Powered by Deep Web Technologies
Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High-Resolution Atmospheric Sensing of Multiple Atmospheric Variables Using the DataHawk Small Airborne Measurement System  

Science Conference Proceedings (OSTI)

The DataHawk small airborne measurement system provides in situ atmospheric measurement capabilities for documenting scales as small as 1 m and can access reasonably large volumes in and above the atmospheric boundary layer at low cost. The design ...

Dale A. Lawrence; Ben B. Balsley

2013-10-01T23:59:59.000Z

2

High-Resolution Atmospheric Sensing of Multiple Atmospheric Variables Using the DataHawk Small Airborne Measurement System  

Science Conference Proceedings (OSTI)

The DataHawk small airborne measurement system provides in-situ atmospheric measurement capabilities for documenting scales as small as 1 m and can access reasonably large volumes in and above the atmospheric boundary layer at low cost. The design ...

Dale A. Lawrence; Ben B. Balsley

3

Control and Monitoring Instrumentation for the Continuous Measurement of Atmospheric CO2 and Meteorological Variables  

Science Conference Proceedings (OSTI)

The NOAA/GMCC program was chartered to monitor the trends in those atmospheric constituents that can cause climate change. A four-observatory network was established, and a 15-year database has resulted for selected variables. At the inception, a ...

G. A. Herbert; E. R. Green; J. M. Harris; G. L. Koenig; S. J. Roughton; K. W. Thaut

1986-09-01T23:59:59.000Z

4

Simulation of Atmospheric Variability  

Science Conference Proceedings (OSTI)

A spectral atmospheric circulation model is time-integrated for approximately 18 years. The model has a global computational domain and realistic geography and topography. The model undergoes an annual cycle as daily values of seasonally varying ...

Syukuro Manabe; Douglas G. Hahn

1981-11-01T23:59:59.000Z

5

Atmospheric Radiation Measurement Program  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan - ARM in the next 5 years ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement ARM Status - Science ARM Status - Science * Steadily increasing productivity - Poster session - over 220 posters (may need to do something about submissions next year) - Peer-reviewed articles: 2.5 to 3 per year per

6

ARM - Measurement - Atmospheric pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

pressure pressure ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric pressure The pressure exerted by the atmosphere as a consequence of gravitational attraction exerted upon the "column" of air lying directly above the point in question. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

7

ARM - Measurement - Atmospheric temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

temperature temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

8

ARM - Measurement - Atmospheric moisture  

NLE Websites -- All DOE Office Websites (Extended Search)

moisture moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric moisture The moisture content of the air as indicated by several measurements including relative humidity, specific humidity, dewpoint, vapor pressure, water vapor mixing ratio, and water vapor density; note that precipitable water is a separate type. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer

9

ARM - Measurement - Atmospheric turbulence  

NLE Websites -- All DOE Office Websites (Extended Search)

turbulence turbulence ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric turbulence High frequency velocity fluctuations that lead to turbulent transport of momentum, heat, mositure, and passive scalars, and often expressed in terms of variances and covariances. Categories Atmospheric State, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

10

ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement  

NLE Websites -- All DOE Office Websites (Extended Search)

An Integrated Column Description An Integrated Column Description of the Atmosphere An Integrated Column Description of the Atmosphere Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Pacific Northwest National Laboratory Pacific Northwest National Laboratory The "other" Washington ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Credits to Credits to * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science team * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science team ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Outline Outline * A little philosophy

11

Atmospheric Radiation Measurement Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Observatory (UAO) Pilot Experiment at NYC" - Michael Reynolds, BNL 17:30 "EML Pilot Studies for the Urban Atmospheric Observatory" - Hsi-Na (Sam) Lee, EML 17:40 "A...

12

Internal Versus SST-Forced Atmospheric Variability as Simulated by an Atmospheric General Circulation Model  

Science Conference Proceedings (OSTI)

The variability of atmospheric flow is analyzed by separating it into an internal part due to atmospheric dynamics only and an external (or forced) part due to the variability of sea surface temperature forcing. The two modes of variability are ...

Ali Harzallah; Robert Sadourny

1995-03-01T23:59:59.000Z

13

Homoclinic Dynamics: A Scenario for Atmospheric Ultralow-Frequency Variability  

Science Conference Proceedings (OSTI)

In this paper, a link will be established between atmospheric ultralow-frequency variability (ULFV) and the occurrence of homoclinic dynamics in models of large-scale atmospheric flow. It is known that uncoupled atmosphere models possess ...

Daan T. Crommelin

2002-05-01T23:59:59.000Z

14

Automated Measurements of Atmospheric Visibility  

Science Conference Proceedings (OSTI)

The concept of using a solid-state, linear-array imaging device coupled with computerized scene analysis and display to measure daytime atmospheric visibility is described. Computer software is implemented for routine conversion of observed ...

W. Viezee; W. E. Evans

1983-08-01T23:59:59.000Z

15

Evolution Dynamics of Tropical Ocean-Atmosphere Annual Cycle Variability  

Science Conference Proceedings (OSTI)

The structure of ocean-atmosphere annual cycle variability is extracted from the revised Comprehensive Ocean-Atmosphere Data Set SSTs, surface winds, and the latent heat (LH) and net shortwave (SW) surface fluxes using the covariance-based ...

Sumant Nigam; Yi Chao

1996-12-01T23:59:59.000Z

16

Modeling Climate Variability in the Tropical Atlantic Atmosphere  

Science Conference Proceedings (OSTI)

Climate variability in the tropical Atlantic sector as represented in six atmospheric general circulation models is examined. On the annual mean, most simulations overestimate wind stress away from the equator although much of the variability can ...

Jiande Wang; James A. Carton

2003-12-01T23:59:59.000Z

17

Carbon Dioxide Variability and Atmospheric Circulation  

Science Conference Proceedings (OSTI)

Hourly values of the concentration of atmospheric carbon dioxide at Mauna Loa Observatory (MLO) formed the basis for an investigation of concentration fluctuations on daily to monthly time scales. In agreement with earlier studies we found no ...

James C. Sadler; Colin S. Ramage; Arnold M. Hori

1982-06-01T23:59:59.000Z

18

Intraseasonal Variability in a Dry Atmospheric Model  

Science Conference Proceedings (OSTI)

A long integration of a primitive equation dry atmospheric model with time-independent forcing under boreal winter conditions is analyzed. A variety of techniques such as time filtering, space–time spectral analysis, and lag regressions are used ...

Hai Lin; Gilbert Brunet; Jacques Derome

2007-07-01T23:59:59.000Z

19

The Choice of Variable for Atmospheric Moisture Analysis  

Science Conference Proceedings (OSTI)

The implications of using different control variables for the analysis of moisture observations in a global atmospheric data assimilation system are investigated. A moisture analysis based on either mixing ratio or specific humidity is prone to ...

Dick P. Dee; Arlindo M. da Silva

2003-01-01T23:59:59.000Z

20

Simulating Random Natural Variability in Time-Varying Atmospheric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Variability in Time-Varying Atmospheric Concentrations of Toxic Gas from Pipeline Ruptures Speaker(s): David J. Wilson Date: February 4, 2004 - 12:00pm Location: Bldg....

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Atmospheric Variability on a Zonally Symmetric Land Planet  

Science Conference Proceedings (OSTI)

Atmospheric variability an a zonally symmetric planet in the absence of external forcing anomalies is studied. With idealized boundary conditions such as the absence of ocean and topography, and by using perpetual equinox solar forcing, a 15-year ...

Lai-Yung Leung; Gerald R. North

1991-08-01T23:59:59.000Z

22

Interannual Modes of Variability in Atmospheric Angular Momentum  

Science Conference Proceedings (OSTI)

The interannual variability of atmospheric angular momentum over a 26-yr period is studied regionally using monthly analyses of zonal winds derived from the global rawinsonde network. Variations in zonal-mean momentum, filtered to emphasize ...

Robert X. Black; David A. Salstein; Richard D. Rosen

1996-11-01T23:59:59.000Z

23

Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Radiation Measurement (ARM) Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

24

Atmospheric Radiation Measurement Convective and Orographically...  

NLE Websites -- All DOE Office Websites (Extended Search)

Induced Precipitation Study The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM Mobile Facility...

25

Atmospheric Radiation Measurement Program Climate Research Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1-December 31, 2010 DISCLAIMER This report was prepared as an account of...

26

Atmospheric Radiation Measurement Program Climate Research Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1-June 30, 2011 DISCLAIMER This report was prepared as an account of work...

27

The Incorporation of Atmospheric Variability into DIRSIG  

E-Print Network (OSTI)

of Energy under Contract No. DE-AC02-98CH10886. BNL-63555 CLOSURE EXPERIMENT ­ MODTRAN-3 PREDICTION than calibration uncertainty may be important. The radiative transfer model MODTRAN-3 is used the MODTRAN-3 predicted value with the direct-normal short-wave irradiance measured by a calibrated

Salvaggio, Carl

28

Simulating Random Natural Variability in Time-Varying Atmospheric  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulating Random Natural Variability in Time-Varying Atmospheric Simulating Random Natural Variability in Time-Varying Atmospheric Concentrations of Toxic Gas from Pipeline Ruptures Speaker(s): David J. Wilson Date: February 4, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Jeiwon Deputy Random time series are found everywhere in nature. The Brownian motion of small particles; the price of assets (stocks) in financial markets; the diffusion of individual molecules through a membrane; the ballistic deposition of nano-particles onto a lattice substrate; and the time-varying concentration fluctuations at a point downwind from a pollution source all have a common dynamic description. All are stochastic processes where the local rate of change of the variable has a natural drift back to some equilibrium state, combined with a random fluctuating component. We will

29

An Instrumentation Complex for Atmospheric Radiation Measurements in Siberia  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrumentation Complex for Atmospheric Radiation Instrumentation Complex for Atmospheric Radiation Measurements in Siberia S. M. Sakerin, F. V. Dorofeev, D. M. Kabanov, V. S. Kozlov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Polkin, V. P. Shmargunov, S. A. Terpugova, S. A. Turchinovich, and V. N. Uzhegov Institute of Atmospheric Optics Tomsk, Russia Introduction The instrumentation complex is described, which has been prepared for radiative experiments in the region of Tomsk (West Siberia). The complex consists of three groups of devices to measure (a) the characteristics of the total downward radiation; (b) the most variable components of the atmospheric transparency directly affecting the income of radiation (aerosol optical depth [AOD], total content of water vapor, ozone, etc.); and (c) aerosol and meteorological parameters of the near-ground layer of the

30

Synoptic Variability of Ocean–Atmosphere Turbulent Fluxes Associated with Atmospheric Cyclones  

Science Conference Proceedings (OSTI)

Synoptic-scale variability in the air–sea turbulent fluxes in the areas of midlatitudinal western boundary currents is analyzed. In the Gulf Stream area, ocean–atmosphere fluxes on synoptic time- and space scales are clearly coordinated with the ...

Olga Zolina; Sergey K. Gulev

2003-08-01T23:59:59.000Z

31

Atmospheric Radiation Measurement Climate Research Facility | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Radiation Measurement Climate Research Facility Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study climate change 1 of 22 Argonne scientists study climate change The U.S. Department of Energy's Office of Science provided $60 million in ARRA funding for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a DOE national user facility that has been operating climate observing sites around the world for nearly two decades. These sites help scientists study clouds and their influence on the sun's radiant energy, which heats our planet. Above is one of the purchases: the Vaisala Present Weather Detector. It optically measures visibility, present weather, precipitation intensity, and precipitation type. It provides a measure of current weather conditions by combining measurements from three

32

Multiscale Variability of the Atmospheric Mixed Layer over the Western Pacific Warm Pool  

Science Conference Proceedings (OSTI)

Sounding data from Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) have provided a first opportunity to document the variability of the atmospheric mixed layer over the western Pacific warm pool on ...

Richard H. Johnson; Paul E. Ciesielski; Jennifer A. Cotturone

2001-09-01T23:59:59.000Z

33

Estimating the Contribution of Leonard and Cross Terms to the Subfilter Scale from Atmospheric Measurements  

Science Conference Proceedings (OSTI)

The theoretical analysis presented recently on the role of Leonard and cross terms in determining the subfilter contribution when using a running mean is verified using atmospheric measurements. Measurements of variables with different spectral ...

S. Galmarini; F. Michelutti; P. Thunis

2000-09-01T23:59:59.000Z

34

A Variable Sky-View Platform for the Measurement of Ultraviolet Radiation  

Science Conference Proceedings (OSTI)

One of the more difficult tasks confronting atmospheric researchers today is the acquisition of long-term radiometric measurements that encapsulate variability in the sky hemisphere as well as time. High quality spatial measurements would allow ...

Christopher Kuchinke; Manuel Nunez

2003-08-01T23:59:59.000Z

35

Atmospheric Measurements of Climate-Relevant Species  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Measurements of Climate-Relevant Species Atmospheric Measurements of Climate-Relevant Species CDIAC's data collection includes measurements of the following climate-relevant chemical species. A summary of recent greenhouse gas concentrations is also available. To determine how compounds are named, see the CDIAC "Name that compound" page. Butane (C4H10) Carbon Dioxide (CO2) Carbon Isotopes Carbon Monoxide (CO) Carbon Tetrachloride (CCl4) Chlorofluorocarbons Chloroform (CHCl3) Deuterium (2H) Ethane (C2H6) Ethyl Nitrate (C2H5ONO2) Ethyne (C2H2) Fluoroform (CHF3) Halogenated Compounds (modern records) Halons (fluorocarbons) Hydrogen (H2) Hydrochlorofluorocarbons (HCFCs) Hydrofluorocarbons (HFCs) i-Propyl Nitrate (C3H7ONO2) Methane (CH4) Methyl Bromide (CH3Br) Methyl Chloride (CH3Cl) Methyl Chloroform (CH3CCl3)

36

Retrieval of Atmospheric Temperature Profiles from AMSU-A Measurement Using a Neural Network Approach  

Science Conference Proceedings (OSTI)

Backpropagation neural networks are applied to retrieve atmospheric temperature profiles and tropopause variables from the NOAA-15 Advanced Microwave Sounding Unit-A (AMSU-A) measurement based on two different data sources. The first case uses ...

Lei Shi

2001-03-01T23:59:59.000Z

37

Observed Atmospheric Responses to Global SST Variability Modes: A Unified Assessment Using GEFA  

Science Conference Proceedings (OSTI)

The authors present a comprehensive assessment of the observed atmospheric response to SST variability modes in a unified approach using the Generalized Equilibrium Feedback Analysis (GEFA). This study confirms a dominant atmospheric response to ...

Na Wen; Zhengyu Liu; Qinyu Liu; Claude Frankignoul

2010-04-01T23:59:59.000Z

38

Local Balance and Variability of Atmospheric Heat Budget over Oceans: Observation and Reanalysis-based Estimates  

Science Conference Proceedings (OSTI)

We quantify systematic differences between modern observation- and reanalysis-based estimates of atmospheric heating rates and identify dominant variability modes over tropical oceans. Convergence of heat fluxes between the top of the atmosphere ...

Sun Wong; Tristan S. L’Ecuyer; William S. Olson; Xianan Jiang; Eric J. Fetzer

39

Local Regimes of Atmospheric Variability: A Case Study of Southern California  

Science Conference Proceedings (OSTI)

The primary regimes of local atmospheric variability are examined in a 6-km regional atmospheric model of the southern third of California, an area of significant land surface heterogeneity, intense topography, and climate diversity. The model ...

Sebastien Conil; Alex Hall

2006-09-01T23:59:59.000Z

40

Observational Evidence for Oceanic Forcing of Atmospheric Variability in the Nordic Seas Area  

Science Conference Proceedings (OSTI)

Substantial predictability of the wintertime atmospheric variability in the Nordic (Greenland–Iceland–Norwegian and Barents) seas region is reported based on oceanic observations and atmospheric reanalysis data. In particular, about 60% of the ...

Pawel Schlichtholz

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Interdecadal Variability in a Hybrid Coupled Ocean–Atmosphere–Sea Ice Model  

Science Conference Proceedings (OSTI)

Interdecadal climate variability in an idealized coupled ocean–atmosphere–sea-ice model is studied. The ocean component is a fully three-dimensional primitive equation model and the atmospheric component is a two-dimensional (2D) energy balance ...

S. Kravtsov; M. Ghil

2004-07-01T23:59:59.000Z

42

The Basic Effects of Atmosphere–Ocean Thermal Coupling on Midlatitude Variability  

Science Conference Proceedings (OSTI)

Starting from the assumption that the atmosphere is the primary source of variability internal to the midlatitude atmosphere–ocean system on intraseasonal to interannual timescales, the authors construct a simple stochastically forced, one-...

Joseph J. Barsugli; David S. Battisti

1998-02-01T23:59:59.000Z

43

Principal Modes of Atmospheric Variability in Model Atmospheres with and without Anomalous Sea Surface Temperature Forcing in the Tropical Pacific  

Science Conference Proceedings (OSTI)

Principal modes of low-frequency atmospheric variability and the influence of sea surface temperature anomalies on such modes are investigated by examining the output from two general circulation model experiments. In the first experiment (the “...

In-Sik Kang; Ngar-Cheung Lau

1986-11-01T23:59:59.000Z

44

Orographic Influences on the Distribution and Generation of Atmospheric Variability in a GCM  

Science Conference Proceedings (OSTI)

The effect of large-scale mountains on atmospheric variability is studied in a series of GCM experiments in which a single mountain is varied in height from 0 to 4 km. High-frequency (? 30 days) variability are ...

Jin-Yi Yu; Dennis L. Hartmann

1995-07-01T23:59:59.000Z

45

Atmospheric variability of methyl chloride during the last 300 years from an Antarctic ice core and firn air  

E-Print Network (OSTI)

as a low-pass filter, smoothing variations in the atmospheric composition of a gas over decadal time scales core measurements from Siple Dome provide evidence for a cyclic natural variability on the order of 10 increase measured in firn air may largely be a result of natural processes, which may continue to affect

Saltzman, Eric

46

Interannual Variability of Land-Atmosphere Coupling Strength  

Science Conference Proceedings (OSTI)

Recent studies in the Global Land-Atmosphere Coupling Experiment (GLACE) established a framework to estimate the extent to which anomalies in the land surface state (e.g., soil moisture) can affect rainfall generation and other atmospheric ...

Zhichang Guo; Paul A. Dirmeyer

47

Atmospheric Radiation Measurement Program Science Plan  

SciTech Connect

The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM's Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

Ackerman, T

2004-10-31T23:59:59.000Z

48

A Case for Including Atmospheric Thermodynamic Variables in Wind Turbine Fatigue Loading Parameter Identification  

DOE Green Energy (OSTI)

This paper makes the case for establishing efficient predictor variables for atmospheric thermodynamics that can be used to statistically correlate the fatigue accumulation seen on wind turbines. Recently, two approaches to this issue have been reported. One uses multiple linear-regression analysis to establish the relative causality between a number of predictors related to the turbulent inflow and turbine loads. The other approach, using many of the same predictors, applies the technique of principal component analysis. An examination of the ensemble of predictor variables revealed that they were all kinematic in nature; i.e., they were only related to the description of the velocity field. Boundary-layer turbulence dynamics depends upon a description of the thermal field and its interaction with the velocity distribution. We used a series of measurements taken within a multi-row wind farm to demonstrate the need to include atmospheric thermodynamic variables as well as velocity-related ones in the search for efficient turbulence loading predictors in various turbine-operating environments. Our results show that a combination of vertical stability and hub-height mean shearing stress variables meet this need over a period of 10 minutes.

Kelley, N. D.

1999-08-02T23:59:59.000Z

49

Measurements of Atmospheric Methane and 13C/12C of Atmospheric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane and 13C12C, Flask Air Samples Measurements of Atmospheric Methane and 13C12C of Atmospheric Methane from Flask Air Samples (1999) data Data Investigators Paul Quay and...

50

Atmospheric Modes of Variability in a Changing Climate  

Science Conference Proceedings (OSTI)

The response of the atmospheric circulation to an enhanced radiative greenhouse gas forcing in a transient integration with a coupled global climate model is investigated. The spatial patterns of the leading modes of Northern Hemisphere ...

Jenny Brandefelt

2006-11-01T23:59:59.000Z

51

Time and Space Variability of Spectral Estimates of Atmospheric Pressure  

Science Conference Proceedings (OSTI)

The purpose of this paper is to analyze the temporal and spatial behavior of atmospheric pressure spectra. The literature shows many examples of pressure, wind and temperature spectra whose shapes display a remarkable degree of universality. ...

Flavio G. Canavero; Franco Einaudi

1987-06-01T23:59:59.000Z

52

Overwater Atmospheric Diffusion: Measurements and Parameterization  

Science Conference Proceedings (OSTI)

A series of ten atmospheric tracer experiments provided 62 hours of overwater atmospheric dispersion data. Sulfur hexafluoride (SF6) was released as the tracer gas at a height of 13 m from a ship positioned about 7 km off the central California ...

Walter F. Dabberdt

1986-08-01T23:59:59.000Z

53

Measurements of Atmospheric Nanoparticles (1875–1980)  

Science Conference Proceedings (OSTI)

The atmosphere contains a large variety of particles, ranging in size from near molecular (~1 nm) to larger than 10,000 nm. The total number concentration N of particles is dominated by nanoparticles ? 100 nm in diameter. Discovery of atmospheric ...

Volker Mohnen; George M. Hidy

2010-11-01T23:59:59.000Z

54

Land Surface Hydrology Parameterization for Atmospheric General Circulation models Including Subgrid Scale Spatial Variability  

Science Conference Proceedings (OSTI)

Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation ...

D. Entekhabi; P. S. Eagleson

1989-08-01T23:59:59.000Z

55

Radar Observations of Humidity Variability in and above the Marine Atmospheric Boundary Layer  

Science Conference Proceedings (OSTI)

Humidity variability at the top of the marine atmospheric boundary layer and in the overlying free troposphere was examined using data collected during the marine stratocumulus phase of the First Regional Experiment (FIRE) of the International ...

Allen B. White; C. W. Fairall; Dennis W. Thomson

1991-10-01T23:59:59.000Z

56

Interannual Tropical Rainfall Variability in General Circulation Model Simulations Associated with the Atmospheric Model Intercomparison Project  

Science Conference Proceedings (OSTI)

The interannual variability of rainfall over the Indian subcontinent, the African Sahel, and the Nordeste region of Brazil have been evaluated in 32 models for the period 1979–88 as part of the Atmospheric Model Intercomparison Project (AMIP). ...

K. R. Sperber; T. N. Palmer

1996-11-01T23:59:59.000Z

57

North Atlantic Interannual Variability in a Coupled Ocean–Atmosphere Model  

Science Conference Proceedings (OSTI)

The primary mode of sea surface temperature variability in the North Atlantic on interannual timescales during winter is examined in a coupled ocean–atmosphere model. The model, developed at die Geophysical Fluid Dynamics Laboratory, is global in ...

Thomas L. Delworth

1996-10-01T23:59:59.000Z

58

Changes in the Spread of the Variability of the Seasonal Mean Atmospheric States Associated with ENSO  

Science Conference Proceedings (OSTI)

For a fixed sea surface temperature (SST) forcing, the variability of the observed seasonal mean atmospheric states in the extratropical latitudes can be characterized in terms of probability distribution functions (PDFs). Predictability of the ...

Arun Kumar; Anthony G. Barnston; Peitao Peng; Martin P. Hoerling; Lisa Goddard

2000-09-01T23:59:59.000Z

59

Analysis of Near-Surface Atmospheric Variables: Validation of the SAFRAN Analysis over France  

Science Conference Proceedings (OSTI)

Système d’analyse fournissant des renseignements atmosphériques à la neige (SAFRAN) is a mesoscale atmospheric analysis system for surface variables. It produces an analysis at the hourly time step using ground data observations. One of SAFRAN’s ...

P. Quintana-Seguí; P. Le Moigne; Y. Durand; E. Martin; F. Habets; M. Baillon; C. Canellas; L. Franchisteguy; S. Morel

2008-01-01T23:59:59.000Z

60

Scales of Variability in the Equatorial Pacific Inferred form Tropical Atmosphere-Ocean Buoy Array  

Science Conference Proceedings (OSTI)

The highly temporally resolved time series from the Tropical Atmosphere-Ocean moored buoy array are used to evaluate the scales of thermal variability in the upper equatorial Pacific. The TAO array consists of nearly 70 deep-ocean moorings ...

William S. Kessler; M. C. Spillane; Michael J. McPhaden; D. E. Harrison

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Influence of the AMOC Variability on the Atmosphere in CCSM3  

Science Conference Proceedings (OSTI)

The influence of the Atlantic meridional overturning circulation (AMOC) variability on the atmospheric circulation is investigated in a control simulation of the NCAR Community Climate System Model, version 3 (CCSM3), where the AMOC evolves from ...

Claude Frankignoul; Guillaume Gastineau; Young-Oh Kwon

2013-12-01T23:59:59.000Z

62

Variability in a Nonlinear Model of the Atmosphere with Zonally Symmetric Forcing  

Science Conference Proceedings (OSTI)

The variability in a two-level nonlinear atmospheric model is examined. The model domain is spherical. The sole forcing is a zonally symmetric parameterization of the December-February insulation. An extended 1500 day run is carefully analyzed.

Harry H. Hendon; Dennis L. Hartmann

1985-12-01T23:59:59.000Z

63

Atmospheric Carbon Dioxide Record from Flask Measurements at...  

NLE Websites -- All DOE Office Websites (Extended Search)

Island Atmospheric Carbon Dioxide Record from Flask Measurements at Lampedusa Island graphics Graphics data Data Investigators Paolo Chamard, Luigi Ciattaglia, Alcide di Sarra,...

64

Atmospheric CO2 Record from Continuous Measurements at Jubany...  

NLE Websites -- All DOE Office Websites (Extended Search)

PNRA (National Research Program in Antarctica) began continuous atmospheric carbon dioxide measurements at Jubany in 1994. The laboratory at Jubany Station is operated...

65

Decadal Variability of Two Oceans and an Atmosphere  

Science Conference Proceedings (OSTI)

A model of the midlatitude, large-scale interaction between the upper ocean and the troposphere is used to illustrate possible mechanisms of connection between the decadal variability in the North Atlantic and in the North Pacific. The two ocean ...

Blanca Gallego; Paola Cessi

2001-07-01T23:59:59.000Z

66

Central-West Argentina Summer Precipitation Variability and Atmospheric Teleconnections  

Science Conference Proceedings (OSTI)

The interannual-to-multidecadal variability of central-west Argentina (CWA) summer (October–March) precipitation and associated tropospheric circulation are studied in the period 1900–2010. Precipitation shows significant quasi cycles with periods ...

Eduardo A. Agosta; Rosa H. Compagnucci

2012-03-01T23:59:59.000Z

67

Projection of Climate Change onto Modes of Atmospheric Variability  

Science Conference Proceedings (OSTI)

Two possible interpretations of forced climate change view it as projecting, either linearly or nonlinearly, onto the dominant modes of variability of the climate system. An evaluation of these two interpretations is performed using annual mean ...

DáithíA. Stone; Andrew J. Weaver; Ronald J. Stouffer

2001-09-01T23:59:59.000Z

68

Biennial Variability in an Atmospheric General Circulation Model  

Science Conference Proceedings (OSTI)

Recent observational analyses have indicated that tropospheric quasi-biennial oscillations (QBs) may play a fundamental role in regulating the timing and strength of El Niño and the Southern Oscillation. The biennial variability is examined in ...

Michael A. Alexander; Klaus M. Weickmann

1995-03-01T23:59:59.000Z

69

Multiple Equilibria, Natural Variability, and Climate Transitions in an Idealized Ocean–Atmosphere Model  

Science Conference Proceedings (OSTI)

An idealized coupled ocean–atmosphere is constructed to study climatic equilibria and variability. The model focuses on the role of large-scale fluid motions in the climate system. The atmospheric component is an eddy-resolving two-level global ...

R. Saravanan; James C. Mc Williams

1995-10-01T23:59:59.000Z

70

Coupled LandAtmosphere Intraseasonal Variability of the West African Monsoon in a GCM  

E-Print Network (OSTI)

Coupled Land­Atmosphere Intraseasonal Variability of the West African Monsoon in a GCM SALLY L of intraseasonal variability in the West African monsoon. This hypothesis is investigated with a set of three in the West African monsoon can exist independently of soil moisture; however, soil moisture and land

Matthews, Adrian

71

Low-Frequency Variability in the Arctic Atmosphere, Sea Ice, and Upper-Ocean Climate System  

Science Conference Proceedings (OSTI)

The low-frequency natural variability of the arctic climate system is modeled using a single-column, energy balance model of the atmosphere. sea ice, and upper-ocean system. Variability in the system is induced by forcing with realistic, random ...

C. M. Bitz; D. S. Battisti; R. E. Moritz; J. A. Beesley

1996-02-01T23:59:59.000Z

72

On the Theory of the Long-Term Variability of the Atmosphere  

Science Conference Proceedings (OSTI)

Much of the atmosphere's long-term variability is contained in the planetary modes with zonal wavenumber m?5. It is proposed that a considerable fraction of this variability is induced by the nonlinear interaction of synoptic-scale modes (m>5) ...

Joseph Egger; Heinz-Dieter Schilling

1983-05-01T23:59:59.000Z

73

Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Style Guide Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility March 2013 Style Guide Atmospheric Radiation Measurement Climate Research Facility March 2013 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research March 2013 ii Contents 1.0 Introduction .......................................................................................................................................... 1 2.0 Acronyms and Abbreviations ............................................................................................................... 1 2.1 Usage ............................................................................................................................................ 1

74

Decadal Variability of the Indo-Pacific Warm Pool and Its Association with Atmospheric and Oceanic Variability in the NCEP–NCAR and SODA Reanalyses  

Science Conference Proceedings (OSTI)

Decadal variability of the Indo-Pacific warm pool (IPWP) sea surface temperature (SST) and its association with atmospheric and oceanic circulations are investigated with observed 50-yr (1952–2001) SST, and the NCEP–NCAR atmospheric and Simple ...

Hui Wang; Vikram M. Mehta

2008-11-01T23:59:59.000Z

75

A Cable-Borne Tram for Atmospheric Measurements along Transects  

Science Conference Proceedings (OSTI)

A system to make atmospheric measurements from a moving trolley suspended by a stretched cable has been developed. At present, these measurements consist of wind velocity, temperature, humidity, and carbon dioxide concentration, though other ...

S. P. Oncley; K. Schwenz; S. P. Burns; J. Sun; R. K. Monson

2009-03-01T23:59:59.000Z

76

Simulation of the Tropical Pacific Climate with a Coupled Ocean-Atmosphere General Circulation Model. Part II: Interannual Variability  

Science Conference Proceedings (OSTI)

Two multiyear simulations with a coupled ocean-atmosphere general circulation model (GCM)-totaling 45 years-are used to investigate interannual variability at the equator. The model consists of the UCLA global atmospheric GCM coupled to the GFDL ...

A. W. Robertson; C-C. Ma; M. Ghil; C. R. Mechoso

1995-05-01T23:59:59.000Z

77

Beyond Thermal Interaction between Ocean and Atmosphere: On the Extratropical Climate Variability due to the Wind-Induced SST  

Science Conference Proceedings (OSTI)

Prescribing sea surface temperature (SST) for the atmospheric general circulation models (GCM) may not lead to underestimation of the coupled variability. In this study, a set of SST-driven atmospheric GCM experiments, starting from slightly ...

Dong Eun Lee; Zhengyu Liu; Yun Liu

2008-05-01T23:59:59.000Z

78

THE ATMOSPHERIC DYNAMICS MISSION FOR GLOBAL WIND FIELD MEASUREMENT  

Science Conference Proceedings (OSTI)

The prime aim of the Atmospheric Dynamics Mission is to demonstrate measurements of vertical wind profiles from space. Extensive studies conducted by the European Space Agency over the past 15 years have culminated in the selection of a high-...

Ad Stoffelen; Jean Pailleux; Erland Källén; J. Michael Vaughan; Lars Isaksen; Pierre Flamant; Werner Wergen; Erik Andersson; Harald Schyberg; Alain Culoma; Roland Meynart; Martin Endemann; Paul Ingmann

2005-01-01T23:59:59.000Z

79

Measurements, Models, and Hypotheses in the Atmospheric Sciences  

Science Conference Proceedings (OSTI)

Measurements in atmospheric science sometimes determine universal functions, but more commonly data are collected in the form of case studies. Models are conceptual constructs that can be used to make predictions about the outcomes of ...

