National Library of Energy BETA

Sample records for measuring residential ventilation

  1. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  2. Residential ventilation standards scoping study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  3. Effect of Ventilation Strategies on Residential Ozone Levels...

    Office of Scientific and Technical Information (OSTI)

    Effect of Ventilation Strategies on Residential Ozone Levels Citation Details In-Document Search Title: Effect of Ventilation Strategies on Residential Ozone Levels You are...

  4. Effect of Ventilation Strategies on Residential Ozone Levels...

    Office of Scientific and Technical Information (OSTI)

    Effect of Ventilation Strategies on Residential Ozone Levels Citation Details In-Document Search Title: Effect of Ventilation Strategies on Residential Ozone Levels Authors:...

  5. Development of a Residential Integrated Ventilation Controller

    SciTech Connect (OSTI)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  6. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.

    2011-04-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

  7. Does Mixing Make Residential Ventilation More Effective? (Conference...

    Office of Scientific and Technical Information (OSTI)

    Make Residential Ventilation More Effective? Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there...

  8. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

    2014-05-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  9. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  10. Energy and IAQ Implications of Residential Ventilation Cooling

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  11. Infiltration in ASHRAE's Residential Ventilation Standards (Journal...

    Office of Scientific and Technical Information (OSTI)

    Ventilation Standards The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural...

  12. Measure Guideline: Ventilation Cooling

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  13. Infiltration in ASHRAE's Residential Ventilation Standards (Journal...

    Office of Scientific and Technical Information (OSTI)

    critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much...

  14. Advanced Controls for Residential Whole-House Ventilation Systems

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain; Sherman, Max

    2014-08-01

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  15. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain

    2014-08-01

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met. ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM2.5, formaldehyde and NO2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.

  16. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Heating Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    2013-09-01

    Two identical laboratory homes designed to model existing Florida building stock were sealed and tested to 2.5 ACH50. Then, one was made leaky with 70% leakage through the attic and 30% through windows, to a tested value of 9 ACH50. Reduced energy use was measured in the tighter home (2.5 ACH50) in the range of 15% to 16.5% relative to the leaky (9 ACH50) home. Internal moisture loads resulted in higher dew points inside the tight home than the leaky home. Window condensation and mold growth occurred inside the tight home.

  17. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Heating Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    Vieira, R.; Parker, D.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.

    2013-09-01

    Two identical laboratory homes designed to model existing Florida building stock were sealed and tested to 2.5 ACH50. Then, one was made leaky with 70% leakage through the attic and 30% through windows, to a tested value of 9 ACH50. Reduced energy use was measured in the tighter home (2.5 ACH50) in the range of 15% to 16.5% relative to the leaky (9 ACH50) home. Internal moisture loads resulted in higher dew points inside the tight home than the leaky home. Window condensation and mold growth occurred inside the tight home. Even cutting internal moisture gains in half to 6.05 lbs/day, the dew point of the tight home was more than 15 degrees F higher than the outside dry bulb temperature. The homes have single pane glass representative of older Central Florida homes.

  18. Building America Webinar: National Residential Efficiency Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview...

  19. NREL: National Residential Efficiency Measures Database - Retrofit Measures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submit Questions/Comments Retrofit Measures This page provides the types for all retrofit measures available in the National Residential Efficiency Measures Database. Select a component type below to see the retrofit measure data. For more information, read about the database, learn about the cost data, and see the glossary. Airflow Air Leakage Mechanical Ventilation Ceilings/Roofs Finished Roof Radiant Barrier Roof Material Unfinished Attic Foundation/Floors Crawlspace Slab Unfinished Basement

  20. National Residential Efficiency Measures Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Residential Efficiency Measures Database Development Document, v3.0 Final Draft, June 2012 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado i Executive Summary The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most

  1. Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain

    2014-06-01

    Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr--1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 ?g/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 ?g/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

  2. Measure Guideline: Ventilation Cooling

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  3. Comparison of freezing control strategies for residential air-to-air heat recovery ventilators

    SciTech Connect (OSTI)

    Phillips, E.G.; Bradley, L.C. ); Chant, R.E. ); Fisher, D.R.

    1989-01-01

    A comparison of the energy performance of defrost and frost control strategies for residential air-to-air heat recovery ventilators (HRV) has been carried out by using computer simulations for various climatic conditions. This paper discusses the results and conclusions from the comparisons and their implications for the heat recovery ventilator manufacturers and system designers.

  4. National Residential Efficiency Measures Database Webinar Slides...

    Energy Savers [EERE]

    Webinar Slides National Residential Efficiency Measures Database Webinar Slides Presentation slides for the Building Technologies Program Webinar on the National Residential...

  5. Energy and air quality implications of passive stack ventilation in residential buildings

    SciTech Connect (OSTI)

    Mortensen, Dorthe Kragsig; Walker, Iain S.; Sherman, Max

    2011-01-01

    Ventilation requires energy to transport and condition the incoming air. The energy consumption for ventilation in residential buildings depends on the ventilation rate required to maintain an acceptable indoor air quality. Historically, U.S. residential buildings relied on natural infiltration to provide sufficient ventilation, but as homes get tighter, designed ventilation systems are more frequently required particularly for new energy efficient homes and retrofitted homes. ASHRAE Standard 62.2 is used to specify the minimum ventilation rate required in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required ventilation when their air quality equivalency has been proven. One appealing method is the use of passive stack ventilation systems. They have been used for centuries to ventilate buildings and are often used in ventilation regulations in other countries. Passive stacks are appealing because they require no fans or electrical supply (which could lead to lower cost) and do not require maintenance (thus being more robust and reliable). The downside to passive stacks is that there is little control of ventilation air flow rates because they rely on stack and wind effects that depend on local time-varying weather. In this study we looked at how passive stacks might be used in different California climates and investigated control methods that can be used to optimize indoor air quality and energy use. The results showed that passive stacks can be used to provide acceptable indoor air quality per ASHRAE 62.2 with the potential to save energy provided that they are sized appropriately and flow controllers are used to limit over-ventilation.

  6. Does Mixing Make Residential Ventilation More Effective? (Conference...

    Office of Scientific and Technical Information (OSTI)

    Service, Springfield, VA at www.ntis.gov. Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there...

  7. National Residential Efficiency Measures Database Webinar Slides |

    Energy Savers [EERE]

    Department of Energy Residential Efficiency Measures Database Webinar Slides National Residential Efficiency Measures Database Webinar Slides Presentation slides for the Building Technologies Program Webinar on the National Residential Efficiency Measures Database on January 18, 2011. PDF icon webinar_residential_efficiencydb_20110118.pdf More Documents & Publications tap_webinar_20100324_openpv_quniby.pdf Solar Energy - Capturing and Using Power and Heat from the Sun Building America

  8. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect (OSTI)

    Martin, E.

    2014-01-01

    The DOE Building America program has been conducting research leading to cost effective high performance homes since the early 1990's. Optimizing whole house mechanical ventilation as part of the program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this white paper is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  9. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect (OSTI)

    Martin, Eric

    2014-01-01

    Optimizing whole house mechanical ventilation as part of the Building Ameerica program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this report is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  10. Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches

    SciTech Connect (OSTI)

    Sherman, Max; Logue, Jennifer; Singer, Brett

    2010-06-01

    The prevailing residential ventilation standard in North America, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 62.2, specifies volumetric airflow requirements as a function of the overall size of the home and the number of bedrooms, assumes a fixed, minimal amount of infiltration, and requires mechanical ventilation to achieve the remainder. The standard allows for infiltration credits and intermittent ventilation patterns that can be shown to provide comparable performance. Whole-house ventilation methods have a substantial effect on time-varying indoor pollutant concentrations. If alternatives specified by Standard 62.2, such as intermittent ventilation, are used, short-term pollutant concentrations could exceed acute health standards even if chronic health standards are met.The authors present a methodology for comparing ASHRAE- and non-ASHRAE-specified ventilation scenarios on relative indoor pollutant concentrations. We use numerical modeling to compare the maximum time-averaged concentrations for acute exposure relevant (1-hour, 8-hour, 24-hour ) and chronic exposure relevant (1-year) time periods for four different ventilation scenarios in six climates with a range of normalized leakage values. The results suggest that long-term concentrations are the most important metric for assessing the effectiveness of whole-house ventilation systems in meeting exposure standards and that, if chronic health exposure standards are met, acute standards will also be met.

  11. National Residential Efficiency Measures Database - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Residential Efficiency Measures Database - Building America Top Innovation Image of a man insulating the ceiling of a home. Robust cost data for energy-efficiency measures ...

  12. NREL: National Residential Efficiency Measures Database - Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developer Tools Application Developer Tools Here you will find tools intended to help software application developers access the data in the National Residential Efficiency Measures Database. This database of retrofit measures and associated costs can be used by software applications that evaluate residential efficiency measures. Read more about the database and information about the cost data. Developer Tools Change log-View a list of changes to the National Residential Efficiency Measures

  13. Energy Impact of Residential Ventilation Norms in the UnitedStates

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.

    2007-02-01

    The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). This standard does not by itself have the force of regulation, but is being considered for adoption by various jurisdictions within the U.S. as well as by various voluntary programs. The adoption of 62.2 would require mechanical ventilation systems to be installed in virtually all new homes, but allows for a wide variety of design solutions. These solutions, however, may have a different energy costs and non-energy benefits. This report uses a detailed simulation model to evaluate the energy impacts of currently popular and proposed mechanical ventilation approaches that are 62.2 compliant for a variety of climates. These results separate the energy needed to ventilate from the energy needed to condition the ventilation air, from the energy needed to distribute and/or temper the ventilation air. The results show that exhaust systems are generally the most energy efficient method of meeting the proposed requirements. Balanced and supply systems have more ventilation resulting in greater energy and their associated distribution energy use can be significant.

  14. Measured Performance of Residential Dehumidifiers Under Cyclic Operation

    SciTech Connect (OSTI)

    Winkler, J.; Christensen, D.; Tomerlin, J.

    2014-01-01

    Residential construction practices are progressing toward higher levels of energy efficiency. A proven strategy to save energy is to simultaneously increase building insulation levels and reduce outdoor air infiltration. Overall, this strategy results in a shift in the mix of latent and sensible space conditioning loads, requiring proportionally more moisture to be removed compared to standard homes. In this project, researchers at the National Renewable Energy Laboratory (NREL) developed steady state performance maps to predict dehumidifier performance at a variety of indoor conditions. However, installed heating, ventilating, and air-conditioning (HVAC) equipment rarely operates at steady state. Part load performance testing of residential dehumidifiers is not mandated by current test standards. Therefore, the team tested the part load performance of four residential dehumidifiers in NRELs Advanced HVAC Systems Laboratory . The part load efficiency of each dehumidifier was measured under 13 cycling scenarios, and combined with NREL field data to develop part load fraction (PLF) performance curves under realistic cycling scenarios.

  15. Development of an Outdoor Temperature Based Control Algorithm for Residential Mechanical Ventilation Control

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain; Tang, Yihuan

    2014-08-01

    The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  16. Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures

    SciTech Connect (OSTI)

    Petithuguenin, T.D.P.; Sherman, M.H.

    2009-05-01

    The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

  17. Building America Webinar: National Residential Efficiency Measures Database

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unveiled | Department of Energy National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview of this database of residential building retrofit measures and associated estimated costs, and progress to date. File webinar_residential_efficiencydb_20110118.wmv More Documents & Publications National Residential Efficiency Measures Database Webinar Slides Building America

  18. Airflow reduction during cold weather operation of residential heat recovery ventilators

    SciTech Connect (OSTI)

    McGugan, C.A.; Edwards, P.F.; Riley, M.A.

    1987-06-01

    Laboratory measurements of the performance of residential heat recovery ventilators have been carried out for the R-2000 Energy Efficient Home Program. This work was based on a preliminary test procedure developed by the Canadian Standards Association, part of which calls for testing the HRV under cold weather conditions. An environmental chamber was used to simulate outdoor conditions. Initial tests were carried out with an outdoor temperature of -20/sup 0/C; subsequent tests were carried out at a temperature of -25/sup 0/C. During the tests, airflows, temperatures, and relative humidities of airstreams entering and leaving the HRV, along with electric power inputs, were monitored. Frost buildup in the heat exchangers and defrost mechanisms, such as fan shutoff or recirculation, led to reductions in airflows. The magnitude of the reductions is dependent on the design of the heat exchanger and the defrost mechanism used. This paper presents the results of tests performed on a number of HRVs commercially available in Canada at the time of the testing. The flow reductions for the various defrost mechanisms are discussed.

  19. Measured Performance of Residential Dehumidifiers Under Cyclic Operation

    SciTech Connect (OSTI)

    Winkler, J.; Christensen, D.; Tomerlin, J.

    2014-01-01

    Residential construction practices are progressing toward higher levels of energy efficiency. A proven strategy to save energy is to simultaneously increase building insulation levels and reduce outdoor air infiltration. Tight homes require intentional mechanical ventilation to ensure healthy indoor air. Overall, this strategy results in a shift in the mix of latent and sensible space conditioning loads, requiring proportionally more moisture to be removed compared to standard homes. There is currently not sufficient information available at a wide enough range of operating points to design dehumidification systems for high performance homes in hot-humid climates. The only industry information available on dehumidifier moisture removal and energy consumption are performance ratings conducted at a single test condition, which does not provide a full representation of dehumidifier operation under real-world conditions. Winkler et al. (2011) developed steady state performance maps to predict dehumidifier performance at a variety of indoor conditions. However, installed heating, ventilating, and air-conditioning (HVAC) equipment rarely operates at steady state. Part load performance testing of residential dehumidifiers is not mandated by current test standards. Therefore, we tested the part load performance of four residential dehumidifiers in the National Renewable Energy Laboratory's (NREL) Advanced HVAC Systems Laboratory . The part load efficiency of each dehumidifier was measured under 13 cycling scenarios, and combined with NREL field data to develop part load fraction (PLF) performance curves under realistic cycling scenarios.

  20. NREL: National Residential Efficiency Measures Database - Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protocols Simulation Protocols One overarching objective in providing this publicly-available, centralized resource of residential building retrofit measures is to improve the technical consistency and accuracy of the results of software programs. To this end, NREL has also developed a set of recommendations regarding modeling inputs and assumptions derived from two decades of residential buildings research via the Building America Research Program. Section III of the Building America House

  1. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MacDonald and D.L. White. Oak Ridge National Laboratory. ORNLCON-304.(5-91) InfiltrationVentilation Measurements in RCDP Manufactured Homes. Pacific Northwest Laboratory, D....

  2. Waste tank ventilation rates measured with a tracer gas method

    SciTech Connect (OSTI)

    Huckaby, J.L.; Evans, J.C.; Sklarew, D.S.; Mitroshkov, A.V.

    1998-08-01

    Passive ventilation with the atmosphere is used to prevent accumulation of waste gases and vapors in the headspaces of 132 of the 177 high-level radioactive waste Tanks at the Hanford Site in Southeastern Washington State. Measurements of the passive ventilation rates are needed for the resolution of two key safety issues associated with the rates of flammable gas production and accumulation and the rates at which organic salt-nitrate salt mixtures dry out. Direct measurement of passive ventilation rates using mass flow meters is not feasible because ventilation occurs va multiple pathways to the atmosphere (i.e., via the filtered breather riser and unsealed tank risers and pits), as well as via underground connections to other tanks, junction boxes, and inactive ventilation systems. The tracer gas method discussed in this report provides a direct measurement of the rate at which gases are removed by ventilation and an indirect measurement of the ventilation rate. The tracer gas behaves as a surrogate of the waste-generated gases, but it is only diminished via ventilation, whereas the waste gases are continuously released by the waste and may be subject to depletion mechanisms other than ventilation. The fiscal year 1998 tracer studies provide new evidence that significant exchange of air occurs between tanks via the underground cascade pipes. Most of the single-shell waste tanks are connected via 7.6-cm diameter cascade pipes to one or two adjacent tanks. Tracer gas studies of the Tank U-102/U-103 system indicated that the ventilation occurring via the cascade line could be a significant fraction of the total ventilation. In this two-tank cascade, air evidently flowed from Tank U-103 to Tank U-102 for a time and then was observed to flow from Tank U-102 to Tank U-103.

  3. NREL: National Residential Efficiency Measures Database - Glossary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glossary Here you will find an alphabetical list of technical terms related to the National Residential Efficiency Measures Database. Absorptivity (Roof Material) The solar radiation absorptance of the outside roof surface, specified as a value between 0 and 1. ACH (Crawlspace) Air exchange rate, in Air Changes per Hour (ACH), for the crawlspace. Adjusted Volume (Freezer) For freezers, adjusted volume (AV) is calculated: AV = 1.73 x Total Freezer Volume. For refrigerators, AV is calculated: AV =

  4. National Residential Efficiency Measures Database Unveiled (text version) |

    Energy Savers [EERE]

    Department of Energy National Residential Efficiency Measures Database Unveiled (text version) National Residential Efficiency Measures Database Unveiled (text version) Below is the text version of the Webinar titled "National Residential Efficiency Measures Database Unveiled," originally presented on January 18, 2011. In addition to this text version of the audio, you can view the presentation slides and a recording of the Webinar (WMV 47 MB). Operator: Welcome to today's webinar.

  5. Laboratory Evaluation of Air Flow Measurement Methods for Residential...

    Office of Scientific and Technical Information (OSTI)

    Returns Citation Details In-Document Search Title: Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns This project improved the accuracy of air flow...

  6. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate Cocoa, Florida PROJECT INFORMATION Project Name: Flexible Residential Test Facility Location: Cocoa, FL Partners: Florida Energy Systems Consortium www.floridaenergy.ufl.edu/ Building America Partnership for Improved Residential Construction, www.ba-pirc.org Building Components: Infiltration and ventilation Application: Single-family Year Tested: 2012-2013 Applicable Climate

  7. National Residential Efficiency Measures Database | Department of Energy

    Energy Savers [EERE]

    Residential Buildings » Building America » National Residential Efficiency Measures Database National Residential Efficiency Measures Database This photo shows a man in a white hazardous materials suit blowing insulation inside of an attic. He is wearing a headlamp on his head and the beam shines in the general direction of the insulation tube he is holding. Home improvement can be expensive. The good news is that many energy efficiency improvements quickly pay for themselves in energy

  8. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect (OSTI)

    Goetzler, William; Zogg, Robert; Young, Jim; Schmidt, Justin

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  9. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  10. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

  11. NREL: National Residential Efficiency Measures Database Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Learn more about the database. By accessing the database, the user agrees to the terms and conditions of use. View Data Now

  12. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC

    Office of Scientific and Technical Information (OSTI)

    Returns (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns Citation Details In-Document Search Title: Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards),

  13. NREL: National Residential Efficiency Measures Database - About the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Database About the Database Here you will find more information about the purpose, audience, and uses for the National Residential Efficiency Measures Database. Purpose NREL developed this database on behalf of the U.S. Department of Energy. The purpose of this project is to provide a national unified database of residential building retrofit measures and associated costs. These data are accessible to software programs that evaluate most cost-effective retrofit measures to improve the energy

  14. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Returns for New Instrument Standards (Technical Report) | SciTech Connect Technical Report: Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards Citation Details In-Document Search Title: Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in

  15. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This 2014 Top Innovations profile describes Building America research and support in developing and gaining adoption of ASHRAE 62.2, a residential ventilation standard that is critical to transforming the U.S. housing industry to high-performance homes.

