Powered by Deep Web Technologies
Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Process Heating  

Science Conference Proceedings (OSTI)

This technical update uses real world examples to discuss applications of electrotechnology in industrial process heating and to highlight some of the emerging technologies in this field. These emerging technologies, when implemented in a plant, will provide significant energy savings as well as increase productivity. The report presents three case studies of successful implementation of two different electric process-heating technologies in three different industries. The case studies show that in some ...

2011-12-07T23:59:59.000Z

2

Solar industrial process heat  

DOE Green Energy (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

3

Process Heating Systems Optimization Workshop  

Science Conference Proceedings (OSTI)

Mar 1, 2003 ... PROCESS HEATING SYSTEMS OPTIMIZATION WORKSHOP. In cooperation with the U.S. Department of Energy, Office of Energy Efficiency ...

4

NREL: Learning - Solar Process Heat  

NLE Websites -- All DOE Office Websites (Extended Search)

Process Heat Process Heat Photo of part of one side of a warehouse wall, where a perforated metal exterior skin is spaced about a foot out from the main building wall to form part of the transpired solar collector system. A transpired collector is installed at a FedEx facility in Denver, Colorado. Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for residential buildings. These nonresidential buildings can also use solar energy technologies that would be impractical for a home. These technologies include ventilation air preheating, solar process heating, and solar cooling. Space Heating Many large buildings need ventilated air to maintain indoor air quality. In cold climates, heating this air can use large amounts of energy. But a

5

Heat Pumps in Distillation Processes  

Science Conference Proceedings (OSTI)

Both new and retrofit heat pump installations are often economically justifiable for distillation columns with a temperature differential of 50 degrees F or less. However, this study reveals that the near-term demand for electric heat pumps in petroleum and chemical distillation processes appears very limited.

1984-08-01T23:59:59.000Z

6

ARM - Measurement - Soil heat flux  

NLE Websites -- All DOE Office Websites (Extended Search)

heat flux heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil heat flux A quantity measured according to the formula B = {lambda}(dT/dz), where {lambda} is the conductivity of the soil that the heat is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments

7

ARM - Measurement - Radiative heating rate  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsRadiative heating rate govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments MOLTS : Model Output Location Time Series Datastreams MOLTS : Model Output Location Time Series Datastreams MOLTSEDASSNDCLASS1 : Model Output Loc. Time Ser. (MOLTS): EDAS

8

Solar Thermal Process Heat | Open Energy Information  

Open Energy Info (EERE)

Process Heat Jump to: navigation, search TODO: Add description List of Solar Thermal Process Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalPr...

9

ARM - Measurement - Latent heat flux  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsLatent heat flux govMeasurementsLatent heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Latent heat flux The time rate of flow for the specific enthalpy difference between two phases of a substance at the same temperature, typically water. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System EBBR : Energy Balance Bowen Ratio Station

10

ARM - Measurement - Sensible heat flux  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsSensible heat flux govMeasurementsSensible heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Sensible heat flux The time rate of flow for the energy transferred from a warm or hot surface to whatever is touching it, typically air. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System EBBR : Energy Balance Bowen Ratio Station

11

Waste Heat Recovery from Industrial Process Heating Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am...

12

Waste Heat Recovery from Industrial Process Heating Equipment -  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

13

Waste Heat Management Options: Industrial Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Management Options Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases - combustion products - Temperature from 300 deg. F. to 3000 deg.F. * Radiation-Convection heat loss - From temperature source of 500 deg. F. to 2500 deg. F. * Sensible-latent heat in heated product - From temperature 400 deg. F. to 2200 deg. F. * Cooling water or other liquids - Temperature from 100 deg. F. to 180 deg. F.

14

Preheated Combustion Air (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #1c  

Science Conference Proceedings (OSTI)

This English/Chinese international tip sheet provides information for optimizing industrial process heating systems and includes measurements in metric units.

Not Available

2010-10-01T23:59:59.000Z

15

Check Burner Air to Fuel Ratios (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #2c  

Science Conference Proceedings (OSTI)

This English/Chinese international tip sheet provides information for optimizing efficiency of industrial process heating systems and includes measurements in metric units.

Not Available

2010-10-01T23:59:59.000Z

16

NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger  

DOE Green Energy (OSTI)

One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

2008-09-01T23:59:59.000Z

17

Biomass processing and solar process heat  

DOE Green Energy (OSTI)

The rate at which biomass can supply useful energy depends on the available integrated solar flux density over the year, the photosynthesis yield, the harvest factor, the energy gain, and the conversion efficiency of biomass into the desired energy carrier. Using these factors, an equation is presented to determine the area required for a given annual demand. In particular, the production of ethanol from biomass is considered, based on recent data from the national alcohol program Proalcool in Brazil. Finally, an estimate is given how solar process heat can improve the yield of alcohol or provide other base material for the chemical industry such as ethylene and synthesis gas from biomass. 9 references, 4 tables.

Sizmann, R.

1985-01-01T23:59:59.000Z

18

Characterization of industrial process waste heat and input heat streams  

SciTech Connect

The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

1984-05-01T23:59:59.000Z

19

Industrial Process Heating: Current and Emerging Applications of Electrotechnologies  

Science Conference Proceedings (OSTI)

This technical update reviews the state of electric industrial process heating technologies and discusses new heating applications for industrial processes. It principally covers four electric process-heating technologies: induction heating, microwave heating, radio frequency heating, and infrared heating. Information is also presented for other technologies that provide efficient and new applications of electric process heating. These are heat pumps, electron beam heating, electric arc heating, plasma h...

2010-11-12T23:59:59.000Z

20

Using Waste Heat for External Processes  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes the savings resulting from using waste heat from high-temperature industrial processes for lower temperature processes, like oven-drying.

Not Available

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electrotechnology Applications in Industrial Process Heating  

Science Conference Proceedings (OSTI)

Electrotechnology applications in industrial process heating are discussed in this technical update. This report builds on the research activities from the previous years and adds new and emerging process heating technologies. The primary focus is given to energy intensive industrial sectors such as primary metals and metal treatment. Successful implementation of the electrotechnologies in various industry applications are also presented in the form of case studies. The technical update also ...

2012-11-26T23:59:59.000Z

22

Heat Recovery Boilers for Process Applications  

E-Print Network (OSTI)

Heat recovery boilers are widely used in process plants for recovering energy from various waste gas streams, either from the consideration of process or of economy. Sulfuric, as well as nitric, acid plant heat recovery boilers are examples of the use of heat recovery due primarily to process considerations. On the other hand, cost and payback are main considerations in the case of gas turbine and incineration plants, where large quantities of gases are exhausted at temperatures varying from 800°F to 1800°F. This gas, when recovered, can result in a large energy savings and steam production. This paper attempts to outline some of the engineering considerations in the design of heat recovery boilers for turbine exhaust applications (combined cycle, cogeneration mode), incineration plants (solid waste, fume) and chemical plants (reformer, sulfuric acid, nitric acid).

Ganapathy, V.; Rentz, J.; Flanagan, D.

1985-05-01T23:59:59.000Z

23

Reversible limit of processes of heat transfer  

E-Print Network (OSTI)

We study a process of heat transfer between a body of heat capacity C(T) and a sequence of N heat reservoirs, with temperatures equally spaced between an initial temperature T_0 and a final temperature T_N. The body and the heat reservoirs are isolated from the rest of the universe, and the body is brought in thermal contact successively with reservoirs of increasing temperature. We determine the change of entropy of the composite thermodynamic system in the total process in which the temperature of the body changes from T_0 to T_N. We find that for large values of N the total change of entropy of the composite process is proportional to (T_N-T_0)/N, but eventually a non-monotonic behavior is found at small values of N.

Stilck, Jürgen F

2013-01-01T23:59:59.000Z

24

Process and Material Data Needed for Heat Treatment and Laser ...  

Science Conference Proceedings (OSTI)

For heat treatment processes, thermocouple experiments and analysis required to determine the heat transfer boundary conditions are explained.

25

Implementation of solar industrial process heat: summary  

SciTech Connect

The implementation of solar industrial process heat systems will depend not only on the successful development of reliable and efficient solar technologies, but also on the intelligent and sound application of process engineering principles. This poses an important challenge which must be given increasing attention if SIPH systems are to be adopted by industry. (MOW)

Kearney, D. W.

1979-11-01T23:59:59.000Z

26

Heat Exchanger Fouling- Prediction, Measurement and Mitigation  

E-Print Network (OSTI)

The U. S. Department of Energy (DOE), Office of Industrial Programs (OIP) sponsors the development of innovative heat exchange systems. Fouling is a major and persistent cost associated with most industrial heat exchangers and nationally wastes an estimated 2.9 Quads per year. To predict and control fouling, three OIP projects are currently exploring heat exchanger fouling in specific industrial applications. A fouling probe has been developed to determine empirically the fouling potential of an industrial gas stream and to derive the fouling thermal resistance. The probe is a hollow metal cylinder capable of measuring the average heat flux along the length of the tube. The local heat flux is also measured by a heat flux meter embedded in the probe wall. The fouling probe has been successfully tested in the laboratory at flue gas temperatures up to 2200°F and a local heat flux up to 41,000 BTU/hr-ft2. The probe has been field tested at a coal-fired boiler plant. Future tests at a municipal waste incinerator are planned. Two other projects study enhanced heat exchanger tubes, specifically the effect of enhanced surface geometries on tube bundle performance. Both projects include fouling in a liquid heat transfer fluid. Identifying and quantifying the factors affecting fouling in these enhanced heat transfer tubes will lead to techniques to mitigate fouling.

Peterson, G. R.

1989-09-01T23:59:59.000Z

27

Solar energy for agricultural and industrial process heat  

SciTech Connect

A state-of-the-art review of solar process heat is given; near term prospects are discussed; and the federal solar industrial process heat program is reviewed. Existing solar industrial process heat projects are tabulated. (WHK)

1979-06-22T23:59:59.000Z

28

Retrieval of Latent Heating from TRMM Measurements  

Science Conference Proceedings (OSTI)

Rainfall is a fundamental process within the Earth's hydrological cycle because it represents a principal forcing term in surface water budgets, while its energetics corollary, latent heating, is the principal source of atmospheric diabatic ...

W-K. Tao; E. A. Smith; R. F. Adler; A. Y. Hou; R. Meneghini; J. Simpson; Z. S. Haddad; T. Iguchi; S. Satoh; R. Kakar; T. N. Krishnamurti; C. D. Kummerow; S. Lang; K. Nakamura; T. Nakazawa; K. Okamoto; S. Shige; W. S. Olson; Y. Takayabu; G. J. Tripoli; S. Yang

2006-11-01T23:59:59.000Z

29

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

30

Value of solar thermal industrial process heat  

DOE Green Energy (OSTI)

This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

1986-03-01T23:59:59.000Z

31

On the Measurement of Heat Waves  

Science Conference Proceedings (OSTI)

Despite their adverse impacts, definitions and measurements of heat waves are ambiguous and inconsistent, generally being endemic to only the group affected, or the respective study reporting the analysis. The present study addresses this issue by ...

S. E. Perkins; L. V. Alexander

2013-07-01T23:59:59.000Z

32

DOE Solar Process Heat Program: FY1991 Solar Process Heat Prefeasibility Studies Activity  

E-Print Network (OSTI)

During fiscal year (FY) 1991, the U.S. Department of Energy (DOE) Solar Process Heat Program implemented a Solar Process Heat Prefeasibility Studies activity. For Program purposes, a prefeasibility study is an engineering assessment that investigates the technical and economic feasibility of a solar system for a specific application for a specific end-user. The study includes an assessment of institutional issues (e.g., financing, availability of insurance, etc.) that impact the feasibility of the proposed solar project. Solar process heat technology covers solar thermal energy systems (utilizing fiat plate or concentrating solar collectors) for water heating, water preheating, cooling/refrigeration, steam generation, ventilation air heating/preheating, etc. for applications in industry, commerce, and government.

Russell Hewett; Price Microfiche A

1992-01-01T23:59:59.000Z

33

Computer Measurement and Automation System for Gas-fired Heating...  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Measurement and Automation System for Gas-fired Heating Furnace Title Computer Measurement and Automation System for Gas-fired Heating Furnace Publication Type Journal...

34

Investigation on the Heat Treatment Process of Forged Crank Throw ...  

Science Conference Proceedings (OSTI)

And, from the heat transfer analysis for several types of crank throws, cost effective heat treatment process could be established. Proceedings Inclusion?

35

Electric Driven Heat Pumps in Distillation Processes  

E-Print Network (OSTI)

Radian Corporation, under contract to the Electric Power Research Institute, has recently completed a study of the potential range of application for retrofitting electric driven heat pumps to existing distillation columns. A computerized evaluation program was developed, consisting of simulation, cost estimation, and economics analysis. The simulations were done using the PROCESS simulation package, while the cost and economics analysis routines were developed by Radian. This paper summarizes the results of the evaluations of retrofits to four generic distillation processes. In addition, the bases of the evaluation programs and the results of several peripheral tasks are described briefly.

Harris, G. E.

1983-01-01T23:59:59.000Z

36

DOE Solar Process Heat Program: FY1991 Solar Process Heat Prefeasibility Studies activity  

DOE Green Energy (OSTI)

During fiscal year (FY) 1991, the US Department of Energy (DOE) Solar Process Heat Program implemented a Solar Process Heat Prefeasibility Studies activity. For Program purposes, a prefeasibility study is an engineering assessment that investigates the technical and economic feasibility of a solar system for a specific application for a specific end-user. The study includes an assessment of institutional issues (e.g., financing, availability of insurance, etc.) that impact the feasibility of the proposed solar project. Solar process heat technology covers solar thermal energy systems (utilizing flat plate or concentrating solar Collectors) for water heating, water preheating, cooling/refrigeration, steam generation, ventilation air heating/preheating, etc. for applications in industry, commerce, and government. The studies are selected for funding through a competitive solicitation. For FY 1991, six projects were selected for funding. As of August 31, 1992, three teams had completed their studies. This paper describes the prefeasibility studies activity, presents the results from the study performed by United Solar Technologies, and summarizes the conclusions from the studies that have been completed to date and their implications for the Solar Process Heat Program.

Hewett, R.

1992-11-01T23:59:59.000Z

37

In situ heat treatment process utilizing a closed loop heating system  

Science Conference Proceedings (OSTI)

Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

Vinegar, Harold J. (Bellaire, TX); Nguyen, Scott Vinh (Houston, TX)

2010-12-07T23:59:59.000Z

38

Heat Pipe Technology for Energy Conservation in the Process Industry  

E-Print Network (OSTI)

Many applications for heat pipe technology have emerged in the relatively short time this technology has been known. Heat pipes incorporated in heat exchangers have been used in tens of thousands of successful heat recovery systems. These systems range from residential and commercial air-to-air heat exchangers to giant air preheaters for the process and utility industries. The heat pipe offers a unique, efficient heat transfer device that can recover valuable thermal energy resulting in reduced equipment and operating costs. Q-dot is the world leader in heat pipe technology and we have applied our expertise in engineering heat recovery products for the process industry. This paper discusses two such products, the heat pipe air preheater and waste heat recovery boiler. These heat pipe products have been used in many successful installations all over the world and some important, distinctive features of these systems will be presented.

Price, B. L. Jr.

1985-05-01T23:59:59.000Z

39

HEAT CAPACITY MEASUREMENTS IN PULSED MAGNETIC FIELDS  

E-Print Network (OSTI)

(World Scientific, to be published) The new NHMFL 60T quasi-continuous magnet produces a flat-top field for a period of 100 ms at 60 Tesla, and for longer time at lower fields, e.g. 0.5 s at 35 Tesla. We have developed for the first time the capability to measure heat capacity at very high magnetic fields in the NHMFL 60T quasi-continuous magnet at LANL, using a probe built out of various plastic materials. The field plateau allows us to utilize a heat-pulse method to obtain heat capacity data. Proof-of-principle heat capacity experiments were performed on a variety of correlated electron systems. Both magnet performance characteristics and physical properties of various materials studied hold out a promise of wide application of this new tool. 1 I. TECHNIQUE The 60 Tesla Long-Pulse (60TLP) magnet was recently commissioned at the Los Alamos National Laboratory. This magnet produces a flat-top field for a period of 100 ms at 60

M. Jaime; R. Movshovich; J. L. Sarrao; J. Kim; G. Stewart; W. P. Beyermann

1999-01-01T23:59:59.000Z

40

Measurement of spray combustion processes  

SciTech Connect

A free jet configuration was chosen for measuring noncombusting spray fields and hydrocarbon-air spray flames in an effort to develop computational models of the dynamic interaction between droplets and the gas phase and to verify and refine numerical models of the entire spray combustion process. The development of a spray combustion facility is described including techniques for laser measurements in spray combustion environments and methods for data acquisition, processing, displaying, and interpretation.

Peters, C.E.; Arman, E.F.; Hornkohl, J.O.; Farmer, W.M.

1984-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solar ponds for industrial process heat  

DOE Green Energy (OSTI)

Solar ponds offer perhaps the simplest technique for conversion of solar energy to thermal energy, which can be used for industrial process heat. It is unique in its capability in acting both as collector and storage. Further, the cost of solar pond per unit area is less than any active collectors available today. Combination of these economic and technical factors make solar ponds attractive as a fuel saver in IPH applications. Detailed calculations are given for solar ponds in two specific applications: providing hot water for aluminum can washing in a manufacturing plant and hot water for washing in a large commercial laundry. With the help of computer codes developed at SERI for other solar IPH systems, it is shown that solar ponds are far more cost effective than any other solar IPH technology for these applications.

Brown, K.C.; Edesess, M.; Jayadev, T.S.

1979-10-01T23:59:59.000Z

42

Heat pipe device and heat pipe fabricating process  

Science Conference Proceedings (OSTI)

An energy saving liquid to liquid heat exchanger for a dishwasher or like device discharging hot waste water comprising a hot water tank for holding the waste water from the dishwasher and having inlet and outlet pipes, a cold water tank for holding the fresh water going to a water heater and having inlet and outlet pipes, the cold water tank disposed on top of the hot water tank, a bundle of heat pipes containing low boiling refrigerant disposed inside of the two tanks so as to extract heat from the hot water tank and give it up to the cold water tank, whereby the temperature of the fresh water leaving the heat exchanger is higher than its entering temperature.

Busch, C.H.

1982-08-10T23:59:59.000Z

43

Interface Heat Transfer Effects for Solidification Processes  

Science Conference Proceedings (OSTI)

The solidification rate of a casting is governed by the rate of heat extraction, which in turn is dominated by the rate of heat transfer across the casting-mold ...

44

SOLTECH 92 proceedings: Solar Process Heat Program  

SciTech Connect

This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

1992-03-01T23:59:59.000Z

45

SOLTECH 92 proceedings: Solar Process Heat Program  

DOE Green Energy (OSTI)

This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

Not Available

1992-03-01T23:59:59.000Z

46

Measurement of flow field and local heat transfer distribution on a scraped heat exchanger crystalliser surface  

E-Print Network (OSTI)

Measurement of flow field and local heat transfer distribution on a scraped heat exchanger.ravelet@laposte.net Geert-Jan Witkamp G.J.Witkamp@xs4all.nl Abstract In a cylindrical scraped heat exchanger crystallizer exchanger surface has been studied by direct measurements of the heat exchanger surface temperature

Paris-Sud XI, Université de

47

Process Heat Exchanger Options for the Advanced High Temperature Reactor  

Science Conference Proceedings (OSTI)

The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

2011-06-01T23:59:59.000Z

48

Waste heat driven absorption refrigeration process and system  

DOE Patents (OSTI)

Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

Wilkinson, William H. (Columbus, OH)

1982-01-01T23:59:59.000Z

49

Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor  

Science Conference Proceedings (OSTI)

The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

2011-04-01T23:59:59.000Z

50

A Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow Measurements  

Open Energy Info (EERE)

Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow Measurements Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow Measurements And Heat-Flow Estimates From The Uk Geothermal Catalogue Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow Measurements And Heat-Flow Estimates From The Uk Geothermal Catalogue Details Activities (0) Areas (0) Regions (0) Abstract: A comprehensive database of temperature, heat flow, thermal conductivity and geochemistry is the basis of geothermal modelling. The latest revision (1987) of the UK Geothermal Catalogue (UKGC) contains over 2600 temperatures at over 1150 sites and over 200 observations of heat flow. About 93% of the temperature data are from depths less than 2000 m and about 50% are Bottom Hole Temperatures (BHT). Heat-flow density

51

Advanced Manufacturing Office: Process Heating Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Boiler Tune-Up Energy-Efficiency Opportunity Assessment Tool for Chemical Plants and Refineries Mechanical Insulation Assessment and Design Calculators Combined Heat and Power...

52

EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Radioisotope Heat Source Fuel Processing and Fabrication, 4: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at an existing facility at U.S. Department of Energy's Los Alamos National Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 19, 1991 EA-0534: Finding of No Significant Impact Radioisotope Heat Source Fuel Processing and Fabrication July 19, 1991 EA-0534: Final Environmental Assessment Radioisotope Heat Source Fuel Processing and Fabrication

53

Save Energy Now in Your Process Heating Systems  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial process heating systems.

Not Available

2006-01-01T23:59:59.000Z

54

Field Measurements of Heating System Efficiency in Nine Electrically-Heated Manufactured Homes.  

Science Conference Proceedings (OSTI)

This report presents the results of field measurements of heating efficiency performed on nine manufactured homes sited in the Pacific Northwest. The testing procedure collects real-time data on heating system energy use and heating zone temperatures, allowing direct calculation of heating system efficiency.

Davis, Bob; Siegel, J.; Palmiter, L.; Baylon, D.

1996-07-01T23:59:59.000Z

55

Daytime heat transfer processes over mountainous terrain  

Science Conference Proceedings (OSTI)

The daytime heat transfer mechanisms over mountainous terrain are investigated by means of large-eddy simulations over idealized valleys. Two- and three-dimensional topographies, corresponding to infinite and finite valleys, are used in order to ...

Juerg Schmidli

56

High temperature thermographic measurements of laser heated silica  

SciTech Connect

In situ spatial and temporal surface temperature profiles of CO{sub 2} laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

Elhadj, S; Yang, S T; Matthews, M J; Cooke, D J; Bude, J D; Johnson, M; Feit, M; Draggoo, V; Bisson, S E

2009-11-02T23:59:59.000Z

57

Sensible and Latent Heat Flux Measurements over the Ocean  

Science Conference Proceedings (OSTI)

This papar presents an extensive act of sensible heat (Reynolds flux and dissipation methods) and latent heat (dissipation method) flux measurements from a stable deep water tower and from ships on the deep sea. Operational difficulties ...

W. G. Large; S. Pond

1982-05-01T23:59:59.000Z

58

A Temperature-Profile Method for Estimating Flow Processes in Geologic Heat Pipes  

E-Print Network (OSTI)

make sure that the heat transfer processes are approximatelyfocus is on the heat and mass transfer processes within the

Birkholzer, Jens T.

2004-01-01T23:59:59.000Z

59

An application of DCS device to a heat exchange process  

Science Conference Proceedings (OSTI)

In this paper, an application of distributed control system (DCS) device to a heat exchange process is shown. In details, first, nonlinear model and feedback tracking control scheme of a spiral heat exchange process are obtained. Second, the designed ... Keywords: DCS, nonlinear control, nonlinear model, right coprime factorization, robust stability

Junya Okazaki; Shengjun Wen; Mingcong Deng; Dongyun Wang

2012-10-01T23:59:59.000Z

60

Heat exchanger for coal gasification process  

DOE Patents (OSTI)

This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

Blasiole, George A. (Greensburg, PA)

1984-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

1984-01-03T23:59:59.000Z

62

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

1984-01-03T23:59:59.000Z

63

Measurement of Specific Heat Capacity Using Differential Scanning Calorimeter  

SciTech Connect

This document describes the process used at the Idaho National Laboratory’s (INL) High Temperature Test Laboratory (HTTL) for measuring specific heat capacity using a differential scanning calorimeter (DSC). The document is divided into four sections: Approach, in which the technique is described; Setup, in which the physical system is described; Procedure, in which the testing steps are listed and detailed; and Example Test, in which a typical test is outlined following the steps listed in the Procedure section. Example data, results, photos, and curves are provided throughout the document to assist other users of this system.

J. E. Daw

2008-11-01T23:59:59.000Z

64

Potential of the heat pipe in coal gasification processes  

SciTech Connect

The declining production of natural gas in the United States has provided great impetus to the development of economcal methods of producing methane from coal. Coal gasification systems share in common a need for highly efficient heat transfer and energy recovery methods in order to maximize the coal-methane conversion efficiency. Characteristics of heat pipe heat transfer units that offer potential for increasing conversion efficiency and/or reducing production costs include: (1) complete physical separation of process streams, (2) capability of handling more than two process streams in a single unit, (3) heat removal at near-constant temperature, (4) high heat recovery efficiency, (5) low operating cost-with no requirement for auxiliary power, and (6) relative ease of cleaning. Design concepts incorporating heat pipes into indirect coal gasification units, methanators, and energy recovery units are presented and technological impediments that must be surmounted in the successful development of these units are discussed.

Ranken, W.A.

1976-01-01T23:59:59.000Z

65

Measuring important parameters for air-sea heat exchange Christoph S. Garbeab, Uwe Schimpfab and Bernd Jhneab  

E-Print Network (OSTI)

Measuring important parameters for air-sea heat exchange Christoph S. Garbeab, Uwe Schimpfab Exchange, Heat flux, Digital Image Processing, Surface Renewal 1. INTRODUCTION Thermographic techniques-water heat exchange. A driving force in air sea interactions is the net sea surface heat flux. It is a vital

Garbe, Christoph S.

66

AN ORGANIC MODERATED REACTOR FOR PROCESS HEAT  

SciTech Connect

A review is given of the potentialities of an organic moderated reactor for the supply of heat to factories having a large demand for low-pressure steam, together with a requirement for power produced by back-pressure turbine generation. By choosing a suitable steam cycle it is possible to cover the range of typical power demand/head load ratios found in the chemical industry. The economic developments of a reactor installed for such a duty are briefly considered to show the reductions in operating cost that might be brought about during the operating lifetlme of the reactor and its associated plant. (auth)

Baines, B.D.; Conway-Jones, J.M.

1962-02-01T23:59:59.000Z

67

Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief  

DOE Green Energy (OSTI)

This technical brief is a guide to selecting high-temperature metallic materials for use in process heating applications such as burners, electrical heating elements, material handling, load support, and heater tubes, etc.

Not Available

2004-11-04T23:59:59.000Z

68

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

Science Conference Proceedings (OSTI)

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

69

National need for utilizing nuclear energy for process heat generation  

DOE Green Energy (OSTI)

Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280/sup 0/C, LMRs up to 540/sup 0/C, and GCRs up to 950/sup 0/C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized.

Gambill, W.R.; Kasten, P.R.

1984-01-01T23:59:59.000Z

70

Agricultural and Industrial Process-Heat-Market Sector workbook  

SciTech Connect

This workbook summarizes the preliminary data and assumptions of the Agricultural and Industrial Process Heat Market Sector prepared in conjunction with the development of inputs for a National Plan for the Accelerated Commercialization of Solar Energy.

Shulman, M. J.; Kannan, N. P.; deJong, D. L.

1980-01-01T23:59:59.000Z

71

Proceedings of the solar industrial process heat symposium  

DOE Green Energy (OSTI)

The purpose of the symposium was to review the progress of various solar energy systems currently under design for supplying industrial process heat. Formal presentations consisted of a review of solar energy applications in industrial process heat as well as several on-going project reviews. An Open Forum was held to solicit the comments of the participants. The recommendations of this Open Forum are included in these proceedings. Eighteen papers were included. Separate abstracts were prepared for each paper.

none,

1978-06-01T23:59:59.000Z

72

Vacuum Induction Melting Unit Induction heating is a process wherein induced eddy currents heat conductive materials. This heating  

E-Print Network (OSTI)

Vacuum Induction Melting Unit Induction heating is a process wherein induced eddy currents heat can be melted at a time. There are three main parts to the system: chiller, power unit and vacuum unit. The vacuum unit with rotary and diffusion pumps can attain a vacuum of 106 m bar. The power can deliver

Subramaniam, Anandh

73

Industrial process heat case studies. [PROSYS/ECONMAT code  

DOE Green Energy (OSTI)

Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

Hooker, D.W.; May, E.K.; West, R.E.

1980-05-01T23:59:59.000Z

74

Industrial process heat data analysis and evaluation. Volume 1  

DOE Green Energy (OSTI)

The Solar Energy Research Institute (SERI) has modeled seven of the Department of Energy (DOE) sponsored solar Industrial Process Heat (IPH) field experiments and has generated thermal performance predictions for each project. Additionally, these performance predictions have been compared with actual performance measurements taken at the projects. Predictions were generated using SOLIPH, an hour-by-hour computer code with the capability for modeling many types of solar IPH components and system configurations. Comparisons of reported and predicted performance resulted in good agreement when the field test reliability and availability was high. Volume I contains the main body of the work: objective, model description, site configurations, model results, data comparisons, and summary. Volume II contains complete performance prediction results (tabular and graphic output) and computer program listings.

Lewandowski, A; Gee, R; May, K

1984-07-01T23:59:59.000Z

75

THERMAL PERFORMANCE MEASUREMENTS ON ULTIMATE HEAT SINKS - COOLING PONDS  

Office of Scientific and Technical Information (OSTI)

THERMAL PERFORMANCE MEASUREMENTS THERMAL PERFORMANCE MEASUREMENTS ON ULTIMATE HEAT SINKS - COOLING PONDS R. K. Hadlock 0 . B. Abbey Battelle Pacific Northwest Laboratories Prepared for U. S. Nuclear Regulatory Commission b + NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Nuclear Regulatory Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, nor assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, pro- duct or process disclosed, nor represents that its use would not infringe privately owned rights. F Available from National Technical Information Service

76

A Temperature-Profile Method for Estimating Flow Processes in Geologic Heat Pipes  

E-Print Network (OSTI)

change and capillarity—the heat pipe effect, Int. J. Heatgeothermal reservoirs as heat pipes in fractured porousProcesses in Geologic Heat Pipes Jens T. Birkholzer Ernest

Birkholzer, Jens T.

2004-01-01T23:59:59.000Z

77

Chemical Process Measurements Group Homepage  

Science Conference Proceedings (OSTI)

... in the gas and liquid phases and ... inventory of atmospheric greenhouse gases, most notably ... Gas and Particulate Concentration Measurements and ...

2013-05-07T23:59:59.000Z

78

High-temperature process heat applications with an HTGR  

SciTech Connect

An 842-MW(t) HTGR-process heat (HTGR-PH) design and several synfuels and energy transport processes to which it could be coupled are described. As in other HTGR designs, the HTGR-PH has its entire primary coolant system contained in a prestressed concrete reactor vessel (PCRV) which provides the necessary biological shielding and pressure containment. The high-temperature nuclear thermal energy is transported to the externally located process plant by a secondary helium transport loop. With a capability to produce hot helium in the secondary loop at 800/sup 0/C (1472/sup 0/F) with current designs and 900/sup 0/C (1652/sup 0/F) with advanced designs, a large number of process heat applications are potentially available. Studies have been performed for coal liquefaction and gasification using nuclear heat.

Quade, R.N.; Vrable, D.L.

1980-04-01T23:59:59.000Z

79

NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010  

DOE Green Energy (OSTI)

This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

Charles V Park

2011-01-01T23:59:59.000Z

80

Thermodynamic properties of pulverized coal during rapid heating devolatilization processes  

SciTech Connect

The thermodynamic properties of coal under conditions of rapid heating have been determined using a combination of UTRC facilities including a proprietary rapid heating rate differential thermal analyzer (RHR-DTA), a microbomb calorimeter (MBC), an entrained flow reactor (EFR), an elemental analyzer (EA), and a FT-IR. The total heat of devolatilization, was measured for a HVA bituminous coal (PSOC 1451D, Pittsburgh No. 8) and a LV bituminous coal (PSOC 1516D, Lower Kittaning). For the HVA coal, the contributions of each of the following components to the overall heat of devolatilization were measured: the specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars. Morphological characterization of coal and char samples was performed at the University of Pittsburgh using a PC-based image analysis system, BET apparatus, helium pcynometer, and mercury porosimeter. The bulk density, true density, CO{sub 2} surface area, pore volume distribution, and particle size distribution as a function of extent of reaction are reported for both the HVA and LV coal. Analyses of the data were performed to obtain the fractal dimension of the particles as well as estimates for the external surface area. The morphological data together with the thermodynamic data obtained in this investigation provides a complete database for a set of common, well characterized coal and char samples. This database can be used to improve the prediction of particle temperatures in coal devolatilization models. Such models are used both to obtain kinetic rates from fundamental studies and in predicting furnace performance with comprehensive coal combustion codes. Recommendations for heat capacity functions and heats of devolatilization for the HVA and LV coals are given. Results of sample particle temperature calculations using the recommended thermodynamic properties are provided.

Proscia, W.M.; Freihaut, J.D. [United Technologies Research Center, E. Hartford, CT (United States); Rastogi, S.; Klinzing, G.E. [Univ. of Pittsburg, PA (United States)

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

REACTOR PRODUCING 3000 F STEAM FOR PROCESS HEAT  

SciTech Connect

A conceptual design is presented for a reactor producing 3000 deg F, 400 psi steam to supply process heat for high temperature endothermic chemical reactions. Specifically, the supplying of heat to a coal hydrogenation plant is studied but other applications are possible. Such a market for nuclear heat is economically interesting because the competition is with the relatively expensive oxygen combustion of coal. It was assumed that in the present state of the art a ceramic heat source could not contain nuclear fuel in an open cycle due to the hazard of fission product leakage into the process stream. This assumption limited the high temperature heat source to the order of 10% of the total reactor power. The particular design studied was found to be not economically feasible due 10 the unusually large inventory of enriched uranium required. However, it is felt that with the suggested changes, nuclear process heat from this type of reactor oould be competitive if the excess power produced could be sold economically. (auth)

Roberts, J.T.; Lagarias, J.S.; Remick, F.J.; Ritzmann, R.W.f Roberts, J.O.; Roberts, W.J.; Schmidt, J.E.; Kasten, P.R.

1956-08-01T23:59:59.000Z

82

3 omega method for specific heat and thermal conductivity measurements  

E-Print Network (OSTI)

We present a 3 omega method for simultaneously measuring the specific heat and thermal conductivity of a rod- or filament-like specimen using a way similar to a four-probe resistance measurement. The specimen in this method needs to be electrically conductive and with a temperature-dependent resistance, for acting both as a heater to create a temperature fluctuation and as a sensor to measure its thermal response. With this method we have successfully measured the specific heat and thermal conductivity of platinum wire specimens at cryogenic temperatures, and measured those thermal quantities of tiny carbon nanotube bundles some of which are only 10^-9 g in mass.

L. Lu; W. Yi; D. L. Zhang

2002-02-06T23:59:59.000Z

83

Technical Sessions Measurements of Surface Heat Flux Over Contrasting Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurements of Surface Heat Flux Measurements of Surface Heat Flux Over Contrasting Surfaces R. L. Coulter J. D. Shannon T. J. Martin Argonne National Laboratory Argonne, IL 60439 In a multilaboratory field study held near Boardman in northeastern Oregon in June 1991 and described in greater detail elsewhere (Doran et al. 1991), various properties of the surface and lower atmospheric boundary layer over heavily irrigated cropland and adjacent desert steppe were investigated. The locale was selected because its disparate characteristics over various spatial scales stress the ability of general circulation models (GCMs) to describe lower boundary conditions, particularly across the discontinuity between desert (in which turbulent flux of heat must be primarily as sensible heat) and large irrigated tracts (in which turbulent flux of latent heat should be the larger term).

84

Method of measuring heat influx of a cryogenic transfer system  

DOE Patents (OSTI)

A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.

Niemann, Ralph C. (Downers Grove, IL); Zelipsky, Steven A. (Tinley Park, IL); Rezmer, Ronald R. (Lisle, IL); Smelser, Peter (Bruner, MO)

1981-01-01T23:59:59.000Z

85

Infrared Techniques for Measuring Ocean Surface Processes  

Science Conference Proceedings (OSTI)

Ocean surface processes, and air–sea interaction in general, have recently received increased attention because it is now accepted that small-scale surface phenomena can play a crucial role in the air–sea fluxes of heat, mass, and momentum, with ...