David A. Randall; Bruce A. Wielicki

1997-03-01T23:59:59.000Z

80

The Measurement of OH and HO2 in the Atmosphere  

Science Conference Proceedings (OSTI)

Measurements of the OH and HO2 radicals form stringent tests of our knowledge of atmospheric photochemistry. Owing to the extremely low concentrations of these species, their determination has posed a considerable experimental challenge; but now, ...

David R. Crosley

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Atmospheric Radiation Measurement Program Cloud Radars: Operational Modes  

Science Conference Proceedings (OSTI)

During the past decade, the U.S. Department of Energy (DOE), through the Atmospheric Radiation Measurement (ARM) Program, has supported the development of several millimeter-wavelength radars for the study of clouds. This effort has culminated in ...

Eugene E. Clothiaux; Kenneth P. Moran; Brooks E. Martner; Thomas P. Ackerman; Gerald G. Mace; Taneil Uttal; James H. Mather; Kevin B. Widener; Mark A. Miller; Daniel J. Rodriguez

1999-07-01T23:59:59.000Z

82

Laboratory measurements and modeling of trace atmospheric species  

E-Print Network (OSTI)

Trace species play a major role in many physical and chemical processes in the atmosphere. Improving our understanding of the impact of each species requires a combination of laboratory exper- imentation, field measurements, ...

Sheehy, Philip M. (Philip Michael)

2005-01-01T23:59:59.000Z

83

Spectroscopic Measurements of Atmospheric Gases for ...  

Science Conference Proceedings (OSTI)

... Similarly, accurate measurements of the O 2 A-band will support meteorological observations and weather modeling, and ... Facilities/Tools Used: ...

2012-10-01T23:59:59.000Z

84

Modeling the Variability of Sydney Harbor Wind Measurements  

Science Conference Proceedings (OSTI)

The time-dependent behavior in the variability of wind measurements is investigated using bivariate generalized autoregressive conditional heteroscedastic models. These models express the current level of short-timescale wind variability in terms ...

Edward Cripps; William T. M. Dunsmuir

2003-08-01T23:59:59.000Z

85

Radioxenon Atmospheric Measurements in North Las Vegas  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL) deployed the Automated Radioxenon Sampler/Analyzer (ARSA) in North Las Vegas for two weeks in February and March 2006 for the purpose of measuring the radioxenon background at a level of sensitivity much higher than previously done in the vicinity of the Nevada Test Site (NTS). The measurements establish what might be expected if future measurements are taken at NTS itself and investigate improved methods of environmental monitoring of NTS for test site readiness. Also, such radioxenon measurements have not previously been performed in a United States location considered to be as remote from nuclear reactors. A second detector, the Portable Environmental Monitoring Station (PEMS), built and operated by the Desert Research Institute (DRI), was deployed in conjunction with the ARSA and contained a pressure ion chamber, aerosol collection filters, and meteorological sensors. Some of the radioxenon measurements detected 133Xe at levels up to 3 mBq/m3. This concentration of radioxenon is consistent with the observation of low levels of radioxenon emanating from distance nuclear reactors. Previous measurements in areas of high nuclear reactor concentration have shown similar results, but the western US, in general, does not have many nuclear reactors. Measurements of the wind direction indicate that the air carrying the radioxenon came from south of the detector and not from the NTS.

Milbrath, Brian D.; Cooper, Matthew W.; Lidey, Lance S.; Bowyer, Ted W.; Hayes, James C.; McIntyre, Justin I.; Karr, L.; Shafer, David S.; Tappen, J.

2007-09-25T23:59:59.000Z

86

Using Variable Resolution Meshes to Model Tropical Cyclones in the Community Atmosphere Model  

Science Conference Proceedings (OSTI)

A statically-nested, variable-mesh option has recently been introduced into the Community Atmosphere Model’s (CAM) Spectral Element (SE) dynamical core that has become the default in CAM version 5.3. This paper presents a series of tests of ...

Colin M. Zarzycki; Christiane Jablonowski; Mark A. Taylor

87

Long-Term Variability in a Coupled Atmosphere–Biosphere Model  

Science Conference Proceedings (OSTI)

A fully coupled atmosphere–biosphere model, version 3 of the NCAR Community Climate Model (CCM3) and the Integrated Biosphere Simulator (IBIS), is used to illustrate how vegetation dynamics may be capable of producing long-term variability in the ...

Christine Delire; Jonathan A. Foley; Starley Thompson

2004-10-01T23:59:59.000Z

88

Emerging Technology for Measuring Atmospheric Aerosol Properties...  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Laboratory and with funding from the DOE STTR program. DMT is developing a new technique for measuring aerosol size distributions in the sub-0.1 um size range. The...

89

Atmospheric Radiation Measurement Tropical Warm Pool International Cloud Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Warm Pool Tropical Warm Pool International Cloud Experiment General Description The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the Australian Bureau of Meteorology. Beginning January 21 and ending February 14, 2006, the experiment was conducted in the region near the ARM Climate Research Facility in Darwin, Northern Australia. This permanent facility is fully equipped with sophisticated instruments for measuring cloud and other atmospheric properties to provide a long-term record of continuous observational data. Measurements obtained from the other experiment components (explained below) will complement this dataset to provide a detailed description of the tropical atmosphere.

90

Posters Objective Analysis Schemes to Monitor Atmospheric Radiation Measurement Data in Near Real-Time  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Posters Objective Analysis Schemes to Monitor Atmospheric Radiation Measurement Data in Near Real-Time M. Splitt University of Oklahoma Norman, Oklahoma Recent work in this area by Charles Wade (1987) lays out the groundwork for monitoring data quality for projects with large networks of instruments such as the Atmospheric Radiation Measurement (ARM) Program. Wade generated objectively analyzed fields of meteorological variables (temperature, pressure, humidity, and wind) and then compared the objectively analyzed value at the sensor location with the value produced by the sensor. Wade used a Barne's objective analysis scheme to produce objective data values for a given meteorological variable (q) in two- dimensional space. The objectively analyzed value should

91

Measurement of the Atmospheric $?_e$ flux in IceCube  

E-Print Network (OSTI)

We report the first measurement of the atmospheric electron neutrino flux in the energy range between approximately 80 GeV and 6 TeV, using data recorded during the first year of operation of IceCube's DeepCore low energy extension. Techniques to identify neutrinos interacting within the DeepCore volume and veto muons originating outside the detector are demonstrated. A sample of 1029 events is observed in 281 days of data, of which 496 $\\pm$ 66(stat.) $\\pm$ 88(syst.) are estimated to be cascade events, including both electron neutrino and neutral current events. The rest of the sample includes residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is consistent with models of atmospheric neutrinos in this energy range. This constitutes the first observation of electron neutrinos and neutral current interactions in a very large volume neutrino telescope optimized for the TeV energy range.

IceCube Collaboration; M. G. Aartsen; R. Abbasi; Y. Abdou; M. Ackermann; J. Adams; J. A. Aguilar; M. Ahlers; D. Altmann; K. Andeen; J. Auffenberg; X. Bai; M. Baker; S. W. Barwick; V. Baum; R. Bay; K. Beattie; J. J. Beatty; S. Bechet; J. Becker Tjus; K. -H. Becker; M. Bell; M. L. Benabderrahmane; S. BenZvi; J. Berdermann; P. Berghaus; D. Berley; E. Bernardini; D. Bertrand; D. Z. Besson; D. Bindig; M. Bissok; E. Blaufuss; J. Blumenthal; D. J. Boersma; S. Bohaichuk; C. Bohm; D. Bose1; S. Boser; O. Botner; L. Brayeur; A. M. Brown; R. Bruijn; J. Brunner; S. Buitink; M. Carson; J. Casey; M. Casier; D. Chirkin; B. Christy; K. Clark; F. Clevermann; S. Cohen; D. F. Cowen; A. H. Cruz Silva; M. Danninger; J. Daughhetee; J. C. Davis; C. De Clercq; S. De Ridder; F. Descamps; P. Desiati; G. de Vries-Uiterweerd; T. DeYoung; J. C. Diaz-Velez; J. Dreyer; J. P. Dumm; M. Dunkman; R. Eagan; B. Eberhardt; J. Eisch; R. W. Ellsworth; O. Engdegard; S. Euler; P. A. Evenson; O. Fadiran; A. R. Fazely; A. Fedynitch; J. Feintzeig; T. Feusels; K. Filimonov; C. Finley; T. Fischer-Wasels; S. Flis; A. Franckowiak; R. Franke; K. Frantzen; T. Fuchs; T. K. Gaisser; J. Gallagher; L. Gerhardt; L. Gladstone; T. Glusenkamp; A. Goldschmidt; G. Golup; J. A. Goodman; D. Gora; D. Grant; A. Gross; S. Grullon; M. Gurtner; C. Ha; A. Haj Ismail; A. Hallgren; F. Halzen; K. Hanson; D. Heereman; P. Heimann; D. Heinen; K. Helbing; R. Hellauer; S. Hickford; G. C. Hill; K. D. Hoffman; R. Hoffmann; A. Homeier; K. Hoshina; W. Huelsnitz; P. O. Hulth; K. Hultqvist; S. Hussain; A. Ishihara; E. Jacobi; J. Jacobsen; G. S. Japaridze; O. Jlelati; A. Kappes; T. Karg; A. Karle; J. Kiryluk; F. Kislat; J. Klas; S. R. Klein; J. -H. Kohne; G. Kohnen; H. Kolanoski; L. Kopke; C. Kopper; S. Kopper; D. J. Koskinen; M. Kowalski; M. Krasberg; G. Kroll; J. Kunnen; N. Kurahashi; T. Kuwabara; M. Labare; H. Landsman; M. J. Larson; R. Lauer; M. Lesiak-Bzdak; J. Lunemann; J. Madsen; R. Maruyama; K. Mase; H. S. Matis; F. McNally; K. Meagher; M. Merck; P. Meszaros; T. Meures; S. Miarecki; E. Middell; N. Milke; J. Miller; L. Mohrmann; T. Montaruli; R. Morse; R. Nahnhauer; U. Naumann; S. C. Nowicki; D. R. Nygren; A. Obertacke; S. Odrowski; A. Olivas; M. Olivo; A. O'Murchadha; S. Panknin; L. Paul; J. A. Pepper; C. Perez de los Heros; D. Pieloth; N. Pirk; J. Posselt; P. B. Price; G. T. Przybylski; L. Radel; K. Rawlins; P. Redl; E. Resconi; W. Rhode; M. Ribordy; M. Richman; B. Riedel; J. P. Rodrigues; C. Rott; T. Ruhe; B. Ruzybayev; D. Ryckbosch; S. M. Saba; T. Salameh; H. -G. Sander; M. Santander; S. Sarkar; K. Schatto; M. Scheel; F. Scheriau; T. Schmidt; M. Schmitz; S. Schoenen; S. Schoneberg; L. Schonherr; A. Schonwald; A. Schukraft; L. Schulte; O. Schulz; D. Seckel; S. H. Seo; Y. Sestayo; S. Seunarine; C. Sheremata; M. W. E. Smith; M. Soiron; D. Soldin; G. M. Spiczak; C. Spiering; M. Stamatikos; T. Stanev; A. Stasik; T. Stezelberger; R. G. Stokstad; A. Stoss; E. A. Strahler; R. Strom; G. W. Sullivan; H. Taavola; I. Taboada; A. Tamburro; S. Ter-Antonyan; S. Tilav; P. A. Toale; S. Toscano; M. Usner; D. van der Drift; N. van Eijndhoven; A. Van Overloop; J. van Santen; M. Vehring; M. Voge1; M. Vraeghe; C. Walck; T. Waldenmaier; M. Wallraff; M. Walter; R. Wasserman; Ch. Weaver; C. Wendt; S. Westerhoff; N. Whitehorn; K. Wiebe; C. H. Wiebusch; D. R. Williams; H. Wissing; M. Wolf; T. R. Wood; K. Woschnagg; C. Xu; D. L. Xu; X. W. Xu; J. P. Yanez; G. Yodh; S. Yoshida; P. Zarzhitsky; J. Ziemann; S. Zierke; A. Zilles; M. Zoll

2012-12-19T23:59:59.000Z

92

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008  

SciTech Connect

The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

LR Roeder

2008-12-01T23:59:59.000Z

93

Impact of Atmospheric Intraseasonal Variability in the Indian Ocean: Low-Frequency Rectification in Equatorial Surface Current and Transport  

Science Conference Proceedings (OSTI)

An ocean general circulation model (OGCM) is used to investigate the low-frequency (period longer than 90 days) rectification of atmospheric intraseasonal variability (10–90-day periods) in zonal surface current and transport of the equatorial ...

Weiqing Han; Peter Webster; Roger Lukas; Peter Hacker; Aixue Hu

2004-06-01T23:59:59.000Z

94

Structure of Oceanic and Atmospheric Low-Frequency Variability over the Tropical Pacific and Indian Oceans. Part I: COADS Observations  

Science Conference Proceedings (OSTI)

The recurrent modes of combined oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian oceans are calculated to provide quantitatively and structurally well-defined targets for simulation/prediction studies of ...

Sumant Nigam; Horng-Syi Shen

1993-04-01T23:59:59.000Z

95

Variability of the Thermohaline Circulation in an Ocean General Circulation Model Coupled to an Atmospheric Energy Balance Model  

Science Conference Proceedings (OSTI)

The variability of the ocean’s thermohaline circulation in an oceanic general circulation model (OGCM) coupled to a two-dimensional atmospheric energy balance model (EBM) is examined. The EBM calculates air temperatures by balancing heat fluxes, ...

David W. Pierce; K-Y. Kim; Tim P. Barnett

1996-05-01T23:59:59.000Z

96

Northern Hemisphere Winter Atmospheric Transient Eddy Heat Fluxes and the Gulf Stream and Kuroshio-Oyashio Extension Variability  

Science Conference Proceedings (OSTI)

Spatial and temporal co-variability between the atmospheric transient eddy heat fluxes (i.e. and ) in the Northern Hemisphere winter (January-March) and the paths of the Gulf Stream (GS), Kuroshio Extension (KE), and Oyashio Extension ...

Young-Oh Kwon; Terrence M. Joyce

97

On Robust Estimation of Low-Frequency Variability Trends in Discrete Markovian Sequences of Atmospheric Circulation Patterns  

Science Conference Proceedings (OSTI)

Identification and analysis of temporal trends and low-frequency variability in discrete time series is an important practical topic in the understanding and prediction of many atmospheric processes, for example, in analysis of climate change. ...

Illia Horenko

2009-07-01T23:59:59.000Z

98

Short-Term Climate Variability and Atmospheric Teleconnections from Satellite-Observed Outgoing Longwave Radiation. Part I: Simultaneous Relationships  

Science Conference Proceedings (OSTI)

Satellite-inferred short-term climate variability and atmospheric teleconnections are studied using seven years (1974–81) of Outgoing Longwave Radiation (OLR) data from NOAA polar orbiters. This study utilizes composite, partition-of-variance and ...

Ka-Ming Lau; Paul H. Chan

1983-12-01T23:59:59.000Z

99

A Joint Statistical and Dynamical Assessment of Atmospheric Response to North Pacific Oceanic Variability in CCSM3  

Science Conference Proceedings (OSTI)

Atmospheric response to North Pacific oceanic variability is assessed in Community Climate System Model, version 3 (CCSM3) using two statistical methods and one dynamical method. All methods identify an equivalent barotropic low response to a ...

Yafang Zhong; Zhengyu Liu

2008-11-01T23:59:59.000Z

100

CSIRO GASLAB Network: Individual Flask Measurements of Atmospheric Trace  

NLE Websites -- All DOE Office Websites (Extended Search)

GASLAB Network GASLAB Network CSIRO GASLAB Network: Individual Flask Measurements of Atmospheric Trace Gases (April 2003) data Data Investigators L.P. Steele, P.R. Krummel, and R.L. Langenfelds Commonwealth Scientific and Industrial Research Organisation (CSIRO) DOI 10.3334/CDIAC/atg.db1021 Data are available for four atmospheric trace gases at nine stationary sites and one moving platform (aircraft over Cape Grim, Tasmania, and Bass Strait, between the Australian continent and Tasmania). The trace gases are carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and hydrogen (H2). Measurements of δ13C from CO2 are also included in this database. The nine stationary sites are, from north to south: Alert, Canada; Shetland Islands, Scotland; Estevan Point, Canada; Mauna Loa, Hawaii; Cape Ferguson,

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Science Plan for the Atmospheric Radiation Measurement Program (ARM)  

SciTech Connect

The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE`s programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols.

NONE

1996-02-01T23:59:59.000Z

102

DOE/ER-0441 Atmospheric Radiation Measurement Plan - February 1990  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Atmospheric Radiation Measurement Program Plan ARM Program Plan Forward In 1978 the Department of Energy initiated the Carbon Dioxide Research Program to address climate change from the increasing concentration of carbon dioxide in the atmosphere. Over the years the Program has studied the many facets of the issue, from the carbon cycle, the climate diagnostics, the vegetative effects, to the societal impacts. The Program is presently the Department's principal entry in the U.S. Global Change Research Program coordinated by the Committee on Earth Sciences (CES) of the Office of Science and Technology Policy (OSTP). The recent heightened concern about global warming from an enhanced greenhouse effect has prompted the Department to accelerate the research to improve predictions of climate change. The emphasis is on

103

Atmospheric radiation measurement program facilities newsletter, September 2001.  

SciTech Connect

Our Changing Climate--Is our climate really changing? How do we measure climate change? How can we predict what Earth's climate will be like for generations to come? One focus of the Atmospheric Radiation Measurement (ARM) Program is to improve scientific climate models enough to achieve reliable regional prediction of future climate. According to the Environmental Protection Agency (EPA), the global mean surface temperature has increased by 0.5-1.0 F since the late 19th century. The 20th century's 10 warmest years all occurred in the last 15 years of the century, with 1998 being the warmest year of record. The global mean surface temperature is measured by a network of temperature-sensing instruments distributed around the world, including ships, ocean buoys, and weather stations on land. The data from this network are retrieved and analyzed by various organizations, including the National Aeronautics and Space Administration, the National Oceanic and Atmospheric Administration, and the World Meteorological Organization. Worldwide temperature records date back to 1860. To reconstruct Earth's temperature history before 1860, scientists use limited temperature records, along with proxy indicators such as tree rings, pollen records, and analysis of air frozen in ancient ice. The solar energy received from the sun drives Earth's weather and climate. Some of this energy is reflected and filtered by the atmosphere, but most is absorbed by Earth's surface. The absorbed solar radiation warms the surface and is re-radiated as heat energy into the atmosphere. Some atmospheric gases, called greenhouse gases, trap some of the re-emitted heat, keeping the surface temperature regulated and suitable for sustaining life. Although the greenhouse effect is natural, some evidence indicates that human activities are producing increased levels of some greenhouse gases such as carbon dioxide, methane, and nitrous oxide. Scientists believe that the combustion of fossil fuels is responsible for the increased levels of carbon dioxide in the atmosphere. According to the EPA, the burning of fossil fuels for cars and trucks, the heating of homes and businesses, and the operation of power plants account for approximately 98% of U.S. carbon dioxide emissions. The increase of greenhouse gases will, theoretically, enhance the greenhouse effect by trapping more of the heat energy emitted by Earth's surface, thus increasing the surface temperatures on a global scale. Scientists expect that the global average surface temperature could rise 1-4.5 F in the next 50 years and as much as 10 F in the next century. Global warming could potentially have harmful effects on human health, water resources, forests, agriculture, wildlife, and coastal areas. A few degrees of warming might lead to more frequent and severe heat waves, worsened air pollution with adverse effects on human respiratory health, and wider spread of tropical disease such as malaria. The world's hydrologic cycle might be affected by an increase in evaporation and, thus, in precipitation. An increase in evaporation will increase atmospheric water vapor, a significant natural greenhouse gas. The increase in water vapor might further enhance the global warming caused by the greenhouse effect. This is known as a positive feedback. The increase in water vapor could also change the amount of clouds present in the atmosphere, which could reduce temperatures in a negative feedback. Many interrelated factors affect the global climate and are responsible for climate change. Predicting the outcome of the interactions among the many factors is not easy, but it must be addressed. The ARM Program is taking a lead in this effort by collecting vast amounts of data whose analysis will improve our forecasting models for both daily weather and long-term climate. For more information on the ARM Program, please visit our web site at www.arm.gov.

Holdridge, D. J.

2001-10-10T23:59:59.000Z

104

Atmospheric radiation measurement program facilities newsletter, September 2001.  

DOE Green Energy (OSTI)

Our Changing Climate--Is our climate really changing? How do we measure climate change? How can we predict what Earth's climate will be like for generations to come? One focus of the Atmospheric Radiation Measurement (ARM) Program is to improve scientific climate models enough to achieve reliable regional prediction of future climate. According to the Environmental Protection Agency (EPA), the global mean surface temperature has increased by 0.5-1.0 F since the late 19th century. The 20th century's 10 warmest years all occurred in the last 15 years of the century, with 1998 being the warmest year of record. The global mean surface temperature is measured by a network of temperature-sensing instruments distributed around the world, including ships, ocean buoys, and weather stations on land. The data from this network are retrieved and analyzed by various organizations, including the National Aeronautics and Space Administration, the National Oceanic and Atmospheric Administration, and the World Meteorological Organization. Worldwide temperature records date back to 1860. To reconstruct Earth's temperature history before 1860, scientists use limited temperature records, along with proxy indicators such as tree rings, pollen records, and analysis of air frozen in ancient ice. The solar energy received from the sun drives Earth's weather and climate. Some of this energy is reflected and filtered by the atmosphere, but most is absorbed by Earth's surface. The absorbed solar radiation warms the surface and is re-radiated as heat energy into the atmosphere. Some atmospheric gases, called greenhouse gases, trap some of the re-emitted heat, keeping the surface temperature regulated and suitable for sustaining life. Although the greenhouse effect is natural, some evidence indicates that human activities are producing increased levels of some greenhouse gases such as carbon dioxide, methane, and nitrous oxide. Scientists believe that the combustion of fossil fuels is responsible for the increased levels of carbon dioxide in the atmosphere. According to the EPA, the burning of fossil fuels for cars and trucks, the heating of homes and businesses, and the operation of power plants account for approximately 98% of U.S. carbon dioxide emissions. The increase of greenhouse gases will, theoretically, enhance the greenhouse effect by trapping more of the heat energy emitted by Earth's surface, thus increasing the surface temperatures on a global scale. Scientists expect that the global average surface temperature could rise 1-4.5 F in the next 50 years and as much as 10 F in the next century. Global warming could potentially have harmful effects on human health, water resources, forests, agriculture, wildlife, and coastal areas. A few degrees of warming might lead to more frequent and severe heat waves, worsened air pollution with adverse effects on human respiratory health, and wider spread of tropical disease such as malaria. The world's hydrologic cycle might be affected by an increase in evaporation and, thus, in precipitation. An increase in evaporation will increase atmospheric water vapor, a significant natural greenhouse gas. The increase in water vapor might further enhance the global warming caused by the greenhouse effect. This is known as a positive feedback. The increase in water vapor could also change the amount of clouds present in the atmosphere, which could reduce temperatures in a negative feedback. Many interrelated factors affect the global climate and are responsible for climate change. Predicting the outcome of the interactions among the many factors is not easy, but it must be addressed. The ARM Program is taking a lead in this effort by collecting vast amounts of data whose analysis will improve our forecasting models for both daily weather and long-term climate. For more information on the ARM Program, please visit our web site at www.arm.gov.

Holdridge, D. J.

2001-10-10T23:59:59.000Z

105

Variability in Measured Space Temperatures in 60 Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Variability in Measured Space Variability in Measured Space Temperatures in 60 Homes David Roberts National Renewable Energy Laboratory Kerylyn Lay EnerNOC (formerly of the National Renewable Energy Laboratory) Technical Report NREL/TP-5500-58059 March 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Variability in Measured Space Temperatures in 60 Homes David Roberts National Renewable Energy Laboratory Kerylyn Lay EnerNOC (formerly of the National Renewable Energy Laboratory)

106

Raman Lidar Profiling of Atmospheric Water Vapor: Simultaneous Measurements with Two Collocated Systems  

Science Conference Proceedings (OSTI)

Raman lidar is a loading candidate for providing the detailed space-and time-resolved measurements of water vapor needed by a variety of atmospheric studies. Simultaneous measurements of atmospheric watervapor are described using two collocated ...

J. E. M. Goldsmith; Scott E. Bisson; Richard A. Ferrare; Keith D. Evans; David N. Whiteman; S. H. Melfi

1994-06-01T23:59:59.000Z

107

Evaluation of a Regional Atmospheric Model Using Measurements of Surface Heat Exchange Processes from a Site in Antarctica  

Science Conference Proceedings (OSTI)

A regional atmospheric climate model with a horizontal grid spacing of 55 km has been used to simulate the Antarctic atmosphere during an austral summer period. ECMWF reanalyses were used to force the atmospheric prognostic variables from the ...

Nicole P. M. van Lipzig; Erik van Meijgaard; Johannes Oerlemans

1999-09-01T23:59:59.000Z

108

Atmospheric Radiation Measurement Program Climate Research Facility Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1-March 31, 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

109

Atmospheric Radiation Measurement Program Climate Research Facility Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1-March 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

110

Atmospheric Radiation Measurement Program Climate Research Facility Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

111

The Influence of Midlatitude Ocean–Atmosphere Coupling on the Low-Frequency Variability of a GCM. Part I: No Tropical SST Forcing  

Science Conference Proceedings (OSTI)

This study examines the extent to which the thermodynamic interactions between the midlatitude atmosphere and the underlying oceanic mixed layer contribute to the low-frequency atmospheric variability. A general circulation model, run under ...

Ileana Bladé

1997-08-01T23:59:59.000Z

112

Measurement of Atmospheric Aspect Sensitivity Using Coherent Radar Imaging after Mitigation of Radar Beam Weighting Effect  

Science Conference Proceedings (OSTI)

The aspect angle, a measurement of the aspect sensitivity of atmospheric refractivity irregularities, was estimated with multiple-receiver coherent radar imaging (CRI) of very high frequency (VHF) atmospheric radar. Two CRI parameters retrieved by ...

Jenn-Shyong Chen; Jun-ichi Furumoto

2013-02-01T23:59:59.000Z

113

Estimating Spatial Variability in Atmospheric Properties over Remotely Sensed Land Surface Conditions  

Science Conference Proceedings (OSTI)

This paper investigates the spatial relationships between surface fluxes and near-surface atmospheric properties (AP), and the potential errors in flux estimation due to homogeneous atmospheric inputs over heterogeneous landscapes. A large-eddy ...

Giacomo Bertoldi; William P. Kustas; John D. Albertson

2008-08-01T23:59:59.000Z

114

Earth Rotation as a Proxy for Interannual Variability in Atmospheric Circulation, 1860-Present  

Science Conference Proceedings (OSTI)

Modern atmospheric and geodetic datasets have demonstrated that changes in the axial component of the atmosphere's angular momentum and in the rotation rate of the solid earth are closely coupled on time scales of up to several years. We ...

David A. Salstein; Richard D. Rosen

1986-12-01T23:59:59.000Z

115

Spatial Variability of Atmospheric Boundary Layer Structure over the Eastern Equatorial Pacific  

Science Conference Proceedings (OSTI)

Variations in the atmospheric boundary layer structure over the eastern equatorial Pacific are analyzed using 916 soundings collected during the First Global Atmospheric Research Program Global Experiment. Unstable boundary layer structures are ...

Bingfan Yin; Bruce A. Albrecht

2000-05-01T23:59:59.000Z

116

Nonlinear Resonance and Instability of Planetary Waves and Low-Frequency Variability in the Atmosphere  

Science Conference Proceedings (OSTI)

It is demonstrated in this work that linearly unstable planetary waves can be resonantly excited to finite amplitude in a nonlinear barotropic atmosphere with vorticity forcing and dissipation. In a weakly forced/dissipated atmosphere, it is ...

Peili Wu

1993-11-01T23:59:59.000Z

117

Low-Frequency Variability in the Midlatitude Atmosphere Induced by an Oceanic Thermal Front  

Science Conference Proceedings (OSTI)

This study examines the flow induced in a highly idealized atmospheric model by an east–west-oriented oceanic thermal front. The model has a linear marine boundary layer coupled to a quasigeostrophic, equivalent- barotropic free atmosphere. The ...

Yizhak Feliks; Michael Ghil; Eric Simonnet

2004-05-01T23:59:59.000Z

118

Measurement and Modeling of Solar and PV Output Variability: Preprint  

DOE Green Energy (OSTI)

This paper seeks to understand what temporal and spatial scales of variability in global horizontal radiation are important to a PV plants and what measurements are needed to be able to characterize them. As solar radiation measuring instruments are point receivers it is important to understand how those measurements translate to energy received over a larger spatial extent. Also of importance is the temporal natural of variability over large spatial areas. In this research we use high temporal and spatial resolution measurements from multiple sensors at a site in Hawaii to create solar radiation fields at various spatial and temporal scales. Five interpolation schemes were considered and the high resolution solar fields were converted to power production for a PV power plant. It was found that the interpolation schemes are robust and create ramp distributions close to what would be computed if the average solar radiation field was used. We also investigated the possibility of using time averaged solar data from 1 sensor to recreate the ramp distribution from the 17 sensors. It was found that the ramping distribution from using appropriately time averaged data from 1 sensor can reasonably match the distribution created using the 17 sensor network.

Sengupta, M.

2011-04-01T23:59:59.000Z

119

Measurement and Modeling of Solar and PV Output Variability  

Science Conference Proceedings (OSTI)

This paper seeks to understand what temporal and spatial scales of variability in global horizontal radiation are important to a PV plants and what measurements are needed to be able to characterize them. As solar radiation measuring instruments are point receivers it is important to understand how those measurements translate to energy received over a larger spatial extent. Also of importance is the temporal natural of variability over large spatial areas. In this research we use high temporal and spatial resolution measurements from multiple sensors at a site in Hawaii to create solar radiation fields at various spatial and temporal scales. Five interpolation schemes were considered and the high resolution solar fields were converted to power production for a PV power plant. It was found that the interpolation schemes are robust and create ramp distributions close to what would be computed if the average solar radiation field was used. We also investigated the possibility of using time averaged solar data from 1 sensor to recreate the ramp distribution from the 17 sensors. It was found that the ramping distribution from using appropriately time averaged data from 1 sensor can reasonably match the distribution created using the 17 sensor network.

Sengupta, M.

2011-01-01T23:59:59.000Z

120

Variability of the South Atlantic Convergence Zone Simulated by an Atmospheric General Circulation Model  

Science Conference Proceedings (OSTI)

Interannual and decadal variability of the South Atlantic convergence zone (SACZ) during austral summer [season January–February–March (JFM)] is investigated. An attempt is made to separate the forced variability from the internal variability. ...

Marcelo Barreiro; Ping Chang; R. Saravanan

2002-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Studies of regional-scale climate variability and change: Hidden Markov models and coupled ocean-atmosphere modes  

SciTech Connect

In this project we developed further a twin approach to the study of regional-scale climate variability and change. The two approaches involved probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs). We thus made progress in identifying the predictable modes of climate variability and investigating their impacts on the regional scale. In previous work sponsored by DOE�s Climate Change Prediction Program (CCPP), we had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale seasonal predictions of general circulation models (GCMs). Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might in�uence large-scale atmospheric circulation patterns on interannual and longer time scales; similar patterns were found in a hybrid coupled ocean�atmosphere�sea-ice model. In this continuation project, we built on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean�atmosphere modes. Our main project results consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM simulations, called empirical mode reduction (EMR); and observational studies of decadal and multi-decadal natural climate variability, informed by ICM simulations. A particularly timely by-product of this work is an extensive study of clustering of cyclone tracks in the extratropical Atlantic and the western Tropical Pacific, with potential applications to predicting landfall.