  16. National Residential Efficiency Measures Database Guide for Application Developers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Residential Efficiency Measures Database Guide for Application Developers March, 2013 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 i Executive Summary This document provides guidance to users of the National Residential Efficiency Measures Database, sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). The database project is being developed and maintained by the National Renewable Energy Laboratory

  17. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC

    Office of Scientific and Technical Information (OSTI)

    Returns (Technical Report) | SciTech Connect Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns Citation Details In-Document Search Title: Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  18. Developing an Evaluation Measurement, and Verification Plan: Residential

    Office of Environmental Management (EM)

    Retrofits | Department of Energy Measurement, and Verification Plan: Residential Retrofits Developing an Evaluation Measurement, and Verification Plan: Residential Retrofits DOE's Technical Assistance Program (TAP) supports the Energy Efficiency and Conservation Block Grant Program (EECBG) and the State Energy Program (SEP) by providing state, local, and tribal officials the tools and resources needed to implement successful and sustainable clean energy programs. File DOE TAP EMV Planning

  19. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    SciTech Connect (OSTI)

    Walker, Iain; Stratton, Chris

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  20. Measurements and computations of room airflow with displacement ventilation

    SciTech Connect (OSTI)

    Yuan, X.; Chen, Q.; Glicksman, L.R.; Hu, Y.; Yang, X.

    1999-07-01

    This paper presents a set of detailed experimental data of room airflow with displacement ventilation. These data were obtained from a new environmental test facility. The measurements were conducted for three typical room configurations: a small office, a large office with partitions, and a classroom. The distributions of air velocity, air velocity fluctuation, and air temperature were measured by omnidirectional hot-sphere anemometers, and contaminant concentrations were measured by tracer gas at 54 points in the rooms. Smoke was used to observe airflow. The data also include the wall surface temperature distribution, air supply parameters, and the age of air at several locations in the rooms. A computational fluid dynamics (CFD) program with the Re-Normalization Group (RNG) {kappa}-{epsilon} model was also used to predict the indoor airflow. The agreement between the computed results and measured data of air temperature and velocity is good. However, some discrepancies exist in the computed and measured concentrations and velocity fluctuation.

  1. Building America Top Innovations 2012: National Residential Efficiency Measures Database

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes the DOE-sponsored National Residential Efficiency Measures Database, which contains performance characteristics and cost estimates for nearly 3,000 energy retrofit measures. To date, it is used in four prominent DOE software packages to help optimize energy-efficiency recommendations.

  2. National Residential Efficiency Measures Database- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes the DOE-sponsored National Residential Efficiency Measures Database, which contains performance characteristics and cost estimates for nearly 3,000 energy retrofit measures. To date, it is used in four prominent DOE software packages to help optimize energy-efficiency recommendations.

  3. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    SciTech Connect (OSTI)

    Hoeschele, M.A.; D.A. Springer

    2008-06-18

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

  4. Measure Guideline: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, R.

    2014-02-01

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  5. NREL: National Residential Efficiency Measures Database - Change Log

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    History Change Log History Here you can view a list of changes to the National Residential Efficiency Measures Database. Version Date Description v3.0.0 3/21/13 Public Release v2.0.0 11/1/10 Public Release v1.0.0 2/26/10 Public Release v1.0.0Beta 2/18/10 DOE Lab Review

  6. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost- effective retrofit measures to improve the energy

  7. Maximizing Information from Residential Measurements of Volatile Organic Compounds

    SciTech Connect (OSTI)

    Maddalena, Randy; Li, Na; Hodgson, Alfred; Offermann, Francis; Singer, Brett

    2013-02-01

    Continually changing materials used in home construction and finishing can introduce new chemicals or changes in the VOC profile in residential air and the trend towards tighter homes can lead to higher exposure concentrations for many indoor sources. However, the complex mixture of VOCs in residential air makes it difficult to discover emerging contaminants and/or trends in pollutant profiles. The purpose of this study is to prepare a comprehensive library of chemicals found in homes, along with a semi-quantitative approach to maximize the information gained from VOC measurements. We carefully reviewed data from 108 new California homes and identified 238 individual compounds. The majority of the identified VOCs originated indoors. Only 31% were found to have relevant health based exposure guidelines and less than 10% had a chronic reference exposure level (CREL). The finding highlights the importance of extending IAQ studies to include a wider range of VOCs

  8. Measure Guideline: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, R.

    2014-02-01

    This report, developed by Building America research team CARB, addresses adding or improving mechanical ventilation systems to existing homes. The goal of this report is to assist decision makers and contractors in making informed decisions when selecting ventilation systems for homes. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including examination of relevant codes and standards. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors.

  9. NREL: National Residential Efficiency Measures Database - Data Dictionary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dictionary This page features the data dictionary for the National Residential Efficiency Measures Database, which supplies users with information about the database organization such as table structure, field names, and data element type and length. tblAction Column name Data type Length Description ActionID int 4 Primary key for actions sName varchar 255 Action name idComponentTypeID int 4 The component type to which this action may be applied (foreign key) idActionTypeID int 4 The action type

  10. NREL: National Residential Efficiency Measures Database - Data Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disclaimer Agreement Before accessing the data from the National Residential Efficiency Measures Database, users must read and accept this agreement ("Agreement"). Database version: v3.0.0. See the Change Log for information about the version. This data and software ("Data") is provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("ALLIANCE") for the U.S. Department Of Energy

  11. Smart Ventilation - RIVEC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secondary Ventilation Activity Inputs Control Ventilation to Ensure Acceptable Indoor Air Quality Outputs  Required air flows  Weather  DR / price signal  Occupancy / schedule  Outdoor air quality Residential Integrated VEntilation Control System Contact: Dr. Iain S. Walker, iswalker@lbl.gov Lawrence Berkeley National Laboratory Smart Ventilation - RIVEC 2014 Building Technologies Office Peer Review Project Summary Timeline: Start date: 2011 Planned end date: 2016 Key Milestones

  12. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    SciTech Connect (OSTI)

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  13. Analysis of Installed Measures and Energy Savings for Single-Family Residential Better Buildings Projects

    SciTech Connect (OSTI)

    Heaney, M.; Polly, B.

    2015-04-30

    This report presents an analysis of data for residential single-family projects reported by 37 organizations that were awarded federal financial assistance (cooperative agreements or grants) by the U.S. Department of Energy’s Better Buildings Neighborhood Program.1 The report characterizes the energy-efficiency measures installed for single-family residential projects and analyzes energy savings and savings prediction accuracy for measures installed in a subset of those projects.

  14. Ventilation Control of Volatile Organic Compounds in New U.S. Homes: Results of a Controlled Field Study in Nine Residential Units

    SciTech Connect (OSTI)

    Willem, Henry; Hult, Erin L.; Hotchi, Toshifumi; Russell, Marion L.; Maddalena, Randy L.; Singer, Brett C.

    2013-01-01

    In order to optimize strategies to remove airborne contaminants in residences, it is necessary to determine how contaminant concentrations respond to changes in the air exchange rate. The impact of air exchange rate on the indoor concentrations of 39 target volatile organic compounds (VOCs) was assessed by measuring air exchange rates and VOC concentrations at three ventilation settings in nine residences. Active sampling methods were used for VOC concentration measurements, and passive perfluorocarbon tracer gas emitters with active sampling were used to determine the overall air exchange rate corresponding to the VOC measurements at each ventilation setting. The concentration levels and emission rates of the target VOCs varied by as much as two orders of magnitude across sites. Aldehyde and terpene compounds were typically the chemical classes with highest concentrations, followed by alkanes, aromatics, and siloxanes. For each home, VOC concentrations tended to decrease as the air exchange rate was increased, however, measurement uncertainty was significant. The indoor concentration was inversely proportional to air exchange rate for most compounds. For a subset of compounds including formaldehyde, however, the indoor concentration exhibited a non-linear dependence on the timescale for air exchange

  15. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry

    SciTech Connect (OSTI)

    David Roberts

    2012-01-01

    This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures.

  16. Ventilation Model

    SciTech Connect (OSTI)

    V. Chipman

    2002-10-05

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post-closure thermal models (Section 6.6). (3) To satisfy the remainder of KTI agreement TEF 2.07 (Reamer and Williams 2001b). Specifically to provide the results of post-test ANSYS modeling of the Atlas Facility forced convection tests (Section 7.1.2). This portion of the model report also serves as a validation exercise per AP-SIII.10Q, Models, for the ANSYS ventilation model. (4) To further satisfy KTI agreements RDTME 3.01 and 3.14 (Reamer and Williams 2001a) by providing the source documentation referred to in the KTI Letter Report, ''Effect of Forced Ventilation on Thermal-Hydrologic Conditions in the Engineered Barrier System and Near Field Environment'' (Williams 2002). Specifically to provide the results of the MULTIFLUX model which simulates the coupled processes of heat and mass transfer in and around waste emplacement drifts during periods of forced ventilation. This portion of the model report is presented as an Alternative Conceptual Model with a numerical application, and also provides corroborative results used for model validation purposes (Section 6.3 and 6.4).

  17. Ventilation technologies scoping study

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max H.

    2003-09-30

    This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  18. Promising Technology: Demand Control Ventilation

    Broader source: Energy.gov [DOE]

    Demand control ventilation (DCV) measures carbon dioxide concentrations in return air or other strategies to measure occupancy, and accurately matches the ventilation requirement. This system reduces ventilation when spaces are vacant or at lower than peak occupancy. When ventilation is reduced, energy savings are accrued because it is not necessary to heat, cool, or dehumidify as much outside air.

  19. Laboratory Evaluation of Air Flow Measurement Methods for Residential...

    Office of Scientific and Technical Information (OSTI)

    The research team at Lawrence Berkeley National Laboratory addressed the issue that ... The series of tests performed measured air flow using a range of techniques and devices. ...

  20. VENTILATION MODEL REPORT

    SciTech Connect (OSTI)

    V. Chipman

    2002-10-31

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.

  1. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season. ​

  2. Technology Solutions Case Study: Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate

    SciTech Connect (OSTI)

    2014-04-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  3. Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2003-08-01

    Particle deposition in ventilation ducts influences particle exposures of building occupants and may lead to a variety of indoor air quality concerns. Experiments have been performed in a laboratory to study the effects of particle size and air speed on deposition rates of particles from turbulent air flows in galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. The duct systems were constructed of materials typically found in commercial heating, ventilating and air conditioning (HVAC) systems. In the steel duct system, experiments with nominal particle sizes of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition rates of particles with nominal sizes of 1, 3, 5, 8 and 13 {micro}m were measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces (floor, wall and ceiling) at two straight duct sections where the turbulent flow profile was fully developed. In steel ducts, deposition rates were higher to the duct floor than to the wall, which were, in turn, greater than to the ceiling. In insulated ducts, deposition was nearly the same to the duct floor, wall and ceiling for a given particle size and air speed. Deposition to duct walls and ceilings was greatly enhanced in insulated ducts compared to steel ducts. Deposition velocities to each of the three duct surface orientations in both systems were found to increase with increasing particle size or air velocity over the ranges studied. Deposition rates measured in the current experiments were in general agreement with the limited observations of similar systems by previous researchers.

  4. Building America Webinar: Ventilation in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This webinar was presented by research team Consortium for Advanced Residential Buildings (CARB), and discussed ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design, specification, and construction techniques.

  5. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect (OSTI)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

  6. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE goals call for zero energy ready homes that are 50% more efficient than the 2009 IECC and whole-house retrofits that reduce energy use 25% in existing homes by 2025. By specifying minimum ventilation rates, ASHRAE 62.2 is a critical enabling innovation that will contribute to DOE's long-term goal of saving the nation $2.2 trillion in energy-related costs through a 50% reduction in building energy consumption. BUILDING AMERICA TOP INNOVATIONS 2014 PROFILE Building America research and support

  7. Ventilation Model Report

    SciTech Connect (OSTI)

    V. Chipman; J. Case

    2002-12-20

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. Revision 01 ICN 01 included the results of the unqualified software code MULTIFLUX to assess the influence of moisture on the ventilation efficiency. The purposes of Revision 02 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post-closure thermal models (Section 6.6). (3) To satisfy the remainder of KTI agreement TEF 2.07 (Reamer and Williams 2001b). Specifically to provide the results of post-test ANSYS modeling of the Atlas Facility forced convection tests (Section 7.1.2). This portion of the model report also serves as a validation exercise per AP-SIII.10Q, Models, for the ANSYS ventilation model. (4) To asses the impacts of moisture on the ventilation efficiency.

  8. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-

    Energy Savers [EERE]

    Rise Residential Buildings - Building America Top Innovation | Department of Energy ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation "Build tight, ventilate right" is a universal mantra of high performance home designers and scientists. Tight construction is

  9. Optional Residential Program Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optional Residential Program Benchmarking Optional Residential Program Benchmarking Better Buildings Residential Network Data and Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking, Call Slides and Discussion Summary, January 23, 2014. PDF icon Call Slides and Discussion Summary More Documents & Publications Guide to Benchmarking Residential Program Progress Webcast Slides Lessons Learned: Measuring Program Outcomes and Using Benchmarks Guide for Benchmarking

  10. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  11. Residential Weatherization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  12. SRP- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    SRP's Residential Energy Efficiency Rebate Program is designed to encourage residential SRP customers to utilize energy efficient appliances and measures at home. See program web site for a...

  13. Sharyland Utilities- Residential Standard Offer Program

    Broader source: Energy.gov [DOE]

    Sharyland Utilities offers the Residential and "Hard-to-Reach" Standard Offer Programs, which encourage residential customers to pursue energy saving measures and equipment upgrades in their homes....

  14. Measure Guideline: Condensing Boilers - Control Strategies for Optimizing Performance and Comfort in Residential Applications

    SciTech Connect (OSTI)

    Arena, L.

    2013-05-01

    The combination of a gas-fired condensing boiler with baseboard convectors and an indirect water heater has become a common option for high-efficiency residential space heating in cold climates. While there are many condensing boilers available on the market with rated efficiencies in the low to mid 90% efficient range, it is imperative to understand that if the control systems are not properly configured, these heaters will perform no better than their non-condensing counterparts. Based on previous research efforts, it is apparent that these types of systems are typically not designed and installed to achieve maximum efficiency (Arena 2010). It was found that there is a significant lack of information for contractors on how to configure the control systems to optimize overall efficiency. For example, there is little advice on selecting the best settings for the boiler reset curve or how to measure and set flow rates in the system to ensure that the return temperatures are low enough to promote condensing. It has also been observed that recovery from setback can be extremely slow and, at times, not achieved. Recovery can be affected by the outdoor reset control, the differential setting on the boiler and over-sizing of the boiler itself. This guide is intended for designers and installers of hydronic heating systems interested in maximizing the overall system efficiency of condensing boilers when coupled with baseboard convectors. It is applicable to new and retrofit applications.

  15. A round robin evaluation of the corrosiveness of wet residential insulation by electrochemical measurements

    SciTech Connect (OSTI)

    Stansbury, E.E. , Knoxville, TN )

    1991-10-01

    The results of a round cabin evaluation of the use of an electrochemical method of calculating the corrosion rate of low carbon steel in environments related to cellulosic building insulations are reported. Environments included the leachate from a wet cellulosic insulation and solutions based on pure and commercial grades of borax, ammonium sulfate and aluminum sulfate. The pH values of these environments were in the range of 2.5 to 9.5. Electrochemical measurements were made using a direct reading corrosion rate instrument. The calculated corrosion rates were compared with those determined directly by weight loss measurements. Electrochemical measurements were made over a period of 48 hours and weight loss exposures were for two weeks. Poor agreement was observed for the corrosion rates determined electrochemically and the values were consistently larger than those based on weight loss. Reasons proposed for these results included the complex nature of the corrosion product deposits and the control these deposits have on oxygen diffusion to the metal interface. Both factors influence the validity of the calculation of the corrosion rate by the direct reading instrument. It was concluded that development of a viable electrochemical method of general applicability to the evaluation of the corrosiveness of wet residential building thermal insulations were doubtful. Because of the controlling influence of dissolved oxygen on the corrosion rate in the insulation leachate, an alternate evaluation method is proposed in which a thin steel specimen is partially immersed in wet insulation for three weeks. The corrosiveness of the wet insulation is evaluated in terms of the severity of attack near the metal-air-wet insulation interface. With thin metal specimens, complete penetration along the interface is proposed as a pass/fail criterion. An environment of sterile cotton wet with distilled water is proposed as a comparative standard. 9 refs., 2 figs., 3 tabs.

  16. Chapter 21: Residential Lighting Evaluation Protocol. Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Residential Lighting Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 This supersedes the version originally published in April 2013. Scott Dimetrosky, Katie Parkinson, and Noah Lieb Apex Analytics, LLC Boulder, Colorado NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-63205 February 2015 NREL is a national

  17. Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation Ventilation Controlled ventilation keeps energy-efficient homes healthy and comfortable. <a href="/node/1265726">Learn more about ventilation</a>. Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. When creating an energy-efficient, airtight home through air sealing, it's very important to consider ventilation. Unless properly ventilated, an airtight home can seal in indoor air pollutants. Ventilation also

  18. Smart Ventilation (RIVEC)- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Iain Walker, Lawrence Berkeley National Laboratory The objective of this project is to minimize the energy required to provide acceptable indoor air quality. High-performance homes built with tight envelopes will benefit most from this technology. Their mechanical ventilation systems dominate for energy use; as the foundation, wall, and roof work together. Smart ventilation is expected to save at least 40% on energy and peak demand. The project is seeking to create an industry partnership to commercialize the current Residential Integrated Ventilation Controller (RIVEC) and is collaborating with Building America’s research teams to improve its control algorithms.