Fabrice Veron; W. Kendall Melville; Luc Lenain

2008-02-01T23:59:59.000Z

86

Measurements and Predictions of the Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Exchangers  

E-Print Network (OSTI)

to the International Journal of Compact Heat Exchangers, May 2003 #12;2 Measurements and Predictions of the Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Exchangers Abstract The dominant thermal resistance for most compact heat exchangers occurs on the air side and thus a detailed understanding of air side heat

Thole, Karen A.

87

Unified Model for the Heat Transfer Processes that Occur During  

E-Print Network (OSTI)

A unified general model for the heat transfer processes that occur within a food product subjected to canning or aseptic thermal treatment, is presented. Two principles are extensively used in the model building process: system segregation and energy balancing. The model is summarized in an algorithm, whose specification is showed for different combinations of processing system type (PST) and product formulation (PF) with a single particle type. A discussion on the practical relevance of proper product identification in the case of aseptic processing, is included. Finally, an illustration is given on the results that can be obtained from the model algorithm application, in a comparative study of different PST-PF combinations.

Jose F. Pastrana; Harvey J. Gold; Kenneth R. Swanzel; Pastrana Gold; Jose F. Pastrana; Harvey J. Gold; Kenneth R. Swartzel

1992-01-01T23:59:59.000Z

88

Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers  

Science Conference Proceedings (OSTI)

The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

2011-04-01T23:59:59.000Z

89

Combined heat and mass transfer device for improving separation process  

DOE Patents (OSTI)

A two-phase small channel heat exchange matrix for providing simultaneous heat transfer and mass transfer at a single, predetermined location within a separation column, whereby the thermodynamic efficiency of the separation process is significantly improved. The small channel heat exchange matrix is comprised of a series of channels having a hydraulic diameter no greater than 5.0 mm. The channels are connected to an inlet header for supplying a two-phase coolant to the channels and an outlet header for receiving the coolant horn the channels. In operation, the matrix provides the liquid-vapor contacting surfaces within a separation column, whereby liquid descends along the exterior surfaces of the cooling channels and vapor ascends between adjacent channels within the matrix. Preferably, a perforated and concave sheet connects each channel to an adjacent channel, such that liquid further descends along the concave surfaces of the sheets and the vapor further ascends through the perforations in the sheets. The size and configuration of the small channel heat exchange matrix allows the heat and mass transfer device to be positioned within the separation column, thereby allowing precise control of the local operating conditions within the column and increasing the energy efficiency of the process.

Tran, Thanh Nhon

1997-12-01T23:59:59.000Z

90

Countercurrent direct contact heat exchange process and system  

DOE Patents (OSTI)

Recovery of energy from geothermal brines and other hot water sources by direct contact heat exchange with a working fluid, such as a hydrocarbon working fluid, e.g. isobutane. The process and system consists of a plurality of stages, each stage including mixing and settling units. In the first stage, hot brine and arm working fluid are intimately mixed and passed into a settler wherein the brine settles to the bottom of the settler and the hot working fluid rises to the top. The hot working fluid is passed to a heat engine or turbine to produce work and the working fluid is then recycled back into the system. The system is comprised of a series of stages each containing a settler and mixer, and wherein the working fluid and the brine flow in a countercurrent manner through the stages to recover the heat from the brine in increments and raise the temperature of the working fluid in increments.

Wahl, III, Edward F. (Claremont, CA); Boucher, Frederic B. (San Juan Capistrano, CA)

1979-01-01T23:59:59.000Z

91

Micron-Scale Measurements of Heat Capacity by Time-Domain ...  

Science Conference Proceedings (OSTI)

Presentation Title, Micron-Scale Measurements of Heat Capacity by ... is developed for localized measurement of specific heat capacity with a spatial resolution ...

92

Waste Heat Recovery from Refrigeration in a Meat Processing Facility  

E-Print Network (OSTI)

A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat recovery system consists of a shell and tube heat exchanger (16"? x 14'0") installed in the compressor hot gas discharge line. Water is recirculated from a 23,000-gallon tempered water storage tank to the heat exchanger by a circulating pump at the rate of 100 gallons per minute. All make-up water to the plant hot water system is supplied from this tempered water storage tank, which is maintained at a constant filled level. Tests to determine the actual rate of heat recovery were conducted from October 3, 1979 to October 12, 1979, disclosing an average usage of 147,000 gallons of hot water daily. These tests illustrated a varied heat recovery of from 0.5 to 1.0 million BTU per hour. The deviations were the result of both changing refrigeration demands and compressor operating modes. An average of 16 million BTU per day was realized, resulting in reduced boiler fuel costs of $30,000 annually, based on the present $.80 per gallon #2 fuel oil price. At the total installed cost of $79,000, including test instrumentation, the project was found to be economically viable. The study has demonstrated the technical and economic feasibility of refrigeration waste heat recovery as a positive energy conservation strategy which has broad applications in industry and commerce.

Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

1980-01-01T23:59:59.000Z

93

Combined heat and mass transfer device for improving separation process  

DOE Patents (OSTI)

A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

Tran, Thanh Nhon (Flossmoor, IL)

1999-01-01T23:59:59.000Z

94

Combined heat and mass transfer device for improving separation process  

DOE Patents (OSTI)

A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

Tran, T.N.

1999-08-24T23:59:59.000Z

95

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

DOE Green Energy (OSTI)

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

Not Available

2004-11-01T23:59:59.000Z

96

Relaxation calorimetry technique for measuring low temperature specific heat  

E-Print Network (OSTI)

in the heater voltage, and W, the width of the acceptance window used to select the data for analysis. Two thermometer also served as a heater. The measurements extended from 3.75 to 8.5 K, with a temperature a realistic model of heat flow with an algorithm that fits the transient thermal response of a calorimeter

Andrei, Eva Y.

97

A performance data network for solar process heat systems  

DOE Green Energy (OSTI)

A solar process heat (SPH) data network has been developed to access remote-site performance data from operational solar heat systems. Each SPH system in the data network is outfitted with monitoring equipment and a datalogger. The datalogger is accessed via modem from the data network computer at the National Renewable Energy Laboratory (NREL). The dataloggers collect both ten-minute and hourly data and download it to the data network every 24-hours for archiving, processing, and plotting. The system data collected includes energy delivered (fluid temperatures and flow rates) and site meteorological conditions, such as solar insolation and ambient temperature. The SPH performance data network was created for collecting performance data from SPH systems that are serving in industrial applications or from systems using technologies that show promise for industrial applications. The network will be used to identify areas of SPH technology needing further development, to correlate computer models with actual performance, and to improve the credibility of SPH technology. The SPH data network also provides a centralized bank of user-friendly performance data that will give prospective SPH users an indication of how actual systems perform. There are currently three systems being monitored and archived under the SPH data network: two are parabolic trough systems and the third is a flat-plate system. The two trough systems both heat water for prisons; the hot water is used for personal hygiene, kitchen operations, and laundry. The flat plate system heats water for meat processing at a slaughter house. We plan to connect another parabolic trough system to the network during the first months of 1996. We continue to look for good examples of systems using other types of collector technologies and systems serving new applications (such as absorption chilling) to include in the SPH performance data network.

Barker, G.; Hale, M.J.

1996-03-01T23:59:59.000Z

98

Measurements of low energy neutral hydrogen efflux during ICRF heating  

DOE Green Energy (OSTI)

Using the Low Energy Neutral Atom Spectrometer, measurements were made of the H/sup 0/ and D/sup 0/ efflux from PLT during ion cyclotron heating experiments. The application of rf power at frequencies appropriate to fundamental and 2nd-harmonic heating results in a rapid, toroidally uniform rise in the charge-exchange efflux at a rate of about 10/sup 15/ cm/sup -2/ s/sup -1/ MW/sup -1/. This flux increase is larger at lower plasma currents. The cause of this flux and its impact on plasma behavior are discussed.

Cohen, S.A.; Ruzic, D.; Voss, D.E.; Budny, R.; Colestock, P.; Heifetz, D.; Hosea, J.; Hwang, D.; Manos, D.; Wilson, J.

1984-09-01T23:59:59.000Z

99

Use of solar energy to produce process heat for industry  

DOE Green Energy (OSTI)

The role of solar energy in supplying heat and hot water to residential and commercial buildings is familiar. On the other hand, the role that solar energy may play in displacing imported energy supplies in the industrial and utility sectors often goes unrecognized. The versatility of solar technology lends itself well to applications in industry; particularly to the supplemental supply of process heat of all kinds. The realization of that potential will depend, however, on the identification of the most suitable applications and locations for industrial solar energy and the continued improvement in cost, durability, and reliability of solar equipment. The status of solar thermal technology for industrial process heat applications is surveyed, including a description of current costs and operating histories. Because the current status is unsatisfactory in view of the goals established by President Carter for solar industrial energy, the most important objectives to be met in improving system performance, reducing cost, and identifying markets for solar IPH are outlined. The effect of government tax policy will be of little impact until technical efficiency and cost effectiveness are significantly improved.

Brown, K.

1980-04-01T23:59:59.000Z

100

Using and Measuring the Combined Heat and Power Advantage  

E-Print Network (OSTI)

Combined Heat and Power (CHP), also known as cogeneration, refers to the integration of thermal energy with power generation. CHP is a powerful energy conservation measure that has been identified as an important greenhouse gas reduction measure with net economic benefits. It complements other energy conservation measures. CHP can be used any place that heat is needed so it is used with a variety of applications, fuels, and equipment. There are ancillary benefits of CHP to the host site and the public including air quality, reliability, reduced water consumption, and economic development. There is no universal practice for reporting the efficiency of CHP systems which can result in both overstatement and understatement of the benefits of CHP compared to other power generation systems. Fuel Charged to Power (FCP) is the fuel, net of credit for thermal output, required to produce a kilowatt-hour of electricity. This provides a metric that is used for comparison to the heat rate of other types of generation and insight into the development of CHP projects that maximize economic and environmental benefits. Biomass generation is generally less efficient than fossil fuel generation due to size and combustion characteristics, which means that there is more benefit from CHP because there is more waste heat available for recovery. An example is presented demonstrating that CHP significantly improves the economics and environmental benefits for biomass to power.

John, T.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High Magnetic Field Processing - A Heat-Free Heat Treating Method  

SciTech Connect

The High and Thermal Magnetic Processing/Electro-magnetic Acoustic Transducer (HTMP/EMAT) technology has been shown to be an enabling disruptive materials processing technology, that can achieve significant improvements in microstructure and consequently material performance beyond that achievable through conventional processing, and will lead to the next generation of advanced performance structural and functional materials. HTMP exposure increased the reaction kinetics enabling refinement of microstructural features such as finer martensite lath size, and finer, more copious, homogeneous dispersions of strengthening carbides leading to combined strength and toughness improvements in bainitic steels. When induction heating is applied in a high magnetic field environment, the induction heating coil is configured so that high intensity acoustic/ultrasonic treatment occurs naturally. The configuration results in a highly effective electromagnetic acoustical transducer (EMAT). HTMP combined with applying high-field EMAT, produce a non-contact ultrasonic treatment that can be used to process metal alloys in either the liquid state resulting in significant microstructural changes over conventional processing. Proof-of-principle experiments on cast irons resulted in homogeneous microstructures in small castings along with improved casting surface appearance. The experiment showed that by exposing liquid metal to the non-contact acoustic/ultrasonic processing technology developed using HMFP/EMAT wrought-like microstructures were developed in cast components. This Energy Intensive Processes (EIP) project sponsored by the DOE EERE Advanced Manufacturing Office (AMO) demonstrated the following: (1) The reduction of retained austenite in high carbon/high alloy steels with an ambient temperature HTMP process, replacing either a cryogenic or double tempering thermal process normally employed to accomplish retained austenite transformation. HTMP can be described as a 'heat-free', heat treating technology. Lower residual stresses in HTMP treated materials are anticipated since no thermal strains are involved in inducing the transformation of retained austenite to martensite in high alloy steel. (2) The simultaneous increase of 12% in yield strength and 22% in impact energy in a bainitic alloy using HTMP processing. This is a major breakthrough in materials processing for the next generation of structural materials since conventionally processed materials show a reduction in impact toughness with an increase in yield strength. HTMP is a new paradigm to beneficially increase both yield strength and impact energy absorption simultaneously. (3) HTMP processing refined both the martensite lath population and the carbide dispersion in a bainitic steel alloy during Gausstempering. The refinement was believed to be responsible for the simultaneous increase in strength and toughness. Hence, HTMP significantly impacts nucleation and growth phenomenon. (4) HTMP processing developed comparable ultimate tensile strength and twice the impact energy in a lower cost, lower alloy content ({approx}8% alloy content) steel, compared to highly alloyed, (31% alloy elements involving Ni, Co, and Mo) 250-grade margining steel. Future low-cost HTMP alloys appear viable that will exceed the structural performance of highly alloyed materials that are conventionally processed. This economic benefit will enable U.S. industry to reduce cost (better more competitive worldwide) while maintaining or exceeding current performance. (5) EMAT processed cast iron exhibits significantly higher hardness (by 51% for a 9T condition) than a no-field processed sample. (6) EMAT produced microstructures in cast iron resulted in an unique graphite nodule morphology, a modified pearlite content, and unique carbide types, that formed during solidification and cooling. (7) EMAT processed nanoparticle dispersions in Mg resulted in a very fine, unagglomerated distribution of the nanoparticles in the magnesium matrix. This provides a breakthrough technology to make the next generation of

Ludtka, Gerard Michael [ORNL; Ludtka, Gail Mackiewicz- [ORNL; Wilgen, John B [ORNL; Kenik, Edward A [ORNL; Parish, Chad M [ORNL; Rios, Orlando [ORNL; Rogers, Hiram [ORNL; Manuel, Michele [University of Florida, Gainesville; Kisner, Roger A [ORNL; Watkins, Thomas R [ORNL; Murphy, Bart L [ORNL

2012-08-01T23:59:59.000Z

102

DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY  

SciTech Connect

Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

2007-12-19T23:59:59.000Z

103

Temperature Profile Measurements During Heat Treatment of BSCCO 2212 Coils  

SciTech Connect

The temperature profile of two different BSCCO 2212 coils has been analyzed. The profiles are obtained from thermocouples imbedded in the windings during the heat treatment that activates the 2212. The melting and freezing of the 2212 is clearly observed. A model that describes the data and can be used to guide the processing of new coils has been developed. We have obtained the thermal history of two BSCCO coils, one from NHMFL (1) that had 10 layers of 1 mm diameter wire with 0.15 mm insulation and a second coil from OST that had 24 layers with similar insulation and conductor size. Both coils had thermocouples imbedded in the windings and excellent recordings of the temperature over the whole reaction cycle were available for analysis. There are several features that we will address in this note. Measurements have shown that the I{sub c} of the conductor is a sensitive function of its thermal history. This brings up the question of the absolute accuracy of the thermometry in the range around 882 C, the MP of 2212. The reference for the treatment profile is really related to this MP and to small deviations around it. Since the heat of fusion of 2212 is rather large, it generates a clear signal during the melting and cooling transition that automatically generates the relative temperature markers. The physics is the same as the way ice in water maintains an isothermal environment until it is all melted. A related question is the thermal response time of the coil package. The temperature cycles that are being used to optimize strand and small coils can have rapid changes easily implemented whereas a large coil may have such a large thermal time constant that the optimum cycle may not be attainable. A simple analytical model that works well for small solenoids has been developed and an ANSYS (5) program that works for larger coils with more complicated geometry has been set up but will not be discussed in this note.

Tollestrup, Alvin; /Fermilab

2011-04-14T23:59:59.000Z

104

Utilization of geothermal heat in tropical fruit-drying process  

DOE Green Energy (OSTI)

The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits produced on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.

Chen, B.H.; Lopez, L.P.; King, R.; Fujii, J.; Tanaka, M.

1982-10-01T23:59:59.000Z

105

Use of miniature magnetic sensors for real-time control of the induction heating process  

DOE Patents (OSTI)

A method of monitoring the process of induction heating a workpiece. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can also be used to measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

Bentley, Anthony E. (Tijeras, NM); Kelley, John Bruce (Albuquerque, NM); Zutavern, Fred J. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

106

Operation and design of selected industrial process heat field tests  

DOE Green Energy (OSTI)

The DOE program of solar industrial process heat field tests has shown solar energy to be compatible with numerous industrial needs. Both the operational projects and the detailed designs of systems that are not yet operational have resulted in valuable insights into design and hardware practice. Typical of these insights are the experiences discussed for the four projects reviewed. Future solar IPH systems should benefit greatly not only from the availability of present information, but also from the wealth of operating experience from projects due to start up in 1981.

Kearney, D. W.

1981-02-01T23:59:59.000Z

107

Industrial and agricultural process heat information user study  

DOE Green Energy (OSTI)

The results of a series of telephone interviews with groups of users of information on solar industrial and agricultural process heat (IAPH) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. In the current study only high-priority groups were examined. Results from 10 IAPH groups of respondents are analyzed in this report: IPH Researchers; APH Researchers; Representatives of Manufacturers of Concentrating and Nonconcentrating Collectors; Plant, Industrial, and Agricultural Engineers; Educators; Representatives of State Agricultural Offices; and County Extension Agents.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-03-01T23:59:59.000Z

108

The Use of Aluminum Process Reject Heat as the Source of Energy for a District Heating System  

E-Print Network (OSTI)

Rocket Research Company (RRC) is investigating the use of industrial process reject heat as a source of energy for large scale district heating. The District heating System is a network of closed-loop hot water pipes that recover energy from the fume hood ducts at the Intalco aluminum reduction plant and transmits the energy to commercial, residential, and institutional users in Bellingham, Washington for space and hot water heating.

McCabe, J.; Olszewski, M.

1980-01-01T23:59:59.000Z

109

Heating dynamics of CO{sub 2}-laser irradiated silica particles with evaporative shrinking: Measurements and modeling  

SciTech Connect

The heating dynamics of CO{sub 2}-laser heated micron-sized particles were determined for temperatures <3500 K measured using infrared imaging. A coupled mass and energy conservation model is derived to predict single particle temperatures and sizes, which were compared with data from particles deposited on non-absorbing substrates to assess the relevant heat transfer processes. Analysis reveals substrate conduction dominates all other heat losses, while laser absorption determined from Mie theory is strongly modulated by particle evaporative shrinking. This study provides insights into the light coupling and heating of particle arrays where the material optical properties are temperature-dependent and particle size changes are significant.

Elhadj, S.; Qiu, S. R.; Stolz, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Monterrosa, A. M. [Department of Nuclear Engineering and Department of Materials Science and Engineering, University of California, Berkeley, California 94704 (United States)

2012-05-01T23:59:59.000Z

110

Feasibility evaluation for solar industrial process heat applications  

DOE Green Energy (OSTI)

An analytical method for assessing the feasibility of Solar Industrial Process Heat applications has been developed and implemented in a flexible, fast-calculating computer code - PROSYS/ECONMAT. The performance model PROSYS predicts long-term annual energy output for several collector types, including flat-plate, nontracking concentrator, one-axis tracking concentrator, and two-axis tracking concentrator. Solar equipment cost estimates, annual energy capacity cost, and optional net present worth analysis are provided by ECONMAT. User input consists of detailed industrial process information and optional economic parameters. Internal program data includes meteorological information for 248 US sites, characteristics of more than 20 commercially available collectors representing several generic collector types, and defaults for economic parameters. Because a fullscale conventional back-up fuel system is assumed, storage is not essential and is not included in the model.

Stadjuhar, S. A.

1980-01-01T23:59:59.000Z

111

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents (OSTI)

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

Jardine, D.M.

1983-03-22T23:59:59.000Z

112

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents (OSTI)

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

Jardine, Douglas M. (Colorado Springs, CO)

1983-01-01T23:59:59.000Z

113

Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock  

E-Print Network (OSTI)

1 Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock tanks and reducing thermal mass. A companion paper, Energy Efficiency Process Heating: Managing Air Flow of the oven/furnace. Reducing the quantity of energy lost to thermal mass in a process heating system saves

Kissock, Kelly

114

Separate effects identification via casting process modeling for experimental measurement of U–Pu–Zr alloys  

SciTech Connect

Computational simulations of gravity casting processes for metallic U–Pu–Zr nuclear fuel rods have been performed using a design-of-experiments technique to determine the fluid flow, liquid heat transfer, and solid heat transfer parameters which most strongly influence the process solidification speed and fuel rod porosity. The results are used to make recommendations for the best investment of experimental time and effort to measure process parameters.

J. Crapps; D. S. DeCroix; J. D. Galloway; D. A. Korzekwa; R. Aikin; R. Fielding; R. Kennedy; C. Unal

2013-11-01T23:59:59.000Z

115

Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)  

SciTech Connect

Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

Not Available

2011-10-01T23:59:59.000Z

116

Substrate heating measurements in pulsed ion beam film deposition  

Science Conference Proceedings (OSTI)

Diamond-like Carbon (DLC) films have been deposited at Los Alamos National Laboratory by pulsed ion beam ablation of graphite targets. The targets were illuminated by an intense beam of hydrogen, carbon, and oxygen ions at a fluence of 15-45 J/cm{sup 2}. Ion energies were on the order of 350 keV, with beam current rising to 35 kA over a 400 ns ion current pulse. Raman spectra of the deposited films indicate an increasing ratio of sp{sup 3} to sp{sup 2} bonding as the substrate is moved further away from the target and further off the target normal. Using a thin film platinum resistor at varying positions, we have measured the heating of the substrate surface due to the kinetic energy and heat of condensation of the ablated material. This information is used to determine if substrate heating is responsible for the lack of DLC in positions close to the target and near the target normal. Latest data and analysis will be presented.

Olson, J.C.; Davis, H.A.; Rej, D.J.; Waganaar, W.J. [Los Alamos National Lab., NM (United States); Tallant, D.R. [Cornell Univ., Ithaca, NY (United States). Materials Science and Engineering Dept.; Thompson, M.O. [Sandia National Labs., Albuquerque, NM (United States)

1995-05-01T23:59:59.000Z

117

Language Diversity of Measured Quantum Processes  

E-Print Network (OSTI)

The behavior of a quantum system depends on how it is measured. How much of what is observed comes from the structure of the quantum system itself and how much from the observer's choice of measurement? We explore these questions by analyzing the \\emph{language diversity} of quantum finite-state generators. One result is a new way to distinguish quantum devices from their classical (stochastic) counterparts. While the diversity of languages generated by these two computational classes is the same in the case of periodic processes, quantum systems generally generate a wider range of languages than classical systems.

Karoline Wiesner; James P. Crutchfield

2006-11-19T23:59:59.000Z

118

p process measurements with SuN  

Science Conference Proceedings (OSTI)

The astrophysical p process is considered the main nucleosynthesis mechanism for the creation of the p nuclei. The accurate description of this process still suffers from large uncertainties both in the astrophysical environment and the nuclear physics input. In the latter case, nuclear reaction sensitivity studies have identified a group of reactions that have a significant contribution to the final p-nuclei abundance distribution. The cross sections of such 'important' reactions need to be measured experimentally and for this reason there is a major experimental effort to provide experimental data for the relevant astrophysical energies. In the present work, we introduce a new experimental setup - the SuN detector - that was developed at the National Superconducting Cyclotron Laboratory for measurements of capture reactions of astrophysical interest.

Spyrou, A.; Quinn, S.J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States) and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Simon, A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); and others

2012-11-20T23:59:59.000Z

119

Problems with specifying Tmin in design of processes with heat exchangers  

E-Print Network (OSTI)

Problems with specifying Tmin in design of processes with heat exchangers Jørgen Bauck Jensen case studies. Keywords: Tmin, vapour compression cycle, heat exchanger, design. 1 Introduction simple and common approach for design of processes with heat exchangers, especially at an early design

Skogestad, Sigurd

120

Energy saving opportunities through heat recovery from cement processing kilns: a case study  

Science Conference Proceedings (OSTI)

This paper proposes a system for the utilization of dissipated heat from the surfaces of cement processing kilns at the Jordan Cement Factories in heating heavy fuel oil used in the burning process of these kilns. It is proposed that this can be achieved ... Keywords: Jordan, cement, energy efficiency, heat recovery, kilns

I. Al-Hinti; A. Al-Ghandoor; A. Al-Naji; M. Abu-Khashabeh; M. Joudeh; M. Al-Hattab

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Time-Energy Measure for Quantum Processes  

E-Print Network (OSTI)

Quantum mechanics sets limits on how fast quantum processes can run given some system energy through time-energy uncertainty relations, and they imply that time and energy are tradeoff against each other. Thus, we propose to measure the time-energy as a single unit for quantum channels. We consider a time-energy measure for quantum channels and compute lower and upper bounds of it using the channel Kraus operators. For a special class of channels (which includes the depolarizing channel), we can obtain the exact value of the time-energy measure. One consequence of our result is that erasing quantum information requires $\\sqrt{(n+1)/n}$ times more time-energy resource than erasing classical information, where $n$ is the system dimension.

Chi-Hang Fred Fung; H. F. Chau

2013-05-24T23:59:59.000Z

122

SOLTECH 92 proceedings: Solar Process Heat Program. Volume 1  

DOE Green Energy (OSTI)

This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy`s (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

Not Available

1992-03-01T23:59:59.000Z

123

Market development directory for solar industrial process heat systems  

DOE Green Energy (OSTI)

The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

None

1980-02-01T23:59:59.000Z

124

Two case studies of the application of solar energy for industrial process heat  

DOE Green Energy (OSTI)

Case studies of industrial process heat (IPH) have been performed by the Solar Energy Research Institute (SERI) on selected plants in metal processing, oil production, beverage container manufacturing, commercial laundering, paint (resin manufacturing), and food industries. For each plant, the application of solar energy to processes requiring hot water, hot air, or steam was examined, after energy conservation measures were included. A life-cycle economic analysis was performed for the solar system compared to the conventional energy system. The studies of the oil production facility (oil/water separation process) indicate that it could economically employ a solar hot water system immediately. The studies of solar energy applied to the beverage container process (solar air preheat system with partial recycle of oven exhaust gases) indicate a 7.5-yr payback period, based on a solar system installation in 1985.

Hooker, D. W.; West, R. E.

1979-10-01T23:59:59.000Z

125

CALMOS: Innovative device for the measurement of nuclear heating in material testing reactors  

Science Conference Proceedings (OSTI)

An R and D program has been carried out since 2002 in order to improve gamma heating measurements in the 70 MWth OSIRIS Material Testing Reactor operated by CEA's Nuclear Energy Div. at the Saclay research center. Throughout this program an innovative calorimetric probe associated to a specific handling system has been designed in order to make measurements both along the fissile height and on the upper part of the core, where nuclear heating rates still remain high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for the process validation, while a displacement system has been especially designed to move the probe axially. A final probe has been designed thanks to modeling results and to preliminary measurements obtained with mock-ups irradiated to a heating level of 2W/g, This paper gives an overview of the development, describes the calorimetric probe, and expected advantages such as the possibility to use complementary methods to get the nuclear heating measurement. Results obtained with mock-ups irradiated in ex-core area of the reactor are presented and discussed. (authors)

Carcreff, H. [Alternative Energies and Atomic Energy Commission CEA, Saclay Center, DEN/DANS/DRSN/SIREN, Gif Sur Yvette, 91191 (France)

2011-07-01T23:59:59.000Z

126

Heating hydrocarbon containing formations in a line drive staged process  

DOE Patents (OSTI)

Method for treating a hydrocarbon containing formation are described herein. Methods may include providing heat to a first section of the formation with one or more first heaters in the first section. First hydrocarbons may be heated in the first section such that at least some of the first hydrocarbons are mobilized. At least some of the mobilized first hydrocarbons may be produced through a production well located in a second section of the formation. The second section may be located substantially adjacent to the first section. A portion of the second section may be provided some heat from the mobilized first hydrocarbons, but is not conductively heated by heat from the first heaters. Heat may be provided to the second section with one or more second heaters in the second section to further heat the second section.

Miller, David Scott (Katy, TX)

2009-07-21T23:59:59.000Z

127

Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing  

E-Print Network (OSTI)

Modern food processing operations often require that the temperature of the processed foodstuff be raised or lowered. These operations result in energy consumption by refrigeration or heating systems, and a portion of this energy can be recovered from waste heat streams for reuse in the processing operations. This paper addresses the recovery of waste heat and the storage of thermal energy as a means of energy conservation in food processing. An energy conservation project in a poultry processing plant sponsored by the U.S. Department of Energy and conducted by Georgia Tech is used as an illustrative example of potential applications of heat recovery and thermal energy storage.

Combes, R. S.; Boykin, W. B.

1980-01-01T23:59:59.000Z

128

IntroductiontoProcessEngineering(PTG) 5. Heat transfer  

E-Print Network (OSTI)

/x, T/y, T/z), Fourier's Law gives (for constant ) for the heat flux Q" = - T · The temperature field (T)dT )/(x2-x1) · For example, with (T)=0·(1+T), the heat flux Q" for T=T0 @ x=0 and T=T1 @ x be interpreted as a general physical law of the type: flow , heat, current = driving force / resistance; current

Zevenhoven, Ron

129

Applications of COMSOL Multiphysics Software to Heat Transfer Processes.  

E-Print Network (OSTI)

??This thesis used the study of Heat Transfer and COMSOL Multiphysics software as a reference which was made for the purpose of future education in… (more)

Xiong, Wei

2010-01-01T23:59:59.000Z

130

Determination of a time-dependent heat transfer coefficient from non-standard boundary measurements  

Science Conference Proceedings (OSTI)

In this paper the determination of the time-dependent heat transfer coefficient in one-dimensional transient heat conduction from a non-standard boundary measurement is investigated. For this inverse nonlinear ill-posed problem the uniqueness of the ... Keywords: Boundary element method, Heat conduction, Heat transfer coefficient, Inverse problem

T. T. M. Onyango; D. B. Ingham; D. Lesnic; M. Slodi?ka

2009-01-01T23:59:59.000Z

131

Dynamic modeling and multivariable control of organic Rankine cycles in waste heat utilizing processes  

Science Conference Proceedings (OSTI)

In this paper, the dynamics of organic Rankine cycles (ORCs) in waste heat utilizing processes is investigated, and the physical model of a 100 kW waste heat utilizing process is established. In order to achieve both transient performance and steady-state ... Keywords: Linear quadratic regulator, Organic Rankine cycles, Process control

Jianhua Zhang; Wenfang Zhang; Guolian Hou; Fang Fang

2012-09-01T23:59:59.000Z

132

Boost Process Heating Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes how the Industrial Technologies Program Process Heating Assessment and Survey Tool (PHAST) can help industrial plants indentify opportunities to save energy.

Not Available

2008-12-01T23:59:59.000Z

133

Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition  

Science Conference Proceedings (OSTI)

This is one in a series of sourcebooks to help manufacturers optimize their industrial systems; this particular sourcebook addresses process heating systems.

Not Available

2008-02-01T23:59:59.000Z

134

Influence of Process and Thermo-physical Parameters on the Heat ...  

Science Conference Proceedings (OSTI)

Presentation Title, W-65: Influence of Process and Thermo-physical Parameters on the Heat Transfer at Electron Beam Melting of Cu and Ta. Author(s), Katia ...

135

electrochemical measurements and processing of materials  

Science Conference Proceedings (OSTI)

247-259] A.E. Ares, R. Caram and C.E. Schvezov. Microstructure Analysis of ZA Alloy Rod Directionally Solidified by HeatMold Continuous Casting [pp. 261-268

136

Performance analysis of heat transfer processes from wet and dry surfaces : cooling towers and heat exchangers.  

E-Print Network (OSTI)

??The objective of this work is to study the thermal and hydraulic performance of evaporatively cooled heat exchangers, including closed wet cooling towers, and dry… (more)

Hasan, Ala Ali

2005-01-01T23:59:59.000Z

137

Performance Analysis of Heat Transfer Processes from Wet and Dry Surfaces: Cooling Towers and Heat Exchangers.  

E-Print Network (OSTI)

??The objective of this work is to study the thermal and hydraulic performance of evaporatively cooled heat exchangers, including closed wet cooling towers, and dry… (more)

Hasan, Ala Ali

2005-01-01T23:59:59.000Z

138

Isothermal heat measurements of TBP-nitric acid solutions  

Science Conference Proceedings (OSTI)

Net heats of reaction were measured in an isothermal calorimeter for both single phase (organic) and two phase (organic and aqueous) TBP/HNO{sub 3} reacting solutions at temperatures above 100 C. The oxidation rate constant was determined to be 5.4E-4 min{sup {minus}1} at 110 C for an open ``vented`` system as compared to 1.33 E-3 min{sup {minus}1} in the closed system. The heat released per unit material oxidized was also reduced. The oxidation in both phases was found to be first order in nitric acid and pseudo-zero order in butylnitrate and water. The hydrolysis (esterification) rate constant determined by Nichols` (1.33E-3 min{sup {minus}1}) fit the experimental data from this work well. Forced evaporation of the volatile components by the product gases from oxidation resulted in a cooling mechanism which more than balanced the heat from the oxidation reaction in the two-phased systems. Rate expressions were derived and rate constants determined for both the single and two phase systems. An approximating mathematical model was developed to fit the experimental data and to extrapolate beyond the experimental conditions. This model shows that one foot of ``reacting`` 14.3M HNO{sub 3} aqueous phase solution at 121 C will transport sufficient water to the organic phase to replace evaporative losses, maintaining endothermicity, for organic layers up to 12.2 + 6.0 feet deep. If the pressure in a reacting system is allowed to increase due to insufficient venting the temperature of the organic phase would increase in temperature to reach a new equilibrium. The rate of oxidation would increase not only due to the increase in temperature but also from the increased concentration of dissolved HNO{sub 3} reduction products. Another important factor is that the cooling system described in this work becomes less effective as the total pressure increases. These factors probably contributed to the explosion at Tomsk.

Smith, J.R.; Cavin, W.S.

1994-12-16T23:59:59.000Z

139

In situ conversion process utilizing a closed loop heating system  

Science Conference Proceedings (OSTI)

An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

Sandberg, Chester Ledlie (Palo Alto, CA); Fowler, Thomas David (Houston, TX); Vinegar, Harold J. (Bellaire, TX); Schoeber, Willen Jan Antoon Henri (Houston, TX)

2009-08-18T23:59:59.000Z

140

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1984-01-01T23:59:59.000Z

142

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1985-05-01T23:59:59.000Z

143

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size and unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1986-06-01T23:59:59.000Z

144

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1983-01-01T23:59:59.000Z

145

Heat of Dissolution Measurements for CO2 in Mixed Alkanolamine Solvents  

SciTech Connect

The main objective of this research was to measure heat of dissolution of CO{sub 2} in carefully mixed alkanolamine solvent systems, and provide such directly measured data that might be used for efficient design of CO{sub 2} capture process, and for better understanding of the thermodynamics of CO{sub 2}-Alkanolamine systems. An experimental set-up has been designed using the Isothermal Micro Calorimeter for measuring the solubilities and enthalpies of CO{sub 2} in mixed solvents made of MEA, MDEA, PZ, KF and water. All the measurements were done at temperatures 15, 40, and 75 C by maintaining a constant pressure of 100 psig. A detailed study has been done on the variation of solubilities and enthalpies over a wide range of temperatures, pressures and concentrations, by extracting the information from the literature.

Vinayak Kabadi

2007-03-17T23:59:59.000Z

146

Gas injection to inhibit migration during an in situ heat treatment process  

DOE Patents (OSTI)

Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

Kuhlman, Myron Ira (Houston, TX); Vinegar; Harold J. (Bellaire, TX); Baker, Ralph Sterman (Fitchburg, MA); Heron, Goren (Keene, CA)

2010-11-30T23:59:59.000Z

147

Summary of some feasibility studies for site-specific solar industrial process heat  

DOE Green Energy (OSTI)

Some feasibility studies for several different site specific solar industrial process heat applications are summarized. The followng applications are examined. Leather Tanning; Concrete Production: Lumber and Paper Processing; Milk Processing; Molding, Curing or Drying; Automobile Manufacture; and Food Processing and Preparation. For each application, site and process data, system design, and performance and cost estimates are summarized.

