National Library of Energy BETA

Sample records for measuring physical conditions

  1. Evolution of the sensor fish device for measuring physical conditions in sever hydraulic environments

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Duncan, J. P.

    2003-03-01

    To assist in deriving biological specifications for design of turbine rehabilitation measures, new “fish-friendly” turbines, and spillway designs and operations, Pacific Northwest National Laboratory (PNNL) scientists have developed and tested an autonomous multi-sensor device called a Sensor Fish that can acquire pressure and tri-axial linear acceleration data during passage through severe hydraulic conditions. The purpose of the Sensor Fish is to characterize physical conditions fish experience during passage through hydro turbines, spill stilling basins, high-discharge outfalls, and other dam passage routes. This report discusses the development and field tests of the Sensor Fish at Rock Island, McNary, The Dalles, Bonneville, and Wanapum dams on the Columbia River and the Prosser Irrigation District on the Yakima River, which have shown that the device can withstand the severe environments of turbine, spill, and fish bypass passage and provide useful environmental data that can ultimately aid in the design and operation of new and existing turbines, spill, and dam fish bypass facilities.

  2. Evolution of the Sensor Fish Device for Measuring Physical Conditions in Severe Hydraulic Environments

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Duncan, Joanne P.

    2003-02-28

    To assist in deriving biological specifications for design of turbine rehabilitation measures, new ''fish-friendly'' turbines, and spillway designs and operations, scientists at the Pacific Northwest National Laboratory (PNNL) have developed and tested an autonomous multi-sensor device called a Sensor Fish that can acquire pressure and tri-axial linear acceleration data during passage through severe hydraulic conditions. The purpose of the Sensor Fish is to characterize physical conditions fish experience during passage through hydro turbines, spill stilling basins, high-discharge outfalls, and other dam passage routes. The Sensor Fish was developed with the support of the U.S. Department of Energy's Advanced Hydropower Turbine System program. Field tests of the Sensor Fish at Rock Island, McNary, The Dalles, Bonneville, and Wanapum dams on the Columbia River and the Prosser Irrigation District on the Yakima River have shown that the device can withstand the severe environments of turbine, spill, and fish bypass passage and provide useful environmental data that can ultimately aid in the design and operation of new and existing turbines, spill, and dam fish bypass facilities.

  3. Physical Market Conditions, Paper Market Activity,

    Gasoline and Diesel Fuel Update (EIA)

    2 Physical Market Conditions, Paper Market Activity, and the WTI-Brent Spread Bahattin Büyükşahin Thomas K. Lee James T. Moser Michel A. Robe* Abstract We document that, starting in the Fall of 2008, the benchmark West Texas Intermediate (WTI) crude oil has periodically traded at unheard of discounts to the corresponding Brent benchmark. We further document that this discount is not reflected in spreads between Brent and other benchmarks that are directly comparable to WTI. Drawing on extant

  4. Weak measurement and Bohmian conditional wave functions

    SciTech Connect (OSTI)

    Norsen, Travis; Struyve, Ward

    2014-11-15

    It was recently pointed out and demonstrated experimentally by Lundeen et al. that the wave function of a particle (more precisely, the wave function possessed by each member of an ensemble of identically-prepared particles) can be “directly measured” using weak measurement. Here it is shown that if this same technique is applied, with appropriate post-selection, to one particle from a perhaps entangled multi-particle system, the result is precisely the so-called “conditional wave function” of Bohmian mechanics. Thus, a plausibly operationalist method for defining the wave function of a quantum mechanical sub-system corresponds to the natural definition of a sub-system wave function which Bohmian mechanics uniquely makes possible. Similarly, a weak-measurement-based procedure for directly measuring a sub-system’s density matrix should yield, under appropriate circumstances, the Bohmian “conditional density matrix” as opposed to the standard reduced density matrix. Experimental arrangements to demonstrate this behavior–and also thereby reveal the non-local dependence of sub-system state functions on distant interventions–are suggested and discussed. - Highlights: • We study a “direct measurement” protocol for wave functions and density matrices. • Weakly measured states of entangled particles correspond to Bohmian conditional states. • Novel method of observing quantum non-locality is proposed.

  5. Conditioning of carbonaceous material prior to physical beneficiation

    DOE Patents [OSTI]

    Warzinski, Robert P. (Venetia, PA); Ruether, John A. (McMurray, PA)

    1987-01-01

    A carbonaceous material such as coal is conditioned by contact with a supercritical fluid prior to physical beneficiation. The solid feed material is contacted with an organic supercritical fluid such as cyclohexane or methanol at temperatures slightly above the critical temperature and pressures of 1 to 4 times the critical pressure. A minor solute fraction is extracted into critical phase and separated from the solid residuum. The residuum is then processed by physical separation such as by froth flotation or specific gravity separation to recover a substantial fraction thereof with reduced ash content. The solute in supercritical phase can be released by pressure reduction and recombined with the low-ash, carbonaceous material.

  6. Methods for improved forewarning of condition changes in monitoring physical processes

    DOE Patents [OSTI]

    Hively, Lee M.

    2013-04-09

    This invention teaches further improvements in methods for forewarning of critical events via phase-space dissimilarity analysis of data from biomedical equipment, mechanical devices, and other physical processes. One improvement involves objective determination of a forewarning threshold (U.sub.FW), together with a failure-onset threshold (U.sub.FAIL) corresponding to a normalized value of a composite measure (C) of dissimilarity; and providing a visual or audible indication to a human observer of failure forewarning and/or failure onset. Another improvement relates to symbolization of the data according the binary numbers representing the slope between adjacent data points. Another improvement relates to adding measures of dissimilarity based on state-to-state dynamical changes of the system. And still another improvement relates to using a Shannon entropy as the measure of condition change in lieu of a connected or unconnected phase space.

  7. Measurement of multijunction cells under close-match conditions

    SciTech Connect (OSTI)

    Wilkinson, V.A.; Goodbody, C.; Williams, W.G.

    1997-12-31

    This paper presents details of a new close-match solar simulator developed for DERA`s Space Power Laboratory for the accurate characterization of multijunction solar cells. The authors present data on the simulator measurements of dual and triple junction cells. The measurements are compared with those made under less ideal spectral conditions.

  8. PHYSICAL PROPERTY MEASUREMENTS OF LABORATORY PREPARED SALTSTONE GROUT

    SciTech Connect (OSTI)

    Hansen, E.; Cozzi, A.; Edwards, T.

    2014-05-05

    The Saltstone Production Facility (SPF) built two new Saltstone Disposal Units (SDU), SDU 3 and SDU 5, in 2013. The variable frequency drive (VFD) for the grout transfer hose pump tripped due to high current demand by the motor during the initial radioactive saltstone transfer to SDU 5B on 12/5/2013. This was not observed during clean cap processing on July 5, 2013 to SDU 3A, which is a slightly longer distance from the SPF than is SDU 5B. Saltstone Design Authority (SDA) is evaluating the grout pump performance and capabilities to transfer the grout processed in SPF to SDU 3/5. To assist in this evaluation, grout physical properties are required. At this time, there are no rheological data from the actual SPF so the properties of laboratory prepared samples using simulated salt solution or Tank 50 salt solution will be measured. The physical properties of grout prepared in the laboratory with de-ionized water (DI) and salt solutions were obtained at 0.60 and 0.59 water to premix (W/P) ratios, respectively. The yield stress of the DI grout was greater than any salt grout. The plastic viscosity of the DI grout was lower than all of the salt grouts (including salt grout with admixture). When these physical data were used to determine the pressure drop and fluid horsepower for steady state conditions, the salt grouts without admixture addition required a higher pressure drop and higher fluid horsepower to transport. When 0.00076 g Daratard 17/g premix was added, both the pressure drop and fluid horsepower were below that of the DI grout. Higher concentrations of Daratard 17 further reduced the pressure drop and fluid horsepower. The uncertainty in the single point Bingham Plastic parameters is + 4% of the reported values and is the bounding uncertainty. Two different mechanical agitator mixing protocols were followed for the simulant salt grout, one having a total mixing time of three minutes and the other having a time of 10 minutes. The Bingham Plastic parameters were essentially the same for the salt grout without admixture. When Daratard 17 was added, the Bingham Plastic yield stress increased for the 10 minute mix. The simulant salt used in this task had similar physical properties of the Tank 50 3Q13 salt grout and is recommended for future use, if the salt solution in Tank 50 does not change. The design basis physical properties used to size the pumps and mixers at SPF were obtained from DPST-85-312. The grouts characterized in this report are bounded by the design basis density and Bingham Plastic yield stress. The opposite is true for the plastic viscosity. Steady state pressure drop calculations were performed for the design basis values using the flow rate for the clean cap and salt grouts and they bound the pressure drop of the grouts characterized in this report. A comparison of the lab prepared samples to PI ProcessBook data, specifically average pressure drop, indicate that the lab prepared samples are more viscous in nature than what is processed in the facility. This difference could be due to the applied shear rates which could be lower in the lab as compared to the facility and that fact the SPF added flush water, making this comparison more difficult. A perfunctory review of the PI ProcessBook data was discussed. It may be possible that the frequency that the distributed control system alters the grout pump speed to maintain grout hopper volume can negatively affect the efficiency of the grout pump.

  9. Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)

    ScienceCinema (OSTI)

    None

    2011-10-06

    How is the anticipated physics program of a future e+e- collider shaping the R&D; for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.

  10. Measurement of physical characteristics of materials by ultrasonic methods

    DOE Patents [OSTI]

    Lu, W.Y.; Min, S.

    1998-09-08

    A method is described for determining and evaluating physical characteristics of a material. In particular, the present invention provides for determining and evaluating the anisotropic characteristics of materials, especially those resulting from such manufacturing processes as rolling, forming, extruding, drawing, forging, etc. In operation, a complex ultrasonic wave is created in the material of interest by any method. The wave form may be any combination of wave types and modes and is not limited to fundamental plate modes. The velocity of propagation of selected components which make up the complex ultrasonic wave are measured and evaluated to determine the physical characteristics of the material including, texture, strain/stress, grain size, crystal structure, etc. 14 figs.

  11. Measurement of physical characteristics of materials by ultrasonic methods

    DOE Patents [OSTI]

    Lu, Wei-yang (Pleasanton, CA); Min, Shermann (Livermore, CA)

    1998-01-01

    A method is described for determining and evaluating physical characteristics of a material. In particular, the present invention provides for determining and evaluating the anisotropic characteristics of materials, especially those resulting from such manufacturing processes as rolling, forming, extruding, drawing, forging, etc. In operation, a complex ultrasonic wave is created in the material of interest by any method. The wave form may be any combination of wave types and modes and is not limited to fundamental plate modes. The velocity of propagation of selected components which make up the complex ultrasonic wave are measured and evaluated to determine the physical characteristics of the material including, texture, strain/stress, grain size, crystal structure, etc.

  12. Atomic Physics Measurements in Support of X-Ray Astronomy (Conference...

    Office of Scientific and Technical Information (OSTI)

    Atomic Physics Measurements in Support of X-Ray Astronomy Citation Details In-Document Search Title: Atomic Physics Measurements in Support of X-Ray Astronomy You are accessing...

  13. Atomic Physics Measurements in Support of X-Ray Astronomy (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Atomic Physics Measurements in Support of X-Ray Astronomy Citation Details In-Document Search Title: Atomic Physics Measurements in Support of X-Ray Astronomy Authors: ...

  14. Characterization of scatter in digital mammography from physical measurements

    SciTech Connect (OSTI)

    Leon, Stephanie M. Wagner, Louis K.; Brateman, Libby F.

    2014-06-15

    Purpose: That scattered radiation negatively impacts the quality of medical radiographic imaging is well known. In mammography, even slight amounts of scatter reduce the high contrast required for subtle soft-tissue imaging. In current clinical mammography, image contrast is partially improved by use of an antiscatter grid. This form of scatter rejection comes with a sizeable dose penalty related to the concomitant elimination of valuable primary radiation. Digital mammography allows the use of image processing as a method of scatter correction that might avoid effects that negatively impact primary radiation, while potentially providing more contrast improvement than is currently possible with a grid. For this approach to be feasible, a detailed characterization of the scatter is needed. Previous research has modeled scatter as a constant background that serves as a DC bias across the imaging surface. The goal of this study was to provide a more substantive data set for characterizing the spatially-variant features of scatter radiation at the image detector of modern mammography units. Methods: This data set was acquired from a model of the radiation beam as a matrix of very narrow rays or pencil beams. As each pencil beam penetrates tissue, the pencil widens in a predictable manner due to the production of scatter. The resultant spreading of the pencil beam at the detector surface can be characterized by two parameters: mean radial extent (MRE) and scatter fraction (SF). The SF and MRE were calculated from measurements obtained using the beam stop method. Two digital mammography units were utilized, and the SF and MRE were found as functions of target, filter, tube potential, phantom thickness, and presence or absence of a grid. These values were then used to generate general equations allowing the SF and MRE to be calculated for any combination of the above parameters. Results: With a grid, the SF ranged from a minimum of about 0.05 to a maximum of about 0.16, and the MRE ranged from about 3 to 13 mm. Without a grid, the SF ranged from a minimum of 0.25 to a maximum of 0.52, and the MRE ranged from about 20 to 45 mm. The SF with a grid demonstrated a mild dependence on target/filter combination and kV, whereas the SF without a grid was independent of these factors. The MRE demonstrated a complex relationship as a function of kV, with notable difference among target/filter combinations. The primary source of change in both the SF and MRE was phantom thickness. Conclusions: Because breast tissue varies spatially in physical density and elemental content, the effective thickness of breast tissue varies spatially across the imaging field, resulting in a spatially-variant scatter distribution in the imaging field. The data generated in this study can be used to characterize the scatter contribution on a point-by-point basis, for a variety of different techniques.

  15. PHYSICAL CONDITIONS AROUND 6.7 GHz METHANOL MASERS. I. AMMONIA

    SciTech Connect (OSTI)

    Pandian, J. D.; Wyrowski, F.; Menten, K. M.

    2012-07-01

    Methanol masers at 6.7 GHz are known to be tracers of high-mass star formation in our Galaxy. In this paper, we study the large-scale physical conditions in the star-forming clumps/cores associated with 6.7 GHz methanol masers using observations of the (1, 1), (2, 2), and (3, 3) inversion transitions of ammonia with the Effelsberg telescope. The gas kinetic temperature is found to be higher than in infrared dark clouds, highlighting the relatively evolved nature of the maser sources. Other than a weak correlation between maser luminosity and the ammonia line width, we do not find any differences between low- and high-luminosity methanol masers.

  16. Measuring industrial energy efficiency: Physical volume versus economic value

    SciTech Connect (OSTI)

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  17. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group (PDG) Organizations American Institute of Physics (AIP) American Physical Society (APS) Institute of Physics (IOP) SPIE - International society for optics and photonics Top...

  18. Active doublet method for measuring small changes in physical properties

    DOE Patents [OSTI]

    Roberts, Peter M. (Los Alamos, NM); Fehler, Michael C. (Los Alamos, NM); Johnson, Paul A. (Santa Fe, NM); Phillips, W. Scott (Santa Fe, NM)

    1994-01-01

    Small changes in material properties of a work piece are detected by measuring small changes in elastic wave velocity and attenuation within a work piece. Active, repeatable source generate coda wave responses from a work piece, where the coda wave responses are temporally displaced. By analyzing progressive relative phase and amplitude changes between the coda wave responses as a function of elapsed time, accurate determinations of velocity and attenuation changes are made. Thus, a small change in velocity occurring within a sample region during the time periods between excitation origin times (herein called "doublets") will produce a relative delay that changes with elapsed time over some portion of the scattered waves. This trend of changing delay is easier to detect than an isolated delay based on a single arrival and provides a direct measure of elastic wave velocity changes arising from changed material properties of the work piece.

  19. Basic Physics Data: Measurement of Neutron Multiplicity from Induced Fission

    SciTech Connect (OSTI)

    Pozzi, Sara; Haight, Robert

    2015-05-04

    From October 1 to October 17 a team of researchers from UM visited the LANSCE facility for an experiment during beam-time allotted from October 4 to October 17. A total of 24 detectors were used at LANSCE including liquid organic scintillation detectors (EJ-309), NaI scintillation detectors, and Li-6 enriched glass detectors. It is a double time-offlight (TOF) measurement using spallation neutrons generated by a target bombarded with pulsed high-energy protons. The neutrons travel to an LLNL-manufactured parallel plate avalanche chamber (PPAC) loaded with thin U-235 foils in which fission events are induced. The generated fission neutrons and photons are then detected in a detector array designed and built at UM and shipped to LANSCE. Preparations were made at UM, where setup and proposed detectors were tested. The UM equipment was then shipped to LANSCE for use at the 15L beam of the weapons neutron research (WNR) facility.

  20. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that

  1. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Our science answers questions about the nature of the universe and delivers solutions for national security concerns. Contact Us Division Leader David Meyerhofer ...

  2. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on MaterialsCondensed Matter, ...

  3. UNDERSTANDING PHYSICAL CONDITIONS IN HIGH-REDSHIFT GALAXIES THROUGH C I FINE STRUCTURE LINES: DATA AND METHODOLOGY

    SciTech Connect (OSTI)

    Jorgenson, Regina A.; Wolfe, Arthur M.; Prochaska, J. Xavier

    2010-10-10

    We probe the physical conditions in high-redshift galaxies, specifically, the damped Ly{alpha} systems (DLAs) using neutral carbon (C I) fine structure lines and molecular hydrogen (H{sub 2}). We report five new detections of C I and analyze the C I in an additional two DLAs with previously published data. We also present one new detection of H{sub 2} in a DLA. We present a new method of analysis that simultaneously constrains both the volume density and the temperature of the gas, as opposed to previous studies that a priori assumed a gas temperature. We use only the column density of C I measured in the fine structure states and the assumption of ionization equilibrium in order to constrain the physical conditions in the gas. We present a sample of 11 C I velocity components in six DLAs and compare their properties to those derived by the global C II* technique. The resulting median values for this sample are (n(H I)) = 69 cm{sup -3}, (T) = 50 K, and (log(P/k)) = 3.86 cm{sup -3} K, with standard deviations, {sigma}{sub n(H{sub i})} = 134 cm{sup -3}, {sigma}{sub T} = 52 K, and {sigma}{sub log(P/k)} = 3.68 cm{sup -3} K. This can be compared with the integrated median values for the same DLAs: (n(H I)) = 2.8 cm{sup -3}, (T) = 139 K, and (log(P/k)) = 2.57 cm{sup -3} K, with standard deviations {sigma}{sub n(H{sub i})} = 3.0 cm{sup -3}, {sigma}{sub T} = 43 K, and {sigma}{sub log(P/k)} = 0.22 cm{sup -3} K. Interestingly, the pressures measured in these high-redshift C I clouds are similar to those found in the Milky Way. We conclude that the C I gas is tracing a higher-density, higher-pressure region, possibly indicative of post-shock gas or a photodissociation region on the edge of a molecular cloud. We speculate that these clouds may be direct probes of the precursor sites of star formation in normal galaxies at high redshift.

  4. Physical-Property Measurements on Core Samples from Drill-Holes...

    Open Energy Info (EERE)

    Physical-Property Measurements on Core Samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada Jump to: navigation, search OpenEI Reference...

  5. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use: Preprint

    SciTech Connect (OSTI)

    Rugh, J.

    2010-02-01

    A procedure is described to measure approximate real-world air conditioning fuel use and assess the impact of thermal load reduction strategies in plug-in hybrid electric vehicles.

  6. The COS-Halos survey: physical conditions and baryonic mass in the low-redshift circumgalactic medium

    SciTech Connect (OSTI)

    Werk, Jessica K.; Prochaska, J. Xavier; Tejos, Nicolas [UCO/Lick Observatory, University of California, Santa Cruz, CA (United States); Tumlinson, Jason; Peeples, Molly S.; Fox, Andrew J.; Thom, Christopher; Bordoloi, Rongmon [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD (United States); Tripp, Todd M.; Katz, Neal [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Lehner, Nicolas [Department of Physics and Astronomy, University of Notre Dame, South Bend, IN (United States); O'Meara, John M. [Department of Chemistry and Physics, Saint Michael's College, Colchester, VT (United States); Ford, Amanda Brady [Astronomy Department, University of Arizona, Tucson, AZ 85721 (United States); Oppenheimer, Benjamin D. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Davé, Romeel [University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Weinberg, David H., E-mail: jwerk@ucolick.org [Department of Astronomy, The Ohio State University, Columbus, OH (United States)

    2014-09-01

    We analyze the physical conditions of the cool, photoionized (T ?10{sup 4} K) circumgalactic medium (CGM) using the COS-Halos suite of gas column density measurements for 44 gaseous halos within 160 kpc of L ? L* galaxies at z ? 0.2. These data are well described by simple photoionization models, with the gas highly ionized (n {sub H} {sub II}/n {sub H} ? 99%) by the extragalactic ultraviolet background. Scaling by estimates for the virial radius, R {sub vir}, we show that the ionization state (tracked by the dimensionless ionization parameter, U) increases with distance from the host galaxy. The ionization parameters imply a decreasing volume density profile n {sub H} = (10{sup –4.2±0.25})(R/R {sub vir}){sup –0.8±0.3}. Our derived gas volume densities are several orders of magnitude lower than predictions from standard two-phase models with a cool medium in pressure equilibrium with a hot, coronal medium expected in virialized halos at this mass scale. Applying the ionization corrections to the H I column densities, we estimate a lower limit to the cool gas mass M{sub CGM}{sup cool}>6.5×10{sup 10} M {sub ?} for the volume within R < R {sub vir}. Allowing for an additional warm-hot, O VI-traced phase, the CGM accounts for at least half of the baryons purported to be missing from dark matter halos at the 10{sup 12} M {sub ?} scale.

  7. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Gammasphere, GRETINA, FMA and more physics opportunities for single-particle ... Kathrin Wimmer ATLAS User Workshop Physics cases rate pps 4 10 5 10 6 10 7 10 Kathrin ...

  8. Observations of Velocity Conditions near a Hydroelectric Turbine Draft Tube Exit using ADCP Measurements

    SciTech Connect (OSTI)

    Cook, Christopher B.; Richmond, Marshall C.; Serkowski, John A.

    2007-10-01

    Measurement of flow characteristics near hydraulic structures is an ongoing challenge because of the need to obtain rapid measurements of time-varying velocity over a relatively large spatial domain. This paper discusses use of an acoustic Doppler current profiler (ADCP) to measure the rapidly diverging flow exiting from an operating hydroelectric turbine draft tube exit. The resolved three-dimensional velocity vectors show a highly complex and helical flow pattern developed near to and downstream of the exit. Velocity vectors were integrated across the exit and we computed an uneven percentage of flow (67%/33%) passing through the two draft tube barrels at a mid-range turbine discharge, consistent with physical model results. In addition to the three-dimensional velocity vectors, the individual one-dimensional velocities measured by each of the four ADCP beams can be separately used as calibration and validation datasets for numerical and physical models. This technique is demonstrated by comparing along-beam ADCP velocity measurements to data collected in a scaled physical model.

  9. Electrical signal analysis to assess the physical condition of a human or animal

    DOE Patents [OSTI]

    Cox, Daryl F.; Hochanadel, Charles D.; Haynes, Howard D.

    2010-06-15

    The invention is a human and animal performance data acquisition, analysis, and diagnostic system for fitness and therapy devices having an interface box removably disposed on incoming power wiring to a fitness and therapy device, at least one current transducer removably disposed on said interface box for sensing current signals to said fitness and therapy device, and a means for analyzing, displaying, and reporting said current signals to determine human and animal performance on said device using measurable parameters.

  10. PHYSICAL CONDITIONS IN THE X-RAY EMISSION-LINE GAS IN NGC 1068

    SciTech Connect (OSTI)

    Kraemer, S. B. [Institute for Astrophysics and Computational Sciences, Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Sharma, N.; Turner, T. J.; George, Ian M. [Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Crenshaw, D. Michael, E-mail: kraemer@yancey.gsfc.nasa.gov [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States)

    2015-01-01

    We present a detailed, photoionization modeling analysis of XMM-Newton/Reflection Grating Spectrometer observations of the Seyfert 2 galaxy NGC 1068. The spectrum, previously analyzed by Kinkhabwala et al., reveals a myriad of soft X-ray emission lines, including those from H- and He-like carbon, nitrogen, oxygen, and neon, and M- and L-shell iron. As noted in the earlier analysis, based on the narrowness of the radiative recombination continua, the electron temperatures in the emission-line gas are consistent with photoionization, rather than collisional ionization. The strengths of the carbon and nitrogen emission lines, relative to those of oxygen, suggest unusual elemental abundances, which we attribute to the star formation history of the host galaxy. Overall, the emission lines are blueshifted with respect to systemic, with radial velocities ?160 km s{sup –1}, similar to that of [O III] ?5007, and thus consistent with the kinematics and orientation of the optical emission-line gas and, hence, likely part of an active galactic nucleus driven outflow. We were able to achieve an acceptable fit to most of the strong emission lines with a two-component photoionization model, generated with CLOUDY. The two components have ionization parameters and column densities of logU = –0.05 and 1.22 and logN {sub H} = 20.85 and 21.2 and covering factors of 0.35 and 0.84, respectively. The total mass of the X-ray gas is roughly an order of magnitude greater than the mass of ionized gas determined from optical and near-IR spectroscopy, which indicates that it may be the dominant component of the narrow-line region. Furthermore, we suggest that the medium that produces the scattered/polarized optical emission in NGC 1068 possesses similar physical characteristics to those of the more highly ionized of the X-ray model components.

  11. Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions

    DOE Patents [OSTI]

    McGrail, Bernard P. (Pasco, WA); Martin, Paul F. (Richland, WA); Lindenmeier, Clark W. (Richland, WA)

    1999-01-01

    The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

  12. BENCHMARK EVALUATION OF THE INITIAL ISOTHERMAL PHYSICS MEASUREMENTS AT THE FAST FLUX TEST FACILITY

    SciTech Connect (OSTI)

    John Darrell Bess

    2010-05-01

    The benchmark evaluation of the initial isothermal physics tests performed at the Fast Flux Test Facility, in support of Fuel Cycle Research and Development and Generation-IV activities at the Idaho National Laboratory, has been completed. The evaluation was performed using MCNP5 with ENDF/B-VII.0 nuclear data libraries and according to guidelines provided for inclusion in the International Reactor Physics Experiment Evaluation Project Handbook. Results provided include evaluation of the initial fully-loaded core critical, two neutron spectra measurements near the axial core center, 32 reactivity effects measurements (21 control rod worths, two control rod bank worths, six differential control rod worths, two shutdown margins, and one excess reactivity), isothermal temperature coefficient, and low-energy electron and gamma spectra measurements at the core center. All measurements were performed at 400 ºF. There was good agreement between the calculated and benchmark values for the fully-loaded core critical eigenvalue, reactivity effects measurements, and isothermal temperature coefficient. General agreement between benchmark experiment measurements and calculated spectra for neutrons and low-energy gammas at the core midplane exists, but calculations of the neutron spectra below the core and the low-energy gamma spectra at core midplane did not agree well. Homogenization of core components may have had a significant impact upon computational assessment of these effects. Future work includes development of a fully-heterogeneous model for comprehensive evaluation. The reactor physics measurement data can be used in nuclear data adjustment and validation of computational methods for advanced fuel cycle and nuclear reactor systems using Liquid Metal Fast Reactor technology.

  13. Physics and Analysis at a Hadron Collider - Making Measurements (3/3)

    ScienceCinema (OSTI)

    None

    2011-10-06

    This is the third lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This third lecture discusses techniques important for analyses making a measurement (e.g. determining a cross section or a particle property such as its mass or lifetime) using some CDF top-quark analyses as specific examples. The lectures are aimed at graduate students.

  14. On eddy accumulation with limited conditional sampling to measure air-surface exchange

    SciTech Connect (OSTI)

    Wesely, M.L.; Hart, R.L.

    1994-01-01

    An analysis of turbulence data collected at a height of 12.3 m above grasslands was carried out to illustrate some of the limitations and possible improvements in methods to compute vertical fluxes of trace substances by the eddy accumulation technique with conditional sampling. The empirical coefficient used in the technique has a slight dependence on atmospheric stability, which can be minimized by using a threshold vertical velocity equal to approximately 0.75{sigma}{sub w}, below which chemical sampling is suspended. This protocol results in a smaller chemical sample but increases the differences in concentrations by approximately 70%. For effective conditional sampling when mass is being accumulated in a trap or reservoir, the time of sampling during updrafts versus downdrafts should be measured and used to adjust estimates of the mean concentrations.

  15. Assessing Long-Term Wind Conditions by Combining Different Measure-Correlate-Predict Algorithms: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Chowdhury, S.; Messac, A.; Hodge, B. M.

    2013-08-01

    This paper significantly advances the hybrid measure-correlate-predict (MCP) methodology, enabling it to account for variations of both wind speed and direction. The advanced hybrid MCP method uses the recorded data of multiple reference stations to estimate the long-term wind condition at a target wind plant site. The results show that the accuracy of the hybrid MCP method is highly sensitive to the combination of the individual MCP algorithms and reference stations. It was also found that the best combination of MCP algorithms varies based on the length of the correlation period.

  16. Partial discharge measurements to assess rotating machine insulation condition: A survey

    SciTech Connect (OSTI)

    Stone, G.C.

    1996-12-31

    The measurement of partial discharges has become the most popular means of assessing the degree of aging in solid electrical insulation systems. In particular, PD testing has become the principal means of assessing motor and generator stator winding condition. Many advances in measurement technology were required to achieve this state. For example, advances in sensors were needed to distinguish PD from noise signals on a pulse-by-pulse basis. Furthermore, improved digitizers as well as advanced graphical display methods have been useful in making it easy for non-experts to distinguish between the different types of PD. In the future, statistical and neural network technology seems to hold the promise of enabling non-experts to make better use of PD data.

  17. Passive and Active Radiation Measurements Capability at the INL Zero Power Physics Reactor (ZPPR) Facility

    SciTech Connect (OSTI)

    Robert Neibert; John Zabriskie; Collin Knight; James L. Jones

    2010-12-01

    The Zero Power Physics Reactor (ZPPR) facility is a Department of Energy facility located in the Idaho National Laboratory’s (INL) Materials and Fuels Complex. It contains various nuclear and non-nuclear materials that are available to support many radiation measurement assessments. User-selected, single material, nuclear and non-nuclear materials can be readily utilized with ZPPR clamshell containers with almost no criticality concerns. If custom, multi-material configurations are desired, the ZPPR clamshell or an approved aluminum Inspection Object (IO) Box container may be utilized, yet each specific material configuration will require a criticality assessment. As an example of the specialized material configurations possible, the National Nuclear Security Agency’s Office of Nuclear Verification (NNSA/NA 243) has sponsored the assembly of six material configurations. These are shown in the Appendixes and have been designated for semi-permanent storage that can be available to support various radiation measurement applications.

  18. Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots

    SciTech Connect (OSTI)

    Midgett, Aaron G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States); Hillhouse, Hugh W. [Univ. of Washington, Seattle, WA (United States); Hughes, Barbara K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States); Nozik, Arthur J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States); Beard, Matthew C. [Univ. of Colorado, Boulder, CO (United States)

    2010-09-22

    Recent reports question the validity of pulsed fs-laser experiments for measuring the photon-to-exciton quantum yields (QYs) that result from multiple exciton generation (MEG). The repetitive nature of these experiments opens up an alternative relaxation pathway that may produce artificially high results. We present transient-absorption (TA) data for 4.6 and 6.6 nm diameter PbSe quantum dots (QDs) at a variety of pump photon energies. The data are collected under laminar flow conditions with volumetric flow rates ranging from 0 to 150 mL/min (resulting in Reynolds numbers up to 460). The results are modeled with a spatially resolved population balance of generation, recombination, convective replacement, and accumulation of long-lived excited QDs. By comparing the simulations and experiments, the steady-state population of the long-lived QD-excited states and their kinetics are determined for different experimental conditions. We also improve upon reported photon-to-exciton QYs for PbSe QDs. We find differences in the observed TA dynamics between flowing and static conditions that depend upon photon fluence, pump photon energy, and quality of the QD surfaces. For excitation energies below 2 Eg, independent of QD size or photon fluence, we observe no flow rate dependence in the TA dynamics. At excitation energies of h? > 3 Eg, we observe differences between static and flowing conditions that are most pronounced for high photon fluences. At 3.7 Eg and for 4.6 nm PbSe QDs we find a QY of 1.2 ± 0.1 and at 4.5 Eg the QY is 1.55 ± 0.05. With 6.6 nm QDs excited at 4.7 Eg we observe no difference between static and flowing conditions and find a QY of 1.61 ± 0.05. We also find that by treating the surface of QDs, we can decrease the charging probability (Pg ? 5 × 10-5) by a factor of 3-4. The observed variations suggest that different QD samples vary regarding their susceptibility to the creation of long-lived states.