  19. Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Residential New Construction Program includes two levels that can be achieved by completing various energy efficiency measures: Base Level and High Performance Level. Projects meeting the req...

  20. Chapter 5, Residential Furnaces and Boilers Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Residential Furnaces and Boilers Evaluation Protocol David Jacobson, Jacobson Energy Research Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 5 - 1 Chapter 5 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol

  1. Evaluation, Measurement, and Verification (EM&V) of Residential Behavior-Based Energy Efficiency Programs: Issues and Recommendations

    SciTech Connect (OSTI)

    none,

    2012-05-16

    Offers technically valid methods for state and local policymakers to estimate the energy savings from residential behavior-based energy efficiency programs.

  2. Remote Duct Sealing in Residential and Commercial Buildings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Remote Duct Sealing in Residential and Commercial Buildings Remote Duct Sealing in Residential and Commercial Buildings Remote Duct Sealing in Residential and Commercial Buildings: "Saving Money, Saving Energy and Improving Performance," Lawrence Berkeley National Laboratory, presented by Dr. Mark Modera, staff scientist, Environmental Energy Technologies Division. PDF icon LBNL Duct Sealing Presentation More Documents & Publications Ventilation in Multifamily Buildings

  3. Santee Cooper- Residential Energy Efficiency Existing Homes Rebate Program

    Broader source: Energy.gov [DOE]

    Santee Cooper provides rebates to residential and multi-family residential customers. Rebates are available on air source heat pumps, solar water heaters, weatherization measures, programmable...

  4. Ventilation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    can improve the effectiveness of natural and whole-house ventilation by removing indoor air pollution andor moisture at its source. Spot ventilation includes the use of...

  5. Confinement Ventilation and Process Gas Treatment Functional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    . NOT MEASUREMENT SENSITIVE DOE-STD-1168-2013 October 2013 DOE STANDARD CONFINEMENT VENTILATION AND PROCESS GAS TREATMENT FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear ...

  6. Impact of conservation measures on Pacific Northwest residential energy consumption. Final report

    SciTech Connect (OSTI)

    Moe, R.J.; Owzarski, S.L.; Streit, L.P.

    1983-04-01

    The objective of this study was to estimate the relationship between residential space conditioning energy use and building conservation programs in the Pacific Northwest. The study was divided into two primary tasks. In the first, the thermal relationship between space conditioning energy consumption under controlled conditions and the physical characteristics of the residence was estimated. In this task, behavioral characteristics such as occupant schedules and thermostat settings were controlled in order to isolate the physical relationships. In the second task, work from the first task was used to calculate the thermal efficiency of a residence's shell. Thermal efficiency was defined as the ability of a shell to prevent escapement of heat generated within a building. The relationship between actual space conditioning energy consumption and the shell thermal efficiency was then estimated. Separate thermal equations for mobile homes, single-family residences, and multi-family residences are presented. Estimates of the relationship between winter electricity consumption for heating and the building's thermal shell efficiency are presented for each of the three building categories.

  7. Measured energy savings from the application of reflective roofsin 2 small non-residential buildings

    SciTech Connect (OSTI)

    Akbari, Hashem

    2003-01-14

    Energy use and environmental parameters were monitored in two small (14.9 m{sup 2}) non-residential buildings during the summer of 2000. The buildings were initially monitored for about 1 1/2 months to establish a base condition. The roofs of the buildings were then painted with a white coating and the monitoring was continued. The original solar reflectivities of the roofs were about 26%; after the application of roof coatings the reflectivities increased to about 72%. The monitored electricity savings were about 0.5kWh per day (33 Wh/m2 per day). The estimated annual savings are about 125kWh per year (8.4 kWh/m2); at a cost of $0.1/kWh, savings are about $0.86/m2 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote locations of these buildings. However, since the prefabricated roofs are already painted green at the factory, painting them a white (reflective) color would bring no additional cost. Hence, a reflective roof saves energy at no incremental cost.

  8. Overview of existing residential energy-efficiency rating systems and measuring tools

    SciTech Connect (OSTI)

    Hendrickson, P.L.; Garrett-Price, B.A.; Williams, T.A.

    1982-10-01

    Three categories of rating systems/tools were identified: prescriptive, calculational, and performance. Prescriptive systems include rating systems that assign points to various conservation features. Most systems that have been implemented to date have been prescriptive systems. The vast majority of these are investor-owned utility programs affiliated with the National Energy Watch program of the Edison Electric Institute. The calculational category includes computational tools that can be used to estimate energy consumption. This estimate could then be transformed, probably by indexing, into a rating. The available computational tools range from very simple to complex tools requiring use of a main-frame computer. Performance systems refer to residential energy-efficiency ratings that are based on past fuel consumption of a home. There are few of these systems. For each identified system/tool, the name, address, and telephone number of the developer is included. In addition, relevant publications discussing the system/tool are cited. The extent of field validation/verification of individual systems and tools is discussed. In general, there has been little validation/verification done. A bibliography of literature relevant to the use and implementation of a home energy rating system is also included.

  9. Chemical Emissions of Residential Materials and Products: Review of Available Information

    SciTech Connect (OSTI)

    Willem, Henry; Singer, Brett

    2010-09-15

    This report is prepared in the context of a larger program whose mission is to advance understanding of ventilation and indoor air quality in U.S. homes. A specific objective of this program is to develop the scientific basis ? through controlled experiments, monitoring and analysis ? for health risk-based ventilation standards. Appropriate and adequate ventilation is a basic element of a healthy home. Ventilation provides outdoor air and in the process removes indoor odors and contaminants including potentially unhealthful chemicals emitted by indoor materials, products and activities. Ventilation traditionally was assured to occur via infiltration of outdoor air through cracks and other leakage pathways in the residential building envelope. As building air tightness is improved for energy efficiency, infiltration can be reduced to inadequate levels. This has lead to the development of standards requiring mechanical ventilation. Though nominally intended to ensure acceptable indoor air quality, the standards are not explicitly tied to health risk or pollutant exposure targets. LBNL is currently designing analyses to assess the impact of varying ventilation standards on pollutant concentrations, health risks and energy use. These analyses require information on sources of chemical pollutant emissions, ideally including emission rates and the impact of ventilation on emissions. Some information can be obtained from recent studies that report measurements of various air contaminants and their concentrations in U.S. residences. Another way to obtain this information is the bottom-up approach of collecting and evaluating emissions data from construction and interior materials and common household products. This review contributes to the latter approach by summarizing available information on chemical emissions from new residential products and materials. We review information from the scientific literature and public sources to identify and discuss the databases that provide information on new or low-emission materials and products. The review focuses on the primary chemical or volatile organic compound (VOC) emissions from interior surface materials, furnishings, and some regularly used household products; all of these emissions are amenable to ventilation. Though it is an important and related topic, this review does not consider secondary pollutants that result from reactions of ozone and unsaturated organics bound to or emitted from material surfaces. Semi-volatile organic compounds (SVOCs) have been largely excluded from this review because ventilation generally is not an effective way to control SVOC exposures. Nevertheless, health concerns about exposures to SVOCs emitted from selected materials warrant some discussion.

  10. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    SciTech Connect (OSTI)

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  11. Residential Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2009 10:18 AM http:www.eia.govconsumptioncommercialdataarchivecbecspba99residential.html If you are having any technical problems with this site, please contact the EIA...

  12. Moisture and Ventilation Solutions in Hot, Humid Climates: Florida

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufactured Housing - Building America Top Innovation | Department of Energy Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing - Building America Top Innovation Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing - Building America Top Innovation Photo of workers on the roof of a home. This Top Innovation profile describes research by Building America Partnership for Improved Residential Construction team to diagnose

  13. Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Ventilation Ventilation This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde,

  14. Assessment of Weatherization Assistance Program Needs for Improved Residential Measure Selection Techniques

    SciTech Connect (OSTI)

    Gettings, M.B.

    1991-01-01

    This report documents a study conducted by the Oak Ridge National Laboratory (ORNL) to evaluate the current measure selection techniques and needs of agencies within the Weatherization Assistance Program (WAP). The study precedes initiation of a project to revise and upgrade the current means of selecting energy conservation measures for low-income single- and multi-family housing and includes recommendations for the revision. Issues relevant to the formation of the revised audit procedures are discussed. Currently available audits are reviewed. No single- to multi-family audit program was found capable of fulfilling the currents needs of the WAP. Recommendations include the separate development of single- and multi-family audits. Addition of specific features to the single-family audit is recommended, including (1) measure ranking unique to each eligible house, (2) heating and cooling equipment measures, (3) cooling envelope measures, (4) means of determining the amount of infiltration work to be performed, (5) potential for customizing and simplifying to meet local needs, and (6) implementation on either a personal computer or as an alternate manual technique. A single-family audit development plan is proposed which includes examination of several existing programs as potential starting points. Recommendations related to the development of a WAP multi-family audit include examination of several existing private programs for possible use by state WAP agencies expressing the greatest need and further study of the DOE supported programs ASEAM and CIRA as possible starting points for a DOE procedure. Early identification of approved multi-family measures and their applicability to various building stock, equipment types, and fuels is also recommended.

  15. Photovoltaics (PV) as an Eligible Measure in Residential PACE Programs: Benefits and Challenges (Fact Sheet)

    SciTech Connect (OSTI)

    Coughlin, J.

    2010-06-01

    Property Assessed Clean Energy (PACE) financing is one of several new financial models broadening access to clean energy by addressing the barrier of initial capital cost. The majority of the PACE programs in the market today include PV as an eligible measure. PV appeals to homeowners as a way to reduce utility bills, self-generate sustainable power, increase energy independence and demonstrate a commitment to the environment. If substantial state incentives for PV exist, PV projects can be economic under PACE, especially when partnered with good net metering policies. At the same time, PV is expensive relative to other eligible measures with a return on investment horizon that might exceed program targets. This fact sheet reviews the benefits and potential challenges of including PV in PACE programs.

  16. Chapter 17: Residential Behavior Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures; Period of Performance September 2011 … December 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    17: Residential Behavior Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 James Stewart The Cadmus Group Waltham, Massachusetts Annika Todd Lawrence Berkeley National Laboratory Berkeley, California NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-62497 January 2015 NREL is a national laboratory of the U.S. Department of

  17. Measure Guideline. Steam System Balancing and Tuning for Multifamily Residential Buildings

    SciTech Connect (OSTI)

    Choi, Jayne; Ludwig, Peter; Brand, Larry

    2013-04-01

    This guideline provides building owners, professionals involved in multifamily audits, and contractors insights for improving the balance and tuning of steam systems. It provides readers an overview of one-pipe steam heating systems, guidelines for evaluating steam systems, typical costs and savings, and guidelines for ensuring quality installations. It also directs readers to additional resources for details not included here. Measures for balancing a distribution system that are covered include replacing main line vents and upgrading radiator vents. Also included is a discussion on upgrading boiler controls and the importance of tuning the settings on new or existing boiler controls. The guideline focuses on one-pipe steam systems, though many of the assessment methods can be generalized to two-pipe steam systems.

  18. Whole-House Ventilation

    Broader source: Energy.gov [DOE]

    Tight, energy-efficient homes require mechanical -- usually whole-house -- ventilation to maintain a healthy, comfortable indoor environment.

  19. READ THIS: Before You Ventilate

    SciTech Connect (OSTI)

    2006-12-08

    This document reviews ventilation strategies for different climate zones and includes schematic drawings and photographs of various ventilation installations.

  20. Ozone Reductions Using Residential Building Envelopes

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  1. Ventilation System Basics

    Broader source: Energy.gov [DOE]

    Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide.

  2. Energy Savings Potential and RD&D Opportunities for Residential Building HVAC Systems

    Broader source: Energy.gov [DOE]

    This report assesses 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development.

  3. Chelan County PUD- Residential Weatherization Rebate Program

    Broader source: Energy.gov [DOE]

    Chelan County PUD offers cash rebates to residential customers who make energy efficient weatherization improvements to eligible homes. Eligible measures include efficient windows doors as well as...

  4. Austin Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Energy offers incentives to its residential customers to encourage the use of energy efficient equipment and measures. Rebates are available for qualified HVAC equipment and weatherization...

  5. Clallam County PUD- Residential Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Clallam County PUD offers a variety of rebates for residential customers for energy efficiency improvements. Eligible measures and incentives include window upgrades, insulation, air and duct...

  6. Natural Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Ventilation Natural Ventilation Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Natural ventilation relies on the wind and the "chimney effect" to keep a home cool. Natural ventilation works best in climates with cool nights and regular breezes. The wind will naturally ventilate your home by entering or leaving windows, depending on their

  7. Developing an Evaluation Measurement, and Verification Plan:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing an Evaluation Measurement, and Verification Plan: Residential Retrofits Developing an Evaluation Measurement, and Verification Plan: Residential Retrofits DOE's...

  8. Ventilation | Department of Energy

    Office of Environmental Management (EM)

    uniformly. Natural ventilation depends on a home's airtightness, outdoor temperatures, wind, and other factors. During mild weather, some homes may lack sufficient natural...

  9. Ventilation in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This webinar, hosted by Building America,was conducted on November 1, 2011, and describes ways to save energy in buildings through effective ventilation techniques.

  10. Building Science- Ventilation

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "What are the best ventilation techniques"

  11. Residential Marketing Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  12. Residential Absorption Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Absorption Water Heater 2014 Building Technologies Office Peer Review Kyle ... Target MarketAudience: Residential gas water heating Key Partners: GE CRADA partner SRA ...

  13. residential-lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Progress Report Evaluation Utility Toolkit Residential Lighting Market Research The Residential Lighting Market Research Project will estimate market savings from...

  14. Energy Savings Potential and RD&D Opportunities for Residential Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Systems | Department of Energy Energy Savings Potential and RD&D Opportunities for Residential Building HVAC Systems Energy Savings Potential and RD&D Opportunities for Residential Building HVAC Systems This report assesses 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical

  15. Technology Solutions Case Study: Sealed Crawl Space with Integrated Whole-House Ventilation in a Cold Climate

    SciTech Connect (OSTI)

    W. Zoeller, J. Williamson, and S. Puttagunta

    2015-09-01

    The Building America team Consortium for Advanced Residential Buildings (CARB) investigated a hybrid ventilation method that included the exhaust air from the crawl space as part of an ASHRAE 62.2-compliant whole-house ventilation strategy. The CARB team evaluated this hybrid ventilation method through long-term field monitoring of temperature, humidity, and pressure conditions within the crawl spaces of two homes (one occupied and one unoccupied) in New York state.

  16. Multifamily Ventilation Retrofit Strategies

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  17. Guide to Home Ventilation

    SciTech Connect (OSTI)

    2010-10-01

    A fact sheet from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy: Ventilation refers to the exchange of indoor and outdoor air. Without proper ventilation, an otherwise insulated and airtight house will seal in harmful pollutants, such as carbon monoxide, and moisture that can damage a house.

  18. Mass transfer of volatile organic compounds from drinking water to indoor air: The role of residential dishwashers

    SciTech Connect (OSTI)

    Howard-Reed, C.; Corsi, R.L.; Moya, J.

    1999-07-01

    Contaminated tap water may be a source of volatile organic compounds (VOCs) in residential indoor air. To better understand the extent and impact of chemical emissions from this source, a two-phase mass balance model was developed based on mass transfer kinetics between each phase. Twenty-nine experiments were completed using a residential dishwasher to determine model parameters. During each experiment, inflow water was spiked with a cocktail of chemical tracers with a wide range of physicochemical properties. In each case, the effects of water temperature, detergent, and dish-loading pattern on chemical stripping efficiencies and mass transfer coefficients were determined. Dishwasher headspace ventilation rates were also measured using an isobutylene tracer gas. Chemical stripping efficiencies for a single cycle ranged from 18% to 55% for acetone, from 96% to 98% for toluene, and from 97% to 98% for ethylbenzene and were consistently 100% for cyclohexane. Experimental results indicate that dishwashers have a relatively low but continuous ventilation rate that results in significant chemical storage within the headspace of the dishwasher. In conjunction with relatively high mass transfer coefficients, low ventilation rates generally lead to emissions that are limited by equilibrium conditions after approximately 1--2 min of dishwasher operation.

  19. Residential Buildings Integration Program

    Broader source: Energy.gov [DOE]

    Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

  20. Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Ventilation Strategies in New Construction Multifamily Buildings New York, New York PROJECT INFORMATION Project Name: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings Location: New York, NY Consortium for Advanced Residential Buildings (CARB): http://carb-swa.com Application: New construction; multifamily Building Component: Mechanical Ventilation Date completed: 2013 Climate Zone: Mixed-humid In multifamily buildings, particularly in the Northeast,

  1. Building America Webinar: Multifamily Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Ventilation Strategies and Compartmentalization Requirements - Sean Maxwell Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization...

  2. Building America Webinar: Multifamily Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization ... webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, ...

  3. Building America Webinar: Multifamily Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Ventilation Strategies and Compartmentalization Requirements Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements This ...

  4. Lane Electric Cooperative- Residential and Commercial Weatherization & Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lane Electric Cooperative offers energy efficient Weatherization Grant Programs to Lane Electric residential and commercial members: a residential cash grant for 25% of measure costs up to $1,000,...

  5. Ventilation efficiencies of a desk-edge-mounted task ventilation system

    SciTech Connect (OSTI)

    Faulkner, David; Fisk, William J.; Sullivan, Douglas P.; Lee, Seung Min

    2002-03-01

    In chamber experiments, we investigated the effectiveness of a task ventilation system with an air supply nozzle located underneath the front edge of a desk and directing air toward a heated mannequin seated at the desk. The task ventilation system provided outside air, while another ventilation system provided additional space cooling but no outside air. Test variables included the vertical angle of air supply (-15{sup o} to 45{sup o} from horizontal), and the supply flow rate of (3.5 to 6.5 L s{sup -1}). Using the tracer gas step-up and step-down procedures, the measured air change effectiveness (i.e., exhaust air age divided by age of air at the mannequin's face) ranged from 1.4 to 2.7, which is higher than typically reported for commercially available task ventilation or displacement ventilation systems.