Not Available

148

Large Eddy Simulations and stereoscopic particle image velocimetry measurements in a scraped heat exchanger crystallizer  

E-Print Network (OSTI)

*Corresponding author: M.Rodriguez@tudelft.nl Abstract The transport phenomena in scraped heat exchanger crystallizers are critical for the process performance. Fluid flow and turbulence close to the heat exchanger with a focus on the bottom region where the heat exchanging surface was located. The simulations were validated

Paris-Sud XI, Université de

149

Theoretical Design of Thermosyphon for Process Heat Transfer from NGNP to Hydrogen Plant  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ~ 1300K) and industrial scale power transport (=50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization / condensing process. The condensate is further returned to the hot source by gravity, i.e. without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) or vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

Piyush Sabharwall; Mike Patterson; Fred Gunnerson

2008-09-01T23:59:59.000Z

150

Standards applicable to performance measurement of solar heating and cooling systems  

DOE Green Energy (OSTI)

The advantage of the utilization of existing standards in the performance monitoring of solar heating and cooling systems is discussed. Existing applicable measurement standards and practices are listed.

Lior, N.

1978-01-01T23:59:59.000Z

151

Remote Measurement of Heat Flux from Power Plant Cooling Lakes  

Science Conference Proceedings (OSTI)

Laboratory experiments have demonstrated a correlation between the rate of heat loss q? from an experimental fluid to the air above and the standard deviation ? of the thermal variability in images of the fluid surface. These experimental results ...

Alfred J. Garrett; Robert J. Kurzeja; Eliel Villa-Aleman; James S. Bollinger; Malcolm M. Pendergast

2013-06-01T23:59:59.000Z

152

Measurement and modeling of advanced coal conversion processes  

Science Conference Proceedings (OSTI)

The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

1991-01-01T23:59:59.000Z

153

Measurement Science for Optimized Machining Processes  

Science Conference Proceedings (OSTI)

... Due to the lack of better options, mostly used process data is as simple as cutting time and horsepower consumption to monitor cutting tool life. ...

2012-12-21T23:59:59.000Z

154

HEAT OF DISSOLUTION MEASUREMENTS FOR CO2 IN MIXED ALKANOLAMINE SOLVENTS  

SciTech Connect

The main objective of this project is to measure heat of dissolution of CO{sub 2} in carefully selected mixed alkanolamine solvent systems, and provide such directly measured data that might be used for efficient design of CO{sub 2} capture processes, or for better understanding of thermodynamics of CO{sub 2}-alkanolamine systems. Carbon dioxide is one of the major greenhouse gases, and the need for stabilization of its composition in earth's atmosphere is vital for the future of mankind. Although technologies are available for capture and storage of CO{sub 2}, these technologies are far too expensive for economical commercialization. Reduction of cost would require research for refinement of the technology. For more economical CO{sub 2} capture and regeneration, there is a need for development of more efficient solvent systems. In this project we will extend the thermodynamic database by measuring heat of solution data of CO{sub 2} in mixed solvents made of MEA (monoethanolamine), MDEA (methyldiethanolamine), piperazine, and water. Mixed solvents of different compositions will be selected and in each case data will be measured at temperatures 40 and 80C and various partial pressures of CO{sub 2}. At the end of the project, observations, conclusions, and recommendations will be derived for the choice of mixed solvents for efficient CO{sub 2} capture with potential for commercialization.

Vinayak N. Kabadi

2005-05-23T23:59:59.000Z

155

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network (OSTI)

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

Demirel, Melik C.

156

Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers  

DOE Green Energy (OSTI)

The U.S. Department of Energy selected the high temperature gas-cooled reactor as the basis for the Next Generation Nuclear Plant (NGNP). The NGNP will demonstrate the use of nuclear power for electricity, hydrogen production, and process heat applications. The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. An intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding. This report describes the preliminary results of a scoping study that evaluated the diffusion welding process parameters and the resultant mechanical properties of diffusion welded joints using Alloy 800H. The long-term goal of the program is to progress towards demonstration of small heat exchanger unit cells fabricated with diffusion welds. Demonstration through mechanical testing of the unit cells will support American Society of Mechanical Engineers rules and standards development, reduce technical risk, and provide proof of concept for heat exchanger fabrication methods needed to deploy heat exchangers in several potential NGNP configurations.1 Researchers also evaluated the usefulness of modern thermodynamic and diffusion computational tools (Thermo-Calc and Dictra) in optimizing the parameters for diffusion welding of Alloy 800H. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using 15 {micro}m nickel foil as joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved

R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

2011-12-01T23:59:59.000Z

157

Combination of DRECE Process and Heat Treatment to Achieve ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Contribution concerned the whole production of UFG materials, using forming process DRECE (Dual Roll Equal Channel Extrusion) in brass.

158

EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMARY This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of...

159

Process Window Study for Heat Resistant Nanocoated Steel  

Science Conference Proceedings (OSTI)

Recently developed weldable nanocoated HPF steel has been tested for process window in this study. Performances of hot press formed steel are tested ...

160

West Village Community: Quality Management Processes and Preliminary Heat Pump Water Heater Performance  

Science Conference Proceedings (OSTI)

West Village, a multi-use project underway at the University of California Davis, represents a ground-breaking sustainable community incorporating energy efficiency measures and on-site renewable generation to achieve community-level Zero Net Energy (ZNE) goals. The project when complete will provide housing for students, faculty, and staff with a vision to minimize the community's impact on energy use by reducing building energy use, providing on-site generation, and encouraging alternative forms of transportation. This focus of this research is on the 192 student apartments that were completed in 2011 under Phase I of the West Village multi-year project. The numerous aggressive energy efficiency measures implemented result in estimated source energy savings of 37% over the B10 Benchmark. There are two primary objectives of this research. The first is to evaluate performance and efficiency of the central heat pump water heaters as a strategy to provide efficient electric water heating for net-zero all-electric buildings and where natural gas is not available on site. In addition, effectiveness of the quality assurance and quality control processes implemented to ensure proper system commissioning and to meet program participation requirements is evaluated. Recommendations for improvements that could improve successful implementation for large-scale, high performance communities are identified.

Dakin, B.; Backman, C.; Hoeschele, M.; German, A.

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Measurements of Turbulent Heat and Momentum Fluxes In a Mountain Valley  

Science Conference Proceedings (OSTI)

Measurements of heat and momentum fluxes along the valley floor of Brush Creek in Colorado are described. The measurements were taken in the fall of 1984 as part of the Department of Energy's Atmospheric Studies in Complex Terrain field program. ...

J. C. Doran; M. L. Wesely; R. T. McMillen; W. D. Neff

1989-06-01T23:59:59.000Z

162

Modelling of heat transfer at glass/mould interface in press and blow forming processes  

Science Conference Proceedings (OSTI)

Numerical models may play an important role in the optimization of the quality of hollow-ware glass articles in glass industry. Due to the complexity of the phenomena involved a coupling between thermal and mechanical aspects is crucial. One of the key ... Keywords: Finite elements, Glass forming, Heat conduction, Heat transfer coefficient, Interface element, Press/blow process

Sébastien Grégoire; José M. A. César de Sá; Philippe Moreau; Dominique Lochegnies

2007-08-01T23:59:59.000Z

163

Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.  

DOE Green Energy (OSTI)

The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

Nakos, James Thomas

2010-12-01T23:59:59.000Z

164

Procedures for measuring the properties of heat-pipe wick materials  

DOE Green Energy (OSTI)

Accurate measurements of wick properties must be available to design high-performance beat pipes and to properly interpret results from heat pipe tests. In a program that is aimed at developing heat-pipe receivers for solar-Stirling electric systems, we have recently explored procedures to measure the effective pore radius and permeability of wick materials in their final ``as fabricated`` condition. Measurement techniques are compared in this paper and problems that are frequently encountered in measuring wick properties are discussed.

Adkins, D.R.; Dykhuizen, R.C.

1993-07-01T23:59:59.000Z

165

Distributed Generation Case Study: Industrial Process Heating (Cogeneration)  

Science Conference Proceedings (OSTI)

This report details candidate distributed generation (DIS-GEN) options and the process used to select a cogeneration system for potential development at an industrial site. The local utility commissioned this evaluation to explore energy partnership opportunities with its customer.

1997-12-31T23:59:59.000Z

166

Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)  

Science Conference Proceedings (OSTI)

This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

Tabares Velasco, P. C.

2011-04-01T23:59:59.000Z

167

Some aspects of the computer simulation of conduction heat transfer and phase change processes  

DOE Green Energy (OSTI)

Various aspects of phase change processes in materials are discussd including computer modeling, validation of results and sensitivity. In addition, the possible incorporation of cognitive activities in computational heat transfer is examined.

Solomon, A. D.

1982-04-01T23:59:59.000Z

168

Emerging Industrial Process Heating Technologies:An Update on Electrotechnologies, Applications, and Case Studies  

Science Conference Proceedings (OSTI)

In this technical update, emerging technologies as well as applications of electrotechnologies in industrial process heating are discussed. This technical update is a continuation of the Electric Power Research Institute’s (EPRI’s) research from the previous years and adds new state-of-the-art process heating technologies to the list. The main focus of the research is given to energy-intensive industrial sectors such as primary metals and metal treatment. Successful implementation of the ...

2013-12-07T23:59:59.000Z

169

Solar process heat technology in action: The process hot water system at the California Correctional Institution at Tehachapi  

DOE Green Energy (OSTI)

Solar process heat technology relates to solar thermal energy systems for industry, commerce, and government. Applications include water preheating and heating, steam generation, process hot air, ventilation air heating, and refrigeration. Solar process heat systems are available for commercial use. At the present time, however, they are economically viable only in niche markets. This paper describes a functioning system in one such market. The California Department of Corrections (CDOC), which operates correctional facilities for the state of California, uses a solar system for providing hot water and space heating at the California Correctional Institute at Tehachapi (CCI/Tehachapi). CCI/Tehachapi is a 5100-inmate facility. The CDOC does not own the solar system. Rather, it buys energy from private investors who own the solar system located on CCI/Tehachapi property; this arrangement is part of a long-term energy purchase agreement. United Solar Technologies (UST) of Olympia Washington is the system operator. The solar system, which began operating in the fall of 1990, utilizes 2677 m{sup 2} (28,800 ft{sup 2}) of parabolic through solar concentrators. Thermal energy collected by the system is used to generate hot water for showers, kitchen operations, and laundry functions. Thermal energy collected by the system is also used for space heating. At peak operating conditions, the system is designed to meet approximately 80 percent of the summer thermal load. 4 figs., 4 tabs.

Hewett, R. [National Renewable Energy Lab., Golden, CO (United States); Gee, R.; May, K. [Industrial Solar Technology, Arvada, CO (United States)

1991-12-01T23:59:59.000Z

170

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries  

DOE Green Energy (OSTI)

The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

Adam Polcyn; Moe Khaleel

2009-01-06T23:59:59.000Z

171

Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.  

Science Conference Proceedings (OSTI)

This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

1994-07-26T23:59:59.000Z

172

Heating of solid earthen material, measuring moisture and resistivity  

DOE Patents (OSTI)

The present invention includes a method of treating solid earthen material having volatile, semi-volatile, and non-volatile contaminants. Six electrodes are inserted into a region of earthen material to be treated in a substantially equilateral hexagonal arrangement. Six phases of voltages are applied to corresponding electrodes. The voltages are adjusted within a first range of voltages to create multiple current paths between pairs of the electrodes. The current paths are evenly distributed throughout the region defined by the electrodes and therefore uniformly heat the region. The region of earthen material is heated to a temperature sufficient to substantially remove volatile and semi-volatile contaminants by promoting microbial action. This temperature is less than a melting temperature of the earthen material. 13 figs.

Heath, W.O.; Richardson, R.L.; Goheen, S.C.

1994-07-19T23:59:59.000Z

173

Measuring solar heat reduction for draperies and fabric shades  

SciTech Connect

We are all familiar with the utility of draperies, curtains and shades to exclude unwanted solar gain, control glare, insulate windows and provide privacy. The manageability of these devices gives us a degree of control over our indoor environment. While fabric window coverings are widely used as interior shading devices, the analytical methods used to determine their effectiveness in reducing solar gains are relatively unsophisticated. Furthermore, with the recent emphasis on daylighting and visual and thermal comfort, the response to these shading devices to the varying direction of incident solar radiation has taken on a new importance. In this article, the authors review the historical development of analytical and experimental methods used to determine solar heat gain for draperies. The current state of these methods will be evaluated and issues related to their applicability to draperies and fabric shades are identified. Finally, recommendations to improve the accuracy and applicability of current solar heat gain methods are presented.

Grasso, M.M.; Hunn, B.D. (Univ. of Texas, Austin, TX (US))

1991-08-01T23:59:59.000Z

174

THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS  

SciTech Connect

A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

Michael G. McKellar

2011-11-01T23:59:59.000Z

175

AERIAL MEASUREMENTS OF CONVECTION CELL ELEMENTS IN HEATED LAKES  

SciTech Connect

Power plant-heated lakes are characterized by a temperature gradient in the thermal plume originating at the discharge of the power plant and terminating at the water intake. The maximum water temperature discharged by the power plant into the lake depends on the power generated at the facility and environmental regulations on the temperature of the lake. Besides the observed thermal plume, cloud-like thermal cells (convection cell elements) are also observed on the water surface. The size, shape and temperature of the convection cell elements depends on several parameters such as the lake water temperature, wind speed, surfactants and the depth of the thermocline. The Savannah River National Laboratory (SRNL) and Clemson University are collaborating to determine the applicability of laboratory empirical correlations between surface heat flux and thermal convection intensity. Laboratory experiments at Clemson University have demonstrated a simple relationship between the surface heat flux and the standard deviation of temperature fluctuations. Similar results were observed in the aerial thermal imagery SRNL collected at different locations along the thermal plume and at different elevations. SRNL will present evidence that the results at Clemson University are applicable to cooling lakes.

Villa-Aleman, E; Saleem Salaymeh, S; Timothy Brown, T; Alfred Garrett, A; Malcolm Pendergast, M; Linda Nichols, L

2007-12-19T23:59:59.000Z

176

Quantitative method for measuring heat flux emitted from a cryogenic object  

DOE Patents (OSTI)

The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.

Duncan, R.V.

1993-03-16T23:59:59.000Z

177

Quantitative method for measuring heat flux emitted from a cryogenic object  

DOE Patents (OSTI)

The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infra-red sensing devices.

Duncan, Robert V. (Tijeras, NM)

1993-01-01T23:59:59.000Z

178

Evaluation Methodology for Advance Heat Exchanger Concepts Using Analytical Hierarchy Process  

Science Conference Proceedings (OSTI)

The primary purpose of this study is to aid in the development and selection of the secondary/process heat exchanger (SHX) for power production and process heat application for a Next Generation Nuclear Reactors (NGNR). The potential options for use as an SHX are explored such as shell and tube, printed circuit heat exchanger. A shell and tube (helical coiled) heat exchanger is a recommended for a demonstration reactor because of its reliability while the reactor design is being further developed. The basic setup for the selection of the SHX has been established with evaluation goals, alternatives, and criteria. This study describes how these criteria and the alternatives are evaluated using the analytical hierarchy process (AHP).

Piyush Sabharwall; Eung Soo Kim

2012-07-01T23:59:59.000Z

179

Simplified modeling of solar process heating systems using stochastic weather input  

SciTech Connect

A model has been developed which accurately predicts solar district heating and industrial process heating collection performance on a daily basis. The model is system specific with no storage and constant load return temperature. This model was tested for its statistical significance and found to be highly significant. Performance data to construct the model were generated through numerous TRNSYS runs. Physically important variables were then chosen for inclusion in a statistical regression analysis. The variables, which are readily available on a daily basis, were daily radiation, mean twenty-four hour temperature, and collector and system characteristics. The weather input to the model may be real measured radiation values or artificially generated radiation values. The temperature may be daily averages when real radiation values are used or monthly averages when artificial radiation is used. It is shown that there is little difference in prediction when monthly temperature is used rather than the daily values. The performance model was developed from six months of Toronto, Canada, hourly data. The validation was performed with meteorological year locations, Albuquerque, Seattle, and Miami, chosen for climate diversity. The accuracy was excellent, even on a daily basis. A model was then developed from data of all four locations. The artificial data was tested for prediction accuracy for Toronto. Where the beta distribution fit well, the accuracy was good. Where the beta distribution did not fit as well, the accuracy was acceptable.

Boardman, E.C.

1986-01-01T23:59:59.000Z

180

Potential applications of helium-cooled high-temperature reactors to process heat use  

DOE Green Energy (OSTI)

High-Temperature Gas-Cooled Reactors (HTRs) permit nuclear energy to be applied to a number of processes presently utilizing fossil fuels. Promising applications of HTRs involve cogeneration, thermal energy transport using molten salt systems, steam reforming of methane for production of chemicals, coal and oil shale liquefaction or gasification, and - in the longer term - energy transport using a chemical heat pipe. Further, HTRs might be used in the more distant future as the energy source for thermochemical hydrogen production from water. Preliminary results of ongoing studies indicate that the potential market for Process Heat HTRs by the year 2020 is about 150 to 250 GW(t) for process heat/cogeneration application, plus approximately 150 to 300 GW(t) for application to fossil conversion processes. HTR cogeneration plants appear attractive in the near term for new industrial plants using large amounts of process heat, possibly for present industrial plants in conjunction with molten-salt energy distribution systems, and also for some fossil conversion processes. HTR reformer systems will take longer to develop, but are applicable to chemicals production, a larger number of fossil conversion processes, and to chemical heat pipes.

Gambill, W.R.; Kasten, P.R.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films  

Science Conference Proceedings (OSTI)

Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of /sup 4/He adsorbed on metallic films. In contrast to measurements of /sup 4/He adsorbed on all other insulating substrates, we have shown that /sup 4/He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, /sup 4/He adsorbed on sapphire and on Ag films and H/sub 2/ adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs.

Kenny, T.W.

1989-05-01T23:59:59.000Z

182

A method to determine stratification efficiency of thermal energy storage processes independently from storage heat losses  

Science Conference Proceedings (OSTI)

A new method for the calculation of a stratification efficiency of thermal energy storages based on the second law of thermodynamics is presented. The biasing influence of heat losses is studied theoretically and experimentally. Theoretically, it does not make a difference if the stratification efficiency is calculated based on entropy balances or based on exergy balances. In practice, however, exergy balances are less affected by measurement uncertainties, whereas entropy balances can not be recommended if measurement uncertainties are not corrected in a way that the energy balance of the storage process is in agreement with the first law of thermodynamics. A comparison of the stratification efficiencies obtained from experimental results of charging, standby, and discharging processes gives meaningful insights into the different mixing behaviors of a storage tank that is charged and discharged directly, and a tank-in-tank system whose outer tank is charged and the inner tank is discharged thereafter. The new method has a great potential for the comparison of the stratification efficiencies of thermal energy storages and storage components such as stratifying devices. (author)

Haller, Michel Y.; Streicher, Wolfgang [Institute of Thermal Engineering, Graz University of Technology, Inffeldgasse 25/B, 8010 Graz (Austria); Yazdanshenas, Eshagh; Andersen, Elsa; Furbo, Simon [Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-2800, Kgs. Lyngby (Denmark); Bales, Chris [Solar Energy Research Center SERC, Hoegskolan Dalarna, 781 88 Borlaenge (Sweden)

2010-06-15T23:59:59.000Z

183

Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes  

Science Conference Proceedings (OSTI)

Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2(53:35:12). And for an H2O2 distillation process, the two promising fluids are Trifluoroethanol (TFE) + Triethylene Glycol Dimethyl ether (DMETEG) and Ammonia+ Water. Thermo-physical properties calculated by Aspen+ are reasonably accurate. Documentation of the installation of pilot-plants or full commercial units were not found in the literature for validating thermo-physical properties in an operating unit. Therefore, it is essential to install a pilot-scale unit to verify thermo-physical properties of working fluid pairs and validate the overall efficiency of the thermal heat pump at temperatures typical of distillation processes. For an HO2 process, the ammonia-water heat pump system is more compact and preferable than the TFE-DMETEG heat pump. The ammonia-water heat pump is therefore recommended for the H2O2 process. Based on the complex nature of the heat recovery system, we anticipated that capital costs could make investments financially unattractive where steam costs are low, especially where co-generation is involved. We believe that the enhanced heat transfer equipment has the potential to significantly improve the performance of TEE crystallizers, independent of the absorption heat-pump recovery system. Where steam costs are high, more detailed design/cost engineering will be required to verify the economic viability of the technology. Due to the long payback period estimated for the TEE open system, further studies on the TEE system are not warranted unless there are significant future improvements to heat pump technology. For the H2O2 distillation cycle heat pump waste heat recovery system, there were no significant process constraints and the estimated 5 years payback period is encouraging. We therefore recommend further developments of application of the thermal heat pump in the H2O2 distillation process with the focus on the technical and economic viability of heat exchangers equipped with the state-of-the-art enhancements. This will require additional funding for a prototype unit to validate enhanced thermal performances of heat transfer equipment, evaluat

Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

2012-12-03T23:59:59.000Z

184

Applications and systems studies for solar industrial process heat  

SciTech Connect

The program has been highlighted by the development of analytical computer programs, engineering case studies in specific industries, applications and market studies and the assessment of operating experience in actual solar installations. For example, two analytical computer codes (known as PROSYS and ECONMAT) have been assembled and used for the large-scale matching of industrial processes with different types of solar equipment. Verification of the results of this large-scale matching have resulted in a program of detailed case studies of solar and conservation options in local dairies, metal can manufacturing plants, meatpacking plants, and other factories.

Brown, K.C.

1980-01-01T23:59:59.000Z

185

Heating of solid earthen material, measuring moisture and resistivity  

DOE Patents (OSTI)

The present invention includes a method of treating solid earthen material having volatile, semi-volatile, and non-volatile contaminants that utilizes electrical energy. A plurality of electrodes are inserted into a region of earthen material to be treated in a selected geometric pattern. Varying phase and voltages configurations are applied to corresponding electrodes to achieve heating, physical phase changes, and the placement of substances within the treatment region. Additionally, treatment mediums can be added to either treat the contamination within the soil or to restrict their mobility.

Heath, William O. (Richland, WA); Gauglitz, Phillip A. (Richland, WA); Pillay, Gautam (Richland, WA); Bergsman, Theresa M. (Richland, WA); Eschbach, Eugene A. (Richland, WA); Goheen, Steven C. (Richland, WA); Richardson, Richard L. (West Richland, WA); Roberts, Janet S. (Pasco, WA); Schalla, Ronald (Kennewick, WA)

1996-01-01T23:59:59.000Z

186

Heating of solid earthen material, measuring moisture and resistivity  

DOE Patents (OSTI)

The present invention includes a method of treating solid earthen material having volatile, semi-volatile, and non-volatile contaminants that utilizes electrical energy. A plurality of electrodes are inserted into a region of earthen material to be treated in a selected geometric pattern. Varying phase and voltages configurations are applied to corresponding electrodes to achieve heating, physical phase changes, and the placement of substances within the treatment region. Additionally, treatment mediums can be added to either treat the contamination within the soil or to restrict their mobility. 29 figs.

Heath, W.O.; Gauglitz, P.A.; Pillay, G.; Bergsman, T.M.; Eschbach, E.A.; Goheen, S.C.; Richardson, R.L.; Roberts, J.S.; Schalla, R.

1996-08-13T23:59:59.000Z

187

Process of preparing metal parts to be heated by means of infrared radiance  

DOE Patents (OSTI)

A method for preparing metal for heating by infrared radiance to enable uniform and consistent heating. The surface of one or more metal parts, such as aluminum or aluminum alloy parts, is treated to alter the surface finish to affect the reflectivity of the surface. The surface reflectivity is evaluated, such as by taking measurements at one or more points on the surface, to determine if a desired reflectivity has been achieved. The treating and measuring are performed until the measuring indicates that the desired reflectivity has been achieved. Once the treating has altered the surface finish to achieve the desired reflectivity, the metal part may then be exposed to infrared radiance to heat the metal part to a desired temperature, and that heating will be substantially consistent throughout by virtue of the desired reflectivity.

Mayer, Howard Robinson (Cincinnati, OH); Blue, Craig A. (Knoxville, TN)

2009-06-09T23:59:59.000Z

188

Analysis of heat transfer processes and geothermal pattern in the Alberta Basin, Canada  

SciTech Connect

The transfer of heat from the crystalline basement of sedimentary basins to the atmosphere can be influenced to different degrees by the movement of formation waters within the complex structure of aquifers and aquitards in the basin. Past studies of the geothermal regime in the Western Canada Sedimentary Basin have shown the existence of a low geothermal gradient (low heat flux area) in the foothills region of southwestern Alberta, and of a high geothermal gradient (high heat flux area) in the lowlands in northeastern Alberta, close to the Precambrian Shield. These distributions of geothermal gradients and heat fluxes were attributed to the effects of basin wide groundwater flow. Hydrogeological studies in selected parts of the basin, and dimensional analysis applied to heat transfer processes show that the permeability of the sediments, and indeed the fluid velocities, are too low to play a significant role in the transport of terrestrial heat in the Alberta part of the Western Canada Sedimentary Basin. On a regional scale, the actual distributions of the heat flux and geothermal gradients are probably due to crustal thickening and/or increased radiogenic heat generation in the basement. Thermal anomalies, which may be due to granitic intrusions, are superimposed over this trend. At an intermediate scale, the geothermal field is controlled by topography, stratigraphy, and lithology of the sediments. Only on a local scale is the convection of heat important. copyright American Geophysical Union 1988

Bachu, S.

1988-07-10T23:59:59.000Z

189

Reversible computation as a model for the quantum measurement process  

E-Print Network (OSTI)

One-to-one reversible automata are introduced. Their applicability to a modelling of the quantum mechanical measurement process is discussed.

Karl Svozil

2009-04-15T23:59:59.000Z

190

A17: Heat Capacity and Thermal Expansion Measurements of Solar ...  

Science Conference Proceedings (OSTI)

One of the main tasks for getting reliable cp and enthalpy data of solar salts is therefore to find the right measurement parameters and crucible material/salt ...

191

Measurement of localized heating in the focus of an optical trap  

Science Conference Proceedings (OSTI)

Localized heating in the focus of an optical trap operating in water can result in a temperature rise of several kelvins. We present spatially resolved measurements of the refractive-index distribution induced by the localized heating produced in an optical trap and infer the temperature distribution. We have determined a peak temperature rise in water of 4 K in the focus of a 985-nm-wavelength 55-mW laser beam. The localized heating is directly proportional to power and the absorption coefficient. The temperature distribution is in excellent agreement with a model based on the heat equation. (c) 2000 Optical Society of America.

Celliers, Peter M. [Lawerence Livermore National Laboratory, P. O. Box 808, Livermore, California 94550 (United States); Conia, Jerome [Cell Robotics, Inc., 2715 Broadbent Parkway NE, Albuquerque, New Mexico 87107 (United States)

2000-07-01T23:59:59.000Z

192

Estimates of Surface Heat Flux from Sodar and Laser Scintillation Measurements in the Unstable Boundary Layer  

Science Conference Proceedings (OSTI)

Measurements of acoustic backscatter in the lower planetary boundary layer and optical line-of-sight scintillation in the surface layer are each used to compute sensible heat fluxes in the unstable surface layer. Comparisons with simultaneous low-...

R. L. Coulter; M. L. Wesely

1980-10-01T23:59:59.000Z

193

Four-Dimensional Structure of Monthly Latent Heating Derived from SSM/ISatellite Measurements  

Science Conference Proceedings (OSTI)

Time–space distributions of mean monthly latent heating estimated from Special Sensor Microwave/Imager (SSM/I) passive microwave satellite measurements using the Florida State University precipitation profile retrieval algorithm over ocean ...

Song Yang; Eric A. Smith

1999-04-01T23:59:59.000Z

194

Measurements of Turbulent Fluxes of Momentum and Sensible Heat over the Labrador Sea  

Science Conference Proceedings (OSTI)

Turbulent fluxes of momentum and sensible heat were estimated from sonic anemometer measurements gathered over the Labrador Sea during a winter cruise of the R/V Knorr. The inertial dissipation method was used to calculate turbulent fluxes of ...

Karl Bumke; U. Karger; K. Uhlig

2002-02-01T23:59:59.000Z

195

A technique to measure turbulent free convective heat transfer in a vertical tall cavity.  

E-Print Network (OSTI)

??A time-average technique was developed to measure the unsteady and turbulent free convection heat transfer in tall vertical enclosure using a Mach-Zehnder interferometer. The method… (more)

Poulad, Mohammad Ebrahim

2009-01-01T23:59:59.000Z

196

High-temperature industrial process heat: technology assessment and introduction rationale  

SciTech Connect

Three specific topics of interest to DOE are addressed: to establish the significance and identify the role of high-temperature process heat in the nation's energy economy; to identify the role of solar thermal power in these high-temperature industrial applications in terms of possible markets and economic potential; and to recommend programmatic approaches for these solar thermal high-temperature process heat activities, including proposed content for initial Request for Proposals (RFPs) to accomplish such activities. The scope of the work required to accomplish these three purposes included the following: review of US industrial energy requirements, survey of current DOE low-temperature Agricultural and Industrial Process Heat Program, examination of high-temperature solar thermal electric systems already developed or under development by DOE and industry, and coordination with the high-energy user segments of industry (i.e., cement, chemical and petroleum) to find additional markets for some or all of the systems or components being developed in the DOE solar thermal electric program. Statistical data are presented identifying energy allocations to process heat and defining DOE's involvement. Three current fossil fuel process heat system examples are provided and the corresponding solar potential is identified.

1978-03-03T23:59:59.000Z

197

High-temperature industrial process heat: technology assessment and introduction rationale  

DOE Green Energy (OSTI)

Three specific topics of interest to DOE are addressed: to establish the significance and identify the role of high-temperature process heat in the nation's energy economy; to identify the role of solar thermal power in these high-temperature industrial applications in terms of possible markets and economic potential; and to recommend programmatic approaches for these solar thermal high-temperature process heat activities, including proposed content for initial Request for Proposals (RFPs) to accomplish such activities. The scope of the work required to accomplish these three purposes included the following: review of US industrial energy requirements, survey of current DOE low-temperature Agricultural and Industrial Process Heat Program, examination of high-temperature solar thermal electric systems already developed or under development by DOE and industry, and coordination with the high-energy user segments of industry (i.e., cement, chemical and petroleum) to find additional markets for some or all of the systems or components being developed in the DOE solar thermal electric program. Statistical data are presented identifying energy allocations to process heat and defining DOE's involvement. Three current fossil fuel process heat system examples are provided and the corresponding solar potential is identified.

Not Available

1978-03-03T23:59:59.000Z

198

Spatially averaged heat flux and convergence measurements at the ARM regional flux experiment  

SciTech Connect

Cloud formation and its relation to climate change is the greatest weakness in current numerical climate models. Surface heat flux in some cases causes clouds to form and in other to dissipate and the differences between these cases are subtle enough to make parameterization difficult in a numerical model. One of the goals of the DOE Atmospheric Radiation Measurement program is to make long term measurements at representative sites to improve radiation and cloud formation parameterization. This paper compares spatially averaged optical measurements of heat flux and convergence with a goal of determining how point measurements of heat fluxes scale up to the larger scale used for climate modeling. It was found that the various optical techniques used in this paper compared well with each other and with independent measurements. These results add confidence that spatially averaging optical techniques can be applied to transform point measurements to the larger scales needed for mesoscale and climate modeling. 10 refs., 6 figs. (MHB)

Porch, W.; Barnes, F.; Buchwald, M.; Clements, W.; Cooper, D.; Hoard, D. (Los Alamos National Lab., NM (United States)); Doran, C.; Hubbe, J.; Shaw, W. (Pacific Northwest Lab., Richland, WA (United States)); Coulter, R.; Martin, T. (Argonne National Lab., IL (United States)); Kunkel, K. (Illinois State Water Survey, Champaign, IL (United States))

1991-01-01T23:59:59.000Z

199

Predicted nuclear heating and temperatures in gas-cooled nuclear reactors for process heat applications  

SciTech Connect

The high-temperature gas-cooled nuclear reactor (HTGR) is an attractive potential source of primary energy for many industrial and chemical process applications. Significant modification of current HTGR core design will be required to achieve the required elevations in exit gas temperatures without exceeding the maximum allowable temperature limits for the fuel material. A preliminary evaluation of the effects of various proposed design modifications by predicting the resulting fuel and gas temperatures with computer calculational modeling techniques is reported. The design modifications evaluated are generally those proposed by the General Atomic Company (GAC), a manufacturer of HTGRs, and some developed at the LASL. The GAC modifications do result in predicted fuel and exit gas temperatures which meet the proposed design objectives. (auth)

Cort, G.E.; Vigil, J.C.; Jiacoletti, R.J.

1975-09-01T23:59:59.000Z

200

Method of measuring heat influx of a cryogenic transfer system. [Patent application  

DOE Patents (OSTI)

A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.

Niemann, R.C.; Zelipsky, S.A.; Rezmer, R.R.; Smelser, P.

1980-10-29T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration  

SciTech Connect

Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated system and the economic allocation of electricity and heat resources. Safety issues include changes in regulatory constraints imposed on the facilities. Modeling and analysis tools, such as System Dynamics for time dependent operational and economic issues and RELAP5 3D for chemical transient affects, are evaluated. The results of this study advance the body of knowledge toward integration of nuclear reactors and process heat applications.

J'Tia Patrice Taylor; David E. Shropshire

2009-09-01T23:59:59.000Z

202

Vertical Heat-Flux Measurements from a Neutrally Buoyant Float  

Science Conference Proceedings (OSTI)

A neutrally buoyant float instrumented to measure 1–5 m shear and stratification was deployed for ten days in a near-inertial critical layer at the base of a warm-core ring. Vertical velocity and temperature data, from which large-scale (>5 m) ...

Haili Sun; Eric Kunze; A. J. Williams III

1996-06-01T23:59:59.000Z

203

Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger  

SciTech Connect

This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610-mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440{degree}C and air inlet temperatures of approximately 230{degree}C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/m{sup 2} s air flow and 6 to 18 kg/m{sup 2} s salt flow, the data agree with the model within 22% standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18% standard deviation over the range of column pressure drop from 40 to 1250 Pa/m. 25 refs., 7 figs., 2 tabs.

Bohn, M.S.

1988-11-01T23:59:59.000Z

204

Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated by Joule effect  

E-Print Network (OSTI)

. Internal sources of heat are due to convection from flow of the heat transfer fluid through the pipes. Heat (material, diameter, spacing, and burial depth), (4) system flow rates, (5) heat transfer fluid properties · heat transfer fluid = 42% propylene glycol @ a flow rate of 350 gpm · heat pump model = Water Furnace

205

Introduction to Energy Savings in Process Heating for the Corn Refining  

NLE Websites -- All DOE Office Websites (Extended Search)

Savings in Process Heating for the Corn Savings in Process Heating for the Corn Refining Industry Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

206

Infrared Spectroscope for Electron Bunch-length Measurement: Heat Sensor Parameters Analysis  

Science Conference Proceedings (OSTI)

The Linac Coherent Light Source (LCLS) is used for many experiments. Taking advantage of the free electron laser (FEL) process, scientists of various fields perform experiments of all kind. Some for example study protein folding; other experiments are more interested in the way electrons interact with the molecules before they are destroyed. These experiments among many others have very little information about the electrons x-ray produced by the FEL, except that the FEL is using bunches less than 10 femtoseconds long. To be able to interpret the data collected from those experiments, more accurate information is needed about the electron's bunch-length. Existing bunch length measurement techniques are not suitable for the measurement of such small time scales. Hence the need to design a device that will provide more precise information about the electron bunch length. This paper investigates the use of a pyreoelectric heat sensor that has a sensitivity of about 1.34 micro amps per watt for the single cell detector. Such sensitivity, added to the fact that the detector is an array sensor, makes the detector studied the primary candidate to be integrated to an infrared spectrometer designed to better measure the LCLS electron bunch length.

