for analyzing constituents of coal-derived materials comprises three adsorption columns and a flow-control arrangement which permits separation of both aromatic and polar hydrocarbons by use of two eluent streams.

  7. On-line chemical composition analyzer development

    SciTech Connect (OSTI)

    Garrison, A.A.

    1993-01-01

    This report relates to the development of an on-line Raman analyzer for control of a distillation column. It is divided into: program issues, experimental control system evaluation, energy savings analysis, and reliability analysis. (DLC)

  8. Benchmark Evaluation of Start-Up and Zero-Power Measurements at the High-Temperature Engineering Test Reactor

    SciTech Connect (OSTI)

    Bess, John D.; Fujimoto, Nozomu

    2014-10-09

    Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.

  9. Benchmark Evaluation of Start-Up and Zero-Power Measurements at the High-Temperature Engineering Test Reactor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bess, John D.; Fujimoto, Nozomu

    2014-10-09

    Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in themore » experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less

  10. A Multi-Chamber System for Analyzing the Outgassing, Deposition,and Associated Optical Degradation Properties of Materials in a Vacuum

    SciTech Connect (OSTI)

    Singal, Jack; Schindler, Rafe; Chang, Chihway; Czodrowski, Patrick; Kim, Peter; /KIPAC, Menlo Park /SLAC /Stanford U.

    2009-12-11

    We report on the Camera Materials Test Chamber, a multi-vessel apparatus which analyzes the outgassing consequences of candidate materials for use in the vacuum cryostat of a new telescope camera. The system measures the outgassing products and rates of samples of materials at different temperatures, and collects films of outgassing products to measure the effects on light transmission in six optical bands. The design of the apparatus minimizes potential measurement errors introduced by background contamination.

  11. Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer

    SciTech Connect (OSTI)

    Xu, Liukang; McDermitt, Dayle; Anderson, Tyler; Riensche, Brad; Komissarov, Anatoly; Howe, Julie

    2012-02-01

    Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been

  12. Analyzing ocean mixing reveals insight on climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analyzing ocean mixing reveals insight on climate Analyzing ocean mixing reveals insight on climate LANL scientists have developed a computer model that clarifies the complex processes driving ocean mixing in the vast eddies that swirl across hundreds of miles of open ocean. June 24, 2015 A three-dimensional spatial structure of mixing in an idealized ocean simulation, computed using Lagrangian particle statistics. A three-dimensional spatial structure of mixing in an idealized ocean simulation,

  13. Measurement of the forming limit stress curve using a multi-axial tube expansion test with a digital image correlation system

    SciTech Connect (OSTI)

    Hakoyama, Tomoyuki [Department of Mechanical Systems Engineering, Graduate school of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei-shi, Tokyo, 184-8588 (Japan); Kuwabara, Toshihiko [Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei-shi, Tokyo, 184-8588 (Japan)

    2013-12-16

    A servo-controlled tension-internal pressure testing machine with an optical 3D deformation analysis system (ARAMIS) was used to measure the multi-axial plastic deformation behavior of a high-strength steel sheet for a range of strain from initial yield to fracture. The testing machine is capable of applying arbitrary principal stress or strain paths to a tubular specimen using an electrical, closed-loop servo-control system for axial force and internal pressure. Tubular specimens with an inner diameter of 44.6 mm were fabricated from a high-strength steel sheet with a tensile strength of 590 MPa and a thickness of 1.2 mm by roller bending and laser welding. Several linear and non-linear stress paths in the first quadrant of the stress space were applied to the tubular specimens in order to measure the forming limit curve (FLC) and forming limit stress curve (FLSC) of the as-received test material, in addition to the contours of plastic work and the directions of plastic strain rates. The contours of plastic work and the directions of plastic strain rates measured for the linear stress path experiments were compared with those calculated using selected yield functions in order to identify the most appropriate yield function for the test material. Moreover, a Marciniak-Kuczy?ski type (M-K) forming limit analysis was performed using the most appropriate yield function. The calculated and measured FLC and FLSC were compared in order to validate the M-K approach. The path-dependence of the FLC and FLSC was also investigated.