  6. Chapter 4, Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol David Jacobson, Jacobson Energy Research Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 4 - 1 Chapter 4 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application

  7. Why We Ventilate

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  8. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings (Presentation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buoyancy-Driven Ventilation of Hydrogen from Buildings C. Dennis Barley, Keith Gawlik, Jim Ohi, Russell Hewett National Renewable Laboratory U.S. DOE Hydrogen Safety, Codes & Standards Program Presented at 2 nd ICHS, San Sebastián, Spain September 11, 2007 NREL/PR-550-42289 Scope of Work * Safe building design * Vehicle leak in residential garage * Continual slow leak * Passive, buoyancy-driven ventilation (vs. mechanical) * Steady-state concentration of H 2 vs. vent size Prior Work *

  9. Particle deposition in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

  10. Tillamook County PUD- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Tillamook County Public Utility District (PUD) offers residential customers standard rebates on efficient appliances, weatherization measures, and HVAC measures. Eligible equipment includes...

  11. Technology Solutions Case Study: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    2014-12-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the normal leakage paths through the building envelope disappear. Researchers from the Consortium for Advanced Residential Buildings (CARB) found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. In this project, the CARB team evaluated the four different strategies for providing make-up air to multifamily residential buildings and developed guidelines to help contractors and building owners choose the best ventilation systems.

  12. Residential Solar Investment Program

    Broader source: Energy.gov [DOE]

    In March 2012, the CT Green Bank* unveiled its solar photovoltaic residential investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838...

  13. Leasing Residential PV Systems

    SciTech Connect (OSTI)

    Rutberg, Michael; Bouza, Antonio

    2013-11-01

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  14. Residential Energy Consumption Survey:

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... ...*...,,.<,<,...,,.,,.,,. 97 Table 6. Residential Fuel Oil and Kerosene Consumption and Expenditures April 1979 Through March 1980 Northeast...

  15. Residential Buildings Integration (RBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Energy Efficiency and Renewable Energy eere.energy.gov David Lee Program Manager Residential Buildings Integration (RBI) April 22, 2014 Residential Buildings Integration (RBI) Mission/Vision The Residential Buildings Integration (RBI) program's mission: To accelerate energy performance improvements in residential buildings by developing, demonstrating, and deploying a suite of cost-effective technologies, tools, and solutions to achieve peak performance in new and existing homes. RBI Vision,

  16. Better Buildings Residential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential 2014 Building Technologies Office Peer Review Danielle Sass Byrnett danielle.byrnett@ee.doe.gov U.S. Department of Energy 2 Project Summary: Better Buildings Residential (BBR) Timeline: Start date: FY11 Planned end date: ongoing Key Milestones 1. Better Buildings Neighborhood Program, Fall 2010 2. Home Energy Score, 2011 3. Home Performance with ENERGY STAR to DOE, Oct. 2011 4. Better Buildings Residential Network, April 2013 5. Better Buildings Residential Program Solution Center

  17. Indoor Air Quality and Ventilation in Residential Deep Energy...

    Office of Scientific and Technical Information (OSTI)

    of Science (SC) Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 99 GENERAL AND MISCELLANEOUS Word Cloud...

  18. Advanced Controls for Residential Whole-House Ventilation Systems...

    Office of Scientific and Technical Information (OSTI)

    of Science (SC) Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 99 GENERAL AND MISCELLANEOUS...

  19. MICRO-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  20. Building America Webinar: BEopt Optimization Tool and National Residential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Measures Database | Department of Energy BEopt Optimization Tool and National Residential Efficiency Measures Database Building America Webinar: BEopt Optimization Tool and National Residential Efficiency Measures Database This presentation was delivered as part of the U.S. Department of Energy webinar, Building America Research Tools, on March 18, 2015. PDF icon BEopt Optimization Tool and National Residential Efficiency Measures Database More Documents & Publications DOE

  1. Benefits of Better Buildings Residential Network Reporting |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Better Buildings Residential Network Orientation Better Buildings Residential Network Orientation Webinar Nothing But Networking for Residential Network Members...

  2. National Grid (Electric) - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Residential InstallersContractors Multifamily Residential Low Income Residential Savings Category RefrigeratorsFreezers Equipment Insulation Water Heaters...

  3. National Grid (Electric) - Residential Energy Efficiency Incentive...

    Broader source: Energy.gov (indexed) [DOE]

    Construction Residential Multifamily Residential Low Income Residential Savings Category RefrigeratorsFreezers Dehumidifiers Water Heaters Lighting Heat Pumps Air conditioners...

  4. Optional Residential Program Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optional Residential Program Benchmarking Optional Residential Program Benchmarking Better Buildings Residential Network Data and Evaluation Peer Exchange Call Series: Optional ...

  5. Washington Gas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Washington Gas provides a number of rebates to residential customers who utilize energy efficient equipment and measures in the home. Rebates are limited to natural gas furnaces and programmable...

  6. Building America Webinar: Retrofit Ventilation Strategies in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Ventilation Strategies in Multifamily Buildings Webinar Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar This webinar, presented ...

  7. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings: Preprint

    SciTech Connect (OSTI)

    Barley, C. D.; Gawlik, K.; Ohi, J.; Hewett, R.

    2007-08-01

    When hydrogen gas is used or stored within a building, as with a hydrogen-powered vehicle parked in a residential garage, any leakage of unignited H2 will mix with indoor air and may form a flammable mixture. One approach to safety engineering relies on buoyancy-driven, passive ventilation of H2 from the building through vents to the outside.

  8. Measure Guideline: Combustion Safety for Natural Draft Appliances Through Appliance Zone Isolation

    SciTech Connect (OSTI)

    Fitzgerald, J.; Bohac, D.

    2014-04-01

    This measure guideline covers how to assess and carry out the isolation of natural draft combustion appliances from the conditioned space of low-rise residential buildings. It deals with combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage. This subset of houses does not require comprehensive combustion safety tests and simplified prescriptive procedures can be used to address safety concerns. This allows residential energy retrofit contractors inexperienced in advanced combustion safety testing to effectively address combustion safety issues and allow energy retrofits including tightening and changes to distribution and ventilation systems to proceed.

  9. Energy Efficiency Measures to Incorporate into Remodeling Projects...

    Office of Scientific and Technical Information (OSTI)

    Efficiency Measures to Incorporate into Remodeling Projects Liaukus, C. 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION RESIDENTIAL; RESIDENTIAL BUILDINGS; BARA; BUILDING...

  10. Empire District Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Empire District Electric Company (EDEC) offers rebates to residential customers for energy audits, weatherization measures, central air conditioning systems, and energy efficient home appliances. ...

  11. Redding Electric- Residential and Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Redding Electric Utility offers a variety of financial incentives for energy efficiency through its Residential and Commercial Rebate Programs. Rebates are for weatherization measures, HVAC...

  12. New Smyrna Beach- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    New Smyrna Beach offers residential customers incentives for improving the energy efficiency of eligible homes. Eligible measures include insulation upgrades, window solar screens, duct repairs,...

  13. Beaches Energy Services- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Beaches Energy Services offers rebates to residential customers as an incentive to install qualifying energy-efficient equipment and measures in existing homes. New construction does not qualify...

  14. Consumers Power, Inc- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Consumers Power Inc. offers rebates to its residential members for a wide variety of energy efficient products and measures. Rebates are offered for certain Energy Star appliances, weatherization...

  15. Dixie Electric Cooperative- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Dixie Electric Cooperative, a Touchstone Electric Cooperative, offers the Energy Resources Conservation (ERC) loan to residential customers pursue energy efficiency measures. The program allows a...

  16. Citizens Electric Corporation- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Citizens Electric Corporation offers rebates and price reductions to its residential customers for purchasing and installing energy efficient equipment. Eligible equipment and measures include a...

  17. AEP (Central and North)- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    The Residential Standard Offer Program and Hard to Reach Standard Offer Program provide incentives to Project Sponsor contractors for installing energy efficiency measures at the homes of...

  18. Central Electric Cooperative- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    The Central Electric Cooperative (CEC) offers a variety of financial incentives to promote energy efficiency among residential members. Rebates are provided for qualifying weatherization measures,...

  19. Springfield Utility Board- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Springfield Utility Board (SUB) offers a rebate program targeting heat pumps, weatherization measures and various household appliances. A rebate of $500 is available to residential customers in...

  20. Brownsville Public Utilities Board- Green Living Residential Rebate Program

    Broader source: Energy.gov [DOE]

     Brownsville Public Utilities Board offers residential customers rebates for installation of energy efficient measures. Through the Green Living Rebate program, customers can apply for rebates for...

  1. Ameren Missouri (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Ameren Missouri offers residential natural gas customers rebates for the installation of certain energy efficient measures and natural gas equipment. Customers should contact Ameren Missouri prior...

  2. Kenergy- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Kenergy is an electric cooperative that serves 51,000 households and commercial customers in 14 western Kentucky counties. Currently, Kenergy offers three rebate programs for residential customers...

  3. Residential Building Activities

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building...

  4. Residential Building Audits and Retrofits

    Broader source: Energy.gov [DOE]

    This presentation covers local, regional, and national efforts to promote energy efficiency in residential buildings, programmatic elements of residential building audit and retrofit programs, and resources that you can access to address residential retrofit issues.

  5. Building America Case Study: Sealed Crawlspace with Integrated Whole-House Ventilation in a Cold Climate, Ithaca, New York

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate Ithaca, New York PROJECT INFORMATION Project Name: Holly Creek Townhouses Location: Ithaca, NY Partners: Ithaca Neighborhood Housing Services, ithacanhs.org Consortium for Advanced Residential Buildings, carb-swa.com Building Component: Ventilation, sealed crawl space Application: New and/or retrofit; single- and multifamily Year Tested: 2014-2015 Climate Zones: Cold (5-6) PERFORMANCE DATA Sealed crawl spaces can: *

  6. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    SciTech Connect (OSTI)

    Logue, J. M.; Turner, W. J.N.; Walker, I. S.; Singer, B. C.

    2015-07-01

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector’s energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level.

  7. Residential Retrofit Program Design Guide

    Broader source: Energy.gov [DOE]

    This Residential Retrofit Program Design Guide focuses on the key elements and design characteristics of building and maintaining a successful residential retrofit program.

  8. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    8, 2015 Residential propane price increases The average retail price for propane is $1.91 per gallon, up 1.4 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.39 per gallon, up 1 cent from last week, and down 55.3

  9. Variable-Speed, Low-Cost Motor for Residential HVAC Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Variable-Speed, Low-Cost Motor for Residential HVAC Systems Variable-Speed, Low-Cost Motor for Residential HVAC Systems Lower-Cost, Variable-Speed Electric Motor Improves Energy Efficiency In 2011, the U.S. industrial, commercial, and residential sectors consumed ~13.5 quad of electricity, of which an estimated 7.8 quad (58%) was consumed by applications using electric motors in machinery; process cooling; and refrigeration, space heating, ventilation, and air-conditioning. As energy

  10. Ventilation efficiencies and thermal comfort results of a desk-edge-mounted task ventilation system

    SciTech Connect (OSTI)

    Faulkner, D.; Fisk, W.J.; Sullivan, D.P.; Lee, S.M.

    2003-09-01

    In chamber experiments, we investigated the ventilation effectiveness and thermal comfort of a task ventilation system with an air supply nozzle located underneath the front edge of a desk and directing air toward a heated mannequin or a human volunteer seated at the desk. The task ventilation system provided outside air, while another ventilation system provided additional space cooling but no outside air. Test variables included the vertical angle of air supply (-15{sup o} to 45{sup o} from horizontal), and the supply flow rate of (3.5 to 6.5 L s{sup -1}). Using the tracer gas step-up and step-down procedures, the measured air change effectiveness (i.e., exhaust air age divided by age of air in the breathing zone) in experiments with the mannequin ranged from 1.4 to 2.7 (median, 1.8), whereas with human subjects the air change effectiveness ranged from 1.3 to 2.3 (median, 1.6). The majority of the air change effectiveness values with the human subjects were less than values with the mannequin at comparable tests. Similarly, the tests run with supply air temperature equal to the room air temperature had lower air change effectiveness values than comparable tests with the supply air temperature lower ({approx}5 C) than the room air temperature. The air change effectiveness values are higher than typically reported for commercially available task ventilation or displacement ventilation systems. Based on surveys completed by the subjects, operation of the task ventilation system did not cause thermal discomfort.

  11. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  12. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  13. Ventilation System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily

  14. Ventilation by stratification and displacement

    SciTech Connect (OSTI)

    Skaaret, E.

    1983-03-01

    Ventilation effectiveness is not one single index which can be used for classifying ventilating systems. It is shown that a system has different effectivenesses depending on the characteristics of the pollution sources. A transient ventilation effectiveness can be used to generally characterize the system behavior during transient conditions. This index is, for a given system, dependent only on the thermal conditions. Using the different concepts of ventilation effectiveness and knowledge of the nature of the diffusion process it is concluded that the mixing principle in ventilation is not the best one. The displacement principle working vertical-up (air supply directly to the zone of occupation) is generally working much better. Density stratification improves the efficiency. Conditions for stable thermal stratification is dealt with. Room heating systems are concluded to be based on the radiant heating principle. A no recirculating displacement solution using a heat exchanger is claimed to be energy efficient. Research work which substantiated the different conclusions is referenced.

  15. Air exchange effectiveness of conventional and task ventilation for offices

    SciTech Connect (OSTI)

    Fisk, W.J.; Faulkner, D.; Prill, R.J.

    1991-12-01

    Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant`s breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

  16. Air exchange effectiveness of conventional and task ventilation for offices

    SciTech Connect (OSTI)

    Fisk, W.J.; Faulkner, D.; Prill, R.J.

    1991-12-01

    Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant's breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

  17. Whole-House Ventilation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    systems provide a controlled way of ventilating a home while minimizing energy loss. They reduce the costs of heating ventilated air in the winter by transferring heat...

  18. Building America Technologies Solutions Case Study: Ventilation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building America Technologies Solutions Case Study: Ventilation System ...

  19. Building America Technology Solutions Case Study: Ventilation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building America Technology Solutions Case Study: Ventilation System Effectiveness and Tested ...

  20. Retrofit Ventilation Strategies in Multifamily Buildings Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on ...

  1. Residential Energy Tax Credit

    Broader source: Energy.gov [DOE]

    Note: ODOE filed new permanent rules for the Residential Energy Tax Credit program. The rule changes include a 50 percent incentive cap for all category one eligible devices (as specified under HB...

  2. TES for Residential Settings

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Bouza, Antonio

    2013-07-31

    The article discusses thermal energy storage approaches for residential buildings. This article addresses both brick bank storage and phase change material technologies. The energy savings and market potential of these thermal energy storage methods are reviewed as well.

  3. Residential | Open Energy Information

    Open Energy Info (EERE)

    used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy consumption. The residential sector accounted for 57 percent of that energy use and the...

  4. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to 2.89 per gallon, based on the residential heating fuel survey by the...

  5. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    8, 2015 Residential propane price decreases The average retail price for propane is $2.34 per gallon, down 1.7 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.85 per gallon, down 1.2 cents from last week, and down 63.2

  6. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    6, 2014 Residential propane price decreases The average retail price for propane fell to $3.48 per gallon, down 15.9 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 3.06 a gallon, down 24.8 cents from last week, but up $1.28 from a year ago. This is Marcela Rourk, with EIA, in Washington.

  7. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    05, 2014 Residential propane price decreases The average retail price for propane fell to $2.40 per gallon, down 1.2 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.95 per gallon, up 8-tenths of a cent from last week, and down 1.9

  8. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price virtually unchanged The average retail price for propane is $2.03 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, down 1-tenths of a cent from last week, and down 39.8

  9. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $2.03 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, down 6-tenths of a cent from last week, and down 40 cents

  10. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $2.03 per gallon, down 2-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.47 per gallon, down 6-tenths of a cent from last week, and down 41 cents

  11. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    4, 2015 Residential propane price increases The average retail price for propane is $2.36 per gallon, up half of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.88 per gallon, down 1-tenth of a cent from last week, and down 90.5

  12. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $2.02 per gallon, down 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.46 per gallon, down 7-tenths of a cent from last week, and down 40 cents

  13. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane virtually unchanged The average retail price for propane is $2.02 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.46 per gallon, up 1-tenth of a cent from last week, and down 38.8

  14. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $1.91 per gallon, down 6.7 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.40 per gallon, down 1.6 cents from last week, and down 49.5 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  15. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    1, 2015 Residential propane price increases The average retail price for propane is $1.90 per gallon, up 2-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.38 per gallon, up 1.1 cents from last week, and down 53 cents from a year ago. This is Marcela Rourk

  16. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    4, 2015 Residential propane price increases The average retail price for propane is $1.92 per gallon, up 1.4 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.42 per gallon, up 2.6 cents from last week, and down 53.2

  17. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $1.92 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.40 per gallon, down 1.2 cents from last week, and down 54.8 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  18. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    8, 2015 Residential propane price increases The average retail price for propane is $1.94 per gallon, up 2 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.42 per gallon, up 1 cent from last week, and down 52.8 cents from a year ago.

  19. Residential propane prices decreases

    Gasoline and Diesel Fuel Update (EIA)

    5, 2014 Residential propane prices decreases The average retail price for propane fell to $3.89 per gallon, that's down 11.9 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 3.83 a gallon, down 36.8 cents from last week, but up $2.05 from a year ago. This is Amerine Woodyard

  20. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    5, 2014 Residential propane price decreases The average retail price for propane fell to $3.30 per gallon, down 17.5 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.78 a gallon, down 27.9 cents from last week, but up 99.3

  1. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    2, 2014 Residential propane price decreases The average retail price for propane fell to $3.17 per gallon, down 13.1 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.60 a gallon, down 18.5 cents from last week, but up 88.1

  2. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    9, 2014 Residential propane price decreases The average retail price for propane fell to $3.08 per gallon, down 8.6 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.48 a gallon, down 10.7 cents from last week, but up 69.7

  3. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Karl R. Rábago Rábago Energy LLC 1 The Ideal Residential Solar Tariff ‣ Fair to the utility and non-solar customers ‣ Fair compensation to the solar customer ‣ Decouple compensation from incentives ‣ Align public policy goals (decouple compensation from consumption) ‣ Intuitively sound and administratively simple 2 Historical Antecedents ‣ Externalities ‣ Price ≠ Cost ‣ Green Power ‣ Small Is Profitable (http://www.smallisprofitable.org/)

  4. Fact Sheet: Better Buildings Residential Network | Department...

    Energy Savers [EERE]

    Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network, increasing the number of...

  5. Performance Assessment of Photovoltaic Attic Ventilator Fans

    Broader source: Energy.gov [DOE]

    A case study of photovoltaic attic ventilator fans was conducted on an occupied single family home in Central Florida. Two fans were installed at mid-summer in an instrumented home where attic air temperature, meteorological conditions and space cooling electric power were measured. The home already had an attic radiant barrier, but still experienced attic air temperatures in excess of 130oF.