Domgmo-Momo, Gilles; /Towson U. /SLAC

2012-09-05T23:59:59.000Z

207

Theoretical Design of a Thermosyphon for Efficient Process Heat Removal from Next Generation Nuclear Plant (NGNP) for Production of Hydrogen  

DOE Green Energy (OSTI)

The work reported here is the preliminary analysis of two-phase Thermosyphon heat transfer performance with various alkali metals. Thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. For process heat, intermediate heat exchangers (IHX) are required to transfer heat from the NGNP to the hydrogen plant in the most efficient way possible. The production of power at higher efficiency using Brayton Cycle, and hydrogen production requires both heat at higher temperatures (up to 1000oC) and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. The purpose for selecting a compact heat exchanger is to maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. The IHX design requirements are governed by the allowable temperature drop between the outlet of the NGNP (900oC, based on the current capabilities of NGNP), and the temperatures in the hydrogen production plant. Spiral Heat Exchangers (SHE’s) have superior heat transfer characteristics, and are less susceptible to fouling. Further, heat losses to surroundings are minimized because of its compact configuration. SHEs have never been examined for phase-change heat transfer applications. The research presented provides useful information for thermosyphon design and Spiral Heat Exchanger.

Piyush Sabharwall; Fred Gunnerson; Akira Tokuhiro; Vivek Utgiker; Kevan Weaver; Steven Sherman

2007-10-01T23:59:59.000Z

208

A Heat Exchanger Process for Removal of H{sub2}S Gas  

SciTech Connect

A heat exchanger process has been developed for the removal of H{sub 2}S and other noncondensable gases from geothermal steam. The process utilizes a heat exchanger to condense water from geothermal steam while allowing H{sub 2}S and other noncondensable gases to pass through in the vapor phase. The condensed water is evaporated to form a clean steam from which over 90 percent of the H{sub 2}S and other noncondensable gases have been removed. Some of the important advantages of the heat exchanger process are shown in Table 1. The system can be located upstream of a power plant turbine which eliminates much of the potential for corrosion, as well as the requirement for removing H{sub 2}S from water collected in the main condenser. Since almost all noncondensables are removed, much less steam is needed for air ejector operation. The heat exchanger process is simple: it has no chemical addition requirements or sludge by-products and utilizes standard equipment found in many power plant applications. The regular power plant operators and maintenance crews can easily understand and run the system with minimal attention. Capital and operating costs are competitive with those for currently available H{sub 2}S-abatement technology, although significant economic advantages over downstream abatement processes may result due to the use of clean steam in the turbines.

Coury, Glenn E.; Babione, Robert A.; Gosik, Robert J.

1980-12-01T23:59:59.000Z

209

Financial barriers to the use of solar-industrial-process heat  

SciTech Connect

Industry concerns about solar process heat, attitudes toward investment in solar process heat, and decision processes and factors are reported. Four cases were selected from among 30 potential solar process heat installations that had been carried through the design stage, and case was analyzed using discounted cash flow to determine what internal rate of return would be earned under current tax laws over 10 years. No case showed any significant rate of return from capital invested in the solar installation. Several possible changes in the cost of solar equipment, its tax treatment or methods of financing were tested through computer simulation. A heavy load of extra tax incentives can improve the return on an investment, but such action is not recommended because they are not found to induce adoption of solar process heat, and if they were effective, capital may be drawn away from applications such as conservation were the potential to improve the nation's energy dilemma is greater. Tax shelter financing through limited partnership may be available. (LEW)

1981-03-01T23:59:59.000Z

210

Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.  

SciTech Connect

The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

Nakos, James Thomas

2005-12-01T23:59:59.000Z

211

High-temperature heat-capacity measurements and critical property determinations using a Differential Scanning Calorimeter: Results of measurements on toluene, tetralin, and JP-10  

Science Conference Proceedings (OSTI)

Liquid-phase heat capacities (from near 300 K to near the critical temperature) and critical properties were determined for toluene, tetralin, and the specialty fuel JP-10 with a Differential Scanning Calorimeter (DSC) using high-temperature/high-pressure sample cells and procedural methods developed at NIPER. A complete description of the methods and calculational procedures is included as an appendix to the report. The results for toluene and tetralin compare very favorably with available literature values, while those for JP-10 are the first reported high-temperature heat capacity and critical property measurements for this material. This research was completed to demonstrate the type and scope of measurements needed for materials key to new process development, and in particular to the development of ''endothermic fuels'' for the development of new High-Speed Flight Vehicles. 20 refs., 5 figs., 21 tabs.

Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Smith, N.K.

1989-06-01T23:59:59.000Z

212

Measurements of Nb3Sn conductor dimension changes during heat treatment  

SciTech Connect

During the heat treatment of Nb{sub 3}Sn coils the conductor material properties change significantly. These effects together with the changes of the conductor dimensions during heat treatment may introduce large strain in the coils for accelerator magnets. The US LHC Accelerator Research Program (LARP) has initiated a study aiming at understanding the thermal expansion and contraction of Nb3Sn strands, cables and coils during heat treatment. Several measurements on strands and cables were performed in order to have sufficient inputs for finite element simulation of the dimensional changes during heat treatment. In this paper the results of measurements of OST-RRP Nb{sub 3}Sn conductor used in the LARP magnet program are discussed.

Bocian, D.; Ambrosio, G.; Whitson, G.M.; /Fermilab

2011-06-01T23:59:59.000Z

213

On-Line Measurement of Heat of Combustion of Gaseous Hydrocarbon Fuel Mixtures  

Science Conference Proceedings (OSTI)

A method for the on-line measurement of the heat of combustion of gaseous hydrocarbon fuel mixtures has been developed and tested. The method involves combustion of a test gas with a measured quantity of air to achieve a preset concentration of oxygen ...

Sprinkle Danny R.; Chaturvedi Sushil K.; Kheireddine Ali

1996-03-01T23:59:59.000Z

214

Effects of Instrumented Bottom Tripods on Process Measurements  

Science Conference Proceedings (OSTI)

The measurement and assessment of ocean bottom processes are important sources of information for understanding bedform evolution and sediment entrainment and for improving numerical models. Instrumented tripods have been used to investigate ...

Rodolfo Bolaños; Laurent O. Amoudry; Ken Doyle

2011-06-01T23:59:59.000Z

215

Processing and Interpretation of Coherent Dual-Polarized Radar Measurements  

Science Conference Proceedings (OSTI)

Dual-polarized coherent radar measurements are used to estimate the differential propagation phase or DP between horizontal and vertical polarization states. The slope of DP is an estimate of the specific differential phase KDP. This process is ...

J. Hubbert; V. Chandrasekar; V. N. Bringi; P. Meischner

1993-04-01T23:59:59.000Z

216

Marketing research for EE G Mound Applied Technologies' heat treatment process of high strength materials  

Science Conference Proceedings (OSTI)

This report summarizes research conducted by ITI to evaluate the commercialization potential of EG G Mound Applied Technologies' heat treatment process of high strength materials. The remainder of the report describes the nature of demand for maraging steel, extent of demand, competitors, environmental trends, technology life cycle, industry structure, and conclusion. (JL)

Shackson, R.H.

1991-10-09T23:59:59.000Z

217

State-of-the-art of solar control systems in industrial process heat applications  

DOE Green Energy (OSTI)

The state-of-the-art of solar control systems is addressed pertinent to industrial process heat applications. Solar system configurations currently being used or proposed are presented; parameters and functions deemed essential in solar system controls are identified; operating deficiencies are described; and possible future improvements are discussed.

Su, W. S.; Castle, J. N.

1979-07-01T23:59:59.000Z

218

Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies  

DOE Green Energy (OSTI)

Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

Kutscher, C.F. (ed.)

1981-03-01T23:59:59.000Z

219

Transient Heat and Material Flow Modeling of Friction Stir Processing of Magnesium Alloy using Threaded Tool  

SciTech Connect

A three-dimensional transient computational fluid dynamics (CFD) model was developed to investigate the material flow and heat transfer during friction stir processing (FSP) in an AZ31B magnesium alloy. The material was assumed to be a non-Newtonian viscoplastic fluid, and the Zener-Hollomon parameter was used to describe the dependence of material viscosity on temperature and strain rate. The material constants used in the constitutive equation were determined experimentally from compression tests of the AZ31B Mg alloy under a wide range of strain rates and temperatures. A dynamic mesh method, combining both Lagrangian and Eulerian formulations, was used to capture the material flow induced by the movement of the threaded tool pin. Massless inert particles were embedded in the simulation domain to track the detailed history of material flow. The actual FSP was also carried out on a wrought Mg plate where temperature profiles were recorded by embedding thermocouples. The predicted transient temperature history was found to be consistent with that measured during FSP. Finally, the influence of the thread on the simulated results of thermal history and material flow was studied by comparing two models: one with threaded pin and the other with smooth pin surface.

Yu, Zhenzhen [ORNL; Zhang, Wei [ORNL; Choo, Hahn [ORNL; Feng, Zhili [ORNL

2012-01-01T23:59:59.000Z

220

Problems with Specifying Tmin in the Design of Processes with Heat Exchangers Jrgen Bauck Jensen and Sigurd Skogestad*  

E-Print Network (OSTI)

Problems with Specifying Tmin in the Design of Processes with Heat Exchangers Jørgen Bauck Jensen exchangers may lead to wrong decisions and should be used with care when designing heat exchanger systems the resulting areas are installed. In addition, different U values for the heat exchangers are not easily

Skogestad, Sigurd

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Shallow solar ponds for industrial process heat: the ERDA--SOHIO project  

DOE Green Energy (OSTI)

The solar energy group at LLL has developed shallow solar ponds to supply cost-competitive solar heated water for industrial use. A prototype system has been built and put into operation at the site of the Sohio Petroleum Company's new uranium mine and milling complex near Grants, New Mexico. When operational, a projected full-size system is expected to furnish approximately half of the 10/sup 5/ GJ (approximately 10/sup 5/ MBtu) annual site process heat requirement. A description of the physical features of shallow solar ponds is presented along with a method for analyzing pond performance. An economic analysis of the projected Sohio solar system is provided.

Dickinson, W.C.; Clark, A.V.; Iantuono, A.

1976-06-17T23:59:59.000Z

222

Shallow solar ponds for industrial process heat: the ERDA--SOHIO project  

DOE Green Energy (OSTI)

The solar energy group at LLL has developed shallow solar ponds to supply cost-competitive solar heated water for industrial use. A prototype system has been built and put into operation at the site of the Sohio Petroleum Company's new uranium mine and milling complex near Grants, New Mexico. When operational, a projected full-size system is expected to furnish approximately half of the 10/sup 5/ GJ annual site process heat requirement. A description of the physical features of shallow solar ponds is presented along with a method for analyzing pond performance. An economic analysis of the projected Sohio solar system is provided.

Dickinson, W.C.; Clark, A.F.; Iantuono, A.

1976-06-17T23:59:59.000Z

223

Cyclic process for producing methane in a tubular reactor with effective heat removal  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

Frost, Albert C. (Congers, NY); Yang, Chang-Lee (Spring Valley, NY)

1986-01-01T23:59:59.000Z

224

Cyclic process for producing methane from carbon monoxide with heat removal  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

Frost, Albert C. (Congers, NY); Yang, Chang-lee (Spring Valley, NY)

1982-01-01T23:59:59.000Z

225

Industrial food processing and space heating with geothermal heat. Final report, February 16, 1979-August 31, 1982  

Science Conference Proceedings (OSTI)

A competitive aware for a cost sharing program was made to Madison County, Idaho to share in a program to develop moderate-to-low temperature geothermal energy for the heating of a large junior college, business building, public shcools and other large buildings in Rexburg, Idaho. A 3943 ft deep well was drilled at the edge of Rexburg in a region that had been probed by some shallower test holes. Temperatures measured near the 4000 ft depth were far below what was expected or needed, and drilling was abandoned at that depth. In 1981 attempts were made to restrict downward circulation into the well, but the results of this effort yielded no higher temperatures. The well is a prolific producer of 70/sup 0/F water, and could be used as a domestic water well.

Kunze, J.F.; Marlor, J.K.

1982-08-01T23:59:59.000Z

226

Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels  

E-Print Network (OSTI)

The escalating energy prices and the increasing environmental impact posed by the industrial usage of energy have spurred industry to adopt various approaches to conserving energy and mitigating negative environmental impact. This work aims at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels, process waste heat) to guarantee providing a stable energy supply, as industrial process energy sources must be a stable and reliable system. The thermal energy transform systems (turbines, refrigerators, heat exchangers) must be selected and designed carefully to provide the energy demand at the different forms (heat, cool, power). This dissertation introduces optimization-based approaches to address the following problems: • Design of cogeneration systems with solar and fossil systems • Design and integration of solar-biofuel-fossil cogeneration systems • Design of solar-assisted absorption refrigeration systems and integration with the processing facility • Development of thermally-coupled dual absorption refrigeration systems, and • Design of solar-assisted trigeneration systems Several optimization formulations are introduced to provide methodical and systematic techniques to solve the aforementioned problems. The approach is also sequenced into interacting steps. First, heat integration is carried out to minimize industrial heating and cooling utilities. Different forms of external-energy sources (e.g., solar, biofuel, fossil fuel) are screened and selected. To optimize the cost and to overcome the dynamic fluctuation of the solar energy and biofuel production systems, fossil fuel is used to supplement the renewable forms of energy. An optimization approach is adopted to determine the optimal mix of energy forms (fossil, bio fuels, and solar) to be supplied to the process, the system specifications, and the scheduling of the system operation. Several case studies are solved to demonstrate the effectiveness and applicability of the devised procedure. The results show that solar trigeneration systems have higher overall performance than the solar thermal power plants. Integrating the absorption refrigerators improves the energy usage and it provides the process by its cooling demand. Thermal coupling of the dual absorption refrigerators increases the coefficient of performance up to 33 percent. Moreover, the process is provided by two cooling levels.

Tora, Eman

2010-12-01T23:59:59.000Z

227

Field measurement of the interactions between heat pumps and attic duct systems in residential buildings  

SciTech Connect

Research efforts to improve residential heat-pump performance have tended to focus on laboratory and theoretical studies of the machine itself, with some limited field research having been focused on in-situ performance and installation issues. One issue that has received surprisingly little attention is the interaction between the heat pump and the duct system to which it is connected. This paper presents the results of a field study that addresses this interaction. Field performance measurements before and after sealing and insulating the duct systems were made on three heat pumps. From the pre-retrofit data it was found that reductions in heat-pump capacity due to low outdoor temperatures and/or coil frosting are accompanied by lower duct-system energy delivery efficiencies. The conduction loss reductions, and thus the delivery temperature improvements, due to adding duct insulation were found to vary widely depending on the length of the particular duct section, the thermal mass of that duct section, and the cycling characteristics of the heat-pump. In addition, it was found that the use of strip-heat back-up decreased after the retrofits, and that heat-pump cycling increased dramatically after the retrofits, which respectively increase and decrease savings due to the retrofits. Finally, normalized energy use for the three systems which were operated consistently pre- and post-retrofit showed an average reduction of 19% after retrofit, which corresponds to a chance in overall distribution-system efficiency of 24%.

Modera, M.P.; Jump, D.A. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-11-01T23:59:59.000Z

228

Water flow calorimetry measurements of heat loads for a volume production H/sup -/ source  

DOE Green Energy (OSTI)

The design of volume-production H/sup -/ sources requires the knowledge of heat loads on the source components. The arc and filament heater power input to a 20 cm diameter x 23 cm long source can be 50 kW or higher, practically all of which is absorbed in the cooling water. Water flow calorimetry measurements were made to determine the heat loads on the bucket walls, grid no. 1, and magnetic filter rods. The measurements are presented for two different filament locations, for three different values of arc power, and for three values of source gas pressure. 1 ref., 4 figs., 2 tabs.

Purgalis, P.; Ackerman, G.; Kwan, J.; Wells, R.P.

1987-10-01T23:59:59.000Z

229

Equation-of-State Measurement of Dense Plasmas Heated With Fast Protons  

SciTech Connect

Using an ultrafast pulse of mega-electron-volt energy protons accelerated from a laser-irradiated foil, we have heated solid density aluminum plasmas to temperatures in excess of 15 eV. By measuring the temperature and the expansion rate of the heated Al plasma simultaneously and with picosecond time resolution we have found the predictions of the SESAME Livermore equation-of-state (LEOS) tables to be accurate to within 18%, in this dense plasma regime, where there have been few previous experimental measurements.

Dyer, G. M.; Bernstein, A. C.; Cho, B. I.; Osterholz, J.; Grigsby, W.; Dalton, A.; Ditmire, T. [Texas Center for High Intensity Laser Science, Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States); Shepherd, R.; Ping, Y.; Chen, H.; Widmann, K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2008-07-04T23:59:59.000Z

230

Central Data Processing System (CDPS) users manual: solar heating and cooling program  

DOE Green Energy (OSTI)

The Central Data Processing System (CDPS) provides the software and data base management system required to assess the performance of solar heating and cooling systems installed at multiple remote sites. The instrumentation data associated with these systems is collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. The CDPS consists of three major elements: communication interface computer, central data processing computer, and performance evaluation data base. The CDPS Users Manual identifies users of the performance data base, procedures for operation, and guidelines for software maintenance. The manual also defines the output capabilities of the CDPS in support of external users of the system.

Not Available

1976-09-01T23:59:59.000Z

231

Development program for the high-temperature nuclear process heat system  

SciTech Connect

A comprehensive development program plan for a high-temperature nuclear process heat system with a very high temperature gas-cooled reactor heat source is presented. The system would provide an interim substitute for fossil-fired sources and ultimately the vehicle for the production of substitute and synthetic fuels to replace petroleum and natural gas. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system has significant potential in a unique combination of the two sources that is environmentally and economically attractive and technically sound: the production of synthetic fuels from coal. In the longer term, it could be the key component in hydrogen production from water processes that offer a substitute fuel and chemical feedstock free of dependence on fossil-fuel reserves. The proposed development program is threefold: a process studies program, a demonstration plant program, and a supportive research and development program. Optional development scenarios are presented and evaluated, and a selection is proposed and qualified. The interdependence of the three major program elements is examined, but particular emphasis is placed on the supportive research and development activities. A detailed description of proposed activities in the supportive research and development program with tentative costs and schedules is presented as an appendix with an assessment of current status and planning. (auth)

Jiacoletti, R.J.

1975-09-01T23:59:59.000Z

232

Solar feasibility study for site-specific industrial-process-heat applications. Final report  

DOE Green Energy (OSTI)

This study addresses the technical feasibility of solar energy in industrial process heat (IPH) applications in Mid-America. The study was one of two contracted efforts covering the MASEC 12-state region comprised of: Illinois, Michigan, North Dakota, Indiana, Minnesota, Ohio, Iowa, Missouri, South Dakota, Kansas, Nebraska, Wisconsin. The results of our study are encouraging to the potential future role of solar energy in supplying process heat to a varied range of industries and applications. We identified and developed Case Study documentation of twenty feasible solar IPH applications covering eight major SIC groups within the Mid-American region. The geographical distribution of these applications for the existing range of solar insolation levels are shown and the characteristics of the applications are summarized. The results of the study include process identification, analysis of process heat requirements, selection of preliminary solar system characteristics, and estimation of system performance and cost. These are included in each of the 20 Case Studies. The body of the report is divided into two primary discussion sections dealing with the Study Methodology employed in the effort and the Follow-On Potential of the identified applications with regard to possible demonstration projects. The 20 applications are rated with respect to their relative overall viability and procedures are discussed for possible demonstration project embarkment. Also, a possible extension of this present feasibility study for late-comer industrial firms expressing interest appears worthy of consideration.

Murray, O.L.

1980-03-18T23:59:59.000Z

233

Low temperature barriers with heat interceptor wells for in situ processes  

DOE Patents (OSTI)

A system for reducing heat load applied to a frozen barrier by a heated formation is described. The system includes heat interceptor wells positioned between the heated formation and the frozen barrier. Fluid is positioned in the heat interceptor wells. Heat transfers from the formation to the fluid to reduce the heat load applied to the frozen barrier.

McKinzie, II, Billy John (Houston, TX)

2008-10-14T23:59:59.000Z

234

Air–Sea Heat Flux Measurements from Nearly Neutrally Buoyant Floats  

Science Conference Proceedings (OSTI)

The ability of neutrally buoyant, high-drag floats to measure the air–sea heat flux from within the turbulent oceanic boundary layer is investigated using float data from four different winter and fall float deployments. Two flux estimates can be ...

Eric A. D'Asaro

2004-07-01T23:59:59.000Z

235

Measurements of Momentum and Heat Transfer across the Air–Sea Interface  

Science Conference Proceedings (OSTI)

This study makes direct measurements of turbulent fluxes in the mixed layer in order to close heat and momentum budgets across the air–sea interface and to assess the ability of rigid-boundary turbulence models to predict mean vertical gradients ...

Gregory P. Gerbi; John H. Trowbridge; James B. Edson; Albert J. Plueddemann; Eugene A. Terray; Janet J. Fredericks

2008-05-01T23:59:59.000Z

236

Phase 2 Development of Procedure Usability Measurement Process (PUMP) Method  

Science Conference Proceedings (OSTI)

Usability problems with plant procedures contribute to a large percentage of errors committed by plant technicians, factor into more than half of all licensee event reports (LERs), and cost an average plant as much as $1M annually. This report outlines in detail EPRI's Procedure Usability Measurement Process (PUMP) method -- a package of standardized testing instruments for measuring the usability of plant procedures -- and describes its successful application at two plants.

1998-07-31T23:59:59.000Z

237

Heat Capacity and Entanglement Measure in a simple two-qubit model  

E-Print Network (OSTI)

A simple two-qubit model showing Quantum Phase Transitions as a consequence of ground state level crossings is studied in detail. Using the Concurrence of the system as an entanglement measure and heat capacity as a marker of thermodynamical properties, an analytical expression giving the latter in terms of the former is obtained. A protocol allowing an experimental measure of entanglement is then presented and compared with a related proposal recently reported by Wie\\'sniak, Vedral and Brukner

Leggio, B; Nakazato, H; Messina, A

2011-01-01T23:59:59.000Z

238

Temperature measurement and sensor selection for solar heating and cooling systems  

DOE Green Energy (OSTI)

The different methods for temperature and temperature difference measurement are critically described as to their applicability to solar heating and cooling systems. The major commercial temperature sensors are surveyed, and their technical and economic aspects are discussed. Installation and calibration techniques are recommended. The temperature measuring system implemented in the University of Pennsylvania Solar Row House as a consequence of the above considerations is described.

Lior, N.

1978-01-01T23:59:59.000Z

239

Programmatic environmental assessment of the DOE Solar Agricultural and Industrial Process Heat Program  

DOE Green Energy (OSTI)

The program's potential environmental impacts are evaluated to ensure that environmental issues are considered at the earliest meaningful point in the decision-making process. The existing environment is studied for the following: grain drying; crop drying; livestock shelter heating; food processing; textile products; lumber and wood products; paper products; chemicals; petroleum refining; stone, clay, and glass products; and primary metals industries. Environmental impacts of the proposed action on the following are studied: air quality, water quality, ecosystems, health and safety, land use, esthetics, and social and institutional impacts. (MHR)

Not Available

1979-06-01T23:59:59.000Z

240

Indriect Measurement Of Nitrogen In A Mult-Component Natural Gas By Heating The Gas  

DOE Patents (OSTI)

Methods of indirectly measuring the nitrogen concentration in a natural gas by heating the gas. In two embodiments, the heating energy is correlated to the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the diluent concentrations other than nitrogen (typically carbon dioxide) are known, the model equation can be solved for the nitrogen concentration.

Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

2004-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

General-Purpose Heat Source: Research and development program: Cold-Process Verification Test Series  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. Because any space mission could experience a launch abort or return from orbit, the heat source must be designed and constructed to survive credible accident environments. Previous testing conducted in support of the Galileo and Ulysses missions documented the response of GPHSs and individual GPHS capsules fueled with {sup 238}UO{sub 2} ({sup 235}U-depleted) to a variety of explosive overpressure and impact events. In the early 1990s, Los Alamos National Laboratory (LANL) resumed fabrication of {sup 238}UO{sub 2} GPHS pellets. The Cold-Process Verification (CPV) Test Series was designed to compare the response of GPHS heat sources loaded with recently fabricated hot- and cold-pressed {sup 238}UO{sub 2} pellets to the response of urania pellets used in the Galileo and Ulysses performance tests. This report documents eleven bare-capsule impacts and one impact of a fully loaded GPHS module. All of the failures observed in the bare-clad impact tests were similar to failures observed in previous safety tests. No failures occurred in the module impact test.

Reimus, M.A.H.; George, T.G.

1996-06-01T23:59:59.000Z

242

Heating Alloys  

Science Conference Proceedings (OSTI)

...are used in many varied applications--from small household appliances to large industrial process heating systems and furnaces. In appliances or industrial process heating, the heating elements are usually either open

243

A survey of geothermal process heat applications in Guatemala: An engineering survey  

SciTech Connect

This study investigates how process heat from Guatemala's geothermal energy resources can be developed to reduce Guatemala's costly importation of oil, create new employment by encouraging new industry, and reduce fuel costs for existing industry. This investigation was funded by the US Agency for International Development and carried out jointly by the Guatemalan Government and the Los Alamos National Laboratory. Two sites, Amatitlan and Zunil, are being developed geothermally. Amatitlan is in the better industrial area but Zunil's geothermal development is more advanced. The industry around Zunil is almost exclusively agricultural and the development of an agricultural processing plant (freezing, dehydration, and cold storage) using geothermal heat is recommended. Similar developments throughout the volcanic zones of Guatemala are possible. Later, when the field at Amatitlan has been further developed, an industrial park can be planned. Potential Amatitlan applications are the final stage of salt refining, a thermal power plant, hospital/hotel heating and cooling, steam curing of concrete blocks, production of alcohol from sugar cane, and production of polyethylene from ethanol. Other special developments such as water pumping for the city of Guatemala and the use of moderate-temperature geothermal fluids for localized power production are also possible. 12 refs., 13 figs., 14 tabs.

Altseimer, J.H.; Edeskuty, F.J.

1988-08-01T23:59:59.000Z

244

Organic Rankine Cycle Systems for Waste Heat Recovery in Refineries and Chemical Process Plants  

E-Print Network (OSTI)

The design of a low temperature Rankine cycle system using R-113 working fluid for recovery and conversion of process waste heat is described for typical applications in oil refineries and chemical plants. The system is designed to produce electric power from waste heat available in a temperature range from 180oF to 400oF. The design of a new ORC turbo generator uniquely adapted to applications of this type is presented. The unit has been designed for power outputs from 3/4 to 2 1/2 MW and turbine inlet temperatures from 170 to 260oF. The machine design has eliminated the need for shaft seals, shaft couplings and the usual lube oil console normally required for turbine-generator units. Results of prototype tests of a 1 MW unit are presented. A product package and recommended division of responsibilities between purchaser, A&E company and supplier is presented for installations in refineries and process plants. The product package covers the electrical power range from 3/4 to 5 MW and waste heat streams from 20 to 130 million BTU/hr.

Meacher, J. S.

1981-01-01T23:59:59.000Z

245

A survey of geothermal process heat applications in Guatemala: An engineering survey  

DOE Green Energy (OSTI)

This study investigates how process heat from Guatemala's geothermal energy resources can be developed to reduce Guatemala's costly importation of oil, create new employment by encouraging new industry, and reduce fuel costs for existing industry. This investigation was funded by the US Agency for International Development and carried out jointly by the Guatemalan Government and the Los Alamos National Laboratory. Two sites, Amatitlan and Zunil, are being developed geothermally. Amatitlan is in the better industrial area but Zunil's geothermal development is more advanced. The industry around Zunil is almost exclusively agricultural and the development of an agricultural processing plant (freezing, dehydration, and cold storage) using geothermal heat is recommended. Similar developments throughout the volcanic zones of Guatemala are possible. Later, when the field at Amatitlan has been further developed, an industrial park can be planned. Potential Amatitlan applications are the final stage of salt refining, a thermal power plant, hospital/hotel heating and cooling, steam curing of concrete blocks, production of alcohol from sugar cane, and production of polyethylene from ethanol. Other special developments such as water pumping for the city of Guatemala and the use of moderate-temperature geothermal fluids for localized power production are also possible. 12 refs., 13 figs., 14 tabs.

Altseimer, J.H.; Edeskuty, F.J.

1988-08-01T23:59:59.000Z

246

Evaluating the Moisture Conditions in the Fractured Rock at Yucca Mountain: The Impact of Natural Convection Processes in Heated Emplacement Drifts  

E-Print Network (OSTI)

multiphase flow and heat-transfer processes. Pore-waterprocesses, and various empirical correlations have been developed for heat and mass transferprocess, with effective dispersion coefficients estimated from supporting CFD analyses. Mass and heat transfer

Birkholzer, J.T.; Webb, S.W.; Halecky, N.; Peterson, P.F.; Bodvarsson, G.S.

2005-01-01T23:59:59.000Z

247

Self-Regulation of Solar Coronal Heating Process via Collisionless Reconnection Condition  

E-Print Network (OSTI)

I propose a new paradigm for solar coronal heating viewed as a self-regulating process keeping the plasma marginally collisionless. The mechanism is based on the coupling between two effects. First, coronal density controls the plasma collisionality and hence the transition between the slow collisional Sweet-Parker and the fast collisionless reconnection regimes. In turn, coronal energy release leads to chromospheric evaporation, increasing the density and thus inhibiting subsequent reconnection of the newly-reconnected loops. As a result, statistically, the density fluctuates around some critical level, comparable to that observed in the corona. In the long run, coronal heating can be represented by repeating cycles of fast reconnection events (nano-flares), evaporation episodes, and long periods of slow magnetic stress build-up and radiative cooling of the coronal plasma.

Uzdensky, Dmitri A

2007-01-01T23:59:59.000Z

248

Self-Regulation of Solar Coronal Heating Process via Collisionless Reconnection Condition  

E-Print Network (OSTI)

I propose a new paradigm for solar coronal heating viewed as a self-regulating process keeping the plasma marginally collisionless. The mechanism is based on the coupling between two effects. First, coronal density controls the plasma collisionality and hence the transition between the slow collisional Sweet-Parker and the fast collisionless reconnection regimes. In turn, coronal energy release leads to chromospheric evaporation, increasing the density and thus inhibiting subsequent reconnection of the newly-reconnected loops. As a result, statistically, the density fluctuates around some critical level, comparable to that observed in the corona. In the long run, coronal heating can be represented by repeating cycles of fast reconnection events (nano-flares), evaporation episodes, and long periods of slow magnetic stress build-up and radiative cooling of the coronal plasma.

Dmitri A. Uzdensky

2007-12-23T23:59:59.000Z

249

HTGR process heat program design and analysis. Semiannual progress report, October 1, 1979-March 28, 1980  

SciTech Connect

This report summarizes the results of concept design studies implemented at General Atomic Company (GA) during the first half of FY-80. The studies relate to a plant design for an 842-MW(t) High-Temperature Gas-Cooled Reactor utilizing an intermediate helium heat transfer loop to provide high temperature thermal energy for the production of hydrogen or synthesis gas (H/sub 2/ + CO) by steam-reforming a light hydrocarbon. Basic carbon sources may be coal, residual oil, or oil shale. Work tasks conducted during this period included the 842-MW(t) plant concept design and cost estimate for an 850/sup 0/C reactor outlet temperature. An assessment of the main-loop cooling shutdown system is reported. Major component cost models were prepared and programmed into the Process Heat Reactor Evaluation and Design (PHRED) code.

Not Available

1980-10-01T23:59:59.000Z

250

Device and method for measuring the coefficient of performance of a heat pump  

DOE Patents (OSTI)

A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistane heaters. Temperature-sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive-heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct tempertures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional-frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electrons is required to operate the instrument.

Brantley, V.R.; Miller, D.R.

1982-05-18T23:59:59.000Z

251

Device and method for measuring the coefficient of performance of a heat pump  

DOE Patents (OSTI)

A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistance heaters. Temperature sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct temperatures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electronics is required to operate the instrument.

Brantley, Vanston R. (Knoxville, TN); Miller, Donald R. (Kingston, TN)

1984-01-01T23:59:59.000Z

252

Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain  

Science Conference Proceedings (OSTI)

Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

2010-09-15T23:59:59.000Z

253

Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis  

Science Conference Proceedings (OSTI)

Thermal decomposition of 25.4 mm diameter dry wood spheres is studied both experimentally and theoretically. Wood spheres were pyrolyzed in a vertical tube furnace at temperatures ranging from 638 K to 879 K. Mass loss and temperatures of the sample were measured during pyrolysis. Center temperature measurements showed two distinct thermal events consisting of sequential endothermic and exothermic reactions. A numerical investigation of these endo/exothermic reactions using various pyrolysis kinetics models was conducted to determine the pyrolysis mechanism and the heats of the pyrolysis reactions. A comparison of the experimental and numerical results showed that (i) Contrary to the suggestions in the literature, the contributions of the secondary tar decomposition and lignin decomposition to the center temperature exothermic peak are small. (ii) Exothermic decomposition of the intermediate solid is responsible for the center temperature peak. (iii) The center temperature plateau is caused by the endothermic decomposition of cellulose. (iv) Internal pressure generation was found to be quite important because it controls the pyrolyzate mass transfer and thus affects both the heat transfer and the residence time of the pyrolysis gases for secondary decomposition. Based on the experimental and numerical results, a new wood pyrolysis model is proposed. The model consists of three endothermic parallel reactions producing tar, gas and intermediate solid and subsequent exothermic decomposition of the intermediate solid to char and exothermic decomposition of tar to char and gas. The proposed pyrolysis model shows good agreement with the experiments. Pressure calculations based on the new pyrolysis model revealed that high pressure is generated inside the biomass particle during pyrolysis and sample splitting was observed during the experiments. The splitting is due to both weakening of the structure and internal pressure generation during pyrolysis. At low heating rates, structural weakness is the primary factor, whereas at high heating rates, internal pressure is the determining factor. It is expected that moisture, while not considered in this work will have a similar effect, but at lower temperatures. (author)

Park, Won Chan; Atreya, Arvind [Department of Mechanical Engineering, University of Michigan, 2158 GGBL 2350 Hayward St., Ann Arbor, MI 48109 (United States); Baum, Howard R. [Department of Fire Protection Engineering, University of Maryland, 3106-D J.M. Patterson Building, College Park, MD 20742 (United States)

2010-03-15T23:59:59.000Z

254

Wafer heating mechanisms in a molecular gas, inductively coupled plasma: in situ, real time wafer surface measurements and three-dimensional thermal modeling  

Science Conference Proceedings (OSTI)

The authors report measurements and modeling of wafer heating mechanisms in an Ar/O{sub 2} inductively coupled plasma (ICP). The authors employed a commercially available on-wafer sensor system (PlasmaTemp developed by KLA-Tencor) consisting of an on-board electronics module housing battery power and data storage with 30 temperature sensors embedded onto the wafer at different radial positions. This system allows for real time, in situ wafer temperature measurements. Wafer heating mechanisms were investigated by combining temperature measurements from the PlasmaTemp sensor wafer with a three-dimensional heat transfer model of the wafer and a model of the ICP. Comparisons between pure Ar and Ar/O{sub 2} discharges demonstrated that two additional wafer heating mechanisms can be important in molecular gas plasmas compared to atomic gas discharges. The two mechanisms are heating from the gas phase and O-atom surface recombination. These mechanisms were shown to contribute as much as 60% to wafer heating under conditions of low bias power. This study demonstrated how the 'on-wafer' temperature sensor not only yields a temperature profile distribution across the wafer, but can be used to help determine plasma characteristics, such as ion flux profiles or plasma processing temperatures.

Titus, M. J.; Graves, D. B. [Department of Chemical Engineering, University of California, Berkeley, California 94720 (United States)

2008-09-15T23:59:59.000Z

255

Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process  

SciTech Connect

A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

Yoder Jr, Graydon L [ORNL; Harvey, Karen [ORNL; Ferrada, Juan J [ORNL

2011-02-01T23:59:59.000Z

256

Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid  

DOE Patents (OSTI)

A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

Roes, Augustinus Wilhelmus Maria (Houston, TX); Mo, Weijian (Sugar Land, TX); Muylle, Michel Serge Marie (Houston, TX); Mandema, Remco Hugo (Houston, TX); Nair, Vijay (Katy, TX)

2009-09-01T23:59:59.000Z

257

Design approaches for solar industrial process-heat systems: nontracking and line-focus collector technologies  

DOE Green Energy (OSTI)

The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer-generated graphs are supplied that allow the user to select a collector type. Detailed energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start-up details, economics, and safety and environmental issues are explained. (LEW)

Kutscher, C.F.; Davenport, R.L.; Dougherty, D.A.; Gee, R.C.; Masterson, P.M.; May, E.K.