  14. Testing and Performance Validation of a Shielded Waste Segregation and Clearance Monitor Designed for the Measurement of Low Level Waste-13043

    SciTech Connect (OSTI)

    Mason, John A.; Burke, Kevin J.; Towner, Antony C.N.; Beaven, Graham; Spence, Robert

    2013-07-01

    This paper describes the development, testing and validation of a shielded waste segregation and clearance monitor designed for the measurement of low-density low-level waste (LLW). The monitor is made of a measurement chamber surrounded by detectors and a shielded outer frame. The shielded chamber consists of a steel frame, which contains typically 1.5 inches (3.81 cm) of lead and 0.5 inches (1.27 cm) of steel shielding. Inside the shielding are plastic scintillator panels, which serve as gross gamma ray detectors. The detector panels, with embedded photomultipliers, completely surround the internal measurement chamber on all 6 sides. Care has been taken to distribute the plastic scintillator detectors in order to optimise both the efficiency for gamma ray detection and at the same time achieve a volumetric sensitivity, which is as uniform as possible. A common high voltage power supply provides the bias voltage for each of the six photomultipliers. The voltage signals arising from the detectors and photomultipliers are amplified by six sensitive amplifiers. Each amplifier incorporates a single channel analyser with both upper and lower thresholds and the digitised counts from each detector are recorded on six scalars. Operation of the device is by means of a microprocessor from which the scalars are controlled. An internal load cell linked to the microprocessor determines the weight of the waste object, and this information is used to calculate the specific activity of the waste. The monitor makes background measurements when the shielded door is closed and a sample, usually a bag of low-density waste, is not present in the measurement chamber. Measurements of the minimum detectable activity (MDA) of an earlier large volume prototype instrument are reported as part of the development of the Waste Segregation and Clearance Monitor (WSCM) described in the paper. For the optimised WSCM a detection efficiency of greater than 32% was measured using a small Cs-137

  15. Recent upgrades of the Fragment Mass Analyzer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tests. The FMA implantation-decay station was equipped with a digital data acquisition system to accommodate high event rates and process signal waveforms. In addition, an array...

  16. In-situ continuous water analyzing module

    DOE Patents [OSTI]

    Thompson, Cyril V.; Wise, Marcus B.

    1998-01-01

    An in-situ continuous liquid analyzing system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectometer and the volatile components are continuously analyzed by the mass spectrometer.

  17. BWR plant analyzer development at BNL

    SciTech Connect (OSTI)

    Cheng, H.S.; Wulff, W.; Mallen, A.N.; Lekach, S.V.; Stritar, A.; Cerbone, R.J.

    1985-01-01

    Advanced technology for high-speed interactive nuclear power plant simulations is of great value for timely resolution of safety issues, for plant monitoring, and for computer-aided emergency responses to an accident. Presented is the methodology employed at BNL to develop a BWR plant analyzer capable of simulating severe plant transients at much faster than real-time process speeds. Five modeling principles are established and a criterion is given for selecting numerical procedures and efficient computers to achieve the very high simulation speeds. Typical results are shown to demonstrate the modeling fidelity of the BWR plant analyzer.

  18. Hydromechanical modeling of pulse tests that measure both fluidpressure and fracture-normal displacement of the Coaraze Laboratory site,France

    SciTech Connect (OSTI)

    Cappa, F.; Guglielmi, Y.; Rutqvist, J.; Tsang, C-F.; Thoraval, A.

    2006-04-22

    In situ fracture mechanical deformation and fluid flowinteractions are investigated through a series of hydraulic pulseinjection tests, using specialized borehole equipment that cansimultaneously measure fluid pressure and fracture displacements. Thetests were conducted in two horizontal boreholes spaced one meter apartvertically and intersecting a near-vertical highly permeable faultlocated within a shallow fractured carbonate rock. The field data wereevaluated by conducting a series of coupled hydromechanical numericalanalyses, using both distinct-element and finite-element modelingtechniques and both two- and three-dimensional model representations thatcan incorporate various complexities in fracture network geometry. Oneunique feature of these pulse injection experiments is that the entiretest cycle, both the initial pressure increase and subsequent pressurefall-off, is carefully monitored and used for the evaluation of the insitu hydromechanical behavior. Field test data are evaluated by plottingfracture normal displacement as a function of fluid pressure, measured atthe same borehole. The resulting normal displacement-versus-pressurecurves show a characteristic loop, in which the paths for loading(pressure increase) and unloading (pressure decrease) are different. Bymatching this characteristic loop behavior, the fracture normal stiffnessand an equivalent stiffness (Young's modulus) of the surrounding rockmass can be back-calculated. Evaluation of the field tests by couplednumerical hydromechanical modeling shows that initial fracture hydraulicaperture and normal stiffness vary by a factor of 2 to 3 for the twomonitoring points within the same fracture plane. Moreover, the analysesshow that hydraulic aperture and the normal stiffness of the pulse-testedfracture, the stiffness of surrounding rock matrix, and the propertiesand geometry of the surrounding fracture network significantly affectcoupled hydromechanical responses during the pulse injection test

  19. Measurement of groove features and dimensions of the vertical test cathode and the choke joint of the superconducting electron gun cavity of the Energy Recovery LINAC

    SciTech Connect (OSTI)

    Hammons, L.; Ke, M.