M. Ghil (UCLA), PI; S. Kravtsov (UWM); A. W. Robertson (IRI); P. Smyth (UCI)

2008-10-14T23:59:59.000Z

122

Measurement and Modeling of Solar and PV Output Variability: Preprint  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measurement and Modeling of Measurement and Modeling of Solar and PV Output Variability Preprint M. Sengupta To be presented at SOLAR 2011 Raleigh, North Carolina May 17-21, 2011 Conference Paper NREL/CP-5500-51105 April 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,

123

Atmospheric Temperature Measurement Biases on the Antarctic Plateau  

Science Conference Proceedings (OSTI)

Observations of atmospheric temperature made on the Antarctic Plateau with thermistors housed in naturally (wind) ventilated radiation shields are shown to be significantly warm biased by solar radiation. High incoming solar flux and high surface ...

Christophe Genthon; Delphine Six; Vincent Favier; Matthew Lazzara; Linda Keller

2011-12-01T23:59:59.000Z

124

Nitrogen trifluoride global emissions estimated from updated atmospheric measurements  

E-Print Network (OSTI)

Nitrogen trifluoride (NF[subscript 3]) has potential to make a growing contribution to the Earth’s radiative budget; however, our understanding of its atmospheric burden and emission rates has been limited. Based on a ...

Ivy, Diane J.

125

Measured Spectra of the Hygroscopic Fraction of Atmospheric Aerosol Particles  

Science Conference Proceedings (OSTI)

The relation between dry diameter (X0) and critical supersaturation (Sc) for atmospheric submicron aerosol particles is investigated using a long term air sampling program at Rolla, Missouri. The particles are passed through an electrostatic ...

Darryl J. Alofs; Donald E. Hagen; Max B. Trueblood

1989-02-01T23:59:59.000Z

126

Measurements of Lagrangian Atmospheric Dispersion Statistics over Open Water  

Science Conference Proceedings (OSTI)

Atmospheric dispersion statistics in the Lagrangian frame have been evaluated over open water by using a double-theodolite system to track neutrally buoyant balloons released a few kilometers off-shore during onshore winds. Analysis of the ...

C. M. Sheih; P. Frenzen; R. L. Hart

1980-05-01T23:59:59.000Z

127

Simulation of the tropical Pacific climate with a coupled ocean - atmosphere general circulation model. Part II: Interannual variability  

Science Conference Proceedings (OSTI)

Two multiyear simulations with a coupled ocean-atmosphere general circulation model (GCM)-totaling 45 years-are used to investigate interannual variability at the equator. The model consists of the UCLA global atmospheric GCM coupled to the GFDL oceanic GCM, dynamically active over the tropical Pacific. Multichannel singular spectrum analysis along the equator identifies ENSO-like quasi-biennial (QB) and quasi-quadrennial (QQ) modes. Both consist of predominantly standing oscillations in sea surface temperature and zonal wind stress that peak in the central or east Pacific, accompanied by an oscillation in equatorial thermocline depth that is characterized by a phase shift of about 90{degrees} across the basin, with west leading east. Simulated interannual variability is weaker than observed in both simulations. One of these is dominated by the QB, the other by the QQ mode, although the two differ only in details of the surface-layer parameterizations. 42 refs., 19 figs., 2 tabs.

Robertson, A.W.; Ma, C.C.; Ghil, M. [Univ. of California, Los Angeles, CA (United States)] [and others

1995-05-01T23:59:59.000Z

128

A Correction for Land Contamination of Atmospheric Variables near Land–Sea Boundaries  

Science Conference Proceedings (OSTI)

Ocean models need over-ocean atmospheric forcing. However, such forcing is not necessarily provided near the land–sea boundary because 1) the atmospheric model grid used for forcing is frequently much coarser than the ocean model grid, and 2) ...

A. Birol Kara; Alan J. Wallcraft; Harley E. Hurlburt

2007-04-01T23:59:59.000Z

129

Atmospheric Aerosols  

NLE Websites -- All DOE Office Websites (Extended Search)

measuring equipment Atmospheric Aerosols Atmospheric aerosol research at Berkeley Lab seeks to understand the air quality and climate impacts of particles in the atmosphere. On...

130

Measurements of the Infrared SpectraLines of Water Vapor at Atmospheric Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurements of the Infrared Spectral Lines Measurements of the Infrared Spectral Lines of Water Vapor at Atmospheric Temperatures P. Varanasi and Q. Zou Institute for Terrestrial and Planetary Atmospheres State University of New York at Stony Brook Stony Brook, New York Introduction Water vapor is undoubtedly the most dominant greenhouse gas in the terrestrial atmosphere. In the two facets of Atmospheric Radiation Measurement (ARM) Program research, atmospheric remote sensing (air-borne as well as Cloud and Radiation Testbed [CART] site-based) and modeling of atmospheric radiation, the spectrum of water vapor, ranging from the microwave to the visible wavelengths, plays a significant role. Its spectrum has been the subject of many studies throughout the last century. Therefore, it is natural to presume it should be fairly well established by now. However, the need for a

131

Variability in Large-Scale Water Balance with Land Surface-Atmosphere Interaction  

Science Conference Proceedings (OSTI)

Persistent and prolonged periods of dry or moist conditions are often evident in the interannual variability of continental-type climates This variability appears as fluctuations around several distinct and preferred moisture states. These ...

Dara Entekhabi; Ignacio Rodriguez-Iturbe; Rafael L. Bras

1992-08-01T23:59:59.000Z

132

A new measurement of the altitude dependence of the atmospheric muon intensity  

E-Print Network (OSTI)

We present a new measurement of atmospheric muons made during an ascent of the High Energy Antimatter Telescope balloon experiment. The muon charge ratio mu+/mu- as a function of atmospheric depth in the momentum interval 0.3-0.9 GeV/c is presented. The differential mu- intensities in the 0.3-50 GeV/c range and for atmospheric depths between 4-960 g/cm^2 are also presented. We compare these results with other measurements and model predictions. We find that our charge ratio is ~1.1 for all atmospheric depths and is consistent, within errors, with other measurements and the model predictions. We find that our measured mu- intensities are also consistent with other measurements, and with the model predictions, except at shallow atmospheric depths.

J. J. Beatty; S. Coutu; S. A. Minnick; A. Bhattacharyya; C. R. Bower; J. A. Musser; S. P. McKee; M. Schubnell; G. Tarle; A. D. Tomasch; A. W. Labrador; D. Muller; S. P. Swordy; M. A. DuVernois; S. L. Nutter

2004-10-22T23:59:59.000Z

133

New measurement of the altitude dependence of the atmospheric muon intensity  

SciTech Connect

We present a new measurement of atmospheric muons made during an ascent of the High Energy Antimatter Telescope balloon experiment. The muon charge ratio {mu}{sup +}/{mu}{sup -} as a function of atmospheric depth in the momentum interval 0.3-0.9 GeV/c is presented. The differential {mu}{sup -} intensities in the 0.3-50 GeV/c range and for atmospheric depths between 4-960 g/cm{sup 2} are also presented. We compare these results with other measurements and model predictions. We find that our charge ratio is {approx}1.1 for all atmospheric depths and is consistent, within errors, with other measurements and the model predictions. We find that our measured {mu}{sup -} intensities are also consistent with other measurements, and with the model predictions, except at shallow atmospheric depths.

Beatty, J.J.; Coutu, S.; Minnick, S.A.; Bhattacharyya, A.; Bower, C.R.; Musser, J.A.; McKee, S.P.; Schubnell, M.; Tarle, G.; Tomasch, A.D.; Labrador, A.W.; Mueller, D.; Swordy, S.P.; DuVernois, M.A.; Nutter, S.L. [Departments of Physics and of Astronomy and Astrophysics, 104 Davey Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Physics, Swain Hall West, Indiana University, Bloomington, Indiana 47405 (United States); Department of Physics, Randall Laboratory, University of Michigan, 500 E. University Avenue, Ann Arbor, Michigan 48109-1120 (United States); Enrico Fermi Institute and Department of Physics, 933 E. 56th Street, University of Chicago, Chicago, Illinois 60637 (United States); School of Physics and Astronomy, 16 Church Street SE, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Department of Physics and Geology, SC 147, Northern Kentucky University, Highland Heights, Kentucky 41099 (United States)

2004-11-01T23:59:59.000Z

134

Simultaneous Measurements of Atmospheric Water Vapor with MIR, Raman Lidar, and Rawinsondes  

Science Conference Proceedings (OSTI)

Simultaneous measurements of atmospheric water vapor were made by the Millimeter-wave Imaging Radiometer (MIR), Raman lidar, and rawinsondes. Two types of rawinsonde sensor packages (AIR and Vaisala) were carried by the same balloon. The measured ...

J. R. Wang; S. H. Melfi; P. Racette; D. N. Whitemen; L. A. Chang; R. A. Ferrare; K. D. Evans; F. J. Schmidlin

1995-07-01T23:59:59.000Z

135

Monitoring of Sahelian Aerosol and Atmospheric Water Vapor Content Characteristics from Sun Photometer Measurements  

Science Conference Proceedings (OSTI)

Atmospheric measurements in two Sahelian sites in West Africa are presented and analyzed. The measurements were performed using a sun photometer with five bands in the visible and near-infrared range of the solar spectrum. This instrument ...

C. A. Faizoun; A. Podaire; G. Dedieu

1994-11-01T23:59:59.000Z

136

Worldwide Measurements of Atmospheric CO2 and Other Trace Gas Species Using Commercial Airlines  

Science Conference Proceedings (OSTI)

New automated observation systems for use in passenger aircraft to measure atmospheric carbon dioxide (CO2) and other trace species have been developed and are described in this paper. The Continuous CO2 Measuring Equipment (CME) is composed ...

T. Machida; H. Matsueda; Y. Sawa; Y. Nakagawa; K. Hirotani; N. Kondo; K. Goto; T. Nakazawa; K. Ishikawa; T. Ogawa

2008-10-01T23:59:59.000Z

137

Atmospheric Radiation Measurement Program facilities newsletter, July 2001.  

Science Conference Proceedings (OSTI)

Global Warming and Methane--Global warming, an increase in Earth's near-surface temperature, is believed to result from the buildup of what scientists refer to as ''greenhouse gases.'' These gases include water vapor, carbon dioxide, methane, nitrous oxide, ozone, perfluorocarbons, hydrofluoro-carbons, and sulfur hexafluoride. Greenhouse gases can absorb outgoing infrared (heat) radiation and re-emit it back to Earth, warming the surface. Thus, these gases act like the glass of a greenhouse enclosure, trapping infrared radiation inside and warming the space. One of the more important greenhouse gases is the naturally occurring hydrocarbon methane. Methane, a primary component of natural gas, is the second most important contributor to the greenhouse effect (after carbon dioxide). Natural sources of methane include wetlands, fossil sources, termites, oceans, fresh-waters, and non-wetland soils. Methane is also produced by human-related (or anthropogenic) activities such as fossil fuel production, coal mining, rice cultivation, biomass burning, water treatment facilities, waste management operations and landfills, and domesticated livestock operations (Figure 1). These anthropogenic activities account for approximately 70% of the methane emissions to the atmosphere. Methane is removed naturally from the atmosphere in three ways. These methods, commonly referred to as sinks, are oxidation by chemical reaction with tropospheric hydroxyl ion, oxidation within the stratosphere, and microbial uptake by soils. In spite of their important role in removing excess methane from the atmosphere, the sinks cannot keep up with global methane production. Methane concentrations in the atmosphere have increased by 145% since 1800. Increases in atmospheric methane roughly parallel world population growth, pointing to anthropogenic sources as the cause (Figure 2). Increases in the methane concentration reduce Earth's natural cooling efficiency by trapping more of the outgoing terrestrial infrared radiation, increasing the near-surface temperature.

Holdridge, D. J.

2001-07-23T23:59:59.000Z

138

The Structure and Variability of the Marine Atmosphere around the Santa Barbara Channel  

Science Conference Proceedings (OSTI)

The Santa Barbara Channel is a region characterized by coupled interaction between the lower-level atmosphere, the underlying ocean, and the elevated topography of the coastline. The nature of these interactions and the resulting weather patterns ...

C. E. Dorman; C. D. Winant

2000-02-01T23:59:59.000Z

139

Transient Upwelling Generated by Two-Dimensional Atmospheric Forcing and Variability in the Coastline  

Science Conference Proceedings (OSTI)

The present paper deals with two-dimensional transient upwelling in a two-layer ocean of constant depth. Motions generated by several two-dimensional atmospheric forcings are investigated. Using asymptotic expansions in time, it is shown that the ...

Michel Crépon; Claude Richez

1982-12-01T23:59:59.000Z

140

From Short-Scale Atmospheric Variability to Global Climate Dynamics: Toward a Systematic Theory of Averaging  

Science Conference Proceedings (OSTI)

Traditionally, climate is defined by the properties of the averages of the meteorological fields over an appropriate time interval. In this paper the properties of the time-averaged observables of a red noise atmosphere and of a simplified model ...

C. Nicolis; G. Nicolis

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Stability and Variability in a Coupled Ocean–Atmosphere Climate Model: Results of 100-year Simulations  

Science Conference Proceedings (OSTI)

Two 100-year seasonal simulators, one performed with a low resolution atmospheric general circulation model (GCM) coupled to a mixed-layer ocean formulation and the other made with the GCM forced by prescribed ocean conditions, are compared to ...

David D. Houghton; Robert G. Gallimore; Linda M. Keller

1991-06-01T23:59:59.000Z

142

The Antarctic Atmospheric Energy Budget. Part I: Climatology and Intraseasonal-to-Interannual Variability  

Science Conference Proceedings (OSTI)

The authors present a new, observationally based estimate of the atmospheric energy budget for the Antarctic polar cap (the region poleward of 70°S). This energy budget is constructed using state-of-the-art reanalysis products from ECMWF [the ...

Michael Previdi; Karen L. Smith; Lorenzo M. Polvani

2013-09-01T23:59:59.000Z

143

Low-Frequency Variability in the Midlatitude Baroclinic Atmosphere Induced by an Oceanic Thermal Front  

Science Conference Proceedings (OSTI)

This study examines the flow induced by an east–west-oriented oceanic thermal front in a highly idealized baroclinic model. Previous work showed that thermal fronts could produce energetic midlatitude jets in an equivalent-barotropic atmosphere ...

Yizhak Feliks; Michael Ghil; Eric Simonnet

2007-01-01T23:59:59.000Z

144

Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries  

Science Conference Proceedings (OSTI)

Changes in atmospheric CO2 variability during the twenty-first century may provide insight about ecosystem responses to climate change and have implications for the design of carbon monitoring programs. This paper describes changes in the three-...

Gretchen Keppel-Aleks; James T. Randerson; Keith Lindsay; Britton B. Stephens; J. Keith Moore; Scott C. Doney; Peter E. Thornton; Natalie M. Mahowald; Forrest M. Hoffman; Colm Sweeney; Pieter P. Tans; Paul O. Wennberg; Steven C. Wofsy

2013-07-01T23:59:59.000Z

145

The Ocean Response to Low-Frequency Interannual Atmospheric Variability in the Mediterranean Sea. Part I: Sensitivity Experiments and Energy Analysis  

Science Conference Proceedings (OSTI)

In this study a general circulation model is used in order to investigate the interannual response of the Mediterranean Basin to low-frequency interannual variability in atmospheric forcing for the period 1980–88. The model incorporates a ...

G. Korres; N. Pinardi; A. Lascaratos

2000-02-01T23:59:59.000Z

146

Variability in a Mixed Layer Ocean Model Driven by Stochastic Atmospheric Forcing  

Science Conference Proceedings (OSTI)

A stochastic model of atmospheric surface conditions, developed from 30 years of data at Ocean Weather Station P in the northeast Pacific, is used to drive a mixed layer model of the upper mean. The spectral characteristics of anomalies in the ...

Michael A. Alexander; Cecile Penland

1996-10-01T23:59:59.000Z

147

The Antarctic Atmospheric Energy Budget. Part I: Climatology and Intraseasonal-to-Interannual Variability  

Science Conference Proceedings (OSTI)

We present a new, observationally based estimate of the atmospheric energy budget for the Antarctic polar cap (the region poleward of 70°S). This energy budget is constructed using state-of-the-art reanalysis products from ECMWF (the ERA-Interim ...

Michael Previdi; Karen L. Smith; Lorenzo M. Polvani

148

Mean Climate and Variability of the Atmosphere and Ocean on an Aquaplanet  

Science Conference Proceedings (OSTI)

Numerical experiments are described that pertain to the climate of a coupled atmosphere–ocean–ice system in the absence of land, driven by modern-day orbital and CO2 forcing. Millennial time-scale simulations yield a mean state in which ice caps ...

John Marshall; David Ferreira; J-M. Campin; Daniel Enderton

2007-12-01T23:59:59.000Z

149

The Atmospheric Radiation Measurement (ARM) Program: Programmatic Background and Design of the Cloud and Radiation Test Bed  

Science Conference Proceedings (OSTI)

The Atmospheric Radiation Measurement (ARM) Program, supported by the U.S. Department of Energy, is a major new program of atmospheric measurement and modeling. The program is intended to improve the understanding of processes that affect ...

Gerald M. Stokes; Stephen E. Schwartz

1994-07-01T23:59:59.000Z

150

Seasonal Influences on Coupled Ocean–Atmosphere Variability in the Tropical Atlantic Ocean  

Science Conference Proceedings (OSTI)

Numerous studies and observational analyses point to a connection between the annual cycle and tropical Atlantic variability, specifically the influence of the seasons. Although a previous study has shown that the annual cycle is not necessary ...

Susan C. Bates

2010-02-01T23:59:59.000Z

151

Multimodel Estimates of Atmospheric Response to Modes of SST Variability and Implications for Droughts  

Science Conference Proceedings (OSTI)

A set of idealized global model experiments was performed by several modeling centers as part of the Drought Working Group of the U.S. Climate Variability and Predictability component of the World Climate Research Programme (CLIVAR). The purpose ...

Philip J. Pegion; Arun Kumar

2010-08-01T23:59:59.000Z

152

Modeling the Biosphere–Atmosphere System: The Impact of the Subgrid Variability in Rainfall Interception  

Science Conference Proceedings (OSTI)

Subgrid variability in rainfall distribution has been widely recognized as an important factor to include in the representation of land surface hydrology within climate models. In this paper, using West Africa as a case study, the impact of the ...

Guiling Wang; Elfatih A. B. Eltahir

2000-08-01T23:59:59.000Z

153

Intraseasonal Tropical Atmospheric Variability Associated with the Two Flavors of El Niño  

Science Conference Proceedings (OSTI)

The characteristics of intraseasonal tropical variability (ITV) associated with the two flavors of El Niño [i.e., the canonical or eastern Pacific (EP) El Niño and the Modoki or central Pacific (CP) El Niño] are documented using composite and ...

Daria Gushchina; Boris Dewitte

2012-11-01T23:59:59.000Z

154

Analogous Pacific and Atlantic Meridional Modes of Tropical Atmosphere–Ocean Variability  

Science Conference Proceedings (OSTI)

From observational analysis a Pacific mode of variability in the intertropical convergence zone (ITCZ)/cold tongue region is identified that possesses characteristics and interpretation similar to the dominant “meridional” mode of interannual–...

John C. H. Chiang; Daniel J. Vimont

2004-11-01T23:59:59.000Z

155

A Statistical-Dynamical Study of Empirically Determined Modes of Atmospheric Variability  

Science Conference Proceedings (OSTI)

The observed wintertime intraseasonal variability of the Northern Hemisphere midtropospheric circulation is analyzed within the framework of an equivalent barotropic model. The analysis centers on the wave domain empirical orthogonal functions (...

Siegfried D. Schubert

1985-01-01T23:59:59.000Z

156

Ensemble Atmospheric GCM Simulation of Climate Interannual Variability from 1979 to 1994  

Science Conference Proceedings (OSTI)

The climate interannual variability is examined using the general circulation model (GCM) developed at the Laboratoire de Météorologie Dynamique. The model is forced by the observed sea surface temperature for the period 1979–94. An ensemble of ...

Zhao-Xin Li

1999-04-01T23:59:59.000Z

157

A Method of Evaluating Atmospheric Models Using Tracer Measurements  

Science Conference Proceedings (OSTI)

The authors have developed a method that uses tracer measurements as the basis for comparing and evaluating wind fields. An important advantage of the method is that the wind fields are evaluated from the tracer measurements without introducing ...

Darko Kora?in; James Frye; Vlad Isakov

2000-02-01T23:59:59.000Z

158

Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI  

Science Conference Proceedings (OSTI)

The accuracy of the Global Positioning System (GPS) as an instrument for measuring the integrated water vapor content of the atmosphere has been evaluated by comparison with concurrent observations made over a 14-day period by radiosonde, ...

A. E. Niell; A. J. Coster; F. S. Solheim; V. B. Mendes; P. C. Toor; R. B. Langley; C. A. Upham

2001-06-01T23:59:59.000Z

159

Retrieval of Atmospheric Parameters from Hydrometeor Backscatter Measured with Doppler Radar Profiler  

Science Conference Proceedings (OSTI)

The evaluation of backscatter spectra of clouds and precipitation measured with Doppler radar profilers allows the retrieval of a number of important atmospheric parameters. This retrieval leads to inaccurate results if vertical wind parameters ...

Dirk Klugmann

2001-01-01T23:59:59.000Z

160

Signal Postprocessing and Reflectivity Calibration of the Atmospheric Radiation Measurement Program 915-MHz Wind Profilers  

Science Conference Proceedings (OSTI)

The Department of Energy Atmospheric Radiation Measurement (ARM) Program has recently initiated a new research avenue toward a better characterization of the transition from cloud to precipitation. Dual-wavelength techniques applied to millimeter-...

Frédéric Tridon; Alessandro Battaglia; Pavlos Kollias; Edward Luke; Christopher R. Williams

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Atmospheric Radiation Measurement Program Cloud Profiling Radars: An Evaluation of Signal Processing and Sampling Strategies  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Atmospheric Radiation Measurements (ARM) program operates millimeter-wavelength cloud radars (MMCRs) in several specific locations within different climatological regimes. These vertically pointing cloud ...

Pavlos Kollias; Bruce A. Albrecht; Eugene E. Clothiaux; Mark A. Miller; Karen L. Johnson; Kenneth P. Moran

2005-07-01T23:59:59.000Z

162

Field Experiment for Measurement of the Radiative Characteristics of a Hazy Atmosphere  

Science Conference Proceedings (OSTI)

Theoretical two-and three-dimensional solutions to the radiative transfer equation have been applied to the earth-atmosphere system. A field experiment was conducted to test this theory. in the experiment the upward radiance was measured above ...

Y. J. Kaufman; T. W. Brakke; E. Eloranta

1986-06-01T23:59:59.000Z

163

Accurate Radiometric Measurement of the Atmospheric Longwave Flux at theSea Surface  

Science Conference Proceedings (OSTI)

The errors in pyrgeometer measurements of the atmospheric longwave flux at the sea surface due to differential heating of the sensor dome relative to the body and to shortwave leakage through the dome are evaluated. Contrary to the findings of ...

Robin W. Pascal; Simon A. Josey

2000-09-01T23:59:59.000Z

164

Initial Field Measurements of Atmospheric Absorption at 9–11 ?m Wavelengths  

Science Conference Proceedings (OSTI)

A field adapted spectrophone system employing a tuneable CO2 laser source (over wavelengths 9.2–10.8 ?m) was used to measure atmospheric gaseous and particulate absorption at an isolated desert location in the southwestern United States. ...

C. W. Bruce; Y. P. Yee; B. D. Hinds; R. J. Brewer; J. Minjares; R. G. Pinnick

1980-08-01T23:59:59.000Z

165

Cluster Analysis: A new approach applied to Lidar measurements for Atmospheric Boundary Layer height estimation  

Science Conference Proceedings (OSTI)

Several procedures are widely applied to estimate the Atmospheric Boundary Layer (ABL) top height by using aerosols as tracers from lidar measurements. These methods represent different mathematical approaches relying on either the abrupt step of ...

Daniel Toledo; Carmen Córdoba-Jabonero; Manuel Gil-Ojeda

166

Application of a Differential Fuel-Cell Analyzer for Measuring Atmospheric Oxygen Variations  

Science Conference Proceedings (OSTI)

A commercially available differential fuel-cell analyzer has been adapted to make field-based ppm-level measurements of atmospheric O2 variations. With the implementation of rapid calibrations and active pressure and flow control, the analysis ...

Britton B. Stephens; Peter S. Bakwin; Pieter P. Tans; Ron M. Teclaw; Daniel D. Baumann

2007-01-01T23:59:59.000Z

167

Fast Time Response Tunable Diode Laser Measurements of Atmospheric Trace Gases for Eddy Correlation  

Science Conference Proceedings (OSTI)

A fast-response, atmospheric trace gas monitor, based on the principle of tunable diode laser absorption spectroscopy, has been developed for making eddy correlation measurements of dry deposition fluxes. This system, which is capable of ...

G. L. Ogram; F. J. Northrup; G. C. Edwards

1988-08-01T23:59:59.000Z

168

Comparison of Infrared Atmospheric Brightness Temperatures Measured by a Fourier Transform Spectrometer and a Filter Radiometer  

Science Conference Proceedings (OSTI)

Increased interest in using atmospheric brightness temperature measurements from simple infrared radiometers combined with radars and lidars has prompted the investigation of their accuracy for various sky conditions. In comparisons of ...

Joseph A. Shaw; Jack B. Snider; James H. Churnside; Mark D. Jacobson

1995-10-01T23:59:59.000Z

169

Climate Science for a Sustainable Energy Future Atmospheric Radiation Measurement Best Estimate (CSSEFARMBE)  

SciTech Connect

The Climate Science for a Sustainable Energy Future (CSSEF) project is working to improve the representation of the hydrological cycle in global climate models, critical information necessary for decision-makers to respond appropriately to predictions of future climate. In order to accomplish this objective, CSSEF is building testbeds to implement uncertainty quantification (UQ) techniques to objectively calibrate and diagnose climate model parameterizations and predictions with respect to local, process-scale observations. In order to quantify the agreement between models and observations accurately, uncertainty estimates on these observations are needed. The DOE Atmospheric Radiation Measurement (ARM) program takes atmospheric and climate related measurements at three permanent locations worldwide. The ARM VAP called the ARM Best Estimate (ARMBE) [Xie et al., 2010] collects a subset of ARM observations, performs quality control checks, averages them to one hour temporal resolution, and puts them in a standard format for ease of use by climate modelers. ARMBE has been widely used by the climate modeling community as a summary product of many of the ARM observations. However, the ARMBE product does not include uncertainty estimates on the data values. Thus, to meet the objectives of the CSSEF project and enable better use of this data with UQ techniques, we created the CSSEFARMBE data set. Only a subset of the variables contained in ARMBE is included in CSSEFARMBE. Currently only surface meteorological observations are included, though this may be expanded to include other variables in the future. The CSSEFARMBE VAP is produced for all extended facilities at the ARM Southern Great Plains (SGP) site that contain surface meteorological equipment. This extension of the ARMBE data set to multiple facilities at SGP allows for better comparison between model grid boxes and the ARM point observations. In the future, CSSEFARMBE may also be created for other ARM sites. As each site has slightly different instrumentation, this will require additional development to understand the uncertainty characterization associated with instrumentation at those sites. The uncertainty assignment process is implemented into the ARM program’s new Integrated Software Development Environment (ISDE) so that many of the key steps can be used in the future to screen data based on ARM Data Quality Reports (DQRs), propagate uncertainties when transforming data from one time scale into another, and convert names and units into NetCDF Climate and Forecast (CF) standards. These processes are described in more detail in the following sections.

Riihimaki, Laura D.; Gaustad, Krista L.; McFarlane, Sally A.

2012-09-28T23:59:59.000Z

170

Atmospheric Radioxenon Measurements in North Las Vegas, NV  

Science Conference Proceedings (OSTI)

PNNL deployed the ARSA radioxenon measurement system in North Las Vegas for two weeks in February and March 2006 for the purpose of measuring the radioxenon background at a level of sensitivity much higher than previously done in the vicinity of the NTS. The measurements establish what might be expected if future measurements are taken at NTS itself. The measurements are also relevant to test site readiness. A second detector, the PEMS, built and operated by DRI, was deployed in conjunction with the ARSA and contained a PIC, aerosol collection filters, and meteorological sensors. Originally, measurements were also to be performed at Mercury, NV on the NTS, but these were canceled due to initial equipment problems with the ARSA detector. Some of the radioxenon measurements detected 133Xe at levels up to 3 mBq/m3. This concentration of radioxenon is consistent with the observation of low levels of radioxenon emanating from distance nuclear reactors. Previous measurements in areas of high nuclear reactor concentration have shown similar results, but the western US, in general, does not have many nuclear reactors. Measurements of the wind direction indicate that the air carrying the radioxenon came from south of the detector and not from the NTS.

Milbrath, Brian D.; Cooper, Matthew W.; Lidey, Lance S.; Bowyer, Ted W.; Hayes, James C.; McIntyre, Justin I.; Karr, L.; Shafer, D.; Tappen, J.

2006-07-31T23:59:59.000Z

171

Posters Single-Column Model for Atmospheric Radiation Measurement...  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement Sites: Model Development and Sensitivity Test Q. Xu and M. Dong Cooperative Institute of Mesoscale Meteorological Studies University of Oklahoma Norman,...

172

Posters Scanning Raman Lidar Measurements of Atmospheric Water Vapor and Aerosols  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Posters Scanning Raman Lidar Measurements of Atmospheric Water Vapor and Aerosols R. A. Ferrare and K. D. Evans (a) Hughes STX Corporation Lanham, Maryland S. H. Melfi and D. N. Whiteman NASA/Goddard Space Flight Center Greenbelt, Maryland The principal objective of the Department of Energy's (DOE) Atmospheric Radiation Measurement Program (ARM) is to develop a better understanding of the atmospheric radiative balance in order to improve the parameterization of radiative processes in general circulation models (GCMs) which are used to study climate change. Meeting this objective requires detailed measurements of both water vapor and aerosols since these atmospheric constituents affect the radiation balance directly, through scattering and absorption of solar and

173

Atmospheric Profiles at the Southern Pierre Auger Observatory and their Relevance to Air Shower Measurement  

E-Print Network (OSTI)

The dependence of atmospheric conditions on altitude and time have to be known at the site of an air shower experiment for accurate reconstruction of extensive air showers and their simulations. The height-profile of atmospheric depth is of particular interest as it enters directly into the reconstruction of longitudinal shower development and of the primary energy and mass of cosmic rays. For the southern part of the Auger Observatory, the atmosphere has been investigated in a number of campaigns with meteorological radio soundings and with continuous measurements of ground-based weather stations. Focussing on atmospheric depth and temperature profiles, temporal variations are described and monthly profiles are developed. Uncertainties of the monthly atmospheres that are currently applied in the Auger reconstruction are discussed.

B. Keilhauer; J. Bluemer; R. Engel; D. Gora; P. Homola; H. Klages; J. Pekala; M. Risse; M. Unger; B. Wilczynska; H. Wilczynski; for the Pierre Auger Collaboration

2005-07-12T23:59:59.000Z

174

Deduction of Vertical Motion in the Atmosphere from Aircraft Measurements  

Science Conference Proceedings (OSTI)

Equations for deducing the vertical motion of air based on aircraft measurements are presented along with derivations. The equations are based on the aircraft equations of motion, but due to different assumptions, the resulting equations are ...

Fred J. Kopp

1985-12-01T23:59:59.000Z

175

Apparatus for Atmospheric Surface Layer Measurements over Waves  

Science Conference Proceedings (OSTI)

This paper describes an apparatus developed for simultaneously measuring water elevation and static and dynamic pressure, momentum, and heat fluxes above waves close to the interface. The apparatus was used successfully at the Lake Ontario wave ...

Mark A. Donelan; Neils Madsen; Kimmo K. Kahma; Ioannis K. Tsanis; William M. Drennan

1999-09-01T23:59:59.000Z

176

Estimating the Atmospheric Water Vapor Content from Sun Photometer Measurements  

Science Conference Proceedings (OSTI)

The differential absorption technique for estimating columnar water vapor values from the analysis of sunphotometric measurements with wide- and narrowband interferential filters centered near 0.94 ?m is discussed and adapted. Water vapor line ...