1982-08-01T23:59:59.000Z

258

Thermodynamic properties of pulverized coal during rapid heating devolatilization processes. Quarterly progress report, April--June 1993  

Science Conference Proceedings (OSTI)

Knowledge of the thermodynamic and morphological properties of coal associated with rapid heating decomposition pathways is essential to progress in coal utilization technology. Specifically, knowledge of the heat of devolatilization, surface area and density of coal as a function of rank characteristics, temperature and extent of devolatilization in the context of rapid heating conditions is essential to the fundamental determination of kinetic parameters of coal devolatilization. These same properties are also needed to refine existing devolatilization sub-models utilized in large-scale modeling of coal combustion systems. The objective of this research is to obtain data on the thermodynamic properties and morphology of coal under conditions of rapid heating. Specifically, the total heat of devolatilization, external surface area, BET surface area and true density will be measured for representative coal samples. The coal ranks to be investigated will include a high volatile A bituminous (PSOC 1451 D) and a low volatile bituminous (PSOC 1516D). An anthracite (PSOC 1468) will be used as a non-volatile coal reference. In addition, for one coal, the contribution of each of the following components to the overall heat of devolatilization will be measured: the specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars.

Proscia, W.M.; Freihaut, J.D.

1993-08-01T23:59:59.000Z

259

Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube  

SciTech Connect

A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)

Tao, Y.B.; He, Y.L. [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China)

2010-10-15T23:59:59.000Z

260

Measure Guideline: Heat Pump Water Heaters in New and Existing Homes  

Science Conference Proceedings (OSTI)

This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH products) installed in existing homes in the northeast region of the United States.

Shapiro, C.; Puttagunta, S.; Owens, D.

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Improved Measurement of the Electroweak Penguin Process B->Xsll  

E-Print Network (OSTI)

We present an improved measurement of the branching fraction for the electroweak penguin process B->Xsl+l-, where l is an electron or a muon and Xs is a hadronic system containing an s-quark. The measurement is based on a sample of 152 * 10^6 ~ Upsilon(4S) -> BB-bar events collected with the Belle detector at the KEKB e+e- asymmetric-energy collider. The Xs hadronic system is reconstructed from one K+- or K0s and up to four pions, where at most one pion can be neutral. Summing over both lepton flavors, the inclusive branching fraction is measured to be Br(B->Xsll)=(4.11 +- 0.83(stat.) +0.74 -0.70 (syst.) )*10^{-6} for m(ll) > 0.2GeV.

The Belle Collaboration

2004-08-24T23:59:59.000Z

262

Evaluation of a sulfur oxide chemical heat storage process for a steam solar electric plant  

DOE Green Energy (OSTI)

The purpose of this study was to develop and evaluate technically feasible process configurations for the use of the sulfur oxide system, 2 SO/sub 3/ reversible 2 SO/sub 2/ + O/sub 2/, in energy storage. The storage system is coupled with a conventional steam-cycle power plant. Heat for both the power plant and the storage system is supplied during sunlit hours by a field of heliostats focussed on a central solar receiver. When sunlight is not available, the storage system supplies the heat to operate the power plant. A technically feasible, relatively efficient configuration is proposed for incorporating this type of energy storage system into a solar power plant. Complete material and energy balances are presented for a base case that represents a middle range of expected operating conditions. Equipment sizes and costs were estimated for the base case to obtain an approximate value for the cost of the electricity that would be produced from such an installation. In addition, the sensitivity of the efficiency of the system to variations in design and operating conditions was determined for the most important parameters and design details. In the base case the solar tower receives heat at a net rate of 230 MW(t) for a period of eight hours. Daytime electricity is about 30 MW(e). Nighttime generation is at a rate of about 15 MW(e) for a period of sixteen hours. The overall efficiency of converting heat into electricity is about 26%. The total capital cost for the base case is estimated at about $68 million, of which about 67% is for the tower and heliostats, 11% is for the daytime power plant, and 22% is for the storage system. The average cost of the electricity produced for the base case is estimated to be about 11 cents/kW(e)-hr.

Dayan, J.; Lynn, S.; Foss, A.

1979-07-01T23:59:59.000Z

263

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network (OSTI)

1. The Receiver .. Heat Exchanger 1 . 3. The Condensers .Reactors. LTR Heat Exchangers Electricity Generating Systemu.rJO u .. OU t. :ovO DoD HEAT EXCHANGERS LOAD (KW'? RECUP =

Dayan, J.

2011-01-01T23:59:59.000Z

264

Welding and Repair Technology Center: Development of Improved Weld Heat Input and Dilution Equations for Consumable Welding Processes  

Science Conference Proceedings (OSTI)

Predicting heat input into the substrate and weld dilution for consumable welding processes is a challenge due to the number of variables associated with these processes. Proper heat input and power ratio controls are critical to control weld dilution, particularly in dissimilar metal welds where low weld dilution is necessary to prevent solidification cracking or for cladding where weld dilution is minimized to maintain corrosion resistance of the clad material. This report discusses the ...

2013-11-27T23:59:59.000Z

265

Thermodynamic properties of pulverized coal during rapid heating devolatilization processes. Quarterly progress report, January--March 1993  

SciTech Connect

Knowledge of the thermodynamic and morphological properties of coal associated with rapid heating decomposition pathways is essential to progress in coal utilization technology. Specifically, knowledge of the heat of devolatilization, surface area and density of coal as a function of rank characteristics, temperature and extent of devolatilization in the context of rapid heating conditions is required both, for the fundamental determination of kinetic parameters of coal devolatilization, and to refine existing devolatilization sub-models used in comprehensive coal combustion codes. The objective of this research is to obtain data on the thermodynamic properties and morphology of coal under conditions of rapid heating. Specifically, the total heat of devolatilization, external surface area, BET surface area and true density will be measured for representative coal samples. In addition, for one coal, the contribution of each of the following components to the overall heat of devolatilization will be measured: the specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars. Morphological characterization of the parent coal samples has been completed by the University of Pittsburgh. Results are presented for true density, CO{sub 2} surface area, mercury porosimetry, and particle size and shape measurements using image analysis. The heat of thermal decomposition of PSOC 1451D (Task 5) will be calculated from the data reported here. The Task 10 effort, Morphological Characterization of Coal/Char Samples as a Function of Extent of Devolatilization, will continue at the University of Pittsburgh. Work will focus on measurement of the morphological characteristics of the char samples as a function of extent of reaction.

Proscia, W.M.; Freihaut, J.D.

1993-07-01T23:59:59.000Z

266

Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating  

DOE Green Energy (OSTI)

Advantages of thermionic energy conversion (TEC) have been counted and are recounted with emphasis on high-temperature service in coal-combustion products. Efficient, economical, nonpolluting utilization of coal here and now is a critically important national goal. And TEC can augment this capability not only by the often proposed topping of steam power plants but also by higher-temperature topping and process heating. For these applications, applied-research-and-technology (ART) work reveals that optimal TEC with approx. 1000-to approx. 1100 K collectors is possible using well-established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/cm/sup 2/ with approx. 1000 K collectors and 21.7% at 22.6 W/cm/sup 2/ with approx. 1100 K collectors. These performances require 1.5- and 1.7-eV collector work functions (not the 1-eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approx. 0.9-to approx. 6-torr cesium pressures with 1600-to-1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode-loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal-and to use it well.

Morris, J.F.

1980-07-01T23:59:59.000Z

267

Preliminary operational results of the low-temperature solar industrial process heat field tests  

DOE Green Energy (OSTI)

Six solar industrial process heat field tests have been in operation for a year or more - three are hot water systems and three are hot air systems. All are low-temperature projects (process heat at temperatures below 212/sup 0/F). Performance results gathered by each contractor's data acquisition system are presented and project costs and problems encountered are summarized. Flat-plate, evacuated-tube, and line-focus collectors are all represented in the program, with collector array areas ranging from 2500 to 21,000 ft/sup 2/. Collector array efficiencies ranged from 12% to 36% with net system efficiencies from 8% to 33%. Low efficiencies are attributable in some cases to high thermal losses and, for the two projects using air collectors, are due in part to high parasitic power consumption. Problems have included industrial effluents on collectors, glazing and absorber surface failures, excessive thermal losses, freezing and overheating, control problems, and data acquisition system failure. With design and data acquisition costs excluded costs of the projects ranged from $25/ft/sup 2/ to $87/ft/sup 2/ and $499/(MBtu/yr) to $1537/(MBtu/yr).

Kutscher, C.F.; Davenport, R.L.

1980-06-01T23:59:59.000Z

268

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network (OSTI)

Exchanger 1 . 3. The Condensers . Reboiler . . . . BoilerNet Power Waste Heat Trimmer Dist. Condenser Turbine SteamLeaks LP Turbine Condenser Misc. Heat Losses Total Waste

Dayan, J.

2011-01-01T23:59:59.000Z

269

Determining the locus of a processing zone in an oil shale retort by effluent off gas heating value  

SciTech Connect

A processing zone advances through a fragmented permeable mass of particles containing oil shale in an in situ oil shale retort in a subterranean formation containing oil shale. The retort has an effluent gas passing therefrom. The effluent gas has a heating value which is dependent on the kerogen content of the oil shale then in contact with the processing zone. To determine the locus of the processing zone, the formation is assayed at selected locations in the retort for kerogen content before processing the selected locations, and effluent gas from the retort is monitored for its heating value.

Cha, C.Y.

1981-07-21T23:59:59.000Z

270

d-/sup 3/He reaction measurements during fast wave minority heating in PLT  

SciTech Connect

Time- and energy-resolved d-/sup 3/He fusion reactions have been measured to infer the energy of the d/sup +/ or He/sup + +/ minority ions heated near their cyclotron frequency by the magnetosonic fast wave. The average energy of the reacting /sup 3/He ions during /sup 3/He minority heating is in the range of 100 to 400 keV, as deduced from the magnitude of the reaction rate, its decay time, and the energy spread of the proton reaction products. The observed reaction rate and its scaling with wave power and electron density and temperature are in qualitative agreement with a radial reaction rate model using the minority distribution predicted from quasilinear velocity space diffusion. Oscillations in the reaction rate are observed concurrent with sawtooth and m = 2 MHD activity in the plasma.

Chrien, R.E.; Strachan, J.D.

1983-01-01T23:59:59.000Z

271

Flow measurement and characterization in shallow geothermal systems used for downhole heat exchanger applications  

DOE Green Energy (OSTI)

In the largest non-electrical application of geothermal energy presently occurring in the United States, over 400 relatively shallow wells are being used for extraction of energy with downhole heat exchangers. Despite this large amount of application, the exact nature of the flows in the wells has not before been characterized. Knowledge to date on the nature of flows in the systems is summarized, and an ongoing experimental program for making appropriate downhole measurements to determine flows is described in detail. Flow characterization was a principal object of this study. Horizontal cross-flows of geothermal fluid may occur at upper and/or lower levels in the well where perforations in the well casing are situated. In addition, natural convection may induce vertical flows within the well casing which would be influenced by the presence or absence of a heat exchanger. Three main aspects of the experimental program are reported on: (i) a review of potentially applicable methods for measuring vertical and horizontal flows in wells, (ii) the limitations and preliminary results of using a vane anemometer for measuring vertical flows, and (iii) the description of the selected hot-film probe, its associated pressurized calibration facility, and means of making well measurements.

Churchill, D.; Culver, G.G.; Reistad, G.M.

1977-01-01T23:59:59.000Z

272

Applications of thermal energy storage to process heat and waste heat recovery in the primary aluminum industry. Final report, September 1977-September 1978  

DOE Green Energy (OSTI)

The results of a study entitled, Applications of Thermal Energy Storage to Process Heat and Waste Heat Recovery in the Primary Aluminum Industry are presented. In this preliminary study, a system has been identified by which the large amounts of low-grade waste energy in the primary pollution control system gas stream can be utilized for comfort heating in nearby communities. Energy is stored in the form of hot water, contained in conventional, insulated steel tanks, enabling a more efficient utilization of the constant energy source by the cyclical energy demand. Less expensive energy storage means (heated ponds, aquifers), when they become fully characterized, will allow even more cost-competitive systems. Extensive design tradeoff studies have been performed. These tradeoff studies indicate that a heating demand equivalent to 12,000 single-family residences can be supplied by the energy from the Intalco plant. Using a 30-year payback criterion (consistent with utility planning practice), the average cost of energy supplied over the system useful life is predicted at one-third the average cost of fossil fuel. The study clearly shows that the utilization of waste energy from aluminum plants is both technically and economically attractive. The program included a detailed survey of all aluminum plants within the United States, allowing the site specific analyses to be extrapolated to a national basis. Should waste heat recovery systems be implemented by 1985, a national yearly savings of 6.5 million barrels of oil can be realized.

Katter, L.B.; Hoskins, R.L.

1979-04-01T23:59:59.000Z

273

Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain  

SciTech Connect

Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

2010-05-14T23:59:59.000Z

274

Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain  

SciTech Connect

Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

2010-05-14T23:59:59.000Z

275

The Skin-Layer Ocean Heat Flux Instrument (SOHFI). Part II: Field Measurements of Surface Heat Flux and Solar Irradiance  

Science Conference Proceedings (OSTI)

The Skin-Layer Ocean Heat Flux Instrument (SOHFI) described by Sromovsky et al. (Part I, this issue) was field-tested in a combination of freshwater and ocean deployments. Solar irradiance monitoring and field calibration techniques were ...

L. A. Sromovsky; J. R. Anderson; F. A. Best; J. P. Boyle; C. A. Sisko; V. E. Suomi

1999-09-01T23:59:59.000Z

276

Spatially resolved temperature and heat flux measurements for slow evaporating droplets heated by a microfabricated heater array  

E-Print Network (OSTI)

The evaporation phenomenon of a liquid droplet was investigated by using microfabricated heaters. All 32 microheaters were designed to have the same resistance. Gold microheaters worked both as temperature indicators and as heaters. The first experiment was performed under a constant voltage mode to investigate the temperature and heat flux variation of the heated surface by the evaporating droplet. The second experiment was performed under constant temperature mode to investigate the spatial and temporal heat flux variation of the constant temperature heater surface by the evaporating droplet heater. Droplet evaporation was recorded with a CCD camera. Experimental data showed temperature and heat flux variations inside and outside of the droplet with respect to time and radial position from the center of the droplet by tomographic deconvolution.

Paik, Sokwon

277

Photovoltaic roof heat flux  

E-Print Network (OSTI)

and could the heat transfer processes be modeled to estimateindicating that the heat transfer processes were modeled w i

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

278

Assessment of very high-temperature reactors in process applications. Appendix III. Engineering evaluation of process heat applications for very-high temperature reactors  

SciTech Connect

An engineering and economic evaluation is made of coal conversion processes that can be coupled to a very high-temperature nuclear reactor heat source. The basic system developed by General Atomic/Stone and Webster (GA/S and W) is similar to the H-coal process developed by Hydrocarbon Research, Inc., but is modified to accommodate a nuclear heat source and to produce synthetic natural gas (SNG), synthesis gas, and hydrogen in addition to synthetic crude liquids. The synthetic crude liquid production is analyzed by using the GA/S and W process coupled to either a nuclear- or fossil-heat source. Four other processes are included for comparison: (1) the Lurgi process for production of SNG, (2) the Koppers-Totzek process for production of either hydrogen or synthesis gas, (3) the Hygas process for production of SNG, and (4) the Westinghouse thermal-chemical water splitting process for production of hydrogen. The production of methanol and iron ore reduction are evaluated as two potential applications of synthesis gas from either the GA/S and W or Koppers-Totzek processes. The results indicate that the product costs for each of the gasification and liquefaction processes did not differ significantly, with the exception that the unproven Hygas process was cheaper and the Westinghouse process considerably more expensive than the others.

Wiggins, D.S.; Williams, J.J.

1977-04-01T23:59:59.000Z

279

Film Cooling, Heat Transfer and Aerodynamic Measurements in a Three Stage Research Gas Turbine  

E-Print Network (OSTI)

The existing 3-stage turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A and M University, is re-designed and newly installed to enable coolant gas injection on the first stage rotor platform to study the effects of rotation on film cooling and heat transfer. Pressure and temperature sensitive paint techniques are used to measure film cooling effectiveness and heat transfer on the rotor platform respectively. Experiments are conducted at three turbine rotational speeds namely, 2400rpm, 2550rpm and 3000rpm. Interstage aerodynamic measurements with miniature five hole probes are also acquired at these speeds. The aerodynamic data characterizes the flow along the first stage rotor exit, second stage stator exit and second stage rotor exit. For each rotor speed, film cooling effectiveness is determined on the first stage rotor platform for upstream stator-rotor gap ejection, downstream discrete hole ejection and a combination of upstream gap and downstream hole ejection. Upstream coolant ejection experiments are conducted for coolant to mainstream mass flow ratios of MFR=0.5%, 1.0%, 1.5% and 2.0% and downstream discrete hole injection tests corresponding to average hole blowing ratios of M = 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0 for each turbine speed. To provide a complete picture of hub cooling under rotating conditions, experiments with simultaneous injection of coolant gas through upstream and downstream injection are conducted for an of MFR=1% and Mholes=0.75, 1.0 and 1.25 for the three turbine speeds. Heat transfer coefficients are determined on the rotor platform for similar upstream and downstream coolant injection. Rotation is found to significantly affect the distribution of coolant on the platform. The measured effectiveness magnitudes are lower than that obtained with numerical simulations. Coolant streams from both upstream and downstream injection orient themselves towards the blade suction side. Passage vortex cuts-off the coolant film for the lower MFR for upstream injection. As the MFR increases, the passage vortex effects are diminished. Effectiveness was maximum when Mholes was closer to one as the coolant ejection velocity is approximately equal to the mainstream relative velocity for this blowing ratio. Heat transfer coefficient and film cooling effectiveness increase with increasing rotational speed for upstream rotor stator gap injection while for downstream hole injection the maximum effectiveness and heat transfer coefficients occur at the reference speed of 2550rpm.

Suryanarayanan, Arun

2009-05-01T23:59:59.000Z

280

System for measuring the effect of fouling and corrosion on heat transfer under simulated OTEC conditions. [HTAU and LABTTF codes  

DOE Green Energy (OSTI)

A complete system designed to measure, with high precision, changes in heat transfer rates due to fouling and corrosion of simulated heat exchanger tubes, at sea and under OTEC conditions is described. All aspects of the system are described in detail, including theory, mechanical design, electronics design, assembly procedures, test and calibration, operating procedures, laboratory results, field results, and data analysis programs.

Fetkovich, J.G.

1976-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electron heated target temperature measurements in petawatt laser experiments based on extreme ultraviolet imaging and spectroscopy  

Science Conference Proceedings (OSTI)

Three independent methods (extreme ultraviolet spectroscopy, imaging at 68 and 256 eV) have been used to measure planar target rear surface plasma temperature due to heating by hot electrons. The hot electrons are produced by ultraintense laser-plasma interactions using the 150 J, 0.5 ps Titan laser. Soft x-ray spectroscopy in the 50-400 eV region and imaging at the 68 and 256 eV photon energies give a planar deuterated carbon target rear surface pre-expansion temperature in the 125-150 eV range, with the rear plasma plume averaging a temperature approximately 74 eV.

Ma, T. [Department of Mechanical and Aerospace Engineering, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0417 (United States); Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); Beg, F. N. [Department of Mechanical and Aerospace Engineering, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0417 (United States); MacPhee, A. G.; Chung, H.-K.; Key, M. H.; Mackinnon, A. J.; Patel, P. K.; Hatchett, S. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); Akli, K. U.; Stephens, R. B. [General Atomics, San Diego, California 92186 (United States); Chen, C. D. [Plasma Science Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Freeman, R. R.; Link, A.; Offermann, D. T.; Ovchinnikov, V.; Van Woerkom, L. D. [College of Mathematical and Physical Sciences, The Ohio State University, 425 Stillman Hall, Columbus, Ohio 43210-1123 (United States)

2008-10-15T23:59:59.000Z

282

Method for evaluating the potential of geothermal energy in industrial process heat applications  

DOE Green Energy (OSTI)

A method is presented for evaluating the technical and economic potential of geothermal energy for industrial process heat applications. The core of the method is a computer program which can be operated either as a design analysis tool to match energy supplies and demands, or as an economic analysis tool if a particular design for the facility has already been selected. Two examples are given to illustrate the functioning of the model and to demonstrate that results reached by use of the model closely parallel those that have been determined by more traditional techniques. Other features of interest in the model include: (1) use of decision analysis techniques as well as classical methods to deal with questions relating optimization; (2) a tax analysis of current regulations governing percentage depletion for geothermal deposits; and (3) development of simplified correlations for the thermodynamic properties of salt solutions in water.

Packer, M.B.; Mikic, B.B.; Meal, H.C., Guillamon-Duch, H.

1980-05-01T23:59:59.000Z

283

MEASUREMENTS OF HEAT TRANSFER TO HELIUM II AT ATMOSPHERIC PRESSURE IN A CONFINED GEOMETRY  

E-Print Network (OSTI)

M. X. Francois-:- "Heat Transfer Properties in a VerticalK. T - Tb (K) Fig. 4 . Heat transfer at the lambda point.B. The difference in the heat transfer characteristics on

Warren, R.P.

2011-01-01T23:59:59.000Z

284

Extraction of Hydrological Proximity Measures from DEMs using Parallel Processing  

Science Conference Proceedings (OSTI)

Land surface topography is one of the most important terrain properties which impact hydrological, geomorphological, and ecological processes active on a landscape. In our previous efforts to develop a soil depth model based upon topographic and land cover variables, we extracted a set of hydrological proximity measures (HPMs) from a Digital Elevation Model (DEM) as potential explanatory variables for soil depth. These HPMs may also have other, more general modeling applicability in hydrology, geomorphology and ecology, and so are described here from a general perspective. The HPMs we derived are variations of the distance up to ridge points (cells with no incoming flow) and variations of the distance down to stream points (cells with a contributing area greater than a threshold), following the flow path. These HPMs were computed using the D-infinity flow model that apportions flow between adjacent neighbors based on the direction of steepest downward slope on the eight triangular facets constructed in a 3 x 3 grid cell window using the center cell and each pair of adjacent neighboring grid cells in turn. The D-infinity model typically results in multiple flow paths between 2 points on the topography, with the result that distances may be computed as the minimum, maximum or average of the individual flow paths. In addition, each of the HPMs, are calculated vertically, horizontally, and along the land surface. Previously, these HPMs were calculated using recursive serial algorithms which suffered from stack overflow problems when used to process large datasets, limiting the size of DEMs that could be analyzed using that method to approximately 7000 x 7000 cells. To overcome this limitation, we developed a message passing interface (MPI) parallel approach for calculating these HPMs. The parallel algorithms of the HPMs spatially partition the input grid into stripes which are each assigned to separate processes for computation. Each of those processes then uses a queue data structure to order the processing of cells so that each cell is visited only once and the cross-process communications that are a standard part of MPI are handled in an efficient manner. This parallel approach allows analysis of much larger DEMs as compared to the serial recursive algorithms. In this paper, we present the definitions of the HPMs, the serial and parallel algorithms used in their extraction and their potential applications in hydrology, geomorphology and ecology.

Tesfa, Teklu K.; Tarboton, David G.; Watson, Daniel W.; Schreuders, Kimberly A.; Baker, Matthew M.; Wallace, Robert M.

2011-12-01T23:59:59.000Z

285

Geostrophic Velocity Measurement Techniques for the Meridional Overturning Circulation and Meridional Heat Transport in the South Atlantic  

Science Conference Proceedings (OSTI)

Two ocean general circulation models are used to test the ability of geostrophic velocity measurement systems to observe the meridional overturning circulation (MOC) and meridional heat transport (MHT) in the South Atlantic. Model sampling ...

Renellys C. Perez; Silvia L. Garzoli; Christopher S. Meinen; Ricardo P. Matano

2011-11-01T23:59:59.000Z

286

Surface Solar Irradiance in the Central Pacific during Tropic Heat: Comparisons between in Situ Measurements and Satellite Estimates  

Science Conference Proceedings (OSTI)

We present the first results concerning solar radiation at the ocean surface during the Tropic Heat experiment. Using calibrated GOES visible brightness measurements, a simple radiative transfer model calculates hourly and daily surface solar ...

Catherine Gautier

1988-06-01T23:59:59.000Z

287

Automated support for process-aware definition and execution of measurement plans  

Science Conference Proceedings (OSTI)

Some of the problems with process measurement are generally due to the fact that the definition of measurement plans does not rely on a reference model of the development process that can drive and explain the measuring activities. One of the most popular ... Keywords: goal/question/metrics (GQM), process modeling, software metrics, software metrics definition, software process measurement

Luigi Lavazza; Giancarlo Barresi

2005-05-01T23:59:59.000Z

288

Standard test method for measurement of roll wave optical distortion in heat-treated flat glass  

E-Print Network (OSTI)

1.1 This test method is applicable to the determination of the peak-to-valley depth and peak-to-peak distances of the out-of-plane deformation referred to as roll wave which occurs in flat, heat-treated architectural glass substrates processed in a heat processing continuous or oscillating conveyance oven. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This test method does not address other flatness issues like edge kink, ream, pocket distortion, bow, or other distortions outside of roll wave as defined in this test method. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

289

A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

In this paper, we propose the use of weighted linguistic fuzzy rules in combination with a rule selection process to develop accurate fuzzy logic controllers dedicated to the intelligent control of heating, ventilating and air conditioning systems concerning ... Keywords: BEMS, building energy management system, FLC, fuzzy logic controller, Fuzzy logic controllers, GA, genetic algorithm, Genetic algorithms, HVAC systems, HVAC, heating, ventilating, and air conditioning, KB, knowledge base, PMV, predicted mean vote index for thermal comfort, Rule selection, Weighted fuzzy rules

Rafael Alcalá; Jorge Casillas; Oscar Cordón; Antonio González; Francisco Herrera

2005-04-01T23:59:59.000Z

290

Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange  

DOE Patents (OSTI)

A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA); Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA)

1986-01-01T23:59:59.000Z

291

Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange  

DOE Patents (OSTI)

A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

1983-09-21T23:59:59.000Z

292

Numerical and experimental calibration of calorimetric sample cell dedicated to nuclear heating measurements  

SciTech Connect

Online nuclear measurements inside experimental channels of MTRs are needed for experimental works (to design set-ups) and for numerical works (input data) in order to better understanding complex phenomena occurring during the accelerated ageing of materials and the irradiation of nuclear fuel. In this paper we focus only on one kind of measurements: nuclear heating performed by means of a radiometric calorimeter. The aims of numerical and experimental works are firstly to optimize the sensor response for new energy deposit ranges and then to miniaturize this sensor for JHR irradiation conditions A first calorimeter, developed previously by the CEA, is studied. It corresponds to a graphite differential calorimeter divided into two twin cells (a reference cell, and a sample one). It is used with a non adiabatic mode or heat flow mode. Experimental calibration of the sample cell is presented. In that case, energy deposit is simulated by Joule effect and the sample cell is inserted into a bath at a regulated temperature and controlled flow. The response of the sensor is shown versus electrical power imposed for two flow regimes (intensive or moderated forced convection). These experimental results are compared to numerical works and improvements are discussed. (authors)

Brun, J.; Reynard, C.; Merroun, O. [Chemistry Laboratory of Provence LCP UMR 6264 - Universite de Provence, Centre St. Jerome, Bat. Madirel, 13397 Marseille Cedex 20 (France); Lyoussi, A. [French Alternatives Energies and Atomic Energy Commission CEA, Direction de l'Energie Nucleaire DEN, Centre de Cadarache, 13108 Saint-Paul-Lez-Durance (France); Carette, M.; Janulyte, A.; Zerega, Y.; Andre, J. [Chemistry Laboratory of Provence LCP UMR 6264 - Universite de Provence, Centre St. Jerome, Bat. Madirel, 13397 Marseille Cedex 20 (France); Bignan, G.; Chauvin, J. P.; Fourmentel, D.; Gonnier, C.; Guimbal, P.; Malo, J. Y.; Villard, J. F. [French Alternatives Energies and Atomic Energy Commission CEA, Direction de l'Energie Nucleaire DEN, Centre de Cadarache, 13108 Saint-Paul-Lez-Durance (France)

2011-07-01T23:59:59.000Z

293

Simultaneous imaging electron- and ion-feature Thomson scattering measurements of radiatively heated Xe  

Science Conference Proceedings (OSTI)

Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 {mu}m in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 {mu}m at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accurate determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 {mu}m spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 {mu}m, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20{+-}4 at up to 200 eV electron temperatures.

Pollock, B. B. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093 (United States); Meinecke, J. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); University of Oxford, Wellington Square, Oxford, OX1 2JD (United Kingdom); Kuschel, S.; Ross, J. S.; Divol, L.; Glenzer, S. H. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); Shaw, J. L. [University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, California 90095 (United States); Stoafer, C. [Columbia University, 116th Street and Broadway, New York, New York 10027 (United States); Tynan, G. R. [University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093 (United States)

2012-10-15T23:59:59.000Z

294

MEASURED AND CALCULATED HEATING AND DOSE RATES FOR THE HFIR HB4 BEAM TUBE AND COLD SOURCE  

SciTech Connect

The High Flux Isotope Reactor at the Oak Ridge National Laboratory was upgraded to install a cold source in horizontal beam tube number 4. Calculations were performed and measurements were made to determine heating within the cold source and dose rates within and outside a shield tunnel surrounding the beam tube. This report briefly describes the calculations and presents comparisons of the measured and calculated results. Some calculated dose rates are in fair to good agreement with the measured results while others, particularly those at the shield interfaces, differ greatly from the measured results. Calculated neutron exposure to the Teflon seals in the hydrogen transfer line is about one fourth of the measured value, underpredicting the lifetime by a factor of four. The calculated cold source heating is in good agreement with the measured heating.

Slater, Charles O [ORNL; Primm, Trent [ORNL; Pinkston, Daniel [ORNL; Cook, David Howard [ORNL; Selby, Douglas L [ORNL; Ferguson, Phillip D [ORNL; Bucholz, James A [ORNL; Popov, Emilian L [ORNL

2009-03-01T23:59:59.000Z

295

The relationship between turbulence measurements and transport in different heating regimes in TFTR  

SciTech Connect

The scaling of broad band density fluctuations in the confinement zone of TFTR measured by microwave scattering, beam emission spectroscopy (BES), and reflectometry show a relationship between these fluctuations and energy transport measured from power balance calculations. In L-mode plasmas scattering and BES indicates that the density fluctuation level, {delta}n{sup 2}, in the confinement zone for 0.2 < k{perpendicular}ps < 1.0 depends qualitatively on P{sub aux} and I{sub p} in a way that is consistent with variations in energy transport. Fluctuation levels measured with all systems increase strongly toward the edge in all heating regimes following increases in energy transport coefficients. Measurements using BES have shown that poloidal and radial correlation lengths in the confinement zone of L-mode and supershot plasmas fall in the range of 1 to 2 cm. with a wave structure which has k{sub max} {approx} 1 cm{sup {minus}1} (k{perpendicular}ps {approx} 0.2) in the poloidal direction and k{sub max} approaching zero in the radial direction. A simple estimate of the diffusion coefficient based on a measured radial correlation length and correlation time indicates good agreement with power balance calculations. Similar estimates using reflectometry give radial coherence lengths at 10 to 20 kHz in low density ohmic and supershot plasmas of between I and 2 cm.

Bretz, N.L.; Mazzucato, E.; Nazikian, R.; Paul, S.F.; Hammett, G.; Rewoldt, G.; Tang, W.M.; Zarnstorff, M.C. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Fonck, R.J.; Durst, R.; Cosby, G. [Wisconsin Univ., Madison, WI (United States)

1992-10-01T23:59:59.000Z

296

The relationship between turbulence measurements and transport in different heating regimes in TFTR  

Science Conference Proceedings (OSTI)

The scaling of broad band density fluctuations in the confinement zone of TFTR measured by microwave scattering, beam emission spectroscopy (BES), and reflectometry show a relationship between these fluctuations and energy transport measured from power balance calculations. In L-mode plasmas scattering and BES indicates that the density fluctuation level, [delta]n[sup 2], in the confinement zone for 0.2 < k[perpendicular]ps < 1.0 depends qualitatively on P[sub aux] and I[sub p] in a way that is consistent with variations in energy transport. Fluctuation levels measured with all systems increase strongly toward the edge in all heating regimes following increases in energy transport coefficients. Measurements using BES have shown that poloidal and radial correlation lengths in the confinement zone of L-mode and supershot plasmas fall in the range of 1 to 2 cm. with a wave structure which has k[sub max] [approx] 1 cm[sup [minus]1] (k[perpendicular]ps [approx] 0.2) in the poloidal direction and k[sub max] approaching zero in the radial direction. A simple estimate of the diffusion coefficient based on a measured radial correlation length and correlation time indicates good agreement with power balance calculations. Similar estimates using reflectometry give radial coherence lengths at 10 to 20 kHz in low density ohmic and supershot plasmas of between I and 2 cm.

Bretz, N.L.; Mazzucato, E.; Nazikian, R.; Paul, S.F.; Hammett, G.; Rewoldt, G.; Tang, W.M.; Zarnstorff, M.C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Fonck, R.J.; Durst, R.; Cosby, G. (Wisconsin Univ., Madison, WI (United States))

1992-01-01T23:59:59.000Z

297

DIAGNOSING THE TIME-DEPENDENCE OF ACTIVE REGION CORE HEATING FROM THE EMISSION MEASURE. I. LOW-FREQUENCY NANOFLARES  

Science Conference Proceedings (OSTI)

Observational measurements of active region emission measures contain clues to the time dependence of the underlying heating mechanism. A strongly nonlinear scaling of the emission measure with temperature indicates a large amount of hot plasma relative to warm plasma. A weakly nonlinear (or linear) scaling of the emission measure indicates a relatively large amount of warm plasma, suggesting that the hot active region plasma is allowed to cool and so the heating is impulsive with a long repeat time. This case is called low-frequency nanoflare heating, and we investigate its feasibility as an active region heating scenario here. We explore a parameter space of heating and coronal loop properties with a hydrodynamic model. For each model run, we calculate the slope {alpha} of the emission measure distribution EM(T){proportional_to}T {sup {alpha}}. Our conclusions are: (1) low-frequency nanoflare heating is consistent with about 36% of observed active region cores when uncertainties in the atomic data are not accounted for; (2) proper consideration of uncertainties yields a range in which as many as 77% of observed active regions are consistent with low-frequency nanoflare heating and as few as zero; (3) low-frequency nanoflare heating cannot explain observed slopes greater than 3; (4) the upper limit to the volumetric energy release is in the region of 50 erg cm{sup -3} to avoid unphysical magnetic field strengths; (5) the heating timescale may be short for loops of total length less than 40 Mm to be consistent with the observed range of slopes; (6) predicted slopes are consistently steeper for longer loops.

Bradshaw, S. J.; Reep, J. W. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Klimchuk, J. A., E-mail: stephen.bradshaw@rice.edu, E-mail: jeffrey.reep@rice.edu, E-mail: james.a.klimchuk@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Lab., Code 671, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

2012-10-10T23:59:59.000Z

298

Comparison of calculated results from two analytical models with measured data from a heat-exchanger flow test  

SciTech Connect

Predicted results from both a network flow model and a turbulent flow model were compared with measured results from an air flow test on a half-scale model of the auxiliary heat exchanger for a high-temperature gas-cooled reactor. Measurements of both velocity and pressure were made within the heat exchanger shell side flow field. These measurements were compared with calculated results from both a network flow model and a turbulent flow model. Both analytical models predicted early identical results which, except for some minor anomalies, compared favorably with the measured data.

Carosella, D.P.; Pavlics, P.N.

1983-05-01T23:59:59.000Z

299

Statistical Analysis of Sodium Doppler Wind–Temperature Lidar Measurements of Vertical Heat Flux  

Science Conference Proceedings (OSTI)

A statistical study is presented of the errors in sodium Doppler lidar measurements of wind and temperature in the mesosphere that arise from the statistics of the photon-counting process that is inherent in the technique. The authors use data ...