  6. The WIPP Underground Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ventilation system provides a continuous flow of fresh air to the underground tunnels and rooms that make up the disposal facility at WIPP. Air is supplied to the...

  7. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect (OSTI)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  8. Salem Electric - Residential, Commercial, and Industrial Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Local Government Nonprofit Residential State Government Federal Government Multifamily Residential Savings Category Clothes Washers RefrigeratorsFreezers Equipment...

  9. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners...

  10. Covered Product Category: Residential Electric Resistance Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Covered Product Category: Residential Electric Resistance Water Heaters Covered Product Category: Residential Electric Resistance Water Heaters The Federal Energy Management ...

  11. Better Buildings Residential Network Orientation Webinar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    11, 2014. Call Slides and Discussion Summary More Documents & Publications Better Buildings Residential Network Orientation Better Buildings Residential Network Orientation...

  12. Residential Wood Heating Fuel Exemption

    Broader source: Energy.gov [DOE]

    The New York Department of Taxation and Finance publishes a variety of sales tax reports detailing local tax rates and exemptions, including those for residential energy services. The residential...

  13. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    2, 2014 Residential heating oil prices decline The average retail price for home heating oil is 3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential...

  14. Residential Retrofit Design Guide Overview

    Broader source: Energy.gov [DOE]

    This webinar covered the Residential Retrofit Program Design Guide and its elements, including assess, plan, implement, and evaluate.

  15. About Residential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings » About Residential About Residential The Building Technologies Office (BTO) collaborates with home builders, energy professionals, state and local governments, utilities, product manufacturers, educators, and researchers to improve the energy efficiency of both new and existing homes. Residential Sector Activities Include: Demonstrating to builders and remodelers how to build and renovate for high performance through best practice guides and case studies and continuing to

  16. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  17. Residential Mechanical Precooling

    SciTech Connect (OSTI)

    German, a.; Hoeschele, M.

    2014-12-01

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  18. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.36 per gallon, down 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.92 per gallon, down 8-tenths of a cent from last week, and down 44.4 cents

  19. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.29 per gallon, down 3.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.80 per gallon, down 2.4 cents from last week

  20. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.32 per gallon, down 2 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.82 per gallon, down 2.4 cents from last week. This is Marcela Rourk,

  1. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.01 per gallon, up 1.2 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.47 per gallon, up 9-tenths of a cent from last week, and down 44.8

  2. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.02 per gallon, up 4-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, down 1-tenth of a cent from last week, and down 43

  3. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.03 per gallon, up 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, up 9-tenths of a cent from last week, and down 40.7

  4. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.96 per gallon, up 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.43 per gallon, up 1.3 cents from last week, and down 51.7

  5. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.97 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.44 per gallon, up 7-tenths of a cent from last week, and down 50.

  6. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.98 per gallon, up 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.44 per gallon, up 4-tenths of a cent from last week, and down 49.7

  7. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    propane prices available The average retail price for propane is $1.94 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.40 per gallon. This is Marcela Rourk, with EIA, in Washington.

  8. Building America Webinar: Ventilation Strategies for High Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines Building America Webinar: Ventilation Strategies for High Performance Homes, ...

  9. Questions Asked during the Financing Residential Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar...

  10. Ventilation Systems for Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Ventilation Systems for Cooling Ventilation Systems for Cooling Proper ventilation helps you save energy and money. | Photo courtesy of <a href="http://www.flickr.com/photos/jdhancock/3802136698/">JD Hancock</a>. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to

  11. Haywood EMC- Residential Heat Pump and Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Haywood EMC offers a low interest loan to residential customers to finance the purchase of an energy efficient heat pump and certain weatherization measures. The current interest rate is 5% and the...

  12. Alabama Power- Residential Heat Pump and Weatherization Loan Programs

    Broader source: Energy.gov [DOE]

    Alabama Power offers low-interest loans to residential customers to purchase and install new heat pumps and a variety of weatherization measures. The loans require no money down and can be used to...

  13. Dayton Power and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Dayton Power and Light offers rebates for heating and cooling to residential customers who purchase and install energy efficient products for the home. Eligible systems and measures include heat...

  14. Entergy Texas- Residential and Small Commercial Standard Offer Program

    Broader source: Energy.gov [DOE]

    The Hard to Reach and Residential Standard Offer Programs provides incentives for the retrofit or new construction installation of a wide range of energy efficiency measures. The program does not...

  15. Georgia Environmental Finance Authority- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    The residential energy efficiency financing programs, which are funded through GEFA, allow homeowners to apply for funding to carry out a variety of upgrades and improvement measures, including a...

  16. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide. PDF icon Residential Retrofit Program Design Guide...

  17. Guide to Closing and Conditioning Ventilated Crawlspaces

    SciTech Connect (OSTI)

    Dickson, Bruce

    2013-01-01

    This how-to guide explains the issues and concerns with conventional ventilated crawlspaces and provides prescriptive measures for improvements that will create healthier and more durable spaces. The methods described in this guide are not the only acceptable ways to treat a crawlspace but represent a proven strategy that works in many areas of the United States. The designs discussed in this guide may or may not meet the local building codes and as such will need to be researched before beginning the project.

  18. Whole-House Ventilation | Department of Energy

    Office of Environmental Management (EM)

    - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of iStockphotobrebca. A whole-house ventilation...

  19. Average Residential Price

    Gasoline and Diesel Fuel Update (EIA)

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  20. Average Residential Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  1. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.35 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.92 per gallon, down 3-tenths of a cent from last week, and down 47.9 cents

  2. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.39 per gallon, up 3.9 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.91 per gallon, down 8-tenths of a cent from last week, and down 63.1 cents

  3. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price decrease The average retail price for propane is $2.37 per gallon, down 1.3 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.93 per gallon, down 3-tenths of a cent from last week, and down 39.6 cents

  4. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.38 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.91 per gallon, down 4-tenths of a cent from last week, and down $2.29 cents

  5. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.37 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.89 per gallon, down 1.4 cents from last week, and down $1.93 cents

  6. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.36 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.89 per gallon, down 4-tenths of a cent from last week, and down $1.67 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  7. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.36 per gallon, down 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.89 per gallon, down 1.1 cents from last week, and down $1.43 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  8. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.35 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.88 per gallon, down 3-tenths of a cent from last week, and down $1.18 from a year ago. This is Marcela Rourk, with EIA, in Washington.

  9. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.36 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.86 per gallon, down 1.6 cents from last week, and down 72.7 cents from a year ago. This is Marcela Rourk,

  10. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.39 per gallon, down 2.2 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.94 per gallon, down 1.3 cents from last week, and down 17.5 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  11. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.00 per gallon, up 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.46 per gallon, up 4-tenths of a cent from last week, and down 46.2

  12. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.02 per gallon, up 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, up 7-tenths of a cent from last week, and down 43.3

  13. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.02 per gallon, up 4-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.47 per gallon, down 2-tenths of a cent from last week, and down 41.9

  14. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.96 per gallon, up 1.8 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.42 per gallon, up 6-tenths of a cent from last week, and down 52.9 cents

  15. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.41 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.95 per gallon, up 2-tenths of a cent from last week, and down 12.7 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  16. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.98 per gallon, up 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.45 per gallon, up 6-tenths of a cent from last week, and down 48.2

  17. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.99 per gallon, up 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.45 per gallon, up 2-tenths of a cent from last week, and down 47.6

  18. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 3.9 cents from a week ago to $2.80 per gallon. That's up 53.7 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.32 a gallon, up 3.8 cents from last week, and up 59

  19. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 2.5 cents from a week ago to $2.83 per gallon. That's up 56 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.36 a gallon, up 3.9 cents from last week, and up 62.3

  20. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose to $2.40 per gallon, up 1.1 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.94 a gallon, up 2.9 cents from last week, and up 2.6 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  1. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 5.5 cents per gallon from last week to $2.62 per gallon; up 37.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price for propane in the Midwest region averaged 2.11 per gallon, up 3.4 cents per gallon from last week, and up 39.6

  2. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 9.1 cents from a week ago to $2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.22 a gallon, up 11 cents from last week, and up 50.8 cents from a year ago

  3. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 4.8 cents from a week ago to $2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.28 a gallon, up 6.3 cents from last week, and up 56.4

  4. Residential propane prices stable

    Gasoline and Diesel Fuel Update (EIA)

    propane prices stable The average retail price for propane is $2.37 per gallon. That's down 4-tenths of a penny from a week ago, based on the U.S. Energy Information Administration's weekly residential heating fuel survey. Propane prices in the Midwest region averaged $1.89 a gallon. Down 2-tenths of a cent from last week. This is Amerine Woodyard, with EIA, in Washington.

  5. Residential propane prices stable

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.40 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.94 per gallon, down 7-tenths of a cent from . last week, and down 8.7 cents from a year ago This is Marcela Rourk, with EIA, in Washington.

  6. Guidelines for residential commissioning

    SciTech Connect (OSTI)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to such houses.

  7. Building America Webinar: Ventilation in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design, specification, and construction techniques. ...

  8. Heating Ventilation and Air Conditioning Efficiency

    Broader source: Energy.gov [DOE]

    This presentation covers common pitfalls that lead to wasted energy in industrial heating ventilation and air conditioning (HVAC) systems.

  9. Better Buildings Residential Program Solution Center Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration from the U.S. Department of Energy. PDF icon Solution Center Demo More Documents & Publications Building Science Solutions … Faster and Better Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center

  10. Better Buildings Residential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Residential Better Buildings Residential Solution Center Shares Energy Efficiency Program Strategies Solution Center Shares Energy Efficiency Program Strategies Explore the Better Buildings Residential Program Solution Center, a robust collection of nearly 1,000 examples, strategies, and resources for program administrators and home energy upgrade professionals. Read more Residential Network Connects More Than 240 Organizations Residential Network Connects More Than 240

  11. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    SciTech Connect (OSTI)

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  12. Promising Technology: Energy Recovery Ventilation

    Broader source: Energy.gov [DOE]

    Energy recovery ventilation (ERV) systems exchange heat between outgoing exhaust air and the incoming outdoor air. Using exhaust air to pre-condition supply air can reduce the capacity of the heating and cooling system and save heating and cooling energy consumption.

  13. Ventilation and occupant behavior in two apartment buildings

    SciTech Connect (OSTI)

    Diamond, R.C.; Modera, M.P.; Feustel, H.E.

    1986-10-01

    In this paper we approach the subject of ventilation and occupant behavior in multifamily buildings by asking three questions: (1) why and how do occupants interact with ventilation in an apartment building, (2) how does the physical environment (i.e., building characteristics and climate) affect the ventilation in an apartment, and (3) what methods can be used to answer the first two questions. To investigate these and related questions, two apartment buildings in Chicago were monitored during the 1985-1986 heating season. In addition to collecting data on energy consumption, outdoor temperature, wind speed, and indoor apartment temperatures, we conducted diagnostic measurements and occupant surveys in both buildings. The diagnostic tests measured leakage areas of the individual apartments, both through the exterior envelope and to other apartments. The measured leakage areas are used in conjunction with a multizone air flow model to simulate infiltration and internal air flows under different weather conditions. The occupants were questioned about their attitudes and behavior regarding the comfort, air quality, ventilation, and energy use of their apartments. This paper describes each of the research methods utilized, the results of these efforts, and conclusions that can be drawn about ventilation-occupant interactions in these apartment buildings. We found that there was minimal window opening during the winter, widespread use of auxiliary heating to control thermal comfort, and that the simulations show little outside air entry in the top-floor apartments during periods of low wind speeds. The major conclusion of this work is that a multi-disciplinary approach is required to understand or predict occupant-ventilation interactions. Such an approach must take into account the physical characteristics of the building and the climate, as well as the preferences and available options of the occupants.

  14. UES (Electric)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    UniSource Energy Services (UES) offers rebates to its residential customers who have certain energy efficient equipment installed by participating contractors. The rebate is provided directly to...

  15. Cleco- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Cleco energy efficiency program provides a number of incentives to its residential customers for energy efficiency upgrades. Rebates and cash incentives are available for qualifying Air...

  16. NREL: Buildings Research - Residential Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a row of homes in the distance. The NREL Residential Buildings group is an innovative, multidisciplinary team focused on accelerating the adoption of cost-effective energy...

  17. Residential Clean Energy Grant Program

    Broader source: Energy.gov [DOE]

    Maryland's Residential Clean Energy Grant Program, administered by the Maryland Energy Administration (MEA), provides financial incentives to homeowners that install solar water-heating, solar...

  18. Pacific Power- Residential wattsmart Program

    Broader source: Energy.gov [DOE]

    Pacific Power offers incentives for residential customers to improve the energy efficiency of homes through the Home Energy Savings Program. Full details are available on the program website.

  19. Better Buildings Residential Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings » Better Buildings Residential Network Better Buildings Residential Network Better Buildings Residential Network EXPLORE PEER EXCHANGE CALL LESSONS LEARNED To make collaboration with a utility easier, show how energy efficiency can solve a financial, public relations, or customer service problem for the utility. Read the "Collaborating With Utilities on Residential Energy Efficiency" Peer Exchange Call summary to learn more, and see other member tips. Residential

  20. Guide for Benchmarking Residential Program Progress with Examples

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network: Guide for Benchmarking Residential Program Progress with Examples.

  1. Making PACE Work for Residential (201) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Making PACE Work for Residential (201) Making PACE Work for Residential (201) February 25

  2. Webinar: Residential Energy Code Compliance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    View the Code Compliance Funding Opportunity video or see the slides below. This webinar provides an overview of DE-FOA-0000953 Webinar - Strategies to Increase Residential Energy Code Compliance Rates and Measure Results. The webinar was originally presented April 23, 2014. Presentation Slides PDF icon Residential Energy Codes FOA Webinar More Documents & Publications FAQ: Funding Opportunity Announcement-Smart Grid Investment Grants AFFECT Notice of Intent June 27, 2013 CO and Legal

  3. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    propane prices available The average retail price for propane is $2.30 per gallon, based on the U.S. Energy Information Administration's weekly residential heating fuel survey. Propane prices in the Midwest region, which has the most households that use propane, averaged $1.89 a gallon. This is Marcela Rourk, with EIA, in Washington. The EIA has expanded its propane price survey to include 14 more states located mostly in the South and the West. The survey now looks at propane prices in 38

  4. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 3.2 cents from a week ago to $2.86 per gallon. That's up 59.3 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.40 a gallon, up 3.2 cents from last week, and up 65.8 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  5. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 10.3 cents from a week ago to $2.96 per gallon. That's up 68.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. This is the largest single week increase since the heating season started in October. Propane prices in the Midwest region averaged 2.55 a gallon, up 14.9 cents from last week, and up 79.1 cents from a year ago. This is Marcela Rourk, with EIA, in

  6. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 2.3 cents per gallon from last week to $2.57 per gallon; up 32.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price for propane in the Midwest region averaged 2.08 per gallon, up 2.4 cents per gallon from last week, and up 36.9 cents from a year earlier. This is Marlana Anderson, with EIA, in Washington.

  7. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    propane prices surges The average retail price for propane rose to an all-time high of $4.01 a gallon, that's up $1.05 from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. This is the largest weekly increase since the survey began in 1990. Propane prices in the Midwest region averaged 4.20 a gallon, up $1.66 from last week, and up $2.43 from a

  8. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    Midwest and Northeast propane prices much higher this winter than last year Households that heat with propane will pay for that propane at prices averaging 39 percent higher in the Midwest and 14 percent higher in the Northeast this winter compared with last winter.....as much colder temperatures this winter boosts heating fuel demand. Midwest residential propane is expected to average $2.41 per gallon over the winter, while propane in the Northeast will average $3.43 per gallon, according to

  9. Residential Building Industry Consulting Services | Open Energy...

    Open Energy Info (EERE)

    Residential Building Industry Consulting Services Jump to: navigation, search Name: Residential Building Industry Consulting Services Place: New York, NY Information About...

  10. Entergy Mississippi- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Entergy Mississippi offers residential energy efficiency programs to help residential customers save energy by providing rebates for lighting, heating and cooling equipment, A/C tune ups, and...

  11. Residential Geothermal Systems Credit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Low Income Residential Savings Category Geothermal Heat Pumps Geothermal Direct-Use Maximum Rebate 1,500 Program Info Sector Name State Administrator Montana...

  12. Building America Residential Buildings Energy Efficiency Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings ... More Documents & Publications Summary of Gaps and Barriers for Implementing Residential ...

  13. Better Buildings Residential Network Case Study: Partnerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S. ...

  14. SMECO- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Maryland Electric Cooperative's (SMECO) Residential Energy Efficiency Program helps residential customers save energy by providing rebates for home weatherization and the installation of...

  15. Residential Energy Services Network (RESNET) Conference | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Services Network (RESNET) Conference Residential Energy Services Network (RESNET) Conference February 29, 2016 9:00AM EST to March 2, 2016 5:0

  16. Guide for Benchmarking Residential Energy Efficiency Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress as ...

  17. Better Buildings Residential Network | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and see other member tips. Residential Network Members Residential Resources Download the Social Media Toolkit. New Materials Download the November issue of the Better Buildings...

  18. Residential Solar Energy Property Tax Exemption | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Property Tax Exemption Residential Solar Energy Property Tax Exemption < Back Eligibility Residential Savings Category Solar Water Heat Solar Space Heat Solar Photovoltaics...

  19. Laboratory Performance Testing of Residential Window Mounted...

    Energy Savers [EERE]

    Laboratory Performance Testing of Residential Window Mounted Air Conditioners Laboratory Performance Testing of Residential Window Mounted Air Conditioners This presentation was...

  20. Steven Winter Associates (Consortium for Advanced Residential...

    Open Energy Info (EERE)

    Steven Winter Associates (Consortium for Advanced Residential Buildings) Jump to: navigation, search Name: Steven Winter Associates (Consortium for Advanced Residential Buildings)...

  1. El Paso Electric Company- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Some incentives, including insulation,...

  2. Better Buildings Residential Network Orientation Webinar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    May 14, 2015. Call Slides and Discussion Summary More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential Network...

  3. Better Buildings Residential Network Orientation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Summary, March 27, 2014. Call Slides and Summary More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential Network...

  4. Idaho Power- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Idaho Power offers a variety of incentives for residential customers in Idaho and Oregon. The Heating and Cooling Program offers incentives for residential customers who purchase and have...

  5. Better Buildings Residential Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Network Members Residential Resources Download the Social Media Toolkit. New ... Successful Quality Assurance and Quality Control Programs (101) January 28, 2016 Einstein ...