Artemio Plana-Fattori; Michel Legrand; Didier Tanré; Claude Devaux; Anne Vermeulen; Philippe Dubuisson

1998-08-01T23:59:59.000Z

177

Enhancement in Surface Atmospheric Pressure Variability Associated with a Major Geomagnetic Storm  

E-Print Network (OSTI)

Observational studies indicate that there is a close association between geomagnetic storm and meteorological parameters. Geomagnetic field lines follow closely the isobars of surface pressure . A Physical mechanism linking upper atmospheric geomagnetic storm disturbances with tropospheric weather has been proposed by the author and her group where it is postulated that vertical mixing by turbulent eddy fluctuations results in the net transport upward of positive charges originating from lower levels accompanied simultaneously by downward flow of negative charges from higher levels. The present study reports enhancement of high frequency (geomagnetic storm (Ap index = 246) on 13 march 1989.

A. M. Selvam; S. Fadnavis; S. U. Athale; M. I. R. Tinmaker

1998-07-03T23:59:59.000Z

178

Measurement Sites in Google Earth These files contain measurement site locations for various atmospheric monitoring networks and NARSTO Projects in  

E-Print Network (OSTI)

Measurement Sites in Google Earth These files contain measurement site locations for various atmospheric monitoring networks and NARSTO Projects in Google Earth coverages with links to additional site TN Ozone Study) q MILAGRO Sites q TEXAQS2000 TNRCC CAMS Obtain Google Earth Files The Google Earth

179

Profiling the Lower Troposphere over the Ocean with Infrared Hyperspectral Measurements of the Marine-Atmosphere Emitted Radiance Interferometer  

Science Conference Proceedings (OSTI)

Measurements of the spectra of infrared emission from the atmosphere were taken by a Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) deployed on the NOAA ship Ronald H. Brown during the Aerosol and Ocean Science Expedition (AEROSE) in ...

Malgorzata Szczodrak; Peter J. Minnett; Nicholas R. Nalli; Wayne F. Feltz

2007-03-01T23:59:59.000Z

180

In situ measurements of speciated atmospheric mercury and the identification of source regions in the Mexico City Metropolitan Area  

E-Print Network (OSTI)

In order to expand the currently limited understanding of atmospheric mercury source-receptor relationships in the Mexico City Metropolitan Area, real time measurements of atmospheric mercury were made at a downtown urban ...

Rutter, A. P.

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Variability in Measured Space Temperatures in 60 Homes  

SciTech Connect

This report discusses the observed variability in indoor space temperature in a set of 60 homes located in Florida, New York, Oregon, and Washington. Temperature data were collected at 15-minute intervals for an entire year, including living room, master bedroom, and outdoor air temperature (Arena, et. al). The data were examined to establish the average living room temperature for the set of homes for the heating and cooling seasons, the variability of living room temperature depending on climate, and the variability of indoor space temperature within the homes. The accuracy of software-based energy analysis depends on the accuracy of input values. Thermostat set point is one of the most influential inputs for building energy simulation. Several industry standards exist that recommend differing default thermostat settings for heating and cooling seasons. These standards were compared to the values calculated for this analysis. The data examined for this report show that there is a definite difference between the climates and that the data do not agree well with any particular standard.

Roberts, D.; Lay, K.

2013-03-01T23:59:59.000Z

182

Measurement and modeling of shortwave irradiance components in cloud-free atmospheres  

SciTech Connect

Atmosphere scatters and absorbs incident solar radiation modifying its spectral content and decreasing its intensity at the surface. It is very useful to classify the earth-atmospheric solar radiation into several components--direct solar surface irradiance (E{sub direct}), diffuse-sky downward surface irradiance (E{sub diffuse}), total surface irradiance, and upwelling flux at the surface and at the top-of-the atmosphere. E{sub direct} depends only on the extinction properties of the atmosphere without regard to details of extinction, namely scattering or absorption; furthermore it can be accurately measured to high accuracy (0.3%) with the aid of an active cavity radiometer (ACR). E{sub diffuse} has relatively larger uncertainties both in its measurement using shaded pyranometers and in model estimates, owing to the difficulty in accurately characterizing pyranometers and in measuring model inputs such as surface reflectance, aerosol single scattering albedo, and phase function. Radiative transfer model simulations of the above surface radiation components in cloud-free skies using measured atmospheric properties show that while E{sub direct} estimates are closer to measurements, E{sub diffuse} is overestimated by an amount larger than the combined uncertainties in model inputs and measurements, illustrating a fundamental gap in the understanding of the magnitude of atmospheric absorption in cloud-free skies. The excess continuum type absorption required to reduce the E{sub diffuse} model overestimate ({approximately}3--8% absorptance) would significantly impact climate prediction and remote sensing. It is not clear at present what the source for this continuum absorption is. Here issues related to measurements and modeling of the surface irradiance components are discussed.

Halthore, R.N.

1999-08-04T23:59:59.000Z

183

Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006  

SciTech Connect

This annual report describes the purpose and structure of the ARM Climate Research Facility and ARM Science programs and presents key accomplishments in 2006. Noteworthy scientific and infrastructure accomplishments in 2006 include: • Collaborating with the Australian Bureau of Meteorology to lead the Tropical Warm Pool-International Cloud Experiment, a major international field campaign held in Darwin, Australia • Successfully deploying the ARM Mobile Facility in Niger, Africa • Developing the new ARM Aerial Vehicles Program (AVP) to provide airborne measurements • Publishing a new finding on the impacts of aerosols on surface energy budget in polar latitudes • Mitigating a long-standing double-Intertropical Convergence Zone problem in climate models using ARM data and a new cumulus parameterization scheme.

LR Roeder

2005-11-30T23:59:59.000Z

184

Final Report - From Measurements to Models: Cross-Comparison of Measured and Simulated Behavioral States of the Atmosphere  

SciTech Connect

The ARM sites and the ARM Mobile Facility (AMF) were constructed to make measurements of the atmosphere and radiation system in order to quantify deficiencies in the simulation of clouds within models and to make improvements in those models. While the measurement infrastructure of ARM is well-developed and a model parameterization testbed capability has been established, additional effort is needed to develop statistical techniques which permit the comparison of simulation output from atmospheric models with actual measurements. Our project establishes a new methodology for objectively comparing ARM measurements to the outputs of leading global climate models and reanalysis data. The quantitative basis for this comparison is provided by a statistical procedure which establishes an exhaustive set of mutually-exclusive, recurring states of the atmosphere from sets of multivariate atmospheric and cloud conditions, and then classifies multivariate measurements or simulation outputs into those states. Whether measurements and models classify the atmosphere into the same states at specific locations through time provides an unequivocal comparison result. Times and locations in both geographic and state space of model-measurement agreement and disagreement will suggest directions for the collection of additional measurements at existing sites, provide insight into the global representativeness of the current ARM sites (suggesting locations and times for use of the AMF), and provide a basis for improvement of models. Two different analyses were conducted: One, using the Parallel Climate Model, focused on an IPCC climate change scenario and clusters that characterize long-term changes in the hydrologic cycle. The other, using the GISS Model E GCM and the ARM Active Remotely Sensed Cloud Layers product, explored current climate cloud regimes in the Tropical West Pacific.

Del Genio, Anthony D; Hoffman, Forrest M; Hargrove, Jr, William W

2007-10-22T23:59:59.000Z

185

On Gaussian Random Measures Generated by Empirical Distributions of Independent Random Variables  

E-Print Network (OSTI)

Normalized fluctuations of empirical measures converge to a law of a random measure if and only if the underlying random variable is purely discrete with square-root-summable probabilities. 1

unknown authors

1994-01-01T23:59:59.000Z

186

Atmospheric Aerosols  

NLE Websites -- All DOE Office Websites (Extended Search)

Tom Kirchstetter with aerosol measurement instrument Atmospheric Aerosols Atmospheric aerosol research at LBNL seeks to understand the air quality and climate impacts of particles...

187

Embracing Complexity: Deciphering Origins and Transformations of Atmospheric Organics through Speciated Measurements  

E-Print Network (OSTI)

oxidation processes. Organic compounds are emitted to the atmosphere from a variety of natural and man temporal resolution are necessary to adequately observe variations in chemical composition caused analytical tools. Current gas and particle-phase instrumentation has focused on measuring organic compounds

Silver, Whendee

188

Atmospheric Environment 38 (2004) 14171423 Measurements of ion concentration in gasoline and diesel  

E-Print Network (OSTI)

establish criteria for engine design, operation, after-treatment, and fuel and lubri- cating oil and diesel engine exhaust Fangqun Yua, *, Thomas Lannib , Brian P. Frankb a Atmospheric Sciences Research concentration in motor vehicle engine exhaust, and report some preliminary measurements in the exhaust

Yu, Fangqun

189

Intercomparison of NDSC Ground-Based Solar FTIR Measurements of Atmospheric Gases at Lauder, New Zealand  

Science Conference Proceedings (OSTI)

A formal intercomparison of atmospheric total column measurements of N2O, N2, CH4, O3, HCl, HNO3, and HF by two ground-based solar Fourier transform infrared (FTIR) spectrometers conducted as part of the Network for the Detection of Stratospheric ...

D. W. T. Griffith; N. B. Jones; B. McNamara; C. Paton Walsh; W. Bell; C. Bernardo

2003-08-01T23:59:59.000Z

190

Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting  

SciTech Connect

This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately.

Not Available

1994-03-01T23:59:59.000Z

191

Causes of interannual variability in ecosystem-atmosphere CO2 exchange in a northern Wisconsin forest using a Bayesian model calibration  

SciTech Connect

Carbon dioxide fluxes were examined over the growing seasons of 2002 and 2003 from 14 different sites in Upper Midwest (USA) to assess spatial variability of ecosystem-atmosphere CO2 exchange. These sites were exposed to similar temperature/precipitation regimes and spanned a range of vegetation types typical of the region (northern hardwood, mixed forest, red pine, jack pine, pine barrens and shrub wetland). The hardwood and red pine sites also spanned a range of stand ages (young, intermediate, mature). While seasonal changes in net ecosystem exchange (NEE) and photosynthetic parameters were coherent across the 2 years at most sites, changes in ecosystem respiration (ER) and gross ecosystem production (GEP) were not. Canopy height and vegetation type were important variables for explaining spatial variability of CO2 fluxes across the region. Light-use efficiency (LUE) was not as strongly correlated to GEP as maximum assimilation capacity (Amax). A bottom-up multi-tower land cover aggregated scaling of CO2 flux to a 2000 km(2) regional flux estimate found June to August 2003 NEE, ER and GEP to be -290 +/- 89, 408 +/- 48, and 698 +/- 73 gC m(-2), respectively. Aggregated NEE, ER and GEP were 280% larger, 32% smaller and 3% larger, respectively, than that observed from a regionally integrating 447 m tall flux tower. However, when the tall tower fluxes were decomposed using a footprint-weighted influence function and then re-aggregated to a regional estimate, the resulting NEE, ER and GEP were within 11% of the multi-tower aggregation. Excluding wetland and young stand age sites from the aggregation worsened the comparison to observed fluxes. These results provide insight on the range of spatial sampling, replication, measurement error and land cover accuracy needed for multi-tiered bottom-up scaling of CO2 fluxes in heterogeneous regions such as the Upper Midwest, USA. (C) 2007 Elsevier B.V. All rights reserved.

Ricciuto, Daniel M [ORNL; Butler, Martha [Pennsylvania State University; Davis, Kenneth [Pennsylvania State University; Cook, Bruce D [University of Minnesota, St Paul

2008-01-01T23:59:59.000Z

192

Interannual Variability of Trace Gases in the Subtropical Winter Stratosphere  

Science Conference Proceedings (OSTI)

Measurements of water vapor and methane from the Halogen Occultation Experiment instrument on board the Upper Atmosphere Research Satellite are used to study the interannual variability of trace gas distributions in the atmosphere. Particular ...

L. J. Gray; J. M. Russell Jr.

1999-04-01T23:59:59.000Z

193

Internal variability in projections of twenty-first century Arctic sea ice loss: Role of the large-scale atmospheric circulation  

Science Conference Proceedings (OSTI)

Internal variability in twenty-first century summer Arctic sea ice loss and its relationship to the large-scale atmospheric circulation is investigated in a 39-member Community Climate System Model version 3 (CCSM3) ensemble for the period 2000–...

Justin J. Wettstein; Clara Deser

194

The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part II: Aspects of Variability and Regional Climate  

Science Conference Proceedings (OSTI)

The performance of the atmospheric component of the new Hadley Centre Global Environmental Model (HadGEM1) is assessed in terms of its ability to represent a selection of key aspects of variability in the Tropics and extratropics. These include ...

M. A. Ringer; G. M. Martin; C. Z. Greeves; T. J. Hinton; P. M. James; V. D. Pope; A. A. Scaife; R. A. Stratton; P. M. Inness; J. M. Slingo; G.-Y. Yang

2006-04-01T23:59:59.000Z

195

Atmospheric CO2> Record from In Situ Measurements at K-Puszta, Hungary  

NLE Websites -- All DOE Office Websites (Extended Search)

K-Puszta, Hungary K-Puszta, Hungary Atmospheric CO2 Record from In Situ Measurements at K-Puszta, Hungary graphics Graphics data Data Investigator László Haszpra Hungarian Meteorological Service, Institute for Atmospheric Physics, Department for Analysis of Atmospheric Environment, H-1675, P.O. Box 39, Budapest, Hungary Period of Record 1981-1997 Location The K-puszta regional background air pollution monitoring station was established in a clearing in a mixed forest on the Hungarian Great Plain in the middle of the Carpathian Basin. K-puszta is as free from direct pollution as possible in the highly industrialized, densely populated central Europe. Because of the growing vegetation, the station was moved in September 1993 to a larger clearing, also at the same elevation,

196

Atmospheric Carbon Dioxide Record from In Situ Measurements at Baring Head  

NLE Websites -- All DOE Office Websites (Extended Search)

Baring Head Baring Head Atmospheric Carbon Dioxide Record from In Situ Measurements at Baring Head graphics Graphics data Data Investigators M.R. Manning, A.J. Gomez, K.P. Pohl National Institute of Water and Atmospheric Research, Ltd., Climate Division, Gracefield Road, Gracefield, P.O. Box 31-311, Lower Hutt, New Zealand Period of Record 1970-93 Methods Determinations of atmospheric CO2 mixing ratios are made using a Siemens Ultramat-3 nondispersive infrared (NDIR) gas analyzer. The NDIR CO2 analyzer is connected via a gas manifold consisting of stainless steel tubing and computer-controlled solenoid switches to 12 gas cylinders and 2 sample air lines. The NDIR analyzer compares ambient air CO2 mixing ratios relative to known CO2 mixing ratios in tanks of compressed reference gases.

197

Seasonal and Long-Term Atmospheric Responses to Reemerging North Pacific Ocean Variability: A Combined Dynamical and Statistical Assessment  

Science Conference Proceedings (OSTI)

The atmospheric response to a North Pacific subsurface oceanic temperature anomaly is studied in a coupled ocean–atmosphere general circulation model using a combined dynamical and statistical approach, with the focus on the evolution at seasonal ...

Zhengyu Liu; Yun Liu; Lixin Wu; R. Jacob

2007-03-01T23:59:59.000Z

198

On the Magnitude and Variability of Subgrid-Scale Eddy-Diffusion Coefficients in the Atmospheric Surface Layer  

Science Conference Proceedings (OSTI)

Eddy-viscosity closures for large eddy simulations (LES) of atmospheric boundary layer dynamics include a parameter (Smagorinsky constant cs), which depends upon physical parameters, such as distance to the ground, atmospheric stability, and ...

Jan Kleissl; Charles Meneveau; Marc B. Parlange

2003-10-01T23:59:59.000Z

199

Improved Normalization of the Size Distribution of Atmospheric Particles Retrieved from Aureole Measurements Using the Diffraction Approximation  

Science Conference Proceedings (OSTI)

This paper describes an improvement in the diffraction approximation used to retrieve the size distribution of atmospheric particles from solar aureole radiance measurements. Normalization using total optical thickness based on measurement of the ...

J. G. DeVore

2011-08-01T23:59:59.000Z

200

Atmospheric Carbon Dioxide Record from In Situ Measurements at Mt. Cimone  

NLE Websites -- All DOE Office Websites (Extended Search)

Mt. Cimone Mt. Cimone Atmospheric Carbon Dioxide Record from In Situ Measurements at Mt. Cimone graphics Graphics data Data Investigators Tiziano Colombo and Riccardo Santaguida Italian Meteorological Service, Via delle Ville, 100-41029 Sestola (MO), Italy Period of Record 1979-1997 Methods Continuous atmospheric CO2 measurements have been carried out at Mt. Cimone since 1979. Since December 1988, air samples have also been collected approximately once per week in a pair of 2-L, electropolished, stainless steel cylindrical flasks. From 1979 until December 1988, a Hartmann and Braun URAS-2T NDIR gas analyzer was used for CO2 determinations. Currently, CO2 determinations are made through the use of a Siemens Ultramat-5E NDIR gas analyzer. Water vapor is eliminated by passing the air through a U-tube

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Introducing an Absolute Cavity Pyrgeometer for Improving the Atmospheric Longwave Irradiance Measurement (Presentation)  

SciTech Connect

Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG. A total of 408 readings was collected over three different clear nights. The calculated irradiance measured by the ACP was 1.5 W/m2 lower than that measured by the two pyrgeometers that are traceable to WISG. Further development and characterization of the ACP might contribute to the effort of improving the uncertainty and traceability of WISG to SI.

Reda, I.; Hansen, L.; Zeng, J.

2012-08-01T23:59:59.000Z

202

Measurement and QCD analysis of event shape variables in deep-inelastic electron-proton collisions at HERA  

E-Print Network (OSTI)

Measurement and QCD analysis of event shape variables in deep-inelastic electron-proton collisions at HERA

Kluge, T

2004-01-01T23:59:59.000Z

203

High Accuracy 14C Measurements for Atmospheric CO2 Samples from the South  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Isotopes » CIO 14C Measurements Carbon Isotopes » CIO 14C Measurements High Accuracy 14C Measurements for Atmospheric CO2 Samples from the South Pole and Point Barrow, Alaska by Accelerator Mass Spectrometry graphics South Pole Graphics graphics Pt. Barrow Graphics data South Pole Digital Data - Trends Only data South Pole Digital Data - Complete Data data Pt. Barrow Digital Data - Trends Only data Pt. Barrow Digital Data - Complete Data Investigators H. A. J. Meijer, M. H. Pertuisot and J. van der Plicht Centrum voor Isotopen Onderzook (Center for Isotope Research, CIO) University of Groningen The Netherlands http://www.rug.nl/ees/onderzoek/cio/index Period of Record: 1984-1992 Methods Accelerator mass spectrometry (AMS) was used to obtain 14CO2 measurements from flasks collected at the South Pole and Point Barrow, Alaska, USA, at

204

Relationships between South Atlantic SST Variability and Atmospheric Circulation over the South African Region during Austral Winter  

Science Conference Proceedings (OSTI)

The Southwestern Cape (SWC) region of South Africa is characterized by winter rainfall brought mainly via cold fronts and by substantial interannual variability. Previous work has found evidence that the interannual variability in SWC winter ...

C. J. C. Reason; D. Jagadheesha

2005-08-01T23:59:59.000Z

205

Coupled Ocean–Atmosphere Interaction and Variability in the Tropical Atlantic Ocean with and without an Annual Cycle  

Science Conference Proceedings (OSTI)

Many previous studies point to a connection between the annual cycle and interannual variability in the tropical Atlantic Ocean. To investigate the importance of the annual cycle in the generation of tropical Atlantic variability (TAV) as well as ...

Susan C. Bates

2008-11-01T23:59:59.000Z

206

The Use of lce-Liquid Water Potential Temperature as a Thermodynamic Variable In Deep Atmospheric Models  

Science Conference Proceedings (OSTI)

Previous studies have shown liquid water potential temperature to be an inappropriate choice for a thermodynamic variable in a deep cumulus convection model. In this study, an alternate form of this variable called ice-liquid water potential ...

Gregory J. Tripoli; William R. Cotton

1981-05-01T23:59:59.000Z

207

Disaggregating measurement uncertainty from population variability and Bayesian treatment of uncensored results  

Science Conference Proceedings (OSTI)

In making low-level radioactivity measurements of populations, it is commonly observed that a substantial portion of net results are negative. Furthermore, the observed variance of the measurement results arises from a combination of measurement uncertainty and population variability. This paper presents a method for disaggregating measurement uncertainty from population variability to produce a probability density function (PDF) of possibly true results. To do this, simple, justifiable, and reasonable assumptions are made about the relationship of the measurements to the measurands (the 'true values'). The measurements are assumed to be unbiased, that is, that their average value is the average of the measurands. Using traditional estimates of each measurement's uncertainty to disaggregate population variability from measurement uncertainty, a PDF of measurands for the population is produced. Then, using Bayes's theorem, the same assumptions, and all the data from the population of individuals, a prior PDF is computed for each individual's measurand. These PDFs are non-negative, and their average is equal to the average of the measurement results for the population. The uncertainty in these Bayesian posterior PDFs is all Berkson with no remaining classical component. The methods are applied to baseline bioassay data from the Hanford site. The data include 90Sr urinalysis measurements on 128 people, 137Cs in vivo measurements on 5,337 people, and 239Pu urinalysis measurements on 3,270 people. The method produces excellent results for the 90Sr and 137Cs measurements, since there are nonzero concentrations of these global fallout radionuclides in people who have not been occupationally exposed. The method does not work for the 239Pu measurements in non-occupationally exposed people because the population average is essentially zero.

Strom, Daniel J.; Joyce, Kevin E.; Maclellan, Jay A.; Watson, David J.; Lynch, Timothy P.; Antonio, Cheryl L.; Birchall, Alan; Anderson, Kevin K.; Zharov, Peter

2012-04-17T23:59:59.000Z

208

DOE/SC-ARM-020 Atmospheric Radiation Measurement Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

20 20 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

209

DOE/SC-ARM-12-021 Atmospheric Radiation Measurement Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

210

Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2012  

SciTech Connect

Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Voyles, JW

2012-10-10T23:59:59.000Z

211

DOE/SC-ARM-13-020 Atmospheric Radiation Measurement Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

212

Development and Testing of Instrumentation for UAV-Based Flux Measurements within Terrestrial and Marine Atmospheric Boundary Layers  

Science Conference Proceedings (OSTI)

Instrumentation packages have been developed for small (18–28 kg) unmanned aerial vehicles (UAVs) to measure momentum fluxes as well as latent, sensible, and radiative heat fluxes in the atmospheric boundary layer (ABL) and the topography below. ...

Benjamin D. Reineman; Luc Lenain; Nicholas M. Statom; W. Kendall Melville

2013-07-01T23:59:59.000Z

213

The Atmospheric Radiation Measurement Program Cloud Profiling Radars: Second-Generation Sampling Strategies, Processing, and Cloud Data Products  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program operates millimeter-wavelength cloud radars in several climatologically distinct regions. The digital signal processors for these radars were recently upgraded and ...

Pavlos Kollias; Mark A. Miller; Edward P. Luke; Karen L. Johnson; Eugene E. Clothiaux; Kenneth P. Moran; Kevin B. Widener; Bruce A. Albrecht

2007-07-01T23:59:59.000Z

214

Evaluation of CMIP3 and CMIP5 Wind Stress Climatology Using Satellite Measurements and Atmospheric Reanalysis Products  

Science Conference Proceedings (OSTI)

Wind stress measurements from the Quick Scatterometer (QuikSCAT) satellite and two atmospheric reanalysis products are used to evaluate the annual mean and seasonal cycle of wind stress simulated by phases 3 and 5 of the Coupled Model ...

Tong Lee; Duane E. Waliser; Jui-Lin F. Li; Felix W. Landerer; Michelle M. Gierach

2013-08-01T23:59:59.000Z

215

A Refined Calibration Procedure of Two-Channel Sun Photometers to Measure Atmospheric Precipitable Water at Various Antarctic Sites  

Science Conference Proceedings (OSTI)

Two-channel sun photometers can be easily employed at Antarctic sites, where harsh environmental conditions prevail, to carry out measurements of precipitable water W. In the very dry air conditions observed in the Antarctic atmosphere, water ...

Claudio Tomasi; Boyan Petkov; Elena Benedetti; Luca Valenziano; Angelo Lupi; Vito Vitale; Ubaldo Bonafé

2008-02-01T23:59:59.000Z

216

Centennial Trend and Decadal-to-Interdecadal Variability of Atmospheric Angular Momentum in CMIP3 and CMIP5 Simulations  

Science Conference Proceedings (OSTI)

The climatology and trend of atmospheric angular momentum from the phase 3 and the phase 5 Climate Model Intercomparison Project (CMIP3 and CMIP5, respectively) simulations are diagnosed and validated with the Twentieth Century Reanalysis (20CR). ...

Houk Paek; Huei-Ping Huang

2013-06-01T23:59:59.000Z

217

Northern Hemisphere Winter Atmospheric Transient Eddy Heat Fluxes and the Gulf Stream and Kuroshio–Oyashio Extension Variability  

Science Conference Proceedings (OSTI)

Spatial and temporal covariability between the atmospheric transient eddy heat fluxes (i.e., ??T? and ??q?) in the Northern Hemisphere winter (January–March) and the paths of the Gulf Stream (GS), Kuroshio Extension (KE), and Oyashio Extension ...

Young-Oh Kwon; Terrence M. Joyce

2013-12-01T23:59:59.000Z

218

Short-Term Climate Variability and Atmospheric Teleconnections from Satellite-Observed Outgoing Longwave Radiation. Part II: Lagged Correlations  

Science Conference Proceedings (OSTI)

As a sequel to Part I of this study, lagged relationships in atmospheric teleconnections associated with outgoing longwave radiation (OLR) are investigated using Lagged Cross Correlations (LCC). The feasibility of extratropical seasonal-to-...

Ka-Ming Lau; Paul H. Chan

1983-12-01T23:59:59.000Z

219

Measuring Upper Ocean Variability from an Array of Surface Moorings in the Subtropical Convergence Zone  

Science Conference Proceedings (OSTI)

Measurements of upper ocean variability were made in the subtropical convergence zone southwest of Bermuda from an array of five surface moorings set with spacings of 16 to 53 km. The intent was to observe oceanic fronts and to quantify the ...

Robert A. Weller; Daniel L. Rudnick; Nancy J. Pennington; Richard P. Trask; James R. Valdes

1990-02-01T23:59:59.000Z

220

Atmospheric Radiation Measurement Program Science Plan Current Status and Future Directions of the ARM Science Program  

SciTech Connect

The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: • Maintain the data record at the fixed ARM sites for at least the next five years. • Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. • Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. • Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. • Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. • Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. • Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM’s Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

TP Ackerman; AD Del Genio; RG Ellingson; RA Ferrare; SA Klein; GM McFarquhar; PJ Lamb; CN Long; J Verlinde

2004-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Twenty-Four-Hour Raman Lidar Water Vapor Measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 Water Vapor Intensive Observation Periods  

Science Conference Proceedings (OSTI)

Prior to the Atmospheric Radiation Measurement program’s first water vapor intensive observation period (WVIOP) at the Cloud and Radiation Testbed site near Lamont, Oklahoma, an automated 24-h Raman lidar was delivered to the site. This ...

D. D. Turner; J. E. M. Goldsmith

1999-08-01T23:59:59.000Z

222

Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site  

Science Conference Proceedings (OSTI)

The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

1992-03-01T23:59:59.000Z

223

Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger  

SciTech Connect

This study presents ground-based remote sensing measurements of aerosol optical properties and corresponding shortwave surface radiative effect calculations for the deployment of the Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility (AMF) to Niamey, Niger during 2006. Aerosol optical properties including aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (AP) were derived from multi-filter rotating shadowband radiometer (MFRSR) measurements during the two dry seasons (Jan-Apr and Oct-Dec) at Niamey. The vertical distribution of aerosol extinction was derived from the collocated micropulse lidar (MPL). The aerosol optical properties and vertical distribution of extinction varied significantly throughout the year, with higher AOD, lower SSA, and deeper aerosol layers during the Jan-Apr time period, when biomass burning aerosol layers were more frequent. Using the retrieved aerosol properties and vertical extinction profiles, broadband shortwave surface fluxes and atmospheric heating rate profiles were calculated. Corresponding calculations with no aerosol were used to estimate the aerosol direct radiative effect at the surface. Comparison of the calculated surface fluxes to observed fluxes for non-cloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the optical properties, with mean differences between calculated and observed fluxes of less than 5 W/m2 and RMS differences less than 25 W/m2. Sensitivity tests for a particular case study showed that the observed fluxes could be matched with variations of < 10% in the inputs to the radiative transfer model. We estimated the daily-averaged aerosol radiative effect at the surface by subtracting the clear calculations from the aerosol calculations. The average daily SW aerosol radiative effect over the study period was -27 W/m2, which is comparable to values estimated from satellite data and from climate models with sophisticated dust parameterizations.

McFarlane, Sally A.; Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Ackerman, Thomas P.

2009-03-18T23:59:59.000Z

224

Evaluation of the Vertical Structure of Zonally Averaged Cloudiness and Its Variability in the Atmospheric Model Intercomparison Project  

Science Conference Proceedings (OSTI)

Estimates of zonally averaged cloudiness at each pressure level in 24 models participating in the Atmospheric Model Intercomparison Project are compared with the ISCCP C2 as well as the Nimbus 7 (N7) and Warren et al. (hereafter WH) observations. ...

Bryan C. Weare; Amip Modeling Groups

1996-12-01T23:59:59.000Z

225

Seasonal and Interannual Variability of Atmospheric Heat Sources and Moisture Sinks as Determined from NCEP–NCAR Reanalysis  

Science Conference Proceedings (OSTI)

Using the National Centers for Environmental Predictions (NCEP)–National Center for Atmospheric Research (NCAR) reanalysis, distributions of the heat source Q1 and moisture sink Q2 between 50°N and 50°S are determined for a 15-yr period from 1980 ...

Michio Yanai; Tomohiko Tomita

1998-03-01T23:59:59.000Z

226

Proceedings of the sixth Atmospheric Radiation Measurement (ARM) Science Team meeting  

Science Conference Proceedings (OSTI)

This document contains the summaries of papers presented at the 1996 Atmospheric Radiation Measurement (ARM) Science Team meeting held at San Antonio, Texas. The history and status of the ARM program at the time of the meeting helps to put these papers in context. The basic themes have not changed. First, from its beginning, the Program has attempted to respond to the most critical scientific issues facing the US Global Change Research Program. Second, the Program has been strongly coupled to other agency and international programs. More specifically, the Program reflects an unprecedented collaboration among agencies of the federal research community, among the US Department of Energy`s (DOE) national laboratories, and between DOE`s research program and related international programs, such as Global Energy and Water Experiment (GEWEX) and the Tropical Ocean Global Atmosphere (TOGA) program. Next, ARM has always attempted to make the most judicious use of its resources by collaborating and leveraging existing assets and has managed to maintain an aggressive schedule despite budgets that have been much smaller than planned. Finally, the Program has attracted some of the very best scientific talent in the climate research community and has, as a result, been productive scientifically.

NONE

1997-06-01T23:59:59.000Z

227

Field measurement of the fate of atmospheric H? in a forest environment : from canopy to soil  

E-Print Network (OSTI)

Atmospheric hydrogen (H? ), an indirect greenhouse gas, plays a notable role in the chemistry of the atmosphere and ozone layer. Current anthropogenic emissions of H? are substantial and may increase with its widespread ...

Meredith, Laura Kelsey, 1982-

2013-01-01T23:59:59.000Z

228

Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector  

SciTech Connect

Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

Johnson, J.E.; Bates, T.S. [NOAA, Seattle, WA (United States)

1993-12-01T23:59:59.000Z

229

Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011  

Science Conference Proceedings (OSTI)

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Voyles, JW

2012-01-09T23:59:59.000Z

230

ARMlUnmanned Air VehiclelSatelites The Atmospheric Radiation Measurement  

NLE Websites -- All DOE Office Websites (Extended Search)

ARMlUnmanned Air VehiclelSatelites ARMlUnmanned Air VehiclelSatelites The Atmospheric Radiation Measurement Unmanned Aerospace Vehicle Program: An Overview P. A. Crowley Environmental Sciences Division U.S. Department of Energy Washington, D.C. J. Vitko, Jr. Sandia National Laboratories Livermore, CA 94550 Introduction for leased UA V operation over the next year. Examples include, but are not limited to, the existing Gnat 750-45, with its 7-8 km ceiling, as well as the planned FY93 demonstration of two 20 km capable UA Vs-the Perseus- B and the Raptor. Thus the funding of some initial flights and the availability of leased UAVs will enable us to start up the ARM-UAV program. Additional funding will be required to continue this program. Interim Science Team This paper and the one that follows describe the start-up

231

Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Voyles, JW

2012-04-13T23:59:59.000Z

232

Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011  

Science Conference Proceedings (OSTI)

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Voyles, JW

2011-10-10T23:59:59.000Z

233

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1–March 31, 2011  

Science Conference Proceedings (OSTI)

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Sisterson, DL

2011-04-11T23:59:59.000Z

234

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2011  

Science Conference Proceedings (OSTI)

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Voyles, JW

2011-07-25T23:59:59.000Z

235

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010  

Science Conference Proceedings (OSTI)

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Sisterson, DL

2011-03-02T23:59:59.000Z

236

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007  

Science Conference Proceedings (OSTI)

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2007-10-01T23:59:59.000Z

237

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2006  

Science Conference Proceedings (OSTI)

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

DL Sisterson

2006-10-01T23:59:59.000Z

238

Comparing modeled isoprene with aircraft-based measurements in the atmospheric boundary layer.  