Liguo Su; Richard L. Collins; David A. Krueger; Chiao-Yao She

2008-03-01T23:59:59.000Z

300

Measurement of the solar heat gain coefficient and U value of windows with insect screens  

SciTech Connect

Energy ratings are currently being used in a number of countries to assist in the selection of windows and doors based on energy performance. Developed for simple comparison purposes, these rating numbers do not take into account window removable attachments such as insect screens that are, nevertheless, widely used. Research was carried out to assess the effect of insect screens on the heat gains and losses of windows. The work reported in this paper deals with the effect of one screen type on the performance of a base-case, double-glazed window. Using an indoor solar simulator facility, measurements of the window solar heat gain coefficient (SHGC) and U value were made for different screen attachment configurations and climatic conditions. Results with the sample window tested indicate that insect screens placed on the outdoor side can reduce its SHGC by 46% with only a 7% reduction in its U value (0.19 W/m{sup 2}{center_dot}C), and that insect screens placed on the indoor side can reduce its SHGC by 15% while reducing its U value by 14% (0.38 W/m{sup 2}{center_dot}C).

Brunger, A.; Dubrous, F.M.; Harrison, S.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Materials measurement and accounting in an operating plutonium conversion and purification process. Phase I. Process modeling and simulation. [PUCSF code  

SciTech Connect

A model of an operating conversion and purification process for the production of reactor-grade plutonium dioxide was developed as the first component in the design and evaluation of a nuclear materials measurement and accountability system. The model accurately simulates process operation and can be used to identify process problems and to predict the effect of process modifications.

Thomas, C.C. Jr.; Ostenak, C.A.; Gutmacher, R.G.; Dayem, H.A.; Kern, E.A.

1981-04-01T23:59:59.000Z

302

Barriers to solar process heat projects: Fifteen highly promising (but cancelled) projects  

DOE Green Energy (OSTI)

We analyzed technical, economic, and institutional barriers encountered by the solar industry in penetrating the market of solar thermal systems as applied in industry, commerce, and government. The barriers discussed are not theoretical or developed by conducting marketing research surveys of potential users. Rather, they are barriers that precluded implementing actual solar projects for 15 ``highly promising`` prospective users. The efforts to determine their technical and economic feasibility were funded by the US Department of Energy (DOE) Solar Process Heat (SPH) program. Each year, the SPH program conducts a prefeasibility studies activity -- an engineering assessment of the technical and economic feasibility of a solar system for a specific application for a specific end-user. These studies also assess institutional issues that impact the feasibility of the proposed project and develop an action plan for the project`s implementation. In FY 1991 and FY 1992, the program funded a total of 11 studies in which solar projects were investigated for 21 potential users. Of these 21 potential users, only three have made firm commitments to acquire solar systems, yielding a 14% success rate (decisions by three other companies are still pending). The low success rate is disappointing because the solar companies had complete freedom to select ``highly promising`` potential users. We therefore evaluated the reasons for the low success rate and the implications for market penetration.

Carwile, C. [USDOE, Washington, DC (United States). Office of Industrial Technologies; Hewett, R. [National Renewable Energy Lab., Golden, CO (United States)

1994-10-01T23:59:59.000Z

303

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

DOE Green Energy (OSTI)

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

304

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

DOE Green Energy (OSTI)

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy`s (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE`s Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford`s MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford`s calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

305

Rapid Metal Heating: Reducing Energy Consumption and Increasing Productivity in the Thermal Processing of Metals  

Science Conference Proceedings (OSTI)

Energy intensive manufacturing operations, such as iron and steel production, forging, and heat treating, are attempting to increase productivity while decreasing energy consumption.

2000-05-08T23:59:59.000Z

306

Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain  

E-Print Network (OSTI)

estimate solar heat gains in the cooling and heatingof E891BN solar irradiance economic value of annual heatingglobal solar re?ectance, ? R summer , and that the heating

Levinson, Ronnen

2010-01-01T23:59:59.000Z

307

Measurement and Model Validation of Nanofluid Specific Heat Capacity with Differential Scanning Calorimetry  

E-Print Network (OSTI)

Nanofluids are being considered for heat transfer applications; therefore it is important to know their thermophysical properties accurately. In this paper we focused on nanofluid specific heat capacity. Currently, there ...

O'Hanley, Harrison F.

308

Process Development and Integration Lab (PDIL) + Measurements and Characterization (Presentation)  

DOE Green Energy (OSTI)

The Process Development and Integration Lab (PDIL) Vision is to integrate deposition, characterization, and processing by being flexible and robust; having a standardized transfer interface; and controlled sample ambient between tools. The benefits are: (1) answers to previously inaccessible research questions; (2) control and characterization of critical surfaces (interfaces) and how their impact on subsequent layers; (3) assess process-related source chemistry, surface chemistry and kinetics, and bulk reconstruction; (4) grow layers and alter interfaces using controlled processes and transfer ambients (without exposure to air); (5) develop new techniques, methodologies, device structures, materials, and tools (growth, processing, and analytical); and (6) improved collaborations with university and industry researchers.

Nelson, B.

2008-04-01T23:59:59.000Z

309

Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems  

SciTech Connect

This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

Rudd, A.

2012-08-01T23:59:59.000Z

310

An Investigation of Alternative Methods for Measuring Static Pressure of Unitary Air Conditioners and Heat Pumps  

E-Print Network (OSTI)

This project was created to address an important issue currently faced by test facilities measuring static pressure for air-conditioning and heat pumps. Specifically, ASHRAE Standard 37, the industry standard for test setup, requires an outlet duct of a certain length, based on the unit outlet geometry, and this ducting added to the unit height may result in a test apparatus height that exceeds psychometric test room dimensions. This project attempted to alter the outlet duct in a way that reduces the test apparatus height while maintaining the reliability of the ASHRAE Standard 37 testing setup. The investigation was done in two scenarios, the first, which altered the direction of the flow after the unit with an elbow and measured static pressure downstream of the elbow, and the second which inserted a passive resistive piece in the flow to decrease the required distance between the unit and the static pressure measurement. Three air handling units were used in Scenario 1 and Scenario 2 testing, with the two smallest units additionally being tested in Scenario 1 with an over-sized duct. The scenario tests were required to be within 5% power and 2.5% airflow of a baseline test following ASHRAE Standard 37. he results for Scenario 1 have shown that ASHRAE Standard 37 can be modified to reduce testing height restrictions by using a square elbow with turning vanes, provided it is oriented in a specific way in relation to the blower. Furthermore, additional Scenario 1 testing on the over-sized outlet duct shows that possibilities exist for using a single over-sized duct to successfully meet ASHRAE Standard 37 testing conditions when testing a variety of units. Finally, the results of Scenario 2 have shown that the height constraints of the outlet duct can be reduced by installing a passive resistive device consisting of a mesh at the outlet; however, this approach applies only to those units with the heat exchanger located downstream of the blower. As a result of specific issues or problems that were encountered during the project that were beyond the scope, eleven case studies were presented and recommended for future work.

Wheeler, Grant Benson

2013-08-01T23:59:59.000Z

311

Factors affecting the adoption of home-heating energy-conservation measures: a behavioral approach  

SciTech Connect

The basic aim of this research is to better understand homeowners' adoption of home-heating energy-conservation measures by analyzing a number of factors that are thought to be underlying determinants of adoption behavior. The basic approach is behavioral drawing on the knowledge built up in behavioral geography through studies on natural hazards and innovation diffusion, and borrowing from psychological theories of attitude formation and decision making. In particular, six factors (information, environmental personality, socio-economic and demographic factors, dwelling unit characteristics, psychological variables, and past experience) are shown to directly and indirectly affect adoption behavior. By this means, differences between adopters and nonadopters in the underlying cognitive structures and in the situational factors that affect their decisions are identified. The study focuses on the adoption of three measures: reducing winter night-time thermostat settings, changing or cleaning furnace filters, and installing an automatic setback thermostat. Personal interviews with a random sample of 159 homeowners in Decatur, Illinois serve as the main data base. Results indicate that adoption behavior is determined more by past experience, than by intention. Beliefs, attitudes, and social influences affect behavior indirectly through intention. These psychological variables also act as mediators between information, knowledge, environmental personality, situational variables and behavior. In particular, respondent's age, previous home ownership, and length of residence act indirectly on adoption behavior. Each of these reflects the amount of past experience the respondent is likely to have.

Macey, S.M.

1982-01-01T23:59:59.000Z

312

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

Science Conference Proceedings (OSTI)

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

313

HEATING THE SOLAR ATMOSPHERE BY THE SELF-ENHANCED THERMAL WAVES CAUSED BY THE DYNAMO PROCESSES  

SciTech Connect

We discuss a possible mechanism for heating the solar atmosphere by the ensemble of thermal waves, generated by the photospheric dynamo and propagating upward with increasing magnitudes. These waves are self-sustained and amplified due to the specific dependence of the efficiency of heat release by Ohmic dissipation on the ratio of the collisional to gyrofrequencies, which in its turn is determined by the temperature profile formed in the wave. In the case of sufficiently strong driving, such a mechanism can increase the plasma temperature by a few times, i.e., it may be responsible for heating the chromosphere and the base of the transition region.

Dumin, Yurii V., E-mail: dumin@yahoo.com, E-mail: dumin@izmiran.ru [Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN), Russian Academy of Sciences, Troitsk, Moscow reg., 142190 (Russian Federation)

2012-05-20T23:59:59.000Z

314

Measurements of Scattering Processes in Negative Ion- Atom Collisions  

DOE Green Energy (OSTI)

The main research activity is to study various scattering processes which occur in H{sup -} collisions with atomic (specifically, noble gas and atomic hydrogen) targets in the intermediate energy region. These processes include: elastic scattering, single- and double-electron detachment, and target excitation/ionization.

Kvale, T. J.

2000-12-22T23:59:59.000Z

315

Hall-Héroult Cell: Processes Modeling and Measurements  

Science Conference Proceedings (OSTI)

Feb 17, 2010 ... The thermal balance has a direct impact in current efficiency, however its measures are subjected to hardware and human errors, and normally ...

316

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network (OSTI)

heat available at night) Gas Turbine Work Table 3.2. StreamTurbine (small turbine) Gas Turbine Parasitic Power BFW PumpHours) Generator Terminals Gas Turbine Parasitic Power BFW

Dayan, J.

2011-01-01T23:59:59.000Z

317

Analysis of Chemically Reacting Gas Flow and Heat Transfer in Methane Reforming Processes  

Science Conference Proceedings (OSTI)

This paper presents simulation and analysis of gas flow and heat transfer affected by chemical reactions relating to steam reforming of methane in a compact reformer. The reformer conditions such as the combined thermal boundary conditions on solid walls, ...

Guogang Yang; Danting Yue; Xinrong Lv; Jinliang Yuan

2009-10-01T23:59:59.000Z

318

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network (OSTI)

Flows and stream conditions in steam power cycle. Table 4.1in the low-temperature reactor system. Steam power cycle 8.1Heat Storage System for a Solar Steam Power Plant." 12th

Dayan, J.

2011-01-01T23:59:59.000Z

319

Contributions of Individual Atmospheric Diabatic Heating Processes to the Generation of Available Potential Energy  

Science Conference Proceedings (OSTI)

The generation of zonal and eddy available potential energy (Gz and Ge) as formulated by Lorenz are computed on a global-, daily-, and synoptic-scale basis to consider the contribution of each diabatic heating component separately and in ...

Joy Romanski; William B. Rossow

2013-06-01T23:59:59.000Z

320

Enhanced shell-and-tube heat eschangers for the power and process industries. Final report  

SciTech Connect

Single-tube pool boiling tests were performed with saturated pure refrigerants and binary mixtures of refrigerants. Generally, with pure refrigerants, the High Flux surface performed better at the higher heat fluxes compared to the Turbo-B tube, and both enhanced surfaces performed significantly better than smooth surface. In tests of R-11/R-113 mixtures, the enhanced surfaces had much less degradation in heat transfer coefficient due to mixture effects compared to smooth tubes; the largest degradation occurred at a mixture of 25% R-11/75% R-113. Under boiling in saturated aqueous solution of calcium sulfate, with a single tube, effects of fouling were more pronounced at the higher heat fluxes for all surfaces. Two staggered tube bundles were tested with tube pitch-diameter ratios of 1.17 and 1.50. For the pure refrigerant, tests on the smooth-tube bundle indicated that the effects on the heat transfer coefficient of varying mass flux, quality, and tube-bundle geometry were small, except at low heat fluxes. Neither enhanced surface showed any effect with changing mass flux or quality. The binary mixture bundle-boiling tests had results that were very similar to those obtained with the pure refrigerants. When boiling a refrigerant-oil mixture, all three surfaces (smooth, High Flux, and Turbo-B) experienced a degradation in its heat transfer coefficient; no surface studied was found to be immune or vulnerable to the presence of oil than another surface.

Bergles, A.E.; Jensen, M.K.; Somerscales, E.F.; Curcio, L.A. Jr.; Trewin, R.R.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Performance predictions and measurements for space-power-system heat pipes  

SciTech Connect

High temperature liquid metal heat pipes designed for space power systems have been analyzed and tested. Three wick designs are discussed and a design rationale for the heat pipe is provided. Test results on a molybdenum, annular wick heat pipe are presented. Performance limitations due to boiling and capillary limits are presented. There is evidence that the vapor flow in the adiabatic section is turbulent and that the transition Reynolds number is 4000.

Prenger, F.C. Jr.

1981-01-01T23:59:59.000Z

322

Impingement cooling and heat transfer measurement using transient liquid crystal technique.  

E-Print Network (OSTI)

??A heat transfer study on jet impingement cooling is presented. The study focuses on the effect of impingement jet flow rate, jet angle, and flow… (more)

Huang, Yizhe

2012-01-01T23:59:59.000Z

323

Geothermal heat pump analysis article  

U.S. Energy Information Administration (EIA)

heat pump transfers heat from the ground or ground water to provide space heating. In the summer, the heat transfer process is reversed; the ground or groundwater

324

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

standing of the heat transfer processes associated withto investigate the heat transfer and related processes in an

Chan, T.

2010-01-01T23:59:59.000Z

325

Electron Power Deposition Measurements During Ion Cyclotron Range of Frequency Heating on C-Mod  

DOE Green Energy (OSTI)

A 19-channel electron cyclotron emission (ECE) grating polychromator has been added to the existing ECE diagnostics on C-Mod, which include a 9-channel polychromator, heterodyne radiometer and Michelson interferometer. The new instrument can significantly improve the radial resolution of electron power deposition measurements in ICRF experiments on C-Mod. The improved resolution is important for resolving electron power deposition in off-axis mode conversion heating regimes where the mode conversion region can be narrow. The first data from this new instrument were acquired last year during 80 MHz hydrogen minority D-H mode conversion experiments where the H/(H+D) ratio was varied from 0.02 to 0.30 and the toroidal field was varied from 5.1 to 5.7 T. Although complicated by the presence of large sawteeth, some electron power deposition results were obtained from a break-in-slope method. These results, together with results from data acquired during the current C-Mod experimental campaign, will be presented and compared to predicted radial deposition profiles from the TORIC, 2-D full wave RF code, and the METS95, 1-D integral wave RF code.

B. LeBlanc; C.K. Phillips; G. Schilling; G. Taylor; J.R. Wilson; et al

1999-05-01T23:59:59.000Z

326

General-purpose heat source: Research and development program. Process evaluation, fuel pellet GF-47  

DOE Green Energy (OSTI)

The general-purpose heat source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. Because the potential for a launch abort or return from orbit exists for any space mission, the heat source must be designed and constructed to survive credible accident environments. Previous testing conducted in support of the Galileo and Ulysses missions has documented the response of the GPHS heat source to a variety of fragment-impact, aging, atmospheric reentry, and Earth-impact conditions. Although heat sources for previous missions were fabricated by the Westinghouse Savannah River Company (WSRC), GPHS fueled-clads required for the Cassini mission to Saturn will be fabricated by Los Alamos National Laboratory (LANL). This evaluation is part of an ongoing program to determine the similarity of GPHS fueled clads and fuel pellets fabricated at LANL to those fabricated at WSRC. Pellet GF-47, which was fabricated at LANL in late 1994, was submitted for chemical and ceramographic analysis. The results indicated that the pellet had a chemical makeup and microstructure within the range of material fabricated at WSRC in the early 1980s.

Reimus, M.A.H.; George, T.G.

1995-12-01T23:59:59.000Z

327

Conceptual approach to measure the potential of urban heat islands from landuse datasets and landuse projections  

Science Conference Proceedings (OSTI)

Urban morphology plays a crucial role in the alteration of the local climate, resulting in the formation of Urban Heat Islands. Regarding the steady growth of cities and the impact of global climate change, the risk of overheating is expected to increase. ... Keywords: hamburg, land use modeling, landscape metrics, urban heat island

Christian Daneke; Benjamin Bechtel; Jürgen Böhner; Thomas Langkamp; Jürgen Oßenbrügge

2011-06-01T23:59:59.000Z

328

Can Shipboard Measurements Reveal Secular Changes in Tropical Air–Sea Heat Flux?  

Science Conference Proceedings (OSTI)

A new Comprehensive Ocean-Atmosphere Data Set for the period 1854–1979 will soon become available for studies of secular climate changes in ocean surface heat flux. Of the observed variables from which heat flux is calculated, wind speed and sea ...

C. S. Ramage

1984-02-01T23:59:59.000Z

329

Heating the Solar Atmosphere by the Self-Enhanced Thermal Waves Caused by the Dynamo Processes  

E-Print Network (OSTI)

We discuss a possible mechanism for heating the solar chromosphere and lower part of the transition region by the ensemble of thermal waves, generated by the photospheric dynamo and propagating upwards with increasing magnitudes. These waves are self-sustained and amplified due to the specific dependence of the efficiency of heat release by Ohmic dissipation on the ratio of the collisional to gyro- frequencies, which in its turn is determined by the temperature profile formed in the wave. In the case of sufficiently strong driving, such a mechanism can increase the plasma temperature by an order of magnitude, i.e. it may be responsible for heating the chromosphere and the lower part of the transition region.

Dumin, Yurii V

2012-01-01T23:59:59.000Z

330

Specific Heat Measurements and Post-Test Characterization of Irradiated and Unirradiated Urania and Gadolinia Doped Fuel  

Science Conference Proceedings (OSTI)

In pursuit of higher burnups at nuclear plants, fuel designers have introduced the use of 'advanced' fuel types, including doped fuels. Completing a systematic program to acquire data on the basic properties of these fuels, this project measured the specific heat and density of high burn-up UO2 and (U, Gd)O2 using irradiated materials of the same origin as those on which thermal diffusivity measurements had previously been made and thermal recovery phenomena investigated.

2000-12-31T23:59:59.000Z

331

Determination of Optimal Process Flowrates and Reactor Design for Autothermal Hydrogen Production in a Heat-Integrated Ceramic Microchannel Network  

E-Print Network (OSTI)

The present work aimed at designing a thermally efficient microreactor system coupling methanol steam reforming with methanol combustion for autothermal hydrogen production. A preliminary study was performed by analyzing three prototype reactor configurations to identify the optimal radial distribution pattern upon enhancing the reactor self-insulation. The annular heat integration pattern of Architecture C showed superior performance in providing efficient heat retention to the system with a 50 - 150 degrees C decrease in maximum external-surface temperature. Detailed work was performed using Architecture C configuration to optimize the catalyst placement in the microreactor network, and optimize reforming and combustion flows, using no third coolant line. The optimized combustion and reforming catalyst configuration prevented the hot-spot migration from the reactor midpoint and enabled stable reactor operation at all process flowrates studied. Best results were obtained at high reforming flowrates (1800 sccm) with an increase in combustion flowrate (300 sccm) with the net H2 yield of 53% and thermal efficiency of >80% from methanol with minimal insulation to the heatintegrated microchannel network. The use of the third bank of channels for recuperative heat exchange by four different reactor configurations was explored to further enhance the reactor performance; the maximum overall hydrogen yield was increased to 58% by preheating the reforming stream in the outer 16 heat retention channels. An initial 3-D COMSOL model of the 25-channeled heat-exchanger microreactor was developed to predict the reactor hotspot shape, location, optimum process flowrates and substrate thermal conductivity. This study indicated that low thermal conductivity materials (e.g. ceramics, glass) provides enhanced efficiencies than high conductivity materials (e.g. silicon, stainless steel), by maintaining substantial thermal gradients in the system through minimization of axial heat conduction. Final summary of the study included the determination of system energy density; a gravimetric energy density of 169.34 Wh/kg and a volumetric energy density of 506.02 Wh/l were achieved from brass architectures for 10 hrs operation, which is higher than the energy density of Li-Ion batteries (120 Wh/kg and 350 Wh/l). Overall, this research successfully established the optimal process flowrates and reactor design to enhance the potential of a thermally-efficient heat-exchanger microchannel network for autothermal hydrogen production in portable applications.

Damodharan, Shalini

2012-05-01T23:59:59.000Z

332

Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications Phase II. Final report  

SciTech Connect

The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370{degrees}C. In Phase I of the program a process was developed that resulted in a silicon nitride - 4 w% yttria HIP`ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens. The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions. Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabricability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.

Pujari, V.J.; Tracey, D.M.; Foley, M.R. [and others

1996-02-01T23:59:59.000Z

333

Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool  

Science Conference Proceedings (OSTI)

Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first cost of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger (FHX) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of excavation, 50% of which was construction excavation. There are six pipes in all excavations (three par

Hughes, Patrick [ORNL; Im, Piljae [ORNL

2012-01-01T23:59:59.000Z

334

Inverse optimal design of the radiant heating in materials processing and manufacturing  

Science Conference Proceedings (OSTI)

Combined convective, conductive, and radiative heat transfer is analyzed during heating of a continuously moving load in the industrial radiant oven. A transient, quasi-three-dimensional model of heat transfer between a continuous load of parts moving inside an oven on a conveyor belt at a constant speed and an array of radiant heaters/burners placed inside the furnace enclosure is developed. The model accounts for radiative exchange between the heaters and the load, the conduction in the load, and convective heat transfer between the moving load and oven environment. The thermal model developed has been used to construct a general framework for an inverse optimal design of an industrial oven as an example. In particular, the procedure based on the Levenberg-Marquardt nonlinear least squares optimization algorithm has been developed to obtain the optimal temperatures of the heaters/burners that need to be specified to achieve a prescribed temperature distribution of the surface of a load. The results of calculations for several sample cases are reported to illustrate the capabilities of the procedure developed for the optimal inverse design of an industrial radiant oven.

Fedorov, A.G.; Lee, K.H.; Viskanta, R. [Purdue Univ., West Lafayette, IN (United States)] [Purdue Univ., West Lafayette, IN (United States)

1998-12-01T23:59:59.000Z

335

High-$\\pt$ processes measured with ALICE at the LHC  

E-Print Network (OSTI)

The study of single-particle and jet production in heavy-ion collisions provides insights into the density of the medium and the energy-loss mechanisms. The observed suppression of high-$\\pt$ particle production is generally attributed to energy loss of partons as they propagate through the hot and dense QCD medium - Quark-Gluon-Plasma (QGP). Such measurements allow the characterization of the QGP, the deconfined state of quarks and gluons, predicted by QCD. In these proceedings we present the analysis results of Pb--Pb collisions at $\\sqrt{\\sNN}=2.76$ TeV recorded by ALICE. The nuclear modification factors ($\\RAA$) and the results from jet reconstruction in Pb--Pb are presented. Comparison with other measurements and with theory models is discussed.

Jacek Otwinowski; for the ALICE Collaboration

2013-01-22T23:59:59.000Z

336

Energy Saving Measures of Heating Network - Computerized Real-time Control System  

E-Print Network (OSTI)

The cost of energy consuming of heating system takes a great proportion in the total cost of realty management. This article,focuses or the drawbacks of conventional heating system, analyzes the data collected from actual practices and proposes a new system control theory, that is computerize the real-time frequency conversion control or area,time, mode of heat transformation and temperature grads. The aim of the new theory is promoting the efficiency of energy conversion and minimizing the cost of energy consuming.

Zhang, J.

2006-01-01T23:59:59.000Z

337

Field Measurement of Heating System in a Hotel Building in Harbin  

E-Print Network (OSTI)

Heating energy consumption in winter is an important component of the whole building energy consumption in the severe cold zone in north China. This paper presents a heating water system of a hotel building in Harbin, finishes the testing of its heating energy consumption in winter under operational conditions, and presents an stimation index of the performance of an exchanger, pump and motor. Analysis of device running conditions based on testing data is conducted. Results show that low stream supply temperature and wide-range flow fluctuation mainly lead to unhealthy working conditions of the device and excessive energy consumption, and a corresponding improved method is presented.

Zhao, T.; Zhang, J.; Li, Y.

2006-01-01T23:59:59.000Z

338

Some potential material supply constraints in solar systems for heating and cooling of buildings and process heat. (A preliminary screening to identify critical materials)  

DOE Green Energy (OSTI)

Nine Solar Heating and Cooling of Buildings (SHACOB) designs and three Agricultural and Industrial Process Heat (AIPH) designs have been studied to identify potential future material constraints to their large scale installation and use. The nine SHACOB and three AIPH systems were screened and found to be free of serious future material constraints. The screening was carried out for each individual system design assuming 500 million m/sup 2/ of collector area installed by the year 2000. Also, two mixed design scenarios, containing equal portions of each system design, were screened. To keep these scenarios in perspective, note that a billion m/sup 2/ containing a mixture of the nine SHACOB designs will yield an annual solar contribution of about 1.3 Quads or will displace about 4.2 Quads of fossil fuel used to generate electricity. For AIPH a billion square meters of the mixed designs will yield about 2.8 Quads/year. Three materials were identified that could possibly restrain the deployment of solar systems in the specific scenarios investigated. They are iron and steel, soda lime glass and polyvinyl fluoride. All three of these materials are bulk materials. No raw material supply constraints were found.

Watts, R.L.; Gurwell, W.E.; Nelson, T.A.; Smith, S.A.

1979-06-01T23:59:59.000Z

339

Measurement and modeling of advanced coal conversion processes  

Science Conference Proceedings (OSTI)

The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. (Advanced Fuel Research, Inc., East Hartford, CT (United States) Brigham Young Univ., Provo, UT (United States))

1991-01-01T23:59:59.000Z

340

Measurement and modeling of advanced coal conversion processes, Volume III  

SciTech Connect

A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.

Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G. [and others

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Atmospheric Latent Heating Distributions in the Tropics Derived from Satellite Passive Microwave Radiometer Measurements  

Science Conference Proceedings (OSTI)

A method for the remote sensing of three-dimensional latent heating distributions in precipitating tropical weather systems from satellite passive microwave observations is presented. In this method, cloud model simulated hydrometeor/latent ...

William S. Olson; Christian D. Kummerow; Ye Hong; Wei-Kuo Tao

1999-06-01T23:59:59.000Z

342

Radiative Heating Errors in Naturally Ventilated Air Temperature Measurements Made from Buoys*  

Science Conference Proceedings (OSTI)

Solar radiative heating errors in buoy-mounted, naturally ventilated air temperature sensors are examined. Data from sensors with multiplate radiation shields and collocated, fan-aspirated air temperature sensors from three buoy deployments ...

Steven P. Anderson; Mark F. Baumgartner

1998-02-01T23:59:59.000Z

343

In situ heat exchanger tube fouling thickness measurements using ultrasonics. Final report on a laboratory feasibility study  

DOE Green Energy (OSTI)

The growth of fouling layers on heat exchanger surfaces and the corrosion of heat exchanger materials exposed to seawater have been recognized since the beginning of OTEC research as basic problems which could render the concept uneconomical. Consequently, a significant effort has been directed toward predicting, measuring, identifying, explaining and solving potential biofouling and corrosion phenomena. To address this problem, the feasibility of establishing a practical microacoustic technique to measure fouling film thickness in situ on typical OTEC heat exchanger tasks was studied. Seven techniques were studied for this application, including velocity measurements, acoustic diffraction, acoustic interferometer, Doppler flow velocity, pulse echo, critical angle, and surface (shear) wave effects. Of these, the latter five were laboratory tested using conventional microacoustic system components in various configuratons. Only the pulse echo technique yielded promising results. On fouled aluminum plates, thin film layers of 40 ..mu..m and greater were measured using a focused 30 MHz ceramic transducer operated at 25 MHz; this represents a resolution of about 2/3 wavelength. Measurements made on the inside of fouled 1'' aluminum pipes yielded film thicknesses of 75 to 125 ..mu..m. The thinnest layer resolved was approximately 1-1/4 wavelength. The resolution of slime layer thicknesses in the magnitudes of OTEC interest (5 to 30 ..mu..m) using pulse echo microacoustics will require transducer development. In particular, a higher operating frequency (150 to 200 MHz) and advanced material construction is recommended for further research.

Hirshman, J; Munier, R S.C.

1980-09-01T23:59:59.000Z

344

SPECIAL ANALYSIS FOR SLIT TRENCH DISPOSAL OF THE REACTOR PROCESS HEAT EXCHANGERS  

Science Conference Proceedings (OSTI)

The Savannah River National Laboratory (SRNL), in response to a request from Solid Waste Management (SWM), conducted a Special Analysis (SA) to evaluate the performance of nineteen heat exchangers that are to be disposed in the E-Area low level waste facility Slit Trench 9 (ST 9). Although these nineteen heat exchangers were never decontaminated, the majority of the radionuclides in the heat exchanger inventory list were determined to be acceptable for burial because they are less than the 'generic' waste form inventory limits given in the 2008 Performance Assessment (PA) (WSRC, 2008). However, as generic waste, the H-3 and C-14 inventories resulted in unacceptable sum-of-fractions (SOFs). Initial scoping analyses performed by SRNL indicated that if alterations were made to certain external nozzles to mitigate various potential leak paths, acceptable SOFs could be achieved through the use of a 'Special' waste form. This SA provides the technical basis for this new 'Special' waste form and provides the inventory limits for H-3 and C-14 for these nineteen heat exchangers such that the nineteen heat exchangers can be disposed in ST 9. This 'Special' waste form is limited to these nineteen heat exchangers in ST 9 and applies for H-3 and C-14, which are designated as H-3X and C-14X, respectively. The SA follows the same methodology used in the 2008 PA and the 2008 SA except for the modeling enhancements noted below. Infiltration rates above the heat exchangers are identical to those used in the 2008 PA; however, flow through the heat exchangers is unique. Because it is unknown exactly how sealed heat exchanger openings will perform and how surface and embedded contaminants will be released, multiple base cases or scenarios were established to investigate a set of performances. Each scenario consists of flow options (based on the performance of sealed openings) and a near-field release of contaminants (based on corrosion and diffusion performance). Two disposal configurations were analyzed where heat exchangers were assumed to be disposed four across and five lengthwise (the 4x5 configuration, with one empty) and three across and seven lengthwise (the 3x7 configuration, with two empty). A large range of conditions was considered. For example, peak well concentrations at the 100-m boundary for H-3 are shown in Figure ES-1 for a wide range of configurations (i.e. release mechanism and degree of sealing options). The maximum contaminant level (MCL) and a 10% SOF goal for H-3 are also shown. The 10% goal was based on an estimated volume fraction that these nineteen heat exchangers would consume in ST 9 and was solely used for scoping purposes to assess disposal feasibility and sealing requirements. Because various line breaks and poor sealing greatly exceeded that 10% goal, the determination was made that mitigating activities were needed, such as protection from line breaks and better sealing. An initial set of scenarios was run to assess the requirements for sealing the heat exchanger openings and the need to ensure that the sealed heat exchangers stayed sealed during transit and disposal operations. After discovering that such mitigating activities were required, additional scenarios were run that included the mitigating activities. Scenarios deemed to have a very low probability of occurrence were excluded from consideration for calculating inventory limits (for example, those scenarios that assumed an instantaneous release of contaminants along with poor sealing). The SA used the most recent K{sub d} values for the C-14 analyses and the most recent Dose Conversion Factors for H-3 and C-14 which have been updated since the 2008 PA was issued. This SA took into account the location and the disposal timing of these heat exchangers. The disposal location is within a small area of the overall Slit Trench unit (about 6% of the total) and is behind a line that is 200 ft from the down-gradient edge of ST 9. The disposal timing is assumed to be after July 1, 2012 (because disposals cannot occur until this document is approved and miti

Hamm, L.; Collard, L.; Aleman, S.; Gorensek, M.; Butcher, T.

2012-06-18T23:59:59.000Z

345

A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements  

SciTech Connect

The heat pulse method is widely used to measure water flux through plants; it works by inferring the velocity of water through a porous medium from the speed at which a heat pulse is propagated through the system. No systematic, non-destructive calibration procedure exists to determine the site-specific parameters necessary for calculating sap velocity, e.g., wood thermal diffusivity and probe spacing. Such parameter calibration is crucial to obtain the correct transpiration flux density from the sap flow measurements at the plant scale; and consequently, to up-scale tree-level water fluxes to canopy and landscape scales. The purpose of this study is to present a statistical framework for estimating the wood thermal diffusivity and probe spacing simutaneously from in-situ heat response curves collected by the implanted probes of a heat ratio apparatus. Conditioned on the time traces of wood temperature following a heat pulse, the parameters are inferred using a Bayesian inversion technique, based on the Markov chain Monte Carlo sampling method. The primary advantage of the proposed methodology is that it does not require known probe spacing or any further intrusive sampling of sapwood. The Bayesian framework also enables direct quantification of uncertainty in estimated sap flow velocity. Experiments using synthetic data show that repeated tests using the same apparatus are essential to obtain reliable and accurate solutions. When applied to field conditions, these tests are conducted during different seasons and automated using the existing data logging system. The seasonality of wood thermal diffusivity is obtained as a by-product of the parameter estimation process, and it is shown to be affected by both moisture content and temperature. Empirical factors are often introduced to account for the influence of non-ideal probe geometry on the estimation of heat pulse velocity, and they are estimated in this study as well. The proposed methodology can be applied for the calibration of existing heat ratio sap flow systems at other sites. It is especially useful when an alternative transpiration calibration device, such as a lysimeter, is not available.

Chen, Xingyuan; Miller, Gretchen R.; Rubin, Yoram; Baldocchi, Dennis

2012-09-13T23:59:59.000Z

346

Soybeans: Chemistry, Production, Processing, and UtilizationChapter 6 Measurement and Maintenance of Soybean Quality  

Science Conference Proceedings (OSTI)

Soybeans: Chemistry, Production, Processing, and Utilization Chapter 6 Measurement and Maintenance of Soybean Quality Food Science Health Nutrition Biochemistry Processing Soybeans eChapters Food Science & Technology Health - Nutrit

347

Design, cost, and performance comparisons of several solar thermal systems for process heat. Volume III. Receivers  

DOE Green Energy (OSTI)

The receiver subsystem converts reflected solar radiation into thermal power by heating a working fluid. The objective of the task described was to estimate the cost and performance of the receiver subsystem for parabolic troughs, parabolic dishes, and central receivers over a wide range of temperatures and power levels for thermal power applications. This volume presents the fundamental design philosophy employed, the constraints identified, the tradeoffs performed and the cost and performance results obtained for each receiver in the study matrix.

Woodard, J.B. Jr.

1981-03-01T23:59:59.000Z

348

Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping  

SciTech Connect

Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

2010-01-01T23:59:59.000Z

349

Generation of a Parabolic Trough Collector Efficiency Curve from Separate Measurements of Outdoor Optical Efficiency and Indoor Receiver Heat Loss  

SciTech Connect

The thermal efficiency of a parabolic trough collector is a function of both the fraction of direct normal radiation absorbed by the receiver (the optical efficiency) and the heat lost to the environment when the receiver is at operating temperature. The thermal efficiency can be determined by testing the collector under actual operating conditions or by separately measuring these two components. This paper describes how outdoor measurement of the optical efficiency is combined with laboratory measurements of receiver heat loss to obtain the thermal efficiency curve. This paper describes this approach and also makes the case that there are advantages to plotting collector efficiency versus the difference between the operating temperature and the ambient temperature at which the receiver heat loss was measured divided by radiation to a fractional power (on the order of 1/3 but obtained via data regression) - as opposed to the difference between operating and ambient temperatures divided by the radiation. The results are shown to be robust over wide ranges of ambient temperature, sky temperature, and wind speed.