    2011-10-13

    A testing program for the superconducting electron gun cavity that has been designed for the Energy Recovery LINAC is being planned. The goal of the testing program is to characterize the RF properties of the gun cavity at superconducting temperatures and, in particular, to study multipacting that is suspected to be occurring in the choke joint of the cavity where the vertical test cathode is inserted. The testing program will seek to understand the nature and cause of this multipacting and attempt to eliminate it, if possible, by supplying sufficient voltage to the cavity. These efforts are motivated by the multipacting issues that have been observed in the processing of the fine-grain niobium gun cavity. This cavity, which is being processed at Thomas Jefferson National Laboratory for Brookhaven, has encountered multipacting at a gradient of approximately 3 MV/m and, to date, has resisted efforts at elimination. Because of this problem, a testing program is being established here in C-AD that will use the large-grain niobium gun cavity that currently resides at Brookhaven and has been used for room-temperature measurements. The large-grain and fine-cavities are identical in every aspect of construction and only differ in niobium grain size. Thus, it is believed that testing and conditioning of the large-grain cavity should yield important insights about the fine-grain cavity. One element of this testing program involves characterizing the physical features of the choke joint of the cavity where the multipacting is believed to be occurring and, in particular the grooves of the joint. The configuration of the cavity and the vertical test cathode is shown in Figure 1. In addition, it is important to characterize the groove of the vertical test cathode. The grooved nature of these two components was specifically designed to prevent multipacting. However, it is suspected that, because of the chemical processing that the fine-grain gun cavity underwent along with the

  20. Testing the effectiveness of mobile home weatherization measures in a controlled environment: The SERI CMFERT (Collaborative Manufactured Buildings Facility for Energy Research and Training) Project

    SciTech Connect (OSTI)

    Judkoff, R.D.; Hancock, C.E.; Franconi, E.

    1990-03-01

    For several years the Solar Energy Research Institute has been testing the effectiveness of mobile home weatherization measures, with the support of the US DOE Office of State and Local Assistance Programs Weatherization Assistance Program, the DOE Office of Buildings and Community Systems, the seven states within the federal Weatherization Region 7, the Colorado Division of Housing, and the DOE Denver Support Office. During the winter of 1988--89, several weatherization measures were thermally tested on three mobile homes under controlled conditions inside a large environmental enclosure. The effects of each weatherization measure on conduction losses, infiltration losses, and combined furnace and duct-delivered heat efficiency were monitored. The retrofit options included air sealing, duct repair, furnace tune-up, interior storm panels, floor insulation, and roof insulation. The study demonstrated that cost-effective heating energy savings of about 20% to 50% are possible if weatherization techniques adapted to the special construction details in mobile homes are applied. 24 refs., 18 figs., 9 tabs.

  1. Analyzing Your Compressed Air System; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 * August 2004 Industrial Technologies Program For additional information on industrial energy efficiency measures, contact the EERE Information Center at 1-877-337-3463 or visit ...

  2. A description of the new ASTM test method E 1424, used for measuring fenestration air leakage at differential temperatures and pressures

    SciTech Connect (OSTI)

    Kehrli, D.W.

    1995-09-01

    A new committee has been developed by ASTM Committee E6 for measuring air leakage rates of fenestration products under imposed conditions of differential pressures and temperatures. This new method is different from the long-standing, internationally referenced ASTM Method E 283 in that it is performed under temperature differentials across the test specimen similar to ASTM C 236 and C 1199, and AAMA 1503-88. This new method will show the impacts of expansion and contraction, shrinkage, compression-set, fabrication and design integrity, and material and component interactions in the air leakage rates of window and doors products. This paper compares the two methods and provides some typical test data.

  3. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 6. Blast measurements. Part 5. Measurement of density, temperature, and material velocity in an air shock produced by a nuclear explosion

    SciTech Connect (OSTI)

    Porzel, F.B.; Whitener, J.E.