Science Conference Proceedings (OSTI)

Nonmethane hydrocarbons (NMHCs) are involved in a complex series of reactions that regulate the levels of oxidants in the troposphere. Isoprene (C{sub 5}H{sub 8}), the primary NMHC emitted from deciduous trees, is one of the most important reactive hydrocarbons in the troposphere. The amount of isoprene entering the free troposphere is regulated by the compound's rate of emission from leaves and by chemical and physical processes in the forest canopy and the atmospheric boundary layer (ABL). This study uses a coupled canopy-ABL model to simulate these complex processes and compares calculated isoprene concentration profiles with those measured during aircraft flights above a forested region in the northeastern US. Land use information is coupled with satellite remote sensing data to describe spatial changes in canopy density during the field measurements. The high-resolution transport-chemistry model of Gao et al. (1993) for the ABL and the forest canopy layer is used to simulate vertical changes in isoprene concentration due to turbulent mixing and chemical reactions. The one-dimensional (1-D) ABL model includes detailed radiation transfer, turbulent diffusion, biogenic emissions, dry deposition, and chemical processes within the forest canopy and the ABL. The measured profiles are compared with the model simulations to investigate the biological, physical, and chemical processes that regulate the levels of isoprene within the ABL.

Doskey, P.; Gao, W.

1997-12-12T23:59:59.000Z

239

Data systems for science integration within the Atmospheric Radiation Measurement Program  

SciTech Connect

The Atmospheric Radiation Measurement (ARM) Program was developed by the US Department of Energy to support the goals and mission of the US Global Change Research Program. The purpose of the ARM program is to improve the predictive capabilities of General Circulation Models (GCMs) in their treatment of clouds and radiative transfer effects. Three experimental testbeds were designed for the deployment of instruments to collect atmospheric data used to drive the GCMs. Each site, known as a Cloud and Radiation Testbed (CART), consists of a highly available, redundant data system for the collection of data from a variety of instrumentation. The first CART site was deployed in April 1992 in the Southern Great Plains (SGP), Lamont, Oklahoma, with the other two sites to follow in early 1996 in the Tropical Western Pacific (TWP) and in 1997 on the North Slope of Alaska (NSA). Approximately 1.5 GB of data are transferred per day via the Internet from the CART sites, and external data sources to the ARM Experiment Center (EC) at Pacific Northwest Laboratory in Richland, Washington. The Experimental Center is central to the ARM data path and provides for the collection, processing, analysis and delivery of ARM data. Data from the CART sites from a variety of instrumentation, observational systems and from external data sources are transferred to the Experiment Center. The EC processes these data streams on a continuous basis to provide derived data products to the ARM Science Team in near real-time while maintaining a three-month running archive of data.

Gracio, D.K.; Hatfield, L.D.; Yates, K.R.; Voyles, J.W. [Pacific Northwest Lab., Richland, WA (United States); Tichler, J.L. [Brookhaven National Lab., Upton, NY (United States); Cederwall, R.T.; Laufersweiler, M.J.; Leach, M.J. [Lawrence Livermore National Lab., CA (United States); Singley, P. [Oak Ridge National Lab., TN (United States)

1995-12-31T23:59:59.000Z

240

The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at SIRTA Atmospheric Observatory  

SciTech Connect

Ice clouds play a major role in the radiative energy budget of the Earth-atmosphere system (Liou 1986). Their radiative effect is governed primarily by the equilibrium between their albedo and greenhouse effects. Both macrophysical and microphysical properties of ice clouds regulate this equilibrium. For quantifying the effect of these clouds onto climate and weather systems, they must be properly characterized in atmospheric models. In this paper we use remote-sensing measurements from the SIRTA ground based atmospheric observatory (Site Instrumental de Recherche par Teledetection Atmospherique, http://sirta.lmd.polytechnique.fr). Lidar and radar observations taken over 18 months are used, in order to gain statistical confidence in the model evaluation. Along this period of time, 62 days are selected for study because they contain parts of ice clouds. We use the ''model to observations'' approach by simulating lidar and radar signals from MM5 outputs. Other more classical variables such as shortwave and longwave radiative fluxes are also used. Four microphysical schemes, among which that proposed by Reisner et al. (1998) with original or modified parameterizations of particle terminal fall velocities (Zurovac-Jevtic and Zhang 2003, Heymsfield and Donner 1990), and the simplified Dudhia (1989) scheme are evaluated in this study.

Chiriaco, M.; Vautard, R.; Chepfer, H.; Haeffelin, M.; Wanherdrick, Y.; Morille, Y.; Protat, A.; Dudhia, J.

2005-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Subarctic atmospheric aerosol composition: 3. Measured and modeled properties of cloud condensation nuclei  

SciTech Connect

Predicting the ability of aerosol particles to act as cloud condensation nuclei (CCN) is still a challenge and not properly incorporated in current climate models. By using field data from measurements at the sub-arctic Stordalen site, approximately 200 km north of the Arctic Circle, a hygroscopicity closure study was performed. Measured CCN number concentrations were compared with predictions that involved size distribution data and hygroscopicity data measured by a HTDMA as a proxy for the chemical composition of the aerosol. The sensitivity of the predictions to simplifying assumptions re-garding mixing state of the particles and the temporal variability of the chemical composition were explored. It was found that involving the full growth factor probability density function (GF-PDF) or the averaged growth factor (GF) or a constant averaged ?-value resulted in reasonable agreement be-tween predicted and measured CCN number concentrations. Probability distribution histograms of the performances of the different closure approaches revealed that involving the full GF-PDF resulted in the narrowest and most symmetric distribution of the predicted-to-measured CCN number concentra-tion ratio around unity. While also involving the averaged GF showed a good agreement, the constant averaged ?-value-approach resulted in most of the cases in an overestimation of CCN number con-centrations by ~15 %. Approaches where a constant estimated hygroscopicity was involved predicted CCN number concentrations in some cases well but largely overestimated (assuming internally mixed ammonium sulphate particles) or underestimated (assuming internally mixed organic aerosol particles with ? = 0.1) CCN number concentrations. It is therefore recommended that at least an averaged measured proxy for the aerosol’s chemical composition be incorporated in future CCN predictions and climate models.

Kammermann, Lukas; Gysel, Martin; Weingartner, E.; Herich, Hanna; Holst, Thomas; Cziczo, Daniel J.; Svenningsson, Birgitta; Arneth, Almut; Baltensperger, Urs

2010-02-19T23:59:59.000Z

242

Estimation of the Turbulent Fraction in the Free Atmosphere from MST Radar Measurements  

Science Conference Proceedings (OSTI)

Small-scale turbulence in the free atmosphere is known to be intermittent in space and time. The turbulence fraction of the atmosphere is a key parameter in order to evaluate the transport properties of small-scale motions and to interpret clear-...

Richard Wilson; Francis Dalaudier; Francois Bertin

2005-09-01T23:59:59.000Z

243

Topological entropy: a Lagrangian measure of the state of the free atmosphere  

Science Conference Proceedings (OSTI)

Topological entropy is shown to be a useful characteristic of the state of the free atmosphere. It can be determined as the stretching rate of a line segment of tracer particles in the atmosphere over a time span of about 10 days. Besides case ...

Tímea Haszpra; Tamás Tél

244

Topological Entropy: A Lagrangian Measure of the State of the Free Atmosphere  

Science Conference Proceedings (OSTI)

Topological entropy is shown to be a useful characteristic of the state of the free atmosphere. It can be determined as the stretching rate of a line segment of tracer particles in the atmosphere over a time span of about 10 days. Besides case ...

Tímea Haszpra; Tamás Tél

2013-12-01T23:59:59.000Z

245

Atmospheric CO2 Record from In Situ Measurements at Amsterdam Island  

NLE Websites -- All DOE Office Websites (Extended Search)

Amsterdam Island Amsterdam Island Atmospheric CO2 Record from In Situ Measurements at Amsterdam Island graphics Graphics data Data Investigators A. Gaudry, V. Kazan, and P. Monfray Centre des Faibles Radioactivités, Laboratoire de Modélisation du Climat et de l'Environnement, Centre d'Etudes de Saclay, Bâtiment 709, Orme des Merisiers, 91191-Gif-sur-Yvette Cedex, France Period of Record 1980-95 Methods Until 1993 air samples were collected continuously through an air intake located at the top of a tower, 9 m above ground and 65 m above mean sea level. Since 1994, the intake has been situated 20 m above ground and 76 m above mean sea level. The tower is located at the north-northwest end of the island on the edge of a 55 m cliff. The air is dried by means of a cryogenic water trap at -60°C. Until 1990, determinations of CO2 were made

246

A Portable Eddy Covariance System for the Measurement of Ecosystem–Atmosphere Exchange of CO2, Water Vapor, and Energy  

Science Conference Proceedings (OSTI)

To facilitate the study of flux heterogeneity within a region, the authors have designed and field-tested a portable eddy covariance system to measure exchange of CO2, water vapor, and energy between the land surface and the atmosphere. The ...

D. P. Billesbach; M. L. Fischer; M. S. Torn; J. A. Berry

2004-04-01T23:59:59.000Z

247

Evidence of Atmospheric Contamination on the Measurement of the Spectral Response of the GMS-5 Water Vapor Channel  

Science Conference Proceedings (OSTI)

The GMS-5 geostationary satellite carries a channel centered at 6.7 ?m for the measurement of upper-tropospheric humidity. This channel’s spectral response shows structures that are similar to those shown by the atmospheric transmission. This ...

Francois-Marie Bréon; Darren Jackson; John Bates

1999-11-01T23:59:59.000Z

248

Remote Sensing and Sea-Truth Measurements of Methane Flux to the Atmosphere (HYFLUX project)  

Science Conference Proceedings (OSTI)

A multi-disciplinary investigation of distribution and magnitude of methane fluxes from seafloor gas hydrate deposits in the Gulf of Mexico was conducted based on results obtained from satellite synthetic aperture radar (SAR) remote sensing and from sampling conducted during a research expedition to three sites where gas hydrate occurs (MC118, GC600, and GC185). Samples of sediments, water, and air were collected from the ship and from an ROV submersible using sediments cores, niskin bottles attached to the ROV and to a rosette, and an automated sea-air interface collector. The SAR images were used to quantify the magnitude and distribution of natural oil and gas seeps that produced perennial oil slicks on the ocean surface. A total of 176 SAR images were processed using a texture classifying neural network algorithm, which segmented the ocean surface into oil-free and oil-covered water. Geostatistical analysis indicates that there are a total of 1081 seep formations distributed over the entire Gulf of Mexico basin. Oil-covered water comprised an average of 780.0 sq. km (sd 86.03) distributed with an area of 147,370 sq. km. Persistent oil and gas seeps were also detected with SAR sampling on other ocean margins located in the Black Sea, western coast of Africa, and offshore Pakistan. Analysis of sediment cores from all three sites show profiles of sulfate, sulfide, calcium and alkalinity that indicated anaerobic oxidation of methane with precipitation of authigenic carbonates. Difference among the three sampling sites may reflect the relative magnitude of methane flux. Methane concentrations in water column samples collected by ROV and rosette deployments from MC118 ranged from {approx}33,000 nM at the seafloor to {approx}12 nM in the mixed layer with isolated peaks up to {approx}13,670 nM coincident with the top of the gas hydrate stability field. Average plume methane, ethane, and propane concentrations in the mixed layer are 7, 630, and 9,540 times saturation, respectively. Based on the contemporaneous wind speeds at this site, contemporary estimates of the diffusive fluxes from the mixed layer to the atmosphere for methane, ethane, and propane are 26.5, 2.10, and 2.78 {micro}mol/m{sup 2}d, respectively. Continuous measurements of air and sea surface concentrations of methane were made to obtain high spatial and temporal resolution of the diffusive net sea-to-air fluxes. The atmospheric methane fluctuated between 1.70 ppm and 2.40 ppm during the entire cruise except for high concentrations (up to 4.01 ppm) sampled during the end of the occupation of GC600 and the transit between GC600 and GC185. Results from interpolations within the survey areas show the daily methane fluxes to the atmosphere at the three sites range from 0.744 to 300 mol d-1. Considering that the majority of seeps in the GOM are deep (>500 m), elevated CH{sub 4} concentrations in near-surface waters resulting from bubble-mediated CH4 transport in the water column are expected to be widespread in the Gulf of Mexico.

Ian MacDonald

2011-05-31T23:59:59.000Z

249

Abstract--Heart rate variability (HRV) is frequently used to measure autonomic nervous system (ANS) activity. However,  

E-Print Network (OSTI)

1 of 4 Abstract--Heart rate variability (HRV) is frequently used to measure autonomic nervous frequency (HF) ratio with little change in mean heart rate. Results suggest that nicotine affects both components may yield erroneous results. Keywords--Autonomic regulation, heart rate variability, Lomb

250

Variability in the Characteristics of Precipitation Systems in the Tropical Pacific. Part II: Implications for Atmospheric Heating  

Science Conference Proceedings (OSTI)

This paper explores changes in the principal components of observed energy budgets across the tropical Pacific in response to the strong 1998 El Niño event. Multisensor observations from the Tropical Rainfall Measuring Mission (TRMM) Microwave ...

Tristan S. L'Ecuyer; Hirohiko Masunaga; Christian D. Kummerow

2006-04-01T23:59:59.000Z

251

CDIAC Climate Data: Available Variables  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Variables Available in CDIAC Data Products Temperature Precipitation Cloudiness Sunshine Duration Snowfall and Snow Depth Atmospheric Pressure Atmospheric Moisture Surface...

252

Combining Microwave Radiometer and Wind Profiler Radar Measurements for High-Resolution Atmospheric Humidity Profiling  

Science Conference Proceedings (OSTI)

A self-consistent remote sensing physical method to retrieve atmospheric humidity high-resolution profiles by synergetic use of a microwave radiometer profiler (MWRP) and wind profiler radar (WPR) is illustrated. The proposed technique is based ...

Laura Bianco; Domenico Cimini; Frank S. Marzano; Randolph Ware

2005-07-01T23:59:59.000Z

253

Development of a Data Management System for the Kuwait Oil Fire Atmospheric Measurement Program  

Science Conference Proceedings (OSTI)

Following the onset of the Kuwait oil fires in early 1991, numerous efforts to monitor and estimate the environmental effects of the fires were initiated. These efforts produced a diverse set of atmospheric data from airborne, surface-based, and ...

Julie A. Haggerty; Stephen P. Carley; David B. Johnson; Amy D. Michaelis

1994-10-01T23:59:59.000Z

254

Laser Scintillation Measurements of the Temperature Spectrum in the Atmospheric Surface Layer  

Science Conference Proceedings (OSTI)

The locally stationary temperature spectrum in the atmospheric surface layer is estimated using laser scintillation. The fluctuations of the parameters of the turbulence spectrum (the structure constant CT2 and inner scale l0) have a lognormal ...

Rod Frehlich

1992-08-01T23:59:59.000Z

255

Carbon-14 Measurements in Atmospheric CO2 from Northern and Southern...  

NLE Websites -- All DOE Office Websites (Extended Search)

ray neutrons and the nitrogen atoms of the air (Libby 1952). Solar (heliomagnetic), geomagnetic, and ocean forcing all play a role in atmospheric 14CO2 (Stuiver and Braziunas...

256

Can Top Of Atmosphere Radiation Measurements Constrain Climate Predictions? Part 1: Tuning.  

Science Conference Proceedings (OSTI)

Perturbed physics configurations of the HadAM3 atmospheric model driven with observed sea surface temperatures (SST) and sea ice were tuned to outgoing radiation observations using a Gauss-Newton line-search optimisation algorithm to adjust the ...

Simon F. B. Tett; Michael J. Mineter; Coralia Cartis; Daniel J. Rowlands; Ping Liu

257

Evaluation of the Multiscale Modeling Framework Using Data from the Atmospheric Radiation Measurement Program  

Science Conference Proceedings (OSTI)

In a recently developed approach to climate modeling, called the multiscale modeling framework (MMF), a two-dimensional cloud-resolving model (CRM) is embedded into each grid column of the Community Atmospheric Model (CAM), replacing traditional ...

Mikhail Ovtchinnikov; Thomas Ackerman; Roger Marchand; Marat Khairoutdinov

2006-05-01T23:59:59.000Z

258

Estimation of Ultraviolet-B Irradiance under Variable Cloud Conditions  

Science Conference Proceedings (OSTI)

Methods to estimate the irradiance of ultraviolet-B (UVB; 280–320 nm) radiation are needed to assess biological effects of changes in atmospheric composition. Measurements of the spatial distribution of sky cloud cover, temporal variability of ...

Richard H. Grant; Gordon M. Heisler

2000-06-01T23:59:59.000Z

259

Atmosphere–Land Surface Interactions over the Southern Great Plains: Characterization from Pentad Analysis of DOE ARM Field Observations and NARR  

Science Conference Proceedings (OSTI)

The Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site data are analyzed to provide insight into atmosphere–land surface interactions generating summertime precipitation variability. Pentad-...

Alfredo Ruiz-Barradas; Sumant Nigam

2013-02-01T23:59:59.000Z

260

Global Characteristics of Ocean Variability Estimated from Regional TOPEX/POSEIDON Altimeter Measurements  

Science Conference Proceedings (OSTI)

Three years of altimetric data from the TOPEX/POSEIDON spacecraft have been used to study characteristics of eddy variability over the World Ocean. The nature of the variability and its spatial structure are characterized in terms of the ...

Detlef Stammer

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Comparison of Energy Source Estimates Derived from Atmospheric Circulation Data with Satellite Measurements of Net Radiation  

Science Conference Proceedings (OSTI)

The distributions of the net sources of atmospheric dry and latent energy are evaluated by the residual technique using the reanalyzed ECMWF FGGE level IIIb data for February and July 1979. Their sum (i.e., the residual estimate of the source of ...

Carl Fortelius; Eero Holopainen

1990-06-01T23:59:59.000Z

262

Can Top-of-Atmosphere Radiation Measurements Constrain Climate Predictions? Part II: Climate Sensitivity  

Science Conference Proceedings (OSTI)

A large number of perturbed-physics simulations of version 3 of the Hadley Centre Atmosphere Model (HadAM3) were compared with the Clouds and the Earth's Radiant Energy System (CERES) estimates of outgoing longwave radiation (OLR) and reflected ...

Simon F. B. Tett; Daniel J. Rowlands; Michael J. Mineter; Coralia Cartis

2013-12-01T23:59:59.000Z

263

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2010.  

Science Conference Proceedings (OSTI)

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 x 2208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1987.20 hours (0.90 x 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 x 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continued through this quarter, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The second ARM Mobile Facility (AMF2) began deployment this quarter to Steamboat Springs, Colorado. The experiment officially began November 15, but most of the instruments were up and running by November 1. Therefore, the OPSMAX time for the AMF2 was 1390.80 hours (.95 x 1464 hours) for November and December (61 days). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Summary. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1-December 31, 2010, for the fixed sites. Because the AMFs operate episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. This first quarter comprises a total of 2,208 possible hours for the fixed sites and the AMF1 and 1,464 possible hours for the AMF2. The average of the fixed sites exceeded our goal this quarter. The AMF1 has essentially completed its mission and is shutting down to pack up for its next deployment to India. Although all the raw data from the operational instruments are in the Archive for the AMF2, only the processed data are tabulated. Approximately half of the AMF2 instruments have data that was fully processed, resulting in the 46% of all possible data made available to users through the Archive for this first quarter. Typically, raw data is not made available to users unless specifically requested.

Sisterson, D. L.

2011-02-01T23:59:59.000Z

264

PNNL: FCSD: Atmospheric Sciences & Global Change: Programs &...  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs & Facilities Atmospheric Measurements Laboratory Atmospheric Radiation Measurement (ARM) Program and ARM Climate Research Facility ARM Aerial Facility Environmental...

265

Measuring Mercury Isotopes in the Atmosphere and Rainfall near a Coal-Fired Power Plant  

Science Conference Proceedings (OSTI)

Recent work has shown that the seven naturally occurring stable isotopes of mercury (Hg) undergo mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) during transformation processes, especially during chemical oxidation and reduction (redox) reactions that can occur in the atmosphere. The isotopic patterns resulting from fractionation can be used to help trace the sources of Hg in the environment and to help clarify the mechanisms of Hg cycling. This project was designed with ...

2013-11-19T23:59:59.000Z

266

Sensitivity of the Aerosol Indirect Effect to Subgrid Variability in the Cloud Parameterization of the GFDL Atmosphere General Circulation Model AM3  

Science Conference Proceedings (OSTI)

The recently developed GFDL Atmospheric Model version 3 (AM3), an atmospheric general circulation model (GCM), incorporates a prognostic treatment of cloud drop number to simulate the aerosol indirect effect. Since cloud drop activation depends on ...

Jean-Christophe Golaz; Marc Salzmann; Leo J. Donner; Larry W. Horowitz; Yi Ming; Ming Zhao

2011-07-01T23:59:59.000Z

267

Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube  

E-Print Network (OSTI)

A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18,000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to reject mis-reconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than one percent. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric muon neutrino plus muon antineutrino flux.

IceCube Collaboration; R. Abbasi; Y. Abdou; T. Abu-Zayyad; J. Adams; J. A. Aguilar; M. Ahlers; K. Andeen; J. Auffenberg; X. Bai; M. Baker; S. W. Barwick; R. Bay; J. L. Bazo Alba; K. Beattie; J. J. Beatty; S. Bechet; J. K. Becker; K. -H. Becker; M. L. Benabderrahmane; S. BenZvi; J. Berdermann; P. Berghaus; D. Berley; E. Bernardini; D. Bertrand; D. Z. Besson; M. Bissok; E. Blaufuss; J. Blumenthal; D. J. Boersma; C. Bohm; D. Bose; S. Böser; O. Botner; J. Braun; S. Buitink; M. Carson; D. Chirkin; B. Christy; J. Clem; F. Clevermann; S. Cohen; C. Colnard; D. F. Cowen; M. V. D'Agostino; M. Danninger; J. C. Davis; C. De Clercq; L. Demirörs; O. Depaepe; F. Descamps; P. Desiati; G. de Vries-Uiterweerd; T. DeYoung; J. C. Díaz-Vélez; M. Dierckxsens; J. Dreyer; J. P. Dumm; M. R. Duvoort; R. Ehrlich; J. Eisch; R. W. Ellsworth; O. Engdegård; S. Euler; P. A. Evenson; O. Fadiran; A. R. Fazely; A. Fedynitch; T. Feusels; K. Filimonov; C. Finley; M. M. Foerster; B. D. Fox; A. Franckowiak; R. Franke; T. K. Gaisser; J. Gallagher; M. Geisler; L. Gerhardt; L. Gladstone; T. Glüsenkamp; A. Goldschmidt; J. A. Goodman; D. Grant; T. Griesel; A. Groß; S. Grullon; M. Gurtner; C. Ha; A. Hallgren; F. Halzen; K. Han; K. Hanson; K. Helbing; P. Herquet; S. Hickford; G. C. Hill; K. D. Hoffman; A. Homeier; K. Hoshina; D. Hubert; W. Huelsnitz; J. -P. Hülß; P. O. Hulth; K. Hultqvist; S. Hussain; A. Ishihara; J. Jacobsen; G. S. Japaridze; H. Johansson; J. M. Joseph; K. -H. Kampert; T. Karg; A. Karle; J. L. Kelley; N. Kemming; P. Kenny; J. Kiryluk; F. Kislat; S. R. Klein; J. -H. Köhne; G. Kohnen; H. Kolanoski; L. Köpke; D. J. Koskinen; M. Kowalski; T. Kowarik; M. Krasberg; T. Krings; G. Kroll; K. Kuehn; T. Kuwabara; M. Labare; S. Lafebre; K. Laihem; H. Landsman; M. J. Larson; R. Lauer; R. Lehmann; J. Lünemann; J. Madsen; P. Majumdar; A. Marotta; R. Maruyama; K. Mase; H. S. Matis; M. Matusik; K. Meagher; M. Merck; P. Mészáros; T. Meures; E. Middell; N. Milke; J. Miller; T. Montaruli; A. R. Morse; S. M. Movit; R. Nahnhauer; J. W. Nam; U. Naumann; P. Nießen; D. R. Nygren; S. Odrowski; A. Olivas; M. Olivo; A. O'Murchadha; M. Ono; S. Panknin; L. Paul; C. Pérez de los Heros; J. Petrovic; A. Piegsa; D. Pieloth; R. Porrata; J. Posselt; P. B. Price; M. Prikockis; G. T. Przybylski; K. Rawlins; P. Redl; E. Resconi; W. Rhode; M. Ribordy; A. Rizzo; J. P. Rodrigues; P. Roth; F. Rothmaier; C. Rott; T. Ruhe; D. Rutledge; B. Ruzybayev; D. Ryckbosch; H. -G. Sander; M. Santander; S. Sarkar; K. Schatto; S. Schlenstedt; T. Schmidt; A. Schukraft; A. Schultes; O. Schulz; M. Schunck; D. Seckel; B. Semburg; S. H. Seo; Y. Sestayo; S. Seunarine; A. Silvestri; K. Singh; A. Slipak; G. M. Spiczak; C. Spiering; M. Stamatikos; B. T. Stanev; G. Stephens; T. Stezelberger; R. G. Stokstad; S. Stoyanov; E. A. Strahler; T. Straszheim; G. W. Sullivan; Q. Swillens; H. Taavola; I. Taboada; A. Tamburro; O. Tarasova; A. Tepe; S. Ter-Antonyan; S. Tilav; P. A. Toale; S. Toscano; D. Tosi; D. Tur?an; N. van Eijndhoven; J. Vandenbroucke; A. Van Overloop; J. van Santen; M. Voge; B. Voigt; C. Walck; T. Waldenmaier; M. Wallraff; M. Walter; Ch. Weaver; C. Wendt; S. Westerhoff; N. Whitehorn; K. Wiebe; C. H. Wiebusch; G. Wikström; D. R. Williams; R. Wischnewski; H. Wissing; M. Wolf; K. Woschnagg; C. Xu; X. W. Xu; G. Yodh; S. Yoshida; P. Zarzhitsky

2010-10-19T23:59:59.000Z

268

Long Range Weather Prediction III: Miniaturized Distributed Sensors for Global Atmospheric Measurements  

DOE R&D Accomplishments (OSTI)

We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather involve continuing costs of the order of 1% of GDP, a large fraction of which could be retrieved if high-fidelity predictions of two weeks forward applicability were available. These{approx}$10{sup 2} B annual savings dwarf the<$1 B costs of operating a rational, long-range weather prediction system of the type proposed.

Teller, E.; Leith, C.; Canavan, G.; Wood, L.

2001-11-13T23:59:59.000Z

269

Real-Time Jetstream Tracking: National Benefit from an ST Radar Network for Measuring Atmospheric Motions  

Science Conference Proceedings (OSTI)

Attention is directed to a wind measurement system that could be of significant cost benefit to the airline industry and the nation. A network of Stratosphere-Troposphere (ST) radars can provide continuous wind measurements through the ...

Herbert C. Carlson Jr.; N. Sundararaman

1982-09-01T23:59:59.000Z

270

Airborne Measurements of Wave Growth for Stable and Unstable Atmospheres in Lake Michigan  

Science Conference Proceedings (OSTI)

This paper presents the results of a joint program combining airborne laser profilometer and Waverider buoy measurements of synoptic wave conditions in Lake Michigan during the passage of an intense cold front. Measurements were made both before ...

Paul C. Liu; Duncan B. Ross

1980-11-01T23:59:59.000Z

271

Vertical Diffusion in the Lower Atmosphere Using Aircraft Measurements of 222Rn  

Science Conference Proceedings (OSTI)

Vertical profiles of 222Rn concentrations measured from 3 to 6 September 1995 in the northeastern United States, using a new radon instrument designed for aircraft measurements, are presented. A vertical diffusion model was employed to simulate ...

H. N. Lee; R. J. Larsen

1997-09-01T23:59:59.000Z

272

Comparison of Results from a Meandering-Plume Model with Measured Atmospheric Tracer Concentration Fluctuations  

Science Conference Proceedings (OSTI)

Measured wind-azimuth data are used in a simple meandering-plume model to predict observed SF6 concentration fluctuations measured downwind of a point source during a range of stability conditions. The meander component of plume diffusion is ...

Holly Peterson; Brian Lamb

1992-06-01T23:59:59.000Z

273

Measurement of GCM Skill in Predicting Variables Relevant for Hydroclimatological Assessments  

Science Conference Proceedings (OSTI)

Simulations from general circulation models are now being used for a variety of studies and purposes. With up to 23 different GCMs now available, it is desirable to determine whether a specific variable from a particular model is representative ...

Fiona Johnson; Ashish Sharma

2009-08-01T23:59:59.000Z

274

Measurements of Aerodynamic Roughness, Bowen Ratio, and Atmospheric Surface Layer Height by Eddy Covariance and Tethersonde Systems Simultaneously over a Heterogeneous Rice Paddy  

Science Conference Proceedings (OSTI)

The aerodynamic roughness, Bowen ratio, and friction velocity were measured over a rice paddy using tethersonde and eddy covariance (EC) systems. In addition, the height ranges of the atmospheric inertial sublayer (ISL) were derived using the ...

Jeng-Lin Tsai; Ben-Jei Tsuang; Po-Sheng Lu; Ken-Hui Chang; Ming-Hwi Yao; Yuan Shen

2010-04-01T23:59:59.000Z

275

Land Surface Heterogeneity in the Cooperative Atmosphere Surface Exchange Study (CASES-97). Part I: Comparing Modeled Surface Flux Maps with Surface-Flux Tower and Aircraft Measurements  

Science Conference Proceedings (OSTI)

Land surface heterogeneity over an area of 71 km × 74 km in the lower Walnut River watershed, Kansas, was investigated using models and measurements from the 1997 Cooperative Atmosphere Surface Exchange Study (CASES-97) field experiment. As an ...

Fei Chen; David N. Yates; Haruyasu Nagai; Margaret A. LeMone; Kyoko Ikeda; Robert L. Grossman

2003-04-01T23:59:59.000Z

276

Experimental Measurements of Concentration Fluctuations and Scales in a Dispersing Plume in the Atmospheric Surface Layer Obtained Using a Very Fast Response Concentration Detector  

Science Conference Proceedings (OSTI)

High-frequency fluctuations of concentration in a plume dispersing in the atmospheric surface layer have been measured with high-resolution concentration detectors (approximately 270 Hz at the ?6-dB point) to extract various concentration ...

Eugene Yee; R. Chan; P. R. Kosteniuk; G. M. Chandler; C. A. Biltoft; J. F. Bowers

1994-08-01T23:59:59.000Z

277

A New Portable Instrument for In Situ Measurement of Atmospheric Methane Mole Fraction by Applying an Improved Tin Dioxide–Based Gas Sensor  

Science Conference Proceedings (OSTI)

A new portable instrument based on a tin dioxide natural gas leak detector was developed to monitor the atmospheric methane mixing ratio in areas lacking sufficient infrastructure to sustain a conventional measurement system, such as a large ...