  19. Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Plasma Physics By leveraging plasma under extreme conditions, we concentrate on solving ... smuggled nuclear materials, advancing weapons physics and generating fusion energy. ...

  20. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; Solomon, Paul A.; Lantz, Jeffrey; Schauer, James J.; Shafer, Martin M.; Artamonova, Maria S.; Carmichael, Gregory R.

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regionalmore » sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing.« less

  1. Reactor Physics Measurements and Benchmark Specifications for Oak Ridge Highly Enriched Uranium Sphere (ORSphere)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marshall, Margaret A.

    2014-11-04

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an effort to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with themore » GODIVA I experiments. Additionally, various material reactivity worths, the surface material worth coefficient, the delayed neutron fraction, the prompt neutron decay constant, relative fission density, and relative neutron importance were all measured. The critical assembly, material reactivity worths, the surface material worth coefficient, and the delayed neutron fraction were all evaluated as benchmark experiment measurements. The reactor physics measurements are the focus of this paper; although for clarity the critical assembly benchmark specifications are briefly discussed.« less

  2. Reactor Physics Measurements and Benchmark Specifications for Oak Ridge Highly Enriched Uranium Sphere (ORSphere)

    SciTech Connect (OSTI)

    Marshall, Margaret A.

    2014-11-04

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an effort to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. Additionally, various material reactivity worths, the surface material worth coefficient, the delayed neutron fraction, the prompt neutron decay constant, relative fission density, and relative neutron importance were all measured. The critical assembly, material reactivity worths, the surface material worth coefficient, and the delayed neutron fraction were all evaluated as benchmark experiment measurements. The reactor physics measurements are the focus of this paper; although for clarity the critical assembly benchmark specifications are briefly discussed.

  3. On-Line Physical Property Process Measurements for Nuclear Fuel Recycling

    SciTech Connect (OSTI)

    Pappas, Richard A.; Bond, Leonard J.; Greenwood, Margaret S.; Hostick, Cody J.

    2007-07-01

    The Global Nuclear Energy Partnership (GNEP) is looking to close the nuclear fuel cycle and demonstrate key fuel recycling technologies, while at the same time reducing proliferation risks. A key element of GNEP is the demonstration of the uranium extraction (UREX) +1a process, and potentially other fuel reprocessing schemes. Advanced recycling of nuclear fuel will require improved on-line monitoring and process control. Advanced ultrasonic sensor technology can be a critical component of a process quality control strategy that is designed to determine the sources of variability and minimize their impact on the quality of the end product. PNNL ultrasonic devices and methodologies, many of which were initially developed and deployed to address the needs of the DOE Hanford site, provide on-line physical property measurement useful in optimizing plant capacity, assuring cost-effective analyses, and satisfying direct sampling requirements.. A select collection of PNNL ultrasonic technology is discussed in this context. (authors)

  4. Impacts of WRF Physics and Measurement Uncertainty on California Wintertime Model Wet Bias

    SciTech Connect (OSTI)

    Chin, H S; Caldwell, P M; Bader, D C

    2009-07-22

    The Weather and Research Forecast (WRF) model version 3.0.1 is used to explore California wintertime model wet bias. In this study, two wintertime storms are selected from each of four major types of large-scale conditions; Pineapple Express, El Nino, La Nina, and synoptic cyclones. We test the impacts of several model configurations on precipitation bias through comparison with three sets of gridded surface observations; one from the National Oceanographic and Atmospheric Administration, and two variations from the University of Washington (without and with long-term trend adjustment; UW1 and UW2, respectively). To simplify validation, California is divided into 4 regions (Coast, Central Valley, Mountains, and Southern California). Simulations are driven by North American Regional Reanalysis data to minimize large-scale forcing error. Control simulations are conducted with 12-km grid spacing (low resolution) but additional experiments are performed at 2-km (high) resolution to evaluate the robustness of microphysics and cumulus parameterizations to resolution changes. We find that the choice of validation dataset has a significant impact on the model wet bias, and the forecast skill of model precipitation depends strongly on geographic location and storm type. Simulations with right physics options agree better with UW1 observations. In 12-km resolution simulations, the Lin microphysics and the Kain-Fritsch cumulus scheme have better forecast skill in the coastal region while Goddard, Thompson, and Morrison microphysics, and the Grell-Devenyi cumulus scheme perform better in the rest of California. The effect of planetary boundary layer, soil-layer, and radiation physics on model precipitation is weaker than that of microphysics and cumulus processes for short- to medium-range low-resolution simulations. Comparison of 2-km and 12-km resolution runs suggests a need for improvement of cumulus schemes, and supports the use of microphysics schemes in coarser-grid applications.

  5. ORSPHERE: PHYSICS MEASUREMENTS FOR BARE, HEU(93.2)-METAL SPHERE

    SciTech Connect (OSTI)

    Margaret A. Marshall

    2014-03-01

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files” (Reference 1). While performing the ORSphere experiments care was taken to accurately document component dimensions (±0.0001 inches), masses (±0.01 g), and material data. The experiment was also set up to minimize the amount of structural material in the sphere proximity. Two, correlated spheres were evaluated and judged to be acceptable as criticality benchmark experiments. This evaluation is given in HEU-MET-FAST-100. The second, smaller sphere was used for additional reactor physics measurements. Worth measurements (Reference 1, 2, 3 and 4), the delayed neutron fraction (Reference 3, 4 and 5) and surface material worth coefficient (Reference 1 and 2) are all measured and judged to be acceptable as benchmark data. The prompt neutron decay (Reference 6), relative fission density (Reference 7) and relative neutron importance (Reference 7) were measured, but are not evaluated. Information for the evaluation was compiled from References 1 through 7, the experimental logbooks 8 and 9 ; additional drawings and notes provided by the experimenter; and communication with the lead experimenter, John T. Mihalczo.

  6. Online Luminosity Measurement at CMS for Energy Frontier Physics after LS1

    SciTech Connect (OSTI)

    Stickland, David P.

    2015-09-20

    This proposal was directed towards the measurement of Bunch-by-Bunch and Total Luminosity in the CMS experiment using Single-Crystal Diamond (sCVD) installed close to the Interaction Point - known as the Fast Beam Conditions Monitor, or BCM1F detector. The proposal was successfully carried out and in February 2015 CMS installed its upgraded BCM1F detector. At first collisions in June 2015 the BCM1F was used as the primary luminometer, then in August 2015 a Van De Meer scan has been carried out and the detailed luminometer calibration is under study. In all aspects of performance measurement the upgraded detector has satisfied its design parameters and as an overview of its performance in this report will show, we have high expectations that the detector will be a powerful addition to the luminosity measurement at CMS and LHC. The proposed upgrade of BCM1F was a collaboration of CMS Institutes in Germany (DESY-Zeuthen) and the USA (Princeton) and of CERN itself.

  7. Comparison of predicted ground-level airborne radionuclide concentrations to measured values resulting from operation of the Los Alamos Meson Physics Facility. Master's thesis

    SciTech Connect (OSTI)

    Hoak, W.V.

    1993-05-01

    A comparison study of measured and predicted downwind radionuclide concentrations from the Los Alamos Meson Physics Facility (LAMPF) was performed. The radionuclide emissions consist primarily of the radioisotopes 11C, 13N, and 150. The gases, vented to the outside environment by a stack located at the facility, potentially increase the radiation exposure at the facility boundary. Emission rate, meteorological, and radiation monitoring station data were collected between September 26, 1992 and October 3, 1992. The meteorological and emission data were input to the Clean Air Act Assessment Package-1988 (CAP88-PC) computer code. The downwind radionuclide air concentrations predicted by the code were compared to the air concentrations measured by the monitoring stations. The code was found to slightly over-predict downwind concentrations during unstable atmospheric conditions. For stable atmospheric conditions, the code was not useful for predicting downwind air concentrations. This is thought to be due to an underestimation of horizontal dispersion.

  8. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    SciTech Connect (OSTI)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these experiments were of particular importance because they provide extensive information which can be directly applied to the design of large LMFBR’s. It should be recognized that the data presented in the initial report were evaluated only to the extent necessary to ensure that adequate data were obtained. Later reports provided further interpretation and detailed comparisons with prediction techniques. The conclusion of the isothermal physics measurements was that the FFTF nuclear characteristics were essentially as designed and all safety requirements were satisfied. From a nuclear point of view, the FFTF was qualified to proceed into power operation mode. The FFTF was completed in 1978 and first achieved criticality on February 9, 1980. Upon completion of the isothermal physics and reactor characterization programs, the FFTF operated for ten years from April 1982 to April 1992. Reactor operations of the FFTF were terminated and the reactor facility was then defueled, deactivated, and placed into cold standby condition. Deactivation of the reactor was put on hold from 1996 to 2000 while the U.S. Department of Energy examined alternative uses for the FFTF but then announced the permanent deactivation of the FFTF in December 2001. Its core support basket was later drilled in May 2005, so as to remove all remaining sodium coolant. On April 17, 2006, the American Nuclear Society designated the FFTF as a “National Nuclear Historic Landmark”.

  9. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  10. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetic fluctuation-induced particle flux "invited... a... W. X. Ding, D. L. Brower, and T. Y. Yates Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA Í‘Presented 13 May 2008; received 12 May 2008; accepted 16 May 2008; published online 31 October 2008Í’ Magnetic field fluctuation-induced particle transport has been directly measured in the high-temperature core of the MST reversed field pinch plasma. Measurement of radial

  11. Attempt to measure magnetic hyperfine fields in metallic thin wires under spin Hall conditions using synchrotron-radiation Mössbauer spectroscopy

    SciTech Connect (OSTI)

    Mibu, K. Tanaka, M. A.; Mitsui, T.; Masuda, R.; Kitao, S.; Kobayashi, Y.; Seto, M.; Yoda, Y.

    2015-05-07

    Measurement of the magnetic hyperfine fields in metallic thin wires under spin Hall conditions was attempted using the emerging technique, synchrotron-radiation Mössbauer spectroscopy. A Mössbauer probe layer of {sup 57}Fe (0.2?nm), {sup 57}Fe (0.6?nm), or {sup 119}Sn (0.6?nm) was embedded as an electron spin detector near the surfaces of V, Au, Pt, and {sup 56}Fe wires. The magnitudes of the magnetic hyperfine fields at the {sup 57}Fe and {sup 119}Sn nuclear sites that could be enhanced by non-equilibrium conduction-electron spin polarization were measured both without and with the application of an electric current along the wire. Changes in the Mössbauer spectra were not clearly observed, indicating that the magnetic hyperfine field induced by non-equilibrium spin polarization is smaller than the detection limit at least for the measured systems and conditions.

  12. Influence of combustion conditions and coal properties on physical properties of fly ash generated from pulverized coal combustion

    SciTech Connect (OSTI)

    Hiromi Shirai; Hirofumi Tsuji; Michitaka Ikeda; Toshinobu Kotsuji

    2009-07-15

    To develop combustion technology for upgrading the quality of fly ash, the influences of the coal properties, such as the size of pulverized coal particles and the two-stage combustion ratio during the combustion, on the fly ash properties were investigated using our test furnace. The particle size, density, specific surface area (obtained by the Blaine method), and shape of fly ash particles of seven types of coal were measured. It was confirmed that the size of pulverized coal particles affects the size of the ash particles. Regarding the coal properties, the fuel ratio affected the ash particle size distribution. The density and shape of the ash particles strongly depended on their ash size. Our results indicated that the shape of the ash particles and the concentration of unburned carbon affected the specific surface area. The influence of the two-stage combustion ratio was limited. 8 refs., 13 figs., 3 tabs.

  13. Characterization of scatter in digital mammography from use of Monte Carlo simulations and comparison to physical measurements

    SciTech Connect (OSTI)

    Leon, Stephanie M. Wagner, Louis K.; Brateman, Libby F.

    2014-11-01

    Purpose: Monte Carlo simulations were performed with the goal of verifying previously published physical measurements characterizing scatter as a function of apparent thickness. A secondary goal was to provide a way of determining what effect tissue glandularity might have on the scatter characteristics of breast tissue. The overall reason for characterizing mammography scatter in this research is the application of these data to an image processing-based scatter-correction program. Methods: MCNPX was used to simulate scatter from an infinitesimal pencil beam using typical mammography geometries and techniques. The spreading of the pencil beam was characterized by two parameters: mean radial extent (MRE) and scatter fraction (SF). The SF and MRE were found as functions of target, filter, tube potential, phantom thickness, and the presence or absence of a grid. The SF was determined by separating scatter and primary by the angle of incidence on the detector, then finding the ratio of the measured scatter to the total number of detected events. The accuracy of the MRE was determined by placing ring-shaped tallies around the impulse and fitting those data to the point-spread function (PSF) equation using the value for MRE derived from the physical measurements. The goodness-of-fit was determined for each data set as a means of assessing the accuracy of the physical MRE data. The effect of breast glandularity on the SF, MRE, and apparent tissue thickness was also considered for a limited number of techniques. Results: The agreement between the physical measurements and the results of the Monte Carlo simulations was assessed. With a grid, the SFs ranged from 0.065 to 0.089, with absolute differences between the measured and simulated SFs averaging 0.02. Without a grid, the range was 0.28–0.51, with absolute differences averaging ?0.01. The goodness-of-fit values comparing the Monte Carlo data to the PSF from the physical measurements ranged from 0.96 to 1.00 with a grid and 0.65 to 0.86 without a grid. Analysis of the data suggested that the nongrid data could be better described by a biexponential function than the single exponential used here. The simulations assessing the effect of breast composition on SF and MRE showed only a slight impact on these quantities. When compared to a mix of 50% glandular/50% adipose tissue, the impact of substituting adipose or glandular breast compositions on the apparent thickness of the tissue was about 5%. Conclusions: The findings show agreement between the physical measurements published previously and the Monte Carlo simulations presented here; the resulting data can therefore be used more confidently for an application such as image processing-based scatter correction. The findings also suggest that breast composition does not have a major impact on the scatter characteristics of breast tissue. Application of the scatter data to the development of a scatter-correction software program can be simplified by ignoring the variations in density among breast tissues.

  14. ARM - Measurement - Surface condition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Forecasts Model Data LANDCOVER-SAT : Landcover Derived From Satellite Data RSP : Research Scanning Polarimeter MET : Surface Meteorological Instrumentation VEGWATER-SAT :...

  15. CHEMICAL AND PHYSICAL CONDITIONS IN MOLECULAR CLOUD CORE DC 000.4-19.5 (SL42) IN CORONA AUSTRALIS

    SciTech Connect (OSTI)

    Hardegree-Ullman, E.; Whittet, D. C. B.; Harju, J.; Juvela, M.; Sipilae, O.; Hotzel, S.

    2013-01-20

    Chemical reactions in starless molecular clouds are heavily dependent on interactions between gas phase material and solid phase dust and ices. We have observed the abundance and distribution of molecular gases in the cold, starless core DC 000.4-19.5 (SL42) in Corona Australis using data from the Swedish ESO Submillimeter Telescope. We present column density maps determined from measurements of C{sup 18}O (J = 2-1, 1-0) and N{sub 2}H{sup +} (J = 1-0) emission features. Herschel data of the same region allow a direct comparison to the dust component of the cloud core and provide evidence for gas phase depletion of CO at the highest extinctions. The dust color temperature in the core calculated from Herschel maps ranges from roughly 10.7 to 14.0 K. This range agrees with the previous determinations from Infrared Space Observatory and Planck observations. The column density profile of the core can be fitted with a Plummer-like density distribution approaching n(r) {approx} r {sup -2} at large distances. The core structure deviates clearly from a critical Bonnor-Ebert sphere. Instead, the core appears to be gravitationally bound and to lack thermal and turbulent support against the pressure of the surrounding low-density material: it may therefore be in the process of slow contraction. We test two chemical models and find that a steady-state depletion model agrees with the observed C{sup 18}O column density profile and the observed N(C{sup 18}O) versus A{sub V} relationship.

  16. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    SciTech Connect (OSTI)

    Wardaya, P. D. Noh, K. A. B. M. Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.

  17. Radiological Survey of Contaminated Installations of Research Reactor before Dismantling in High Dose Conditions with Complex for Remote Measurements of Radioactivity - 12069

    SciTech Connect (OSTI)

    Danilovich, Alexey; Ivanov, Oleg; Lemus, Alexey; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly

    2012-07-01

    Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. These research reactors have a long history and many installations - nine loop facilities for experiments with different kinds of fuel. When decommissioning nuclear facilities it is necessary to measure the distribution of radioactive contamination in the rooms and at the equipment at high levels of background radiation. At 'Kurchatov Institute' some special remote control measuring systems were developed and they are applied during dismantling of the reactors MR and RFT. For a survey of high-level objects a radiometric system mounted on the robotic Brokk vehicle is used. This system has two (4? and collimated) dose meters and a high resolution video camera. Maximum measured dose rate for this system is ?8.5 Sv/h. To determine the composition of contaminants, a portable spectrometric system is used. It is a remotely controlled, collimated detector for scanning the distribution of radioactive contamination. To obtain a detailed distribution of contamination a remote-controlled gamma camera is applied. For work at highly contaminated premises with non-uniform background radiation, another camera is equipped with rotating coded mask (coded aperture imaging). As a result, a new system of instruments for remote radioactivity measurements with wide range of sensitivity and angular resolution was developed. The experience and results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. These activities are conducted under the Federal Program for Nuclear and Radiation Safety of Russia. Adaptation of complex remote measurements of radioactivity and survey of contaminated installations of research reactor before dismantling in high dose conditions has proven successful. The radioactivity measuring devices for operation at high, non-uniform dose background were tested in the field and a new data of measurement of contamination distribution in the premises and installations were obtained. (authors)

  18. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    core velocity fluctuations and the dynamo in a reversed-field pinch * D. J. Den Hartog, †,a) J. T. Chapman, b) D. Craig, G. Fiksel, P. W. Fontana, S. C. Prager, and J. S. Sarff Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 ͑Received 16 November 1998; accepted 20 January 1999͒ Plasma flow velocity fluctuations have been directly measured in the high-temperature magnetically confined plasma in the Madison Symmetric Torus ͑MST͒

  19. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 H( 7 Be, 8 B)γ cross section by Ryan P. Fitzgerald A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics & Astronomy. Chapel Hill 2005 Approved: A. E. Champagne, Advisor J. C. Blackmon, Reader C. Iliadis, Reader ABSTRACT Ryan P. Fitzgerald: Measurement of the 1 H( 7 Be, 8 B)γ cross section (Under the Direction of A. E. Champagne) The fusion

  20. PHYSICAL ORIGIN OF DIFFERENCES AMONG VARIOUS MEASURES OF SOLAR MERIDIONAL CIRCULATION

    SciTech Connect (OSTI)

    Dikpati, Mausumi; Gilman, Peter A.; Ulrich, Roger K.

    2010-10-10

    We show that systematic differences between surface Doppler and magnetic element tracking measures of solar meridional flow can be explained by the effects of surface turbulent magnetic diffusion. Feature-tracking speeds are lower than plasma speeds in low and mid latitudes, because magnetic diffusion opposes poleward plasma flow in low latitudes whereas it adds to plasma flow at high latitudes. Flux-transport dynamo models must input plasma flow; the model outputs yield estimates of the surface magnetic feature tracking speed. We demonstrate that the differences between plasma speed and magnetic pattern speed in a flux-transport dynamo are consistent with the observed difference between these speeds.

  1. Connecting Global Measures of 3D Magnetic Reconnection to Local Kinetic Physics

    SciTech Connect (OSTI)

    Daughton, William Scott

    2015-07-16

    After giving the motivation for the work, slides present the topic under the following headings: Description of LAPD experiment; Actual simulation setup; Simple kinetic theory of ined-tied tearing; Diagnostics to characterizing 3D reconnection; Example #1 - short-tied system; and Example #2 - long line-tied system. Colorful simulations are shown for quasipotential vs field line exponentiation, field line integrated Ohms Law, and correlation with agyrotopy & energy conversion for example #1; and evolution of current density for largest case, field exponentiation vs quasi-potential, and time evolution of magnetic field lines for example #2. To satisfy line-tied boundary conditions, there is need for superposition of oblique modes--the simple two-mode approximation works surprisingly well. For force-free layers with bg >1, the fastest growing periodic modes are oblique with kx? ~0.5. This implies a minimum length of Ly > 2??bg. There are strong correlations between ? ? ? ? A0e (observable with spacecraft). Electron pressure tensor is the dominant non-ideal term.

  2. Planetary Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planetary Physics Some of the most intriguing NIF experiments test the physics believed to determine the structures of planets down to their cores, both in our solar system and beyond. In particular, scientists are using NIF to "explore" recently discovered exoplanets by duplicating the extreme conditions thought to exist in their interiors. Hundreds of extrasolar planets have been identified, some smaller than Earth and others a dozen times more massive than Jupiter. There is intense

  3. Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radial profile of magnetic field in the Gas-Dynamic Trap using a motional Stark effect diagnostic P. A. Bagryansky, P. P. Deichuli, A. A. Ivanov, S. A. Korepanov, A. A. Lizunov, S. V. Murakhtin, and V. Ya. Savkin Budker Institute of Nuclear Physics, 11 Academician Lavrentiev prospect, Novosibirsk 630090, Russia D. J. Den Hartog a) and G. Fiksel Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 Í‘Presented on 8 July 2002Í’ We have implemented a spectral motional

  4. Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MHD Dynamo in the Quasi-Single-Helicity Reversed-Field Pinch P. Piovesan, 1 D. Craig, 2 L. Marrelli, 1 S. Cappello, 1 and P. Martin 1,3 1 Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti,4 35127 Padova, Italy 2 Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA 3 Department of Physics, University of Padova, Padova, Italy (Received 7 May 2004; published 29 November 2004) The first experimental study of the MHD dynamo in a

  5. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  6. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    current profile dynamics in the Madison Symmetric Torus S. D. Terry, a) D. L. Brower, and W. X. Ding Electrical Engineering Department, University of California, Los Angeles, California 90095 J. K. Anderson, T. M. Biewer, B. E. Chapman, D. Craig, C. B. Forest, R. O'Connell, S. C. Prager, and J. S. Sarff Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 Í‘Received 26 August 2003; accepted 20 November 2003Í’ The current profile and core magnetic field fluctuation amplitudes

  7. Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nonlinear Hall-Driven Reconnection in the Reversed Field Pinch by Timothy D. Tharp A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) at the University of Wisconsin - Madison 2010 c 2010 Timothy D. Tharp All Rights Reserved i Acknowledgements I would like to acknowledge the many great people in my life who have made this thesis possible. This work was built on the contributions of many previous individuals, including professors,

  8. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The general replacement of low-efficiency air conditioners (replacing units in all houses without considering pre-weatherization air-conditioning electricity consumption) was not cost effective in the test houses. ECMs installed under the Oklahoma WAP and installed in combination with an attic radiant barrier did not produce air-conditioning electricity savings that could be measured in the field test. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this type of housing.

  9. Particle image velocimetry measurements for opposing flow in a vertical channel with a differential and asymmetric heating condition

    SciTech Connect (OSTI)

    Martinez-Suastegui, L. [Graduate Student, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, C.U., Mexico 04510 D.F. (Mexico); Trevino, C. [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, C.U., Mexico 04510 D.F. (Mexico)

    2007-10-15

    Particle image velocimetry (PIV) measurements were carried out in an experimental investigation of laminar mixed convection in a vertical duct with a square cross-section. The main downward water-flow is driven by gravity while a portion of a lateral side is heated, and buoyancy forces produce non-stationary vortex structures close to the heated region. Various ranges of the Grashof number, Gr are studied in combination with the Reynolds number, Re varying from 300 to 700. The values of the generalized buoyancy parameter or Richardson number, Ri = Gr/Re{sup 2} parallel to the Grashof number are included in the results. The influence of these nondimensional parameters and how they affect the fluid flow structure and vortex sizes and locations are reported. The flow patterns are nonsymmetric, periodic, and exhibit increasing complexity and frequency for increasing buoyancy. For the averaged values of the resulting vortex dimensions, it was found that a better and more congruent representation occurs when employing the Grashof and Reynolds numbers as independent parameters. (author)

  10. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hall Dynamo Effect during Magnetic Reconnection in a High-Temperature Plasma W. X. Ding, 1,3 D. L. Brower, 1,3 D. Craig, 2,3 B. H. Deng, 1,3 G. Fiksel, 2,3 V. Mirnov, 2,3 S. C. Prager, 2,3 J. S. Sarff, 2,3 and V. Svidzinski 2,3 1 Electrical Engineering Department, University of California at Los Angeles, Los Angeles, California 90095, USA 2 Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA 3 Center for Magnetic Self-Organization in Astrophysical and Laboratory

  11. Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    momentum and current transport from tearing instability in the Madison Symmetric Torus reversed-field pinch a... A. Kuritsyn, 1,2,bÍ’ G. Fiksel, 1,2 A. F. Almagri, 1,2 D. L. Brower, 2,3 W. X. Ding, 2,3 M. C. Miller, 1,2 V. V. Mirnov, 1,2 S. C. Prager, 1,2 and J. S. Sarff 1,2 1 Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA 2 Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

  12. Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetic field induced by a turbulent flow of liquid metal a... M. D. Nornberg, E. J. Spence, R. D. Kendrick, C. M. Jacobson, and C. B. Forest bÍ’ Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 Í‘Received 28 October 2005; accepted 20 January 2006; published online 8 May 2006Í’ Initial results from the Madison Dynamo Experiment provide details of the inductive response of a turbulent flow of liquid sodium to an applied magnetic field. The

  13. Evaluation of experimentally measured and model-calculated pH for rock-brine-CO2 systems under geologic CO2 sequestration conditions

    SciTech Connect (OSTI)

    Shao, Hongbo; Thompson, Christopher J.; Cantrell, Kirk J.

    2013-11-01

    pH is an essential parameter for understanding the geochemical reactions that occur in rock-brine-CO2 systems when CO2 is injected into deep geologic formations for long-term storage. Due to a lack of reliable experimental methods, most laboratory studies conducted under geological CO2 sequestration (GCS) conditions have relied on thermodynamic modeling to estimate pH. The accuracy of these model predictions is typically uncertain. In our previous work, we have developed a method for pH determination by in-situ spectrophotometry. In the present work, we expanded the applicable pH range for this method and measured the pH of several rock-brine-CO2 systems at GCS conditions for five rock samples collected from ongoing GCS demonstration projects. Experimental measurements were compared with pH values calculated using several geochemical modeling approaches. The effect of different thermodynamic databases on the accuracy of model prediction was evaluated. Results indicate that the accuracy of model calculations is rock-dependent. For rocks comprised of carbonate and sandstone, model results generally agreed well with experimentally measured pH; however, for basalt, significant differences were observed. These discrepancies may be due to the models’ failure to fully account for certain reaction occurring between the basalt minerals the CO2-saturated brine solutions.

  14. Security Conditions

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-08

    This Notice ensures that DOE uniformly meets the requirements of the Homeland Security Advisory System outlined in Homeland Security Presidential Directive-3, Threat Conditions and Associated Protective Measures, dated 3-11-02, and provides responses specified in Presidential Decision Directive 39, U.S. Policy on Counterterrorism (U), dated 6-21-95. It cancels DOE N 473.8, Security Conditions, dated 8-7-02. Extended until 7-7-06 by DOE N 251.64, dated 7-7-05 Cancels DOE N 473.8

  15. Measurement and Basic Physics Committee of the US cross-section evaluation working group. Annual report 1996

    SciTech Connect (OSTI)

    Smith, D.L.; McLane, V.

    1996-11-01

    The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with the responsibility for organizing and overseeing the U.S. cross-section evaluation effort. It`s main product is the official U.S. evaluated nuclear data file, ENDF. The current version of this file is Version VI. All evaluations included in ENDF are reviewed and approved by CSEWG and issued by the U.S. Nuclear Data Center, Brookhaven National Laboratory. CSEWG is comprised of volunteers from the U.S. nuclear data community who possess expertise in evaluation methodologies and who collectively have been responsible for producing most of the evaluations included in ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the U.S. were declining at an alarming rate and needed all possible encouragement to avoid the loss of this resource. The mission of the Committee is to maintain a network of experimentalists in the U.S. that would provide needed encouragement to the national nuclear data measurement effort through improved communication and facilitation of collaborative activities. In 1994, an additional charge was added to the responsibilities of this Committee, namely, to serve as an interface between the more applied interests represented in CSEWG and the basic nuclear science community. This annual report is the second such document issued by the Committee. It contains voluntary contributions from eleven laboratories in the U.S. which have been prepared by members of the Committee and submitted to the Chairman for compilation and editing. It is hoped that the information provided here on the work that is going on at the reporting laboratories will prove interesting and stimulating to the readers.

  16. Prediction and measurement of optimum operating conditions for entrained coal gasification processes. Quarterly technical progress report, No. 1, 1 November 1979-31 January 1980

    SciTech Connect (OSTI)

    Smoot, L.D.; Hedman, P.O.; Smith, P.J.

    1980-02-15

    This report summarizes work completed to predict and measure optimum operating conditions for entrained coal gasifications processes. This study is the third in a series designed to investigate mixing and reaction in entrained coal gasifiers. A new team of graduate and undergraduate students was formed to conduct the experiments on optimum gasification operating conditions. Additional coal types, which will be tested in the gasifier were identified, ordered, and delivered. Characterization of these coals will be initiated. Hardware design modifications to introduce swirl into the secondary were initiated. Minor modifications were made to the gasifier to allow laser diagnostics to be made on an independently funded study with the Los Alamos Scientific Laboratory. The tasks completed on the two-dimensional model included the substantiation of a Gaussian PDF for the top-hat PDF in BURN and the completion of a Lagrangian particle turbulent dispersion module. The reacting submodel is progressing into the final stages of debug. The formulation of the radiation submodel is nearly complete and coding has been initiated. A device was designed, fabricated, and used to calibrate the actual Swirl Number of the cold-flow swirl generator used in the Phase 2 study. Swirl calibrations were obtained at the normal tests flow rates and at reduced flow rates. Two cold-flow tests were also performed to gather local velocity data under swirling conditions. Further analysis of the cold-flow coal-dust and swirl test results from the previous Phase 2 study were completed.

  17. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interpretation of micro benchmark and application energy use on the Cray XC30 Brian Austin, and Nicholas J. Wright ⇤ August 29, 2014 Abstract Understanding patterns of application energy use is key to reaching future HPC e ciency goals. We have measured the sensitivity of en- ergy use to CPU frequency for several microbenchmarks and applications on a Cray XC30. First order fits to the performance and power data are su cient to describe the energy used by these applications. Exam- ination of

  18. PDR MODEL MAPPING OF PHYSICAL CONDITIONS VIA SPITZER/IRS SPECTROSCOPY OF H{sub 2}: THEORETICAL SUCCESS TOWARD NGC 2023-SOUTH

    SciTech Connect (OSTI)

    Sheffer, Y.; Wolfire, M. G.; Hollenbach, D. J.; Kaufman, M. J.; Cordier, M.

    2011-11-01

    We use the Infrared Spectrograph on Spitzer to observe the southern part of the reflection nebula NGC 2023, including the Southern Ridge, which is a photodissociation region (PDR) par excellence excited by HD 37903. Five pure-rotational H{sub 2} emission lines are detected and mapped over and around the Southern Ridge in order to compare with predicted level column densities from theoretical PDR models. We find very good agreement between PDR model predictions and emission line intensities and ratios measured with Spitzer, leading us to conclude that grain photoelectric heating sufficiently warms the gas to produce the observed H{sub 2} line emission via collisional excitation. On the Southern Ridge, we infer a hydrogen nucleus density n{sub H} Almost-Equal-To 2 Multiplication-Sign 10{sup 5} cm{sup -3} and radiation field strength {chi} Almost-Equal-To 10{sup 4} relative to the local Galactic interstellar radiation field. This high value for {chi} independently predicts a distance toward HD 37903 of 300 pc and is consistent with the most recent Hipparcos results. Over the map we find that both n{sub H} and {chi} vary by a factor of {approx}3. Such two-dimensional variations provide clues about the underlying three-dimensional structure of the Southern Ridge field, which appears to be the tip of a molecular cloud. We also map variations in excitation temperature and the ortho-to-para ratio, the latter attaining values of {approx}1.5-2.0 on the Southern Ridge, and find that PDR modeling can readily reproduce observed ortho-to-para ratios that are <3 for rotational excitation dominated by collisional processes. Last, the stars Sellgren C and G are discovered to be resolved on archival Hubble Space Telescope images into two point sources each, with separations of {approx}<0.''5.