  6. Nothing But Networking for Residential Network Members

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call: Nothing But Networking for Residential Network Members, Call Slides and Discussion Summary, March 12, 2015.

  7. Better Buildings Residential Network Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.govbbrn MARKETING AND OUTREACH The Better Buildings Residential Network hosts a series of Peer Exchange ...

  8. Models for prediction of temperature difference and ventilation effectiveness with displacement ventilation

    SciTech Connect (OSTI)

    Yuan, X.; Chen, Q.; Glicksman, L.R.

    1999-07-01

    Displacement ventilation may provide better indoor air quality than mixing ventilation. Proper design of displacement ventilation requires information concerning the air temperature difference between the head and foot level of a sedentary person and the ventilation effectiveness at the breathing level. This paper presents models to predict the air temperature difference and the ventilation effectiveness, based on a database of 56 cases with displacement ventilation. The database was generated by using a validated CFD program and covers four different types of US buildings: small offices, large offices with partitions, classrooms, and industrial workshops under different thermal and flow boundary conditions. Both the maximum cooling load that can be removed by displacement ventilation and the ventilation effectiveness are shown to depend on the heat source type and ventilation rate in a room.

  9. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Turner, William J. N.; Walker, Iain S.; Singer, Brett C.

    2015-01-19

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector's energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level. The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  10. Apply: Increase Residential Energy Code Compliance Rates (DE-FOA-0000953) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Increase Residential Energy Code Compliance Rates (DE-FOA-0000953) Apply: Increase Residential Energy Code Compliance Rates (DE-FOA-0000953) April 21, 2014 - 12:32pm Addthis This funding opportunity is closed. The Strategies to Increase Residential Building Energy Code Compliance Rates and Measure Results Funding Opportunity Announcement (FOA) DE-FOA-0000953 seeks to fund a project to investigate whether investing in education, training, and outreach programs can produce

  11. Noble REMC- Residential Energy Efficiency Rebate Incentives

    Broader source: Energy.gov [DOE]

    Through Wabash Valley Power Association, POWER MOVES program, Noble REMC offers residential rebates.

  12. Residential Water Heaters Webinar | Department of Energy

    Energy Savers [EERE]

    Residential Water Heaters Webinar Residential Water Heaters Webinar PDF icon 20110224_residential_water_heater_webinar.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless Water Heaters 2014-10-14 Issuance: Test Procedures and Energy Conservation Standards for Residential Solar Water Heaters; Request for Information Webinar: ENERGY STAR Hot Water Systems for High Performance Homes

  13. Better Buildings Residential Network Orientation Webinar

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Orientation Webinar, call slides and discussion summary, September 11, 2014.

  14. Better Buildings Residential Network Orientation Webinar

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Orientation Webinar, call slides and discussion summary, May 14, 2015.

  15. Workers Adjust Ventilation in WIPP Underground

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29, 2014 Workers Adjust Ventilation in WIPP Underground On May 28, WIPP workers entered the underground facility to adjust the ventilation system. While underground, they adjusted a regulator on a bulkhead door and closed and taped doors at another underground location to allow more air flow through Panel 7 and better ventilation control in preparation for the planned filter change. Geotechnical experts also conducted underground inspections at several locations to make sure the ground was still

  16. Building America Case Study: Ventilation System Effectiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... particle counts for formaldehyde and other volatile organic compound (VOC) concentrations. ... In House 1, all ventilation systems reduced the formaldehyde concentration compared to the ...

  17. Residential Energy Efficiency Messaging | Department of Energy

    Energy Savers [EERE]

    Residential Energy Efficiency Messaging Residential Energy Efficiency Messaging Better Buildings Residential Network Peer Exchange Call Series: Residential Energy Efficiency Messaging, call slides and discussion summary, April 9, 2015. PDF icon Call Slides and Discussion Summary More Documents & Publications Nothing But Networking for Residential Network Members Social Media and Messages that Matter - Top Tips and Tools Generating Energy Efficiency Project Leads and Allocating Leads to

  18. Washington Gas- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Washington Gas as a part of the Maryland EmPOWER program offers incentives to its residential customer for making energy efficiency improvements. Rebates are available for qualifying water heaters,...

  19. Portland's Residential Solar Permitting Guide

    Broader source: Energy.gov [DOE]

    This program guide outlines the application and review procedures for obtaining the necessary permit(s) to install a solar energy system for a new or existing residential building. The guide also...

  20. Residential Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  1. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to 2.93 per gallon, based on the residential heating fuel survey by the...

  2. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2015 Residential heating oil price increases The average retail price for home heating oil rose 14.7 cents from a week ago to 3.19 per gallon. That's down 1.06 from a year...

  3. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 6.5 cents from a week ago to 4.24 per gallon. That's up 14.9 cents from a year...

  4. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2015 Residential heating oil price increases The average retail price for home heating oil rose 11.7 cents from a week ago to 3.03 per gallon. That's down 1.20 from a year...

  5. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices available The average retail price for home heating oil is 2.41 per gallon, based on the residential heating fuel survey by the U.S. Energy Information...

  6. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to 3.14 per gallon. That's down 81.1 cents from a year...

  7. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2014 Residential heating oil price decreases The average retail price for home heating oil rose 1.6 cents from a week ago to 4.24 per gallon. That's up 8.9 cents from a year...

  8. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to 4.06 per gallon. That's up 4.1 cents from a year...

  9. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to 3.45 per gallon. That's down 36.6 cents from a year...

  10. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 3.42 per gallon. That's down 39.5 cents from a year ago,...

  11. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 3.3 cents from a week ago to 3.38 per gallon. That's down 43.9 cents from a year...

  12. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices decrease The average retail price for home heating oil fell 1.8 cents from a week ago to 4.00 per gallon. That's down 2-tenths of a cent...

  13. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 3.43 per gallon. That's down 39 cents from a year...

  14. Heating, Ventilation, and Air Conditioning Projects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MI -- Optimized Thermal Systems - College Park, MD Purdue prototype system Residential Cold Climate Heat Pump with Variable-Speed Technology Lead Performer: Unico Systems - St....

  15. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 1.1 cents from a week ago to $2.10 per gallon. That's down 94 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 2.3 cents from last week, and down 95

  16. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price decreases The average retail price for home heating oil fell 9-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.09 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, down 1-tenth of a cent from last week, and down $1.11

  17. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price decreases The average retail price for home heating oil fell 5-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.20 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.03 per gallon, down 9-tenths of a cent from last week, and down $1.22

  18. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to $2.10 per gallon. That's down $1.11 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 5-tenths of a cent from last week, and down $1.14

  19. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 2.6 cents from a week ago to $2.12 per gallon. That's down 91 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.06 per gallon, up 2.1 cents from last week, and down 94

  20. Residential propane price is unchanged

    Gasoline and Diesel Fuel Update (EIA)

    13, 2014 Residential propane price is unchanged The average retail price for propane is $2.40 per gallon, down one-tenth of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.94 per gallon, down 7-tenths of a cent from last week, and down 6

  1. Residential Dishwashers | Department of Energy

    Energy Savers [EERE]

    Dishwashers Residential Dishwashers The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Residential Dishwashers -- v3.0 More Documents & Publications Dehumidifiers

  2. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide This Residential Retrofit Program Design Guide focuses on the key elements and design...

  3. Focus Series: Maine - Residential Direct Install Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine - Residential Direct Install Program Focus Series: Maine - Residential Direct Install Program Better Buildings Neighborhood Program Focus Series: Maine - Residential Direct...

  4. About the Better Buildings Residential Network | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Better Buildings Residential Network About the Better Buildings Residential Network The Better Buildings Residential Network connects energy efficiency programs and ...

  5. Nothing But Networking for Residential Network Members | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nothing But Networking for Residential Network Members Nothing But Networking for Residential Network Members Better Buildings Residential Network Peer Exchange Call: Nothing But...

  6. Guide to Benchmarking Residential Program Progress Webcast Slides...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Benchmarking Residential Program Progress Webcast Slides Guide to Benchmarking Residential Program Progress Webcast Slides Slides from "Guide to Benchmarking Residential ...

  7. Guide for Benchmarking Residential Program Progress with Examples...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Progress with Examples Guide for Benchmarking Residential Program Progress with Examples Better Buildings Residential Network: Guide for Benchmarking Residential Program ...

  8. Residential Lighting End-Use Consumption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources Publications Market Studies Residential Lighting End-Use Consumption Residential Lighting End-Use Consumption The U.S. DOE Residential Lighting ...

  9. New York Price of Natural Gas Delivered to Residential Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pages: Average Residential Price New York Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Market Average Residential...

  10. Staged Upgrades as a Strategy for Residential Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as a Strategy for Residential Energy Efficiency Staged Upgrades as a Strategy for Residential Energy Efficiency Better Buildings Residential Network Peer Exchange Call Series:...

  11. RCS auditor trainee manual: renewable resource measures (revised). United States Department of Energy Technical Assistance Program for the Residential Conservation Service Program

    SciTech Connect (OSTI)

    1980-10-01

    This manual describes the use of renewable measures and the procedures used to audit for them. Included are active solar space and water heating systems, passive solar space and water heating systems, and wind energy systems. Sample audit forms are completed for a house in Oklahoma City, Oklahoma. A summary of installation standards for active solar systems is included. (WHK)

  12. Preoperational test report, primary ventilation system

    SciTech Connect (OSTI)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  13. Commissioning Ventilated Containment Systems in the Laboratory

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

  14. Residential Transactive Control Demonstration

    SciTech Connect (OSTI)

    Widergren, Steven E.; Fuller, Jason C.; Marinovici, Maria C.; Somani, Abhishek

    2014-02-19

    Arguably the most exciting aspect of the smart grid vision is the full participation of end-use resources with all forms of generation and energy storage in the reliable and efficient operation of an electric power system. Engaging all of these resources in a collaborative manner that respects the objectives of each resource, is sensitive to the system and local constraints of electricity flow, and scales to the large number of devices and systems participating is a grand challenge. Distributed decision-making system approaches have been presented and experimentation is underway. This paper reports on the preliminary findings of a residential demand response demonstration that uses the bidding transactions of supply and end-use air conditioning resources communicating with a real-time, 5 minute market to balance the various needs of the participants on a distribution feeder. The nature of the demonstration, the value streams being explored, and the operational scenarios implemented to characterize the system response are summarized along with preliminary findings.

  15. Energy Simulator Residential Buildings

    Energy Science and Technology Software Center (OSTI)

    1992-02-24

    SERI-RES performs thermal energy analysis of residential or small commercial buildings and has the capability of modeling passive solar equipment such as rock beds, trombe walls, and phase change material. The analysis is accomplished by simulation. A thermal model of the building is created by the user and translated into mathematical form by the program. The mathematical equations are solved repeatedly at time intervals of one hour or less for the period of simulation. Themore » mathematical representation of the building is a thermal network with nonlinear, temperature-dependent controls. A combination of forward finite differences, Jacobian iteration, and constrained optimization techniques is used to obtain a solution. An auxiliary interactive editing program, EDITOR, is included for creating building descriptions. EDITOR checks the validity of the input data and also provides facilities for storing and referencing several types of building description files. Some of the data files used by SERI-RES need to be implemented as direct-access files. Programs are included to convert sequential files to direct-access files and vice versa.« less

  16. Better Buildings Residential Data & Evaluation Peer Exchange Call Series: Cost-Effectiveness Tests & Measuring Like a Utility, April 10, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data & Evaluation Peer Exchange Call Series: Cost-Effectiveness Tests & Measuring Like a Utility April 10, 2014 Agenda 2  Call Logistics & Opening Polls  BBRN and Peer Exchange Call Overview  Featured Speakers  Subid Wagley, DOE, and Dr. Priya Sreedharan, Energy + Environmental Economics (E3): DOE Cost Effectiveness Tool  Dr. Kat Donnelly, EMpower Devices (BBRN member) and formerly of the Connecticut Neighbor to Neighbor Energy Challenge  Ludy Biddle, NeighborWorks

  17. Workers Remove Glove Boxes from Ventilation at Hanford's Plutonium...

    Broader source: Energy.gov (indexed) [DOE]

    processing area have been cleaned, allowing for their removal from ventilation used to control contamination. Addthis Related Articles Employees cut a ventilation duct attached...

  18. Summer Infiltration/Ventilation Test Results from the FRTF Laboratory...

    Energy Savers [EERE]

    Summer InfiltrationVentilation Test Results from the FRTF Laboratory Summer InfiltrationVentilation Test Results from the FRTF Laboratory This presentation was delivered at the ...

  19. Case Study - The Challenge: Improving Ventilation System Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Energy Efficiency in a Textile Plant Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant This case study examines how ...

  20. Promising Technology: Variable-Air-Volume Ventilation System

    Broader source: Energy.gov [DOE]

    Variable-air-volume (VAV) ventilation saves energy compared to a constant-air-volume (CAV) ventilation system, mainly by reducing energy consumption associated with fans.

  1. DOE ZERH Webinar: Ventilation and Filtration Strategies with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation and Filtration Strategies with Indoor airPLUS DOE ZERH Webinar: Ventilation and Filtration Strategies with Indoor airPLUS Watch the video or view the presentation ...

  2. Do residential air-conditioning rebates miss the mark?

    SciTech Connect (OSTI)

    Stickney, B.; Shepard, M.

    1994-12-31

    The rebates utilities provide for residential central air conditioners and heat pumps to encourage improved cooling efficiency may inadvertently reward higher peak demand in many cases. This problem could be avoided by using both efficiency and peak performance to determine eligibility for rebates. Such changes to incentive formulas would better align the utilities` DSM programs with the dual goals of improved efficiency and peak demand reduction. Improved peak performance would be especially advantageous for sunbelt utilities whose residential cooling load is highly coincident with the summer peak. Air conditioning has been called the utilities` ``load from hell,`` because it is intermittent, unpredictable, and is the largest contributor to summer peak demand, requiring massive investments in power generation and delivery capacity. It is no wonder then that more DSM programs are targeted at space cooling than at any other end use. Ironically, however, all of the residential rebate programs the authors examined for central air conditioners and heat pumps are based on the seasonal energy efficiency ratio (SEER), which provides a valuable measure of seasonal energy efficiency but is not a good indicator of peak demand. Residential central air conditioning incentive programs for eight major utilities are based exclusively on SEER and most ratchet up the incentive levels with increasing SEER. None include the measure for peak demand for residential cooling equipment, which is the so-called energy efficiency ratio, or EER.

  3. RESIDENTIAL CLOTHES WASHERS (APPENDIX J2) | Department of Energy

    Energy Savers [EERE]

    RESIDENTIAL CLOTHES WASHERS (APPENDIX J2) RESIDENTIAL CLOTHES WASHERS (APPENDIX J2) File Residential Clothes Washers Appendix J2 -- v2.1 More Documents & Publications Residential Clothes Washers (Appendix

  4. A critical review of displacement ventilation

    SciTech Connect (OSTI)

    Yuan, X.; Chen, Q.; Glicksman, L.R.

    1998-10-01

    This paper reviews several aspects of the performance of displacement ventilation: temperature distribution, flow distribution, contaminant distribution, comfort, energy and cost analysis, and design guidelines. Ventilation rate, cooling load, heat source, wall characteristics, space height, and diffuser type have major impacts on the performance of displacement ventilation. Some of the impacts can be estimated by simple equations, but many are still unknown. Based on current findings, displacement ventilation systems without cooled ceiling panels can be used for space with a cooling load up to 13 Btu/(h{center_dot}ft{sup 2}) (40 W/m{sup 2}). Energy consumed by HVAC systems depends on control strategies. The first costs of the displacement ventilation system are similar to those of a mixing ventilation system. The displacement system with cooled ceiling panels can remove a higher cooling load, but the first costs are higher as well. The design guidelines of displacement ventilation developed in Scandinavian countries need to be clarified and extended so that they can be used for US buildings. This paper outlines the research needed to develop design guidelines for US buildings.

  5. Shark Tank: Residential Energy Efficiency Edition – Episode #2 (301)

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Shark Tank: Residential Energy Efficiency Edition, December 3, 2015.

  6. What's Working in Residential Energy Efficiency Upgrade Programs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working in Residential Energy Efficiency Upgrade Programs - Promising Approaches and Lessons Learned What's Working in Residential Energy Efficiency Upgrade Programs -...

  7. Better Buildings Residential Network Reporting and Benefits Template

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits Template, from the U.S. Department of Energy Better Buildings Residential Network.

  8. Better Buildings Residential Network Reporting and Benefits FAQ

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits FAQ, from the U.S. Department of Energy Better Buildings Residential Network.

  9. Piedmont Natural Gas- Residential Equipment Efficiency Program

    Broader source: Energy.gov [DOE]

    Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

  10. Edmond Electric- Residential Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

  11. Low-rise Residential New Construction Program

    Broader source: Energy.gov [DOE]

     NYSERDA’s Low-rise Residential New Construction Programs are designed to encourage more industry involvement in the building of single-family homes and low-rise residential units that are more...

  12. Unitil (Gas)- Residential Energy Efficiency Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Until also offers rebates for residential new construction through the Natural Gas Energy Star Homes/Residential New Construction Program. To receive rebates, new homes must meet certain energy...

  13. Residential Renewable Energy Income Tax Credit

    Broader source: Energy.gov [DOE]

    The credit is available to any owner or tenant of residential property. For a newly constructed home, the credit is available to the original owner/occupant. Joint owners of a residential property...

  14. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide. PDF icon Residential Retrofit Program Design Guide More Documents & Publications residential_retrofit_program_design_guide.pdf Residential Retrofit Program Design Guide Home Performance with ENERGY STAR -- 10 Years of Continued Growth!

  15. residential_retrofit_program_design_guide.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    residential_retrofit_program_design_guide.pdf residential_retrofit_program_design_guide.pdf residential_retrofit_program_design_guide.pdf PDF icon residential_retrofit_program_design_guide.pdf More Documents & Publications Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide Home Performance with ENERGY STAR -- 10 Years of Continued Growth!