Hiroshi Suto; Gen Inoue

2010-07-01T23:59:59.000Z

278

Group-velocity-dispersion measurements of atmospheric and combustion-related gases using  

E-Print Network (OSTI)

, "Dispersion measurement of inert gases and gas mixtures at 800 nm," Appl. Opt. 47(27), 4856­4863 (2008). 17. T of the gas. For each gas measurement a pressure point was randomly selected, and the dispersion was measured (), and plot dispersion as a function of gas density in Fig. 3. As expected we see the linear dependence

Dantus, Marcos

279

Techniques for measuring atmospheric aerosols at the High Resolution Fly's Eye experiment  

E-Print Network (OSTI)

We describe several techniques developed by the High Resolution Fly's Eye experiment for measuring aerosol vertical optical depth, aerosol horizontal attenuation length, and aerosol phase function. The techniques are based on measurements of side-scattered light generated by a steerable ultraviolet laser and collected by an optical detector designed to measure fluorescence light from cosmic-ray air showers. We also present a technique to cross-check the aerosol optical depth measurement using air showers observed in stereo. These methods can be used by future air fluorescence experiments.

The HiRes Collaboration

2005-12-15T23:59:59.000Z

280

Damage measurements on the NWTC direct-drive, variable-speed test bed  

SciTech Connect

The NWTC (National Wind Technology Center) Variable-Speed Test Bed turbine is a three-bladed, 10-meter, downwind machine that can be run in either fixed-speed or variable-speed mode. In the variable-speed mode, the generator torque is regulated, using a discrete-stepped load bank to maximize the turbine`s power coefficient. At rated power, a second control loop that uses blade pitch to maintain rotor speed essentially as before, i.e., using the load bank to maintain either generator power or (optionally) generator torque. In this paper, the authors will use this turbine to study the effect of variable-speed operation on blade damage. Using time-series data obtained from blade flap and edge strain gauges, the load spectrum for the turbine is developed using rainflow counting techniques. Miner`s rule is then used to determine the damage rates for variable-speed and fixed-speed operation. The results illustrate that the controller algorithm used with this turbine introduces relatively large load cycles into the blade that significantly reduce its service lifetime, while power production is only marginally increased.

Sutherland, H.J. [Sandia National Lab., Albuquerque, NM (United States); Carlin, P.W. [National Renewable Energy Lab., Golden, CO (United States)

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Angular diameter measurements of evolved variables by lunar occultations at 2.2 and 3.8 micron  

E-Print Network (OSTI)

We report the angular diameters of two Mira variables (U Ari and Z Sco), three semiregular (SR) and irregular variables (SW Vir, eta Gem and mu Gem) and a supergiant SR variable (TV Gem) by lunar occultation observations in the near-IR broad K-band (2.2 micron). Lunar occultations of eta Gem and mu Gem were also observed for the first time simultaneously in both the K and L' bands, yielding angular diameters at 2.2 and 3.8 micron. Effective temperatures and linear radii are also derived for all the observed sources and compared with earlier measurements. The mode of pulsation of both Mira and SR sources in our sample is discussed.

Soumen Mondal; T. Chandrasekhar

2005-04-14T23:59:59.000Z

282

Angular diameter measurements of evolved variables by lunar occultations at 2.2 and 3.8 micron  

E-Print Network (OSTI)

We report the angular diameters of two Mira variables (U Ari and Z Sco), three semiregular (SR) and irregular variables (SW Vir, eta Gem and mu Gem) and a supergiant SR variable (TV Gem) by lunar occultation observations in the near-IR broad K-band (2.2 micron). Lunar occultations of eta Gem and mu Gem were also observed for the first time simultaneously in both the K and L' bands, yielding angular diameters at 2.2 and 3.8 micron. Effective temperatures and linear radii are also derived for all the observed sources and compared with earlier measurements. The mode of pulsation of both Mira and SR sources in our sample is discussed.

Mondal, S A; Mondal, Soumen

2005-01-01T23:59:59.000Z

283

A Practical Approach to Flux Measurements of Long Duration in the Marine Atmospheric Surface Layer  

Science Conference Proceedings (OSTI)

The practical limitations imposed by the marine environment on the principal flux-measurement methods for experiments requiring more than a few days’ duration are examined. Reservations are presented as to the suitability of the bulk method as a ...

Theodore V. Blanc

1983-06-01T23:59:59.000Z

284

Lidar and radiosonde measurement campaign for the validation of ENVISAT atmospheric products  

E-Print Network (OSTI)

An intensive aerosol and water vapour lidar measurement campaign, started on July 2002, is in progress at IMAA in Tito Scalo (PZ) (Southern Italy, 40°36’N, 15°44’E, 820 m above sea level) in the frame of the validation program of ENVISAT. A Raman lidar system is used to perform both aerosol and water vapour measurements; aerosol backscatter and extinction coefficients are retrieved from simultaneous elastic signals at 355 nm and inelastic N2 Raman backscatter lidar signals at 386.6 nm, whereas, water vapour mixing ratio measurements are retrieved from simultaneous H2O and N2 Raman signals. All the observations are complemented with radiosonde launches. First results of the intercomparison between water vapour lidar profiles and MIPAS profiles are presented. Radiosonde measurements of pressure and temperature have been compared with MIPAS and GOMOS profiles.

V. Cuomo; A. Amodeo; C. Cornacchia; L. Mona

2003-01-01T23:59:59.000Z

285

Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings  

Science Conference Proceedings (OSTI)

The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

Hunt, A.; Easley, S.

2012-05-01T23:59:59.000Z

286

The Climatology of the Middle Atmosphere in a Vertically Extended Version of the Met Office’s Climate Model. Part II: Variability  

Science Conference Proceedings (OSTI)

Stratospheric variability is examined in a vertically extended version of the Met Office global climate model. Equatorial variability includes the simulation of an internally generated quasi-biennial oscillation (QBO) and semiannual oscillation (...

Scott M. Osprey; Lesley J. Gray; Steven C. Hardiman; Neal Butchart; Andrew C. Bushell; Tim J. Hinton

2010-11-01T23:59:59.000Z

287

The Marine-Atmospheric Emitted Radiance Interferometer: A High-Accuracy, Seagoing Infrared Spectroradiometer  

Science Conference Proceedings (OSTI)

The Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) is described, and some examples of the environmental variables that can be derived from its measurements and the types of research that these can support are briefly presented. The M-...

P. J. Minnett; R. O. Knuteson; F. A. Best; B. J. Osborne; J. A. Hanafin; O. B. Brown

2001-06-01T23:59:59.000Z

288

Testing the Annular Mode Autocorrelation Time Scale in Simple Atmospheric General Circulation Models  

Science Conference Proceedings (OSTI)

A new diagnostic for measuring the ability of atmospheric models to reproduce realistic low-frequency variability is introduced in the context of Held and Suarez’s 1994 proposal for comparing the dynamics of different general circulation models. ...

Edwin P. Gerber; Sergey Voronin; Lorenzo M. Polvani

2008-04-01T23:59:59.000Z

289

Validation of aerosol extinction and water vapor profiles from routine Atmospheric Radiation Measurement Climate Research Facility measurements  

Science Conference Proceedings (OSTI)

The accuracy with which vertical profiles of aerosol extinction ?ep(?) can be retrieved from ARM Climate Research Facility (ACRF) routine measurements was assessed using data from two airborne field campaigns, the ARM Aerosol Intensive Operation Period (AIOP, May 2003), and the Aerosol Lidar Validation Experiment (ALIVE, September 2005). This assessment pertains to the aerosol at its ambient concentration and thermodynamic state (i.e. ?ep(?) either free of or corrected for sampling artifacts) and includes the following ACRF routine methods: Raman Lidar, Micro Pulse Lidar (MPL) and in-situ aerosol profiles (IAP) with a small aircraft. Profiles of aerosol optical depth ?p(???, from which the profiles of ?ep(???are derived through vertical differentiation, were measured by the NASA Ames Airborne Tracking 14-channel Sunphotometer (AATS-14); these data were used as truth in this evaluation. The ACRF IAP ?ep(550 nm) were lower by 16% (during AIOP) and higher by 10% (during ALIVE) when compared to AATS-14. The ACRF MPL ?ep(523 nm) were higher by 24% (AIOP) and 19%-21% (ALIVE) compared to AATS-14 but the correlation improved significantly during ALIVE. In the AIOP a second MPL operated by NASA showed a smaller positive bias (13%) with respect to AATS-14. The ACRF Raman Lidar ?ep(355 nm) were higher by 54% (AIOP) and higher by 6% (ALIVE) compared to AATS-14. The large bias in AIOP stemmed from a gradual loss of the sensitivity of the Raman Lidar starting about the end of 2001 going unnoticed until after AIOP. A major refurbishment and upgrade of the instrument and improvements to a data-processing algorithm led to the significant improvement and very small bias in ALIVE. Finally we find that during ALIVE the Raman Lidar water vapor densities ?w are higher by 8% when compared to AATS-14, whereas comparisons between AATS-14 and in-situ measured ?w aboard two different aircraft showed small negative biases (0 to -3%).

Schmid, Beat; Flynn, Connor J.; Newsom, Rob K.; Turner, David D.; Ferrare, Richard; Clayton, Marian F.; Andrews, Elisabeth; Ogren, John A.; Johnson, Roy R.; Russell, P. B.; Gore, W.; Dominguez, Roseanne

2009-11-26T23:59:59.000Z

290

Measured and Estimated Water Vapor Advection in the Atmospheric Surface Layer  

Science Conference Proceedings (OSTI)

The flux of water vapor due to advection is measured using high resolution Raman lidar that was orientated horizontally across a land-lake transition. At the same time, a full surface energy balance is performed to assess the impact of scalar ...

Chad W. Higgins; Eric Pardyjak; Martin Froidevaux; Valentin Simeonov; Marc B. Parlange

291

Lunar Tidal Winds Measured in the Upper Atmosphere (78–105 km) at Saskatoon, Canada  

Science Conference Proceedings (OSTI)

Six years of winds data measured by the partial reflection drifts technique have been analyzed for lunar tides. Data are available at 3 km intervals of height and are separately analyzed in two year datasets to cheek consistency. A month-by-month ...

R. J. Stening; C. E. Meek; A. H. Manson

1987-04-01T23:59:59.000Z

292

Temporal Variations of Land Surface Microwave Emissivities over the Atmospheric Radiation Measurement Program Southern Great Plains Site  

Science Conference Proceedings (OSTI)

Land surface microwave emissivities are important geophysical parameters for atmospheric, hydrological, and biospheric studies. This study estimates land surface microwave emissivity using an atmospheric microwave radiative transfer model and a ...

Bing Lin; Patrick Minnis

2000-07-01T23:59:59.000Z

293

The Roles of External Forcings and Internal Variabilities in the Northern Hemisphere Atmospheric Circulation Change from the 1960s to the 1990s  

Science Conference Proceedings (OSTI)

The Northern Hemisphere atmospheric circulation change from the 1960s to the 1990s shows a strong positive North Atlantic Oscillation (NAO) and a deepening of the Aleutian low. The issue regarding the contributions of external forcings and ...

Martin P. King; Fred Kucharski; Franco Molteni

2010-12-01T23:59:59.000Z

294

Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases  

SciTech Connect

We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.

Ave, M.; /Karlsruhe, Inst. Technol.; Bohacova, M.; /Chicago U., EFI; Daumiller, K.; /Karlsruhe, Inst. Technol.; Di Carlo, P.; /INFN, Aquila; Di Giulio, C.; /INFN, Rome; Luis, P.Facal San; /Chicago U., EFI; Gonzales, D.; /Karlsruhe U., EKP; Hojvat, C.; /Fermilab; Horandel, J.R.; /Nijmegen U., IMAPP; Hrabovsky, M.; /Palacky U.; Iarlori, M.; /INFN, Aquila /Karlsruhe, Inst. Technol.

2011-01-01T23:59:59.000Z

295

Is the Interannual Variability of the Summer Asian–Pacific Oscillation Predictable?  

Science Conference Proceedings (OSTI)

The summer (June–August) Asian–Pacific Oscillation (APO) measures the interannual variability of large-scale atmospheric circulation over the Asian–North Pacific Ocean sector. In this study, the authors assess the predictability of the summer APO ...

Yanyan Huang; Huijun Wang; Ping Zhao

2013-06-01T23:59:59.000Z

296

Temporal Variability of Fair-Weather Cumulus Statistics at the ACRF SGP Site  

Science Conference Proceedings (OSTI)

Continental fair-weather cumuli exhibit significant diurnal, day-to-day, and year-to-year variability. This study describes the climatology of cloud macroscale properties, over the U.S. Department of Energy’s Atmospheric Radiation Measurement (...

Larry K. Berg; Evgueni I. Kassianov

2008-07-01T23:59:59.000Z

297

The Effect of Intraseasonal Circulation Variability on Winter Temperature Forecast Skill  

Science Conference Proceedings (OSTI)

The prediction of winter in the United States from Pacific sea surface temperatures was examined using a jackknifed regression scheme and a measure of intraseasonal atmospheric circulation variability. Employing a jackknifed regression ...

Keith W. Dixon; Robert P. Harnack

1986-01-01T23:59:59.000Z

298

Surface tension measurements of coal ash slags under reducing conditions at atmospheric pressure  

Science Conference Proceedings (OSTI)

The global demand for reduced CO{sub 2} emission from power plants can be answered by coal gasification techniques. To develop integrated gasification combined cycles that incorporate hot syngas cleaning facilities, detailed knowledge of the thermophysical properties of coal ashes is imperative. Currently, the surface tension of liquid coal ash slags in a reducing environment was studied by means of the sessile drop method. Three different algorithms were employed to analyze the acquired drop images. The slags under consideration were obtained from black and brown coals as well as from an experimental gasification reactor. Typically, a sharp surface tension decrease with temperature was found in the melting interval of the ashes. This was followed by a temperature range of smooth drop contours during which a slight rise of the surface tension could mostly be observed. Bubbles at the circumference of the drops started to appear when approaching the measurement temperature limit of 1550{sup o}C. With regard to the temperature regime of uncorrugated drop profiles, coal ash slags exhibited surface tension values between 400 and 700 mN/m. 32 refs., 9 figs., 1 tab.

Tobias Melchior; Gunther Putz; Michael Mueller [Forschungszentrum Juelich GmbH, Juelich (Germany). Institute of Energy Research

2009-09-15T23:59:59.000Z

299

Large Diurnal Sea Surface Temperature Variability: Satellite and In Situ Measurements  

Science Conference Proceedings (OSTI)

Data from a surface mooring located in the Sargasso Sea at 34°N, 70°W between May 1982 and May 1984 were compared with satellite data to investigate large diurnal sea surface temperature changes. Mooring and satellite measurements are in ...

Lothar Stramma; Peter Cornillon; Robert A. Weller; James F. Price; Melbourne G. Briscoe

1986-05-01T23:59:59.000Z

300

Multiscale Temporal Variability of Warm-Season Precipitation over North America: Statistical Analysis of Radar Measurements  

Science Conference Proceedings (OSTI)

Directionally averaged time series of precipitation rates for eight warm seasons (1996–2003) over the continental United States derived from Next Generation Weather Radar (NEXRAD) measurements are analyzed using spectral decomposition methods. ...

Hsiao-ming Hsu; Mitchell W. Moncrieff; Wen-wen Tung; Changhai Liu

2006-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Eddy Variability and Energetics from Direct Current Measurements in the Antarctic Circumpolar Current South of Australia  

Science Conference Proceedings (OSTI)

Two-year time series measurements of current velocity and temperature in the Subantarctic Front (SAF) south of Australia from 1993 to 1995 provide estimates of eddy fluxes of heat and momentum across the Antarctic Circumpolar Current (ACC) and ...

Helen E. Phillips; Stephen R. Rintoul

2000-12-01T23:59:59.000Z

302

Long-Term, Autonomous Measurement of Atmospheric Carbon Dioxide Using an Ormosil Nanocomposite-Based Optical Sensor  

Science Conference Proceedings (OSTI)

The goal of this project is to construct a prototype carbon dioxide sensor that can be commercialized to offer a low-cost, autonomous instrument for long-term, unattended measurements. Currently, a cost-effective CO2 sensor system is not available that can perform cross-platform measurements (ground-based or airborne platforms such as balloon and unmanned aerial vehicle (UAV)) for understanding the carbon sequestration phenomenon. The CO2 sensor would support the research objectives of DOE-sponsored programs such as AmeriFlux and the North American Carbon Program (NACP). Global energy consumption is projected to rise 60% over the next 20 years and use of oil is projected to increase by approximately 40%. The combustion of coal, oil, and natural gas has increased carbon emissions globally from 1.6 billion tons in 1950 to 6.3 billion tons in 2000. This figure is expected to reach 10 billon tons by 2020. It is important to understand the fate of this excess CO2 in the global carbon cycle. The overall goal of the project is to develop an accurate and reliable optical sensor for monitoring carbon dioxide autonomously at least for one year at a point remote from the actual CO2 release site. In Phase I of this project, InnoSense LLC (ISL) demonstrated the feasibility of an ormosil-monolith based Autonomous Sensor for Atmospheric CO2 (ASAC) device. All of the Phase I objectives were successfully met.

Kisholoy Goswami

2005-10-11T23:59:59.000Z

303

How Well Do Atmospheric General Circulation Models Capture the Leading Modes of the Interannual Variability of the Asian–Australian Monsoon?  

Science Conference Proceedings (OSTI)

The authors evaluate the performances of 11 AGCMs that participated in the Atmospheric Model Intercomparison Project II (AMIP II) and that were run in an AGCM-alone way forced by historical sea surface temperature covering the period 1979–99 and ...

Tianjun Zhou; Bo Wu; Bin Wang

2009-03-01T23:59:59.000Z

304

Synergistic Effect of coal blends on thermoplasticity evaluated using a temperature-variable dynamic viscoelastic measurement  

SciTech Connect

To maximize the conversion of low-quality coal into good coke, we investigated the thermoplasticity of various binary blends of caking coals with slightly or noncaking coals using a dynamic viscoelastic technique with a temperature-variable rheometer. Coal blend samples were prepared by mixing two coals (1:1 by weight), which were heated from room temperature to 600 C at a rate of 3-80{sup o}C/min. At the slow rate of 3{sup o}C/min, the blends had a tan {delta} that was generally lower than the calculated value, showing that a negative interaction caused a loss of thermoplasticity. In contrast, at the rapid heating rate of 80{sup o}C/min, the tan {delta} of some blends was higher than the calculated value, indicating a positive interaction that enhanced the thermoplasticity. With rapid heating, the thermoplasticity of each coal itself increased, and their thermoplastic temperature ranges widened with rapid heating. Therefore, rapid heating was effective at converting these coal blends into good cokes. Moreover, even with slow heating, when a combination of coals (Gregory:Enshu, 1:1) showing some thermoplasticity in nearly the same temperature range was blended, a desirable synergistic effect of the blend was obtained. This suggests that blending coal with an overlapping thermoplastic temperature range is important for the synergistic effect, regardless of the heating rate. 15 refs., 9 figs., 2 tabs.

Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito; Kensuke Masaki; Atsushi Dobashi; Kiyoshi Fukada [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

2006-12-15T23:59:59.000Z

305

A Study of the Effect of Molecular and Aerosol Conditions in the Atmosphere on Air Fluorescence Measurements at the Pierre Auger Observatory  

E-Print Network (OSTI)

The air fluorescence detector of the Pierre Auger Observatory is designed to perform calorimetric measurements of extensive air showers created by cosmic rays of above 10^18 eV. To correct these measurements for the effects introduced by atmospheric fluctuations, the Observatory contains a group of monitoring instruments to record atmospheric conditions across the detector site, an area exceeding 3,000 km^2. The atmospheric data are used extensively in the reconstruction of air showers, and are particularly important for the correct determination of shower energies and the depths of shower maxima. This paper contains a summary of the molecular and aerosol conditions measured at the Pierre Auger Observatory since the start of regular operations in 2004, and includes a discussion of the impact of these measurements on air shower reconstructions. Between 10^18 and 10^20 eV, the systematic uncertainties due to all atmospheric effects increase from 4% to 8% in measurements of shower energy, and 4 g/cm^2 to 8 g/cm^...

,

2010-01-01T23:59:59.000Z

306

Interannual Variability in the Northern Hemisphere Winter Middle Atmosphere in Control and Perturbed Experiments with the GFDL SKYHI General Circulation Model  

Science Conference Proceedings (OSTI)

This paper reports on interannual variability of the Northern Hemisphere winter stratospheric circulation as simulated by the 40-level GFDL “SKYHI” general circulation model. A 31-year control simulation was performed using a climatological ...

Kevin Hamilton

1995-01-01T23:59:59.000Z

307

The Relationship of Rainfall Variability in Western Equatorial Africa to the Tropical Oceans and Atmospheric Circulation. Part II: The Boreal Autumn  

Science Conference Proceedings (OSTI)

This paper examines the mechanisms controlling the year-to-year variability of rainfall over western equatorial Africa during the rainy season of October–December. Five regions with distinct behavior are analyzed separately. Only two show strong ...

Amin K. Dezfuli; Sharon E. Nicholson

2013-01-01T23:59:59.000Z

308

The Relationship of Rainfall Variability in Western Equatorial Africa to the Tropical Oceans and Atmospheric Circulation. Part I: The Boreal Spring  

Science Conference Proceedings (OSTI)

This paper examines the factors governing rainfall variability in western equatorial Africa (WEA) during the April–June rainy season. In three of the five regions examined some degree of large-scale forcing is indicated, particularly in the region ...

Sharon E. Nicholson; Amin K. Dezfuli

2013-01-01T23:59:59.000Z

309

Atmospheric Radiation Measurement Program  

NLE Websites -- All DOE Office Websites (Extended Search)

U U r r b b a a n n A A t t m m o o s s p p h h e e r r i i c c O O b b s s e e r r v v a a t t o o r r y y ( ( U U A A O O ) ) F F i i r r s s t t P P l l a a n n n n i i n n g g W W o o r r k k s s h h o o p p - - A A t t t t e e n n d d e e e e s s 2 2 7 7 - - 2 2 8 8 J J a a n n u u a a r r y y , , 2 2 0 0 0 0 3 3 ****************************************************************** Sean Ahearn Hunter College North Bldg., 10 th Floor New York City, NY sca@everest.hunter.cuny.edu (W) 212-772-5327 Robert Bornstein San Jose State University Dept. of Meteorology San Jose, CA 951920-0104 pblmodel@hotmail.com (W) 408-924-5205 (F) 408-924-5191 David Brown Argonne National Lab 9700 S. Cass Avenue Argonne, IL 60439 dbrown@anl.gov (W) 608-442-1249 Michael Brown LANL, Drop Point 19S, SM-30 Bikini Atoll Road Group D4-MS F604 Los Alamos, NM 87545 mbrown@lanl.gov (W) 505- 667-1788

310

Teaching Graduate Atmospheric Measurement  

Science Conference Proceedings (OSTI)

A 1991 Study on Observational Systems discussed the need for universities to produce graduates capable of developing the next generation of observing systems and interpreting data from emerging complex sensors. It further emphasized the necessity ...

Stephen A. Cohn; John Hallett; John M. Lewis

2006-12-01T23:59:59.000Z

311

Airborne Laser Absorption Spectrometer Measurements of Atmospheric CO2 Column Mole Fractions: Source and Sink Detection and Environmental Impacts on Retrievals  

Science Conference Proceedings (OSTI)

We report atmospheric CO2 column abundance measurement results from a summer, 2011 series of flights of a 2.05 ?m laser absorption spectrometer on the NASA DC-8 research aircraft. The Integrated Path Differential Absorption (IPDA) method is used ...

Robert T. Menzies; Gary D. Spiers; Joseph Jacob

312

The Impact of Clouds on the Shortwave Radiation Budget of the Surface-Atmosphere System: Interfacing Measurements and Models  

Science Conference Proceedings (OSTI)

Two datasets have been combined to demonstrate how the availability of more comprehensive datasets could serve to elucidate the shortwave radiative impact of clouds on both the atmospheric column and the surface. These datasets consist of two ...

Robert D. Cess; Seth Nemesure; Ellsworth G. Dutton; John J. Deluisi; Gerald L. Potter; Jean-Jacques Morcrette

1993-02-01T23:59:59.000Z

313

Atmospheric Radon Measurements in the Arctic; Fronts, Seasonal Observations, and Transport of Continental Air to Polar Regions  

Science Conference Proceedings (OSTI)

Radon was determined in the atmosphere over the Arctic Ocean in flights of a United States Naval Research Laboratory aircraft in April and May 1974. Simultaneously collected air samples were analyzed for carbon monoxide, methane, ...

P. E. Wilkniss; R. E. Larson

1984-08-01T23:59:59.000Z

314

Spatial and Structural Variation of the Atmospheric Boundary Layer during Summer in Israel—Profiler and Rawinsonde Measurements  

Science Conference Proceedings (OSTI)

An opportunity to improve understanding related to the structure of the atmospheric boundary layer (ABL) in Israel along the coastal region environs emerged in April 1997 when the Israel Electric Corporation, Ltd. (IEC), installed and began the ...

Uri Dayan; Batia Lifshitz-Goldreich; Karel Pick

2002-04-01T23:59:59.000Z

315

Assimilating Coherent Doppler Lidar Measurements into a Model of the Atmospheric Boundary Layer. Part I: Algorithm Development and Sensitivity to Measurement Error  

Science Conference Proceedings (OSTI)

A four-dimensional variational data assimilation (4DVAR) algorithm for retrieval of spatially and temporally resolved velocity and thermodynamic fields within the atmospheric boundary layer (ABL) is described and applied to a coherent Doppler ...

Rob K. Newsom; Robert M. Banta

2004-09-01T23:59:59.000Z

316

Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements  

SciTech Connect

Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

Niemi, K.; O'Connell, D.; Gans, T. [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Oliveira, N. de; Joyeux, D.; Nahon, L. [Synchrotron Soleil, l'Orme des Merisiers, St. Aubin BP 48, 91192 Gif sur Yvette Cedex (France); Booth, J. P. [Laboratoire de Physique des Plasmas-CNRS, Ecole Polytechnique, 91128 Palaiseau (France)

2013-07-15T23:59:59.000Z

317

Atmospheric boundary layer parameters necessary for calculation of gas and particle deposition velocities were directly measured from  

E-Print Network (OSTI)

Results Atmospheric boundary layer parameters necessary for calculation of gas and particle hourly gas and particle deposition velocities. Acknowledgements · Staffs at the Lost Dutchman State Park, Desert Botanical Garden, and White Tank Mountain Regional Park. · Fred Peña, Department of Chemical

Hall, Sharon J.

318

ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative Flux  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsAtmospheric State, Cloud Microphysics & ProductsAtmospheric State, Cloud Microphysics & Radiative Flux Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Atmospheric State, Cloud Microphysics & Radiative Flux 1997.01.01 - 2010.12.31 Site(s) NSA SGP TWP General Description This data product contains atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

319

Constraining the Influence of Natural Variability to Improve Estimates of Global Aerosol Indirect Effects in a Nudged Version of the Community Atmosphere Model 5  

SciTech Connect

Natural modes of variability on many timescales influence aerosol particle distributions and cloud properties such that isolating statistically significant differences in cloud radiative forcing due to anthropogenic aerosol perturbations (indirect effects) typically requires integrating over long simulations. For state-of-the-art global climate models (GCM), especially those in which embedded cloud-resolving models replace conventional statistical parameterizations (i.e. multi-scale modeling framework, MMF), the required long integrations can be prohibitively expensive. Here an alternative approach is explored, which implements Newtonian relaxation (nudging) to constrain simulations with both pre-industrial and present-day aerosol emissions toward identical meteorological conditions, thus reducing differences in natural variability and dampening feedback responses in order to isolate radiative forcing. Ten-year GCM simulations with nudging provide a more stable estimate of the global-annual mean aerosol indirect radiative forcing than do conventional free-running simulations. The estimates have mean values and 95% confidence intervals of -1.54 ± 0.02 W/m2 and -1.63 ± 0.17 W/m2 for nudged and free-running simulations, respectively. Nudging also substantially increases the fraction of the world’s area in which a statistically significant aerosol indirect effect can be detected (68% and 25% of the Earth's surface for nudged and free-running simulations, respectively). One-year MMF simulations with and without nudging provide global-annual mean aerosol indirect radiative forcing estimates of -0.80 W/m2 and -0.56 W/m2, respectively. The one-year nudged results compare well with previous estimates from three-year free-running simulations (-0.77 W/m2), which showed the aerosol-cloud relationship to be in better agreement with observations and high-resolution models than in the results obtained with conventional parameterizations.

Kooperman, G. J.; Pritchard, M. S.; Ghan, Steven J.; Wang, Minghuai; Somerville, Richard C.; Russell, Lynn

2012-12-11T23:59:59.000Z

320

Interannual Variation of Global Atmospheric Angular Momentum  

Science Conference Proceedings (OSTI)

The relative atmospheric angular momentum (RAM) integrated over the globe is an explicit variable representing the state of the atmospheric general circulation. After removing the annual, semiannual, and higher-frequency components, the filtered ...

Tsing-Chang Chen; Joseph J. Tribbia; Ming-Cheng Yen

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Developing a Performance Measure for Snow-Level Forecasts  

Science Conference Proceedings (OSTI)

The snow level, or altitude in the atmosphere where snow melts to rain, is an important variable for hydrometeorological prediction in mountainous watersheds; yet, there is no operational performance measure associated with snow-level forecasts ...

Allen B. White; Daniel J. Gottas; Arthur F. Henkel; Paul J. Neiman; F. Martin Ralph; Seth I. Gutman

2010-06-01T23:59:59.000Z

322

First measurement of the small-scale spatial variability of the rain drop size distribution: Results from a crucial experiment and maximum entropy modeling  

E-Print Network (OSTI)

The main challenges of measuring precipitation are related to the spatio-temporal variability of the drop-size distribution, to the uncertainties that condition the modeling of that distribution, and to the instrumental errors present in the in situ estimations. This PhD dissertation proposes advances in all these questions. The relevance of the spatial variability of the drop-size distribution for remote sensing measurements and hydro-meteorology field studies is asserted by analyzing the measurement of a set of disdrometers deployed on a network of 5 squared kilometers. This study comprises the spatial variability of integral rainfall parameters, the ZR relationships, and the variations within the one moment scaling method. The modeling of the drop-size distribution is analyzed by applying the MaxEnt method and comparing it with the methods of moments and the maximum likelihood. The instrumental errors are analyzed with a compressive comparison of sampling and binning uncertainties that affect actual device...

Checa-Garcia, Ramiro

2013-01-01T23:59:59.000Z

323

Atmospheric attenuation of solar radiation  

DOE Green Energy (OSTI)

The attenuation of solar radiation by the atmosphere between the heliostat and receiver of a Central Receiver solar energy system has been computed for a number of atmospheric conditions and tower-heliostat distances. The most important atmospheric variable is found to be the atmospheric aerosol content. No dependence of atmospheric water vapor is found and only a weak dependence on solar zenith angle. For a 500 m heliostat-tower distance two to four percent reductions are expected under typical desert conditions (50 to 120 km visibility). The reduction is approximately linear with heliostat-tower distance. A representative value of the attenuation coefficient is 0.051 km/sup -1/.

Randall, C.M.

1977-05-18T23:59:59.000Z

324

Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program  

SciTech Connect

The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

SA Edgerton; LR Roeder

2008-09-30T23:59:59.000Z

325

Atmospheric Water Vapor over China  

Science Conference Proceedings (OSTI)

Chinese radiosonde data from 1970 to 1990 are relatively homogeneous in time and are used to examine the climatology, trends, and variability of China’s atmospheric water vapor content. The climatological distribution of precipitable water (PW) ...

Panmao Zhai; Robert E. Eskridge

1997-10-01T23:59:59.000Z

326

Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2  

Science Conference Proceedings (OSTI)

The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.

Stephen C. Piper; Ralph F. Keeling

2012-01-03T23:59:59.000Z

327

Atmospheric Radiation Measurement Radiative Atmospheric Divergence...  

NLE Websites -- All DOE Office Websites (Extended Search)

the generation of monsoons. Because the dust can block incoming solar energy, and because solar energy drives weather and climate, scientists around the world are looking for ways...

328

Horizontal-Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures  

Science Conference Proceedings (OSTI)

Quantitative data on turbulence variables aloft—above the region of the atmosphere conveniently measured from towers—have been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL)...

Yelena L. Pichugina; Sara C. Tucker; Robert M. Banta; W. Alan Brewer; Neil D. Kelley; Bonnie J. Jonkman; Rob K. Newsom

2008-08-01T23:59:59.000Z

329

Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth's Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part II: Validation  

Science Conference Proceedings (OSTI)

Top-of-atmosphere (TOA) radiative fluxes from the Clouds and the Earth's Radiant Energy System (CERES) are estimated from empirical angular distribution models (ADMs) that convert instantaneous radiance measurements to TOA fluxes. This paper ...