  19. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (I kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.; Wright, J.B.

    1980-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.0 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a representative stainless steel spent fuel canister, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel drywell tests being conducted at E-MAD as well as for four constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  20. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (1.4 kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.

    1981-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.4 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a stainless steel canister representative of actual fuel canisters, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel near-surface drywell tests being conducted at E-MAD, the spent fuel deep geologic storage test being conducted in Climax granite on the Nevada Test Site, and for five constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  1. PHYSICAL SCIENCES, Physics Phase

    Office of Scientific and Technical Information (OSTI)

    SCIENCES, Physics Phase competition in trisected superconducting dome I. M. Vishik, 1, 2 M Hashimoto, 3 R.-H. He, 4 W. S. Lee, 1, 2 F. Schmitt, 1, 2 D. H. Lu, 3 R. G. Moore, 1...

  2. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions

    SciTech Connect (OSTI)

    Brunner, Claudia C.; Stern, Stanley H.; Chakrabarti, Kish; Minniti, Ronaldo; Parry, Marie I.; Skopec, Marlene

    2013-08-15

    Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reed National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.Results: The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 mGy, respectively. The GE Discovery delivers about the same amount of dose (43.7 mGy) when run under similar operating and image-reconstruction conditions, i.e., without tube current modulation and ASIR. The image-metrics analysis likewise showed that the MTF, NPS, and CNR associated with the reconstructed images are mutually comparable when the three scanners are run with similar settings, and differences can be attributed to different edge-enhancement properties of the applied reconstruction filters. Moreover, when the GE scanner was operated with the facility's scanner settings for routine head exams, which apply 50% ASIR and use only approximately half of the 100%-FBP dose, the CNR of the images showed no significant change. Even though the CNR alone is not sufficient to characterize the image quality and justify any dose reduction claims, it can be useful as a constancy test metric.Conclusions: This work presents a straightforward method to connect direct measurements of CT dose with objective image metrics such as high-contrast resolution, noise, and CNR. It demonstrates that OSLD measurements in an anthropomorphic head phantom allow a realistic and locally precise estimation of magnitude and spatial distribution of dose in tissue delivered during a typical CT head scan. Additional objective analysis of the images of the ACR accreditation phantom can be used to relate the measured doses to high contrast resolution, noise, and CNR.

  3. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Programs Office of Science Nuclear Physics science-innovationassetsimagesicon-science.jpg Nuclear Physics Enabling remarkable discoveries and tools that ...

  4. Subatomic Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Subatomic Physics We play a major role in large-scale scientific collaborations around the world, performing nuclear physics experiments that advance the understanding of the ...

  5. Theoretical Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Theoretical Physics Understanding discoveries at the Energy, Intensity, and Cosmic ... HEP Theory at Los Alamos The Theoretical High Energy Physics group at Los Alamos National ...

  6. Aerosol Radiative Forcing Under Cloudless Conditions.in Winter ZCAREX-2001

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forcing Under Cloudless Conditions in Winter ZCAREX-2001 G. S. Golitsyn, I. A. Gorchakova, and I. I. Mokhov Institute of Atmospheric Physic Moscow, Russia Introduction Aerosol radiative forcing (ARF) is estimated for winter clear-sky conditions from measurements during ZCAREX-2001-Cloud-Aerosol-Radiation Experiment in February-March, 2001 at the Zvenigorod Scientific Station (ZSS) of the A.M. Obukhov Institute of Atmospheric Physics RAS. ARF in the shortwave range is determined by the difference

  7. Physics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Physics Physics On January 13, 2012, Lawrence Berkeley National Laboratory senior scientist Dr. Saul Perlmutter spoke with Energy Department staff about his research that earned him a 2011 Nobel Prize in Physics. Featured Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe Researchers at Fermi National Lab team stand beside the 570-megapixels, five-ton Dark Energy camera, which will be capable of measuring the expansion of the universe - and developing better models about how

  8. Theoretical Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Theoretical Physics Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email HEP Theory at Los Alamos The Theoretical High Energy Physics group at Los Alamos National Laboratory is active in a number of diverse areas of research. Their primary areas of interest are in physics beyond the Standard Model, cosmology, dark matter, lattice quantum chromodynamics, neutrinos, the fundamentals of

  9. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Programs » Office of Science » Nuclear Physics /science-innovation/_assets/images/icon-science.jpg Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Isotopes» A roadmap of matter that will help unlock the secrets of how the universe is put together The DOE Office of Science's Nuclear Physics (NP) program supports the experimental and theoretical research needed to create

  10. physical security

    National Nuclear Security Administration (NNSA)

    5%2A en Physical Security Systems http:nnsa.energy.govaboutusourprogramsnuclearsecurityphysicalsecuritysystems

  11. Physical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the universe around us. Physics Division researchers are studying these interactions from the outermost reaches of the cosmos, to the innermost confines of subatomic particles....

  12. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate Cocoa, Florida PROJECT INFORMATION Project Name: Flexible Residential Test Facility Location: Cocoa, FL Partners: Florida Energy Systems Consortium www.floridaenergy.ufl.edu/ Building America Partnership for Improved Residential Construction, www.ba-pirc.org Building Components: Infiltration and ventilation Application: Single-family Year Tested: 2012-2013 Applicable Climate

  13. J.E. 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEFORMED NUCLEI...

    Office of Scientific and Technical Information (OSTI)

    years of nuclear fission: Nuclear data and measurements series Lynn, J.E. 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEFORMED NUCLEI; FISSION BARRIER; FISSION; HISTORICAL ASPECTS;...

  14. Weather Conditions at LBNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Conditions at LBNL

  15. Meteorological Conditions at LBNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meteorological Conditions at LBNL

  16. LANSCE Weapons Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 LANSCE Weapons Physics Fortune 500 companies and weapons designers alike rely on our internationally recognized nuclear physics and materials science expertise as well as our one-of-a-kind experimental tools. Contact Us Group Leader Gus Sinnis Email Deputy Group Leader Fredrik Tovesson Email Deputy Group Leader and Experimental Area Manager Charles Kelsey Email Group Office (505) 665-5390 Time Projection Chamber at LANSCE Researcher making measurements of fission cross sections on the Time

  17. Measurement of porosity in a composite high explosive as a function of pressing conditions by ultra-small-angle neutron scattering with contrast variation

    SciTech Connect (OSTI)

    Mang, Joseph Thomas; Hjelm, Rex P; Francois, Elizabeth G

    2009-01-01

    We have used ultra-small-angle neutron scattering (USANS) with contrast variation to measure the porosity (voids and binder-filled regions) in a composite high explosive, PBX 9501, formulated with a deuterated binder. Little is known about the microstructure of pressed PBX 9501 parts and thus how it is affected by processing. Here, we explore the effect of varying the pressing intensity on the PBX 9501 microstructure. Disk-shaped samples of PBX 9501 were die-pressed with applied pressures ranging between 10,000 and 29,000 psi at 90 C. Five samples were prepared at each pressure that differed in the fraction of deuterated binder, facilitating variation of the neutron scattering length density contrast ({Delta}{rho}) and thus, the resolution of microstructural details. The sample composition was determined by calculation of the Porod Invariant as a function of {Delta}{rho} and compared with compositional estimates obtained from the bulk sample density. Structural modeling of the USANS data, at different levels of contrast, assuming both spherical and cylindrical morphologies, allowed the mean size and size distribution of voids and binder-filled regions to be determined. A decrease in the mean diameter of binder-filled regions was found with increasing pressing intensity, while the mean void diameter showed no significant change.

  18. Precision timing measurements for high energy photons (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Journal Article: Precision timing measurements for high energy photons Citation Details In-Document Search Title: Precision timing measurements for high energy photons Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter

  19. CRITICAL CONFIGURATION AND PHYSICS MEASUREMENTS FOR BERYLLIUM REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH)

    SciTech Connect (OSTI)

    Margaret A. Marshall

    2013-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil when it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one NaI scintillator and the other foil on the other NaI detector and the activities measured simultaneously. The activation of a particular foil was compared to that of the normalization foil by dividing the count rate for each foil by that of the normalization foil. To correct for the differing efficiencies of the two NaI detectors, the normalization foil was counted in Detector 1 simultaneously with the foil at position x in Detector 2, and then the normalization foil was counted simultaneously in Detector 2 with the foil from position x in Counter 1. The activity of the foil from position x was divided by the activity of the normalization foil counted simultaneously. This resulted in obtaining two values of the ratio that were then averaged. This procedure essentially removed the effect of the differing efficiencies of the two NaI detectors. Differing efficiencies of 10% resulted in errors in the ratios measured to less than 1%. The background counting rates obatined with the foils used for the measurements on the NaI detectors before their irradiation measurement were subtracted from all count rates. The results of the cadmium ratio measurements are given in Table 1.3-1 and Figure 1.3-1. “No correction has been made for self shielding in the foils” (Reference 3).

  20. CRITICAL CONFIGURATION AND PHYSICS MEASUREMENTS FOR BERYLLIUM REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH AND 7-TUBE CLUSTERS)

    SciTech Connect (OSTI)

    Margaret A. Marshall

    2014-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil when it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one NaI scintillator and the other foil on the other NaI detector and the activities measured simultaneously. The activation of a particular foil was compared to that of the normalization foil by dividing the count rate for each foil by that of the normalization foil. To correct for the differing efficiencies of the two NaI detectors, the normalization foil was counted in Detector 1 simultaneously with the foil at position x in Detector 2, and then the normalization foil was counted simultaneously in Detector 2 with the foil from position x in Counter 1. The activity of the foil from position x was divided by the activity of the normalization foil counted simultaneously. This resulted in obtaining two values of the ratio that were then averaged. This procedure essentially removed the effect of the differing efficiencies of the two NaI detectors. Differing efficiencies of 10% resulted in errors in the ratios measured to less than 1%. The background counting rates obatined with the foils used for the measurements on the NaI detectors before their irradiation measurement were subtracted from all count rates. The results of the cadmium ratio measurements are given in Table 1.3-1 and Figure 1.3-1. “No correction has been made for self shielding in the foils” (Reference 3).

  1. B physics: first evidence for b_s0 --> phi phi decay and measurements of branching ratio and a_cp for b+ --> phi k+

    SciTech Connect (OSTI)

    Acosta, D.; The CDF Collaboration

    2005-05-31

    We present the first evidence of charmless decays of the B{sub s}{sup 0} meson, the decay B{sub s}{sup 0} {yields} {phi}{phi}, and a measurement of the Branching Ratio BR(B{sub s}{sup 0} {yields} {phi}{phi}) using 180 pb{sup -1} of data collected by the CDF II experiment at the Fermilab Tevatron collider. In addition, the BR and direct CP asymmetry for the B{sup +} {yields} {phi}K{sup +} decay are measured.

  2. Physical Scientist

    Broader source: Energy.gov [DOE]

    The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of...

  3. Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Almost all of the observable matter in the universe is in the plasma state. Formed at high temperatures, plasmas consist of freely moving ions and free electrons. They are often called the "fourth state of matter" because their unique physical properties distinguish them from solids, liquids and gases. Plasma densities and temperatures vary widely, from the cold gases of interstellar space to the extraordinarily hot, dense cores of stars and inside a detonating nuclear

  4. Physics and optimization of plasma startup in the RFP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Please note that terms and conditions apply. Physics and optimization of plasma startup in ... Fusion 55 (2015) 053004 (13pp) doi:10.10880029-5515555053004 Physics and optimization ...

  5. Physical Properties of Gas Hydrates: A Review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gabitto, Jorge F.; Tsouris, Costas

    2010-01-01

    Memore » thane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16   m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.« less

  6. A Resilient Condition Assessment Monitoring System

    SciTech Connect (OSTI)

    Humberto Garcia; Wen-Chiao Lin; Semyon M. Meerkov

    2012-08-01

    An architecture and supporting methods are presented for the implementation of a resilient condition assessment monitoring system that can adaptively accommodate both cyber and physical anomalies to a monitored system under observation. In particular, the architecture includes three layers: information, assessment, and sensor selection. The information layer estimates probability distributions of process variables based on sensor measurements and assessments of the quality of sensor data. Based on these estimates, the assessment layer then employs probabilistic reasoning methods to assess the plant health. The sensor selection layer selects sensors so that assessments of the plant condition can be made within desired time periods. Resilient features of the developed system are then illustrated by simulations of a simplified power plant model, where a large portion of the sensors are under attack.

  7. Measurement Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins 2016 Joseph F. Keithley Award for Advances in Measurement Science October 15, 2015 Honors to Albert Migliori, developer of resonant ultrasound spectroscopy LOS ALAMOS, N.M., Oct. 15, 2015-Los Alamos National Laboratory physicist Albert Migliori, having led the development of a powerful tool for important measurements in condensed matter physics including superconductivity, is being given the Joseph F. Keithley Award For Advances in Measurement Science, the top instrumentation prize of the

  8. Flavor Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flavor Physics and CP Violation Conference, Bled, 2007 1 The Search for ν µ → ν e Oscillations at MiniBooNE H. A. Tanaka, for the MiniBooNE collaboration Department of Physics, Joseph Henry Laboratories, Princeton University, Princeton, New Jersey, 08544 United States of America MiniBooNE (Mini Booster Neutrino Experiment) searches for the ν µ → ν e oscillations with ∆m 2 ∼ 1 eV 2 /c 4 indicated by the LSND experiment. The LSND evidence, when taken with the solar and atmospheric

  9. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-07-23

    This Manual establishes requirements for the physical protection of interests under the U.S. Department of Energys (DOEs) purview ranging from facilities, buildings, Government property, and employees to national security interests such as classified information, special nuclear material (SNM), and nuclear weapons. Cancels Section A of DOE M 470.4-2 Chg 1. Canceled by DOE O 473.3.

  10. Physics Division News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PADSTE ADEPS Physics Physics Division News Physics Division News Discover more about the wide-ranging scope of Physics Division science and technology. Contact Us ADEPS ...

  11. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    This Manual establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Chg 1, dated 3/7/06. Cancels: DOE M 473.1-1 and DOE M 471.2-1B

  12. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    Establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Cancels: DOE M 473.1-1 and DOE M 471.2-1B.

  13. Physical unclonable functions: A primer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bauer, Todd; Hamlet, Jason

    2014-11-01

    Physical unclonable functions (PUFs) make use of the measurable intrinsic randomness of physical systems to establish signatures for those systems. Thus, PUFs provide a means to generate unique keys that don't need to be stored in nonvolatile memory, and they offer exciting opportunities for new authentication and supply chain security technologies.

  14. Fast Physics Testbed for the FASTER Project

    SciTech Connect (OSTI)

    Lin, W.; Liu, Y.; Hogan, R.; Neggers, R.; Jensen, M.; Fridlind, A.; Lin, Y.; Wolf, A.

    2010-03-15

    This poster describes the Fast Physics Testbed for the new FAst-physics System Testbed and Research (FASTER) project. The overall objective is to provide a convenient and comprehensive platform for fast turn-around model evaluation against ARM observations and to facilitate development of parameterizations for cloud-related fast processes represented in global climate models. The testbed features three major components: a single column model (SCM) testbed, an NWP-Testbed, and high-resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling centers and aims to maximize the potential of SCM approach to enhance and accelerate the evaluation and improvement of fast physics parameterizations through continuous evaluation of existing and evolving models against historical as well as new/improved ARM and other complementary measurements. The NWP-Testbed aims to capitalize on the large pool of operational numerical weather prediction products. Continuous evaluations of NWP forecasts against observations at ARM sites are carried out to systematically identify the biases and skills of physical parameterizations under all weather conditions. The highresolution modeling (HRM) activities aim to simulate the fast processes at high resolution to aid in the understanding of the fast processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP-Testbeds towards eventual improvement of the parameterizations.

  15. Review of Physics Results from the Tevatron. Electroweak Physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kotwal, Ashutosh V.; Schellman, Heidi; Sekaric, Jadranka

    2015-02-17

    We summarize an extensive Tevatron (1984–2011) electroweak physics program that involves a variety of W and Z boson precision measurements. The relevance of these studies using single and associated gauge boson production to our understanding of the electroweak sector, quantum chromodynamics and searches for new physics is emphasized. Furthermore,we discuss the importance of the W boson mass measurement, the W/Z boson distributions and asymmetries, and diboson studies. We also highlight the recent Tevatron measurements and prospects for the final Tevatron measurements.

  16. Hadron physics

    SciTech Connect (OSTI)

    Bunce, G.

    1984-05-30

    Is all hadronic physics ultimately describable by QCD. Certainly, many disparate phenomena can be understood within the QCD framework. Also certainly, there are important questions which are open, both theoretically (little guidance, as yet) and experimentally, regarding confinement. Are there dibaryons, baryonium, glueballs. In addition, there are experimental results which at present do not have an explanation. This talk, after a short section on QCD successes and difficulties, will emphasize two experimental topics which have recent results - glueball spectroscopy and exclusive reactions at large momentum transfer. Both are experimentally accessible in the AGS/LAMPF II/AGS II/TRIUMF II/SIN II energy domain.

  17. Measuring Physical Properties of Polymer Electrolyte Membranes

    Broader source: Energy.gov [DOE]

    Presented by Cortney Mittelsteadt of Giner Electrochemical Systems, LLC, at the DOE High Temperature Membrane Working Group held September 14, 2006.

  18. Constraining the physical conditions in the jets of ?-ray flaring blazars using centimeter-band polarimetry and radiative transfer simulations. I. Data and models for 0420–014, OJ 287, and 1156+295

    SciTech Connect (OSTI)

    Aller, M. F.; Hughes, P. A.; Aller, H. D.; Latimer, G. E.; Hovatta, T.

    2014-08-10

    To investigate parsec-scale jet flow conditions during GeV ?-ray flares detected by the Fermi Large Angle Telescope, we obtained centimeter-band total flux density and linear polarization monitoring observations from 2009.5 through 2012.5 with the 26 m Michigan radio telescope for a sample of core-dominated blazars. We use these data to constrain radiative transfer simulations incorporating propagating shocks oriented at an arbitrary angle to the flow direction in order to set limits on the jet flow and shock parameters during flares temporally associated with ?-ray flares in 0420–014, OJ 287, and 1156+295; these active galactic nuclei exhibited the expected signature of shocks in the linear polarization data. Both the number of shocks comprising an individual radio outburst (3 and 4) and the range of the compression ratios of the individual shocks (0.5-0.8) are similar in all three sources; the shocks are found to be forward-moving with respect to the flow. While simulations incorporating transverse shocks provide good fits for 0420–014 and 1156+295, oblique shocks are required for modeling the OJ 287 outburst, and an unusually low value of the low-energy cutoff of the radiating particles' energy distribution is also identified. Our derived viewing angles and shock speeds are consistent with independent Very Long Baseline Array results. While a random component dominates the jet magnetic field, as evidenced by the low fractional linear polarization, to reproduce the observed spectral character requires that a significant fraction of the magnetic field energy is in an ordered axial component. Both straight and low pitch angle helical field lines are viable scenarios.

  19. Physics overview of AVLIS

    SciTech Connect (OSTI)

    Solarz, R.W.

    1985-02-01

    Atomic vapor laser isotope separation (AVLIS) represents the largest-scale potential application of tunable lasers that has received serious attention within the chemical physics community. For over a decade the US Department of Energy has funded an aggressive program in AVLIS at Lawrence Livermore National Laboratory. After extensive research, the underlying physical principles have been identified and optimized, the major technology components have been developed, and the integrated enrichment performance of the process has been tested under realistic conditions. The central physical processes are outlined, progress to date on the technology elements is reviewed, and scaling laws that can be used to scope out new applications are fomulated. The two primary applications of major interest to the Department of Energy are the production of light-water reactor fuel and the conversion of fuel-grade plutonium to weapons-grade material. In FY 1984 the total AVLIS funding level for these two missions was approximately $150M. In addition to these primary missions, a variety of applications exist that all potentially use a common base of AVLIS technology. These include missions such as the enrichment of mercury isotopes to improve fluorescent lamp efficiency, the enrichment of iodine isotopes for medical isotope use, and the cleanup of strontium from defense waste for recovering strontium isotopes for radio-thermal mechanical generators. We will see that the ability to rapidly assess the economic and technical feasibility of each mission is derived from the general applicability of AVLIS physics and AVLIS technology.

  20. LHC forward physics

    SciTech Connect (OSTI)

    Cartiglia, N.; Royon, C.

    2015-10-02

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chapter 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. The report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.

  1. Physics Topics - MST - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics UW Madison Madison Symmetric Torus Physics Topics MST HomeGraduate Student InformationLinksTourControl and Auxiliary SystemsPhysics TopicsDeviceResearch MissionMST People mst logo CPLA Home Directory Publications Links Internal University of Wisconsin Physics Department Research funding includes support from: Department of Energy National Science Foundation The MST physics challenges are large and many, but much of our work is captured in the following four major RFP physics goals

  2. Physics of Cancer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium Physics of Cancer Professor Wolfgang Losert, Associate Professor, and ... PDF icon Wolfgang Losert Bio.pdf Physics of Cancer Contact Information ...

  3. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Energy Physics science-innovationassetsimagesicon-science.jpg High Energy Physics Investigating the field of high energy physics through experiments that strengthen our ...

  4. CLIC CDR - physics and detectors: CLIC conceptual design report.

    SciTech Connect (OSTI)

    Berger, E.; Demarteau, M.; Repond, J.; Xia, L.; Weerts, H.

    2012-02-10

    This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximize the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but considered feasible following a realistic future R&D program.

  5. Saturday Morning Physics - Talks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Further information online Contemporary Physics Education Project The Particle Adventure Particle Physics - Education and Outreach (Fermilab) CERN (Education Website) Wikipedia: ...

  6. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support for decommissioning projects. Whether the need is assistance with the development of technical basis documents or advice on how to identify, measure and assess the presence of radiological materials, ORISE can help determine the best course for an environmental cleanup project. Our key areas of expertise include fuel

  7. FSU High Energy Physics

    SciTech Connect (OSTI)

    Prosper, Harrison B.; Adams, Todd; Askew, Andrew; Berg, Bernd; Blessing, Susan K.; Okui, Takemichi; Owens, Joseph F.; Reina, Laura; Wahl, Horst D.

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the non-zero neutrino masses or the overwhelming astrophysical evidence for an invisible form of matter, called dark matter, that has had a marked effect on the evolution of structure in the universe. The report highlights the main, recent, experimental achievements of the experimental group, which include the investigation of properties of the W and Z bosons; the search for new heavy stable charged particles and the search for a proposed property of nature called supersymmetry in proton-proton collisions that yield high energy photons. In addition, we report a few results from a more general search for supersymmetry at the LHC, initiated by the group. The report also highlights the group's significant contributions, both theoretical and experimental, to the 2012 discovery of the Higgs boson and the measurement of its properties.

  8. Neutrino Physics at Fermilab

    ScienceCinema (OSTI)

    Saoulidou, Niki

    2010-01-08

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  9. Carl A. Gagliardi PHYSICS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Gagliardi PHYSICS Fundamental interactions and nuclear astrophysics - Fellow, American Physical Society - Distinguished Achievement Award in Teaching, AFS, - Texas A&M John C. Hardy PHYSICS Fundamental interactions and exotic nuclei - Fellow, Royal Society of Canada - Fellow, American Physical Society Che Ming Ko PHYSICS Theoretical hadron physics and heavy-ion collisions - Humboldt Research Award - Fellow, American Physical Society Joseph B. Natowitz CHEMISTRY Heavy-ion reaction

  10. Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Walls | Princeton Plasma Physics Lab Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned Carbon Walls American Fusion News Category: U.S. Universities Link: Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned Carbon Walls

  11. Plasma physics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physics Subscribe to RSS - Plasma physics The study of plasma, a partially-ionized gas that is electrically conductive and able to be confined within a magnetic field, and how it ...

  12. Lubricant analysis for gas turbine condition monitoring

    SciTech Connect (OSTI)

    Lukas, M.; Anderson, D.P.

    1997-10-01

    Analysis of used lubricating oil is a fast-evolving technique for predictive maintenance with any closed-loop lubricating system such as those in gas and steam turbines, diesel and gasoline engines, transmissions, gearboxes, compressors, pumps, bearings, and hydraulic systems. Based on analysis of periodic oil samples, a laboratory diagnostic report is sent to the personnel responsible for the equipment to warn of any possible problem or to make a specific maintenance recommendation. The entire process, from sample taking to the diagnostic report, should take less than 48 hours to be effective. These reports, when combined with statistical analysis and trending, can provide an insight to management personnel on the effectiveness of the program, efficiency of the maintenance department, repair status of equipment, recurring problems, and even information on the performance of different lubricants. Condition monitoring by oil analysis can be broken down into two categories: debris monitoring to measure the trace quantities of wear particles carried by the lubricant away from the wearing surfaces and lubricant condition monitoring to determine whether the lubricant itself is fit for service based on physical and chemical tests.

  13. Statistical physics ""Beyond equilibrium

    SciTech Connect (OSTI)

    Ecke, Robert E

    2009-01-01

    The scientific challenges of the 21st century will increasingly involve competing interactions, geometric frustration, spatial and temporal intrinsic inhomogeneity, nanoscale structures, and interactions spanning many scales. We will focus on a broad class of emerging problems that will require new tools in non-equilibrium statistical physics and that will find application in new material functionality, in predicting complex spatial dynamics, and in understanding novel states of matter. Our work will encompass materials under extreme conditions involving elastic/plastic deformation, competing interactions, intrinsic inhomogeneity, frustration in condensed matter systems, scaling phenomena in disordered materials from glasses to granular matter, quantum chemistry applied to nano-scale materials, soft-matter materials, and spatio-temporal properties of both ordinary and complex fluids.

  14. DOE Fundamentals Handbook: Classical Physics

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton's Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment.

  15. DOE Fundamentals Handbook: Classical Physics

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton`s Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment.

  16. Office of Physical Protection

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Physical Protection is comprised of a team of security specialists engaged in providing Headquarters-wide physical protection.

  17. Nuclear Physics: Recent Talks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Physics Topics: ...

  18. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical ...

  19. ORISE: Health Physics Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Physics Training Student performs an analysis during an ORAU health physics training course Training and educating a highly skilled workforce that can meet operational ...

  20. ORISE: Health physics services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health physics services Nuclear power plant The Oak Ridge Institute for Science and Education (ORISE) offers comprehensive health physics services in a number of technical areas ...

  1. UNIRIB: Physics Topics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics Research Capitalizing on the strengths of nine collaborating research ... Ion Beam (UNIRIB) consortium is conducting research at the forefront of nuclear physics. ...

  2. Saturday Morning Physics - Talks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Further information online Contemporary Physics Education Project Secret Worlds: The Universe within (Java animation) The Particle Adventure Particle Physics - Education and ...

  3. Nuclear Physics: Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics: Meetings Talks given at the Science & Technology Review 2004 Larry Cardman: Science Overview and the Experimental Program ppt | pdf Tony Thomas: Nuclear Physics ...

  4. Nuclear Physics Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hall A Hall B Hall C Hall D Physics Departments Administrative Office Data Acquisition Group Detector & Imaging Group Electronics Group User Liaison Nuclear Physics Program HALL A ...

  5. Nuclear Physics: Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings ...

  6. Validation of the Physics Analysis used to Characterize the AGR-1 TRISO Fuel Irradiation Test

    SciTech Connect (OSTI)

    Sterbentz, James W.; Harp, Jason M.; Demkowicz, Paul A.; Hawkes, Grant L.; Chang, Gray S.

    2015-05-01

    The results of a detailed physics depletion calculation used to characterize the AGR-1 TRISO-coated particle fuel test irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory are compared to measured data for the purpose of validation. The particle fuel was irradiated for 13 ATR power cycles over three calendar years. The physics analysis predicts compact burnups ranging from 11.30-19.56% FIMA and cumulative neutron fast fluence from 2.21?4.39E+25 n/m2 under simulated high-temperature gas-cooled reactor conditions in the ATR. The physics depletion calculation can provide a full characterization of all 72 irradiated TRISO-coated particle compacts during and post-irradiation, so validation of this physics calculation was a top priority. The validation of the physics analysis was done through comparisons with available measured experimental data which included: 1) high-resolution gamma scans for compact activity and burnup, 2) mass spectrometry for compact burnup, 3) flux wires for cumulative fast fluence, and 4) mass spectrometry for individual actinide and fission product concentrations. The measured data are generally in very good agreement with the calculated results, and therefore provide an adequate validation of the physics analysis and the results used to characterize the irradiated AGR-1 TRISO fuel.

  7. Nuclear Physics using NIF

    SciTech Connect (OSTI)

    Bernstein, L A; Bleuel, D L; Caggiano, J A; Cerjan, C; Gostic, J; Hatarik, R; Hartouni, E; Hoffman, R D; Sayre, D; Schneider, D G; Shaughnessy, D; Stoeffl, W; Yeamans, C; Greife, U; Larson, R; Hudson, M; Herrmann, H; Kim, Y H; Young, C S; Mack, J; Wilson, D; Batha, S; Hoffman, N; Langenbrunner, J; Evans, S

    2011-09-28

    The National Ignition Facility (NIF) is the world's premier inertial confinement fusion facility designed to achieve sustained thermonuclear burn (ignition) through the compression of hydrogen isotopic fuels to densities in excess of 10{sup 3} g/cm{sup 3} and temperatures in excess of 100 MK. These plasma conditions are very similar to those found in the cores of Asymptotic Giant Branch (AGB) stars where the s-process takes place, but with a neutron fluence per year 10{sup 4} times greater than a star. These conditions make NIF an excellent laboratory to measure s-process (n,{gamma}) cross sections in a stellar-like plasma for the first time. Starting in Fall 2009, NIF has been operating regularly with 2-4 shots being performed weekly. These experiments have allowed the first in situ calibration of the detectors and diagnostics needed to measure neutron capture, including solid debris collection and prompt {gamma}-ray detection. In this paper I will describe the NIF facility and capsule environment and present two approaches for measuring s-process neutron capture cross sections using NIF.

  8. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsAerosols

  9. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsRadiometric

  10. physics-based-html

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics-based High-Resolution Numerical Modeling of Bridge Foundation Scour

  11. Condition assessment of nonlinear processes

    DOE Patents [OSTI]

    Hively, Lee M.; Gailey, Paul C.; Protopopescu, Vladimir A.

    2002-01-01

    There is presented a reliable technique for measuring condition change in nonlinear data such as brain waves. The nonlinear data is filtered and discretized into windowed data sets. The system dynamics within each data set is represented by a sequence of connected phase-space points, and for each data set a distribution function is derived. New metrics are introduced that evaluate the distance between distribution functions. The metrics are properly renormalized to provide robust and sensitive relative measures of condition change. As an example, these measures can be used on EEG data, to provide timely discrimination between normal, preseizure, seizure, and post-seizure states in epileptic patients. Apparatus utilizing hardware or software to perform the method and provide an indicative output is also disclosed.

  12. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Energy Physics /science-innovation/_assets/images/icon-science.jpg High Energy Physics Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Advanced Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Advanced Scientific Computing Research Pioneering accelerator technology to improve the intensity of

  13. Theoretical Nuclear Physics - Research - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theoretical Nuclear Physics By addressing this elastic scattering indirect technique, we hope that more accurate measurements of elastic scattering data will provide very important astrophysical information. Progress toward understanding the structure and behavior of strongly interacting many-body systems requires detailed theoretical study. The theoretical physics program concentrates on the development of fundamental and phenomenological models of nuclear behavior. In some systems, the

  14. Conditions and Requirements

    Broader source: Energy.gov [DOE]

    Conditions and requirements for Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Awards are spelled out below:

  15. SuperB Progress Report for Physics

    SciTech Connect (OSTI)

    O'Leary, B.; Matias, J.; Ramon, M.; Pous, E.; De Fazio, F.; Palano, A.; Eigen, G.; Asgeirsson, D.; Cheng, C.H.; Chivukula, A.; Echenard, B.; Hitlin, D.G.; Porter, F.; Rakitin, A.; Heinemeyer, S.; McElrath, B.; Andreassen, R.; Meadows, B.; Sokoloff, M.; Blanke, M.; Lesiak, T.; /Cracow, INP /DESY /Zurich, ETH /INFN, Ferrara /Frascati /INFN, Genoa /Glasgow U. /Indiana U. /Mainz U., Inst. Phys. /Karlsruhe, Inst. Technol. /KEK, Tsukuba /LBL, Berkeley /UC, Berkeley /Lisbon, IST /Ljubljana U. /Madrid, Autonoma U. /Maryland U. /MIT /INFN, Milan /McGill U. /Munich, Tech. U. /Notre Dame U. /PNL, Richland /INFN, Padua /Paris U., VI-VII /Orsay, LAL /Orsay, LPT /INFN, Pavia /INFN, Perugia /INFN, Pisa /Queen Mary, U. of London /Regensburg U. /Republica U., Montevideo /Frascati /INFN, Rome /INFN, Rome /INFN, Rome /Rutherford /Sassari U. /Siegen U. /SLAC /Southern Methodist U. /Tel Aviv U. /Tohoku U. /INFN, Turin /INFN, Trieste /Uppsala U. /Valencia U., IFIC /Victoria U. /Wayne State U. /Wisconsin U., Madison

    2012-02-14

    SuperB is a high luminosity e{sup +}e{sup -} collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B{sub u,d,s}, D and {tau} decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin{sup 2} {theta}{sub W}. In addition to performing CP violation measurements at the {Upsilon}(4S) and {phi}(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over-constraints of the unitarity triangle through multiple measurements of all angles and sides. This report extends and updates the studies presented in both the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. Together, these three documents detail the Physics case of the SuperB Project.