    1985-09-01

    The results from laboratory tests and test firing were quite encouraging. It was concluded that: (1) the beta densitometer is a feasible device for the measurement of density as a function of time in the shock wave from a nuclear explosion. It is limited to pressure levels of 6 or 8 psi for bombs in the range of 50 kt, but is capable of higher-pressure levels on larger bombs where the interference from gamma rays is less serious; (2) dust-loading behind the shock wave is a major perturbation to the ideal hydrodynamics and can change the density by as large a factor as the shock itself; (3) the rise time at distances of 7,500 feet on Easy Shot was sharp within a resolution of approximately 0.2 msec; and (4) the field calibration used on Operation Greenhouse appeared reasonably accurate and was worthy of subsequent development.

  4. Measurement of transmission efficiency for 400 MeV proton beam through collimator at Fermilab MuCool Test Area using Chromox-6 scintillation screen

    SciTech Connect (OSTI)

    Jana, M. R.; Chung, M.; Leonova, M.; Moretti, A.; Palmer, M.; Schwarz, T.; Tollestrup, A.; Yonehara, K.; Freemire, B.; Hanlet, P.; Torun, Y.

    2013-06-15

    The MuCool Test Area (MTA) at Fermilab is a facility to develop the technology required for ionization cooling for a future Muon Collider and/or Neutrino Factory. As part of this research program, feasibility studies of various types of RF cavities in a high magnetic field environment are in progress. As a unique approach, we have tested a RF cavity filled with a high pressure hydrogen gas with a 400 MeV proton beam in an external magnetic field (B = 3 T). Quantitative information about the number of protons passing through this cavity is an essential requirement of the beam test. The MTA is a flammable gas (hydrogen) hazard zone. Due to safety reasons, no active (energized) beam diagnostic instrument can be used. Moreover, when the magnetic field is on, current transformers (toroids) used for beam intensity measurements do not work due to the saturation of the ferrite material of the transformer. Based on these requirements, we have developed a passive beam diagnostic instrumentation using a combination of a Chromox-6 scintillation screen and CCD camera. This paper describes details of the beam profile and position obtained from the CCD image with B = 0 T and B = 3 T, and for high and low intensity proton beams. A comparison is made with beam size obtained from multi-wires detector. Beam transmission efficiency through a collimator with a 4 mm diameter hole is measured by the toroids and CCD image of the scintillation screen. Results show that the transmission efficiency estimated from the CCD image is consistent with the toroid measurement, which enables us to monitor the beam transmission efficiency even in a high magnetic field environment.

  5. Real time speech formant analyzer and display

    DOE Patents [OSTI]

    Holland, G.E.; Struve, W.S.; Homer, J.F.

    1987-02-03

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.

  6. Real time speech formant analyzer and display

    DOE Patents [OSTI]

    Holland, George E.; Struve, Walter S.; Homer, John F.

    1987-01-01

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.

  7. Real-time airborne particle analyzer

    DOE Patents [OSTI]

    Reilly, Peter T.A.

    2012-10-16

    An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.

  8. A two-fold reduction in measurement time for neutron assay: Initial tests of a prototype dual-gated shift register

    SciTech Connect (OSTI)

    Stewart, J.E.; Bourret, S.C.; Krick, M.S.; Hansen, W.J.; Harker, W.C.

    1996-09-01

    Neutron coincidence counting (NCC) is used routinely around the world for nondestructive mass assay of uranium and plutonium in many forms, including waste. Compared with other methods, NCC is generally the most flexible, economic, and rapid. Many applications of NCC would benefit from a reduction in counting time required for a fixed random error. We have developed and tested the first prototype of a dual- gated, shift-register-based electronics unit that offers the potential of decreased measurement time for all passive and active NCC applications.

  9. Analyzing Outreach Effectiveness to Improve Program Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analyzing Outreach Effectiveness to Improve Program Design What's Working in Residential Energy Efficiency Upgrade Programs, Panel on Collecting and Using Data to Improve the Program May 20, 2011 © Copyright Earth Markets, LLC 2011 Bethany Cheshire East Haddam Glastonbury Mansfield Ridgefield Portland Weston Westport Wethersfield Wilton Windham Lebanon East Hampton Who's participating? © Copyright Earth Markets, LLC 2011 Road from Start to Finish Sign-Up for the Reduce 4 tons CO 2 Earn Town

  10. Development, Testing and Validation of a Waste Assay System for the Measurement and Characterisation of Active Spent Fuel Element Debris From UK Magnox Reactors - 12533

    SciTech Connect (OSTI)

    Mason, John A.; Burke, Kevin J.; Looman, Marc R.; Towner, Antony C.N.; Phillips, Martin E.