Kutscher, C.; Burkholder, F.; Stynes, J. K.

2012-02-01T23:59:59.000Z

350

Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report  

DOE Green Energy (OSTI)

Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

1980-03-01T23:59:59.000Z

351

Evaluation of Aqueous and Powder Processing Techniques for Production of Pu-238-Fueled General Purpose Heat Sources  

DOE Green Energy (OSTI)

This report evaluates alternative processes that could be used to produce Pu-238 fueled General Purpose Heat Sources (GPHS) for radioisotope thermoelectric generators (RTG). Fabricating GPHSs with the current process has remained essentially unchanged since its development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the fields of chemistry, manufacturing, ceramics, and control systems. At the Department of Energy’s request, alternate manufacturing methods were compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product. An expert committee performed the evaluation with input from four national laboratories experienced in Pu-238 handling.

Not Available

2008-06-01T23:59:59.000Z

352

Measurement of the thermal performance of a Borehole Heat Exchanger while injecting air bubbles in the groundwater.  

E-Print Network (OSTI)

?? The most common way to exchange heat with the ground in Ground Source Heat Pump (GSHP) applications is with borehole heat exchangers (energy col-lectors… (more)

Calzada, Eduard

2012-01-01T23:59:59.000Z

353

Evolution of the Loop-Top Source of Solar Flares--Heating and Cooling Processes  

E-Print Network (OSTI)

We present a study of the spatial and spectral evolution of the loop-top (LT) sources in a sample of 6 flares near the solar limb observed by {\\it RHESSI}. A distinct coronal source, which we identify as the LT source, was seen in each of these flares from the early ``pre-heating'' phase through the late decay phase. Spectral analyses reveal an evident steep power-law component in the pre-heating and impulsive phases, suggesting that the particle acceleration starts upon the onset of the flares. In the late decay phase the LT source has a thermal spectrum and appears to be confined within a small region near the top of the flare loop, and does not spread throughout the loop, as is observed at lower energies. The total energy of this source decreases usually faster than expected from the radiative cooling but much slower than that due to the classical Spitzer conductive cooling along the flare loop. These results indicate the presence of a distinct LT region, where the thermal conductivity is suppressed significantly and/or there is a continuous energy input. We suggest that plasma wave turbulence could play important roles in both heating the plasma and suppressing the conduction during the decay phase of solar flares. With a simple quasi-steady loop model we show that the energy input in the gradual phase can be comparable to that in the impulsive phase and demonstrate how the observed cooling and confinement of the LT source can be used to constrain the wave-particle interaction.

Yan Wei Jiang; Siming Liu; Wei Liu; Vahe Petrosian

2005-08-24T23:59:59.000Z

354

Heat and Mass transfer in an absorption process with mixed absorbent solution.  

E-Print Network (OSTI)

??Falling film absorption process is studied for the simulation of the absorber of the absorption solar cooling system. In this study, we use different absorbents… (more)

Chi, Ten-yen

2011-01-01T23:59:59.000Z

355

Heating energy measurements of unoccupied single-family houses with attics containing radiant barriers  

Science Conference Proceedings (OSTI)

Tests were conducted by Oak Ridge National Laboratory (ORNL) to determine the magnitude of the heating energy savings achieved by installing attic radiant barriers. The radiant barriers used for the test consist of a material with two reflective aluminum surfaces on a kraft paper base. The experiment was conducted in three unoccupied research houses operated by ORNL. Two variations in the installation of radiant barriers were studied. One house was used as the control house (no barrier was installed), while the other two were used to test the two methods for installing the radiant barriers. In one house, the radiant barrier was laid on top of the attic fiberglass batt insulation, and in the other house, the barrier was attached to the underside of the roof trusses. The attics of all three houses were insulated with a kraft-paper-faced R-19 fiberglass batt insulation. The winter test with the radiant barrier showed that the horizontal barrier was able to save space-heating electical energy in both the resistance and heat pump modes amounting to 10.1% and 8.5%, respectively. The roof truss radiant barrier increased consumption by 2.6% in the resistance mode and 4.0% in the heat pump mode. The horizontal orientation of the radiant barrier is the more energy-effective method of installation.

Levins, W.P.; Karnitz, M.A.

1987-01-01T23:59:59.000Z

356

Proposing a decision-making model using analytical hierarchy process and fuzzy expert system for prioritizing industries in installation of combined heat and power systems  

Science Conference Proceedings (OSTI)

Restructuring electric power and increasing energy cost encourage large energy consumers to utilize combined heat and power (CHP) systems. In addition to these two factors, the gradual exclusion of subsidies is the third factor intensifying the utilization ... Keywords: Analytic hierarchy process, Combined heat and power, Decision making, Fuzzy expert system, Industry

Mehdi Piltan; Erfan Mehmanchi; S. F. Ghaderi

2012-01-01T23:59:59.000Z

357

TEMPLUM: a process adapted numerical simulation code for the 3D predictive assessment of laser surface heat treatments in planar geometry  

Science Conference Proceedings (OSTI)

A process adapted numerical simulation code for the 3D predictive assessment of laser heat treatment of materials has been developed. Primarily intended for the analysis of the laser transformation hardening of steels, the code has been successfully ... Keywords: finite element, heat conduction, laser surface treatments, modeling, numerical analysis, optical glass polishing, simulation, transformation hardening

A. A. García-Beltrán; J. L. Ocaña; C. L. Molpeceres

2008-02-01T23:59:59.000Z

358

Energy Efficient Process Heating: Managing Air Flow Kevin Carpenter and Kelly Kissock  

E-Print Network (OSTI)

(13) The equations are easily incorporated into spreadsheets or computer programs such as PHAST (US." Energy Matters. U.S. Department of Energy. Summer 2005. U.S. Department of Energy. 2003. "PHAST: Process

Kissock, Kelly

359

Engineering Analysis of Intermediate Loop and Process Heat Exchanger Requirements to Include Configuration Analysis and Materials Needs  

SciTech Connect

The need to locate advanced hydrogen production facilities a finite distance away from a nuclear power source necessitates the need for an intermediate heat transport loop (IHTL). This IHTL must not only efficiently transport energy over distances up to 500 meters but must also be capable of operating at high temperatures (>850oC) for many years. High temperature, long term operation raises concerns of material strength, creep resistance and general material stability (corrosion resistance). IHTL design is currently in the initial stages. Many questions remain to be answered before intelligent design can begin. The report begins to look at some of the issues surrounding the main components of an IHTL. Specifically, a stress analysis of a compact heat exchanger design under expected operating conditions is reported. Also the results of a thermal analysis performed on two ITHL pipe configurations for different heat transport fluids are presented. The configurations consist of separate hot supply and cold return legs as well as annular design in which the hot fluid is carried in an inner pipe and the cold return fluids travels in the opposite direction in the annular space around the hot pipe. The effects of insulation configurations on pipe configuration performance are also reported. Finally, a simple analysis of two different process heat exchanger designs, one a tube in shell type and the other a compact or microchannel reactor are evaluated in light of catalyst requirements. Important insights into the critical areas of research and development are gained from these analyses, guiding the direction of future areas of research.

T.M. Lillo; R.L. Williamson; T.R. Reed; C.B. Davis; D.M. Ginosar

2005-09-01T23:59:59.000Z

360

Survey of life-cycle measures and metrics for concurrent product and process design  

Science Conference Proceedings (OSTI)

Concurrent Engineering needs a series of measures (or measurement criteria) that are distinct to each process, and a set of metrics to check (and validate) the outcome when two or more of the life-cycle processes are overlapped or required to be executed ... Keywords: Concurrent Engineering, Knowledge-based Systems, Life-cycle Measures and Metrics, Rule-based Optimization, Rule-based Simulation

Biren Prasad

2000-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Modeling Thermal-Hydrologic Processes for a Heated Fractured Rock System: Impact of a Capillary-Pressure Maximum  

E-Print Network (OSTI)

Fig. 10b, c, d). Heat pipes can result from thethe temperature gradient in the heat- pipe zone is minimal,to the cool end of the heat pipe, and the liquid-phase ?ux

Sun, Y.; Buscheck, T. A.; Lee, K. H.; Hao, Y.; James, S. C.

2010-01-01T23:59:59.000Z

362

Considerations and measurements of latent-heat-storage salts for secondary thermal battery applications  

Science Conference Proceedings (OSTI)

Given its potential benefits, the practicality of using a latent heat-storage material as the basis for a passive thermal management system is being assessed by Chloride Silent Power Ltd. (CSPL) with technical assistance from Beta Power, Inc. and Sandia National Laboratories (SNL). Based on the experience gained in large-scale solar energy storage programs, fused salts were selected as the primary candidates for the heat-storage material. The initial phase of this assessment was directed to an EV battery being designed at CSPL for the ETX-II program. Specific tasks included the identification and characterization of potential fused salts, a determination of placement options for the salts within the battery, and an assessment of the ultimate benefit to the battery system. The results obtained to date for each of these tasks are presented in this paper.

Koenig, A.A.; Braithwaite, J.W.; Armijo, J.R.

1988-05-16T23:59:59.000Z

363

Transient PVT measurements and model predictions for vessel heat transfer. Part II.  

SciTech Connect

Part I of this report focused on the acquisition and presentation of transient PVT data sets that can be used to validate gas transfer models. Here in Part II we focus primarily on describing models and validating these models using the data sets. Our models are intended to describe the high speed transport of compressible gases in arbitrary arrangements of vessels, tubing, valving and flow branches. Our models fall into three categories: (1) network flow models in which flow paths are modeled as one-dimensional flow and vessels are modeled as single control volumes, (2) CFD (Computational Fluid Dynamics) models in which flow in and between vessels is modeled in three dimensions and (3) coupled network/CFD models in which vessels are modeled using CFD and flows between vessels are modeled using a network flow code. In our work we utilized NETFLOW as our network flow code and FUEGO for our CFD code. Since network flow models lack three-dimensional resolution, correlations for heat transfer and tube frictional pressure drop are required to resolve important physics not being captured by the model. Here we describe how vessel heat transfer correlations were improved using the data and present direct model-data comparisons for all tests documented in Part I. Our results show that our network flow models have been substantially improved. The CFD modeling presented here describes the complex nature of vessel heat transfer and for the first time demonstrates that flow and heat transfer in vessels can be modeled directly without the need for correlations.

Felver, Todd G.; Paradiso, Nicholas Joseph; Winters, William S., Jr.; Evans, Gregory Herbert; Rice, Steven F.

2010-07-01T23:59:59.000Z

364

Full surface local heat transfer coefficient measurements in a model of an integrally cast impingement cooling geometry  

SciTech Connect

Cast impingement cooling geometries offer the gas turbine designer higher structural integrity and improved convective cooling when compared to traditional impingement cooling systems, which rely on plate inserts. In this paper, it is shown that the surface that forms the jets contributes significantly to the total cooling. Local heat transfer coefficient distributions have been measured in a model of an engine wall cooling geometry using the transient heat transfer technique. The method employs temperature-sensitive liquid crystals to measure the surface temperature of large-scale perspex models during transient experiments. Full distributions of local Nusselt number on both surfaces of the impingement plate, and on the impingement target plate, are presented at engine representative Reynolds numbers. The relative effects of the impingement plate thermal boundary condition and the coolant supply temperature on the target plate heat transfer have been determined by maintaining an isothermal boundary condition at the impingement plate during the transient tests. The results are discussed in terms of the interpreted flow field.

Gillespie, D.R.H.; Wang, Z.; Ireland, P.T. [Univ. of Oxford (United Kingdom). Dept. of Engineering Science; Kohler, S.T. [Rolls Royce, Bristol (United Kingdom)

1998-01-01T23:59:59.000Z

365

Measurement and Statistical Modeling of the Urban Heat Island of the City of Utrecht (the Netherlands)  

Science Conference Proceedings (OSTI)

Mobile temperature and humidity measurements have been performed along a 14-km transect through the city of Utrecht, in the Netherlands (311 000 inhabitants), during the period March 2006–January 2009. The measurements took place on a bicycle ...

Theo Brandsma; Dirk Wolters

2012-06-01T23:59:59.000Z

366

Influence of Meteorological Balloons on Temperature Measurements with Radiosondes: Nighttime Cooling and Daylight Heating  

Science Conference Proceedings (OSTI)

Temperatures measured by radiosondes ascending on free-flying balloons within middle latitudes above the troposphere differ significantly from measurements made with the same radiosondes descending on parachutes after the balloons have burst. ...

Helmut K. E. Tiefenau; Alfons Gebbeken

1989-02-01T23:59:59.000Z

367

Modular pebble-bed reactor reforming plant design for process heat  

Science Conference Proceedings (OSTI)

This report describes a preliminary design study of a Modular Pebble-Bed Reactor System Reforming (MPB-R) Plant. The system uses one pressure vessel for the reactor and a second pressure vessel for the components, i.e., reformer, steam generator and coolant circulator. The two vessels are connected by coaxial pipes in an arrangement known as the side-by-side (SBS). The goal of the study is to gain an understanding of this particular system and to identify any technical issues that must be resolved for its application to a modular reformer plant. The basic conditions for the MPB-R were selected in common with those of the current study of the MRS-R in-line prismatic fuel concept, specifically, the module core power of 250 MWt, average core power density of 4.1 w/cc, low enriched uranium (LEU) fuel with a /sup 235/U content of 20% homogeneously mixed with thorium, and a target burnup of 80,000 MWD/MT. Study results include the pebble-bed core neutronics and thermal-hydraulic calculations. Core characteristics for both the once-through-then-out (OTTO) and recirculation of fuel sphere refueling schemes were developed. The plant heat balance was calculated with 55% of core power allotted to the reformer.

Lutz, D.E.; Cowan, C.L.; Davis, C.R.; El Sheikh, K.A.; Hui, M.M.; Lipps, A.J.; Wu, T.

1982-09-01T23:59:59.000Z

368

Carbon Material Based Heat Exchanger for Waste Heat Recovery ...  

Industrial processing plants Nuclear power Solar power ... Carbon Material Based Heat Exchanger for Waste Heat Recovery from Engine Exhaust Contact:

369

Analysis of the economic potential of solar thermal energy to provide industrial process heat. Final report, Volume I. [In-depth analysis of 78 industries  

SciTech Connect

The process heat data base assembled as the result of this survey includes specific process applications from 78 four-digit Standard Industrial Classification (SIC) groups. These applications account for the consumption of 9.81 quadrillion Btu in 1974, about 59 percent of the 16.6 quadrillion Btu estimated to have been used for all process heat in 1974. About 7/sup 1///sub 2/ percent of industrial process heat is used below 212/sup 0/F (100/sup 0/C), and 28 percent below 550/sup 0/F (288/sup 0/C). In this study, the quantitative assessment of the potential of solar thermal energy systems to provide industrial process heat indicates that solar energy has a maximum potential to provide 0.6 quadrillion Btu per year in 1985, and 7.3 quadrillion Btu per year in 2000, in economic competition with the projected costs of conventional fossil fuels for applications having a maximum required temperature of 550/sup 0/ (288/sup 0/C). A wide variety of collector types were compared for performance and cost characteristics. Performance calculations were carried out for a baseline solar system providing hot water in representative cities in six geographical regions within the U.S. Specific industries that should have significant potential for solar process heat for a variety of reasons include food, textiles, chemicals, and primary metals. Lumber and wood products, and paper and allied products also appear to have significant potential. However, good potential applications for solar process heat can be found across the board throughout industry. Finally, an assessment of nontechnical issues that may influence the use of solar process heat in industry showed that the most important issues are the establishment of solar rights, standardization and certification for solar components and systems, and resolution of certain labor-related issues. (Volume 1 of 3 volumes.)

1977-02-07T23:59:59.000Z

370

Heat transfer simulation and thermal measurements of microfabricated x-ray transparent heater stages  

SciTech Connect

A microfabricated amorphous silicon nitride membrane-based nanocalorimeter is proposed to be suitable for an x-ray transparent sample platform with low power heating and built-in temperature sensing. In this work, thermal characterization in both air and vacuum are analyzed experimentally and via simulation. Infrared microscopy and thermoreflectance microscopy are used for thermal imaging of the sample area in air. While a reasonably large isothermal area is found on the sample area, the temperature homogeneity of the entire sample area is low, limiting use of the device as a heater stage in air or other gases. A simulation model that includes conduction, as well as radiation and convection heat loss, is presented with radiation and convection parameters determined experimentally. Simulated temperature distributions show that the homogeneity can be improved by using a thicker thermal conduction layer or reducing the pressure of the gas in the environment but neither are good solutions for the proposed use. A new simple design that has improved temperature homogeneity and a larger isothermal area while maintaining a thin thermal conduction layer is proposed and fabricated. This new design enables applications in transmission x-ray microscopes and spectroscopy setups at atmospheric pressure.

Baldasseroni, C. [Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California 94720 (United States); Queen, D. R.; Cooke, David W.; Hellman, F. [Department of Physics, University of California Berkeley, Berkeley, California 94720 (United States); Maize, K.; Shakouri, A. [Department of Electrical Engineering, University of California Santa Cruz, Santa Cruz, California 95064 (United States)

2011-09-15T23:59:59.000Z

371

Heat transfer through porous multiphase systems measurement, modelling and applications in printing of coated papers.  

E-Print Network (OSTI)

??This work examines the thermal transfer through porous media by means of measurement of the effective thermal conductivity and modelling of the structural parameters. While… (more)

Gerstner, Philip

2010-01-01T23:59:59.000Z

372

Liquid metal heat pipe behavior under transient cooling and heating  

SciTech Connect

This paper describes the results of an experimental investigation of the transient behavior of a liquid metal heat pipe. A 0.457 m long, screen-wick, sodium heat pipe with 0.0127 m outer diameter was tested in sodium loop facility. The heat pipe reversed under a pulse heat load applied at the condenser. The time at which the heat pipe reversed was dependent of the heat pipe properties, the sodium loop flow rate and heating conditions at the condenser. The start-up and the operational shut-down by forced cooling of the condenser were also studied. During the start-up process, at least part of the heat pipe was active. The active region extended gradually down to the end of the condenser until all working fluid in the heat pipe was molten. With forced cooling at the condenser, the heat pipe approached its heat transport limit before section of the condenser became frozen. The measured heat transport limit was in agreement with the theoretical value. 5 refs.

Nguyen, H.X.; Hahn, T.O.; Hahn, O.J.; Chow, L.C.; Tagavi, K.A.; Morgan, M.J. (Kentucky, University, Lexington (United States) USAF, Wright Laboratory, Wright-Patterson AFB, OH (United States))

1992-01-01T23:59:59.000Z

373

Measurements of scattering processes in negative ion-atom collisions. [3 to 50 keV  

DOE Green Energy (OSTI)

This Technical Progress Report describes the progress made on the research objectives during the past twelve months. This research project is designed to provide measurements of various scattering processes which occur in H[sup [minus

Kvale, T.J.

1993-01-01T23:59:59.000Z

374

The Measurement of Doppler Wind Fields with Fast Scanning Radars: Signal Processing Techniques  

Science Conference Proceedings (OSTI)

This paper discusses signal processing techniques being developed for making Doppler wind velocity measurements using airport surveillance radars. Techniques are presented and evaluated for velocity estimation using fast-rotating radars. In ...

John R. Anderson

1987-12-01T23:59:59.000Z

375

MEASUREMENT AND PREDICTION OF RADIOLYTIC HYDROGEN PRODUCTION IN DEFENSE WASTE PROCESSING SLURRIES AT SAVANNAH RIVER SITE  

DOE Green Energy (OSTI)

This paper presents results of measurements and predictions of radiolytic hydrogen production rates from two actual process slurries in the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS). Hydrogen is a flammable gas and its production in nuclear facilities can be a safety hazard if not mitigated. Measurements were made in the Shielded Cells of Savannah River National Laboratory (SRNL) using a sample of Sludge Batch 3 (SB3) currently being processed by the DWPF. Predictions were made using published values for rates of radiolytic reactions producing H{sub 2} in aqueous solutions and the measured radionuclide and chemical compositions of the two slurries. The agreement between measured and predicted results for nine experiments ranged from complete agreement to 24% difference. This agreement indicates that if the composition of the slurry being processed is known, the rate of radiolytic hydrogen production can be reasonably estimated.

Bibler, N; John Pareizs, J; Terri Fellinger, T; Cj Bannochie, C

2007-01-10T23:59:59.000Z

376

Space and Time Resolved Measurements of the Heating of Solids to Ten Million Kelvin by a Petawatt Laser  

Science Conference Proceedings (OSTI)

The heating of plane solid targets by the Vulcan petawatt laser at powers of 0.32-0.73 PW and intensities of up to 4 x 10^20 W cm^-2 has been diagnosed with a temporal resolution of 17 ps and a spatial resolution of 30 um, by measuring optical emission from the opposite side of the target to the laser with a streak camera. Second harmonic emission was filtered out and the target viewed at an angle to eliminate optical transition radiation. Spatial resolution was obtained by imaging the emission onto a bundle of fibre optics, arranged into a one-dimensional array at the camera entrance. The results show that a region 160 um in diameter can be heated to a temperature of ~10^7 K (kT/e ~ keV) in solid targets from 10 to 20 um thick and that this temperature is maintained for at least 20 ps, confirming the utility of PW lasers in the study of high energy density physics. Hybrid code modelling shows that magnetic field generation prevents increased target heating by electron refluxing above a certain target thickness and that the absorption of laser energy into electrons entering the solid target was between 15-30%, and tends to increase with laser energy.

Nakatsutsumi, M.; Davies, J.R.; Kodama, R.; Green, J.S.; Lancaster, K.L.; Akli, K.U.; Beg, F.N.; Chen, S.N.; Clark, D.; Freeman, R.R.; Gregory, C.D.; Habara, H.; Heathcote, R.; Hey, D.S.; Highbarger, K.; Jaanimagi, P.; Key, M.H.; Krushelnick, K.; Ma, T.; MacPhee, A.; MacKinnon, A.J.; Nakamura, H.; Stephens, R.B.; Storm, M.; Tampo, M.; Theobald, W.; Van Woerkom, L.; Weber, R.L.; Wei, M.S.; Woolsey, N.C.; Norreys, P.A.

2008-04-29T23:59:59.000Z

377

Model for multi-strata safety performance measurements in the process industry  

E-Print Network (OSTI)

Measuring process safety performance is a challenge, and the wide variations in understanding, compliance, and implementation of process safety programs increase the challenge. Process safety can be measured in three strata: (1) measurement of process safety elements within facilities; (2) benchmarking of process safety elements among facilities; and (3) use of incident data collection from various sources for industrial safety performance assessment. The methods presently available for measurement of process safety within facilities are deficient because the results are strongly dependent on user judgment. Performance benchmarking among facilities is done within closed groups of organizations. Neither the questionnaires nor the results are available to the public. Many organizations collect data on industrial incidents. These organizations differ from each other in their interests, data collection procedures, definitions, and scope, and each of them analyzes its data to achieve its objectives. However, there have been no attempts to explore the potential of integrating data sources and harnessing these databases for industrial safety performance assessment. In this study we developed models to pursue the measurement of samples of the strata described above. The measurement methodologies employed herein overcome the disadvantages of existing methodologies and increase their capabilities.

Keren, Nir

2003-12-01T23:59:59.000Z

378

Measurements of electron and proton heating temperatures from extreme-ultraviolet light images at 68 eV in petawatt laser experiments  

Science Conference Proceedings (OSTI)

A 68 eV extreme-ultraviolet light imaging diagnostic measures short pulse isochoric heating by electrons and protons in petawatt laser experiments. Temperatures are deduced from the absolute intensities and comparison with modeling using a radiation hydrodynamics code.

Gu Peimin; Zhang, B.; Key, M. H.; Hatchett, S. P.; Barbee, T.; Freeman, R. R.; Akli, K.; Hey, D.; King, J. A.; Mackinnon, A. J.; Snavely, R. A.; Stephens, R. B. [College of Mathematical and Physical Sciences, Ohio State University, 425 Stillman Hall, Columbus, Ohio 43210-1123 (United States); Department of Applied Science, University of California-Davis, Davis, California 95616 (United States); Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); College of Mathematical and Physical Sciences, Ohio State University, 425 Stillman Hall, Columbus, Ohio 43210-1123 (United States); Department of Applied Science, University of California-Davis, Davis, California 95616 (United States); University of California-San Diego, La Jolla, California 92093 (United States); Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); General Atomics, San Diego, California 92186 (United States)

2006-11-15T23:59:59.000Z

379

Field Results from a Second-Generation Ocean/Lake Surface Contact Heat Flux, Solar Irradiance, and Temperature Measurement Instrument—The Multisensor Float  

Science Conference Proceedings (OSTI)

This paper describes results from two field programs that support development of a wave-following surface contact multisensor float (MSF) designed to simultaneously measure net surface heat flux, net solar irradiance, and water temperature. The ...

J. P. Boyle

2007-05-01T23:59:59.000Z

380

A Comparison of ECMWF, NCEP–NCAR, and SOC Surface Heat Fluxes with Moored Buoy Measurements in the Subduction Region of the Northeast Atlantic  

Science Conference Proceedings (OSTI)

The accuracy of surface heat flux estimates from the NCEP–NCAR and ECMWF atmospheric model reanalyses is assessed by comparison with Woods Hole Oceanographic Institute research buoy measurements made during the Subduction Experiment in the ...

S. A. Josey

2001-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Direct measurements of heat output by marine microbial and phage communities  

E-Print Network (OSTI)

was simulated by introducing a carefully measured quantity of electrical energy (Djamali 2005). A simplified) Thermochim. Acta, 397: 31. Mukhanov, V.S., Naidanova, O.G., Shadrin, N.V., and Kemp, R.B., (2004) Aquat. Ecol

Salamon, Peter

382

Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain  

E-Print Network (OSTI)

of In press at Progress in Solar Energy April 28, 2010 R.2008. In press at Progress in Solar Energy April 28, 2010 R.ectance measurements. Solar Energy Materials & Solar Cells,

Levinson, Ronnen

2010-01-01T23:59:59.000Z

383

Determination of Longwave Heat Flux at the Air-Sea Interface Using Measurements from Buoy Platforms  

Science Conference Proceedings (OSTI)

A theory for pyrgeometer operation is utilized for determining downwelling longwave radiation. Errors in downwelling longwave radiation measurements are due to differences in pyrgeometer body and dome temperatures compared to that of the ...

T. D. Dickey; D. V. Manov; R. A. Weller; D. A. Siegel

1994-08-01T23:59:59.000Z

384

Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain  

E-Print Network (OSTI)

of In press at Progress in Solar Energy April 28, 2010 R.and P. Berdahl Measuring solar re?ectance—Part I sunlight2008. In press at Progress in Solar Energy April 28, 2010 R.

Levinson, Ronnen

2010-01-01T23:59:59.000Z

385

Three-dimensional measurements of UV-imprint process by micro-digital holographic-PTV  

Science Conference Proceedings (OSTI)

We previously had developed a particle tracking velocimetry (PTV) technique for making micro flow measurements using digital holograms. The velocity field and the displacement of a micro-particle during the photo-curing of a resin can be measured by ... Keywords: Digital hologram, Photo-curable resin, UV-imprint process

Shin-Ichi Satake; Jun Taniguchi; Takahiro Kanai; Noriyuki Unno

2012-09-01T23:59:59.000Z

386

Assessment of materials for use in a solar ceramic receiver for chemical process heat  

DOE Green Energy (OSTI)

Candidate ceramic matrials were evaluated on the basis of two potential temperature operating regimes: 600 to 1300/sup 0/C (1100 to 2400/sup 0/F) and 1300 to 2200/sup 0/C (2400 to 4000/sup 0/F). Discussion of properties important to the proposed application includes thermal shock resistance, tensile strength, creep resistance, oxidation resistance, vaporization rate, chemical inertness to process reactants and products, cost, and fabricability. Many ceramic materials were considered for the 600 to 1300/sup 0/C operating regime. On the basis of a significant data base on tensile strength, thermal expansion, thermal conductivity, fabricability, and stability, the leading candidates were identified, in decreasing order of preference, as (1) silicon carbide, (2) magnesium oxide, (3) cordierite (2MgO.2Al/sub 2/O/sub 3/.5SiO/sub 2/) known as MAS (4) aluminum oxide, (5) silicon nitride, (6) silicon aluminum oxynitrides (Si/sub w/Al/sub x/N/sub y/O/sub z/) known as sialons, and (7) beryllium oxide. Selection of candidate materials for the 1300 to 2200/sup 0/C regime was restricted because of the insufficient property data and operational experience on key performance parameters. Leading candidates were identified, in decreasing ordr of preference, as (1) zirconium oxide (Y/sub 2/O/sub 3/) stabilized), (2) magnesium oxide, (3) cerium oxide, (4) beryllium oxide, (5) calcium oxide, and (6) thorium and uranium oxide.

Tennery, V.J.; Weber, G.W.

1979-02-01T23:59:59.000Z

387

Near-field heat transfer at the spent fuel test-climax: a comparison of measurements and calculations  

Science Conference Proceedings (OSTI)

The Spent Fuel Test in the Climax granitic stock at the DOE Nevada Test Site is a test of the feasibility of storage and retrieval of spent nuclear reactor fuel in a deep geologic environment. Eleven spent fuel elements, together with six thermally identical electrical resistance heaters and 20 peripheral guard heaters, are emplaced 420 m below surface in a three-drift test array. This array was designed to simulate the near-field effects of thousands of canisters of nuclear waste and to evaluate the effects of heat alone, and heat plus ionizing radiation on the rock. Thermal calculations and measurements are conducted to determine thermal transport from the spent fuel and electrical resistance heaters. Calculations associated with the as-built Spent Fuel Test geometry and thermal source histories are presented and compared with thermocouple measurements made throughout the test array. Comparisons in space begin at the spent fuel canister and include the first few metres outside the test array. Comparisons in time begin at emplacement and progress through the first year of thermal loading in this multi-year test.

Patrick, W.C.; Montan, D.N.; Ballou, L.B.

1981-08-21T23:59:59.000Z

388

Nonlinear Processes in Geophysics c ? European Geosciences Union 2003 MHD turbulence and heating of the open field-line solar corona  

E-Print Network (OSTI)

Abstract. This paper discusses the possibility that heating of the solar corona in open field-line regions emanating from coronal holes is due to a nonlinear cascade, driven by low-frequency or quasi-static magnetohydrodynamic fluctuations. Reflection from coronal inhomogeneities plays an important role in sustaining the cascade. Physical and observational constraints are discussed. Kinetic processes that convert cascaded energy into heat must occur in regions of turbulent small-scale reconnection, and may be similar in some respects to ion heating due to intense electron beams observed in the aurora. 1

W. H. Matthaeus; D. J. Mullan; P. Dmitruk; L. Milano; S. Oughton

2002-01-01T23:59:59.000Z

389

Oil shale retorting: a correlation of selected infrared absorbance bands with process heating rates and oil yeild  

DOE Green Energy (OSTI)

The measured absorbance for specific infrared bands of Colorado shale oil is correlated with process oil yield and retorting rate. The results show excellent correlations using bands associated with olefinic groups (910, 990 and 1640 cm/sup -1/); analyses were carried out using both quantitative and qualitative infrared methods. No pretreatment of the crude shale oil is required. The results are encouraging enough that, with further development, the method may have potential use as an on-line monitoring technique for various retorting processes.

Evans, R.A.; Campbell, J.H.

1979-01-01T23:59:59.000Z

390

Numerical Simulation of Thermal-Solid Coupling to Coal-Rock during the Process of Heat Injection Mine for CBM  

Science Conference Proceedings (OSTI)

For gaining effective influence radius of heat injection mine for CBM (Coal Bed Methane) and influence rules of permeability under the condition of temperature and effective stress, heat transfer and elastic mechanics theory combined, hooker law of thermal ... Keywords: heat injection, thermal-solid coupling, numerical simulation, effective influence radius, permeability

Xin Le Yang; Yong Li Zhang

2010-12-01T23:59:59.000Z

391

Eleventh symposium on energy engineering sciences: Proceedings. Solid mechanics and processing: Analysis, measurement and characterization  

SciTech Connect

The Eleventh Symposium on Energy Engineering Sciences was held on May 3--5, 1993, at the Argonne National Laboratory, Argonne, Illinois. These proceedings include the program, list of participants, and the papers that were presented during the eight technical sessions held at this meeting. This symposium was organized into eight technical sessions: Surfaces and interfaces; thermophysical properties and processes; inelastic behavior; nondestructive characterization; multiphase flow and thermal processes; optical and other measurement systems; stochastic processes; and large systems and control. Individual projects were processed separately for the databases.

1993-09-01T23:59:59.000Z

392

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 6: Process Heat and Hydrogen Co-Generation PIRTs  

DOE Green Energy (OSTI)

A Phenomena Identification and Ranking Table (PIRT) exercise was conducted to identify potential safety-0-related physical phenomena for the Next Generation Nuclear Plant (NGNP) when coupled to a hydrogen production or similar chemical plant. The NGNP is a very high-temperature reactor (VHTR) with the design goal to produce high-temperature heat and electricity for nearby chemical plants. Because high-temperature heat can only be transported limited distances, the two plants will be close to each other. One of the primary applications for the VHTR would be to supply heat and electricity for the production of hydrogen. There was no assessment of chemical plant safety challenges. The primary application of this PIRT is to support the safety analysis of the NGNP coupled one or more small hydrogen production pilot plants. However, the chemical plant processes to be coupled to the NGNP have not yet been chosen; thus, a broad PIRT assessment was conducted to scope alternative potential applications and test facilities associated with the NGNP. The hazards associated with various chemicals and methods to minimize risks from those hazards are well understood within the chemical industry. Much but not all of the information required to assure safe conditions (separation distance, relative elevation, berms) is known for a reactor coupled to a chemical plant. There is also some experience with nuclear plants in several countries that have produced steam for industrial applications. The specific characteristics of the chemical plant, site layout, and the maximum stored inventories of chemicals can provide the starting point for the safety assessments. While the panel identified events and phenomena of safety significance, there is one added caveat. Multiple high-temperature reactors provide safety-related experience and understanding of reactor safety. In contrast, there have been only limited safety studies of coupled chemical and nuclear plants. The work herein provides a starting point for those studies; but, the general level of understanding of safety in coupling nuclear and chemical plants is less than in other areas of high-temperature reactor safety.

Forsberg, Charles W [ORNL; Gorensek, M. B. [Savannah River National Laboratory (SRNL); Herring, S. [Idaho National Laboratory (INL); Pickard, P. [Sandia National Laboratories (SNL)

2008-03-01T23:59:59.000Z

393

Revised process for work zone decision-making based on quantitative performance measures  

E-Print Network (OSTI)

Work zones create one of the most challenging environments for drivers. Implementing work zones on urban freeways creates many issues, especially with respect to mobility. Decisions made regarding the work zone should be informed by quantitative data, collected in work zones, to ensure that the mobility impacts of the work zone treatments implemented are mitigated. A new decision-making process, which addresses the shortcomings in the current decision-making processes, was developed through the course of this research. The new process incorporates a Performance Measure/Treatment matrix, which recommends multiple performance measures, each of which is chosen to measure the mobility impacts particular to a specific work zone implementation. Most importantly, the revised decision-making process incorporates a feedback loop. Quantitative data collected in work zones is analyzed after the work zone is complete, to determine the impacts specific decisions had on mobility in the work zone. The lessons learned in previous work zones are then incorporated into the decision-making process, lessening the mobility impacts of future work zones. This thesis develops the new decision-making process, and examines the issues with the application of the process.