  16. Peer Exchange Call Series: Guide for Benchmarking Residential Program

    Energy Savers [EERE]

    Progress with Examples | Department of Energy Peer Exchange Call Series: Guide for Benchmarking Residential Program Progress with Examples Peer Exchange Call Series: Guide for Benchmarking Residential Program Progress with Examples Better Buildings Residential Network Peer Exchange Call Series: Guide for Benchmarking Residential Program Progress with Examples. PDF icon Guide for Benchmarking Residential Program Progress with Examples More Documents & Publications Optional Residential

  17. Fact Sheet: Better Buildings Residential Network | Department of Energy

    Office of Environmental Management (EM)

    Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network, increasing the number of American Homes that are energy efficient. PDF icon BBRN Fact Sheet More Documents & Publications Fact Sheet - Better Buildings Residential Membership Criteria: Better Buildings Residential Network Better Buildings Residential Network Orientation

  18. Guide for Benchmarking Residential Energy Efficiency Program Progress |

    Office of Environmental Management (EM)

    Department of Energy for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress as part of the DOE Better Buildings Program. PDF icon Guide for Benchmarking Residential Energy Efficiency Program Progress More Documents & Publications Optional Residential Program Benchmarking Guide to Benchmarking Residential Program Progress Webcast Slides

  19. Improving the efficiency of residential air-distribution systems in California, Phase 1

    SciTech Connect (OSTI)

    Modera, M.; Dickerhoff, D.; Jansky, R.; Smith, B.

    1992-06-01

    This report describes the results of the first phase of a multiyear research project. The project`s goal is to investigate ways to improve the efficiency of air-distribution systems in detached, single-family residences in California. First-year efforts included: A survey of heating, ventilating, and air conditioning (HVAC) contractors in California. A 31-house field study of distribution-system performance based on diagnostic measurements. Development of an integrated air-flow and thermal-simulation tool for investigating residential air-distribution system performance. Highlights of the field results include the following: Building envelopes for houses built after 1979 appear to be approximately 30% tighter. Duct-system tightness showed no apparent improvement in post-1979 houses. Distribution-fan operation added an average of 0.45 air changes per hour (ACH) to the average measured rate of 0.24 ACH. The simulation tool developed is based on DOE-2 for the thermal simulations and on MOVECOMP, an air-flow network simulation model, for the duct/house leakage and flow interactions. The first complete set of simulations performed (for a ranch house in Sacramento) indicated that the overall heating-season efficiency of the duct systems was approximately 65% to 70% and that the overall cooling-season efficiency was between 60% and 75%. The wide range in cooling-season efficiency reflects the difference between systems with attic return ducts and those with crawl-space return ducts, the former being less efficient. The simulations also indicated that the building envelope`s UA-value, a measurement of thermoconductivity, did not have a significant impact on the overall efficiency of the air-distribution system.

  20. Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

  1. Experimental study on the floor-supply displacement ventilation system

    SciTech Connect (OSTI)

    Akimoto, Takashi; Nobe, Tatsuo; Takebayashi, Yoshihisa

    1995-12-31

    These results are presented from a research project to investigate the effects of a floor-supply displacement ventilation system with practical indoor heat loads. The experiments were performed in an experimental chamber (35.2 m{sup 2}) located in a controlled environment chamber. Temperature distributions were measured at seven heights throughout the experimental chamber for each test condition. Data were analyzed to observe thermal stratification as affected by lighting, occupants, and heat loads (personal computers), and its disruption caused by walking and change of air volume. In addition, airflow characteristics and ventilation efficiencies were investigated using a smoke machine, tobacco smoke, dust for industrial testing, and a tracer gas (CO{sub 2}) step-up procedure.

  2. Gas Technology Institute (Partnership for Advanced Residential...

    Open Energy Info (EERE)

    Technology Institute (Partnership for Advanced Residential Retrofit) Jump to: navigation, search Name: Gas Technology Institute Place: Des Plaines, IL Website:...

  3. Residential Energy Efficiency Stakeholder Meeting - Spring 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Buildings » Building America » Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 The U.S. Department of Energy (DOE) Building America program held the second annual Residential Energy Efficiency Stakeholder Meeting on February 29-March 2, 2012, in Austin, Texas. At this meeting, hundreds of building industry professionals came together to share their perspective on the most

  4. Shark Tank: Residential Energy Efficiency Edition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Exchange Call Series: Shark Tank: Residential Energy Efficiency Edition Call Slides and Discussion Summary June 11, 2015 Agenda  Introduction and Better Buildings Residential Network Overview  Call Format  Get to Know the Sharks  Kerry O'Neill, Managing Director, Residential Programs, CT Green Bank (formerly with Connecticut Neighbor to Neighbor Energy Challenge)  Dana Fischer, Residential Program Manager, Efficiency Maine  Denee Evans, CEO, Council of Multiple Listing

  5. Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  6. Designing Incentives Toolkit Better Buildings Residential Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Incentives Toolkit BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn T his Better Buildings Residential Network toolkit addresses the challenges and opportunities of using incentives to increase the volume of home energy upgrades. The topic was chosen as a priority by Residential Network members, who also served on a working group that reviewed this toolkit. Residential energy efficiency programs offer incentives as a way to encourage action from

  7. Better Buildings Residential Network Social Media Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Social Media Toolkit BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn 1 T his Better Buildings Residential Network toolkit can be used to help residential energy efficiency programs learn to engage potential customers through social media. Social media can build brand awareness concerning home energy upgrades and the entities working on them, which can lead to more energy upgrade projects taking place in the long run. Residential Network members provided input

  8. Presentation: Better Buildings Residential Program Solution Center

    Broader source: Energy.gov [DOE]

    Presentation: Better Buildings Residential Program Solution Center, from the U.S. Department of Energy, Better Buildings Neighborhood Program.

  9. Post-Retrofit Residential Assessments

    SciTech Connect (OSTI)

    Lancaster, Ross; lutzenhiser, Loren; Moezzi, Mithra; Widder, Sarah H.; Chandra, Subrato; Baechler, Michael C.

    2012-04-30

    This study examined a range of factors influencing energy consumption in households that had participated in residential energy-efficiency upgrades. The study was funded by a grant from the U.S. Department of Energys Pacific Northwest National Laboratory and was conducted by faculty and staff of Portland State University Center for Urban Studies and Department of Economics. This work was made possible through the assistance and support of the Energy Trust of Oregon (ETO), whose residential energy-efficiency programs provided the population from which the sample cases were drawn. All households in the study had participated in the ETO Home Performance with Energy Star (HPwES) program. A number of these had concurrently pursued measures through other ETO programs. Post-retrofit energy outcomes are rarely investigated on a house-by-house basis. Rather, aggregate changes are ordinarily the focus of program impact evaluations, with deviation from aggregate expectations chalked up to measurement error, the vagaries of weather and idiosyncrasies of occupants. However, understanding how homes perform post-retrofit on an individual basis can give important insights to increase energy savings at the participant and the programmatic level. Taking a more disaggregated approach, this study analyzed energy consumption data from before and after the retrofit activity and made comparisons with engineering estimates for the upgrades, to identify households that performed differently from what may have been expected based on the estimates. A statistical analysis using hierarchal linear models, which accounted for weather variations, was performed looking separately at gas and electrical use during the periods before and after upgrades took place. A more straightforward comparison of billing data for 12-month periods before and after the intervention was also performed, yielding the majority of the cases examined. The later approach allowed total energy use and costs to be assessed but did not account for weather variation. From this statistical analysis, 18 study participants were selected and interviewed. The participants completed an in-home interview covering a range of topics, including changes in occupancy and additional changes to the homes that may have affected energy use. The goal of the interviews was to identify factors that may have contributed to unusual energy performance. These factors were identified by their frequency of occurrence in outperforming or underperforming homes, or simply by identifying factors that had the largest impact on overall savings. The motivations and levels of satisfaction with the outcomes of the upgrades were covered in detail, as well as extensive discussions of behaviors pertaining to thermal control, lighting, water, and appliance use. Most of cases studied achieved substantial energy savings, although it was more common for the projected savings to be greater than the demonstrated savings. Two factors that played a very large role in savings variation were 1) changes in occupancy and 2) fenestration improvements outside of the incentive programs. Motivation for pursuing the upgrades (e.g., environmental sustainability vs. comfort or cost savings) did not seem to play any role in achieving savings. Participants generally were more concerned with maintaining aesthetics through lighting than comfort through heating or cooling. They also seemed more likely to turn the lights off when leaving a room than to turn the heat off when leaving the home.

  10. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    4, 2013 Residential heating oil prices increase The average retail price for home heating oil rose 2.9 cents from last week to $3.92 per gallon. That's down 11 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.87 per gallon, up 2.5 cents from last week, but down 7.1 cents from a year earlier. This is Marlana Anderson

  11. Ceilings and Attics: Install Insulation and Provide Ventilation

    SciTech Connect (OSTI)

    2000-02-01

    This document provides guidelines for installing insulation and managing ventilation through your attic.

  12. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements

    Broader source: Energy.gov [DOE]

    The webinar will focus on key challenges in multifamily ventilation and strategies to address these challenges.

  13. Residential Solar Valuation Rates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Residential Solar Valuation Rates This presentation summarizes the information discussed by Rabago Energy during the Best Practices in the Design of Utility Solar Programs Webinar on Sept. 27, 2012. PDF icon utility_design_rabago_energy.pdf More Documents & Publications Austin Energy's Residential Solar Rate QER - Comment of Energy Innovation 1 QER - Comment of Energy Innovation 8

  14. Development of thermal performance criteria for residential passive solar buildings

    SciTech Connect (OSTI)

    Sabatiuk, P.A.; Cassel, D.E.; McCabe, M.; Scarbrough, C.

    1980-01-01

    In support of the development of thermal performance criteria for residential passive solar buildings, thermal design characteristics and anticipated performance for 266 projects in the HUD Passive Residential Design Competition and the HUD Cycle 5 Demonstration Program were analyzed. These passive residences are located in all regions of the United States requiring space heating, and they represent a variety of passive solar system types including direct gain, indirect gain, and solarium (isolated gain) systems. The results of this statistical analysis are being used to develop proposed minimum acceptable levels of thermal performance for passive solar buildings for the residential performance criteria. A number of performance measures were examined, including net solar contribution, solar fraction, and auxiliary energy use. These and other design and climate-related parameters were statistically correlated using the DATAPLOT computer program and standard statistical analysis techniques.

  15. Ventilation Systems for Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ventilation can help keep your home cool during hot days. To avoid heat buildup in your home, plan ahead by landscaping your lot to shade your house. If you replace your roof,...

  16. Analysis of Bright Harvest Remote Analysis for Residential Solar Installations

    SciTech Connect (OSTI)

    Nangle, John; Simon, Joseph

    2015-06-17

    Bright Harvest provides remote shading analysis and design products for residential PV system installers. The National Renewable Energy Laboratory (NREL) through the NREL Commercialization Assistance Program, completed comparative assessments between on-site measurements and remotely calculated values to validate the accuracy of Bright Harvest’s remote shading and power generation.

  17. EIS-0095: Bonneville Power Administration's Expanded Residential Weatherization Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Bonneville Power Administration prepared this statement to examine the environmental impacts of an expansion of the existing Residential Weatherization Program to include air-infiltration reducing (tightening) measures, such as storm windows and doors, insulation, weather-stripping and other improvements.

  18. Sensor-based demand controlled ventilation

    SciTech Connect (OSTI)

    De Almeida, A.T.; Fisk, W.J.

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  19. Retrofit Ventilation Strategies in Multifamily Buildings Webinar |

    Energy Savers [EERE]

    Department of Energy Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on November 30, 2011. PDF icon webinar_hybrid_insulation_20111130.pdf More Documents & Publications Building America Expert Meeting: Foundations Research Results Building America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies Building America Technology Solutions for

  20. Evaluating Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, Robb; Arena, Lois

    2013-02-01

    In an effort to improve housing options near Las Vegas, Nevada, the Clark County Community Resources Division (CCCRD) performs substantial renovations to foreclosed homes. After dramatic energy, aesthetic, and health and safety improvements are made, homes are rented or sold to qualified residents. This report describes the evaluation and selection of ventilation systems for these homes, including key considerations when selecting an ideal system. The report then describes CCCRD’s decision process with respect to ventilation.

  1. Effect of residential air-to-air heat and moisture exchangers on indoor humidity

    SciTech Connect (OSTI)

    Barringer, C.G.; McGugan, C.A. )

    1989-01-01

    A project was undertaken to develop guidelines for the selection of residential heat and moisture recovery ventilation systems (HRVs) in order to maintain an acceptable indoor humidity for various climatic conditions. These guidelines were developed from reviews on ventilation requirements, HRV performance specifications, and from computer modeling. Space conditions within three house/occupancy models for several types of HRV were simulated for three climatic conditions (Lake Charles, LA; Seattle, WA; and Winnipeg, MB) in order to determine the impact of the HRVs on indoor relative humidity and space-conditioning loads. Results show that when reduction of cooling cost is the main consideration, exchangers with moisture recovery are preferable to sensible HRVs. For reduction of heating costs, moisture recovery should be done for ventilation rates greater than about 15 L/s and average winter temperatures less than about (minus) 10{degrees}C if internal moisture generation rates are low. For houses with higher ventilation rates and colder average winter temperatures, exchangers with moisture recovery should be used.

  2. National Residential Efficiency Measures Database Unveiled (text...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... It's a Web-based application. It's a consumer-faced software where homeowners can go and ... Efficient Resources, which is a very similar project, although it's California centric. ...

  3. NREL: National Residential Efficiency Measures Database -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Questions/Comments Questions/Comments Use this form to send us your comments and questions. * Required field First name: Last name: Organization: *E-mail address: *Comment: Send Comment

  4. NREL: National Residential Efficiency Measures Database - Help

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Help These resources provide help with using the data: Glossary: Definition of terms in the database Application Developer Tools: View the data dictionary, XML schema, and XML file Guide for Application Developers If these resources don't address your question, please send us any questions or comments you have about the database

  5. National Residential Efficiency Measures Database | Open Energy...

    Open Energy Info (EERE)

    Effectiveness and Revise as Needed Type CommunityEnergyToolType Modeling Tool Cost Free User Interface Website, Other Website http:www.nrel.govapretrofitsindex.cfm Tool...

  6. Residential propane price decreases slightly

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases slightly The average retail price for propane is $2.38 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.93 per gallon, down one cent from last week, and down 35.5

  7. AEP Public Service Company of Oklahoma- Non-Residential Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    AEP Public Services Company of Oklahoma (PSO) offers several incentives and programs to non-residential customers who install energy efficiency measures or wish to evaluate their energy usage and...

  8. Residential Building Energy Analysis

    Energy Science and Technology Software Center (OSTI)

    1990-09-01

    PEAR (Program for Energy Analysis of Residences) provides an easy-to-use and accurate method of estimating the energy and cost savings associated with various energy conservation measures in site-built single-family homes. Measures such as ceiling, wall, and floor insulation; different window type and glazing layers; infiltration levels; and equipment efficiency can be considered. PEAR also allows the user to consider the effects of roof and wall color, movable night insulation on the windows, reflective and heatmore » absorbing glass, an attached sunspace, and use of a night temperature setback. Regression techniques permit adjustments for different building geometries, window areas and orientations, wall construction, and extension of the data to 880 U.S. locations determined by climate parameters. Based on annual energy savings, user-specified costs of conservation measures, fuel, lifetime of measure, loan period, and fuel escalation and interest rates, PEAR calculates two economic indicators; the Simple Payback Period (SPP) and the Savings-to-Investment Ratio (SIR). Energy and cost savings of different sets of conservation measures can be compared in a single run. The program can be used both as a research tool by energy policy analysts and as a method for nontechnical energy calculation by architects, home builders, home owners, and others in the building industry.« less

  9. An analysis of predicted vs monitored space heat energy use in 83 homes. Residential Construction Demonstration Project

    SciTech Connect (OSTI)

    Downey, P.K.

    1989-08-01

    In 1983 the Northwest Power Planning Council (NWPPC) directed the Bonneville Power Administration to create the Residential Standards Demonstration Program to demonstrate actual construction using the Model Conservation Standards (MCS) and to collect cost and thermal data in residential structures. Much information was gained from that program, and as a consequence, the MCS were reevaluated and updated. A second program, the Residential Construction Demonstration Project was created to further investigate residential energy efficiency measures for both cost and thermal performance. The Residential Construction Demonstration Project was administered by the Washington State Energy Office in conjunction with the Idaho Department of Water Resources, the Montana Department of Natural Resources and Conservation, and the Oregon Department of Energy. This analysis is based upon information collected during the first phase of the Residential Construction Demonstration Project (RCDP).

  10. Detailed thermal performance measurements and cost effectiveness of earth-sheltered construction: a case study

    SciTech Connect (OSTI)

    Christian, J.E.

    1985-09-01

    Earth-covering, solar gain, and massive construction are the design concepts successfully blended to produce an energy-efficient, durable, and comfortable building. Twenty-four-hour-quiet sleeping quarters and quality office space were the first design objectives of this building, these were successfully accomplished. The data acquisition system and a unique energy-balance analysis documents the thermal performance of each envelope component. Since the building's typical number of occupants, size, and internal electric loads are similar to those of a large residential building, the energy-performance data are extended to the residential marketplace. First-cost estimates for the whole building, earth-covered roof, and bermed wall are used with the detailed measured energy-use data to estimate cost effectiveness using residential economics criteria, such as 3% discount rate and 30-year life. The results from this analysis confirm the fact that earth, sun, and mass can save substantial amounts of annual and peak energy demand. However, further construction cost reductions are needed to produce more favorable cost effectiveness in the residential market arena. The overall thermal conductance value of this building is lower than the average values from the 300 low-energy residences as reported in the Building Energy-Use Compilation and Analysis, Part A (BECA-A), data base. However, the balance point of this building, with mechanical ventilation to ensure about 0.5 air change per hour, is substantially higher than those reported for low-energy residential buildings. This suggests that most of the energy-efficient homes either have an air-to-air heat exchanger or infiltration levels far below the generally accepted 0.5 air change per hour to ensure healthy indoor air quality. Reflective insulating blinds were installed in this building and have enhanced the daylighting and usability of the building. 9 refs., 23 figs., 4 tabs.

  11. Residential Conservation Service: a retrospective

    SciTech Connect (OSTI)

    Praul, C.G.; Gunther, A.; Maier, G.