    2012-07-01

    This paper describes the development, testing and validation of a waste measurement instrument for characterising active remote handled radioactive waste arising from the operation of Magnox reactors in the United Kingdom. Following operation in UK Magnox gas cooled reactors and a subsequent period of cooling, parts of the magnesium-aluminium alloy cladding were removed from spent fuel and the uranium fuel rods with the remaining cladding were removed to Sellafield for treatment. The resultant Magnox based spent fuel element debris (FED), which constitutes active intermediate level waste (ILW) has been stored in concrete vaults at the reactor sites. As part of the decommissioning of the FED vaults the FED must be removed, measured and characterised and placed in intermediate storage containers. The present system was developed for use at the Trawsfynydd nuclear power station (NPS), which is in the decommissioning phase, but the approach is potentially applicable to FED characterisation at all of the Magnox reactors. The measurement system consists of a heavily shielded and collimated high purity Germanium (HPGe) detector with electromechanical cooling and a high count-rate preamplifier and digital multichannel pulse height analyser. The HPGe based detector system is controlled by a software code, which stores the measurement result and allows a comprehensive analysis of the measured FED data. Fuel element debris is removed from the vault and placed on a tray to a uniform depth of typically 10 cm for measurement. The tray is positioned approximately 1.2 meters above the detector which views the FED through a tungsten collimator with an inverted pyramid shape. At other Magnox sites the positions may be reversed with the shielded and collimated HPGe detector located above the tray on which the FED is measured. A comprehensive Monte Carlo modelling and analysis of the measurement process has been performed in order to optimise the measurement geometry and eliminate

  11. Tandem Differential Mobility Analyzer/Aerodynamic Particle Sizer (APS) Handbook

    SciTech Connect (OSTI)

    Collins, D

    2010-06-18

    The tandem differential mobility analyzer (TDMA) is a single instrument that cycles through a series of complementary measurements of the physical properties of size-resolved submicron particles. In 2008, the TDMA was augmented through the addition of an aerodynamic particle sizer (APS), which extends the upper limit of the measured size distribution into the supermicron range. These two instruments are operated in parallel, but because they are controlled by a common computer and because the size distributions measured by the two are integrated in the produced datastreams, they are described together here. Throughout the day, the TDMA sequentially measures submicron aerosol size distributions and size-resolved hygroscopic growth distributions. More specifically, the instrument is operated as a scanning DMA to measure size distributions and as a TDMA to measure size-resolved hygroscopicity. A typical measurement sequence requires roughly 45 minutes. Each morning additional measurements are made of the relative humidity (RH) dependent hygroscopicity and temperature-dependent volatility of size-resolved particles. When the outside temperature and RH are within acceptable ranges, the hydration state of size-resolved particles is also characterized. The measured aerosol distributions complement the array of aerosol instruments in the Aerosol Observing System (AOS) and provide additional details of the light-scattering and cloud-nucleating characteristics of the aerosol.

  12. A STATISTICAL REVIEW OF THE CHEMICAL COMPOSITION MEASUREMENTS AND PCT RESULTS FOR THE GLASSES FABRICATED AS PART OF THE US TEST MATRIX

    SciTech Connect (OSTI)

    Fox, K

    2007-06-12

    The Savannah River National Laboratory (SRNL) is part of a consortium that is looking to improve the retention of aluminum, chromium, and sulfate in high level radioactive waste (HLW) glass. Such glass has been produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) in South Carolina since it began operating in 1996 and is planned to be produced by the River Protection Project-Waste Treatment Plant (WTP) at the Hanford Site in Washington. The consortium conducting this study, which is designated as Task No.6 by the Department of Energy (DOE) Environmental Management (EM) program sponsoring this effort, is made up of personnel from SRNL, the Pacific Northwest National Laboratory (PNNL), and the V.G. Khlopin Radium Institute (KRI). Coordinated glass experimental work will be performed by each member of the consortium. The glasses that are being studied were selected to further the understanding of composition-property relationships within the glass regions of interest to both DWPF and WTP. Forty-five (45) glasses, making up the US test matrix, were batched and fabricated to support the study. The chemical compositions of these glasses were measured by SRNL's Process Science Analytical Laboratory (PSAL) under the auspices of an analytical plan. In addition, two heat treatments (quenched and centerline canister cooled, ccc) of each glass were subjected to the 7-day Product Consistency Test (PCT) to assess their durabilities. More specifically, the Method A of the PCT (ASTM C-1285-2002) was used for these tests. Measurements of the resulting leachate solutions were conducted by PSAL under the auspices of three analytical plans. A statistical review of the PSAL measurements of the chemical compositions and of the PCT results for the glasses making up the US test matrix is provided in this memorandum. Target, measured, and measured bias-corrected compositional views were determined for these glasses. The durability results for the US