  16. Research in Neutrino Physics

    SciTech Connect (OSTI)

    Busenitz, Jerome

    2014-09-30

    Research in Neutrino Physics We describe here the recent activities of our two groups over the first year of this award (effectively November 2010 through January 2012) and our proposed activities and associated budgets for the coming grant year. Both of our groups are collaborating on the Double Chooz reactor neutrino experiment and are playing major roles in calibration and analysis. A major milestone was reached recently: the collaboration obtained the first result on the search for 13 based on 100 days of data from the far detector. Our data indicates that 13 is not zero; specifically the best fit of the neutrino oscillation hypothesis to our data gives sin2 (2 13) = 0.086 ± 0.041 (stat) ± 0.030 (syst) The null oscillation hypothesis is excluded at the 94.6% C.L. This result1 has been submitted to Physical Review Letters. As we continue to take data with the far detector in the coming year, in parallel with completing the construction of the near lab and installing the near detector, we expect the precision of our measurement to improve as we gather significantly more statistics, gain better control of backgrounds through use of partial power data and improved event selection, and better understand the detector energy scale and detection efficiency from calibration data. With both detectors taking data starting in the second half of 2013, we expect to further drive down the uncertainty on our measurement of sin2 (2 13) to less than 0.02. Stancu’s group is also collaborating on the MiniBooNE experiment. Data taking is scheduled to continue through April, by which time 1.18 × 1021 POT is projected. The UA group is playing a leading role in the measurement of antineutrino cross sections, which should be the subject of a publication later this year as well as of Ranjan Dharmapalan’s Ph.D. thesis, which he is expected to defend by the end of this year. It is time to begin working on projects which will eventually succeed Double Chooz and MiniBooNE as the main foci of our efforts. The Stancu group plans to become re–involved in LBNE and possibly also to join NO A, and the Busenitz group has begun to explore joining a direct dark matter search.

  17. Building America Webinar: Retrofitting Central Space Conditioning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for Multifamily Buildings - Steam Systems, Retrofit Measure Packages, Hydronic Systems | Department of Energy Steam Systems, Retrofit Measure Packages, Hydronic Systems Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings - Steam Systems, Retrofit Measure Packages, Hydronic Systems This presentation is included in the July 16, 2014, and provides information about best practices, costs, and savings associated with optimizing steam

  18. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2015 Princeton Plasma Physics Laboratory. A...

  19. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2016 Princeton Plasma Physics Laboratory. A ...

  20. Physics Informed Machine Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Informed Machine Learning Physics Informed Machine Learning WHEN: Jan 19, 2016 8:00 AM - Jan 22, 2016 4:00 PM WHERE: Inn at Loretto, Santa Fe CATEGORY: Science TYPE: ...

  1. Physics Informed Machine Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Informed Machine Learning Physics Informed Machine Learning WHEN: Jan 19, 2016 8:00 AM - Jan 22, 2016 4:00 PM WHERE: Inn at Loretto, Santa Fe CATEGORY: Science TYPE:...

  2. American Physical Society Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physical Society Awards American Physical Society (APS) is one of the most important professional societies for gauging the quality of R&D done at the Laboratory. The APS sponsors a number of awards including the John Dawson Award of Excellence in Plasma Physics, James Clerk Maxwell Prize for Plasma Physics, as well as Dinstinguised Lectuerer and Doctoral Dissertation prizes. Name Year Name of Award and Citation Yu-hsin Chen 2012 Marshall N. Rosenbluth Outstanding Doctoral Thesis For

  3. ORISE: Health Physics Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Physics Training Student performs an analysis during an ORAU health physics training course Training and educating a highly skilled workforce that can meet operational commitments in the areas of radiation and health physics is an essential part of protecting your workers, the public and the environment. ORAU, the managing contractor of the Oak Ridge Institute for Science and Education, offers hands-on, laboratory-based training courses in a variety of health physics areas. Training

  4. How to Popularize Physics

    ScienceCinema (OSTI)

    Simmons, Elizabeth [Michigan State University, East Landing, Michigan, United States

    2009-09-01

    This talk discusses the whys and hows of educational outreach and presents examples from several fields of physics.

  5. American Physical Society awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Computational Physics. * Karissa Sanbonmatsu, Theoretical division's Theoretical Biology and Biophysics group for pioneering computer simulation of molecular machines and...

  6. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsCloud Properties

  7. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsSurface Properties

  8. Accelerator physics and modeling: Proceedings

    SciTech Connect (OSTI)

    Parsa, Z.

    1991-12-31

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  9. Accelerator physics and modeling: Proceedings

    SciTech Connect (OSTI)

    Parsa, Z.

    1991-01-01

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  10. A comprehensive program to develop correlations for physical properties of kraft black liquor. Final report

    SciTech Connect (OSTI)

    Fricke, A.L.; Zaman, A.A.

    1998-05-01

    The overall objective of the program was to develop correlations to predict physical properties within requirements of engineering precision from a knowledge of pulping conditions and of kraft black liquor composition, if possible. These correlations were to include those relating thermodynamic properties to pulping conditions and liquor composition. The basic premise upon which the research was based is the premise that black liquor behaves as a polymer solution. This premise has proven to be true, and has been used successfully in developing data reduction methods and in interpreting results. A three phase effort involving pulping, analysis of liquor composition, and measurement of liquor properties was conducted.

  11. Physical property changes in hydrate-bearingsediment due to depressurization and subsequent repressurization

    SciTech Connect (OSTI)

    Kneafsey, Timothy; Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

    2008-06-01

    Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed at least briefly to non-in situ conditions during recovery. To examine effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes and speeds are compared between the original and depressurized/repressurized samples. X-ray computed tomography (CT) images track how the gas-hydrate distribution changes in the hydrate-cemented sands due to the depressurization/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

  12. Experimental Particle Physics

    SciTech Connect (OSTI)

    Rosenfeld, Carl; Mishra, Sanjib R.; Petti, Roberto; Purohit, Milind V.

    2014-08-31

    The high energy physics group at the University of South Carolina, under the leadership of Profs. S.R. Mishra, R. Petti, M.V. Purohit, J.R. Wilson (co-PI's), and C. Rosenfeld (PI), engaged in studies in "Experimental Particle Physics." The group collaborated with similar groups at other universities and at national laboratories to conduct experimental studies of elementary particle properties. We utilized the particle accelerators at the Fermi National Accelerator Laboratory (Fermilab) in Illinois, the Stanford Linear Accelerator Center (SLAC) in California, and the European Center for Nuclear Research (CERN) in Switzerland. Mishra, Rosenfeld, and Petti worked predominantly on neutrino experiments. Experiments conducted in the last fifteen years that used cosmic rays and the core of the sun as a source of neutrinos showed conclusively that, contrary to the former conventional wisdom, the "flavor" of a neutrino is not immutable. A neutrino of flavor "e," "mu," or "tau," as determined from its provenance, may swap its identity with one of the other flavors -- in our jargon, they "oscillate." The oscillation phenomenon is extraordinarily difficult to study because neutrino interactions with our instruments are exceedingly rare -- they travel through the earth mostly unimpeded -- and because they must travel great distances before a substantial proportion have made the identity swap. Three of the experiments that we worked on, MINOS, NOvA, and LBNE utilize a beam of neutrinos from an accelerator at Fermilab to determine the parameters governing the oscillation. Two other experiments that we worked on, NOMAD and MIPP, provide measurements supportive of the oscillation experiments. Good measurements of the neutrino oscillation parameters may constitute a "low energy window" on related phenomena that are otherwise unobservable because they would occur only at energies way above the reach of conceivable accelerators. Purohit and Wilson participated in the BaBar experiment, which collected data at SLAC until 2008. They continued to analyze the voluminous BaBar data with an emphasis on precision tests of Quantum Chromodynamics and on properties of the "eta_B," a bottom quark paired in a meson with a strange quark. The ATLAS experiment became the principal research focus for Purohit. One of the world's largest pieces of scientific equipment, ATLAS observes particle collisions at the highest-energy particle accelerator ever built, the Large Hadron Collider (LHC) at CERN. Our efforts on ATLAS included participation in the commissioning, calibration, and installation of components called "CSCs". The unprecedented energy of 14 TeV enabled the ATLAS and CMS collaborations to declare discovery of the famous Higgs particle in 2012.

  13. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Kepler's law? You Wrote: I have this homework question, my physics teacher said that you can prove Kepler's second law with one quantity of measurement. He hinted us with Mass and that is all he gave....Can you help me on what measurement it is that I need to prove Kepler's second law. thanx a million mark Mark, Greetings, Kepler's second law is that a planet travelling in an elliptical orbit around the sun sweeps out equal areas in equal times. This is basically a statement of

  14. Bridge Condition Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Condition and Performance Assessment Background How bridges respond to extreme loading conditions, such as during high winds and severe storms, and to the effects of aging, such as corrosion- and fatigue-induced cracking, is a major concern for the Federal Highway Administration (FHWA). The FHWA is working to ensure that highway structures are safe and reliable under all service conditions, including potential structural, environmental, and human-generated threats. Role of High-Performance

  15. Luu, T; Platter, L 73 NUCLEAR PHYSICS AND RADIATION PHYSICS;...

    Office of Scientific and Technical Information (OSTI)

    constraints from Big Bang nucleosynthesis Bedaque, P; Luu, T; Platter, L 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEUTERIUM; FIELD THEORIES; NUCLEAR PHYSICS; NUCLEOSYNTHESIS;...

  16. Physics-based, Bayesian sequential detection method and system for radioactive contraband

    DOE Patents [OSTI]

    Candy, James V; Axelrod, Michael C; Breitfeller, Eric F; Chambers, David H; Guidry, Brian L; Manatt, Douglas R; Meyer, Alan W; Sale, Kenneth E

    2014-03-18

    A distributed sequential method and system for detecting and identifying radioactive contraband from highly uncertain (noisy) low-count, radionuclide measurements, i.e. an event mode sequence (EMS), using a statistical approach based on Bayesian inference and physics-model-based signal processing based on the representation of a radionuclide as a monoenergetic decomposition of monoenergetic sources. For a given photon event of the EMS, the appropriate monoenergy processing channel is determined using a confidence interval condition-based discriminator for the energy amplitude and interarrival time and parameter estimates are used to update a measured probability density function estimate for a target radionuclide. A sequential likelihood ratio test is then used to determine one of two threshold conditions signifying that the EMS is either identified as the target radionuclide or not, and if not, then repeating the process for the next sequential photon event of the EMS until one of the two threshold conditions is satisfied.

  17. ARM - CLASIC Measurement Platforms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms Related Links CLASIC Home AAF Home ARM Data Discovery Browse Data Post-Campaign CLASIC/CHAPS Special Session at AGU Annual Meeting, December 15-19 CLASIC Workshop, March 26-27 Data Sets Deployment Resources Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract Science Questions Science and Implementation Plan (pdf) Measurement Platforms (pdf) CLASIC-Land

  18. Condition Assessment Information System

    Energy Science and Technology Software Center (OSTI)

    2002-09-16

    CAIS2000 records, tracks and cost maintenance deficiencies associated with condition assessments of real property assets. Cost information is available for 39,000 items in the currenht RS Means, Facilities Construction Manual. These costs can, in turn, be rolled by by asset to produce the summary condition of an asset or site.

  19. Design and Commissioning of a Wind Tunnel for Integrated Physical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commissioning of a Wind Tunnel for Integrated Physical and Chemical Measurements of PM Dispersing Plume of Heavy Duty Diesel Truck Design and Commissioning of a Wind Tunnel for ...

  20. Aerosol Radiative Forcing During Spring-Summer 2002 from Measurements at IAP Scientific Station Near Moscow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forcing During Spring-Summer 2002 from Measurements at IAP Scientific Station Near Moscow G. S. Golitsyn, I. A. Gorchakova, and I. I. Mokhov A. M. Obukohov Institute of Atmospheric Physics Russian Academy of Science Moscow, Russia A. N. Rublev Russian Research Center Kurchatov Institute Moscow, Russia Introduction Aerosol Radiative Forcing (ARF) is estimated for spring-summer conditions from measurements during the Cloud-Aerosol-Radiation Experiment in 2002 (ZCAREX-2002) at the Zvenigorod

  1. ORISE: Health physics services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health physics services Nuclear power plant The Oak Ridge Institute for Science and Education (ORISE) offers comprehensive health physics services in a number of technical areas for the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), as well as other federal and state agencies. From radiological facility audits and reviews to dose modeling and technical evaluations, ORISE is nationally-recognized for its health physics support to decontamination and decommissioning

  2. Experimental Physical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS Experimental Physical Sciences Developing and applying materials science and experimental physics capabilities to programs and problems of national importance. Advancing physics and materials science for problems of national importance Neutrons find "missing" magnetism of plutonium Neutrons find "missing" magnetism of plutonium READ MORE Los Alamos among new DOE projects Create new technology pathways for low-cost fusion energy development READ MORE Combined methods

  3. American Physical Society Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Physical Society Fellows American Physical Society (APS) Fellowships recognize those who have made advances in knowledge through original research or have made significant and innovative contributions in the application of physics to science and technology. Each year, no more than one-half of one percent of APS's current membership is recognized by their peers for election to the status of Fellow. The hundred-year-old society numbers tens of thousands of physicists worldwide. Name Year

  4. MST - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST Home UW Madison Madison Symmetric Torus MST Home MST HomeGraduate Student InformationLinksTourControl and Auxiliary SystemsPhysics TopicsDeviceResearch MissionMST People mst logo CPLA Home Directory Publications Links Internal University of Wisconsin Physics Department Research funding includes support from: Department of Energy National Science Foundation The Madison Symmetric Torus produces hot plasma for research in plasma physics and fusion power generation, the energy source of the sun.

  5. CONDITIONS OF PURCHASE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of 2 GE Global Research CONDITIONS OF PURCHASE - SHORT FORM (May 2013) 1. ACCEPTANCE AND TERMS AND CONDITIONS: This purchase is subject to all of the terms and conditions set forth herein. This Order does not constitute an acceptance by GE of any offer to sell, quotation, or proposal. Any variation of the terms of this Order is not binding upon GE unless specifically accepted by GE in writing, and GE hereby rejects such proposed modifications. This Order is intended by the parties as a final,

  6. Physical Protection Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-23

    Supplements DOE O 473.1, by establishing requirements for the physical protection of safeguards and security interests. Cancels: DOE M 5632.1C-1

  7. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to...

  8. Internships for Physics Majors

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fermilab's IPM program offers ten-week summer internships to outstanding undergraduate physics majors. This program has been developed to familiarize students with opportunities at the frontiers of...

  9. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Experiment ...

  10. Palm Physics Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We no longer support this website. This is a preliminary group of Palm applicationsdatabases that are intended to serve the interests of atomic, nuclear and particle physics....

  11. Conditional data watchpoint management

    DOE Patents [OSTI]

    Burdick, Dean Joseph (Austin, TX); Vaidyanathan, Basu (Austin, TX)

    2010-08-24

    A method, system and computer program product for managing a conditional data watchpoint in a set of instructions being traced is shown in accordance with illustrative embodiments. In one particular embodiment, the method comprises initializing a conditional data watchpoint and determining the watchpoint has been encountered. Upon that determination, examining a current instruction context associated with the encountered watchpoint prior to completion of the current instruction execution, further determining a first action responsive to a positive context examination; otherwise, determining a second action.

  12. Terms and Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Terms and Conditions Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds 100G SDN Testbed Testbed Description Proposal Process Terms and Conditions Dark Fiber Testbed Test Circuit Service Testbed Results Current Testbed Research Previous Testbed Research Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600

  13. Nuclear & Particle Physics, Astrophysics, Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Particle Physics science-innovationassetsimagesicon-science.jpg Nuclear & Particle Physics, Astrophysics, Cosmology National security depends on science and ...

  14. Top physics: measurement of the tt-bar production cross section in p anti-p collisions at s**(1/2) = 1.96 tev using lepton + jets events with secondary vertex b-tagging

    SciTech Connect (OSTI)

    Acosta, D.; The CDF Collaboration

    2005-04-07

    We present a measurement of the t{bar t} production cross section using events with one charged lepton and jets from p{bar p} collisions at a center-of-mass energy of 1.96TeV. In these events, heavy flavor quarks from top quark decay are identified with a secondary vertex tagging algorithm. From 162 pb{sup -1} of data collected by the Collider Detector at Fermilab, a total of 48 candidate events are selected, where 13.5 {+-} 1.8 events are expected from background contributions. We measure a t{bar t} production cross section of 5.6{sub -1.1}{sup _1.2}(stat.){sub -0.6}{sup +0.9}(syst.)pb.

  15. Graph-theoretic analysis of discrete-phase-space states for condition change detection and quantification of information

    DOE Patents [OSTI]

    Hively, Lee M.

    2014-09-16

    Data collected from devices and human condition may be used to forewarn of critical events such as machine/structural failure or events from brain/heart wave data stroke. By monitoring the data, and determining what values are indicative of a failure forewarning, one can provide adequate notice of the impending failure in order to take preventive measures. This disclosure teaches a computer-based method to convert dynamical numeric data representing physical objects (unstructured data) into discrete-phase-space states, and hence into a graph (structured data) for extraction of condition change.

  16. Physical Uncertainty Bounds (PUB)

    SciTech Connect (OSTI)

    Vaughan, Diane Elizabeth; Preston, Dean L.

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  17. OMEGA Power Conditioning - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Conditioning - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser

  18. Standard Terms and Conditions | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standard Terms and Conditions Documents related to NREL's standard terms and conditions for subcontracts or purchase orders are available below. Standard Terms and Conditions -...

  19. Toward a constructive physics

    SciTech Connect (OSTI)

    Noyes, H.P.; Gefwert, C.; Manthey, M.J.

    1983-06-01

    We argue that the discretization of physics which has occurred thanks to the advent of quantum mechanics has replaced the continuum standards of time, length and mass which brought physics to maturity by counting. The (arbitrary in the sense of conventional dimensional analysis) standards have been replaced by three dimensional constants: the limiting velocity c, the unit of action h, and either a reference mass (eg m/sub p/) or a coupling constant (eg G related to the mass scale by hc/(2..pi..Gm/sub p//sup 2/) approx. = 1.7 x 10/sup 38/). Once these physical and experimental reference standards are accepted, the conventional approach is to connect physics to mathematics by means of dimensionless ratios. But these standards now rest on counting rather than ratios, and allow us to think of a fourth dimensionless mathematical concept, which is counting integers. According to constructive mathematics, counting has to be understood before engaging in the practice of mathematics in order to avoid redundancy. In its strict form constructive mathematics allows no completed infinities, and must provide finite algorithms for the computation of any acceptable concept. This finite requirement in constructive mathematics is in keeping with the practice of physics when that practice is restricted to hypotheses which are testable in a finite time. In this paper we attempt to outline a program for physics which will meet these rigid criteria while preserving, in so far as possible, the successes that conventional physics has already achieved.

  20. ARM - Measurement - Ozone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsOzone ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ozone Ozone measurements are given in Dobson units and are integers with 3 significant figures. A Dobson Unit represents the physical thickness of the ozone layer if it were brought to the Earth's surface. A value of 300 Dobson units equals three millimeters. Categories Atmospheric State Instruments The above measurement is considered

  1. Neutron physics of the Re/Os clock. I. Measurement of the (n,gamma) cross sections of {sup 186,187,188}Os at the CERN n{sub T}OF facility

    SciTech Connect (OSTI)

    Mosconi, M.; Kaeppeler, F.; Audouin, L.; Dillmann, I.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.; Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.; Mengoni, A.; Domingo-Pardo, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2010-07-15

    The precise determination of the neutron capture cross sections of {sup 186}Os and {sup 187}Os is important to define the s-process abundance of {sup 187}Os at the formation of the solar system. This quantity can be used to evaluate the radiogenic component of the abundance of {sup 187}Os due to the decay of the unstable {sup 187}Re (t{sub 1/2}=41.2 Gyr) and from this to infer the time duration of the nucleosynthesis in our galaxy (Re/Os cosmochronometer). The neutron capture cross sections of {sup 186}Os, {sup 187}Os, and {sup 188}Os have been measured at the CERN n{sub T}OF facility from 1 eV to 1 MeV, covering the entire energy range of astrophysical interest. The measurement has been performed by time-of-flight technique using isotopically enriched samples and two C{sub 6}D{sub 6} scintillation detectors for recording the prompt gamma rays emitted in the capture events. Maxwellian averaged capture cross sections have been determined for thermal energies between kT=5 and 100 keV corresponding to all possible s-process scenarios. The estimated uncertainties for the values at 30 keV are 4.1, 3.3, and 4.7% for {sup 186}Os, {sup 187}Os, and {sup 188}Os, respectively.

  2. Neutrino Physics with Thermal Detectors

    SciTech Connect (OSTI)

    Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

    2009-11-09

    The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

  3. Tau physics at future facilities

    SciTech Connect (OSTI)

    Perl, M.L.

    1994-12-01

    This paper dicusses and projects the tau research which may be carried out at CESR, at BEPC, at the SLC, in the next few years at LEP I, at the asymmetric B-factories under construction in Japan and the United States and, if built, a tau-charm factory. As the size of tau data sets increases, there is an increasing need to reduce the effects of systematic errors on the precision and search range of experiments. In most areas of tau physics there is a large amount of progress to be made, but in a few areas it will be difficult to substantially improve the precision of present measurements.

  4. Future Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Physics March 5, 2009 In late January, we held a meeting of our Physics Advisory Committee, PAC34 to be precise. We had two primary goals for the PAC, one related to the currently operating program, the other related to future physics after completion of the 12 GeV Upgrade Project. Of course, with its receipt of approval to enter the construction phase, we are treating the 12 GeV Project schedule as something to live by. The shutdowns and running of the machine derive from a combination

  5. History of Air Conditioning

    Broader source: Energy.gov [DOE]

    We take it for granted but what would life be like without the air conditioner? Once considered a luxury, this invention is now an essential, allowing us to cool everything from homes, businesses, businesses, data centers, laboratories and other buildings vital to our daily lives. Explore this timeline to learn some of the key dates in the history of air conditioning.

  6. Physical Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-23

    Establishes Department of Energy management objectives, requirements and responsibilities for the physical protection of safeguards and security interests. Cancels DOE 5632.1C. Canceled by DOE O 470.4.

  7. Courses on Beam Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a foundation course on accelerator physics and associated technologies. The US-CERN-Japan-Russia Joint Accelerator School The purpose of the US-CERN-Japan-Russia joint school...

  8. Elastic wave velocity measurement combined with synchrotron X...

    Office of Scientific and Technical Information (OSTI)

    measurements at high pressure and high temperature conditions: Towards prediction and ... measurements at high pressure and high temperature conditions: Towards prediction and ...

  9. Neutrino Oscillation Physics

    SciTech Connect (OSTI)

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  10. American Physical Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos scientists honored by American Physical Society November 12, 2015 LOS ALAMOS, N.M., Nov. 12, 2015-Ten Los Alamos National Laboratory scientists are new Fellows of the American Physical Society. Tariq Aslam, Steven Batha, Eric Bauer, Hou-Tong Chen, Diego Alejandro Dalvit, Dinh Nguyen, Alan Perelson, Filip Ronning, Alexander Saunders and Glen Wurden were named this week by the national organization. "We're extremely pleased that the technical accomplishments of our talented staff

  11. Computational Physics and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Computational Physics and Methods Performing innovative simulations of physics phenomena on tomorrow's scientific computing platforms Growth and emissivity of young galaxy hosting a supermassive black hole as calculated in cosmological code ENZO and post-processed with radiative transfer code AURORA. image showing detailed turbulence simulation, Rayleigh-Taylor Turbulence imaging: the largest turbulence simulations to date Advanced multi-scale modeling Turbulence datasets Density iso-surfaces

  12. Materials Physics and Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS » MPA Materials Physics and Applications We develop new technologies that solve pressing national energy and security challenges by exploring and exploiting materials and their properties; developing practical applications of materials, and providing world-class user facilities. Contact Us Division Leader (acting) Michael Hundley Email Deputy Division Leader Rick Martineau Email Chief of Staff Jeff Willis Email Division Office (505) 665-1131 Materials Physics Applications Division

  13. Fermilab | Science | Particle Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Physics photo At Fermilab, a robust scientific program pursues answers to key questions about the laws of nature and the cosmos. The challenge of particle physics is to discover what the universe is made of and how it works. By building some of the largest and most complex machines in the world, Fermilab scientists expand humankind's understanding of matter, energy, space and time. Fermilab is at the forefront of research into neutrinos, ubiquitous but hard-to-catch particles that might

  14. Precision timing measurements for high energy photons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; et al

    2014-11-21

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 psmore »for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.« less

  15. Physics Topics - Rotating Wall Machine - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics UW Madison Line Tied Reconnection Experiment Physics Topics LTRX HomeResearch MissionLTRX DevicePhysics TopicsDiagnosticsLTRX GalleryLTRX People CPLA Home Directory ...

  16. Air conditioning apparatus

    SciTech Connect (OSTI)

    Ouchi, Y.; Otoshi, Sh.

    1985-04-09

    The air conditioning apparatus according to the invention comprises an absorption type heat pump comprising a system including an absorber, a regenerator, a condenser and an evaporator. A mixture of lithium bromide and zinc chloride is used as an absorbent which is dissolved to form an absorbent solution into a mixed solvent having a ratio by weight of methanol to water, the ratio falling in a range between 0.1 and 0.3. Said solution is circulated through the system.

  17. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  18. Extreme Conditions Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conditions Modeling - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  19. High voltage pulse conditioning

    DOE Patents [OSTI]

    Springfield, Ray M. (Sante Fe, NM); Wheat, Jr., Robert M. (Los Alamos, NM)

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  20. QUANTUM MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS...

    Office of Scientific and Technical Information (OSTI)

    of model atoms in fields Milonni, P.W. 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS; ATOMS; OPTICAL MODELS; QUANTUM MECHANICS;...

  1. Gogny, D; Schunck, N 73 NUCLEAR PHYSICS AND RADIATION PHYSICS...

    Office of Scientific and Technical Information (OSTI)

    of low energy fission: fragment properties Younes, W; Gogny, D; Schunck, N 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Abstract not provided Lawrence Livermore National Laboratory...

  2. PLASMA PHYSICS AND FUSION TECHNOLOGY; GRAPHITE; CREEP; PHYSICAL...

    Office of Scientific and Technical Information (OSTI)

    creep of graphite) Kennedy, C.R. 36 MATERIALS SCIENCE; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; GRAPHITE; CREEP; PHYSICAL RADIATION EFFECTS; JAPAN; MEETINGS; TRAVEL; ASIA; CARBON;...

  3. Spatial and temporal variations in indoor environmental conditions...

    Office of Scientific and Technical Information (OSTI)

    beam-break counters; and outdoor air fractions in the heating, ventilating, and air-conditioning systems serving the sampled spaces. Measurements were made at 5-minute intervals...

  4. FTP archives for physics

    SciTech Connect (OSTI)

    Trunec, D.; Brablec, A.; Kapicka, V.

    1995-12-31

    We have established archives for programs, data, papers etc. in physics (mainly for plasma physics). The archives are located at computer ftp.muni.cz in the directory pub/muni.cz/physics. These archives can be reached by anonymous FTP or by gopher server gopher.muni.cz (147.251.4.33). At the present time, programs for PC, cross sections for electrons, swarm parameters and rate constants stored are in the archives. We would like to collect the programs for calculations in physics (mainly for PC). We suppose that each program should have a testing example and some description. We would also like to collect physical constants and experimental or theoretical data (e.g. cross sections, swarm parameters and rate constants), which are important for other calculation or for comparison with the results of others studies. Interested scholars are invited to sent us their programs, data, preprints and reports for these archives. All files in the archives are in public domain and can be obtained using computer network Internet.

  5. QCD and Hadron Physics

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.

    2015-02-26

    This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.

  6. Physics division annual report 2005.

    SciTech Connect (OSTI)

    Glover, J.; Physics

    2007-03-12

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were trapped in an atom trap for the first time, a major milestone in an innovative search for the violation of time-reversal symmetry. New results from HERMES establish that strange quarks carry little of the spin of the proton and precise results have been obtained at JLAB on the changes in quark distributions in light nuclei. New theoretical results reveal that the nature of the surfaces of strange quark stars. Green's function Monte Carlo techniques have been extended to scattering problems and show great promise for the accurate calculation, from first principles, of important astrophysical reactions. Flame propagation in type 1A supernova has been simulated, a numerical process that requires considering length scales that vary by factors of eight to twelve orders of magnitude. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make an advanced exotic beam facility, in the words of NSAC, 'the world-leading facility for research in nuclear structure and nuclear astrophysics'. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for these new capabilities hold the keys to unlocking important secrets of nature. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.

  7. Electroweak and B physics results from the Fermilab Tevatron Collider

    SciTech Connect (OSTI)

    Pitts, K.T.

    2001-01-30

    This writeup is an introduction to some of the experimental issues involved in performing electroweak and b physics measurements at the Fermilab Tevatron. In the electroweak sector, we discuss W and Z boson cross section measurements as well as the measurement of the mass of the W boson. For b physics, we discuss measurements of B{sup 0}/{bar B}{sup 0} mixing and CP violation. This paper is geared towards nonexperts who are interested in understanding some of the issues and motivations for these measurements and how the measurements are carried out.

  8. Tidal Flow Turbulence Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Northwest)Na+onal)Marine) Renewable)Energy)Center) Applied)Physics)Lab,)) University)of)Washington) Field)measurements)of) turbulence)at)+dal)energy)sites) Jim)Thomson)(UW)) Brian)Polagye)(UW),)Marshall)Richmond)(PNNL),)) Vibhav)Durgesh)(PNNL),)Eric)Nelson)(NREL),)Levi)Kilcher)(NREL)) Northwest)Na+onal)Marine) Renewable)Energy)Center) Applied)Physics)Lab,)) University)of)Washington) What)do)we)want)to)know?) * Turbulence)intensity,))) * Turbulence)spectra,)TKE(f) * Extreme)values,)u max quire

  9. Physics Beyond the Standard Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Beyond the Standard Model 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues submit Physics Beyond the Standard Model...

  10. The term "lattice physics" refers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    term "lattice physics" refers to the simulation of detailed neutron interactions at the ... utilize two-dimensional (2D) lattice physics calculations as the first step in a ...

  11. Stellarators | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Laboratory (PPPL) physicists collaborating on the Wendelstein 7-X ... Top-5 Achievements at the Princeton Plasma Physics Laboratory in 2015 From launching the ...

  12. Timeline | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Matterhorn's first linear device, L-1, begins operation for the study of basic plasma physics. 1959 The first Princeton doctoral degree in plasma physics is awarded. Since ...

  13. Neutrino Physics AAPT Strand Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics AAPT Strand Day NSTA Regional, 2005 Jocelyn Monroe, Columbia University 1. What Is ... quark (FNAL) The Standard Model New Physics (Relatively Speaking) 1900s: e discovered ...

  14. Nuclear Physics: Archived Talks - Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks ... Additional Information Computing at JLab Operations Logbook Physics Topics: Archived Talks ...

  15. Physics and Chemistry of Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Physics and Chemistry of Materials Developing new science and technologies needed for ... Fundamental and applied theoretical research on the physics and chemistry of materials The ...

  16. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support ...