    1981-08-01

    A background of the Residential Conservation Service (RCS) program is presented and outstanding program design issues which include effectiveness, audit effectiveness, equity concerns, anticompetitive and antitrust considerations, and general concerns in state plan development are discussed. The purpose of the review is to provide background information to legislators and other decision makers who, though not immediately involved in program administration, will be evaluating the mandate and implementation progress over the next year. (MCW)

  12. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to $2.09 per gallon. That's down 82 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.02 per gallon, up 8-tenths of a cent from last week, and down 85

  13. Residential heating oil prices decline

    Gasoline and Diesel Fuel Update (EIA)

    propane price increase slightly The average retail price for propane is $2.41 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.95 per gallon, up 5-tenths of a cent from last week, and down 10.4

  14. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    heating oil prices increase The average retail price for home heating oil rose 3.9 cents last week to $3.96 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.92 per gallon, up 5.2 cents from last week, and 1.7

  15. Residential Retrofit Program Design Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance Program Residential Retrofit Program Design Guide May 2011 This work has been performed by the Vermont Energy Investment Corporation (VEIC) and Energy Futures Group (EFG), under the Contract No. 4200000341 with Oak Ridge National Laboratory which is managed by UT-Battelle, LLC under Contract with the US Department of Energy No. DE-AC05-00OR22725. This document was prepared in collaboration with a partnership of companies under this contract. The partnership is led by the

  16. Berkshire Gas - Residential Energy Efficiency Rebate Program...

    Broader source: Energy.gov (indexed) [DOE]

    400 Storage Water Heaters: 100 Condensing Stand Alone Water Heaters: 500 Tankless Water Heaters: 500 - 800 Heat Recovery Ventilator: 500 After-Market Boiler Reset...

  17. British architectural concepts of natural ventilation

    SciTech Connect (OSTI)

    Cook, J.

    1997-12-31

    Recent large buildings in Britain are reviewed for their demonstration of programmatic determinates and architectural concepts of natural ventilation, systems that reduce electric use because they use natural convection. In size they range from the 5,000 square feet of Darwin College at Cambridge to the Inland Revenue Center at Nottingham with 400,000 square feet. The mix of passive and conventional mechanical systems of Ionica Office Building, Cambridge suggests the newest strategy of deliberate redundancy in what might better be called assisted natural ventilation. Daylighting, a distinctly different technique is typically coincident. Among the programmatic concepts are unsealed buildings, displacement ventilation, and user preference for immediate environmental control and strong contact with the outdoor environment. Architectural concepts include atriums, exhaust towers, and exposed structural concrete ceilings. These applications reinforce green policies and involve leadership from prominent architects and clients.

  18. Residential Retrofit Program Design Guide Overview Transcript.doc |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Residential Retrofit Program Design Guide Overview Transcript.doc Microsoft Office document icon Residential Retrofit Program Design Guide Overview Transcript.doc More Documents & Publications Residential Retrofit Program Design Guide Overview Transcript.doc Residential Retrofit Design Guide Overview Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript

  19. Better Buildings Residential Network Membership Form | Department of Energy

    Office of Environmental Management (EM)

    Network Membership Form Better Buildings Residential Network Membership Form Membership form from the U.S. Department of Energy's Better Buildings Residential Network. File BBRN Membership Form More Documents & Publications Better Buildings Residential Network Orientation Fact Sheet: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network

  20. Estimated costs of ventilation systems complying with the HUD ventilation standard for manufactured homes

    SciTech Connect (OSTI)

    Miller, J.D.; Conner, C.C.

    1993-11-01

    At the request of the US Department of Housing and Urban Development (HUD), the Pacific Northwest Laboratory estimated the material, labor, and operating costs for ventilation equipment needed for compliance with HUD`s proposed revision to the ventilation standard for manufactured housing. This was intended to bound the financial impacts of the ventilation standard revision. Researchers evaluated five possible prototype ventilation systems that met the proposed ventilation requirements. Of those five, two systems were determined to be the most likely used by housing manufacturers: System 1 combines a fresh air duct with the existing central forced-air system to supply and circulate fresh air to conditioned spaces. System 2 uses a separate exhaust fan to remove air from the manufactured home. The estimated material and labor costs for these two systems range from $200 to $300 per home. Annual operating costs for the two ventilation systems were estimated for 20 US cities. The estimated operating costs for System 1 ranged from $55/year in Las Vegas, Nevada, to $83/year in Bismarck, North Dakota. Operating costs for System 2 ranged from a low of $35/year in Las Vegas to $63/year in Bismarck. Thus, HUD`s proposed increase in ventilation requirements will add less than $100/year to the energy cost of a manufactured home.

  1. Evaluation of evolving residential electricity tariffs

    SciTech Connect (OSTI)

    Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

    2011-05-15

    Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. This poster: examines the history of the residential pricing structure and key milestones; summarizes and analyzes the usage between 2006 and 2009 for different baseline/climate areas; discusses the residential electricity Smart Meter roll out; and compares sample bills for customers in two climates under the current pricing structure and also the future time of use (TOU) structure.

  2. Energy Intensity Indicators: Residential Source Energy Consumption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Source Energy Consumption Energy Intensity Indicators: Residential Source Energy Consumption Figure R1 below reports as index numbers over the period 1970 through 2011: 1) the number of U.S. households, 2) the average size of those housing units, 3) residential source energy consumption, 4) energy intensity, and 5) an overall structural component that represents "other explanatory factors." Activity: Since 1970, the number of household (occupied

  3. Better Buildings Residential Program Solution Center Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar Better Buildings Residential Program Solution Center Demonstration Amanda Chiu: My name is Amanda Chiu, and I'm with Energetics, Incorporated, on behalf of the U.S. Department of Energy (DOE) Better Buildings Residential Program. Thank you for joining us today, and welcome to a demonstration of the Better Buildings Residential Program's Solution Center. We have with us today Danielle Byrnett with the U.S. Department of Energy. Danielle is the supervisor for the Better Buildings

  4. Building America Partnership for Improved Residential Construction |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Partnership for Improved Residential Construction Building America Partnership for Improved Residential Construction In addition to occupied test homes, research will be conducted in highly instrumented laboratories with simulated occupancy. Shown here are the two identical, side-by-side test homes that comprise FSEC's Flexible Residential Test Facility. Photo courtesy of Florida Solar Energy Center. In addition to occupied test homes, research will be conducted in

  5. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David; Eliseeva, Ekaterina

    2010-03-17

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used, in a process called demand-controlled ventilation, to automatically modulate rates of outdoor air ventilation. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. Demand controlled ventilation is most often used in spaces with highly variable and sometime dense occupancy. Reasonably accurate CO{sub 2} measurements are needed for successful demand controlled ventilation; however, prior research has suggested substantial measurement errors. Accordingly, this study evaluated: (a) the accuracy of 208 CO{sub 2} single-location sensors located in 34 commercial buildings, (b) the accuracy of four multi-location CO{sub 2} measurement systems that utilize tubing, valves, and pumps to measure at multiple locations with single CO{sub 2} sensors, and (c) the spatial variability of CO{sub 2} concentrations within meeting rooms. The field studies of the accuracy of single-location CO{sub 2} sensors included multi-concentration calibration checks of 90 sensors in which sensor accuracy was checked at multiple CO{sub 2} concentrations using primary standard calibration gases. From these evaluations, average errors were small, -26 ppm and -9 ppm at 760 and 1010 ppm, respectively; however, the averages of the absolute values of error were 118 ppm (16%) and 138 ppm (14%), at concentrations of 760 and 1010 ppm, respectively. The calibration data are generally well fit by a straight line as indicated by high values of R{sup 2}. The Title 24 standard specifies that sensor error must be certified as no greater than 75 ppm for a period of five years after sensor installation. At 1010 ppm, 40% of sensors had errors greater than {+-}75 ppm and 31% of sensors has errors greater than {+-}100 ppm. At 760 ppm, 47% of sensors had errors greater than {+-}75 ppm and 37% of sensors had errors greater than {+-}100 ppm. A significant fraction of sensors had errors substantially larger than 100 ppm. For example, at 1010 ppm, 19% of sensors had an error greater than 200 ppm and 13% of sensors had errors greater than 300 ppm. The field studies also included single-concentration calibration checks of 118 sensors at the concentrations encountered in the buildings, which were normally less than 500 ppm during the testing. For analyses, these data were combined with data from the calibration challenges at 510 ppm obtained during the multi-concentration calibration checks. For the resulting data set, the average error was 60 ppm and the average of the absolute value of error was 154 ppm. Statistical analyses indicated that there were statistically significant differences between the average accuracies of sensors from different manufacturers. Sensors with a 'single lamp single wavelength' design tended to have a statistically significantly smaller average error than sensors with other designs except for 'single lamp dual wavelength' sensors, which did not have a statistically significantly lower accuracy. Sensor age was not consistently a statistically significant predictor of error.

  6. Stochastic Optimal Scheduling of Residential Appliances with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search Stochastic Optimal Scheduling of Residential Appliances with Renewable Energy Sources National Renewable Energy Laboratory Contact NREL About This Technology ...

  7. Florida Public Utilities- Residential HVAC Rebate Program

    Broader source: Energy.gov [DOE]

    Florida Public Utilities offers rebates to electric residential customers who improve the efficiency of homes. Central air conditioners and heat pumps which meet program requirements are eligible...

  8. Mass Save (Electric)- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Mass Save organizes residential energy conservation services for programs administered by Massachusetts electric companies, gas companies, and municipal aggregators. Rebates for various energy...

  9. Mass Save (Gas)- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Mass Save, through Gas Networks, organizes residential conservation services for programs administered by Massachusetts gas companies. These gas providers include Columbia Gas of Massachusetts,...

  10. Duke Energy - Residential Efficiency Rebate Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Pool Pumps: 300 HVACs: up to 200 Ductwork: 175 Attic Insulation: 250 Summary The Smart aver program offers incentives for residential customers to increase the energy...

  11. TEP- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Tucson Electric Power (TEP) offers rebates to its residential customers who have certain energy efficient equipment installed by participating contractors. The rebate is provided directly to the...

  12. EWEB- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Eugene Water and Electric Board (EWEB) provides cash incentives to help residential customers increase the energy efficiency of homes through several different rebate programs. Rebates are provided...

  13. Tampa Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Tampa Electric provides a variety of financial incentives to promote energy efficiency in the residential sector. The Ductwork Rebate Program gives Tampa Electric customers the opportunity to have...

  14. Midstate Electric Cooperative- Residential Conservation Rebates

    Broader source: Energy.gov [DOE]

    Midstate Electric Cooperative offers its residential customers a variety of cash rebates for energy efficient improvements and new energy efficient homes. Rebates are awarded for the installation...

  15. Questar Gas- Residential Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Questar Gas provides rebates for residential customers who make their homes more energy efficient by installing certain energy saving appliances, efficient heating equipment, and certain...

  16. Empire District Electric- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers rebates for customers who construct highly efficient homes and purchase efficient central air conditioners. Eligible customers include residential...

  17. MassSAVE (Gas)- Residential Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    MassSAVE, through Gas Networks, organizes residential conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These utilities...

  18. Lane Electric Cooperative - Residential and Commercial Weatherization...

    Broader source: Energy.gov (indexed) [DOE]

    Washer: 75 Solar Water Heater: 500 Summary Lane Electric Cooperative offers energy efficient Weatherization Grant Programs to Lane Electric residential and commercial members: a...

  19. Selecting Solar: Insights into Residential Photovoltaic (PV)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation Carolyn Davidson and Robert Margolis National Renewable Energy Laboratory Technical Report NREL...

  20. Charlottesville Gas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Charlottesville Gas offers rebates to residential customers for purchasing and installing specified energy efficient equipment. Rebates and utility bill credits of up to $100 are available for...

  1. Better Buildings Residential Network Program Sustainability Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency Featuring Host: Rich Dooley, Arlington County, VA Call ... Moderator: Jonathan Cohen, DOE Host: Rich Dooley, Arlington County, VA ...

  2. Oklahoma Natural Gas - Residential Efficiency Rebates | Department...

    Broader source: Energy.gov (indexed) [DOE]

    250 Clothes Dryer: up to 500 Summary To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential...

  3. Sawnee EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Sawnee EMC provides a variety of rebates for residential customers building new energy efficient homes or making energy efficiency improvements to existing homes.

  4. SCE- Non-Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Southern California Edison (SCE) offers incentives for non-residential customers, regardless of size and energy usage. Express Efficiency rebates for lighting, refrigeration, food service,...

  5. (Electric and Gas) Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Energize CT offers a program designed to encourage the construction of energy efficient homes. The Residential New Construction Program offers incentives targeted at increasing energy...

  6. Meade County RECC- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Meade County RECC offers rebates to residential members who install energy-efficient systems and equipment. New homebuilders can also access rebates for installing energy-efficient equipment...

  7. PSNH - Residential Energy Efficiency Rebate Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    collaboration with nhsaves, provides incentives for residential customers to increase the energy efficiency of participating homes. Prescriptive rebates are available for the...

  8. South Alabama Electric Cooperative - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Residential Savings Category Geothermal Heat Pumps Heat Pumps Building Insulation Windows Doors Program Info Sector Name Utility Administrator South Alabama...

  9. Xcel Energy (Electric) - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    Residential Savings Category Geothermal Heat Pumps RefrigeratorsFreezers Lighting Lighting ControlsSensors Furnaces Heat Pumps Air conditioners Programmable Thermostats DuctAir...

  10. SMUD- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Sacramento Municipal Utility District offers financing to help residential customers finance energy efficient home improvements. Applicant for a loan must be the vested owner of the property where...

  11. Longmont Power & Communications - Residential and Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    50 per appliance Residential: 1 clothes washer and 1 dishwasher per year Commercial: 3 clothes washers and 3 dishwashers per year Program Info Sector Name Utility...

  12. Minnesota Power - Residential New Construction Rebate Program...

    Broader source: Energy.gov (indexed) [DOE]

    Construction Residential Savings Category Solar Photovoltaics Geothermal Heat Pumps Clothes Washers RefrigeratorsFreezers Dehumidifiers Water Heaters Heat Pumps Air conditioners...

  13. Consumers Energy (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Residential Income Qualified Energy Efficiency Program is working with existing Michigan Weatherization Assistance Program delivery to support weatherization providers with more funding for...

  14. Consumers Energy (Electric)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Residential Income Qualified Energy Efficiency Program is working with existing Michigan Weatherization Assistance Program delivery to support weatherization providers with more funding for...

  15. Arkansas Oklahoma Gas (AOG) Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Arkansas Oklahoma Gas (AOG) provides financial incentives to its residential and small commercial customers for both existing and new construction homes and small business whose primary fuel for...

  16. Better Buildings Residential Program Solution Center Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transcript The Better Buildings Residential Program Solution Center is a robust online collection of nearly 1,000 examples, strategies, and resources from Better Buildings...

  17. Emerald PUD- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Emerald People's Utility District (EPUD) offers several incentives for its residential customers to increase the energy efficiency of homes. Emerald PUD offers rebates for ENERGY STAR rated...

  18. Entergy New Orleans- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Home Performance with ENERGY STAR Program provides ENO residential customers with home energy assessments, recommendations for energy savings and incentives towards the cost of those upgrades...

  19. Building America Residential Energy Efficiency Stakeholders Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stakeholders Meeting: March 2011 Building America Residential Energy Efficiency Stakeholders Meeting: March 2011 On this page, you may link to the summary report and presentations ...

  20. Building America Residential Energy Efficiency Technical Update...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link to the summary report and ...

  1. Building America Residential Energy Efficiency Research Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Planning Meeting: October 2011 Building America Residential Energy Efficiency Research Planning Meeting: October 2011 On this page, you may link to the summary report and ...

  2. Lumbee River EMC- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services. Rebates are available for:

  3. Residential Transportation Historical Publications reports, data...

    U.S. Energy Information Administration (EIA) Indexed Site

    May 2008 The Energy Information Administration conducts several core consumption surveys. Among them was the Residential Transportation Energy Consumption Survey (RTECS)....

  4. Energy Preview: Residential Transportation Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    t 7 Energy Preview: Residential Transportation Energy Consumption Survey, Preliminary Estimates, 1991 (See Page 1) This publication and other Energy Information Administration...

  5. East Central Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water heaters, and air conditioners. To qualify for the...

  6. West Virginia Residential Energy Code Field Study

    Broader source: Energy.gov [DOE]

    Lead Performer: Appalachian Residential Consortium for Energy Efficiency (ARCEE), WV Partner: Marshall University’s Center for Business and Energy Research—Huntington, WV

  7. Waseca Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Develops innovative products and services to help them deliver value to customers. With help from SMMPA, Waseca Utilities provides incentives for residential and commercial customers to improve t...

  8. Emerald PUD- Residential Energy Efficiency Loan Programs

    Broader source: Energy.gov [DOE]

    Emerald People's Utility District (EPUD) has a loan program through First Tech Credit Union to help residential customers improve the energy efficiency of their homes. Through the Weatherization...

  9. Duquesne Light Company- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Duquesne Light provides rebates to its residential customers for purchasing and installing energy-saving equipment. Eligible equipment includes dehumidifiers, freezers, refrigerators, air conditi...

  10. Residential Energy Efficiency Messaging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Nothing But Networking for Residential Network Members Social Media and Messages that Matter - Top Tips and Tools Generating Energy Efficiency...

  11. Baltimore Gas & Electric Company (Electric) - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    AC: 30 Recycling RefrigeratorFreezer: 50 ACDehumidifier: 25 Summary The Baltimore Gas & Electric Company (BGE) offers rebates for residential customers to improve the...

  12. NIPSCO (Gas & Electric) - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    and Air Sealing: 40% of total cost up to 450 Lighting: Varies Summary Northern Indiana Public Service Corporation (NIPSCO) offers rebates to residential customers that install...

  13. Farmers RECC- Residential Insulation Rebate Program

    Broader source: Energy.gov [DOE]

    The Farmers Rural Electric Cooperative (RECC) Button-Up Program provides free energy audits and rebates for insulation upgrades to its residential customers. Farmers RECC's energy advisor will...

  14. Benefits of Better Buildings Residential Network Reporting

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network All-Member Peer Exchange Call: Member Reporting and Benefits, Call Slides and Discussion Summary, May 22, 2014.

  15. El Paso Electric Company- Residential Solutions Program

    Broader source: Energy.gov [DOE]

    The El Paso Electric Residential Solutions Program offers El Paso Electric customers and participating contractors cash and non-cash incentives for implementing energy efficiency improvements in...

  16. AEP SWEPCO- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SWEPCO Arkansas offers a variety of rebates to residential customers in its service territory. Eligible equipment includes central ac units, heat pumps, insulation, air sealing, duct sealing,...

  17. Residential Buildings Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the...

  18. OTEC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Oregon Trail Electric Cooperative (OTEC) assists residential members in reducing electric consumption by providing rebates for energy efficient equipment. Rebates are for appliances, heat pumps,...

  19. Residential Buildings Historical Publications reports, data and...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

  20. Residential Buildings Historical Publications reports, data and...

    Gasoline and Diesel Fuel Update (EIA)

    0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...