  13. Researchers develop a new mathematical tool for analyzing and evaluating

    National Nuclear Security Administration (NNSA)

    nuclear material | National Nuclear Security Administration | (NNSA) Researchers develop a new mathematical tool for analyzing and evaluating nuclear material Friday, January 8, 2016 - 12:00am Lawrence Livermore National Laboratory scientist Les Nakae, front, shows off a liquid scintillator detector for measuring neutrons and gamma rays with nanosecond timing, which requires the new theoretical formulations detailed in a recent research paper. Joining him are team members, from left: Neal

  14. Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France D. Gillotay Institute d'Aeronomie Spatiale de Belgique Brussels, Belgium Introduction In the effort to resolve uncertainties about global climate change, the Atmospheric Radiation Measurement (ARM) Program (www.arm.gov) is improving the treatment of cloud radiative forcing and feedbacks in general

  15. Description of the prototype diagnostic residual gas analyzer for ITER

    SciTech Connect (OSTI)

    Younkin, T. R.; Biewer, T. M.; Klepper, C. C.; Marcus, C.

    2014-11-15

    The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.

  16. Recovery and upgrading of heavy oil analyzed

    SciTech Connect (OSTI)

    Fornoff, L.L.; Van Driesen, R.P.; Viens, C.H.

    1980-10-13

    An analysis has been made of recovery and upgrading of Venezuelan heavy crudes by integrating steam-drive production data with an upgraded computer processing program. A study used 110 computer cases to analyze a project using Venezuelan heavy crude from the Jobo field with gravity of 9.2 API and 4.1% by wt sulfur for the base case. Sensitivity cases used 12.2 API oil from the Lot 9 field, Monagas state, Venezuela, with sulfur content of 2.3%. Four upgrading methods were studied (deasphalting, delayed coking, flexicoking, and LC-fining), all with favorable resulting economics.

  17. Light-weight analyzer for odor recognition

    DOE Patents [OSTI]

    Vass, Arpad A; Wise, Marcus B

    2014-05-20

    The invention provides a light weight analyzer, e.g., detector, capable of locating clandestine graves. The detector utilizes the very specific and unique chemicals identified in the database of human decompositional odor. This detector, based on specific chemical compounds found relevant to human decomposition, is the next step forward in clandestine grave detection and will take the guess-work out of current methods using canines and ground-penetrating radar, which have historically been unreliable. The detector is self contained, portable and built for field use. Both visual and auditory cues are provided to the operator.

  18. Real-Time Occupancy Change Analyzer

    Energy Science and Technology Software Center (OSTI)

    2005-03-30

    The Real-Time Occupancy Change Analyzer (ROCA) produces an occupancy grid map of an environment around the robot, scans the environment to generate a current obstacle map relative to a current robot position, and converts the current obstacle map to a current occupancy grid map. Changes in the occupancy grid can be reported in real time to support a number of tracking capabilities. The benefit of ROCA is that rather than only providing a vector tomore » the detected change, it provides the actual x,y position of the change.« less

  19. Analyzing water/wastewater infrastructure interdependencies.

    SciTech Connect (OSTI)

    Gillette, J. L.; Fisher, R. E.; Peerenboom, J. P.; Whitfield, R. G.

    2002-03-26

    This paper describes four general categories of infrastructure interdependencies (physical, cyber, geographic, and logical) as they apply to the water/wastewater infrastructure, and provides an overview of one of the analytic approaches and tools used by Argonne National Laboratory to evaluate interdependencies. Also discussed are the dimensions of infrastructure interdependency that create spatial, temporal, and system representation complexities that make analyzing the water/wastewater infrastructure particularly challenging. An analytical model developed to incorporate the impacts of interdependencies on infrastructure repair times is briefly addressed.

  20. MULTI-CHANNEL PULSE HEIGHT ANALYZER

    DOE Patents [OSTI]

    Boyer, K.; Johnstone, C.W.

    1958-11-25

    An improved multi-channel pulse height analyzer of the type where the device translates the amplitude of each pulse into a time duration electrical quantity which is utilized to control the length of a train of pulses forwarded to a scaler is described. The final state of the scaler for any one train of pulses selects the appropriate channel in a magnetic memory in which an additional count of one is placed. The improvement consists of a storage feature for storing a signal pulse so that in many instances when two signal pulses occur in rapid succession, the second pulse is preserved and processed at a later time.