Norman G. Loeb; Konstantin Loukachine; Natividad Manalo-Smith; Bruce A. Wielicki; David F. Young

2003-12-01T23:59:59.000Z

330

Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)  

Science Conference Proceedings (OSTI)

Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahlers, M.; /Wisconsin U., Madison; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Buenos Aires, CONICET; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Almela, A.; /Natl. Tech. U., San Nicolas /Buenos Aires, CONICET; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

2012-01-01T23:59:59.000Z

331

Rainfall Estimation from Polarimetric Radar Measurements: Composite Algorithms Immune to Variability in Raindrop Shape–Size Relation  

Science Conference Proceedings (OSTI)

Polarization diversity radar measurements such as reflectivity factor, differential reflectivity, and differential propagation phase are extensively used in rainfall estimation. Algorithms to estimate rainfall from polarimetric radar measurements ...

Eugenio Gorgucci; Gianfranco Scarchilli; V. Chandrasekar; V. N. Bringi

2001-11-01T23:59:59.000Z

332

On Sub-ENSO Variability  

Science Conference Proceedings (OSTI)

Multichannel singular spectrum analysis (MSSA) of surface zonal wind, sea surface temperature (SST), 20° isotherm depth, and surface zonal current observations (between 1990 and 2004) identifies three coupled ocean–atmosphere modes of variability ...

Noel S. Keenlyside; Mojib Latif; Anke Dürkop

2007-07-01T23:59:59.000Z

333

This study aims to quantify the effects of topographic vari-ability (measured by coefficient variation of elevation, CV) and  

E-Print Network (OSTI)

, and topographic variability. Introduction As defined by the U.S. Geological Survey, a grid Digital Elevation Model transmission of a laser PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING June 2010 1 Sierra Nevada Research). The use of airborne lidar sensors for topographic mapping is rapidly becoming a standard practice

Guo, Qinghua

334

Monthly Diurnal Global Atmospheric Circuit Estimates Derived from Vostok Electric Field Measurements Adjusted for Local Meteorological and Solar Wind Influences  

Science Conference Proceedings (OSTI)

Local temperature, wind speed, pressure, and solar wind–imposed influences on the vertical electric field observed at Vostok, Antarctica, are evaluated by multivariate analysis. Local meteorology can influence electric field measurements via local ...

G. B. Burns; B. A. Tinsley; A. V. Frank-Kamenetsky; O. A. Troshichev; W. J. R. French; A. R. Klekociuk

2012-06-01T23:59:59.000Z

335

PIV Measurements in the Atmospheric Boundary Layer within and above a Mature Corn Canopy. Part I: Statistics and Energy Flux  

Science Conference Proceedings (OSTI)

Particle image velocimetry (PIV) measurements just within and above a mature corn canopy have been performed to clarify the small-scale spatial structure of the turbulence. The smallest resolved scales are about 15 times the Kolmogorov length ...

R. van Hout; W. Zhu; L. Luznik; J. Katz; J. Kleissl; M. B. Parlange

2007-08-01T23:59:59.000Z

336

Assimilating Coherent Doppler Lidar Measurements into a Model of the Atmospheric Boundary Layer. Part II: Sensitivity Analyses  

Science Conference Proceedings (OSTI)

A series of trials are performed to evaluate the sensitivity of a 4DVAR algorithm for retrieval of microscale wind and temperature fields from single-Doppler lidar data. These trials use actual Doppler lidar measurements to examine the ...

Rob K. Newsom; Robert M. Banta

2004-12-01T23:59:59.000Z

337

Preliminary Results from Long-Term Measurements of Atmospheric Moisture in the Marine Boundary Layer in the Gulf of Mexico*  

Science Conference Proceedings (OSTI)

Measurements of boundary layer moisture have been acquired from Rotronic MP-100 sensors deployed on two National Data Buoy Center (NDBC) buoys in the northern Gulf of Mexico from June through November 1993. For one sensor that was retrieved ...

Laurence C. Breaker; David B. Gilhousen; Lawrence D. Burroughs

1998-06-01T23:59:59.000Z

338

Pairing Measurements of the Water Vapor Isotope Ratio with Humidity to Deduce Atmospheric Moistening and Dehydration in the Tropical Midtroposphere  

Science Conference Proceedings (OSTI)

Measurements of the isotope ratio of water vapor (expressed as the ? value) allow processes that control the humidity in the tropics to be identified. Isotopic information is useful because the change in ? relative to the water vapor mixing ratio (...

David Noone

2012-07-01T23:59:59.000Z

339

A U. S. Department of Energy User Facility Atmospheric Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

S. Department of Energy User Facility Atmospheric Radiation Measurement Climate Research Facility U.S. Department of Energy Atmospheric Radiation Measurement Program DOESC-ARM...

340

Atmospheric Radiation Measurement (ARM) Data from Black Forest Germany for the Convective and Orographically Induced Precipitation Study (COPS)  

DOE Data Explorer (OSTI)

ARM maintains three major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. In 2007 the ARM Mobile Facility (AMF) operated in the Black Forest region of Germany as part of the Convective and Orographically Induced Precipitation Study (COPS). Scientists studied rainfall resulting from atmospheric uplift (convection) in mountainous terrain, otherwise known as orographic precipitation. This was part of a six -year duration of the German Quantitative Precipitation Forecasting (QPF) Program. See the COPS home at https://www.uni-hohenheim.de/spp-iop/index.htm and the QPF homepage at http://www.meteo.uni-bonn.de/projekte/SPPMeteo/ Information obtained during COPS will not only aid regional weather forecasts to help protect people and land, but will also help scientists determine how clouds affect the climate in complex terrain around the world. Because of its relevance to society, COPS has been endorsed as a Research and Development Project by the World Weather Research Program. This program was established by the World Meteorological Organization to develop improved and cost-effective forecasting techniques, with an emphasis on high-impact weather. [Taken from http://www.arm.gov/sites/amf/blackforest/] A large collection of data plots based on data streams from specific instruments used at Black Forest are available via a link from ARM's Black Forest site information page. Users will be requested to create a password, but the plots and the data files in the ARM Archive are free for viewing and downloading. The URL to go directly to the ARM Archive, bypassing the information pages, is http://www.archive.arm.gov/ The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Performance Variability  

NLE Websites -- All DOE Office Websites (Extended Search)

Variability Variability of Highly Parallel Architectures William T.C. Kramer 1 and Clint Ryan 2 1 Department of Computing Sciences, University of California at Berkeley and the National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory 2 Department of Computing Sciences, University of California at Berkeley Abstract. The design and evaluation of high performance computers has concentrated on increasing computational speed for applications. This performance is often measured on a well configured dedicated sys- tem to show the best case. In the real environment, resources are not always dedicated to a single task, and systems run tasks that may influ- ence each other, so run times vary, sometimes to an unreasonably large extent. This paper explores the amount of variation seen across four large distributed memory systems in a systematic manner. It then

342

The Effect of Local Atmospheric Circulations on Daytime Carbon Dioxide Flux Measurements over a Pinus elliottii Canopy  

Science Conference Proceedings (OSTI)

The daytime net ecosystem exchange of CO2 (NEE) was measured in an even-aged slash pine plantation in northern Florida from 1999 to 2001 using the eddy covariance technique. In August 2000, two clear-cuts were formed approximately 1 km west of ...

H. W. Loescher; G. Starr; T. A. Martin; M. Binford; H. L. Gholz

2006-08-01T23:59:59.000Z

343

In Situ Measurement of the Water Vapor 18O/16O Isotope Ratio for Atmospheric and Ecological Applications  

Science Conference Proceedings (OSTI)

In this paper a system for in situ measurement of H216O/H218O in air based on tunable diode laser (TDL) absorption spectroscopy is described. Laboratory tests showed that its 60-min precision (one standard deviation) was 0.21‰ at a water vapor ...

Xuhui Lee; Steve Sargent; Ronald Smith; Bert Tanner

2005-05-01T23:59:59.000Z

344

Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instruments and Data Processing  

Science Conference Proceedings (OSTI)

Atmospheric radiative forcing, surface radiation budget, and top-of-the-atmosphere radiance interpretation involve knowledge of the vertical height structure of overlying cloud and aerosol layers. During the last decade, the U.S. Department of ...

James R. Campbell; Dennis L. Hlavka; Ellsworth J. Welton; Connor J. Flynn; David D. Turner; James D. Spinhirne; V. Stanley Scott III; I. H. Hwang

2002-04-01T23:59:59.000Z

345

Estimating Clear-Sky Regional Surface Fluxes in the Southern Great Plains Atmospheric Radiation Measurement Site with Ground Measurements and Satellite Observations  

Science Conference Proceedings (OSTI)

The authors compared methods for estimating surface fluxes under clear-sky conditions over a large heterogeneous area from a limited number of ground measurements and from satellite observations using data obtained from the southern Great Plains ...

W. Gao; R. L. Coulter; B. M. Lesht; J. Qiu; M. L. Wesely

1998-01-01T23:59:59.000Z

346

Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei  

SciTech Connect

This study presents measurements of size and time-resolved particle diameter growth rates for freshly nucleated particles down to 1 nm geometric diameter. Novel data analysis methods were developed, de-coupling for the first time the size and time-dependence of particle growth rates by fitting the aerosol general dynamic equation to size distributions obtained at an instant in time. Size distributions of freshly nucleated total aerosol (neutral and charged) were measured during two intensive measurement campaigns in different environments (Atlanta, GA and Boulder, CO) using a recently developed electrical mobility spectrometer with a diethylene glycol-based ultrafine condensation particle counter as the particle detector. One new particle formation (NPF) event from each campaign was analyzed in detail. At a given instant in time during the NPF event, size-resolved growth rates were obtained directly from measured size distributions and were found to increase approximately linearly with particle size from {approx}1 to 3 nm geometric diameter, increasing from 5.5 {+-} 0.8 to 7.6 {+-} 0.6 nm h{sup -1} in Atlanta (13:00) and from 5.6 {+-} 2 to 27 {+-} 5 nm h{sup -1} in Boulder (13:00). The resulting growth rate enhancement {Lambda}, defined as the ratio of the observed growth rate to the growth rate due to the condensation of sulfuric acid only, was found to increase approximately linearly with size from {approx}1 to 3 nm geometric diameter. For the presented NPF events, values for {Lambda} had lower limits that approached {approx}1 at 1.2 nm geometric diameter in Atlanta and {approx}3 at 0.8 nm geometric diameter in Boulder, and had upper limits that reached 8.3 at 4.1 nm geometric diameter in Atlanta and 25 at 2.7 nm geometric diameter in Boulder. Nucleated particle survival probability calculations comparing the effects of constant and size-dependent growth indicate that neglecting the strong dependence of growth rate on size from 1 to 3 nm observed in this study could lead to a significant overestimation of CCN survival probability.

Kuang C.; Chen, M.; Zhao, J.; Smith, J.; McMurry, P. H.; Wang, J.

2012-04-12T23:59:59.000Z

347

Reco level Smin and subsystem Smin: improved global inclusive variables for measuring the new physics mass scale in MET events at hadron colliders  

SciTech Connect

The variable {radical}s{sub min} was originally proposed in [1] as a model-independent, global and fully inclusive measure of the new physics mass scale in missing energy events at hadron colliders. In the original incarnation of {radical}s{sub min}, however, the connection to the new physics mass scale was blurred by the effects of the underlying event, most notably initial state radiation and multiple parton interactions. In this paper we advertize two improved variants of the {radical}s{sub min} variable, which overcome this problem. First we show that by evaluating the {radical}s{sub min} variable at the RECO level, in terms of the reconstructed objects in the event, the effects from the underlying event are significantly diminished and the nice correlation between the peak in the {radical}s{sub min}{sup (reco)} distribution and the new physics mass scale is restored. Secondly, the underlying event problem can be avoided altogether when the {radical}s{sub min} concept is applied to a subsystem of the event which does not involve any QCD jets. We supply an analytic formula for the resulting subsystem {radical}s{sub min}{sup (sub)} variable and show that its peak exhibits the usual correlation with the mass scale of the particles produced in the subsystem. Finally, we contrast {radical}s{sub min} to other popular inclusive variables such as H{sub T}, M{sub Tgen} and M{sub TTgen}. We illustrate our discussion with several examples from supersymmetry, and with dilepton events from top quark pair production.

Konar, Partha; /Florida U.; Kong, Kyoungchul; /SLAC; Matchev, Konstantin T.; Park, Myeonghun; /Florida U.

2011-08-11T23:59:59.000Z

348

Suborbital Measurements of Spectral Aerosol Optical Depth and Its Variability at Subsatellite Grid Scales in Support of CLAMS 2001  

Science Conference Proceedings (OSTI)

As part of the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) experiment, 10 July–2 August 2001, off the central East Coast of the United States, the 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was ...

J. Redemann; B. Schmid; J. A. Eilers; R. Kahn; R. C. Levy; P. B. Russell; J. M. Livingston; P. V. Hobbs; W. L. Smith Jr.; B. N. Holben

2005-04-01T23:59:59.000Z

349

Healthy transportation - healthy communities: developing objective measures of built-environment using GIS and testing significance of pedestrian variables on walking to transit  

E-Print Network (OSTI)

Walking to transit stations is proposed as one of the strategies to increase the use of transit. Urban planners, transportation planners, environmentalists, and health professionals encourage and support environmental interventions that can reduce the use of cars for all kinds of trips and use alternative modes of travel such as walking, biking, and mass-transit. This study investigates the influence of the built-environment on walking to transit stations. Transit-oriented communities at quarter and half-mile distances from the Dallas Area Rapid Transit (DART) station in Dallas, Texas, were analyzed to identify the relation of various constructs of built-environment on walking to the DART stations. Twenty-one pedestrian indices were reviewed to develop a comprehensive list of 73 built-environment variables used to measure the suitability to walk. This study aims to objectively measure built-environment using spatial data. Based on this criterion the total number of variables was narrowed to 32. Walking to transit, calculated as a percentage of transit users who walk to the DART LRT stations, was used as the dependent variable. The number of stations in operation and used for analysis in this study is 20(n). Therefore, bootstrapping was used to perform the statistical analysis for this study. The final pattern of variable grouping for the quarter-mile and the half-mile analysis revealed four principal components: Vehicle-Oriented Design, Density, Diversity, and Walking-Oriented Design. Bootstrap regression revealed that density ( = -0.767) was the only principal component that significantly (p<0.05) explained walking to transit station at quarter-mile distance from the station. At half-mile distance built-environment variables did not report any significant relation to walking to transit. The present study revealed that mere increase of density should not be taken as a proxy of increase in walking. Environmental interventions that can promote walking should be identified even at locations with high density. Further studies should use advanced statistical techniques such as Hierarchical Linear Modeling or Structural Equation Modeling to test the relationship of both the principal components and the individual variables that define the principal component to clearly understand the relationship of built-environment with walking to transit station.

Maghelal, Praveen Kumar

2007-08-01T23:59:59.000Z

350

Atmospheric optical calibration system  

DOE Patents (OSTI)

An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

1988-01-01T23:59:59.000Z

351

Atmospheric optical calibration system  

DOE Patents (OSTI)

An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

Hulstrom, R.L.; Cannon, T.W.

1988-10-25T23:59:59.000Z

352

TOGA COARE: The Coupled Ocean—Atmosphere Response Experiment  

Science Conference Proceedings (OSTI)

Despite significant progress in the Tropical Ocean—Global Atmosphere (TOGA) program, a number of major hurdles remain before the primary objective, prediction of the variability of the coupled ocean—atmosphere system on time scales of months to ...

Peter J. Webster; Roger Lukas

1992-09-01T23:59:59.000Z

353

Multiscale Low-Frequency Circulation Modes in the Global Atmosphere  

Science Conference Proceedings (OSTI)

In this paper, fundamental multiscale circulation modes in the global atmosphere are identified with the objective of providing better understanding of atmospheric low-frequency variabilities over a wide range of spatial and temporal scales. With ...

K-M. Lau; P-J. Sheu; I-S. Kang

1994-05-01T23:59:59.000Z

354

Geostatistical Mapping of Precipitation from Rain Gauge Data Using Atmospheric and Terrain Characteristics  

Science Conference Proceedings (OSTI)

A geostatistical framework for integrating lower-atmosphere state variables and terrain characteristics into the spatial interpolation of rainfall is presented. Lower-atmosphere state variables considered are specific humidity and wind, derived ...

Phaedon C. Kyriakidis; Jinwon Kim; Norman L. Miller

2001-11-01T23:59:59.000Z

355

Measuring Atmospheric Stability with GPS  

Science Conference Proceedings (OSTI)

Nowcasting of convective systems plays a crucial role in weather forecasting. The strength of convection depends on the (in)stability of the air column. The stability can be detected by radiosonde observations. However, these observations are not ...

Siebren de Haan

2006-03-01T23:59:59.000Z

356

Atmospheric Radiation Measurement (ARM) Program  

NLE Websites -- All DOE Office Websites (Extended Search)

understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth's surface. BNL is actively...

357

Recent variability of the solar spectral irradiance and its impact on climate modelling  

E-Print Network (OSTI)

The lack of long and reliable time series of solar spectral irradiance (SSI) measurements makes an accurate quantification of solar contributions to recent climate change difficult. Whereas earlier SSI observations and models provided a qualitatively consistent picture of the SSI variability, recent measurements by the SORCE satellite suggest a significantly stronger variability in the ultraviolet (UV) spectral range and changes in the visible and near-infrared (NIR) bands in anti-phase with the solar cycle. A number of recent chemistry-climate model (CCM) simulations have shown that this might have significant implications on the Earth's atmosphere. Motivated by these results, we summarize here our current knowledge of SSI variability and its impact on Earth's climate. We present a detailed overview of existing SSI measurements and provide thorough comparison of models available to date. SSI changes influence the Earth's atmosphere, both directly, through changes in shortwave (SW) heating and therefore, temp...

Ermolli, I; de Wit, T Dudok; Krivova, N A; Tourpali, K; Weber, M; Unruh, Y C; Gray, L; Langematz, U; Pilewskie, P; Rozanov, E; Schmutz, W; Shapiro, A; Solanki, S K; Woods, T N

2013-01-01T23:59:59.000Z

358

The Promise of GPS in Atmospheric Monitoring  

Science Conference Proceedings (OSTI)

This paper provides an overview of applications of the Global Positioning System (GPS) for active measurement of the Earth's atmosphere. Microwave radio signals transmitted by GPS satellites are delayed (refracted) by the atmosphere as they ...

Steven Businger; Steven R. Chiswell; Michael Bevis; Jingping Duan; Richard A. Anthes; Christian Rocken; Randolph H. Ware; Michael Exner; T. VanHove; Fredrick S. Solheim

1996-01-01T23:59:59.000Z

359

Sulfuryl fluoride in the global atmosphere  

E-Print Network (OSTI)

The first calibrated high-frequency, high-precision, in situ atmospheric and archived air measurements of the fumigant sulfuryl fluoride (SO[subscript 2]F[subscript 2]) have been made as part of the Advanced Global Atmospheric ...

Muhle, J.

360

Atmospheric Turbidity in the Polar Regions  

Science Conference Proceedings (OSTI)

Analysis is presented of 800 measurements of atmospheric monochromatic aerosol optical depth made poleward of 65° latitude. The atmosphere of the southern polar region appears to be uncontaminated but is charged with a background aerosol having ...

Glenn E. Shaw

1982-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Linear variable differential transformer (LVDT)-based elongation measurements in Advanced Test Reactor high temperature irradiation testing  

Science Conference Proceedings (OSTI)

New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. These materials can undergo significant dimensional and physical changes during high temperature irradiations. Currently, such changes are determined by repeatedly irradiating a specimen for a specified period of time in the Advanced Test Reactor (ATR) and then removing it from the reactor for evaluation. The labor and time to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and may disturb the phenomena of interest. To resolve these issues, an instrumented creep testing capability is being developed for specimens irradiated in pressurized water reactor (PWR) coolant conditions in the ATR at the Idaho National Laboratory (INL). This paper reports the status of INL efforts to develop this testing capability. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper focuses on efforts to design and evaluate a prototype test rig in an autoclave at INL's High Temperature Test Laboratory (HTTL).

D. L. Knudson; J. L. Rempe

2012-02-01T23:59:59.000Z

362

Linear variable differential transformer (LVDT)-based elongation measurements in Advanced Test Reactor high temperature irradiation testing  

Science Conference Proceedings (OSTI)

New materials are being considered for fuel, cladding and structures in next generation and existing nuclear reactors. These materials can undergo significant dimensional and physical changes during high temperature irradiations. Currently, such changes are determined by repeatedly irradiating a specimen for a specified period of time in the Advanced Test Reactor (ATR) and then removing it from the reactor for evaluation. The labor and time to remove, examine and return irradiated samples for each measurement make this approach very expensive. In addition, such techniques provide limited data and may disturb the phenomena of interest. To resolve these issues, an instrumented creep testing capability is being developed for specimens irradiated under pressurized water reactor coolant conditions in the ATR at the Idaho National Laboratory (INL). This paper reports the status of INL efforts to develop this testing capability. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper focuses on efforts to design and evaluate a prototype test rig in an autoclave at INL’s High Temperature Test Laboratory.

D. L. Knudson; J. L. Rempe

2012-02-01T23:59:59.000Z

363

Short-Term Climatic Variability of the Arctic  

Science Conference Proceedings (OSTI)

The circulation of the Arctic atmosphere undergoes large fluctuations about its monthly and annual means. The statistics of Arctic sea level pressure and temperature are evaluated in order to place Arctic atmospheric variability into the context ...

John E. Walsh; William L. Chapman

1990-02-01T23:59:59.000Z

364

Indian Ocean Intraseasonal Variability in an Ocean General Circulation Model  

Science Conference Proceedings (OSTI)

The impact of atmospheric intraseasonal variability on the tropical Indian Ocean is examined with an ocean general circulation model (OGCM). The model is forced by observation-based wind stresses and surface heat fluxes from an atmospheric ...

A. Schiller; J. S. Godfrey

2003-01-01T23:59:59.000Z

365

Estimating the Meridional Energy Transports in the Atmosphere and Ocean  

Science Conference Proceedings (OSTI)

The poleward energy transports in the atmosphere–ocean system are estimated for the annual mean and the four seasons based on satellite measurements of the net radiation balance at the top of the atmosphere, atmospheric transports of energy at ...

B. C. Carissimo; A. H. Oort; T. H. Vonder Haar

1985-01-01T23:59:59.000Z

366

The South Pacific Meridional Mode: A Mechanism for ENSO-like Variability  

Science Conference Proceedings (OSTI)

In this study we investigate the connection between the South Pacific atmospheric variability and the tropical Pacific climate in models of different degrees of coupling between atmosphere and ocean. A robust mode of variability, defined as the ...

Honghai Zhang; Amy Clement; Pedro Di Nezio

367

Acoustic Tomography as a Remote Sensing Method to Investigate the Near-Surface Atmospheric Boundary Layer in Comparison with In Situ Measurements  

Science Conference Proceedings (OSTI)

The acoustic tomography method is applied in the atmospheric surface layer to observe near-surface temperature fields. Important advantages of this technique are the remote sensing capacity and the possibility of directly deriving area-average ...

Astrid Ziemann; Klaus Arnold; Armin Raabe

2002-08-01T23:59:59.000Z

368

Spectral measurements of hydrogen Lyman-alpha in the atmospheres of Venus and Jupiter using a sounding rocket and the Hubble Space Telescope  

E-Print Network (OSTI)

The Lyman-alpha emission is a key signature of the presence of hydrogen, and from this emission many properties of planetary atmospheres can be analyzed. Two projects are studying this emission on two planets for two ...

Corbin, Benjamin Andrew

2011-01-01T23:59:59.000Z

369

Using CMAQ for Exposure Modeling and Characterizing the Subgrid Variability for Exposure Estimates  

Science Conference Proceedings (OSTI)

Atmospheric processes and the associated transport and dispersion of atmospheric pollutants are known to be highly variable in time and space. Current air-quality models that characterize atmospheric chemistry effects, for example, the Community ...

Vlad Isakov; John S. Irwin; Jason Ching

2007-09-01T23:59:59.000Z

370

Seasonal-to-Interannual Variability of Ethiopia/Horn of Africa Monsoon. Part I: Associations of Wavelet-Filtered Large-Scale Atmospheric Circulation and Global Sea Surface Temperature  

Science Conference Proceedings (OSTI)

Horn of Africa rainfall varies on multiple time scales, but the underlying climate system controls on this variability have not been examined comprehensively. This study therefore investigates the linkages between June–September Horn of Africa (...

Zewdu T. Segele; Peter J. Lamb; Lance M. Leslie

2009-06-01T23:59:59.000Z

371

Influences of atmospheric conditions and air mass on the ratio of ultraviolet to total solar radiation  

SciTech Connect

The technology to detoxify hazardous wastes using ultraviolet (UV) solar radiation is being investigated by the DOE/SERI Solar Thermal Technology Program. One of the elements of the technology evaluation is the assessment and characterization of UV solar radiation resources available for detoxification processes. This report describes the major atmospheric variables that determine the amount of UV solar radiation at the earth's surface, and how the ratio of UV-to-total solar radiation varies with atmospheric conditions. These ratios are calculated from broadband and spectral solar radiation measurements acquired at SERI, and obtained from the literature on modeled and measured UV solar radiation. The following sections discuss the atmospheric effects on UV solar radiation and provide UV-to-total solar radiation ratios from published studies, as well as measured values from SERI's data. A summary and conclusions are also given.

Riordan, C.J.; Hulstrom, R.L.; Myers, D.R.

1990-08-01T23:59:59.000Z

372

Stochastic Forcing of Ocean Variability by the North Atlantic Oscillation  

Science Conference Proceedings (OSTI)

At middle and high latitudes, the magnitude of stochastic wind stress forcing of the ocean by atmospheric variability on synoptic time scales (i.e., “weather” related variability) is comparable to that of the seasonal cycle. Stochastic forcing ...

Kettyah C. Chhak; Andrew M. Moore; Ralph F. Milliff

2009-01-01T23:59:59.000Z

373

Atmospheric Mercury Research Update  

Science Conference Proceedings (OSTI)

This report is a summary and analysis of research findings on utility and environmental mercury from 1997 to 2003. The update categorizes and describes recent work on mercury in utility-burned coal and its route through power plants, the measures for its control, and its fate in the environment following emissions from utility stacks. This fate includes atmospheric chemistry and transport, deposition to land and water surfaces, aquatic cycling, the dynamics of mercury in freshwater fish food webs, and th...

2004-03-30T23:59:59.000Z

374

Retrieval of Atmospheric Optical Depth Profiles from Downward-Looking High-Resolution O2 A-Band Measurements: Optically Thin Conditions  

Science Conference Proceedings (OSTI)

A quasi-linear retrieval was developed to profile moderately thin atmospheres using a high-resolution O2 A-band spectrometer. The retrieval is explicitly linear with respect to single scattering; the multiple-scattering contribution is treated as ...

Qilong Min; Lee C. Harrison

2004-10-01T23:59:59.000Z

375

Development of an Atmospheric Carbon Dioxide Standard Gas Saving System and Its Application to a Measurement at a Site in the West Siberian Forest  

Science Conference Proceedings (OSTI)

Observations of the atmospheric CO2 concentration from a 90-m tower in Berezorechka, western Siberia, that have taken place since October 2001 were used to characterize CO2 variations over a vast boreal forest area. A new CO2 standard gas saving ...

T. Watai; T. Machida; K. Shimoyama; O. Krasnov; M. Yamamoto; G. Inoue

2010-05-01T23:59:59.000Z

376

Krypton-85 in the atmosphere  

E-Print Network (OSTI)

Measurement results are presented on 85Kr content in the atmosphere over the European part of Russia in 1971-1995 based on the analysis of the commercial krypton, which is separated from air by industrial plants. Our results are by 15 per cent lower then 85Kr activites observed over West Europe. According our prediction by 2030 85Kr content in the atmosphere over Europe will amount to 1,5-3 Bq in m3 air. Average 85Kr release to the atmosphere from regeneration of spent nuclear fuel (SNF) is estimated, some 180 TBq per a ton SNF. It is advisable to recommence monitoring of 85Kr content within Russia.

A. T. Korsakov; E. G. Tertyshnik

2013-07-09T23:59:59.000Z

377

Krypton-85 in the atmosphere  

E-Print Network (OSTI)

Measurement results are presented on 85Kr content in the atmosphere over the European part of Russia in 1971-1995 based on the analysis of the commercial krypton, which is separated from air by industrial plants. Our results are by 15 per cent lower then 85Kr activites observed over West Europe. According our prediction by 2030 85Kr content in the atmosphere over Europe will amount to 1,5-3 Bq in m3 air. Average 85Kr release to the atmosphere from regeneration of spent nuclear fuel (SNF) is estimated, some 180 TBq per a ton SNF. It is advisable to recommence monitoring of 85Kr content within Russia.

Korsakov, A T

2013-01-01T23:59:59.000Z

378

Variable Screw Compressor, Variable Screw Compressor Suppliers ...  

U.S. Energy Information Administration (EIA)

Variable Screw Compressor Suppliers & air compressor Manufacturers Directory. Source Top Quality Variable Screw Compressor Suppliers, air ...

379

International RADAGAST Experiment in Niamey, Niger: Changes and Drivers of Atmospheric Radiation Balance  

Science Conference Proceedings (OSTI)

The Sahara desert is notorious as a source of massive dust storms. This dust dramatically influences the Earth-atmosphere energy budget through reflecting and absorbing the incoming sunlight. However, this budget is poorly understood, and in particular, we lack quantitative understanding of how the diurnal and seasonal variation of meteorological variables and aerosol properties influence the propagation of solar irradiance through the desert atmosphere. To improve our understanding of these influences, coincident and collocated observations of fluxes, measured from both space and the surface, are highly desirable. Recently, the unique capabilities of the African Monsoon Multidisciplinary Analysis (AMMA) Experiment, the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF), the Geostationary Earth Radiation Budget (GERB) instrument, and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) were combined effectively as part of a large international project: the Radiative Atmospheric Divergence using AMF, GERB data and AMMA Stations (RADAGAST), which took place in Niamey, Niger, in 2006. The RADAGAST objectives, instrumentation, and scientific background are presented in [1]. Initial results from RADAGAST documented the strong radiative impact of a major Saharan dust storm on the Earth’s radiation budget [2]. A special issue of the Journal of Geophysical Research will include a collection of papers with the more complete results from RADAGAST (e.g., [1,3], and references therein). In particular, a year-long time series from RADAGAST are used to investigate (i) the factors that control the radiative fluxes and the divergence of radiation across the atmosphere [3-5], (ii) seasonal changes in the surface energy balance and associated variations in atmospheric constituents (water vapor, clouds, aerosols) [6], and (iii) sensitivity of microphysical, chemical and optical properties of aerosols to their sources and the atmospheric conditions [7]. Here we show retrievals of the aerosol properties from spectrally resolved solar measurements, the simulated and observed radiative fluxes at the surface, and outline factors that control the magnitude and variability of aerosol and radiative properties [8].

Kassianov, Evgueni I.; McFarlane, Sally A.; Barnard, James C.; Flynn, Connor J.; Slingo, A.; Bharmal, N.; Robinson, G. J.; Turner, David D.; Miller, Mark; Ackerman, Thomas P.; Miller, R.