  17. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety at ATLAS For onsite emergencies, call 911 on the internal phones (or 630-252-1911 on cell phones) Safety Aspects of radiation safety at ATLAS: Health Physics Coverage at ATLAS is provided by Argonne National Laboratory. Health Physics personnel must be notified if there is a possible contamination incident, or if target and/or detectors are to be removed from a beam line following an experiment. HP Contact information: Angel Garcia (HP Technician): 2-9179 (4-1352 pager) Dave

  18. J. Plasma Physics:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics: page 1 of 18. c Cambridge University Press 2015 doi:10.1017/S0022377815000471 1 Prospects for observing the magnetorotational instability in the plasma Couette experiment K. Flanagan 1 †, M. Clark 1 , C. Collins 1,2 , C. M. Cooper 1 , I. V. Khalzov 1,3 , J. Wallace 1 and C. B. Forest 1 1 Department of Physics, University of Wisconsin, Madison, WI 53706, USA 2 University of California Irvine, Irvine, CA 92697, USA 3 National Research Centre 'Kurchatov Institute', Moscow, 123182,

  19. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CARIBU Proposal Presentation The CAlifornium Rare Isotope Breeder Upgrade (CARIBU) On Februry 23, 2005 a proposal was introduced to the Office of Nuclear Physics at the Department of Energy to upgrade the capabilities of ATLAS in the area of physics with rare isotopes. A copy of the proposal for the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) can be found here in PDF Format. Click here to see a PDF version of the Cf Upgrade presentation from the ATLAS User Group Workshop July 31-August 1,

  20. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  1. Elementary Particle Physics at Baylor (Final Report)

    SciTech Connect (OSTI)

    Dittmann, J.R.

    2012-08-25

    This report summarizes the activities of the Baylor University Experimental High Energy Physics (HEP) group on the Collider Detector at Fermilab (CDF) experiment from August 15, 2005 to May 31, 2012. Led by the Principal Investigator (Dr. Jay R. Dittmann), the Baylor HEP group has actively pursued a variety of cutting-edge measurements from proton-antiproton collisions at the energy frontier.

  2. Furth Plasma Physics Library | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Education Organization Business Operations Careers/ Human Resources Directory Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Contact Us Business Operations Careers/ Human Resources Directory Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Furth Plasma Physics Library The Harold P. Furth Plasma Physics Library is a branch of the Princeton University

  3. Electrical condition monitoring method for polymers

    DOE Patents [OSTI]

    Watkins, Jr., Kenneth S. (Dahlonega, GA); Morris, Shelby J. (Hampton, VA); Masakowski, Daniel D. (Worcester, MA); Wong, Ching Ping (Duluth, GA); Luo, Shijian (Boise, ID)

    2008-08-19

    An electrical condition monitoring method utilizes measurement of electrical resistivity of an age sensor made of a conductive matrix or composite disposed in a polymeric structure such as an electrical cable. The conductive matrix comprises a base polymer and conductive filler. The method includes communicating the resistivity to a measuring instrument and correlating resistivity of the conductive matrix of the polymeric structure with resistivity of an accelerated-aged conductive composite.

  4. Conditional sterility in plants

    DOE Patents [OSTI]

    Meagher, Richard B. (Athens, GA); McKinney, Elizabeth (Athens, GA); Kim, Tehryung (Taejeon, KR)

    2010-02-23

    The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

  5. RESEARCH IN PARTICLE PHYSICS

    SciTech Connect (OSTI)

    Kearns, Edward

    2013-07-12

    This is the final report for the Department of Energy Grant to Principal Investigators in Experimental and Theoretical Particle Physics at Boston University. The research performed was in the Energy Frontier at the LHC, the Intensity Frontier at Super-Kamiokande and T2K, the Cosmic Frontier and detector R&D in dark matter detector development, and in particle theory.

  6. Physics Teachers Workshop

    ScienceCinema (OSTI)

    Huggins, DaNel; Calhoun, John; Palmer, Alyson; Thorpe, Steve; Vanderveen, Anne;

    2013-05-28

    INL is looking for the nation's top high school physics teachers to attend our July workshop in Idaho Falls. Participants get to learn from nuclear researchers, tour facilities including a research reactor and interact with peers from across the country. You can learn more about INL projects at http://www.facebook.com/idahonationallaboratory

  7. Operational health physics training

    SciTech Connect (OSTI)

    1992-06-01

    The initial four sections treat basic information concerning atomic structure and other useful physical quantities, natural radioactivity, the properties of {alpha}, {beta}, {gamma}, x rays and neutrons, and the concepts and units of radiation dosimetry (including SI units). Section 5 deals with biological effects and the risks associated with radiation exposure. Background radiation and man-made sources are discussed next. The basic recommendations of the ICRP concerning dose limitations: justification, optimization (ALARA concepts and applications) and dose limits are covered in Section seven. Section eight is an expanded version of shielding, and the internal dosimetry discussion has been extensively revised to reflect the concepts contained in the MIRD methodology and ICRP 30. The remaining sections discuss the operational health physics approach to monitoring radiation. Individual sections include radiation detection principles, instrument operation and counting statistics, health physics instruments and personnel monitoring devices. The last five sections deal with the nature of, operation principles of, health physics aspects of, and monitoring approaches to air sampling, reactors, nuclear safety, gloveboxes and hot cells, accelerators and x ray sources. Decontamination, waste disposal and transportation of radionuclides are added topics. Several appendices containing constants, symbols, selected mathematical topics, and the Chart of the Nuclides, and an index have been included.

  8. High energy physics

    SciTech Connect (OSTI)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  9. Proposed Laser-Based HED physics experiments for Stockpile Stewardship

    SciTech Connect (OSTI)

    Benage, John F.; Albright, Brian J.; Fernandez, Juan C.

    2012-09-04

    An analysis of the scientific areas in High Energy Density (HED) physics that underpin the enduring LANL mission in Stockpile Stewardship (SS) has identified important research needs that are not being met. That analysis has included the work done as part of defining the mission need for the High Intensity Laser Laboratory (HILL) LANL proposal to NNSA, LDRD DR proposal evaluations, and consideration of the Predictive Capability Framework and LANL NNSA milestones. From that evaluation, we have identified several specific and scientifically-exciting experimental concepts to address those needs. These experiments are particularly responsive to physics issues in Campaigns 1 and 10. These experiments are best done initially at the LANL Trident facility, often relying on the unique capabilities available there, although there are typically meritorious extensions envisioned at future facilities such as HILL, or the NIF once the ARC short-pulse laser is available at sufficient laser intensity. As the focus of the LANL HEDP effort broadens from ICF ignition of the point design at the conclusion of the National Ignition Campaign, into a more SS-centric effort, it is useful to consider these experiments, which address well-defined issues, with specific scientific hypothesis to test or models to validate or disprove, via unit-physics experiments. These experiments are in turn representative of a possible broad experimental portfolio to elucidate the physics of interest to these campaigns. These experiments, described below, include: (1) First direct measurement of the evolution of particulates in isochorically heated dense plasma; (2) Temperature relaxation measurements in a strongly-coupled plasma; (3) Viscosity measurements in a dense plasma; and (4) Ionic structure factors in a dense plasma. All these experiments address scientific topics of importance to our sponsors, involve excellent science at the boundaries of traditional fields, utilize unique capabilities at LANL, and contribute to the Campaign milestone in 2018. Given their interdisciplinary nature, it is not surprising that these research needs are not being addressed by the other excellent high-energy density physics (HEDP) facilities coming on line, facilities aimed squarely at more established fields and missions. Although energy rich, these facilities deliver radiation (e.g., particle beams for isochoric heating) over a timescale that is too slow in these unit physics experiments to eliminate hydrodynamic evolution of the target plasma during the time it is being created. A theme shared by all of these experiments is the need to quickly create a quasi-homogeneous 'initial state' whose properties and evolution we wish to study. Otherwise, we cannot create unit experiments to isolate the physics of interest and validate the models in our codes, something that cannot be done with the integrated experiments often done in HED. Moreover, these experiments in some cases involve combinations of solid and plasmas, or matter in the warm-dense matter state, where neither the theoretical approximations of solid state or of fully-ionized weakly-coupled plasmas can be used. In all cases, the capability of 'isochoric heating' ('flash' heating at constant density) is important. In some cases, the ability to selectively heat to different degrees different species within a target, whether mixed or adjacent to each other, is critical for the experiment. This capability requires the delivery of very high power densities, which require the conversion of the laser into very short and intense pulses of secondary radiation (electrons, ions, neutrons, x-rays). Otherwise, there is no possibility of a clean experiment to constrain the models, in the cases there are any, or inform the creation of one. Another typical requirement of these experiments is the ability to probe these exotic extreme conditions of matter with flexible and diverse sources of secondary radiation. Without a high-intensity high-power laser with some unique attributes available on Trident today (e.g., ultra-high laser-puls

  10. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurements Measurement Categories Select below to highlight measurements in specified measurement categories. Aerosols The effect of aerosols is measured by instrument systems and lidars that provide data on the size distribution, optical properties, scattering, and extinction of aerosols. microphysical and chemical properties optical and radiative properties Atmospheric Carbon Measurements of atmospheric carbon are obtained from samples collected at the Southern Great Plains site. For more

  11. Physics Division annual report - 1998

    SciTech Connect (OSTI)

    1999-09-07

    Summaries are given of progress accomplished for the year in the following areas: (1) Heavy-Ion Nuclear Physics Research; (2) Operation and Development of Atlas; (3) Medium-Energy Nuclear Physics Research; (4) Theoretical Physics Research; and (5) Atomic and Molecular Physics Research.

  12. Engineered Barrier System: Physical and Chemical Environment

    SciTech Connect (OSTI)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  13. Nonglobal correlations in collider physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moult, Ian; Larkoski, Andrew J.

    2016-01-13

    Despite their importance for precision QCD calculations, correlations between in- and out-of-jet regions of phase space have never directly been observed. These so-called non-global effects are present generically whenever a collider physics measurement is not explicitly dependent on radiation throughout the entire phase space. In this paper, we introduce a novel procedure based on mutual information, which allows us to isolate these non-global correlations between measurements made in different regions of phase space. We study this procedure both analytically and in Monte Carlo simulations in the context of observables measured on hadronic final states produced in e+e- collisions, though itmore » is more widely applicable.The procedure exploits the sensitivity of soft radiation at large angles to non-global correlations, and we calculate these correlations through next-to-leading logarithmic accuracy. The bulk of these non-global correlations are found to be described in Monte Carlo simulation. They increase by the inclusion of non-perturbative effects, which we show can be incorporated in our calculation through the use of a model shape function. As a result, this procedure illuminates the source of non-global correlations and has connections more broadly to fundamental quantities in quantum field theory.« less

  14. Experiments in intermediate energy physics

    SciTech Connect (OSTI)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  15. Measuring axial pump thrust

    DOE Patents [OSTI]

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  16. Measuring axial pump thrust

    DOE Patents [OSTI]

    Suchoza, Bernard P. (McMurray, PA); Becse, Imre (Washington, PA)

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  17. Control rods in LMFBRs: a physics assessment

    SciTech Connect (OSTI)

    McFarlane, H.F.; Collins, P.J.

    1982-08-01

    This physics assessment is based on roughly 300 control rod worth measurements in ZPPR from 1972 to 1981. All ZPPR assemblies simulated mixed-oxide LMFBRs, representing sizes of 350, 700, and 900 MWe. Control rod worth measurements included single rods, various combinations of rods, and Ta and Eu rods. Additional measurements studied variations in B/sub 4/C enrichment, rod interaction effects, variations in rod geometry, neutron streaming in sodium-filled channels, and axial worth profiles. Analyses were done with design-equivalent methods, using ENDF/B Version IV data. Some computations for the sensitivities to approximations in the methods have been included. Comparisons of these analyses with the experiments have allowed the status of control rod physics in the US to be clearly defined.

  18. SC e-journals, Physics

    Office of Scientific and Technical Information (OSTI)

    Physics ACS Nano Acta Materialia Adsorption Advanced Composite Materials Advances in Condensed Matter Physics - OAJ Advances in Acoustics and Vibration - OAJ Advances in High Energy Physics - OAJ Advances in Materials Science and Engineering - OAJ Advances in Mathematical Physics - OAJ Advances in Optical Technologies - OAJ Advances in Optics and Photonics Advances in Tribology - OAJ American Journal of Physics, The Annalen der Physik Annales Henri Poincare Annals of Global Analysis and Geometry

  19. Jefferson Lab Physicist Wins American Physical Society Award | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Physicist Wins American Physical Society Award April 19, 2002 Keith Baker, from Jefferson Lab in Newport News, Va., was recently awarded the American Physical Society's 2002 Edward A. Bouchet Award for innovative research. Baker, a JLab experimental physicist is also a professor at Hampton University (Hampton, Va.). The APS award recognizes Baker for his contribution to nuclear and particle physics research, his development of ways to conduct complex measurements of subatomic particles,

  20. The MicroBooNE Experiment - About the Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Goals MicroBooNE will collect neutrino interactions using the Booster Neutrino Beam at Fermilab and produce the first neutrino cross section measurements on argon in the 1 GeV energy range. MicroBooNE will also explore the currently unexplained excess of low energy electromagnetic events observed in the MiniBooNE experiment. Click here for public plots and physics distributions.

  1. Differences in the Physical Characteristics of Diesel PM with Increasing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Blend Level | Department of Energy Differences in the Physical Characteristics of Diesel PM with Increasing Biofuel Blend Level Differences in the Physical Characteristics of Diesel PM with Increasing Biofuel Blend Level Measure physical characteristics, carbon state, and surface bound oxygen of soot from biodiesel blends. PDF icon deer08_strzelec.pdf More Documents & Publications Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies Trends in Particulate

  2. Applied Modern Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Applied Modern Physics From the first bionic eye to airport scanners that detect liquid explosives, our expertise in developing advanced diagnostics results in real-world innovations. Contact Us Group Leader (acting) Larry Schultz Email Deputy Group Leader John George Email Group Office (505) 665-2545 QkarD Quantum key distribution technology could ensure truly secure commerce, banking, communications and data transfer. Read more... A history of excellence in the development and use of

  3. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  4. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ATLAS User Group Executive Committee The current membership of the ATLAS User Group Executive Committee is: Dan Bardayan University of Notre Dame dbardaya@nd.edu Catherine Deibel Louisiana State University deibel@lsu.edu Nicholas Scielzo (chair) Lawrence Livermore National Lab scielzo1@llnl.gov Alan Wuosmaa University of Connecticut alan.wuosmaa@uconn.edu The ATLAS User Group Charter: The ATLAS User Group shall be formed from the members of the nuclear physics, nuclear chemistry and atomic

  5. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGFA Proposal AGFA - Argonne Gas Filled Analyzer AGFA, the Argonne Gas-filled Fragment Analyzer is a state-of-the art gas-filled separator at ATLAS, which is being developed in collaboration among the Argonne Physics Division, Hebrew University, Jerusalem, University of Massachusetts, Lowell, University of Maryland, University of Edinburgh, Lawrence Berkeley National Laboratory and Oregon State University. This separator will be used for a wide range of studies, e.g. 1) in conjunction with

  6. Nuclear Physics Review

    SciTech Connect (OSTI)

    Walker-Loud, Andre

    2014-11-01

    Anchoring low-energy nuclear physics to the fundamental theory of strong interactions remains an outstanding challenge. I review the current progress and challenges of the endeavor to use lattice QCD to bridge this connection. This is a particularly exciting time for this line of research as demonstrated by the spike in the number of different collaborative efforts focussed on this problem and presented at this conference. I first digress and discuss the 2013 Ken Wilson Award.

  7. Emergency Response Health Physics

    SciTech Connect (OSTI)

    Mena, RaJah; Pemberton, Wendy; Beal, William

    2012-05-01

    Health physics is an important discipline with regard to understanding the effects of radiation on human health; however, there are major differences between health physics for research or occupational safety and health physics during a large-scale radiological emergency. The deployment of a U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) monitoring and assessment team to Japan in the wake of the March 2011 accident at Fukushima Daiichi Nuclear Power Plant yielded a wealth of lessons on these difference. Critical teams (CMOC (Consequence Management Outside the Continental U.S.) and CMHT (Consequence Management Home Team) ) worked together to collect, compile, review, and analyze radiological data from Japan to support the response needs of and answer questions from the Government of Japan, the U.S. military in Japan, the U.S. Embassy and U.S. citizens in Japan, and U.S. citizens in America. This paper addresses the unique challenges presented to the health physicist or analyst of radiological data in a large-scale emergency. A key lesson learned was that public perception and the availability of technology with social media requires a diligent effort to keep the public informed of the science behind the decisions in a manner that is meaningful to them.

  8. Proceedings of the workshop on B physics at hadron accelerators

    SciTech Connect (OSTI)

    McBride, P.; Mishra, C.S.

    1993-12-31

    This report contains papers on the following topics: Measurement of Angle {alpha}; Measurement of Angle {beta}; Measurement of Angle {gamma}; Other B Physics; Theory of Heavy Flavors; Charged Particle Tracking and Vertexing; e and {gamma} Detection; Muon Detection; Hadron ID; Electronics, DAQ, and Computing; and Machine Detector Interface. Selected papers have been indexed separately for inclusion the in Energy Science and Technology Database.

  9. 328Post shot analysis of plasma conditions of Au Spheres illuminated...

    Office of Scientific and Technical Information (OSTI)

    Au Spheres illuminated by the URLLE Omega laser, as measured via Thomson scattering ... Subject: 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS Word Cloud More Like This ...

  10. Critical condition in gravitational shock wave collision and heavy ion

    Office of Scientific and Technical Information (OSTI)

    collisions (Journal Article) | DOE PAGES Critical condition in gravitational shock wave collision and heavy ion collisions « Prev Next » Title: Critical condition in gravitational shock wave collision and heavy ion collisions Authors: Lin, Shu ; Shuryak, Edward Publication Date: 2011-02-23 OSTI Identifier: 1099912 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 83; Journal Issue: 4; Journal ID: ISSN 1550-7998 Publisher:

  11. Critical condition in gravitational shock wave collision and heavy ion

    Office of Scientific and Technical Information (OSTI)

    collisions (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Critical condition in gravitational shock wave collision and heavy ion collisions Citation Details In-Document Search Title: Critical condition in gravitational shock wave collision and heavy ion collisions Authors: Lin, Shu ; Shuryak, Edward Publication Date: 2011-02-23 OSTI Identifier: 1099912 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information:

  12. Metered Evaporator for Tokamak Wall Conditioning --- Inventor(s): Charles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Skinner, Dennis Mansfield, Henry Kugel, Hans Schneider and Lane Roquemore | Princeton Plasma Physics Lab Metered Evaporator for Tokamak Wall Conditioning --- Inventor(s): Charles H. Skinner, Dennis Mansfield, Henry Kugel, Hans Schneider and Lane Roquemore A novel lithium evaporator for the controlled introduction of lithium into tokamaks for wall conditioning is described. The concept uses a Li granule injector with a heated in-vessel yttrium crucible to evaporate a controlled amount of

  13. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaksa)

    SciTech Connect (OSTI)

    Pablant, N. A.; Bell, R. E.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Lazerson, S.; Morita, S.

    2014-11-01

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICS can provide pro#12;file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi#12;ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.

  14. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaksa)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pablant, N. A.; Bell, R. E.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Lazerson, S.; Morita, S.

    2014-08-08

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICSmore »can provide pro#12;file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi#12;ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.« less

  15. Emergency Response Health Physics

    SciTech Connect (OSTI)

    Mena, R., Pemberton, W., Beal, W.

    2012-05-01

    Health physics is an important discipline with regard to understanding the effects of radiation on human health. Topics of discussion included in this manuscript are related to responding to a radiation emergency, and the necessary balance between desired high accuracy laboratory results and rapid turnaround requirements. Considerations are addressed for methodology with which to provide the most competent solutions despite challenges presented from incomplete datasets and, at times, limited methodology. An emphasis is placed on error and uncertainty of sample analysis results, how error affects products, and what is communicated in the final product.

  16. Renormalization and plasma physics

    SciTech Connect (OSTI)

    Krommes, J.A.

    1980-02-01

    A review is given of modern theories of statistical dynamics as applied to problems in plasma physics. The derivation of consistent renormalized kinetic equations is discussed, first heuristically, later in terms of powerful functional techniques. The equations are illustrated with models of various degrees of idealization, including the exactly soluble stochastic oscillator, a prototype for several important applications. The direct-interaction approximation is described in detail. Applications discussed include test particle diffusion and the justification of quasilinear theory, convective cells, E vector x B vector turbulence, the renormalized dielectric function, phase space granulation, and stochastic magnetic fields.

  17. Theoretical High Energy Physics

    SciTech Connect (OSTI)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  18. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Safety Considerations at ATLAS For onsite emergencies, call 911 on the internal phones (or 252-1911 on cell phones) Equipment Safety Reviews are required whenever new equipment is brought in for an experiment. The review is conducted by the Physics Division safety committee. If you plan to bring in your own detectors or other equipment for an experiment, it will need to reviewed. If a safety review is required for your equipment, you will need to fill out a Hazard Analysis form. Forms

  19. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The purpose of this note is to announce an important workshop for the ATLAS users to be held at Argonne National Laboratory on AUGUST 8 and 9, 2009. As you are aware, major changes are in store for the ATLAS facility. First, the Energy Upgrade and the CARIBU (CAlifornium Rare Ion Breeder Upgrade) projects are nearing completion. In addition, the role of ATLAS for the low-energy nuclear physics community needs to be revisited in light of the decision to site the Facility for Rare Isotope Beams

  20. Nuclear Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science An experimental hall detector An experimental hall detector. A D D I T I O N A L L I N K S: Hall A Hall B Hall C Hall D 12 GeV Recent Experiments Experiment Proposal PAC Review Scheduling Processes top-right bottom-left-corner bottom-right-corner Nuclear Physics Scientists from across the country and around the world use the Thomas Jefferson National Accelerator Facility to advance mankind's understanding of the atom's nucleus. To probe nuclei, scientists use continuous beams of

  1. INSTITUTE OF PHYSICS PUBLISHING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 (2004) 162-171 PII: S0029-5515(04)72612-5 Equilibrium reconstruction in the Madison Symmetric Torus reversed field pinch J.K. Anderson, C.B. Forest, T.M. Biewer a , J.S. Sarff and J.C. Wright b Department of Physics, University of Wisconsin, Madison, WI 53706, USA Received 21 December 2002, accepted for publication 18 November 2003 Published 17 December 2003 Online at stacks.iop.org/NF/44/162 (DOI: 10.1088/0029-5515/44/1/018) Abstract A non-linear Grad-Shafranov toroidal equilibrium

  2. INSTITUTE OF PHYSICS PUBLISHING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 (2006) 521-531 doi:10.1088/0029-5515/46/5/004 Coupling to the electron Bernstein wave using a phased array of waveguides in MST reversed field pinch M. Cengher, J.K. Anderson, V. Svidzinski and C.B. Forest 1 Department of Physics, University of Wisconsin, 1150 University Ave, Madison, WI 53706, USA E-mail: cbforest@wisc.edu Received 31 August 2005, accepted for publication 20 February 2006 Published 23 March 2006 Online at stacks.iop.org/NF/46/521 Abstract Coupling to the electron Bernstein

  3. Fuel Conditioning Facility Electrorefiner Process Model

    SciTech Connect (OSTI)

    DeeEarl Vaden

    2005-10-01

    The Fuel Conditioning Facility at the Idaho National Laboratory processes spent nuclear fuel from the Experimental Breeder Reactor II using electro-metallurgical treatment. To process fuel without waiting for periodic sample analyses to assess process conditions, an electrorefiner process model predicts the composition of the electrorefiner inventory and effluent streams. For the chemical equilibrium portion of the model, the two common methods for solving chemical equilibrium problems, stoichiometric and non stoichiometric, were investigated. In conclusion, the stoichiometric method produced equilibrium compositions close to the measured results whereas the non stoichiometric method did not.

  4. ARM - Measurement -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurements ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Categories Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments UV-MFRSR : Ultraviolet

  5. Tokamaks | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (DOE) Princeton Plasma Physics Laboratory (PPPL) for a March 28-30 "Fisch Fest" - a three-day symposium on "Solved and Unsolved Problems in Plasma Physics" in honor of the 65th ...

  6. Condition Monitoring of Cables Task 3 Report: Condition Monitoring Techniques for Electric Cables

    SciTech Connect (OSTI)

    Villaran, M.; Lofaro, R.; na

    2009-11-30

    For more than 20 years the NRC has sponsored research studying electric cable aging degradation, condition monitoring, and environmental qualification testing practices for electric cables used in nuclear power plants. This report summarizes several of the most effective and commonly used condition monitoring techniques available to detect damage and measure the extent of degradation in electric cable insulation. The technical basis for each technique is summarized, along with its application, trendability of test data, ease of performing the technique, advantages and limitations, and the usefulness of the test results to characterize and assess the condition of electric cables.

  7. Physics Division annual report 2004.

    SciTech Connect (OSTI)

    Glover, J.

    2006-04-06

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make RIA, in the words of NSAC, ''the world-leading facility for research in nuclear structure and nuclear astrophysics''. The performance standards for new classes of superconducting cavities continue to increase. Driver linac transients and faults have been analyzed to understand reliability issues and failure modes. Liquid-lithium targets were shown to successfully survive the full-power deposition of a RIA beam. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for RIA holds the keys to unlocking important secrets of nature. The work described here shows how far we have come and makes it clear we know the path to meet these intellectual challenges. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.

  8. Princeton Plasma Physics Laboratory News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    archive Princeton Plasma Physics Laboratory news feed en PPPL physicists simulate innovative method for starting up tokamaks without...

  9. Physical Sciences and Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our work in fundamental and applied physics, chemistry, and materials science provides a foundation for unparalleled collaborations. More VIdeo Highlight Argonne Outloud Promo: The End of Water as We Know It (Jan. 28, 2016) Recent Research Highlights On the left, a schematic shows the experimental setup for measuring spin dynamics in a sample of YIG. On the right, a Brillouin light scattering map of a micro-sized bar of YIG excited via an electrical current through a platinum overlayer reveals a

  10. Electrochemical thermodynamic measurement system

    DOE Patents [OSTI]

    Reynier, Yvan (Meylan, FR); Yazami, Rachid (Los Angeles, CA); Fultz, Brent T. (Pasadena, CA)

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  11. Electrical condition monitoring method for polymers

    DOE Patents [OSTI]

    Watkins, Jr. Kenneth S.; Morris, Shelby J.; Masakowski, Daniel D.; Wong, Ching Ping; Luo, Shijian

    2010-02-16

    An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.

  12. Notes from Financial and Physical Oil Market Linkages

    Gasoline and Diesel Fuel Update (EIA)

    Workshop Summary Notes Financial and Physical Oil Market Linkages II September 27, 2012 Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Session 1: 9:15 a.m. - 10:45 a.m. Paper Title: Physical Market Conditions, Paper Market Activity, and the Brent-WTI Spread Presenter: Michel Robe, American University Discussant: Lutz Kilian, University of Michigan Presentation: [Presentation materials link in here] Paper Abstract We document that, starting in the Fall of 2008, the

  13. VLHC accelerator physics

    SciTech Connect (OSTI)

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  14. Standoff spectroscopy using a conditioned target

    DOE Patents [OSTI]

    Van Neste, Charles W. (Kingston, TN); Morales-Rodriguez, Marissa E. (Knoxville, TN); Senesac, Lawrence R. (Knoxville, TN); Thundat, Thomas G. (Knoxville, TN)

    2011-12-20

    A system and method are disclosed for standoff spectroscopy of molecules (e.g. from a residue) on a surface from a distance. A source emits radiation that modifies or conditions the residue, such as through photodecomposition. A spectral generating source measures a spectrum of the residue before and after the residue is exposed to the radiation from that source. The two spectra are compared to produce a distinct identification of the residues on the surface or identify certain properties of the residue.

  15. Kinetics of visible light photo-oxidation of Ge nanocrystals:Theory and in situ measurement

    SciTech Connect (OSTI)

    Sharp, I.D.; Xu, Q.; Yuan, C.W.; Beeman, J.W.; Ager III, J.W.; Chrzan, D.C.; Haller, E.E.

    2006-11-14

    Photo-oxidation of Ge nanocrystals illuminated with visible laser light under ambient conditions was investigated. The photo-oxidation kinetics were monitored by in situ measurement of the crystalline Ge volume fraction by Raman spectroscopy. The effects of laser power and energy on the extent of oxidation were measured using both in situ and ex situ Raman scattering techniques. A mechanistic model in which the tunneling of photo-excited carriers to the oxide surface for electron activated molecular oxygen dissociation is proposed. This quantitative model successfully describes all experimental photo-oxidation observations using physical parameters.

  16. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Measurements Ground-based Instruments Category

  17. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links SPARTICUS Home AAF Home Deployment Operations Measurements SGP Data Plots NASA Data Plots ARM Data Discovery Browse Data Experiment Planning SPARTICUS Proposal Abstract Science Questions Science and Operations (PDF, 1.01M) SPARTICUS Wiki News News & Press Backgrounder (PDF, 269K) Contacts Gerald Mace, Lead Scientist Measurements The SPARTICUS field campaign seeks to collect a substantial series of data sets-profiling cirrus ice crystal size and distribution-during

  18. High Precision Measurement of the 19Ne Lifetime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Precision Measurement of the 19 Ne Lifetime by Leah Jacklyn Broussard Department of Physics Duke University Date: Approved: Albert Young Calvin Howell Kate Scholberg Berndt Mueller John Thomas Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2012 Abstract (Nuclear physics) High Precision Measurement of the 19 Ne Lifetime by Leah Jacklyn Broussard Department of Physics

  19. FPC conditioning cart at BNL

    SciTech Connect (OSTI)

    Xu, W.; Ben-Zvi, I.; Altinbas, F.Z.; Belomestnykh, S.; Burrill, A.; Cole, M.; Deonarine, J.; Jamilkowski, J.; Kayran, D.; Laloudakis, N.; Masi Jr, L.; McIntyre, G.; Pate, D.; Philips, D.; Seda, T.; Steszyn, A.; Tallerico, T.; Todd, R.; Weiss, D.; White, G.; Zaltsman, A.

    2011-03-28

    The 703 MHz superconducting gun for the BNL Energy Recovery Linac (ERL) prototype has two fundamental power couplers (FPCs), and each of them will deliver up to 500 kW of CW RF power. In order to prepare the couplers for high power RF service and process multipacting, the FPCs should be conditioned prior to installation into the gun cryomodule. A conditioning cart based test stand, which includes a vacuum pumping system, controllable bake-out system, diagnostics, interlocks and data log system has been designed, constructed and commissioned by collaboration of BNL and AES. This paper presents FPC conditioning cart systems and the conditioning process.

  20. Health Physics Support Assistant | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Saville Requisition Number: 1500691 POSITIONAL SUMMARY: To support the Health Physics Dosimeter program, records management (both archival and electronic) and to backup the ES&HS...

  1. MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; SOLID STATE...

    Office of Scientific and Technical Information (OSTI)

    Open problems in condensed matter physics, 1987 Falicov, L.M. 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; SOLID STATE PHYSICS; RESEARCH PROGRAMS;...

  2. Particle physics---Experimental

    SciTech Connect (OSTI)

    Lord, J.J.; Boynton, P.E.; Burnett, T.H.; Wilkes, R.J.

    1991-08-21

    We are continuing a research program in particle astrophysics and high energy experimental particle physics. We have joined the DUMAND Collaboration, which is constructing a deep undersea astrophysical neutrino detector near Hawaii. Studies of high energy hadronic interactions using emulsion chamber techniques were also continued, using balloon flight exposures to ultra-high cosmic ray nuclei (JACEE) and accelerator beams. As members of the DUMAND Collaboration, we have responsibility for development a construction of critical components for the deep undersea neutrino detector facility. We have designed and developed the acoustical positioning system required to permit reconstruction of muon tracks with sufficient precision to meet the astrophysical goals of the experiment. In addition, we are making significant contributions to the design of the database and triggering system to be used. Work has been continuing in other aspects of the study of multiparticle production processes in nuclei. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators, using balloon-borne emulsion chambers. On one of the flights we found two nuclear interactions of multiplicity over 1000 -- one with a multiplicity of over 2000 and pseudorapidity density {approximately} 800 in the central region. At the statistical level of the JACEE experiment, the frequency of occurrence of such events is orders of magnitude too large. We have continued our ongoing program to study hadronic interactions in emulsions exposed to high energy accelerator beams.