  1. Operation Greenhouse. Scientific director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 5. Neutron measurements. Part 1. Diagnostic neutron experiments, Section 2. Final report

    SciTech Connect (OSTI)

    Krause, E.H.

    1985-09-01

    The effects of radiation on the passage of an electromagnetic wave along a cable are too complicated to predict accurately from theory alone. Also, near the bomb, the intensity during the shot is so high that the results of laboratory measurements must be extrapolated by too many orders of magnitude to be applied with much confidence to the test conditions. Therefore, a number of cables were installed near the bomb for the sole purpose of study the radiation effects, both to help correct the data obtained in the present tests and to help predict shielding requirements in future tests. The two types of effects looked for were (1) a simple attenuation of a voltage across the line due to the shunt conductance set up when Compton-recoil electrons from the gamma rays ionize the gas between the inner and outer conductors; and (2) an induced signal due to the Compton electrons being knocked out of the inner and outer conductors in unequal amounts. On the basis of the results, a discussion is given of the adequacy of the coral shielding actually used to protect the horizontal cable runs.

  2. Full-scale hot cell test of an acoustic sensor dedicated to measurement of the internal gas pressure and composition of a LWR nuclear fuel rod

    SciTech Connect (OSTI)

    Ferrandis, J. Y.; Rosenkrantz, E.; Leveque, G.; Baron, D.; Segura, J. C.; Cecilia, G.; Provitina, O.

    2011-07-01

    A full-scale hot cell test of the internal gas pressure and composition measurement by an acoustic sensor was carried on successfully between 2008 and 2010 on irradiated fuel rods in the LECA-STAR facility at Cadarache Centre. The acoustic sensor has been specially designed in order to provide a nondestructive technique to easily carry out the measurement of the internal gas pressure and gas composition of a LWR nuclear fuel rod. This sensor has been achieved in 2007 and is now covered by an international patent. The first positive result, concerning the device behaviour, is that the sensor-operating characteristics have not been altered by a two-year exposure in the hot cell ambient. We performed the gas characterisation contained in irradiated fuel rods. The acoustic method accuracy is now {+-}5 bars on the pressure measurement result and {+-}0.3% on the evaluated gas composition. The results of the acoustic method were compared to puncture results. Another significant conclusion is that the efficiency of the acoustic method is not altered by the irradiation time, and possible modification of the cladding properties. These results make it possible to demonstrate the feasibility of the technique on irradiated fuel rods. The transducer and the associated methodology are now operational. (authors)

  3. Operation Greenhouse. Scientific Director's report of atomic-weapon tests at Eniwetok, 1951. Annex 1. 2. Delayed gamma-ray measurements. Part 1. Gamma-ray spectrum measurements (abridged)

    SciTech Connect (OSTI)

    Gibson, H.F.; Miller; Motz, J.W.; Smeltzer, J.C.; Wyckoff, H.O.

    1985-09-01

    Measurements of bomb efficiencies from the number of gamma rays requires fundamentally two separate experiments. The average number of gamma rays emitted from the fission fragments (delayed gamma rays) per fission must be determined. This experiment can be carried out in the laboratory. A second experiment, the absolute determination of the number of gamma rays from the bomb was also attempted. Because gamma rays are not directly observable but are measurable only through their secondary effects, and because the probability of occurrence of the secondary effects depends upon the gamma ray energy, it is not usually possible to count directly the number of gamma rays in a heterochromatic spectrum. A spectral distribution must be first obtained from which the actual total number of gamma rays may be computed. This volume discusses, in detail, the planning for the experiment and the spectral distribution of collimated gamma-rays determined from the Greenhouse tests on two shots. A discussion of measurement of build-up factor which is needed to estimate the effect of collimation is also given.

  4. Transient One-dimensional Pipe Flow Analyzer

    Energy Science and Technology Software Center (OSTI)

    1986-04-08

    TOPAZ-SNLL, the Transient One- dimensional Pipe flow AnalyZer code, is a user-friendly computer program for modeling the heat transfer, fluid mechanics, and thermodynamics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. Although the flow conservation equations are assumed to be one-dimensional and transient, multidimensional features of internal fluid flow and heat transfer may be accounted for using the available quasi-steady flow correlations (e.g., Moody friction factor correlation and variousmore » form loss and heat transfer correlations). Users may also model the effects of moving system boundaries such as pistons, diaphragms, and bladders. The features of fully compressible flow are modeled, including the propagation of shocks and rarefaction waves, as well as the establishment of multiple choke points along the flow path.« less

  5. Method for network analyzation and apparatus

    DOE Patents [OSTI]

    Bracht, Roger B.; Pasquale, Regina V.