Hartmann, Thomas Wayne

2008-08-01T23:59:59.000Z

394

Modeled and measured effects of compressor downsizing in an existing air conditioner/heat pump in the cooling mode  

SciTech Connect

It is not uncommon to find oversized central air conditioners in residences. HVAC contractors sometimes oversize central air conditioners for one reason or another--some to the point that they may be 100% larger than needed to meet the load. Retrofit measures done to improve house envelope and distribution system efficiency also contribute to HVAC oversizing, as they reduce house heating and cooling loads. Proper sizing of an air conditioner or heat pump allows more efficient operation and provides a more comfortable environment than a highly oversized unit. Another factor that lowers operating efficiency is an improper refrigerant charge. Field inspections have revealed that about half of the units checked were not properly charged. An option available to homeowners with oversized air conditioners is to replace the existing compressor with a smaller, more efficient compressor, rather than purchasing a new, smaller unit. Such a retrofit may be economically justified, especially during a compressor failure, provided the oversizing of the existing unit is not too great. A used, 15-year old, single-package heat pump with a capillary tube expansion device on the indoor coil was purchased and tested in a set of environmental chambers to determine its cooling performance at various conditions. The system was also modeled to estimate its existing performance, and that with two different types of retrofitted state-of-the-art (SOA) efficient compressors with about 30% less capacity than the original compressor. This reduced the overall system cooling capacity by about 25%. Modeling estimated that the retrofit would increase system EER at 95 F by 30%, SEER by 34%, and reduce power demand by 39% compared to the existing unit. Reduced cycling losses account for the higher increase in SEER.

Levins, W.P.; Rice, C.K.; Baxter, V.D.

1996-05-01T23:59:59.000Z

395

Measurement and modeling of advanced coal conversion processes. Twenty-first quarterly report, October 1, 1991--December 31, 1991  

SciTech Connect

The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [Advanced Fuel Research, Inc., East Hartford, CT (United States); Smoot, L.D.; Brewster, B.S. [Brigham Young Univ., Provo, UT (United States)

1991-12-31T23:59:59.000Z

396

Fuel ion ratio measurements in reactor relevant neutral beam heated fusion plasmas  

SciTech Connect

In this paper, we present a method to derive n{sub t}/n{sub d} using the ratio of the thermonuclear neutron emission to the beam-target neutron emission. We apply it to neutron spectroscopy data from the magnetic proton recoil spectrometer taken during the deuterium tritium experiment at JET. n{sub t}/n{sub d}-values obtained using neutron spectroscopy are in qualitative agreement with those from other diagnostics measuring the isotopic composition of the exhaust in the divertor.

Hellesen, C.; Eriksson, J.; Conroy, S.; Ericsson, G.; Skiba, M.; Weiszflog, M. [Department of Physics and Astronomy, Applied Nuclear Physics, Uppsala University, Uppsala (Sweden); Collaboration: JET-EFDA Contributors

2012-10-15T23:59:59.000Z

397

L- and M-shell absorption measurements of radiatively heated Fe plasma  

SciTech Connect

Measurements of iron-plasma absorption spectrum over 150-1200 eV photon energy range were reported at temperature T = (72 {+-} 4) eV. The electron temperature was diagnosed with the absorption spectrum of aluminum mixed with iron. The density was not diagnosed directly but obtained from a radiative hydrodynamic simulation with the Multi-1D code. The broad photon energy range enables simultaneous observation of the L-shell and M-shell transitions that dominate the radiation transport at this temperature. The spectrally resolved transmission data were compared to the detailed-configuration-accounting model calculations and reasonable agreement was found.

Zhang Jiyan; Li Hang; Zhao Yang; Xiong Gang; Yuan Zheng; Zhang Haiying; Yang Guohong; Yang Jiamin; Liu Shenye; Jiang Shaoen; Ding Yongkun; Zhang Baohan; Zheng Zhijian [Research Center of Laser Fusion, P. O. Box 919-986, Mianyang 621900 (China); Xu Yan; Meng Xujun; Yan Jun [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

2012-11-15T23:59:59.000Z

398

First Results from the CARIBU Facility: Mass Measurements on the r-Process Path  

E-Print Network (OSTI)

The Canadian Penning Trap mass spectrometer has made mass measurements of 33 neutron-rich nuclides provided by the new Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory. The studied region includes the 132Sn double shell closure and ranges in Z from In to Cs, with Sn isotopes measured out to A = 135, and the typical measurement precision is at the 100 ppb level or better. The region encompasses a possible major waiting point of the astrophysical r process, and the impact of the masses on the r process is shown through a series of simulations. These first-ever simulations with direct mass information on this waiting point show significant increases in waiting time at Sn and Sb in comparison with commonly used mass models, demonstrating the inadequacy of existing models for accurate r-process calculations.

J. Van Schelt; D. Lascar; G. Savard; J. A. Clark; P. F. Bertone; S. Caldwell; A. Chaudhuri; 1 A. F. Levand; G. Li; G. E. Morgan; R. Orford; R. E. Segel; K. S. Sharma; M. G. Sternberg

2013-07-01T23:59:59.000Z

399

Dynamic Heat Flow Measurements to Study the Distribution of Phase-Change Material in an Insulation Matrix  

DOE Green Energy (OSTI)

Phase change materials (PCMs) are used in building envelopes in many forms. The PCMs may be encased in discrete pouches or containers, or they may be distributed within another medium, such as in a board or within a loose fill product. In addition, most PCM products are blends containing fire retardants and chemical stabilizers. However, the current test method to measure the dynamic characteristics of PCMs, the differential scanning calorimeter (DSC), requires specimens that are relatively uniform and very small. Considering the limitations of DSC test results when applied to more complex PCM building envelope applications, we developed a combined experimental analytical protocol to determine the amount of phase-change energy actually available to provide thermal storage. This paper presents this new methodology for performing dynamic heat flow analysis of complex PCM-enhanced building materials. The experimental analytical protocol uses a conventional heat-flow apparatus and three-dimensional (3-D), finite-difference modeling. Based upon results from this methodology, ORNL researchers developed a simplified one-dimensional (1-D) model that can be easily used in whole-building simulations. This paper describes this methodology as applied to an insulation assembly containing a complex array of PCM pouches.

Kosny, Jan [ORNL; Stovall, Therese K [ORNL; Yarbrough, David W [ORNL

2010-01-01T23:59:59.000Z

400

Novel heat pipe combination  

SciTech Connect

The basic heat pipe principle is employed in a heat pipe combination wherein two heat pipes are combined in opposing relationship to form an integral unit; such that the temperature, heat flow, thermal characteristics, and temperature-related parameters of a monitored environment or object exposed to one end of the heat pipe combination can be measured and controlled by controlling the heat flow of the opposite end of the heat pipe combination.

Arcella, F.G.

1978-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

AISI/DOE Advanced Process Control Program Vol. 6 of 6: Temperature Measurement of Galvanneal Steel  

SciTech Connect

This report describes the successful completion of the development of an accurate in-process measurement instrument for galvanneal steel surface temperatures. This achievement results from a joint research effort that is a part of the American Iron and Steel Institute's (AISI) Advanced Process Control Program, a collaboration between the U.S> Department of Energy and fifteen North American Steelmakers. This three-year project entitled ''Temperature Measurement of Galvanneal Steel'' uses phosphor thermography, and outgrowth of Uranium enrichment research at Oak Ridge facilities. Temperature is the controlling factor regarding the distribution of iron and zinc in the galvanneal strip coating, which in turn determines the desired product properties

S.W. Allison; D.L. Beshears; W.W. Manges

1999-06-30T23:59:59.000Z

402

Electron-Heated Target Temperature Measurements in Petawatt Laser Experiments Based on Extreme Ultraviolet Imaging and Spectroscopy  

Science Conference Proceedings (OSTI)

Three independent methods (XUV spectroscopy, imaging at 68 eV and 256 eV) have been used to measure planar target rear surface plasma temperature due to heating by hot electrons. The hot electrons are produced by ultra-intense laser plasma interactions using the 150 J, 0.5 ps Titan laser. Soft x-ray spectroscopy in the 50-400 eV region and imaging at the 68 eV and 256 eV photon energies were used to determine the rear surface temperature of planar CD targets. Temperatures were found to be in the 60-150 eV range, with good agreement between the three diagnostics.

Ma, T; Beg, F; Macphee, A; Chung, H; Key, M; Mackinnon, A; Patel, P; Hatchett, S; Akli, K; Stephens, R; Chen, C; Freeman, R; Link, A; Offermann, D; Ovchinnikov, V; VanWoerkom, L; Zhang, B

2008-05-02T23:59:59.000Z

403

Comparison of the PLTEMP code flow instability predictions with measurements made with electrically heated channels for the advanced test reactor.  

SciTech Connect

When the University of Missouri Research Reactor (MURR) was designed in the 1960s the potential for fuel element burnout by a phenomenon referred to at that time as 'autocatalytic vapor binding' was of serious concern. This type of burnout was observed to occur at power levels considerably lower than those that were known to cause critical heat flux. The conversion of the MURR from HEU fuel to LEU fuel will probably require significant design changes, such as changes in coolant channel thicknesses, that could affect the thermal-hydraulic behavior of the reactor core. Therefore, the redesign of the MURR to accommodate an LEU core must address the same issues of fuel element burnout that were of concern in the 1960s. The Advanced Test Reactor (ATR) was designed at about the same time as the MURR and had similar concerns with regard to fuel element burnout. These concerns were addressed in the ATR by two groups of thermal-hydraulic tests that employed electrically heated simulated fuel channels. The Croft (1964), Reference 1, tests were performed at ANL. The Waters (1966), Reference 2, tests were performed at Hanford Laboratories in Richland Washington. Since fuel element surface temperatures rise rapidly as burnout conditions are approached, channel surface temperatures were carefully monitored in these experiments. For self-protection, the experimental facilities were designed to cut off the electric power when rapidly increasing surface temperatures were detected. In both the ATR reactor and in the tests with electrically heated channels, the heated length of the fuel plate was 48 inches, which is about twice that of the MURR. Whittle and Forgan (1967) independently conducted tests with electrically heated rectangular channels that were similar to the tests by Croft and by Walters. In the Whittle and Forgan tests the heated length of the channel varied among the tests and was between 16 and 24 inches. Both Waters and Whittle and Forgan show that the cause of the fuel element burnout is due to a form of flow instability. Whittle and Forgan provide a formula that predicts when this flow instability will occur. This formula is included in the PLTEMP/ANL code.Error! Reference source not found. Olson has shown that the PLTEMP/ANL code accurately predicts the powers at which flow instability occurs in the Whittle and Forgan experiments. He also considered the electrically heated tests performed in the ANS Thermal-Hydraulic Test Loop at ORNL and report by M. Siman-Tov et al. The purpose of this memorandum is to demonstrate that the PLTEMP/ANL code accurately predicts the Croft and the Waters tests. This demonstration should provide sufficient confidence that the PLTEMP/ANL code can adequately predict the onset of flow instability for the converted MURR. The MURR core uses light water as a coolant, has a 24-inch active fuel length, downward flow in the core, and an average core velocity of about 7 m/s. The inlet temperature is about 50 C and the peak outlet is about 20 C higher than the inlet for reactor operation at 10 MW. The core pressures range from about 4 to about 5 bar. The peak heat flux is about 110 W/cm{sup 2}. Section 2 describes the mechanism that causes flow instability. Section 3 describes the Whittle and Forgan formula for flow instability. Section 4 briefly describes both the Croft and the Waters experiments. Section 5 describes the PLTEMP/ANL models. Section 6 compares the PLTEMP/ANL predictions based on the Whittle and Forgan formula with the Croft measurements. Section 7 does the same for the Waters measurements. Section 8 provides the range of parameters for the Whittle and Forgan tests. Section 9 discusses the results and provides conclusions. In conclusion, although there is no single test that by itself closely matches the limiting conditions in the MURR, the preponderance of measured data and the ability of the Whittle and Forgan correlation, as implemented in PLTEMP/ANL, to predict the onset of flow instability for these tests leads one to the conclusion that the same method should be able to predict the

Feldman, E. (Nuclear Engineering Division)

2011-06-09T23:59:59.000Z

404

Laboratory and Field Measurements of Electrical Resistivity to Determine Saturation and Detect Fractures in a Heated Rock Mass  

DOE Green Energy (OSTI)

Laboratory measurements of the electrical resistivity of intact and fractured representative geothermal reservoir rocks were performed to investigate the resistivity contrast caused by active boiling and to infer saturation and fracture location in a large-scale field test. Measurements were performed to simulate test conditions with confining pressures up to 100 bars and temperatures to 145 C. Measurements presented are a first step toward making the search for fractures using electrical methods quantitatively. Intact samples showed a gradual resistivity increase when pore pressure was decreased below the phase-boundary pressure of free water, while fractured samples show a larger resistivity change at the onset of boiling. The resistivity change is greatest for samples with the most exposed surface area. Analysis of a field test provided the opportunity to evaluate fracture detection using electrical methods at a large scale. Interpretation of electrical resistance tomography (ERT) images of resistivity contrasts, aided by laboratory derived resistivity-saturation-temperature relationships, indicates that dynamic saturation changes in a heated rock mass are observable and that fractures experiencing drying or resaturation can be identified. The same techniques can be used to locate fractures in geothermal reservoirs using electrical field methods.

Roberts, J J; Ramirez, A; Carlson, S; Ralph, W; Bonner, B P

2001-04-03T23:59:59.000Z

405

Generation of a Parabolic Trough Collector Efficiency Curve from Separate Measurements of Outdoor Optical Efficiency and Indoor Receiver Heat Loss: Preprint  

DOE Green Energy (OSTI)

The overall efficiency of a parabolic trough collector is a function of both the fraction of direct normal radiation absorbed by the receiver (the optical efficiency) and the heat lost to the environment when the receiver is at operating temperature. The overall efficiency can be determined by testing the collector under actual operating conditions or by separately measuring these two components. This paper describes how outdoor measurement of the optical efficiency is combined with laboratory measurements of receiver heat loss to obtain an overall efficiency curve. Further, it presents a new way to plot efficiency that is more robust over a range of receiver operating temperatures.

Kutscher, C.; Burkholder, F.; Stynes, K.

2010-10-01T23:59:59.000Z

406

ULTRASONIC MEASUREMENT OF POLARIZATION SWITCHING PROCESSES IN BARIUM- TITANATE SINGLE CRYSTAL  

SciTech Connect

A prevlously developed nondestructive piezoelectric method for studying the state of polarization of ferroelectric crystals is applied to study polarization switching in barium titanate single crystals. Three polarization processes are proposed. The first and second processes were designated nucleation and growth by Merz. The third process cannot be measured by conventional pulse methods, and hss a very slow polarizing velocity. Thls indicates the existence of layers which lie between the surface layer and inner layer. Switching time results ars considered in the light of the above experiments. (auth)

Husimi, K.; Kataoka, K.

1958-08-01T23:59:59.000Z

407

Installation and Implementation of an In-Process Coordinate Measuring Machine (CMM)  

SciTech Connect

This report documents the work accomplished during the installation and implementation of the in-process Coordinate Measuring Machine (CMM) in Department A. A wealth of knowledge has been gained in solving the many technical issues that delayed the partial implementation of this CMM. The work completed thus far lead to the successfully calibrated in-process CMM workstation. A great deal of current and future work has been outlined in the following pages that shall be used as a guide for the full implementation of this CMM with machining processes in Department A.

Johnston, Derek

2008-06-16T23:59:59.000Z

408

Electrodynamics of Magnetars III: Pair Creation Processes in an Ultrastrong Magnetic Field and Particle Heating in a Dynamic Magnetosphere  

E-Print Network (OSTI)

We consider the details of the QED processes that create electron-positron pairs in magnetic fields approaching and exceeding 10^{14} G. The formation of free and bound pairs is addressed, and the importance of positronium dissociation by thermal X-rays is noted. We calculate the collision cross section between an X-ray and a gamma ray, and point out a resonance in the cross section when the gamma ray is close to the threshold for pair conversion. We also discuss how the pair creation rate in the open-field circuit and the outer magnetosphere can be strongly enhanced by instabilities near the light cylinder. When the current has a strong fluctuating component, a cascade develops. We examine the details of particle heating, and show that a high rate of pair creation can be sustained close to the star, but only if the spin period is shorter than several seconds. The dissipation rate in this turbulent state can easily accommodate the observed radio output of the transient radio-emitting magnetars, and even their infrared emission. Finally, we outline how a very high rate of pair creation on the open magnetic field lines can help to stabilize a static twist in the closed magnetosphere and to regulate the loss of magnetic helicity by reconnection at the light cylinder.

Christopher Thompson

2008-02-19T23:59:59.000Z

409

PROCESSING METHOD EFFECT ON SUN DIAMETER MEASUREMENT WITH CCD SOLAR ASTROLABE  

Science Conference Proceedings (OSTI)

Photometric Sun diameter measurement is based on the calculation of the inflection point of the solar limb. In ground measurement, this point is located at a position on the solar limb where the signal-to-noise ratio is very high, which necessitates the appropriate filtering techniques to eliminate the noise while preserving its position. In this paper, we compare the filtering method currently in use to process the CCD solar astrolabe data, the FFTD method widely used, with a different method that we propose. Using the acquired data from the CCD astrolabe at Calern, France during 1997, we can obtain a mean difference of 130 mas in the measured radii.

Djafer, Djelloul [Unite de Recherche Appliquee en Energies Renouvelables, BP 88, Ghardaiea (Algeria); Irbah, Abdenour, E-mail: djdjafer@gmail.com, E-mail: abdenour.irbah@latmos.ipsl.fr [Laboratoire Atmospheres, Milieux, Observations Spatiales (LATMOS), CNRS UMR8190, Universite Paris VI, Pierre et Marie Curie, Universite de Versailles Saint-Quentin-en-Yvelines INSU, 78280 Guyancourt (France)

2012-05-01T23:59:59.000Z

410

An Instrument for Measuring the Key Factors of Successin Software Process Improvement  

Science Conference Proceedings (OSTI)

Understanding how to implement SPI successfully is arguably the most challenging issue facing the SPI field today. The SPI literature contains many case studies of successful companies and descriptions of their SPI programs. However, there has ... Keywords: Software process improvement, measurement instrument, success factors

Tore Dyba

2000-12-01T23:59:59.000Z

411

Measuring and comparing the adoption of software process practices in the software product industry  

Science Conference Proceedings (OSTI)

Compatibility of agile methods and CMMI have been of interest forthe software engineering community, but empirical evidence beyond case studiesis scarce, which be attributed to the lack of validated measurement scales forsurvey studies. In this study, ... Keywords: CMMI, XP, agile methods, rasch model, scale development, scrum, software process improvement, survey research

Mikko Rönkkö; Antero Järvi; Markus M. Mäkelä

2008-05-01T23:59:59.000Z

412

Measurement and finite element analysis of temperature distribution in arc welding process  

Science Conference Proceedings (OSTI)

This presentation describes both the experimental measurement and finite element analysis used to study the temperature distribution during a metal inert gas (MIG) welding process, including the cooling down period. Welding was carried out on ... Keywords: FEA, MIG welding, arc welding, cracking, finite element analysis, metal inert gas welding, residual stress, simulation, temperature distribution, weldment temperature

C. K. Lee; J. Candy; C. P. H. Tan

2004-12-01T23:59:59.000Z

413

Control of absorption columns in the bioethanol process: Influence of measurement uncertainties  

Science Conference Proceedings (OSTI)

The alcohol lost by evaporation during the bioethanol fermentation process may be collected and recovered using an absorption column. This equipment is also used in the carbonic gas treatment, a by-product from the sugar cane fermentation. In the present ... Keywords: Absorption column, Artificial neural network control, Bioethanol, Concentration measurement uncertainty, Fermentation

Eduardo Eyng; Ana M. F. Fileti

2010-03-01T23:59:59.000Z

414

Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity; DOE Software Adopted as Standard for Analyzing Plant Process Heating Systems Company-Wide  

Science Conference Proceedings (OSTI)

This case study describes how the Kaiser Aluminum plant in Sherman, Texas, achieved annual savings of $360,000 and 45,000 MMBtu, and improved furnace energy intensity by 11.1% after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its process heating system.

Not Available

2008-07-01T23:59:59.000Z

415

High temperature thermal conductivity measurements of UO/sub 2/ by Direct Electrical Heating. Final report. [MANTRA-III  

SciTech Connect

High temperature properties of reactor type UO/sub 2/ pellets were measured using a Direct Electrical Heating (DEH) Facility. Modifications to the experimental apparatus have been made so that successful and reproducible DEH runs may be carried out while protecting the pellets from oxidation at high temperature. X-ray diffraction measurements on the UO/sub 2/ pellets have been made before and after runs to assure that sample oxidation has not occurred. A computer code has been developed that will model the experiment using equations that describe physical properties of the material. This code allows these equations to be checked by comparing the model results to collected data. The thermal conductivity equation for UO/sub 2/ proposed by Weilbacher has been used for this analysis. By adjusting the empirical parameters in Weilbacher's equation, experimental data can be matched by the code. From the several runs analyzed, the resulting thermal conductivity equation is lambda = 1/4.79 + 0.0247T/ + 1.06 x 10/sup -3/ exp(-1.62/kT/) - 4410. exp(-3.71/kT/) where lambda is in w/cm K, k is the Boltzman constant, and T is the temperature in Kelvin.

Bassett, B

1980-10-01T23:59:59.000Z

416

Improved measurement placement and topology processing in power system state estimation  

E-Print Network (OSTI)

State estimation plays an important role in modern power system energy management systems. The network observability is a pre-requisite for the state estimation solution. Topological error in the network may cause the state estimation results to be seriously biased. This dissertation studies new schemes to improve the conventional state estimation in the above aspects. A new algorithm for cost minimization in the measurement placement design is proposed in this dissertation. The new algorithm reduces the cost of measurement installation and retains the network observability. Two levels of measurement place- ment designs are obtained: the basic level design guarantees the whole network to be observable using only the voltage magnitude measurement and the branch power flow measurements. The advanced level design keeps the network observable under certain contingencies. To preserve as many substation measurements as possible and maintain the net-work observability, an advanced network topology processor is introduced. A new method - the dynamic utilization of substation measurements (DUSM) - is presented. Instead of seeking the installation of new measurements in the system, this method dynamically calculates state estimation measurement values by applying the current law that regulates different measurement values implicitly. Its processing is at the substation level and, therefore, can be implemented independently in substations. This dissertation also presents a new way to verify circuit breaker status and identify topological errors. The new method improves topological error detection using the method of DUSM. It can be seen that without modifying the state estimator, the status of a circuit breaker may still be verified even without direct power flow measurements. Inferred measurements, calculated by DUSM, are used to help decide the CB status. To reduce future software code maintenance and to provide standard data ex- changes, the newly developed functions were developed in Java, with XML format input/output support. The effectiveness and applicability of these functions are ver-ified by various test cases.

Wu, Yang

2007-08-01T23:59:59.000Z

417

Review of state-of-the-art of solar collector corrosion processes. Task 1 of solar collector studies for solar heating and cooling applications. Final technical progress report  

DOE Green Energy (OSTI)

The state-of-the-art of solar collector corrosion processes is reviewed, and Task 1 of a current research program on use of aqueous heat transfer fluids for solar heating and cooling is summarized. The review of available published literature has indicated that lack of quantitative information exists relative to collector corrosion at the present time, particularly for the higher temperature applications of solar heating and cooling compared to domestic water heating. Solar collector systems are reviewed from the corrosion/service life viewpoint, with emphasis on various applications, collector design, heat transfer fluids, and freeze protection methods. Available information (mostly qualitative) on collector corrosion technology is reviewed to indicate potential corrosion problem areas and corrosion prevention practices. Sources of limited quantitative data that are reviewed are current solar applications, research programs on collector corrosion, and pertinent experience in related applications of automotive cooling and non-solar heating and cooling. A data bank was developed to catalog corrosion information. Appendix A of this report is a bibliography of the data bank, with abstracts reproduced from presently available literature accessions (about 220). This report is presented as a descriptive summary of information that is contained in the data bank.

Clifford, J E; Diegle, R B

1980-04-11T23:59:59.000Z

418

processing  

Science Conference Proceedings (OSTI)

ANSYS Fluent software contains the broad physical modeling capabilities needed to model flow, turbulence, heat transfer, and reactions for a wide variety of ...

419

Critical processes and performance measures for patient safety systems in healthcare institutions: a Delphi study  

E-Print Network (OSTI)

This dissertation study presents a conceptual framework for implementing and assessing patient safety systems in healthcare institutions. The conceptual framework consists of critical processes and performance measures identified in the context of the 2003 Malcolm Baldrige National Quality Award (MBNQA) Health Care Criteria for Performance Excellence. Methodology: The Delphi technique for gaining consensus from a group of experts and forecasting significant issues in the field of the Delphi panel expertise was used. Data collection included a series of questionnaires where the first round questionnaire was based on literature review and the MBNQA criteria for excellence in healthcare, and tested by an instrument review panel of experts. Twenty-three experts (MBNQA healthcare reviewers and senior healthcare administrators from quality award winning institutions) representing 18 states participated in the survey rounds. The study answered three research questions: (1) What are the critical processes that should be included in healthcare patient safety systems? (2) What are the performance measures that can serve as indicators of quality for the processes critical for ensuring patient safety? (3) What processes will be critical for patient safety in the future? The identified patient safety framework was further transformed into a patient safety tool with three levels: basic, intermediate, and advanced. Additionally, the panel of experts identified the major barriers to the implementation of patient safety systems in healthcare institutions. The identified "top seven" barriers were directly related to critical processes and performance measures identified as "important" or "very important" for patient safety systems in the present and in the future. This dissertation study is significant because the results are expected to assist healthcare institutions seeking to develop high quality patient safety programs, processes and services. The identified critical processes and performance measures can serve as a means of evaluating existing patient safety initiatives and guiding the strategic planning of new safety processes. The framework for patient safety systems utilizes a systems approach and will support healthcare senior administrators in achieving and sustaining improvement results. The identified patient safety framework will also assist healthcare institutions in using the MBNQA Health Care Criteria for Performance Excellence for self-assessment and quality improvement.

Akins, Ralitsa B.

2004-08-01T23:59:59.000Z

420

Absolute rate measurements of two-photon process of gases, liquids, and solids  

DOE Green Energy (OSTI)

Due to rapid improvements in high-power laser performance, two-photon absorption processes have become a very useful tool for studying the molecular structures of various gases, liquids and solids. However, measurements of absolute two-photon absorption cross sections were more or less ignored previously because of their small size. In this work, we obtained not only the two-photon absorption spectra, but also measurements of their absolute cross sections for various gases, liquids, and solids. 8 refs., 1 fig., 1 tab.

Chen, C.H.; McCann, M.P.; Payne, M.G.

1987-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "measures processing heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions  

DOE Patents (OSTI)

The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

McGrail, Bernard P. (Pasco, WA); Martin, Paul F. (Richland, WA); Lindenmeier, Clark W. (Richland, WA)

1999-01-01T23:59:59.000Z

422

Entropy Budget of an Atmosphere in Radiative–Convective Equilibrium. Part II: Latent Heat Transport and Moist Processes  

Science Conference Proceedings (OSTI)

In moist convection, atmospheric motions transport water vapor from the earth's surface to the regions where condensation occurs. This transport is associated with three other aspects of convection: the latent heat transport, the expansion work ...

Olivier Pauluis; Isaac M. Held

2002-01-01T23:59:59.000Z

423

Theoretical thermodynamic analysis of a closed-cycle process for the conversion of heat into electrical energy by means of a distiller and an electrochemical cell  

E-Print Network (OSTI)

We analyse a device aimed at the conversion of heat into electrical energy, based on a closed cycle in which a distiller generates two solutions at different concentrations, and an electrochemical cell consumes the concentration difference, converting it into electrical current. We first study an ideal model of such a process. We show that, if the device works at a single fixed pressure (i.e. with a "single effect"), then the efficiency of the conversion of heat into electrical power has an upper bound, given by the efficiency of a reversible Carnot engine operating between the boiling temperatures of the concentrated solution and of the pure solvent. When two heat reservoirs with a higher temperature difference are available, the overall efficiency can be incremented by employing an arrangement of multiple cells working at different pressures ("multiple effects"). We find that a given efficiency can be achieved with a reduced number of effects by using solutions with a high boiling point elevation.

Carati, Andrea; Brogioli, Doriano

2013-01-01T23:59:59.000Z

424

Palm Oil: Production, Processing, Uses, and CharacterizationChapter 15 Measurement and Maintenance of Palm Oil Quality  

Science Conference Proceedings (OSTI)

Palm Oil: Production, Processing, Uses, and Characterization Chapter 15 Measurement and Maintenance of Palm Oil Quality Food Science Health Nutrition Biochemistry Processing eChapters Food Science & Technology Health - Nutrition - Bioch

425

Design concept and testing of an in-bundle gamma densitometer for subchannel void fraction measurements in the THTF electrically heated rod bundle. [PWR  

SciTech Connect

A design concept is presented for an in-bundle gamma densitometer system for measurement of subchannel average fluid density and void fraction in rod or tube bundles. This report describes (1) the application of the design concept to the Thermal-Hydraulic Test Facility (THTF) electrically heated rod bundle; and (2) results from tests conducted in the THTF.

Felde, D. K.

1982-04-01T23:59:59.000Z

426

Heating energy measurements of single-family houses with attics containing radiant barriers in combustion with R-11 and R-30 ceiling insulation  

Science Conference Proceedings (OSTI)

Tests were conducted by Oak Ridge National Laboratory to determine the heating energy performance of two levels of fiberglass-batt attic insulation (R-11 and R-30) in combination with truss and horizontally installed radiant barriers. The tests, a continuation of work started in the summer of 1985, were conducted in three unoccupied ranch-style houses in Karns, Tennessee, during the winter of 1986-87. The measured results of the heating tests showed that a horizontal radiant barrier used with R-11 attic insulation reduced the house heating load by 9.3% compared with R-11 with no radiant barrier, while a truss barrier showed essentially no change in the heating load. Horizontal and truss barriers each reduced the heating load by 3.5% when added to R-30 attic insulation. Moisture condensed on the bottom of the horizontal barrier during cold early morning weather but usually dissipated in the warmer afternoon hours at Karns and left no accumulation in the insulation. Depending on the level of attic insulation, an annual heating and cooling HVAC savings ranging from $5 to $65 is estimated to be attainable when a radiant barrier is installed in the attic at Karns. 8 refs., 64 figs., 18 tabs.

Levins, W.P.; Karnitz, M.A.

1988-08-01T23:59:59.000Z

427

NASA Cold Land Processes Experiment (CLPX 2002/03): Field Measurements of Snowpack Properties and Soil Moisture  

Science Conference Proceedings (OSTI)

A field measurement program was undertaken as part NASA’s Cold Land Processes Experiment (CLPX). Extensive snowpack and soil measurements were taken at field sites in Colorado over four study periods during the two study years (2002 and 2003). ...

Kelly Elder; Don Cline; Glen E. Liston; Richard Armstrong

2009-02-01T23:59:59.000Z

428

Development and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO2 Removal from Coal-Fired Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Demonstration of and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO 2 Removal from Coal-Fired Flue Gas Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-

429

Remote three-dimensional temperature sensing using planar laser induced fluorescence : development and applications to microwave heated liquids  

E-Print Network (OSTI)

Microwave heating is an important technology that has been hampered in application by difficulties in measuring temperatures and temperature distributions during the microwave heating process. This thesis describes the ...

Finegan, Timothy Michael

2004-01-01T23:59:59.000Z

430

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network (OSTI)

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering an estimated energy equivalent of nearly 1.1 million barrels of oil annually. Energy recovered by these units has been used to either preheat process supply air or to heat plant comfort make-up air. Heat pipe heat exchangers have been applied to an ever-expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat pipes. This device has a number of advantageous features. Field operational experience of several units in service has been excellent.

Ruch, M. A.

1981-01-01T23:59:59.000Z

431

Theoretical thermodynamic analysis of a closed-cycle process for the conversion of heat into electrical energy  

E-Print Network (OSTI)

into electrical energy by means of a distiller and an electrochemical cell. A. Caratia , M. Marinoa , D. Brogiolib) Abstract We analyse a device aimed at the conversion of heat into electrical energy, based on a closed with different concentrations can be tapped and converted into electrical energy, e.g. by means

Carati, Andrea

432

Developing an Index to Measure Urban Heat Island Effect Using Satellite Land Skin Temperature and Land Cover Observations  

Science Conference Proceedings (OSTI)

A new index of calculating the intensity of urban heat island effects (UHI) for a city using satellite skin temperature and land cover observations is recommended. UHI, the temperature difference between urban and rural regions, is traditionally ...

Menglin S. Jin

2012-09-01T23:59:59.000Z

433

Estimating Regional Surface Heat and Moisture Fluxes above Prairie Cropland from Surface and Upper-Air Measurements  

Science Conference Proceedings (OSTI)

Upper-air budget methods can be used to estimate the surface sensible and latent heat flux densities on a regional scale. This study assesses the application of radiosonde-based budget methods above homogeneous cropland. Serial daytime soundings ...

Alan G. Barr; G. S. Strong

1996-10-01T23:59:59.000Z

434

Measurement of quasi-ballistic heat transport across nanoscale interfaces using ultrafast coherent soft x-ray beams  

E-Print Network (OSTI)

mean free path, the thermal energy phonon carriers traveli.e. non-diffusive) thermal energy distribution [13, 14] (to the transport of thermal energy from a nanoscale heat

Siemens, M.

2009-01-01T23:59:59.000Z

435

Measurement calibration/tuning & topology processing in power system state estimation  

E-Print Network (OSTI)

State estimation plays an important role in modern power systems. The errors in the telemetered measurements and the connectivity information of the network will greatly contaminate the estimated system state. This dissertation provides solutions to suppress the influences of these errors. A two-stage state estimation algorithm has been utilized in topology error identification in the past decade. Chapter II discusses the implementation of this algorithm. A concise substation model is defined for this purpose. A friendly user interface that incorporates the two-stage algorithm into the conventional state estimator is developed. The performances of the two-stage state estimation algorithms rely on accurate determination of suspect substations. A comprehensive identification procedure is described in chapter III. In order to evaluate the proposed procedure, a topology error library is created. Several identification methods are comparatively tested using this library. A remote measurement calibration method is presented in chapter IV. The un-calibrated quantities can be related to the true values by the characteristic functions. The conventional state estimation algorithm is modified to include the parameters of these functions. Hence they can be estimated along with the system state variables and used to calibrate the measurements. The measurements taken at different time instants are utilized to minimize the influence of the random errors. A method for auto tuning of measurement weights in state estimation is described in chapter V. Two alternative ways to estimate the measurement random error variances are discussed. They are both tested on simulation data generated based on IEEE systems. Their performances are compared. A comprehensive solution, which contains an initialization process and a recursively updating process, is presented. Chapter VI investigates the errors introduced in the positive sequence state estimation due to the usual assumptions of having fully balanced bus loads/generations and continuously transposed transmission lines. Several tests are conducted using different assumptions regarding the availability of single and multi-phase measurements. It is demonstrated that incomplete metering of three-phase system quantities may lead to significant errors in the positive sequence state estimates for certain cases. A novel sequence domain three-phase state estimation algorithm is proposed to solve this problem.

Zhong, Shan

2003-12-01T23:59:59.000Z

436

Heat pipe array heat exchanger  

DOE Patents (OSTI)

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

437

Heat transfer pathways in underfloor air distribution (UFAD) systems  

E-Print Network (OSTI)

the following heat transfer processes: conduction throughtudes of the major heat transfer processes in a typical room

Bauman, F.; Jin, H.; Webster, T.

2006-01-01T23:59:59.000Z

438

Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling  

E-Print Network (OSTI)

a mixed forest from tall tower mixing ratio measurements,vapor measurements from a tall tower, Journal of Geophysical

Riley, W. J.

2010-01-01T23:59:59.000Z

439

Modeling Thermal-Hydrologic Processes for a Heated Fractured Rock System: Impact of a Capillary-Pressure Maximum  

E-Print Network (OSTI)

Tsang, Y.W. : Modeling the thermal-hydrologic processes in aanalyses of heterogeneity and thermal-loading factors for a2005 Lin, W. , Sun, Y. : Thermal hydrological processes in

Sun, Y.; Buscheck, T. A.; Lee, K. H.; Hao, Y.; James, S. C.

2010-01-01T23:59:59.000Z

440

Sensible Heat Observations Reveal Soil-Water Evaporation Dynamics  

Science Conference Proceedings (OSTI)

Soil-water evaporation is important at scales ranging from microbial ecology to large-scale climate. Yet routine measurements are unable to capture rapidly shifting near-surface soil heat and water processes involved in soil-water evaporation. ...

J. L. Heitman; R. Horton; T. J. Sauer; T. M. DeSutter

2008-02-01T23:59:59.000Z

First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11