  3. Few-body physics

    SciTech Connect (OSTI)

    Briceno, Raul

    2015-05-01

    Few-body hadronic observables play an essential role in a wide number of processes relevant for both particle and nuclear physics. In order for Lattice QCD to offer insight into the interpretation of few-body states, a theoretical infrastructure must be developed to map Euclidean-time correlation functions to the desired Minkowski-time few-body observables. In this talk, I will first review the formal challenges associated with the studies of such systems via Lattice QCD, as first introduced by Maiani and Testa, and then review methodology to circumvent said limitations. The first main example of the latter is the formalism of Luscher to analyze elastic scattering and a second is the method of Lellouch & Luscher to analyze weak decays. I will then proceed to discus recent theoretical generalizations of these frameworks that allow for the determination of scattering amplitudes, resonances, transition and elastic form factors. Finally, I will outline outstanding problems, including those that are now beginning to be addressed.

  4. Open Boundary Conditions for Dissipative MHD

    SciTech Connect (OSTI)

    Meier, E T

    2011-11-10

    In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.

  5. SFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 29 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  6. SFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 6/14/13) Exhibit A General Conditions Page 1 of 16 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  7. CPFFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 33 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  8. CPFFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 6/14/13) Exhibit A General Conditions Page 1 of 20 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  9. CPFFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 3/6/15) Exhibit A General Conditions Page 1 of 29 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2014) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  10. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 31 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  11. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 6 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1C DEFINITIONS (Jun 2010) ........................................................................................................... 2 GC-6C ORDER OF PRECEDENCE (Mar 2012) .................................................................................... 2 GC-8B COMPLIANCE WITH LAWS, RULES, REGULATIONS AND STANDARDS (Jun 2010) .......... 2 GC-11 NEW MEXICO GROSS

  12. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 3/6/15) Exhibit A General Conditions Page 1 of 21 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  13. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 12/15/14) Exhibit A General Conditions Page 1 of 20 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  14. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 3/6/15) Exhibit A General Conditions Page 1 of 8 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1C DEFINITIONS (Jun 2010) ........................................................................................................... 2 GC-6C ORDER OF PRECEDENCE (Mar 2012) .................................................................................... 2 GC-8B COMPLIANCE WITH LAWS, RULES, REGULATIONS AND STANDARDS (Jun 2010) .......... 2 GC-11 NEW MEXICO GROSS

  15. EFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 39 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2 AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Apr 2013) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  16. EFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 6/14/13) Exhibit A General Conditions Page 1 of 26 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2 AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Apr 2013) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  17. EFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 12/15/14) Exhibit A General Conditions Page 1 of 29 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2 AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Apr 2013) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  18. LFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 31 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  19. LFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 6/14/13) Exhibit A General Conditions Page 1 of 19 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  20. LFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 3/6/15) Exhibit A General Conditions Page 1 of 22 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2014) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  1. LFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 9/26/14) Exhibit A General Conditions Page 1 of 22 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2014) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  2. Materials for Harsh Service Conditions:

    Office of Environmental Management (EM)

    Materials for Harsh Service Conditions: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 1 4 1.1 Overview of Materials for Harsh Service Conditions .................................................................... 1 5 1.2 Challenges and Opportunities ....................................................................................................... 2 6 1.3 Public

  3. Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U Education Organization Contact Us Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U Research The U.S. Department of Energy's Princeton Plasma Physics Laboratory is dedicated to developing fusion as

  4. Directory | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Contact Us Business Operations Careers/ Human Resources Directory Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Directory Search by Name Search Reset The DOE Princeton Plasma Physics Laboratory works with collaborators across the globe to develop fusion as an energy source for the world, and conducts research along the broad frontier of plasma

  5. Cross-Section Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Section Measurement of 2 H(n,np)n at 16 MeV in Symmetric Constant Relative Energy Configurations Alexander Hoff Couture A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics and Astronomy. Chapel Hill 2011 Approved by: T. B. Clegg, Advisor C. R. Howell, Advisor H. J. Karwowski, Reader J. Lu, Reader J. Engel, Reader c 2011 Alexander Hoff Couture ALL

  6. Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U...

  7. Nuclear Physics from Lattice QCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thursday, May 26, 2011 Exa-Scale Computational Resources Nuclear Astrophysics Accelerator Physics Cold QCD and Nuclear Forces Hot and Dense QCD Nuclear Structure and Reactions ...

  8. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What is in the future for physics? You wrote: We are constantly preoccupied with the next steps in our sciences. I would be interested to know, in your opinion, what the next fifteen steps are likely to be in physics in the 21st Century. With thanks for your time Stephanie G. Dear Stephanie: Your question regarding the far distant goals/discoveries of physics is obviously very difficult to answer. In particular, physics is such a vast field that it is already difficult for me to do justice to

  9. Review of physics results from the Tevatron: Heavy flavor physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Jonathan; Van Kooten, Rick

    2015-02-28

    We present a review of heavy flavor physics results from the CDF and D0 Collaborations operating at the Fermilab Tevatron Collider. A summary of results from Run 1 is included, but we concentrate on legacy results of charm and b physics from Run 2, including results up to Summer 2014.

  10. Review of physics results from the Tevatron: Heavy flavor physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Jonathan; van Kooten, Rick

    2015-02-28

    In this study, we present a review of heavy flavor physics results from the CDF and DØ Collaborations operating at the Fermilab Tevatron Collider. A summary of results from Run 1 is included, but we concentrate on legacy results of charm and b physics from Run 2, including results up to Summer 2014.

  11. Offshore Resource Assessment and Design Conditions Public Meeting Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy Resource Assessment and Design Conditions Public Meeting Summary Report Offshore Resource Assessment and Design Conditions Public Meeting Summary Report Report from DOE's June 2011 meeting that focused on the critical meteorological and oceanographic measurements and data needed for successful deployment of offshore renewable energy technologies. PDF icon 2011 Offshore Resource Assessment and Design Conditions Public Meeting More Documents & Publications

  12. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project (BBOP)Measurements Related Links BBOP Home Outreach News & Press Backgrounder (PDF, 2.1MB) Images ARM flickr site ARM Data Discovery Browse Data Deployment Operations Airborne Measurements Science Plan (PDF, 2.2MB) BBOP wiki Login Required Data Sets Experiment Planning Proposal Abstract and Related Campaigns BBOP Breakout Session, ASR Science Team Meeting, March 2014 BBOP Breakout Session, ASR Science Team Meeting, March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist

  13. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links RACORO Home AAF Home ARM Data Discovery Browse Data Post-Campaign Data Sets Data Guide (PDF, 1.4MB) Campaign Journal Flight Details Images ARM flickr site Deployment Operations Measurements Science & Operations Plan (PDF, 640K) SGP Data Plots RACORO wiki Login Required Experiment Planning Steering Committee Science Questions RACORO Proposal Abstract Full Proposal (PDF, 886K) Collaborations Meetings CLOWD Working Group News Discovery Channel Earth Live Blog News

  14. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links TCAP Home Outreach News & Press WCAI Interview with Dr. Berg (YouTube) Frequently Asked Questions Brochure Backgrounder (PDF, 1.5MB) AMF Poster, 2012 Images ARM flickr site ARM Data Discovery Browse Data Deployment Operations Data Sets Baseline Instruments and Data Plots at the Archive Airborne Measurements Airborne Data Sets Science Plan (PDF, 1.6 MB) G-1 Cabin Layout TCAP wiki Login Required Experiment Planning Proposal Abstract and Related Campaigns Poster at

  15. Measuring Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Measurement Activity: How Much Is Present? The size or weight of a container or shipment does not indicate how much radioactivity is in it. The amount of radioactivity in a quantity of material can be determined by noting how many curies of the material are present. This information should be found on labels and/or shipping

  16. Fuel Thermo-physical Characterization Project. Fiscal Year 2014 Final Report

    SciTech Connect (OSTI)

    Burkes, Douglas; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Slonecker, Bruce D.; Smith, Frances N.; Steen, Franciska H.

    2015-03-15

    The Office of Material Management and Minimization (M3) Reactor Conversion Fuel Thermo-Physical Characterization Project at Pacific Northwest National Laboratory (PNNL) was tasked with using PNNL facilities and processes to receive irradiated low enriched uranium–molybdenum (LEU-Mo) fuel plate samples and perform analysis in support of the M3 Reactor Conversion Program. This work is in support of the M3 Reactor Conversion Fuel Development Pillar that is managed by Idaho National Laboratory. The primary research scope was to determine the thermo-physical properties as a function of temperature and burnup. Work conducted in Fiscal Year (FY) 2014 complemented measurements performed in FY 2013 on four additional irradiated LEU-Mo fuel plate samples. Specifically, the work in FY 2014 investigated the influence of different processing methods on thermal property behavior, the absence of aluminum alloy cladding on thermal property behavior for additional model validation, and the influence of higher operating surface heat flux / more aggressive irradiation conditions on thermal property behavior. The model developed in FY 2013 and refined in FY 2014 to extract thermal properties of the U-Mo alloy from the measurements conducted on an integral fuel plate sample (i.e., U-Mo alloy with a thin Zr coating and clad in AA6061) continues to perform very well. Measurements conducted in FY 2014 on samples irradiated under similar conditions compare well to measurements performed in FY 2013. In general, there is no gross influence of fabrication method on thermal property behavior, although the difference in LEU-Mo foil microstructure does have a noticeable influence on recrystallization of grains during irradiation. Samples irradiated under more aggressive irradiation conditions, e.g., higher surface heat flux, revealed lower thermal conductivity when compared to samples irradiated at moderate surface heat fluxes, with the exception of one sample. This report documents thermal property measurements conducted in FY 2014 and compares results to values obtained from literature and measurements performed in FY 2013, where applicable, along with appropriate discussion.

  17. Permeation, Diffusion, Solubility Measurements: Results and Issues...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeation, Diffusion, Solubility Measurements: Results and Issues Research Objectives: To understand the hydrogen transport behavior Under conditions relevant to hydrogen delivery ...

  18. Patent: Conditioning biomass for microbial growth | DOEpatents

    Office of Scientific and Technical Information (OSTI)

    Conditioning biomass for microbial growth Citation Details Title: Conditioning biomass for microbial growth

  19. Measurement of the absolute \

    SciTech Connect (OSTI)

    Aunion, Jose Luis Alcaraz; /Barcelona, IFAE

    2010-07-01

    This thesis presents the measurement of the charged current quasi-elastic (CCQE) neutrino-nucleon cross section at neutrino energies around 1 GeV. This measurement has two main physical motivations. On one hand, the neutrino-nucleon interactions at few GeV is a region where existing old data are sparse and with low statistics. The current measurement populates low energy regions with higher statistics and precision than previous experiments. On the other hand, the CCQE interaction is the most useful interaction in neutrino oscillation experiments. The CCQE channel is used to measure the initial and final neutrino fluxes in order to determine the neutrino fraction that disappeared. The neutrino oscillation experiments work at low neutrino energies, so precise measurement of CCQE interactions are essential for flux measurements. The main goal of this thesis is to measure the CCQE absolute neutrino cross section from the SciBooNE data. The SciBar Booster Neutrino Experiment (SciBooNE) is a neutrino and anti-neutrino scattering off experiment. The neutrino energy spectrum works at energies around 1 GeV. SciBooNE was running from June 8th 2007 to August 18th 2008. In that period, the experiment collected a total of 2.65 x 10{sup 20} protons on target (POT). This thesis has used full data collection in neutrino mode 0.99 x 10{sup 20} POT. A CCQE selection cut has been performed, achieving around 70% pure CCQE sample. A fit method has been exclusively developed to determine the absolute CCQE cross section, presenting results in a neutrino energy range from 0.2 to 2 GeV. The results are compatible with the NEUT predictions. The SciBooNE measurement has been compared with both Carbon (MiniBoonE) and deuterium (ANL and BNL) target experiments, showing a good agreement in both cases.

  20. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

  1. Data Processing for Energetic Particle Measurements from the...

    Office of Scientific and Technical Information (OSTI)

    Title: Data Processing for Energetic Particle Measurements from the Global ... Country of Publication: United States Language: English Subject: Plasma Physics & Fusion ...

  2. Thermal Imaging Technique for Measuring Mixing of Fluids - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fluid flow. Current methods rely on different physical principles such as: pressure measurement, particle tracking using images, heat removal from a wire and Doppler shift...

  3. Joint Actinide Shock Physics Experimental Research | National...

    National Nuclear Security Administration (NNSA)

    Actinide Shock Physics Experimental Research | National Nuclear Security Administration ... Facilities Joint Actinide Shock Physics Experimental Research Joint Actinide ...

  4. Organization | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Careers/ Human Resources Directory Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Contact Us Business Operations Careers/ Human Resources Directory Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Organization Careers/ Human Resources Join Princeton's TALENT NETWORK to enhance your job search and the application process for Princeton University and the Plasma

  5. Tour - MST - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tour UW Madison Madison Symmetric Torus Tour MST HomeGraduate Student InformationLinksTourControl and Auxiliary SystemsPhysics TopicsDeviceResearch MissionMST People mst logo CPLA Home Directory Publications Links Internal University of Wisconsin Physics Department Research funding includes support from: Department of Energy National Science Foundation Display: Vacuum vessel Power Supplies Experiments

  6. Energy Exchange Terms and Conditions

    Broader source: Energy.gov [DOE]

    We will be requesting that participants acknowledge that they have read these terms and conditions at the time of registration (also included in the online registration form) and at the time of printing their badges on-site.

  7. LED Performance Under Tough Conditions

    Broader source: Energy.gov [DOE]

    December 2015 LD+A magazine article entitled "LED Performance Under Tough Conditions" discussing three Dept of Energy GATEWAY applications that show how LED luminaires respond to rigorous outdoor environments.

  8. Flavor Physics Data from the Heavy Flavor Averaging Group (HFAG)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Heavy Flavor Averaging Group (HFAG) was established at the May 2002 Flavor Physics and CP Violation Conference in Philadelphia, and continues the LEP Heavy Flavor Steering Group's tradition of providing regular updates to the world averages of heavy flavor quantities. Data are provided by six subgroups that each focus on a different set of heavy flavor measurements: B lifetimes and oscillation parameters, Semi-leptonic B decays, Rare B decays, Unitarity triangle parameters, B decays to charm final states, and Charm Physics.

  9. Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Quality) | Department of Energy Sediment Transport, and Water Quality) Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality) Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality) File 56_tools_methods_to_measure_predict_envrionmental_impacts_snl_roberts.pptx More Documents & Publications FY 09 Lab Call: Research & Assessment for MHK Development 2014 Water Power Program Peer Review Compiled Presentations:

  10. Conditions for detecting CP violation via neutrinoless double beta decay

    SciTech Connect (OSTI)

    Joniec, A.; Zralek, M. [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)

    2006-02-01

    Neutrinoless double beta decay data, together with information on the absolute neutrino masses obtained from the future KATRIN experiment and/or astrophysical measurements, provide a chance to find CP violation in the lepton sector with Majorana neutrinos. We derive and discuss necessary conditions which make discovery of such CP violation possible for the future neutrino oscillation and mass measurements data.

  11. Flavor Physics in the Quark Sector

    SciTech Connect (OSTI)

    Antonelli, Mario; /Frascati; Asner, David Mark; /Carleton U.; Bauer, Daniel Adams; /Imperial Coll., London; Becher, Thomas G.; /Fermilab; Beneke, M.; /Aachen, Tech. Hochsch.; Bevan, Adrian John; /Queen Mary, U. of London; Blanke, Monika; /Munich, Tech. U. /Munich, Max Planck Inst.; Bloise, C.; /Frascati; Bona, Marcella; /CERN; Bondar, Alexander E.; /Novosibirsk, IYF; Bozzi, Concezio; /INFN, Ferrara; Brod, Joachim; /Karlsruhe U.; Buras, Andrzej J.; /Munich, Tech. U.; Cabibbo, N.; /INFN, Rome /Rome U.; Carbone, A.; /INFN, Bologna; Cavoto, Gianluca; /INFN, Rome; Cirigliano, Vincenzo; /Los Alamos; Ciuchini, Marco; /INFN, Rome; Coleman, Jonathon P.; /SLAC; Cronin-Hennessy, Daniel P.; /Minnesota U.; Dalseno, J.P.; /KEK, Tsukuba /Glasgow U. /Queen Mary, U. of London /Freiburg U. /Charles U. /Pisa U. /Vienna, OAW /Imperial Coll., London /Bergen U. /INFN, Rome /Rome U. /Munich, Tech. U. /INFN, Rome /Rome U. /Southampton U. /INFN, Rome /Nara Women's U. /Florida U. /INFN, Turin /Turin U. /Edinburgh U. /Warwick U. /INFN, Rome /Rome U. /Massachusetts U., Amherst /KEK, Tsukuba /Bern U. /CERN /Munich, Tech. U. /Mainz U., Inst. Phys. /Wayne State U. /Munich, Max Planck Inst. /CERN /Frascati /Brookhaven /Mainz U., Inst. Kernphys. /Munich, Tech. U. /Siegen U. /Imperial Coll., London /Victoria U. /KEK, Tsukuba /Fermilab /Washington U., St. Louis /Frascati /Warwick U. /Indian Inst. Tech., Madras /Melbourne U. /Princeton U. /Beijing, Inst. High Energy Phys. /INFN, Rome /INFN, Rome3 /Fermilab /SLAC /York U., Canada /Brookhaven /UC, Irvine /INFN, Rome /Rome U. /Valencia U., IFIC /INFN, Padua /Padua U. /Munich, Max Planck Inst. /Barcelona U. /Warwick U. /Tata Inst. /Frascati /Mainz U., Inst. Phys. /Vienna U. /KEK, Tsukuba /Orsay, LPT /Frascati /Munich, Tech. U. /Brookhaven /Bern U. /CERN /Mainz U., Inst. Phys. /Wayne State U. /Valencia U., IFIC /CERN /Kentucky U. /Oxford U. /Iowa State U. /Bristol U. /INFN, Rome /Rutherford /CERN /Orsay, LAL /Glasgow U. /INFN, Padua /Queen Mary, U. of London /Texas U. /LPHE, Lausanne /Fermilab /UC, Santa Cruz /Vienna, OAW /Cincinnati U. /Frascati /Orsay, LAL /Ohio State U. /Purdue U. /Novosibirsk, IYF /Frascati /INFN, Rome /Padua U. /INFN, Rome /Bern U. /Karlsruhe U. /Brookhaven /CERN /Paris U., VI-VII /Zurich, ETH /Pisa U. /Frascati /Oxford U. /Orsay, LAL /INFN, Rome2 /INFN, Rome /INFN, Rome3 /Princeton U. /Fermilab /Queen's U., Kingston /KEK, Tsukuba /Melbourne U. /Brookhaven /Indiana U. /INFN, Rome /Rome U. /Pisa U. /Mainz U., Inst. Phys. /Karlsruhe U. /Oxford U. /Cambridge U., DAMTP /Edinburgh U. /CERN

    2010-08-26

    In the past decade, one of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor. In this time frame, measurements and the theoretical interpretation of their results have advanced tremendously. A much broader understanding of flavor particles has been achieved, apart from their masses and quantum numbers, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. In the past, observations of CP violation were confined to neutral K mesons, but since the early 1990s, a large number of CP-violating processes have been studied in detail in neutral B mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of K,D, and B mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near future, there will be a transition from the current to a new generation of experiments, thus a review of the status of quark flavor physics is timely. This report is the result of the work of the physicists attending the 5th CKM workshop, hosted by the University of Rome 'La Sapienza', September 9-13, 2008. It summarizes the results of the current generation of experiments that is about to be completed and it confronts these results with the theoretical understanding of the field which has greatly improved in the past decade.

  12. Extreme Conditions Modeling Workshop Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Met-ocean modeling: This group discussed current practices and new developments in estimating extreme sea states (ESS) through met-ocean measurements and modeling. Each breakout ...

  13. The BABAR Physics Book: Physics at an Asymmetric B Factory

    SciTech Connect (OSTI)

    Harrison, P.F., ed.; Quinn, Helen R., ed.

    2010-05-27

    Results of a year-long workshop devoted to a review of the physics opportunities of the BABAR experiment at the PEP-II B Factory, at the Stanford Linear Accelerator Center laboratory are presented.

  14. Process for the physical segregation of minerals

    DOE Patents [OSTI]

    Yingling, Jon C.; Ganguli, Rajive

    2004-01-06

    With highly heterogeneous groups or streams of minerals, physical segregation using online quality measurements is an economically important first stage of the mineral beneficiation process. Segregation enables high quality fractions of the stream to bypass processing, such as cleaning operations, thereby reducing the associated costs and avoiding the yield losses inherent in any downstream separation process. The present invention includes various methods for reliably segregating a mineral stream into at least one fraction meeting desired quality specifications while at the same time maximizing yield of that fraction.

  15. PETN: Variation in Physical and Chemical Characteristics Related to Aging.

    SciTech Connect (OSTI)

    Monroe, D. C.; Laintz, K. E.; Kramer, J. F.; Peterson, P. D.

    2006-01-01

    Physical and chemical analyses of five PETN (pentaerythritol tetranitrate) batches have been conducted to assist in defining powder acceptance criteria for qualification of newly manufactured powders, as well as for examination of potential changes related to aging and thus changes in performance. Results showed that (1) repeatable Fisher Sub-Sieve Sizer measurements (which relate well to historic performance data) could be obtained with consistent sample setup and measurement techniques; (2) BET nitrogen adsorption estimates of surface area correlate well with Fisher measurements and appear less variable; (3) PharmaVision particle size analyses show promise in discriminating among PETN batches; and (4) SEMs are extremely useful in semi-quantitative discrimination among batches. Physical and chemical data will be related to performance data (to be obtained) to develop quantitative physical and chemical tests useful in predicting performance over time, i.e., as powders age.

  16. Big Bang Day : Physics Rocks

    ScienceCinema (OSTI)

    None

    2011-04-25

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  17. Physics division annual report 2006.

    SciTech Connect (OSTI)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  18. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consequences of Superstring Theory Animesh writes: I am doing my B.Tech in electronics engineering ,with a minor in particle physics at IIT,KANPUR,INDIA. I would like to know the following: WHAT WILL BE THE CONSEQUENCE OF THE SUCCESS OF THE SUPER STRING THEORY? i.e,WHEN THE FUNDAMENTAL PHOMENON OF ALL THE FORCES WILL BE KNOWN,WILL PHYSICS BE EXHAUSTED? Thanking you, ANIMESH D., IIT,KANPUR. Hi ANIMESH, If the superstring theory is true, we have then a very fundemental theory of physics. We could

  19. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ana Kata Dimension You Wrote: One day I was sitting in my living room, reading a book on physics, an idea occurred to me. (This idea probably may be unscientific and unreasonable, but read the rest of this letter anyway.) This is, specifically, a question about dimensional physics (that's probably not the real term for this branch of physics). From now-on, I will refer to the ana/kata dimension (the fourth spatial) dimension as the fourth dimension rather than the fifth dimension, even though

  20. OMEGA EP Power Conditioning - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EP Power Conditioning - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser

  1. UPR/Mayaguez High Energy Physics

    SciTech Connect (OSTI)

    Mendez, Hector

    2014-10-31

    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1)#3; Λ0b branching fraction, (2) B meson mass, and (3) hyperon θ-b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of Puerto Rico-Rio Piedras (Carlos Malca). The students H. Moreno and C. Malca has been directly supervised by Dr. Mendez and S. Santiesteban supervised by Dr. Ramirez. During the last 13 years, our group have graduated 23 MS students on experimental High Energy Physics data analysis and applied hardware techniques. Most of the students have been supported by DOE grants, included this grant. Since 2001, Dr. Mendez have directly supervised eleven students, Dr. Ramirez three students and the former PI (Dr. Lopez) nine students. These theses work are fully documented in the group web page (http://charma.uprm.edu). The High Energy Physics group at Mayaguez is small and presently consists of three Physics faculty members, the Senior Investigators Dr. Hector Mendez (Professor) and Dr. Juan Eduardo Ramirez (Professor), and Dr. Sudhir Malik who was just hired in July 2014. Dr. Ramirez is in charge of the UPRM Tier-3 computing and will be building the network bandwidth infrastructure for the campus, while Dr. Mendez will continues his effort in finishing the heavy quark physics data analysis and moving to work on SUSY analysis for the 2015 data. Our last grant application in 2012 was awarded only for 2013-2014. As a result our postdoc position was lost last month of March. Since then, we have hired Dr. Malik as a new faculty in order to reinforce the group and to continue our efforts with the CMS experiment. Our plan is to hire another junior faculty in the next two years to strengthen the HEP group even further. Dr. Mendez continues with QuarkNet activities involving an ever larger group of high school physics teachers from all around Puerto Rico.

  2. Spacetime averaged null energy condition

    SciTech Connect (OSTI)

    Urban, Douglas; Olum, Ken D.

    2010-06-15

    The averaged null energy condition has known violations for quantum fields in curved space, even when one considers only achronal geodesics. Many such examples involve rapid variation in the stress-energy tensor in the vicinity of the geodesic under consideration, giving rise to the possibility that averaging in additional dimensions would yield a principle universally obeyed by quantum fields. However, after discussing various procedures for additional averaging, including integrating over all dimensions of the manifold, we give here a class of examples that violate any such averaged condition.

  3. Extreme Conditions Modeling Workshop Report

    SciTech Connect (OSTI)

    Coe, R. G.; Neary, V. S.; Lawson, M. J.; Yu, Y.; Weber, J.

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, NM on May 13th-14th, 2014. The objective of the workshop was to review the current state of knowledge on how to model WECs in extreme conditions (e.g. hurricanes and other large storms) and to suggest how U.S. Department of Energy (DOE) and national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry.

  4. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Air Conditioning Air Conditioning Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Two-thirds of all homes in the

  5. Physical Protection of Classified Matter

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-02-03

    The order establishes policy and objectives for physical protection of classified matter. This directive does not cancel another directive. Chg 1, 7-30-93. Canceled by 5632.1C.

  6. Princeton Plasma Physics Lab - Nanotechnology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), Adam Cohen has been named Deputy Under Secretary for Science and Energy in Washington D.C....

  7. Princeton Plasma Physics Lab - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rnard-named-communications-director-princeton-plasma-physics

  8. Quantum simulations of physics problems

    SciTech Connect (OSTI)

    Somma, R. D.; Ortiz, G.; Knill, E. H.; Gubernatis, J. E.

    2003-01-01

    If a large Quantum Computer (QC) existed today, what type of physical problems could we efficiently simulate on it that we could not efficiently simulate on a classical Turing machine? In this paper we argue that a QC could solve some relevant physical 'questions' more efficiently. The existence of one-to-one mappings between different algebras of observables or between different Hilbert spaces allow us to represent and imitate any physical system by any other one (e.g., a bosonic system by a spin-1/2 system). We explain how these mappings can be performed, and we show quantum networks useful for the efficient evaluation of some physical properties, such as correlation functions and energy spectra.

  9. Quest | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quest Welcome to Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides in...

  10. Sandia National Laboratories: Careers: Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to deep UV and hard x-rays. Sandia physicists are also conducting high-energy-density physics experiments to deliver a high-yield, inertial-confinement-fusion capability...

  11. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... This is why the physics community is building the Large Hadron Collider at CERN in SwitzerlandFrance. It may be found at Fermilab though. The mass of the top quark and the mass of ...

  12. RESEARCH IN ELEMENTARY PARTICLE PHYSICS

    Office of Scientific and Technical Information (OSTI)

    ... to the European Physical Journal C in July 2012 (arXiv: ... (LOI) as a joint ATLASCMS R&D effort motivated by ... CD0 process, but ATLAS management had third thoughts, and ...

  13. Matter in Extreme Conditions Instrument - Conceptual Design Report

    SciTech Connect (OSTI)

    Boyce, R.F.; Boyce, R.M.; Haller, G.; Hastings, J.B.; Hays, G.; Lee, H.J.; Lee, R.W.; Nagler, B.; Scharfenstein, M.; Marsh, D.; White, W.E.; ,

    2009-12-09

    The SLAC National Accelerator Laboratory (SLAC), in collaboration with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) research facility. The FEL has already met its performance goals in the wavelength range 1.5 nm - 0.15 nm. This facility, the Linac Coherent Light Source (LCLS), utilizes the SLAC 2-Mile Linear Accelerator (linac) and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac is used as the source of electrons for the LCLS. The high energy electrons are transported across the SLAC Research Yard, into a tunnel which houses a long undulator. In passing through the undulator, the electrons are bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength is tunable from 1.5 nm to 0.15 nm. The LCLS includes two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing an X-ray instrument in order to exploit the unique scientific capability of LCLS by creating extreme conditions and study the behavior of plasma under those controlled conditions. This instrument will address the Office of Science, Fusion Energy Sciences, mission objective related to study of Plasma and Warm Dense Matter as described in the report titled LCLS, the First Experiments, prepared by the LCLS Scientific Advisory Committee (SAC) in September 2000. The technical objective of the LCLS Matter in Extreme Conditions (MEC) Instrument project is to design, build, and install at the LCLS an X-ray instrument that will complement the initial instrument suite included in the LCLS construction and the LUSI Major Item of Equipment (MIE) Instruments. As the science programs advance and new technological challenges appear, instrumentation must be developed and ready to conquer these new opportunities. The MEC concept has been developed in close consultation with the scientific community through a series of workshops team meetings and focused reviews. In particular, the MEC instrument has been identified as meeting one of the most urgent needs of the scientific community based on the advice of the LCLS Scientific Advisory Committee (SAC) in response to an open call for letters of intent (LOI) from the breadth of the scientific community. The primary purpose of the MEC instrument is to create High Energy Density (HED) matter and measure its physical properties. There are three primary elements of the MEC instrument: (A) Optical laser drivers that will create HED states by irradiation in several ways and provide diagnostics capability; (B) The LCLS x-ray free electron laser, which will provide the unique capability to create, probe and selectively pump HED states; and, (C) A suite of diagnostic devices required to observe the evolution of the HED state. These elements when combined in the MEC instrument meet the 'Mission Need' as defined in CD-0. For the purposes of the description we separate the types of experiments to be performed into three categories: (1) High pressure: Here we are interested in the generation of high pressure using the optical lasers to irradiate a surface that ablates and drives a pressure wave into a sample, similar to a piston. The pressures that can be reached exceed 1 Mbar and the properties of interest are for example, the reflectivity, conductivity, opacity as well as the changes driven by the pressure wave on, e.g., condensed matter structure. These phenomena will be studied by means of diffraction measurements, measurements of the pressure wave characteristics, in situ probing by x-ray scattering of various types all time resolved. The necessary diagnostics are discussed.

  14. Physics of Dance | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CANCELLED: March 4 Physics of Dance Lab Lecture Has Been Cancelled NEWPORT NEWS, Va., Feb. 12, 2008 - The Physics of Dance Science Series lecture that had been scheduled for March 4 has been cancelled. Please visit the Science Series webpage for a current listing of scheduled Spring Science Series lectures http://education.jlab.org/scienceseries/index.php Jefferson Lab is managed and operated for the U.S. Department of Energy's Office of Science by Jefferson Science Associates, LLC, a joint

  15. Chemical Physics | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics FWP/Project Description: Project Leader(s): James Evans, Mark Gordon Principal Investigators: James Evans, Mark Gordon, Klaus Ruedenberg, Theresa Windus Key Scientific Personnel: Da-Jiang Liu, Michael Schmidt. The theoretical Chemical Physics program at Ames Laboratory supports integrated efforts in electronic structure theory and non-equilibrium statistical mechanical & multiscale modeling. The primary focus is on the development and especially application of methods that enable the

  16. Brochures | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brochures Subscribe to RSS - Brochures The United States Department of Energy's Princeton Plasma Physics Laboratory works with collaborators across the globe to develop fusion as an energy source for the world, and conducts research along the broad frontier of plasma science and technology. Printed materials are free, accessible, and downloadable from this website. Image: Brochures PPPL Experts Fusion. Energy. Plasma. Physics. Tokamaks. Stellarators. Radioactivity. Nanotechnology. Astrophysics.