    2001-01-01

    A portable network analyzer and method having multiple channel transmit and receive capability for real-time monitoring of processes which maintains phase integrity, requires low power, is adapted to provide full vector analysis, provides output frequencies of up to 62.5 MHz and provides fine sensitivity frequency resolution. The present invention includes a multi-channel means for transmitting and a multi-channel means for receiving, both in electrical communication with a software means for controlling. The means for controlling is programmed to provide a signal to a system under investigation which steps consecutively over a range of predetermined frequencies. The resulting received signal from the system provides complete time domain response information by executing a frequency transform of the magnitude and phase information acquired at each frequency step.

  6. Analyzing Options for Airborne Emergency Wireless Communications

    SciTech Connect (OSTI)

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  7. Testing and Performance Validation of a Sensitive Gamma Ray Camera Designed for Radiation Detection and Decommissioning Measurements in Nuclear Facilities-13044

    SciTech Connect (OSTI)

    Mason, John A.; Looman, Marc R.; Poundall, Adam J.; Towner, Antony C.N.; Creed, Richard; Pancake, Daniel

    2013-07-01

    This paper describes the measurements, testing and performance validation of a sensitive gamma ray camera designed for radiation detection and quantification in the environment and decommissioning and hold-up measurements in nuclear facilities. The instrument, which is known as RadSearch, combines a sensitive and highly collimated LaBr{sub 3} scintillation detector with an optical (video) camera with controllable zoom and focus and a laser range finder in one detector head. The LaBr{sub 3} detector has a typical energy resolution of between 2.5% and 3% at the 662 keV energy of Cs-137 compared to that of NaI detectors with a resolution of typically 7% to 8% at the same energy. At this energy the tungsten shielding of the detector provides a shielding ratio of greater than 900:1 in the forward direction and 100:1 on the sides and from the rear. The detector head is mounted on a pan/tile mechanism with a range of motion of ±180 degrees (pan) and ±90 degrees (tilt) equivalent to 4 π steradians. The detector head with pan/tilt is normally mounted on a tripod or wheeled cart. It can also be mounted on vehicles or a mobile robot for access to high dose-rate areas and areas with high levels of contamination. Ethernet connects RadSearch to a ruggedized notebook computer from which it is operated and controlled. Power can be supplied either as 24-volts DC from a battery or as 50 volts DC supplied by a small mains (110 or 230 VAC) power supply unit that is co-located with the controlling notebook computer. In this latter case both power and Ethernet are supplied through a single cable that can be up to 80 metres in length. If a local battery supplies power, the unit can be controlled through wireless Ethernet. Both manual operation and automatic scanning of surfaces and objects is available through the software interface on the notebook computer. For each scan element making up a part of an overall scanned area, the unit measures a gamma ray spectrum. Multiple

  8. Laser beam apparatus and method for analyzing solar cells

    DOE Patents [OSTI]

    Staebler, David L.

    1980-01-01

    A laser beam apparatus and method for analyzing, inter alia, the current versus voltage curve at the point of illumination on a solar cell and the open circuit voltage of a solar cell. The apparatus incorporates a lock-in amplifier, and a laser beam light chopper which permits the measurement of the AC current of the solar cell at an applied DC voltage at the position on the solar cell where the cell is illuminated and a feedback scheme which permits the direct scanning measurements of the open circuit voltage. The accuracy of the measurement is a function of the intensity and wavelength of the laser light with respect to the intensity and wavelength distribution of sunlight and the percentage the dark current is at the open circuit voltage to the short circuit current of the solar cell.

  9. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The

  10. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 8. 2B. Interferometer gauge pressure-time measurements

    SciTech Connect (OSTI)

    Kirk, J.E.; Seacord, D.F.; Newman, R.W.

    1985-04-01

    This project was charged with the responsibility of conducting tests on static aircraft panels mounted on the ground at various ranges from the blast. Pressure-versus-time data were obtained using interferometer gauges. The gauge proved to be reliable and easy to operate. Its high-frequency response enabled it to record data to the pressure rise at the front of the blast wave which had not been noted previously. These results show, from measurements taken by pressure instruments mounted flush with the ground, that the rise times at the front of the blast waves were on gamma-radiation intensity by the smple expedient of stacking a few layers of lead breic around the gauge mounts.