  17. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General physics From very cold to very hot – and everything in between Negative pressure Some cubic thermodynamical equations of state predict negative pressures, have negative pressures any physical meaning? Could they be related to negative mass? Audio waves and radio waves What is the wave called when you combine an audio wave with a radio wave? Extremely Low Frequency system In Michigan, there is an ELF (extremely low frequency) underground cable. My students asked what it does. Can you

  18. Materials Physics | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics A photo of laser light rays going in various directions atop a corrugated metal substrate In materials physics, NREL focuses on realizing materials that transcend the present constraints of photovoltaic (PV) and solid-state lighting technologies. Through materials growth and characterization, coupled with theoretical modeling, we seek to understand and control fundamental electronic and optical processes in semiconductors. Capabilities Optimizing New Materials An illustration showing

  19. Links - MST - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links UW Madison Madison Symmetric Torus Links MST HomeGraduate Student InformationLinksTourControl and Auxiliary SystemsPhysics TopicsDeviceResearch MissionMST People mst logo CPLA Home Directory Publications Links Internal University of Wisconsin Physics Department Research funding includes support from: Department of Energy National Science Foundation Other Reversed Field Pinch Experiments around the world: RFX-mod in Padua, Italy Extrap-T2R in Stockhom, Sweden RELAX at Kyoto Institute of

  20. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating massive objects, Part 2 Physics states that Particles with mass such as protons and electrons can never truly travel at the speed of light in vacuum but they can get very close. Why not? Dan, This follows from Einstein's Special Theory of Relativity which predicts a number of physical consequences for objects moving at large velocities, consequences which are outside our normal everyday intuition gained from observing objects moving at low velocities. One effect is that particles

  1. Sampling Point Compliance Tests for 325 Building at Set-Back Flow Conditions

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Glissmeyer, John A.; Barnett, J. M.; Recknagle, Kurtis P.; Yokuda, Satoru T.

    2011-05-31

    The stack sampling system at the 325 Building (Radiochemical Processing Laboratory [RPL]) was constructed to comply with the American National Standards Institute’s (ANSI’s) Guide to Sampling Airborne Radioactive Materials in Nuclear Facilities (ANSI N13.1-1969). This standard provided prescriptive criteria for the location of radionuclide air-sampling systems. In 1999, the standard was revised (Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities [ANSI/Health Physics Society [HPS] 13.1-1999]) to provide performance-based criteria for the location of sampling systems. Testing was conducted for the 325 Building stack to determine whether the sampling system would meet the updated criteria for uniform air velocity and contaminant concentration in the revised ANSI/HPS 13.1-1999 standard under normal operating conditions (Smith et al. 2010). Measurement results were within criteria for all tests. Additional testing and modeling was performed to determine whether the sampling system would meet criteria under set-back flow conditions. This included measurements taken from a scale model with one-third of the exhaust flow and computer modeling of the system with two-thirds of the exhaust flow. This report documents the results of the set-back flow condition measurements and modeling. Tests performed included flow angularity, uniformity of velocity, gas concentration, and particle concentration across the duct at the sampling location. Results are within ANSI/HPS 13.1-1999 criteria for all tests. These tests are applicable for the 325 Building stack under set-back exhaust flow operating conditions (980 - 45,400 cubic feet per minute [cfm]) with one fan running. The modeling results show that criteria are met for all tests using a two-fan configuration exhaust (flow modeled at 104,000 cfm). Combined with the results from the earlier normal operating conditions, the ANSI/HPS 13.1-1999 criteria for all tests are met for all configurations: one, two, or three fans (normal).

  2. Abstract Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement of the ν µ charged current π + to quasi-elastic cross section ratio on mineral oil in a 0.8 GeV neutrino beam Steven K. Linden 2011 Charged current single pion production (CCπ + ) and charged current quasi-elastic scatter- ing (CCQE ) are the most abundant interaction types for neutrinos at energies around 1 GeV, a region of great interest to oscillation experiments. The cross-sections for these pro- cesses, however, are not well understood in this energy range. This dissertation

  3. Thermal and Physical Properties of Plutonium Dioxide Produced from the Oxidation of Metal: a Data Summary

    SciTech Connect (OSTI)

    Wayne, David M.

    2014-01-13

    The ARIES Program at the Los Alamos National Laboratory removes plutonium metal from decommissioned nuclear weapons, and converts it to plutonium dioxide in a specially-designed Direct Metal Oxidation furnace. The plutonium dioxide is analyzed for specific surface area, particle size distribution, and moisture content. The purpose of these analyses is to certify that the plutonium dioxide powder meets or exceeds the specifications of the end-user, and the specifications for the packaging and transport of nuclear materials. Analytical results from plutonium dioxide from ARIES development activities, from ARIES production activities, from muffle furnace oxidation of metal, and from metal that was oxidized over a lengthy time interval in air at room temperature, are presented. The processes studied produce plutonium dioxide powder with distinct differences in measured properties, indicating the significant influence of oxidation conditions on physical properties.

  4. Building America Webinar: Retrofitting Central Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Retrofitting Central Space Conditioning Strategies for ... Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings

  5. Cosmological data and indications for new physics

    SciTech Connect (OSTI)

    Benetti, Micol; Gerbino, Martina; Melchiorri, Alessandro; Pagano, Luca; Kinney, William H.; Kolb, Edward W.; Lattanzi, Massimiliano; Riotto, Antonio E-mail: martina.gerbino@roma1.infn.it E-mail: Rocky.Kolb@uchicago.edu E-mail: alessandro.melchiorri@roma1.infn.it E-mail: antonio.riotto@unige.ch

    2013-10-01

    Data from the Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT), combined with the nine-year data release from the WMAP satellite, provide very precise measurements of the cosmic microwave background (CMB) angular anisotropies down to very small angular scales. Augmented with measurements from Baryonic Acoustic Oscillations surveys and determinations of the Hubble constant, we investigate whether there are indications for new physics beyond a Harrison-Zel'dovich model for primordial perturbations and the standard number of relativistic degrees of freedom at primordial recombination. All combinations of datasets point to physics beyond the minimal Harrison-Zel'dovich model in the form of either a scalar spectral index different from unity or additional relativistic degrees of freedom at recombination (e.g., additional light neutrinos). Beyond that, the extended datasets including either ACT or SPT provide very different indications: while the extended-ACT (eACT) dataset is perfectly consistent with the predictions of standard slow-roll inflation, the extended-SPT (eSPT) dataset prefers a non-power-law scalar spectral index with a very large variation with scale of the spectral index. Both eACT and eSPT favor additional light degrees of freedom on top of the Harrison-Zel'dovich model. eACT is consistent with zero neutrino masses, while eSPT favors nonzero neutrino masses at more than 95% confidence.

  6. INSTITUTE OF PHYSICS PUBLISHING PLASMA PHYSICS AND CONTROLLED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 (2004) 145-161 PII: S0741-3335(04)64065-6 Current profile modification experiments in EXTRAP T2R M Cecconello 1 , J-A Malmberg 1 , G Spizzo 2 , B E Chapman 3 , R M Gravestjin 4 , P Franz 2,5 , P Piovesan 2 , P Martin 2 and J R Drake 1 1 Division of Fusion Plasma Physics (Association EURATOM/VR), Alfvén Laboratory, Royal Institute of Technology, SE 100 44, Stockholm, Sweden 2 Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Padova, Italy 3 Department of Physics, University of

  7. Physical Properties of Hanford Transuranic Waste

    SciTech Connect (OSTI)

    Berg, John C.

    2010-03-25

    The research described herein was undertaken to provide needed physical property descriptions of the Hanford transuranic tank sludges under conditions that might exist during retrieval, treatment, packaging and transportation for disposal. The work addressed the development of a fundamental understanding of the types of systems represented by these sludge suspensions through correlation of the macroscopic rheological properties with particle interactions occurring at the colloidal scale in the various liquid media. The results of the work have advanced existing understanding of the sedimentation and aggregation properties of complex colloidal suspensions. Bench scale models were investigated with respect to their structural, colloidal and rheological properties that should be useful for the development and optimization of techniques to process the wastes at various DOE sites.

  8. A research Program in Elementary Particle Physics

    SciTech Connect (OSTI)

    Sobel, Henry; Molzon, William; Lankford, Andrew; Taffard, Anyes; Whiteson, Daniel; Kirkby, David

    2013-07-25

    Work is reported in: Neutrino Physics, Cosmic Rays and Elementary Particles; Particle Physics and Charged Lepton Flavor Violation; Research in Collider Physics; Dark Energy Studies with BOSS and LSST.

  9. PHYSICAL INVENTORY LISTING | Department of Energy

    Energy Savers [EERE]

    PHYSICAL INVENTORY LISTING PHYSICAL INVENTORY LISTING Form supports nuclear materials control and accountability. PDF icon PHYSICAL INVENTORY LISTING More Documents & Publications DOE/NRC F 742C Material Balance Report DOE F 74

  10. Physics division annual report 1999

    SciTech Connect (OSTI)

    Thayer, K., ed.; Physics

    2000-12-06

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example of the ground-breaking research with Garnmasphere was the first study of the limits of stability with angular momentum in the shell stabilized nobelium isotopes. It was found that these heaviest nuclei could be formed at surprisingly high angular momentum, providing important new insight into the production mechanisms for super-heavy elements. Another focus continues to be experiments with short-lived beams for critical nuclear astrophysics applications. Measurements revealed that {sup 44}Ti is more readily destroyed in supernovae than was expected. Major progress was made in collecting and storing unstable ions in the Canadian Penning Trap. The technique of stopping and rapidly extracting ions from a helium gas cell led directly to the new paradigm in the production of rare isotope beams that became RIA. ATLAS provided a record 6046 hours of beam use for experiments in FY99. The facility pressed hard to support the heavy demands of the GammaSphere Research program but maintained an operational reliability of 93%. Of the 29 different isotopes provided as beams in FY99, radioactive beams of {sup 44}Ti and {sup 17}F comprised 6% of the beam time. The theoretical efforts in the Division made dramatic new strides in such topics as quantum Monte Carlo calculations of light nuclei to understand microscopic many-body forces in nuclei; QCD calculations based on the Dyson-Schwinger approach which were extended to baryon systems and finite temperatures and densities; the structure of heavy nuclei; and proton decay modes of nuclei far from stability. The medium-energy program continues to focus on new techniques to understand how the quark-gluon structure of matter impacts the structure of nuclei. The HERMES experiment began making measurements of the fraction of the spin of the nucleon carried by the glue. Drell-Yan experiments study the flavor composition of the sea of the proton. Experiments at Jefferson lab search for clues of QCD dynamics at the hadronic level. A major advance in trace isotope analysis was realized with pioneering work on Atom Trap Trace Analysis, exploitin

  11. Chemical and Physical Signatures for Microbial Forensics

    SciTech Connect (OSTI)

    Cliff, John B.; Kreuzer, Helen W.; Ehrhardt, Christopher J.; Wunschel, David S.

    2012-01-03

    Chemical and physical signatures for microbial forensics John Cliff and Helen Kreuzer-Martin, eds. Humana Press Chapter 1. Introduction: Review of history and statement of need. Randy Murch, Virginia Tech Chapter 2. The Microbe: Structure, morphology, and physiology of the microbe as they relate to potential signatures of growth conditions. Joany Jackman, Johns Hopkins University Chapter 3. Science for Forensics: Special considerations for the forensic arena - quality control, sample integrity, etc. Mark Wilson (retired FBI): Western Carolina University Chapter 4. Physical signatures: Light and electron microscopy, atomic force microscopy, gravimetry etc. Joseph Michael, Sandia National Laboratory Chapter 5. Lipids: FAME, PLFA, steroids, LPS, etc. James Robertson, Federal Bureau of Investigation Chapter 6. Carbohydrates: Cell wall components, cytoplasm components, methods Alvin Fox, University of South Carolina School of Medicine David Wunschel, Pacific Northwest National Laboratory Chapter 7. Peptides: Peptides, proteins, lipoproteins David Wunschel, Pacific Northwest National Laboratory Chapter 8. Elemental content: CNOHPS (treated in passing), metals, prospective cell types John Cliff, International Atomic Energy Agency Chapter 9. Isotopic signatures: Stable isotopes C,N,H,O,S, 14C dating, potential for heavy elements. Helen Kreuzer-Martin, Pacific Northwest National Laboratory Michaele Kashgarian, Lawrence Livermore National Laboratory Chapter 10. Extracellular signatures: Cellular debris, heme, agar, headspace, spent media, etc Karen Wahl, Pacific Northwest National Laboratory Chapter 11. Data Reduction and Integrated Microbial Forensics: Statistical concepts, parametric and multivariate statistics, integrating signatures Kristin Jarman, Pacific Northwest National Laboratory

  12. Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group Citation Details In-Document Search Title: Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group ...

  13. High temperature measuring device

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  14. Oklahoma Center for High Energy Physics (OCHEP)

    SciTech Connect (OSTI)

    S. Nandi; M.J. Strauss; J. Snow; F. Rizatdinova; B. Abbott; K. Babu; P. Gutierrez; C. Kao; A. Khanov; K.A. Milton; H. Neaman; H. Severini, P. Skubic

    2012-02-29

    The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Large Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma’s impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research areas ranging from the search for new phenomena at the Fermilab Tevatron and the CERN Large Hadron Collider to theoretical modeling, computer simulation, detector development and testing, and physics analysis. OCHEP faculty members participating on the D0 collaboration at the Fermilab Tevatron and on the ATLAS collaboration at the CERN LHC have made major impact on the Standard Model (SM) Higgs boson search, top quark studies, B physics studies, and measurements of Quantum Chromodynamics (QCD) phenomena. The OCHEP Grid computing facility consists of a large computer cluster which is playing a major role in data analysis and Monte Carlo productions for both the D0 and ATLAS experiments. Theoretical efforts are devoted to new ideas in Higgs bosons physics, extra dimensions, neutrino masses and oscillations, Grand Unified Theories, supersymmetric models, dark matter, and nonperturbative quantum field theory. Theory members are making major contributions to the understanding of phenomena being explored at the Tevatron and the LHC. They have proposed new models for Higgs bosons, and have suggested new signals for extra dimensions, and for the search of supersymmetric particles. During the seven year period when OCHEP was partially funded through the DOE EPSCoR implementation grant, OCHEP members published over 500 refereed journal articles and made over 200 invited presentations at major conferences. The Center is also involved in education and outreach activities by offering summer research programs for high school teachers and college students, and organizing summer workshops for high school teachers, sometimes coordinating with the Quarknet programs at OSU and OU. The details of the Center can be found in http://ochep.phy.okstate.edu.

  15. Fermilab | Directorate | Fermilab Physics Advisory Committee...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab Physics Advisory Committee (PAC) PAC The Program Advisory Committee (PAC) consists of 14 distinguished members from the particle physics community appointed by the...

  16. Physical Description and Experimental Characterization of the...

    Office of Scientific and Technical Information (OSTI)

    Physical Description and Experimental Characterization of the Resistive Switching Filament. Citation Details In-Document Search Title: Physical Description and Experimental...

  17. Institute of Geophysics, Planetary Physics, and Signatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute of Geophysics, Planetary Physics, and Signatures Institute of Geophysics, Planetary Physics, and Signatures Promoting and supporting high-quality, cutting-edge science in...

  18. MPA, Materials Physics and Applications (Technical Report) |...

    Office of Scientific and Technical Information (OSTI)

    MPA, Materials Physics and Applications Citation Details In-Document Search Title: MPA, Materials Physics and Applications Authors: Kippen, Karen Elizabeth 1 + Show Author...

  19. Physical Protection - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2A, Physical Protection by jcronin Functional areas: Security, This Manual establishes requirements for the physical protection of interests under the U.S. Department of Energys...

  20. Princeton Plasma Physics Laboratory Honors Three Researchers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Laboratory Honors Three Researchers March 12, 2012 Tweet Widget ... the Kaul Prize for Excellence in Plasma Physics Research and Technology Development. ...

  1. SHARP Physics Modules Updated | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Physics Modules Updated SHARP Physics Modules Updated January 29, 2013 - 12:37pm Addthis PROTEUS Development The SHARP neutronics module, PROTEUS, includes neutron and gamma ...

  2. Physics of Condensed Matter and Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Physics of Condensed Matter and Complex Systems A tradition of international leadership ... Basic and applied research in condensed matter, statistical and quantum physics The ...

  3. Saturday Morning Physics talk (Feb 2013)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Scope and applications of nuclear physics precision frontier compliments LHC ... 222013 Dan Melconian What is Nuclear Physics? * Began with the study of the nucleus ...

  4. VERA Core Physics Benchmark Progression Problems Specifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VERA Core Physics Benchmark Progression Problem Specifications Revision 4 August 29, 2014 Andrew T. Godfrey Physics Integration Oak Ridge National Laboratory CASL-U-2012-0131-004 ...

  5. News Archive | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have launched a new ... Tensions rose in the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory ...

  6. Robert G Andre | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G Andre Senior Computational Scientist Dr. Robert Andre is currently a member of the Computational Plasma Physics Group at the Princeton Plasma Physic Laboratory (PPPL) where he...

  7. Princeton Plasma Physics Laboratory Technology Marketing Summaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Princeton Plasma Physics...

  8. ARM - Publications: Science Team Meeting Documents: Assessing physical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processes in the ECMWF model forecasts through the ARM SGP site measurements Assessing physical processes in the ECMWF model forecasts through the ARM SGP site measurements Neggers, Roel European Centre for Medium-range Weather Forecasts (ECMWF) Cheinet, Sylvain ECMWF (UK) Beljaars, Anton ECMWF Koehler, M European Centre for Medium-range Weather Forecasts, Reading, Morcrette, Jean-Jacques European Centre for Medium-Range Weather Forecasts Viterbo, Pedro ECMWF In this study, we compare

  9. Corrective Measures Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corrective Measures Process Corrective Measures Process We follow a stringent corrective measures process for legacy cleanup. August 1, 2013 Corrective measures process Corrective measures process

  10. Design and Commissioning of a Wind Tunnel for Integrated Physical and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Measurements of PM Dispersing Plume of Heavy Duty Diesel Truck | Department of Energy Commissioning of a Wind Tunnel for Integrated Physical and Chemical Measurements of PM Dispersing Plume of Heavy Duty Diesel Truck Design and Commissioning of a Wind Tunnel for Integrated Physical and Chemical Measurements of PM Dispersing Plume of Heavy Duty Diesel Truck Presents plume characterization of three vehicles with different aftertreatment configuration, representative of legacy, current

  11. 328Post shot analysis of plasma conditions of Au Spheres illuminated...

    Office of Scientific and Technical Information (OSTI)

    Conference: 328Post shot analysis of plasma conditions of Au Spheres illuminated by the URLLE Omega laser, as measured via Thomson scattering Citation Details In-Document Search...

  12. Scott Runnels of Computational Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scott Runnels of Computational Physics to teach at West Point March 19, 2013 LOS ALAMOS, N. M., March 19, 2013- Under an agreement between Los Alamos National Laboratory and the U.S. Military Academy, Scott Runnels has been selected for a two-year faculty post in the Department of Physics and Nuclear Engineering at West Point. The teaching position is intended to strengthen the ties between the U.S. national laboratories and the U.S. military academies by bringing in a top scientist to teach at

  13. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pure Antineutron Beams Hello, I am a physics student in Germany. I haven't had particle physics yet, so I'd be glad if you answered me one question: How do you create more or less pure anti-neutron beams in your accelerator?? I'm sure it's possible somehow but I just don't know the way to relize that. The "options" I got to know by now: collision of anti-protons with carbon nuclei can result in anti-neutrons decay of lambda-particles (how would you create them?) I guess the main

  14. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacuum You wrote: I'm Stephen and I moderate a theoretical physics forum at physicsforums.com. Is it possible to increase the probability that virtual particles will appear in a vacuum? I was posed this question from a member and i do not have a definite answer in my reference materials. I would greatly appreciate any response as to how/why if the question has a yes answer. Thank you for your time. Regards, Stephen J Hall, Theoretical Physics moderator PS. if you are ever browsing the net and

  15. About Nuclear Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education - Students Pulse Laser Deposit Hadware Research at Jefferson Lab leads to the development of technology that has practical applications, such as pulse laser deposit hardware. A D D I T I O N A L L I N K S: Student Zone About Atoms Virginia SOL Virtual Tour JLab Video Brochures top-right bottom-left-corner bottom-right-corner ABOUT NUCLEAR PHYSICS Nuclear physics is an important pursuit because the study of the nucleus of the atom is at the heart of our ability to understand the

  16. Tunnel and Subsurface Void Detection and Range to Target Measurement

    SciTech Connect (OSTI)

    Phillip B. West

    2009-06-01

    Engineers and technicians at the Idaho National Laboratory invented, designed, built and tested a device capable of detecting and measuring the distance to, an underground void, or tunnel. Preliminary tests demonstrated positive detection of, and range to, a void thru as much as 30 meters of top-soil earth. Device uses acoustic driving point impedance principles pioneered by the Laboratory for well-bore physical properties logging. Data receipts recorded by the device indicates constructive-destructive interference patterns characteristic of acoustic wave reflection from a downward step-change in impedance mismatch. Prototype tests demonstrated that interference patterns in receipt waves could depict the patterns indicative of specific distances. A tool with this capability can quickly (in seconds) indicate the presence and depth/distance of a void or tunnel. Using such a device, border security and military personnel can identify threats of intrusion or weapons caches in most all soil conditions including moist and rocky.

  17. Precision Higgs Boson Physics and Implications for Beyond the Standard Model Physics Theories

    SciTech Connect (OSTI)

    Wells, James

    2015-06-10

    The discovery of the Higgs boson is one of science's most impressive recent achievements. We have taken a leap forward in understanding what is at the heart of elementary particle mass generation. We now have a significant opportunity to develop even deeper understanding of how the fundamental laws of nature are constructed. As such, we need intense focus from the scientific community to put this discovery in its proper context, to realign and narrow our understanding of viable theory based on this positive discovery, and to detail the implications the discovery has for theories that attempt to answer questions beyond what the Standard Model can explain. This project's first main object is to develop a state-of-the-art analysis of precision Higgs boson physics. This is to be done in the tradition of the electroweak precision measurements of the LEP/SLC era. Indeed, the electroweak precision studies of the past are necessary inputs to the full precision Higgs program. Calculations will be presented to the community of Higgs boson observables that detail just how well various couplings of the Higgs boson can be measured, and more. These will be carried out using state-of-the-art theory computations coupled with the new experimental results coming in from the LHC. The project's second main objective is to utilize the results obtained from LHC Higgs boson experiments and the precision analysis, along with the direct search studies at LHC, and discern viable theories of physics beyond the Standard Model that unify physics to a deeper level. Studies will be performed on supersymmetric theories, theories of extra spatial dimensions (and related theories, such as compositeness), and theories that contain hidden sector states uniquely accessible to the Higgs boson. In addition, if data becomes incompatible with the Standard Model's low-energy effective lagrangian, new physics theories will be developed that explain the anomaly and put it into a more unified framework beyond the Standard Model.

  18. Chemistry for Measurement and Detection Science publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry for Measurement and Detection Science » Chemistry for Measurement and Detection Science publications Chemistry for Measurement and Detection Science publications Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Randy Drake Actinide Analytical Chemistry Email Kirk Rector Physical Chemistry & Applied Spectroscopy Email Josh Smith Chemistry Communications Email Los Alamos is one of

  19. Application of a radiophotoluminescent glass dosimeter to nonreference condition dosimetry in the postal dose audit system

    SciTech Connect (OSTI)

    Mizuno, Hideyuki, E-mail: h-mizuno@nirs.go.jp; Fukumura, Akifumi; Fukahori, Mai [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan); Sakata, Suoh; Yamashita, Wataru; Takase, Nobuhiro [Association for Nuclear Technology in Medicine, 7-16, Nihonbashikodenmacho, Chuou-ku, Tokyo 103-0001 (Japan); Yajima, Kaori [Toho University Omori Medical Center, 6-11-1 Omori-Nishi, Ota-ku, Tokyo 143-8541 (Japan); Katayose, Tetsurou [Chiba Cancer Center, 666-2 Nitona-Cho, Chuoh-ku, Chiba-shi, Chiba 260-8717 (Japan); Abe-Sakama, Kyoko; Kanai, Tatsuaki [Gunma University, Heavy Ion Medical Research Center, 4-2, Aramaki-machi, Maebashi City, Gunma 371-8510 (Japan); Kusano, Yohsuke [Kanagawa Cancer Center, 1-1-2 Nakao, Asahi-ku, Yokohama-shi, Kanagawa 241-8515 (Japan); Shimbo, Munefumi [Saitama Medical Center, 1981, Kamoda, Kawagoe-shi, Saitama 350-8550 (Japan)

    2014-11-01

    Purpose: The purpose of this study was to obtain a set of correction factors of the radiophotoluminescent glass dosimeter (RGD) output for field size changes and wedge insertions. Methods: Several linear accelerators were used for irradiation of the RGDs. The field sizes were changed from 5 × 5 cm to 25 × 25 cm for 4, 6, 10, and 15 MV x-ray beams. The wedge angles were 15°, 30°, 45°, and 60°. In addition to physical wedge irradiation, nonphysical (dynamic/virtual) wedge irradiations were performed. Results: The obtained data were fitted with a single line for each energy, and correction factors were determined. Compared with ionization chamber outputs, the RGD outputs gradually increased with increasing field size, because of the higher RGD response to scattered low-energy photons. The output increase was about 1% per 10 cm increase in field size, with a slight difference dependent on the beam energy. For both physical and nonphysical wedged beam irradiation, there were no systematic trends in the RGD outputs, such as monotonic increase or decrease depending on the wedge angle change if the authors consider the uncertainty, which is approximately 0.6% for each set of measured points. Therefore, no correction factor was needed for all inserted wedges. Based on this work, postal dose audits using RGDs for the nonreference condition were initiated in 2010. The postal dose audit results between 2010 and 2012 were analyzed. The mean difference between the measured and stated doses was within 0.5% for all fields with field sizes between 5 × 5 cm and 25 × 25 cm and with wedge angles from 15° to 60°. The standard deviations (SDs) of the difference distribution were within the estimated uncertainty (1SD) except for the 25 × 25 cm field size data, which were not reliable because of poor statistics (n = 16). Conclusions: A set of RGD output correction factors was determined for field size changes and wedge insertions. The results obtained from recent postal dose audits were analyzed, and the mean differences between the measured and stated doses were within 0.5% for every field size and wedge angle. The SDs of the distribution were within the estimated uncertainty, except for one condition that was not reliable because of poor statistics.

  20. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect (OSTI)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  1. Accelerator Physics Code Web Repository

    SciTech Connect (OSTI)

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  2. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Q&A With the Director of the Princeton Plasma Physics Laboratory, Dr. Stewart Prager Click on an image below to view the high resolution image. Then right click on the image and select "Save Image" or "Save Image As..." Stewart Prager

  3. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McComas named vice president for the Princeton Plasma Physics Laboratory Click on an image below to view the high resolution image. Then right click on the image and select "Save Image" or "Save Image As..." David McComas

  4. Cyber and physical infrastructure interdependencies.

    SciTech Connect (OSTI)

    Phillips, Laurence R.; Kelic, Andjelka; Warren, Drake E.

    2008-09-01

    The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

  5. LHC Physics Potential versus Energy

    SciTech Connect (OSTI)

    Quigg, Chris; /Fermilab

    2009-08-01

    Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u{bar d}, and qq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes.

  6. The Nevada railroad system: Physical, operational, and accident characteristics

    SciTech Connect (OSTI)

    1991-09-01

    This report provides a description of the operational and physical characteristics of the Nevada railroad system. To understand the dynamics of the rail system, one must consider the system`s physical characteristics, routing, uses, interactions with other systems, and unique operational characteristics, if any. This report is presented in two parts. The first part is a narrative description of all mainlines and major branchlines of the Nevada railroad system. Each Nevada rail route is described, including the route`s physical characteristics, traffic type and volume, track conditions, and history. The second part of this study provides a more detailed analysis of Nevada railroad accident characteristics than was presented in the Preliminary Nevada Transportation Accident Characterization Study (DOE, 1990).

  7. Particle Physics in a Season of Change

    SciTech Connect (OSTI)

    Quigg, Chris

    2012-02-01

    A digest of the authors opening remarks at the 2011 Hadron Collider Physics Symposium. I have chosen my title to reflect the transitions we are living through, in particle physics overall and in hadron collider physics in particular. Data-taking has ended at the Tevatron, with {approx} 12 fb{sup -1} of {bar p}p interactions delivered to CDF and D0 at {radical}s = 1.96 TeV. The Large Hadron Collider has registered a spectacular first full-year run, with ATLAS and CMS seeing > 5 fb{sup -1}, LHCb recording {approx} 1 fb{sup -1}, and ALICE logging nearly 5 pb{sup -1} of pp data at {radical}s = 7 TeV, plus a healthy dose of Pb-Pb collisions. The transition to a new energy regime and new realms of instantaneous luminosity exceeding 3.5 x 10{sup 33} cm{sup -2} s{sup -1} has brought the advantage of enhanced physics reach and the challenge of pile-up reaching {approx} 15 interactions per beam crossing. I am happy to record that what the experiments have (not) found so far has roused some of my theoretical colleagues from years of complacency and stimulated them to think anew about what the TeV scale might hold. We theorists have had plenty of time to explore many proposals for electroweak symmetry breaking and for new physics that might lie beyond established knowledge. With so many different theoretical inventions in circulation, it is in the nature of things that most will be wrong. Keep in mind that we learn from what experiment tells us is not there, even if it is uncommon to throw a party for ruling something out. Some non-observations may be especially telling: the persistent absence of flavor-changing neutral currents, for example, seems to me more and more an important clue that we have not yet deciphered. It is natural that the search for the avatar of electroweak symmetry breaking preoccupies participants and spectators alike. But it is essential to conceive the physics opportunities before us in their full richness. I would advocate a three-fold approach: Explore, Search, Measure! The first phase of running at the LHC has brought us to two new lands - in proton-proton and lead-lead collisions - and we may well enter other new lands with each change of energy or increase of sensitivity. I believe that it will prove very rewarding to spend some time simply exploring each new landscape, without strong preconceptions, to learn what is there and, perhaps, to encounter interesting surprises. Directed searches, for which we have made extensive preparations, are of self-evident interest. Here the challenge will be to broaden the searches over time, so the searches are not too narrowly directed. Our very successful conception of particles and forces is highly idealized. We have a great opportunity to learn just how comprehensive is our network of understanding by making precise measurements and probing for weak spots, or finding more sweeping accord between theory and experiment.

  8. Peter Damiano | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Damiano Associate Research Physicist, Plasma Physics Laboratory. Contact Information Phone: 609-243-2607 Email: pdamiano

  9. Jianying Lang | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jianying Lang Computational Scientist, Plasma Physics Laboratory. Contact Information Phone: 609-243-2207 Email: jlang

  10. Jin Chen | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jin Chen Computational Scientist, Plasma Physics Laboratory. Contact Information Phone: 609-243-3352 Email: jchen

  11. Physics at an upgraded Fermilab proton driver

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2005-07-01

    In 2004 the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future, primarily motivated by the recent exciting developments in neutrino physics. Over the last few months a physics study has developed the physics case for the Fermilab Proton Driver. The potential physics opportunities are discussed.

  12. Fermilab | Science | Particle Physics | Benefits of Particle Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Benefits of Particle Physics photo Each generation of particle accelerators and detectors builds on the previous one, raising the potential for discovery and pushing the level of technology ever higher. In 1930, Ernest O. Lawrence, the father of particle accelerators, built the first hand-held cyclotron at Berkeley, California. Larger and more powerful accelerators soon followed. After a day's research, Lawrence often operated the Berkeley cyclotrons through the night to produce medical isotopes

  13. Physical Sciences Facility Air Emission Control Equivalency Evaluation

    SciTech Connect (OSTI)

    Brown, David M.; Belew, Shan T.

    2008-10-17

    This document presents the adequacy evaluation for the application of technology standards during design, fabrication, installation and testing of radioactive air exhaust systems at the Physical Sciences Facility (PSF), located on the Horn Rapids Triangle north of the Pacific Northwest National Laboratory (PNNL) complex. The analysis specifically covers the exhaust portion of the heating, ventilation and air conditioning (HVAC) systems associated with emission units EP-3410-01-S, EP-3420-01-S and EP 3430-01-S.

  14. Probing Radiation Damage in Plutonium Alloys with Multiple Measurement

    Office of Scientific and Technical Information (OSTI)

    Techniques (Conference) | SciTech Connect Conference: Probing Radiation Damage in Plutonium Alloys with Multiple Measurement Techniques Citation Details In-Document Search Title: Probing Radiation Damage in Plutonium Alloys with Multiple Measurement Techniques A material subjected to radiation damage will usually experience changes in its physical properties. Measuring these changes in the physical properties provides a basis to study radiation damage in a material which is important for a

  15. Space Conditioning Standing Technical Commitee Presentation ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commitee Presentation Space Conditioning Standing Technical Commitee Presentation This presentation outlines the goals of the Space Conditioning Standing Technical ommittee, as...

  16. Building America Webinar: High Performance Space Conditioning...

    Energy Savers [EERE]

    Webinar: High Performance Space Conditioning Systems, Part I: Heating and Cooling with Mini-Splits in the Northeast Building America Webinar: High Performance Space Conditioning...

  17. Building America Webinar: High Performance Space Conditioning...

    Energy Savers [EERE]

    Webinar: High Performance Space Conditioning Systems, Part II - Compact Buried Ducts Building America Webinar: High Performance Space Conditioning Systems, Part II - Compact Buried...

  18. Building America Webinar: High Performance Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II - Design Options for Locating Ducts within Conditioned Space Building America Webinar: High Performance Space Conditioning Systems, Part II - Design Options for Locating Ducts...

  19. Building America Expert Meeting: Simplified Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simplified Space Conditioning Strategies for Energy Efficient Houses Building America Expert Meeting: Simplified Space Conditioning Strategies for Energy Efficient Houses The ...

  20. Princeton University High Energy Physics Research

    SciTech Connect (OSTI)

    Marlow, Daniel R.

    2015-06-30

    This is the Final Report on research conducted by the Princeton Elementary Particles group over the approximately three-year period from May 1, 2012 to April 30, 2015. The goal of our research is to investigate the fundamental constituents of matter, their fields, and their interactions; to understand the properties of space and time; and to study the profound relationships between cosmology and particle physics. During the funding period covered by this report, the group has been organized into a subgroup concentrating on the theory of particles, strings, and cosmology; and four subgroups performing major experiments at laboratories around the world: CERN, Daya Bay, Gran Sasso as well as detector R\\&D on the Princeton campus. Highlights in of this research include the discovery of the Higgs Boson at CERN and the measurement of $\\sin^22\\theta_{13}$ by the Daya Bay experiment. In both cases, Princeton researchers supported by this grant played key roles.

  1. Tevatron accelerator physics and operation highlights

    SciTech Connect (OSTI)

    Valishev, A.; /Fermilab

    2011-03-01

    The performance of the Tevatron collider demonstrated continuous growth over the course of Run II, with the peak luminosity reaching 4 x 10{sup 32} cm{sup -2} s{sup -1}, and the weekly integration rate exceeding 70 pb{sup -1}. This report presents a review of the most important advances that contributed to this performance improvement, including beam dynamics modeling, precision optics measurements and stability control, implementation of collimation during low-beta squeeze. Algorithms employed for optimization of the luminosity integration are presented and the lessons learned from high-luminosity operation are discussed. Studies of novel accelerator physics concepts at the Tevatron are described, such as the collimation techniques using crystal collimator and hollow electron beam, and compensation of beam-beam effects.

  2. High energy physics in cosmic rays

    SciTech Connect (OSTI)

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  3. Greg W Hammett | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greg W Hammett Principal Research Physicist, Plasma Physics Laboratory. Lecture Dr. Hammett is a principal research physicist at the Princeton Plasma Physics Laboratory (PPPL), and a lecturer in the Department of Astrophysical Sciences, Program in Plasma Physics, at Princeton University. He was selected a fellow of the American Physical Society in 1997. Dr. Hammett specializes in computational and theoretical studies of the complex physics of plasma turbulence. He and his collaborators developed

  4. Igor Kaganovich | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Igor Kaganovich Research Physicist, Plasma Physics Laboratory. Dr. Kaganovich is a principal research physicist at Princeton Plasma Physics Laboratory. His professional interests include: beam-plasma interaction, high energy density plasmas, nanotechnology, atomic physics, and physics of partially ionized plasmas. He is involved in research in many areas of plasma physics with applications to nuclear fusion (heavy ion fusion), gas discharge modeling, and plasma processing. Dr. Kaganovich serves

  5. PIA - WEB Physical Security Major Application | Department of...

    Energy Savers [EERE]

    PIA - WEB Physical Security Major Application PIA - WEB Physical Security Major Application PIA - WEB Physical Security Major Application PDF icon PIA - WEB Physical Security Major...

  6. Measuring spatial variability in soil characteristics

    DOE Patents [OSTI]

    Hoskinson, Reed L. (Rigby, ID); Svoboda, John M. (Idaho Falls, ID); Sawyer, J. Wayne (Hampton, VA); Hess, John R. (Ashton, ID); Hess, J. Richard (Idaho Falls, ID)

    2002-01-01

    The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.

  7. Hot conditioning equipment conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  8. Elementary Particle Physics Experiment at the University of Massachusetts, Amherst

    SciTech Connect (OSTI)

    Brau, Benjamin; Dallapiccola, Carlo; Willocq, Stephane

    2013-07-30

    In this progress report we summarize the activities of the University of Massachusetts- Amherst group for the three years of this research project. We are fully engaged in research at the energy frontier with the ATLAS experiment at the CERN Large Hadron Collider. We have made leading contributions in software development and performance studies for the ATLAS Muon Spectrometer, as well as on physics analysis with an emphasis on Standard Model measurements and searches for physics beyond the Standard Model. In addition, we have increased our contributions to the Muon Spectrometer New Small Wheel upgrade project.

  9. Probing New Physics with Jets at the LHC

    ScienceCinema (OSTI)

    Harris, Robert

    2009-09-01

    The Large Hadron Collider at CERN has the potential to make a major discovery as early as 2008 from simple measurements of events with two high energy jets. This talk will present the jet trigger and analysis plans of the CMS collaboration, which were produced at the LHC Physics Center at Fermilab. Plans to search the two jet channel for generic signals of new particles and forces will be discussed. I will present the anticipated sensitivity of the CMS experiment to a variety of models of new physics, including quark compositeness, technicolor, superstrings, extra dimensions and grand unification.

  10. Chris Quigg* Fermilab The Tevatron's Impact on Particle Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quigg* Fermilab The Tevatron's Impact on Particle Physics 2 Hundreds of articles Tevatron Ph.D.s 461 fixed-target 18 small-collider 965 CDF & D0 3 Two New Laws of Nature + u R d R c R s R t R b R e R R R u L d L c L s L t L b L e L L L 1 2 3 1 2 3 4 Symmetries dictate strong, weak, electromagnetic interactions CDF & D0 Highlights Top quark discovery* Higgs-boson search Exacting measurements: m t , M W , B s oscillations Heavy-flavor physics Search for new particles and forces Testing

  11. Physics Division annual review, 1 April 1987--31 March 1988

    SciTech Connect (OSTI)

    Not Available

    1988-06-01

    This paper contains a description of the research project at Argonne National Laboratory over the past year (4/11/87--3/31/88). The major sections of this report in nuclear physics are: research at ATLAS; operation and development of TLAS: medium-energy nuclear physics and weak interactions; and theoretical nuclei physics. The major sections in atomic physics are: high-resolution laser-rf spectroscopy with beams of atoms, molecules and ions; beam-foil research, ion-beam laser interactions, and collision dynamics of heavy ions; interactions of fast atomic and molecular ions with solid and gaseous target; theoretical atomic physics; atomic physics at ATLAS; atomic physics using a synchrotron light source; and molecular structures and dynamics from coulomb-explosion measurements. (LSP)

  12. PARTICIPATION IN HIGH ENERGY PHYSICS

    SciTech Connect (OSTI)

    White, Christopher

    2012-12-20

    This grant funded experimental and theoretical activities in elementary particles physics at the Illinois Institute of Technology (IIT). The experiments in which IIT faculty collaborated included the Daya Bay Reactor Neutrino Experiment, the MINOS experiment, the Double Chooz experiment, and FNAL E871 - HyperCP experiment. Funds were used to support summer salary for faculty, salary for postdocs, and general support for graduate and undergraduate students. Funds were also used for travel expenses related to these projects and general supplies.

  13. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Primary tabs View High Resolution(active tab) Princeton, Max Planck Society launch new research center for plasma physics Click on an image below to view the high resolution image. Then right click on the image and select "Save Image" or "Save Image As..." (From left to right) Princeton University Professor of Astrophysical Sciences James Stone, Princeton University President Shirley M. Tilghman, Princeton University Dean for Research A. J. Stewart Smith, Max Planck

  14. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Journal Watch Blog PPPL Experts Research at Princeton Events Research Education Organization Contact Us News Room News Archive American Fusion News Press Releases Publications Princeton Journal Watch Blog PPPL Experts Research at Princeton News Primary tabs View High Resolution(active tab) PPPL graduate students help create Princeton University Art Museum exhibition exploring art and physics Click on an image below to view the high resolution image. Then right click on the image and

  15. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Archive Publications Princeton Journal Watch Blog PPPL Experts Research at Princeton Events Research Education Organization Contact Us News Room News Archive American Fusion News Press Releases Press Releases Archive Publications Princeton Journal Watch Blog PPPL Experts Research at Princeton News Primary tabs View High Resolution(active tab) PPPL graduate students help create Princeton University Art Museum exhibition exploring art and physics Click on an image below to view the

  16. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What are the virtual particles? You Wrote: What are the virtual particles? What does it mean - "virtual"? Sincerely, Anthony Petrov. Hi, you ask another very good question. "Virtual particles" are real -- they exist in that they can be detected and can interact. But they are fleeting -- they are soon gone with no trace of their existence. This phenomenon is related to the Heisenberg uncertainty principle of quantum physics. Uncertainty in time multiplied by uncertainty in

  17. Education | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Science Education Welcome to the Science Education Department at the Princeton Plasma Physics Laboratory (PPPL), where we combine the lab's core research activities with science education programs to create a center of excellence for students, teachers and the general public. We contribute to the training of the next generation of scientists and engineers, collaborate with K-12 teachers on ways to improve science teaching using an inquiry-based approach to learning, and improve the

  18. Fermilab | Science | Particle Physics | Muons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Muons photo Two planned Fermilab experiments, Mu2e and Muon g-2, will use particles called muons to search for rare and hidden phenomena in the quantum realm. In recent years, particle physicists have increasingly turned their attention to finding evidence for physics beyond the already known building blocks of matter and subatomic forces that determine their interactions. Discoveries beyond the well-established Standard Model will help scientists answer some of the most puzzling and pressing

  19. Journal of Physical Chemistry A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physical Chemistry A - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  20. Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research The U.S. Department of Energy's Princeton Plasma Physics Laboratory is dedicated to developing fusion as a clean and abundant source of energy and to advancing the frontiers of plasma science. The Laboratory pursues these goals through experiments and computer simulations of the behavior of plasma, the hot electrically charged gas that fuels fusion reactions and has a wide range of practical applications. Experimental Fusion Research Fusion powers the sun and stars. The process takes

  1. Tours | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    History Fusion Basics DOE and Fusion Links Speakers Bureau Tours Virtual Tour 10 Facts About Fusion Energy Contract Documents LDRD M&O Work for Others News Events Research Education Organization Contact Us Overview Learn More Visiting PPPL History Fusion Basics DOE and Fusion Links Speakers Bureau Tours Virtual Tour 10 Facts About Fusion Energy Contract Documents LDRD M&O Work for Others Tours Tour Arrangements at the Princeton Plasma Physics Laboratory Come see first-hand the exciting

  2. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Empty Universe You wrote: Madam/sir, Is it true that a completely empty universe, without any object, without any particle, a mere void, would be twodimensional? Jod Dear Jod, According to Einstein's general relativity, a completely empty universe could have any number of spatial dimensions. String theory would say that an empty universe should have 10 spatial dimensions. I hope this is helpful. Fermilab Physicist Back to Questions About Physics Main Page last modified 11/15

  3. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concept of ether in explaining forces You asked: Will there be any research carried out in the near or distant future to find a physical relationship between gravity, mass, light, matter/antimatter through something like the idea of ether hundred years ago? The concept of ether surfaced decades before scientists knew of quantum mechanics and some very fundamental symmetry principles of the microscopic world. Because of the huge change in knowledge, the historic word ether is not used anymore

  4. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Impact of the Accelerator on the Environment Question: Some cubic thermodynamical equations of state predict negative pressures, have negative pressures any physical meaning? Could they be related to negative mass? Silvia, Mexico Answer: Dear Silvia, The short answer is that a system with negative pressure must be unstable, and thus, there are no thermodynamic states of a system with negative pressure. The reason for this is simple: The second law of thermodynamics tells us that all

  5. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software Programming in Particle Detectors Question: Is it possible to use software programing in particle detectors to develop a program that can interpert data of passive radar? Answer: Thanks for sending your question. The answer greatly depends on the type of data the radar is creating and the signal you are looking for. The particle physics software is used to identify tracks of particles, that is, the imaginary lines that particles leave behind inside a set of detectors. Similar to bullets

  6. About | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Learn More Visiting PPPL History Fusion Basics DOE and Fusion Links Speakers Bureau Tours 10 Facts About Fusion Energy Contract Documents LDRD M&O Work for Others News Events Research Education Organization Contact Us Overview Learn More Visiting PPPL History Fusion Basics DOE and Fusion Links Speakers Bureau Tours 10 Facts About Fusion Energy Contract Documents LDRD M&O Work for Others About Overview The U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) is

  7. Corrective Measures Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corrective Measures Process Corrective Measures Process We follow a stringent corrective measures process for legacy cleanup. August 1, 2013 Corrective measures process Corrective...

  8. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  9. Finite groups and quantum physics

    SciTech Connect (OSTI)

    Kornyak, V. V.

    2013-02-15

    Concepts of quantum theory are considered from the constructive 'finite' point of view. The introduction of a continuum or other actual infinities in physics destroys constructiveness without any need for them in describing empirical observations. It is shown that quantum behavior is a natural consequence of symmetries of dynamical systems. The underlying reason is that it is impossible in principle to trace the identity of indistinguishable objects in their evolution-only information about invariant statements and values concerning such objects is available. General mathematical arguments indicate that any quantum dynamics is reducible to a sequence of permutations. Quantum phenomena, such as interference, arise in invariant subspaces of permutation representations of the symmetry group of a dynamical system. Observable quantities can be expressed in terms of permutation invariants. It is shown that nonconstructive number systems, such as complex numbers, are not needed for describing quantum phenomena. It is sufficient to employ cyclotomic numbers-a minimal extension of natural numbers that is appropriate for quantum mechanics. The use of finite groups in physics, which underlies the present approach, has an additional motivation. Numerous experiments and observations in the particle physics suggest the importance of finite groups of relatively small orders in some fundamental processes. The origin of these groups is unclear within the currently accepted theories-in particular, within the Standard Model.

  10. Theoretical perspectives on strange physics

    SciTech Connect (OSTI)

    Ellis, J.

    1983-04-01

    Kaons are heavy enough to have an interesting range of decay modes available to them, and light enough to be produced in sufficient numbers to explore rare modes with satisfying statistics. Kaons and their decays have provided at least two major breakthroughs in our knowledge of fundamental physics. They have revealed to us CP violation, and their lack of flavor-changing neutral interactions warned us to expect charm. In addition, K/sup 0/-anti K/sup 0/ mixing has provided us with one of our most elegant and sensitive laboratories for testing quantum mechanics. There is every reason to expect that future generations of kaon experiments with intense sources would add further to our knowledge of fundamental physics. This talk attempts to set future kaon experiments in a general theoretical context, and indicate how they may bear upon fundamental theoretical issues. A survey of different experiments which would be done with an Intense Medium Energy Source of Strangeness, including rare K decays, probes of the nature of CP isolation, ..mu.. decays, hyperon decays and neutrino physics is given. (WHK)

  11. Compensation Techniques in Accelerator Physics

    SciTech Connect (OSTI)

    Hisham Kamal Sayed

    2011-05-31

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  12. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The first measurement of the light speed You Wrote: Can you please inform me who the first person was to measure the speed of light and how it was done. Thanks, Johan Venter Hi Johan, the fact, that the light travels with a finite speed was shown first by a Danish guy, Olaf Romer in 1675. He also made the first actual measurement of that quantity. Now you probably wander, how he was able to measure such a high speed without all these high-tech instruments available to the physicists of our era.

  13. PROGRESS REPORT THE BEHAVIOR OF MATTER UNDER NONEQUILIBRIUM CONDITIONS:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    if C\ - DOE/ER/10947-22 DE88 016554 PROGRESS REPORT THE BEHAVIOR OF MATTER UNDER NONEQUILIBRIUM CONDITIONS: FUNDAMENTAL ASPECTS AND APPLICATIONS IN ENERGY-ORIENTED PROBLEMS Report Period: 9/84 - 11/87 Ilya Prigogine, Ph.D. Regental Professor Department of Physics This document is XYRELEASABLB October 7, 1987 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of

  14. Intense Ion Beam for Warm Dense Matter Physics

    SciTech Connect (OSTI)

    Coleman, Joshua Eugene

    2008-05-23

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K{sup +} ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons of improved experimental and calculated axial focus (> 100 x axial compression, < 2 ns pulses) and higher peak energy deposition on target are also presented. These achievements demonstrate the capabilities for near term target heating experiments to T{sub e} {approx} 0.1 eV and for future ion accelerators to heat targets to T{sub e} > 1 eV.

  15. Wind Turbine Drivetrain Condition Monitoring (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.

    2011-10-01

    This presentation details the Gearbox Reliability Collaborative Condition Monitoring program at NREL.

  16. Exploiting Third Generation Quarks for New Physics Discoveries at the Energy Frontier

    SciTech Connect (OSTI)

    Ivanov, Andrew G.

    2013-10-15

    The K-State group's effort is top quark physics and searches for beyond-standard-model physics in t{anti #22;}t final states. The KSU team performed the most precise measurement of the t#22;{anti t} cross section in the lepton + jets channel, and for the first time excluded the fourth generation of the standard model in the perturbative regime.

  17. Engineering Physics and Mathematics Division progress report for period ending August 31, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    This paper contains abstracts on research performed at the Engineering Physics and Mathematics Division of Oak Ridge National Laboratory. The areas covered are: mathematical science; nuclear-data measurement and evaluation; intelligent systems; nuclear analysis and shielding; and Engineering Physics Information Center. (LSP)

  18. Other Physics and Engineering Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other Physics and Engineering Research United States DIII-D-PPPL scientists participate in experiments on the DIII-D tokamak, the largest U.S. fusion facility, which General Atomics operates in San Diego for the U.S. Department of Energy. Five PPPL researchers are currently assigned to the DIII-D on a year-round basis. Additional researchers travel there on a regular basis and support work is performed at PPPL. https://fusion.gat.com/global/DIII-D Alcator C-MOD-The MIT Plasma Science and Fusion

  19. Fermilab | Science | Particle Physics 101 | How Particle Physics Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Works How Particle Physics Discovery Works Matter at the smallest scale is made of elementary particles, pieces of matter that cannot be divided into anything smaller. As scientists over the past century have looked deeper and deeper into the atom, they have found the smallest things human beings have ever seen. How do they do it? The first step: accelerators The collision of particles at high energy, either with other particles or with a stationary target, allows physicists not only to look

  20. INSTITUTE OF PHYSICS PUBLISHING PLASMA PHYSICS AND CONTROLLED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 (2003) A457-A470 PII: S0741-3335(03)69356-5 Tokamak-like confinement at high beta and low field in the reversed field pinch J S Sarff 1 , J K Anderson 1 , T M Biewer 1 , D L Brower 2 , B E Chapman 1 , P K Chattopadhyay 1 , D Craig 1 , B Deng 2 , D J Den Hartog 1 , W X Ding 2 , G Fiksel 1 , C B Forest 1 , J A Goetz 1 , R O'Connell 1 , S C Prager 1 and M A Thomas 1 1 Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706, USA 2 Electrical Engineering

  1. Solid-state dosimeters: A new approach for mammography measurements

    SciTech Connect (OSTI)

    Brateman, Libby F.; Heintz, Philip H.

    2015-02-15

    Purpose: To compare responses of modern commercially available solid-state dosimeters (SStDs) used in mammography medical physics surveys for two major vendors of current digital mammography units. To compare differences in dose estimates among SStD responses with ionization chamber (IC) measurements for several target/filter (TF) combinations and report their characteristics. To review scientific bases for measurements of quantities required for mammography for traditional measurement procedures and SStDs. Methods: SStDs designed for use with modern digital mammography units were acquired for evaluation from four manufacturers. Each instrument was evaluated under similar conditions with the available mammography beams provided by two modern full-field digital mammography units in clinical use: a GE Healthcare Senographe Essential (Essential) and a Hologic Selenia Dimensions 5000 (Dimensions), with TFs of Mo/Mo, Mo/Rh; and Rh/Rh and W/Rh, W/Ag, and W/Al, respectively. Measurements were compared among the instruments for the TFs over their respective clinical ranges of peak tube potentials for kVp and half-value layer (HVL) measurements. Comparisons for air kerma (AK) and their associated relative calculated average glandular doses (AGDs), i.e., using fixed mAs, were evaluated over the limited range of 28–30 kVp. Measurements were compared with reference IC measurements for AK, reference HVLs and calculated AGD, for two compression paddle heights for AK, to evaluate scatter effects from compression paddles. SStDs may require different positioning from current mammography measurement protocols. Results: Measurements of kVp were accurate in general for the SStDs (within ?1.2 and +1.1 kVp) for all instruments over a wide range of set kVp’s and TFs and most accurate for Mo/Mo and W/Rh. Discrepancies between measurements and reference values were greater for HVL and AK. Measured HVL values differed from reference values by ?6.5% to +3.5% depending on the SStD and TF. AK measurements over limited (28–30) kVp’s ranged from ?6% to +7% for SStDs, compared with IC reference values. Relative AGDs for each SStD using its associated measurements of kVp, HVL and AK underestimated AGD in nearly all cases, compared with reference IC values, with discrepancies of measurements made by ICs. Applying measured factors for scatter effects in AK measurements for three SStDs reduced discrepancies between ?6.2% and +1.3%, shifting AGDs from SStDs closer to IC AGDs. Conclusions: This study revealed that SStD measurements yielded good agreement with set kVp, poor agreement with standard HVL determinations, and AK measurements that were substantially different from IC measurements. Discrepancies are partly related to the scattered radiation measured by ICs in determining AK. As a result, IC measurements required for AGD, using currently accepted methodology, typically result in higher AGDs than SStDs, because current methodologies do not account for differing instrument responses to scatter. HVLs reported by SStDs contribute to discrepancies in calculated AGD that depend on kVp and TF. Medical physicists are encouraged to compare their results for SStD instruments using a similar methodology for potential discrepancies with their traditional instruments.

  2. Conceptual design report: Neutrino physics after the Main Injector upgrade

    SciTech Connect (OSTI)

    Bernstein, R.; Beverly, L.; Browning, F.; Childress, S.; Freeman, W.; Jacobsen, V.; Koizumi, G.; Krider, J.; Kula, L.; Malensek, A.; Pordes, Stephen H.; /Fermilab /Ohio State U.

    1991-01-01

    The Main Injector will provide an unprecedented opportunity for challenging the Standard Model. The increased fluxes available from this essential upgrade make possible neutrino experiments of great power both at the Tevatron and at intermediate energies. With a factor of six increase in flux, experiments at higher energies probe with great sensitivity the electroweak sector, test QCD, and search for rare processes which could point the way to new physics. Such experiments can make simultaneous measurements of the Standard Model {rho} parameter and sin{sup 2} {theta}{sub W} to 0.25% and 0.6%, respectively. Measurements of the radiative corrections in electroweak physics will reveal physics at the TeV mass scale. {rho} probes the Higgs sector, and deviations from its expected value would be unambiguous signals of new phenomena and possibly our first clear window into physics beyond the Standard Model. Another way to quantify these corrections is through measurements of sin{sup 2} {theta}{sub W} in different processes; comparisons among an ensemble of precise electroweak measurements can then distinguish among alternatives and pin down the sources of new phenomena. Four processes likely to be important in the coming decade are the direct boson mass measurements, Z polarization asymmetries, atomic parity violation, and neutrino-nucleon scattering. Each of these processes has a different dependence on the various sources of new physics: such phenomena as multiple Z's, supersymmetry, or technicolor are just three of many possibilities. Neutral current measurements of sin{sup 2} {theta}{sub W} and {rho} have already provided constraints on m{sub t}; improved measurements will extend their reach and help us interpret the information from the colliders. QCD tests, especially those involving the structure function xF{sub 3}, can check two fundamental predictions of the theory: the dependence of the strong-coupling constant {alpha}{sub S}(Q{sup 2}) on Q{sup 2}, and the value (and Q{sup 2} dependence) of R{sub QCD} = {sigma}{sub L}/{sigma}{sub T}. A Main Injector experiment will check the scaling violation of the theory and provide solid measurements of the gluon distributions.

  3. Elastic wave velocity measurement combined with synchrotron X-ray

    Office of Scientific and Technical Information (OSTI)

    measurements at high pressure and high temperature conditions: Towards prediction and reproduction of MoHole rocks (Journal Article) | SciTech Connect Elastic wave velocity measurement combined with synchrotron X-ray measurements at high pressure and high temperature conditions: Towards prediction and reproduction of MoHole rocks Citation Details In-Document Search Title: Elastic wave velocity measurement combined with synchrotron X-ray measurements at high pressure and high temperature

  4. The physics of top, w and z from LHC, Tevatron and HERA

    SciTech Connect (OSTI)

    Shabalina, Elizaveta; /Gottingen U.

    2010-12-01

    We summarize recent experimental results in electroweak and top quark physics presented at the conference. This overview covers new measurements of the properties of top quark and W and Z bosons from the LHC, Tevatron and HERA.

  5. Impact of WRF Physics and Grid Resolution on Low-level Wind Prediction: Towards the Assessment of Climate Change Impact on Future Wind Power

    SciTech Connect (OSTI)

    Chin, H S; Glascoe, L; Lundquist, J; Wharton, S

    2010-02-24

    The Weather Research and Forecast (WRF) model is used in short-range simulations to explore the sensitivity of model physics and horizontal grid resolution. We choose five events with the clear-sky conditions to study the impact of different planetary boundary layer (PBL), surface and soil-layer physics on low-level wind forecast for two wind farms; one in California (CA) and the other in Texas (TX). Short-range simulations are validated with field measurements. Results indicate that the forecast error of the CA case decreases with increasing grid resolution due to the improved representation of valley winds. Besides, the model physics configuration has a significant impact on the forecast error at this location. In contrast, the forecast error of the TX case exhibits little dependence on grid resolution and is relatively independent of physics configuration. Therefore, the occurrence frequency of lowest root mean square errors (RMSEs) at this location is used to determine an optimal model configuration for subsequent decade-scale regional climate model (RCM) simulations. In this study, we perform two sets of 20-year RCM simulations using the data from the NCAR Global Climate Model (GCM) simulations; one set models the present climate and the other simulates the future climate. These RCM simulations will be used to assess the impact of climate change on future wind energy.

  6. Physics of passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Primary emphasis in the paper is on methods of characterizing and analyzing passive solar buildings. Simplifying assumptions are described which make this analysis tractable without compromising significant accuracy or loss of insight into the basic physics of the situation. The overall nature of the mathematical simulation approach is described. Validation procedures based on data from test rooms and monitored buildings are outlined. Issues of thermal comfort are discussed. Simplified methods of analysis based on correlation procedures are reported and the nature of the economic conservation-solar optimization process is explored. Future trends are predicted.

  7. Electroweak Physics at Jefferson Lab

    SciTech Connect (OSTI)

    R. D. McKeown

    2012-03-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility provides CW electron beams with high intensity, remarkable stability, and a high degree of polarization. These capabilities offer new and unique opportunities to search for novel particles and forces that would require extension of the standard model. CEBAF is presently undergoing an upgrade that includes doubling the energy of the electron beam to 12 GeV and enhancements to the experimental equipment. This upgraded facility will provide increased capability to address new physics beyond the standard model.

  8. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top-5 Achievements at the Princeton Plasma Physics Laboratory in 2015 Click on an image below to view the high resolution image. Then right click on the image and select "Save Image" or "Save Image As..." From top left: 1.Magnetic island geometry revealing the mechanism for the density limit. (Reprinted with permission from Phys. Plasmas 22, 022514 2015); 2.Carlos Paz-Soldan and Raffi Nazikian advanced understanding of the control of heat bursts; 3.interior of the NSTX-U

  9. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL, Princeton University physicists join German Chancellor Angela Merkel at Wendelstein 7-X celebration Click on an image below to view the high resolution image. Then right click on the image and select "Save Image" or "Save Image As..." An image of the hydrogen plasma inside the Wendelstein 7-X. A.J. Stewart Smith, Princeton University vice president for the Princeton Plasma Physics Laboratory, and German Chancellor Angela Merkel shake hands in the Wendelstein 7-X control

  10. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Special and general relativity Physics at the speed of light Quantum entanglement and Black holes ... "What happens if you take 2 quantum-entangled particles, and untangle them and put one of these particles in a blackhole? The other should demonstrate what is going on inside a blackhole, right? Wouldn't this violate the principle that no light, or information, escapes a blackhole?" Centripetal Forces and distances at speed of light "If space contained only two things and they

  11. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle theories Quantum fields, superstrings and all that Scattering matrix "Could you please help me by explaining what is actually meant by S-matrix?" Concept of ether in explaining forces? "Will there be any research carried out in the near or distant future to find a physical relationship between gravity, mass, light, matter/antimatter through something like the idea of ether hundred years ago?" Consequences of the success of superstring theory? "What will be the

  12. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics of the universe From the big bang to black holes, extra dimensions, space and time Centrifugal Force From smaller than atoms to larger than galaxies structures spin and in doing so the centrifugal force throws things outward. Might not the Universe as a whole be spinning on an axis and what we currently ascribe to a mysterious repulsive force be a centrifugal force throwing things outward? Thrown out rather than pushed or drawn? Motion in the Universe I have been attempting to calculate

  13. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waves or Particles? 1. Does an unobserved, unmeasured (i.e. wave-like) photon exist as an electro-magnetic wave, or as a 'wave-function', i.e. a probability wave? 2. Is the 'wave' nature of an electron the same as speaking of it's wave-function, in other words does an unmeasured electron exist everywhere in space as a purely mathematical probability? Does an unmeasured electron not have any physical meaning at all then? 3. When performing Young's double-slit experiment with photons and

  14. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results of Tevatron Run II You Wrote: I know that the Tevatron is in full swing again with Collider Run II. When will the physicists start seeing results from the new run, and what can be expected? Dear Tom: You asked when we will start seeing results from the new Tevatron run, and what can be expected. Major physics results tend to get presented at international conferences that take place in the spring and summer. There's a big conference in Amsterdam this summer at which the first

  15. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dear sir, I am a student of physics. I have heard that scientists are trying to distinguish time as a discrete quantity. Would you give me some detailed information about it? I am very much interested in properties of time. I hope you will be able to help me. Thank you, Ravi Kafley Dear Ravi, Physicists think of time as the fourth dimension. Three spatial dimensions, one time dimension. They call it space-time. The standard view is that time is continuous, but there might be some scientists that

  16. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Photon Question Brian, X-URL: http://www.fnal.gov/pub/hep_descript.html Dear Fermilab (or to whom this may be going to), Hi. I am 14 years old and I happen to be reading a physics book when I came across something called Virtual Photons and the uncertianty principle. The book does not explain what Virtual Photons are to well, and all I know about Photons is that they could be a wave or matter. If you could help me about what Virtual Photons are and Photons, that would be a great help.

  17. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charged Objects and Virtual Photons Hello, I am fascinated by the universe of physics, and I have a few questions. Actually, I was wondering about photons. I have come to understand that photons are the force carrying particles for the electromagnetic force. I also understand that they have no mass and can therefore travel at the speed of light. What I was wondering was this: When two electrons come near, why are real photons said to be emitted, but virtual photons are said to be the actual

  18. Fermilab | Science | Particle Physics 101

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Physics 101 Photo Have you ever wondered how often you could split a grain of sand into smaller pieces? Have you asked yourself what the sky is made of? Perhaps you have dreamed of traveling backwards in time? Physicists are as curious as you are. They look for answers to questions that people have pondered since they first began to wonder about the world and their place within it. You'll find some of the answers to these questions here. Explore the sections below to take a crash course

  19. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Importance of Antimatter Research I am doing a project in school concerning antimatter and physics. Our group will have to convince another group of students that research in antimatter should be continued, from a physicist's standpoint, and that grants should be given to the physicists to continue this research. It would be very helpful if I could get your input on this situation, so I can quote you during my presentation, since one of our requirements is an expert's opinion. Thank you very

  20. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is Antineutron the Same as Neutron? You Wrote: My name is Killian Lobato. I am a year 13 IB student in St. Julians Portugal. I have come across in my physics book the idea of anti matter. Anti matter is the same as its opposing matter but has an opposite charge. Now as the nuetron has no charge what makes its anti particle different. The idea i have is that the Anti Neutron is the fussion of an anti proton and an anti electron (a positron, i do not know the anti particle of proton). Hello