2009-03-11T23:59:59.000Z

380

DOE/EA-1193: Environmental Assessment for the Atmospheric Radiation Measurement (ARM) Program North Slope of Alaska and Adjacent Artic Ocean Cloud and Radiation Testbed (CART) Site (February 1997)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

u. S. DEPARTMENT OF ENERGY u. S. DEPARTMENT OF ENERGY FINDING OF NO SIGNIFICANT IMPACT FINAL ENVIRONMENTAL ASSESSMENT - The United States Department of Energy (DOE) has prepared an environmental assessment (EA) for the Atmospheric Radiation Measurement Cloud and Radiation Testbed (ARM/CART), North Slope of Alaska and Adjacent Arctic Ocean. The purpose of the ARM/CART program is to collect and analyze atmospheric data for the development and validation of global climate change models. The program involves construction of several small facilities and operation of sensing equipment. The EA analyzes the impacts on land use, tundra, air quality, cultura.l resources, socioeconomics, and wildlife. Separate studies (summarized in the EA) were also conducted to ensure that the operation of the facilities would not

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Atmospheric Chemistry and Physics  

E-Print Network (OSTI)

Abstract. A 3-D chemistry-transport model has been applied to the Mexico City metropolitan area to investigate the origin of elevated levels of non-fossil (NF) carbonaceous aerosols observed in this highly urbanized region. High time resolution measurements of the fine aerosol concentration and composition, and 12 or 24 h integrated 14 C measurements of aerosol modern carbon have been performed in and near Mexico City during the March 2006 MILAGRO field experiment. The non-fossil carbon fraction (fNF), which is lower than the measured modern fraction (fM) due to the elevated 14 C in the atmosphere caused by nuclear bomb testing, is estimated from the measured fM and the source-dependent information on modern carbon enrichment. The fNF contained in PM1 total carbon analyzed by a US team (f TC

unknown authors

2010-01-01T23:59:59.000Z

382

Measurements of Sea Surface Height Variability in the Eastern South Atlantic from Pressure Sensor–Equipped Inverted Echo Sounders: Baroclinic and Barotropic Components  

Science Conference Proceedings (OSTI)

Variability in sea surface height (SSH) can be decomposed into two contributions: one from changes in mass in the water column (barotropic) and the other from purely steric changes (baroclinic). Both contributions can be determined from data ...

Sheekela Baker-Yeboah; D. Randolph Watts; Deirdre A. Byrne

2009-12-01T23:59:59.000Z

383

Earth and Atmospheric Sciences | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Forensics Climate & Environment Sensors and Measurements Chemical & Engineering Materials Computational Earth Science Systems Modeling Geographic Information Science and Technology Materials Science and Engineering Mathematics Physics More Science Home | Science & Discovery | More Science | Earth and Atmospheric Sciences SHARE Earth and Atmospheric Sciences At ORNL, we combine our capabilities in atmospheric science, computational science, and biological and environmental systems science to focus in the cross-disciplinary field of climate change science. We use computer models to improve climate change predications and to measure the impact of global warming on the cycling of chemicals in earth systems. Our Climate Change Science Institute uses models to explore connections among atmosphere,

384

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Composition and Reactions of Atmospheric Aerosol Particles Composition and Reactions of Atmospheric Aerosol Particles Print Wednesday, 29 June 2005 00:00 Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

385

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Atmospheric Aerosol Particles Print Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

386

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Atmospheric Aerosol Particles Print Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

387

Overview of observations from the RADAGAST experiment in Niamey, Niger: Meteorology and thermodynamic variables  

SciTech Connect

An overview is presented of the meteorological and thermodynamic data obtained during the RADAGAST experiment in Niamey, Niger, in 2006. RADAGAST (Radiative Atmospheric Divergence using ARM Mobile Facility, GERB data and AMMA STations), combined data from the Atmospheric Radiation Measurement (ARM) Program Mobile Facility (AMF) at Niamey airport with broadband satellite data from the Geostationary Earth Radiation Budget (GERB) instrument on Meteosat-8. The experiment was conducted in collaboration with the African Monsoon Multidisciplinary Analysis (AMMA) project. The focus in this paper is on the variations through the year of key surface and atmospheric variables. The seasonal advance and retreat of the InterTropical Front (ITF) and the seasonal changes in near-surface variables and precipitation in 2006 are discussed and contrasted with the behavior in 2005 and with long-term averages. Observations from the AMF at Niamey airport are used to document the evolution of near-surface variables and of the atmosphere above the site. There are large seasonal changes in these variables, from the arid and dusty conditions typical of the dry season to the much moister and more cloudy wet season accompanying the arrival and intensification of the West African monsoon. Back trajectories show the origin of the air sampled at Niamey and profiles for selected case studies from rawinsondes and from a MicroPulse Lidar at the AMF site reveal details of typical atmospheric structures. Radiative fluxes and divergences are discussed in the second part of this overview and the subsequent papers in this special section explore other aspects of the measurements and of the associated modeling.

Slingo, A.; Bharmal, N.; Robinson, G. J.; Settle, Jeff; Allan, R. P.; White, H. E.; Lamb, Peter J.; Lele, M.; Turner, David D.; McFarlane, Sally A.; Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Miller, Mark

2008-10-17T23:59:59.000Z

388

Association between Winter Precipitation and Water Level Fluctuations in the Great Lakes and Atmospheric Circulation Patterns  

Science Conference Proceedings (OSTI)

Atmospheric precipitation in the Great Lakes basin, as a major mediating variable between atmospheric circulation and lake levels, is analyzed relative to both. The effect of cumulative winter precipitation on lake levels varies from lake to lake ...

Sergei N. Rodionov

1994-11-01T23:59:59.000Z

389

Climatology of Upper-Tropospheric Relative Humidity from the Atmospheric Infrared Sounder and Implications for Climate  

Science Conference Proceedings (OSTI)

Recently available satellite observations from the Atmospheric Infrared Sounder (AIRS) are used to calculate relative humidity in the troposphere. The observations illustrate many scales of variability in the atmosphere from the seasonal ...

Andrew Gettelman; William D. Collins; Eric J. Fetzer; Annmarie Eldering; Fredrick W. Irion; Phillip B. Duffy; Govindasamy Bala

2006-12-01T23:59:59.000Z

390

Clustering a Global Field of Atmospheric Profiles by Mixture Decomposition of Copulas  

Science Conference Proceedings (OSTI)

This work focuses on the clustering of a large dataset of atmospheric vertical profiles of temperature and humidity in order to model a priori information for the problem of retrieving atmospheric variables from satellite observations. Here, each ...

Mathieu Vrac; Alain Chédin; Edwin Diday

2005-10-01T23:59:59.000Z

391

Do Global Models Properly Represent the Feedback between Land and Atmosphere?  

Science Conference Proceedings (OSTI)

The Global Energy and Water Cycle Experiment/Climate Variability and Predictability (GEWEX/CLIVAR) Global Land–Atmosphere Coupling Experiment (GLACE) has provided an estimate of the global distribution of land–atmosphere coupling strength during ...

Paul A. Dirmeyer; Randal D. Koster; Zhichang Guo

2006-12-01T23:59:59.000Z

392

Atmospheric Icing Climatologies of Two New England Mountains  

Science Conference Proceedings (OSTI)

The atmospheric icing climatologies of two New England mountaintops with different elevations are compared: Mount Mansfield in northern Vermont and Mount Washington in New Hampshire. Atmospheric icing, as measured with Rosemount ice detectors, is ...

Charles C. Ryerson

1988-11-01T23:59:59.000Z

393

Atmospheric Emitted Radiance Interferometer. Part I: Instrument Design  

Science Conference Proceedings (OSTI)

A ground-based Fourier transform spectrometer has been developed to measure the atmospheric downwelling infrared radiance spectrum at the earth's surface with high absolute accuracy. The Atmospheric Emitted Radiance Interferometer (AERI) ...

R. O. Knuteson; H. E. Revercomb; F. A. Best; N. C. Ciganovich; R. G. Dedecker; T. P. Dirkx; S. C. Ellington; W. F. Feltz; R. K. Garcia; H. B. Howell; W. L. Smith; J. F. Short; D. C. Tobin

2004-12-01T23:59:59.000Z

394

The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at the SIRTA Atmospheric Observatory  

Science Conference Proceedings (OSTI)

The ability of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) to simulate midlatitude ice clouds is evaluated. Model outputs are compared to long-term meteorological measurements by active (radar and lidar) and ...

M. Chiriaco; R. Vautard; H. Chepfer; M. Haeffelin; J. Dudhia; Y. Wanherdrick; Y. Morille; A. Protat

2006-03-01T23:59:59.000Z

395

Measurements of the Effects of Gravity Waves in the Middle Atmosphere Using Parametric Models of Density Fluctuations. Part II: Energy Dissipation and Eddy Diffusion  

Science Conference Proceedings (OSTI)

Part I of this series demonstrated the advantages of parametric models in estimating the gravity wave spectrum from density fluctuation measurements using a large power-aperture-product Rayleigh-scatter lidar. The spectra calculated using the ...

R. J. Sica

1999-05-01T23:59:59.000Z

396

The United States' Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission  

Science Conference Proceedings (OSTI)

The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, ...

J. Fishman; L. T. Iraci; J. Al-Saadi; K. Chance; F. Chavez; M. Chin; P. Coble; C. Davis; P. M. DiGiacomo; D. Edwards; A. Eldering; J. Goes; J. Herman; C. Hu; D. J. Jacob; C. Jordan; S. R. Kawa; R. Key; X. Liu; S. Lohrenz; A. Mannino; V. Natraj; D. Neil; J. Neu; M. Newchurch; K. Pickering; J. Salisbury; H. Sosik; A. Subramaniam; M. Tzortziou; J. Wang; M. Wang

2012-10-01T23:59:59.000Z

397

Remote measurement of ground temperature and emissivity  

SciTech Connect

TAISIR, Temperature and Imaging System InfraRed, is a nominally satellite based platform for remote sensing of the earth. One of its design features is to acquire atmospheric data simultaneous with ground data, resulting in minimal dependence on external atmospheric models for data correction. Extensive modeling of the rms error of determining a ground temperature and emissivity for a gray body has been performed as a function of integration time, spectroscopic resolution of the system, ground emissivity, atmospheric variables, and atmospheric data accuracy. We find that increased resolution improves measurement accuracy by emphasizing those regions where the atmospheric transmission is highest and atmospheric emission/absorption lowest. We find rms temperature errors {le}1K and rms emissivity errors <0.01 are obtainable for reasonable seeing and with sufficient information about the atmosphere. A new method is developed for modeling the dependence of the band-averaged transmission and emission. Monte Carlo simulations of satellite data taken using a multi-angle technique are used to derive signal-to-noise requirements. The applicability of those results to the TAISIR system requirements are discussed.

Henderson, J.R.

1994-06-01T23:59:59.000Z

398

The Influence of Potential Evaporation on the Variabilities of Simulated Soil Wetness and Climate  

Science Conference Proceedings (OSTI)

An atmospheric general circulation model with prescribed sea surface temperature and cloudiness was integrated for 50 years in order to study atmosphere-land surface interactions. The temporal variability of model soil moisture and precipitation ...

Thomas L. Delworth; Syukuro Manabe

1988-05-01T23:59:59.000Z

399

2–3-Day Convective Variability in the Tropical Western Pacific  

Science Conference Proceedings (OSTI)

This paper is an examination of 2–3-day convective variability in the tropical Pacific region. The initial focus of the paper is on the western tropical Pacific during the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response ...

Carol Anne Clayson; Brian Strahl; Jon Schrage

2002-03-01T23:59:59.000Z

400

Changes of Variability in Response to Increasing Greenhouse Gases. Part II: Hydrology  

Science Conference Proceedings (OSTI)

This paper examines hydrological variability and its changes in two different versions of a coupled ocean–atmosphere general circulation model developed at the National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory ...

Richard T. Wetherald

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Dynamical Origin of Low-Frequency Variability in a Highly Nonlinear Midlatitude Coupled Model  

Science Conference Proceedings (OSTI)

A novel mechanism of decadal midlatitude coupled variability, which crucially depends on the nonlinear dynamics of both the atmosphere and the ocean, is presented. The coupled model studied involves quasigeostrophic atmospheric and oceanic ...

S. Kravtsov; P. Berloff; W. K. Dewar; M. Ghil; J. C. McWilliams

2006-12-01T23:59:59.000Z

402

Pacific Decadal Variability: The Tropical Pacific Mode and the North Pacific Mode  

Science Conference Proceedings (OSTI)

Pacific decadal variability is studied in a series of coupled global ocean–atmosphere simulations aided by two “modeling surgery” strategies: partial coupling (PC) and partial blocking (PB). The PC experiments retain full ocean–atmosphere ...

L. Wu; Z. Liu; R. Gallimore; R. Jacob; D. Lee; Y. Zhong

2003-04-01T23:59:59.000Z

403

Near-Continuous Profiling of Temperature, Moisture, and Atmospheric Stability Using the Atmospheric Emitted Radiance Interferometer (AERI)  

Science Conference Proceedings (OSTI)

The Department of Energy Atmospheric Radiation Measurement Program (ARM) has funded the development and installation of five ground-based atmospheric emitted radiance interferometer (AERI) systems at the Southern Great Plains (SGP) site. The ...

W. F. Feltz; W. L. Smith; H. B. Howell; R. O. Knuteson; H. Woolf; H. E. Revercomb

2003-05-01T23:59:59.000Z

404

Data Quality of Quality Measurement Experiments  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Quality of Quality Measurement Experiments Data Quality of Quality Measurement Experiments S. Bottone and S. Moore Mission Research Corporation Santa Barbara, California Introduction Quality Measurement Experiments (QME) are a special class of Value-Added Products (VAP). QMEs add value to Atmospheric Radiation Measurement (ARM) Program datastreams by providing for continuous assessment of the quality of incoming data based on internal consistency checks, comparisons between independent similar measurements, or comparisons between measurements and modeled results. Like any datastream, QME datastreams need to be checked for data quality. For each QME, we analyze a representative sample of files from the ARM data archive to determine 'typical' values of the QME variables. We then design outlier tests, specific to each variable, to be applied to

405

Vertical Coordinate Transformation of Vertically-Discretized Atmospheric Fields  

Science Conference Proceedings (OSTI)

The problem of transforming fields of atmospheric variables from one vertical coordinate system to another without altering their dynamic balance is discussed. A curve fitting scheme applied to the data points in each grid column is proposed ...

Rainer Bleck

1984-12-01T23:59:59.000Z

406

Intraseasonal Land–Atmosphere Coupling in the West African Monsoon  

Science Conference Proceedings (OSTI)

Via its impact on surface fluxes, subseasonal variability in soil moisture has the potential to feed back on regional atmospheric circulations, and thereby rainfall. An understanding of this feedback mechanism in the climate system has been ...

Christopher M. Taylor

2008-12-01T23:59:59.000Z

407

Ocean Eddy Dynamics in a Coupled Ocean–Atmosphere Model  

Science Conference Proceedings (OSTI)

The role of mesoscale oceanic eddies is analyzed in a quasigeostrophic coupled ocean–atmosphere model operating at a large Reynolds number. The model dynamics are characterized by decadal variability that involves nonlinear adjustment of the ...

P. Berloff; W. Dewar; S. Kravtsov; J. McWilliams

2007-05-01T23:59:59.000Z

408

Persistent Anomalies, Blocking and Variations in Atmospheric Predictability  

Science Conference Proceedings (OSTI)

We consider regimes of low-frequency variability in large-scale atmospheric dynamics. The model used for the study of these regimes is the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere, with simplified forcing, ...

B. Legras; M. Ghil

1985-03-01T23:59:59.000Z

409

Stable Schemes for Nonlinear Vertical Diffusion in Atmospheric Circulation Models  

Science Conference Proceedings (OSTI)

The intensity of vertical mixing in atmospheric models generally depends on wind shear and static stability, making the diffusion process nonlinear. Traditional implicit numerical schemes, which treat the variables to be diffused implicitly but ...

Claude Girard; Yves Delage

1990-03-01T23:59:59.000Z

410

The Structure of the Near-Neutral Atmospheric Surface Layer  

Science Conference Proceedings (OSTI)

Recent observational data (turbulence variables by sonic anemometers and three-dimensional flow pattern by Doppler lidar), obtained during the Cooperative Atmosphere Surface Exchange Study field campaign in October 1999 (CASES-99), show evidence ...

Philippe Drobinski; Pierre Carlotti; Rob K. Newsom; Robert M. Banta; Ralph C. Foster; Jean-Luc Redelsperger

2004-03-01T23:59:59.000Z

411

The Response of Tropical Atmospheric Energy Budgets to ENSO  

Science Conference Proceedings (OSTI)

The variability of zonally resolved tropical energy budgets in association with El Niño–Southern Oscillation (ENSO) is investigated. The most recent global atmospheric reanalyses from 1979 to 2011 are employed with removal of apparent ...

Michael Mayer; Kevin E. Trenberth; Leopold Haimberger; John T. Fasullo

2013-07-01T23:59:59.000Z

412

Study of the Martian upper atmosphere using radio tracking data  

E-Print Network (OSTI)

Since the first in situ observations of the Martian atmosphere were made by the twin Viking landers, we have learned considerably more about its composition, dynamics and variability. Not only did the new data on global ...

Mazarico, Erwan Matías Alexandre, 1981-

2008-01-01T23:59:59.000Z

413

A Compositing Approach for Preserving Significant Features in Atmospheric Profiles  

Science Conference Proceedings (OSTI)

Composite profiles of thermodynamic and kinematic variables are prepared to represent the characteristics of the environment within which a particular atmospheric phenomenon occurs. During the averaging process, it is desirable to retain the ...

Rodger A. Brown

1993-03-01T23:59:59.000Z

414

Climate Drift in a Coupled Land–Atmosphere Model  

Science Conference Proceedings (OSTI)

A coupled land–atmosphere climate model is examined for evidence of climate drift in the land surface state variable of soil moisture. The drift is characterized as pathological error growth in two different ways. First is the systematic error ...

Paul A. Dirmeyer

2001-02-01T23:59:59.000Z

415

Statistical Significance Test for Transition Matrices of Atmospheric Markov Chains  

Science Conference Proceedings (OSTI)

Low-frequency variability of large-scale atmospheric dynamics can be represented schematically by a Markov chain of multiple flow regimes. This Markov chain contains useful information for the long-range forecaster, provided that the statistical ...

Robert Vautard; Kingtse C. Mo; Michael Ghil

1990-08-01T23:59:59.000Z

416

On the application of the MODTRAN4 atmospheric radiative transfer code to optical remote sensing  

Science Conference Proceedings (OSTI)

The quantification of atmospheric effects on the solar radiation measured by a spaceborne or airborne optical sensor is required for some key tasks in remote sensing, such as atmospheric correction, simulation of realistic scenarios or retrieval of atmospheric ...

Luis Guanter; Rudolf Richter; Hermann Kaufmann

2009-01-01T23:59:59.000Z

417

The Boulder Atmospheric Observatory  

Science Conference Proceedings (OSTI)

The Boulder Atmospheric Observatory (BAO) is a unique research facility for studying the planetary boundary layer and for testing and calibrating atmospheric sensors. The facility includes a 300 m tower instrumented with fast- and slow-response ...

J. C. Kaimal; J. E. Gaynor

1983-05-01T23:59:59.000Z

418

Statistical Relations between Ocean/Atmosphere Fluctuations in the Tropical Pacific  

Science Conference Proceedings (OSTI)

Advanced statistical techniques have been used to conduct a study of the relationships between ocean and atmosphere variables in the tropical Pacific Ocean. The results of the study show that the ocean variables can hindcast features of the trade ...

T. P. Barnett

1981-08-01T23:59:59.000Z

419

A Coupled Atmosphere–Ocean GCM Study of the ENSO Cycle  

Science Conference Proceedings (OSTI)

This study examines interannual variability produced by a recent version of the University of California, Los Angeles, coupled atmosphere–ocean general circulation model (CGCM). The CGCM is shown to produce ENSO-like climate variability with ...

Jin-Yi Yu; Carlos R. Mechoso

2001-05-01T23:59:59.000Z

420

Kinematics of Eddy–Mean Flow Interaction in an Idealized Atmospheric Model  

Science Conference Proceedings (OSTI)

The authors analyze atmospheric variability simulated in a two-layer baroclinic ?-channel quasigeostrophic model by combining Eulerian and feature-tracking analysis approaches. The leading mode of the model's low-frequency variability (LFV) is ...

Sergey Kravtsov; Sergey K. Gulev

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Advantages of a Topographically Controlled Runoff Simulation in a Soil–Vegetation–Atmosphere Transfer Model  

Science Conference Proceedings (OSTI)

Two methods to incorporate subgrid variability in soil moisture and runoff production into soil–vegetation–atmosphere transfer (SVAT) models are compared: 1) the variable infiltration capacity model approach (VIC), and 2) a modified “TOPMODEL” ...

Kirsten Warrach; Marc Stieglitz; Heinz-Theo Mengelkamp; Ehrhard Raschke

2002-04-01T23:59:59.000Z

422

Relevance of the Mesoscale Entrainment Instability to the Marine Cloud-topped Atmospheric Boundary Layer  

Science Conference Proceedings (OSTI)

Mesoscale variability in entrainment across the inversion capping the cloud-topped atmospheric boundary layer (CTBL) has been proposed as an explanation for mesoscale variability in cloud thickness. The relevance of this mechanism, called ...

Hugh A. Rand; Christopher S. Bretherton

1993-04-01T23:59:59.000Z

423

Basic Meteorological Observations for Schools: Atmospheric Pressure  

Science Conference Proceedings (OSTI)

This article addresses measurement of atmospheric surface pressure using economical instruments. It is intended to provide members of the Society with a ready reference to respond to inquiries from earth and physical science teachers at the ...

John T. Snow; Michelle E. Akridge; Shawn B. Harley

1992-06-01T23:59:59.000Z

424

Profiling atmospheric aerosols | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

a number of instruments that use low power lasers (the instrument is called Micropulse Lidar, MPL) to measure the turbidity of the atmosphere above the ground. For the first time,...

425

Ten Years of Measurements of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part I: Climatology, Variability, Transport, and Relation to Deep Convection  

Science Conference Proceedings (OSTI)

Ten years (1994–2004) of measurements of tropical upper-tropospheric water vapor (UTWV) by the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) are investigated over three regions—the tropical Atlantic, tropical Africa, ...

Zhengzhao Luo; Dieter Kley; Richard H. Johnson; Herman Smit

2007-02-01T23:59:59.000Z

426

Sources of Errors in Rainfall Measurements by Polarimetric Radar: Variability of Drop Size Distributions, Observational Noise, and Variation of Relationships between R and Polarimetric Parameters  

Science Conference Proceedings (OSTI)

Using a set of long-term disdrometric data and of actual radar measurements from the McGill S-band operational polarimetric radar, several sources of errors in rain measurement with polarimetric radar are explored in order to investigate their ...

Gyu Won Lee

2006-08-01T23:59:59.000Z

427

Effect of ocean mesoscale variability on the mean state of tropical Atlantic climate  

E-Print Network (OSTI)

J. J. Antonov, 2002: World Ocean Atlas 2001: Objectiveand variability in tropical ocean regions. Clim. Dynm. , 18,air-sea fluxes for Tropical Ocean Global Atmosphere Coupled-

Seo, H; Jochum, M; Murtugudde, R; Miller, A J

2006-01-01T23:59:59.000Z

428

Enhanced MJO-like Variability at High SST  

Science Conference Proceedings (OSTI)

The authors report a significant increase in Madden–Julian oscillation (MJO)–like variability in a superparameterized version of the NCAR Community Atmosphere Model run with high sea surface temperatures (SSTs). A series of aquaplanet simulations ...

Nathan P. Arnold; Zhiming Kuang; Eli Tziperman

2013-02-01T23:59:59.000Z

429

Modes of Interannual and Interdecadal Variability of Pacific SST  

Science Conference Proceedings (OSTI)

The multichannel singular spectrum analysis has been used to characterize the spatio–temporal structures of interdecadal and interannual variability of SST over the Pacific Ocean from 20°S to 58°N. Using the Comprehensive Ocean–Atmosphere Data ...

Xuebin Zhang; Jian Sheng; Amir Shabbar

1998-10-01T23:59:59.000Z

430

Simulation of North Atlantic Low-Frequency SST Variability  

Science Conference Proceedings (OSTI)

The role of atmospheric circulation anomalies in generating midlatitude sea surface temperature (SST) variability is investigated by means of ocean general circulation model (OGCM) experiments, in which observed winds are prescribed during the ...

Ute Luksch

1996-09-01T23:59:59.000Z

431

Impact of Gravity Waves on Marine Stratocumulus Variability  

Science Conference Proceedings (OSTI)

The impact of gravity waves on marine stratocumulus is investigated using a large-eddy simulation model initialized with sounding profiles composited from the Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study ...

Qingfang Jiang; Shouping Wang

2012-12-01T23:59:59.000Z

432

Mesoscale Weather Effects of Variable Snow Cover over Northeast Colorado  

Science Conference Proceedings (OSTI)

Data from the PROFS (Program for Regional Observing and Forecasting Services) surface mesonetwork have been used to document the effect of variable snow cover on atmospheric boundary layer properties cloudiness and weather conditions over north ...

Richard H. Johnson; George S. Young; James J. Toth; Raymond M. Zehr

1984-06-01T23:59:59.000Z

433

Intraseasonal Variability of the South China Sea Summer Monsoon  

Science Conference Proceedings (OSTI)

The objective of this study is to explore, based on the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data, the intraseasonal variability of the South China Sea (SCS) summer monsoon (...

Jiangyu Mao; Johnny C. L. Chan

2005-07-01T23:59:59.000Z

434

Simulations of the Eastern North Pacific Intraseasonal Variability in CMIP5 GCMs  

Science Conference Proceedings (OSTI)

As a key component of tropical atmospheric variability, intraseasonal variability (ISV) over the eastern North Pacific Ocean (ENP) exerts pronounced influences on regional weather and climate. Since general circulation models (GCMs) are essential ...

Xianan Jiang; Eric D. Maloney; Jui-Lin F. Li; Duane E. Waliser

2013-06-01T23:59:59.000Z

435

North Atlantic Decadal Variability: Air–Sea Coupling, Oceanic Memory, and Potential Northern Hemisphere Resonance  

Science Conference Proceedings (OSTI)

In this paper, the causes and mechanisms of North Atlantic decadal variability are explored in a series of coupled ocean–atmosphere simulations. The model captures the major features of the observed North Atlantic decadal variability. The North ...

Lixin Wu; Zhengyu Liu

2005-01-01T23:59:59.000Z

436

Modeling the Effect of Land Surface Evaporation Variability on Precipitation Variability. Part II: Time- and Space-Scale structure  

Science Conference Proceedings (OSTI)

This is the second of a two-part article investigating the impact of variations of land surface evaporability on the interannual variability of precipitation. The first goal of this part is to analyze the relationship between the atmospheric ...

Oreste Reale; Paul Dirmeyer; Adam Schlosser

2002-08-01T23:59:59.000Z

437

Anatomy of North Pacific Decadal Variability  

Science Conference Proceedings (OSTI)

A systematic analysis of North Pacific decadal variability in a full-physics coupled ocean–atmosphere model is executed. The model is an updated and improved version of the coupled model studied by Latif and Barnett. Evidence is sought for ...

Niklas Schneider; Arthur J. Miller; David W. Pierce

2002-03-01T23:59:59.000Z

438

Gulf Stream Variability and Ocean–Atmosphere Interactions  

Science Conference Proceedings (OSTI)

Time series of Gulf Stream position derived from the TOPEX/Poseidon altimeter from October 1992 to November 1998 are used to investigate the lead and lag relation between the Gulf Stream path as it leaves the continental shelf and the changes in ...

Claude Frankignoul; Gaelle de Coëtlogon; Terrence M. Joyce; Shenfu Dong

2001-12-01T23:59:59.000Z

439

Atmospheric Circulation Effects on Wind Speed Variability at Turbine Height  

Science Conference Proceedings (OSTI)

Mean monthly wind speed at 70 m above ground level is investigated for 11 sites in Minnesota for the period 1995–2003. Wind speeds at these sites show significant spatial and temporal coherence, with prolonged periods of above- and below-normal ...

Katherine Klink

2007-04-01T23:59:59.000Z

440

Singular Modes and Low-Frequency Atmospheric Variability  

Science Conference Proceedings (OSTI)

Recently, it has been shown that the EOFs (empirical orthogonal functions) of the solutions of a stationary linear model to an ensemble of white noise forcing fields are the Schmidt modes (singular modes) of the model' linear operator. If the ...

Werner Metz

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Interannual Variability of Patterns of Atmospheric Mass Distribution  

Science Conference Proceedings (OSTI)

Using the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) for 1958 to 2001, adjusted for bias over the southern oceans prior to 1979, an analysis is made of global patterns of monthly mean anomalies of ...

Kevin E. Trenberth; David P. Stepaniak; Lesley Smith

2005-08-01T23:59:59.000Z

442

Exact Averaging of Atmospheric State and Flow Variables  

Science Conference Proceedings (OSTI)

A new set of averaging rules is put forward that exactly determines the means of air temperature, mixing ratio, and velocity by incorporating weighting factors in accordance with physical conservation laws. For the temperature and velocity, ...

Andrew S. Kowalski

2012-05-01T23:59:59.000Z

443

Stratified Turbulence and the Mesoscale Variability of the Atmosphere  

Science Conference Proceedings (OSTI)

An analysis is made of Gage's proposal that the horizontal energy spectrum at mesoscale wavelengths is produced by upscale energy transfer through quasi-two-dimensional turbulence. It is suggested that principal sources of such energy can be ...

D. K. Lilly

1983-03-01T23:59:59.000Z

444

Response of the Antarctic Circumpolar Current to Atmospheric Variability  

Science Conference Proceedings (OSTI)

Historical hydrographic profiles, combined with recent Argo profiles, are used to obtain an estimate of the mean geostrophic circulation in the Southern Ocean. Thirteen years of altimetric sea level anomaly data are then added to reconstruct the ...

J. B. Sallée; K. Speer; R. Morrow

2008-06-01T23:59:59.000Z

445

Snow Mass over North America: Observations and Results from the Second Phase of the Atmospheric Model Intercomparison Project  

Science Conference Proceedings (OSTI)

Eighteen global atmospheric general circulation models (AGCMs) participating in the second phase of the Atmospheric Model Intercomparison Project (AMIP-2) are evaluated for their ability to simulate the observed spatial and temporal variability ...

Allan Frei; Ross Brown; James A. Miller; David A. Robinson

2005-10-01T23:59:59.000Z

446

A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity...  

Open Energy Info (EERE)

1982). Evidence based on measurements of S and Cl in erupted rocks, glass inclusions, gas samples, and atmospheric samples collected for both Mount St. Helens and Fuego...

447

Advanced Understanding of the Atmospheric Corrosion of Materials  

Science Conference Proceedings (OSTI)

On the Mechanism of Castastropic Atmospheric Sulfidation of Electronic Components in Data Centers · Real Time Measure of Corrosion under Differing Relative ...

448

Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Mesurements  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Cloud Variability and Sampling Errors in Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements Z. Li, M. C. Cribb, and F.-L. Chang Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland A. P. Trishchenko and Y. Luo Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction Radiation measurements have been widely employed for evaluating cloud parameterization schemes and model simulation results. As the most comprehensive program aiming to improve cloud parameteri- zation schemes, the Atmospheric Radiation Measurement (ARM) Program has an essential goal to make observations on the scale of a general circulation model gridbox, so as to define the physics underlying some of the important parameterizations in the general circulation models used in climate change

449

Chemical Process Measurements Group Homepage  

Science Conference Proceedings (OSTI)

... in the gas and liquid phases and ... inventory of atmospheric greenhouse gases, most notably ... Gas and Particulate Concentration Measurements and ...

2013-05-07T23:59:59.000Z

450

U.S. Economic Sensitivity to Weather Variability  

Science Conference Proceedings (OSTI)

To estimate the economic effects of weather variability in the United States, the authors define and measure weather sensitivity as the variability in economic output that is attributable to weather variability, accounting for changes in technology and ...

Jeffrey K. Lazo; Megan Lawson; Peter H. Larsen; Donald M. Waldman

2011-06-01T23:59:59.000Z

451

Introduction to meteorological measurements and data handling for solar energy applications. Task IV. Development of an isolation handbook and instrument package  

DOE Green Energy (OSTI)

The following are covered: the Sun and its radiation, solar radiation and atmospheric interaction, solar radiation measurement methods, spectral irradiance measurements of natural sources, the measurement of infrared radiation, the measurement of circumsolar radiation, some empirical properties of solar radiation and related parameters, duration of sunshine, and meteorological variables related to solar energy. Included in appendices are manufacturers and distributors of solar radiation measuring instruments and an approximate method for quality control of solar radiation instruments. (MHR)

None

1980-01-01T23:59:59.000Z

452

Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power  

SciTech Connect

Worldwide interest in the deployment of photovoltaic generation (PV) is rapidly increasing. Operating experience with large PV plants, however, demonstrates that large, rapid changes in the output of PV plants are possible. Early studies of PV grid impacts suggested that short-term variability could be a potential limiting factor in deploying PV. Many of these early studies, however, lacked high-quality data from multiple sites to assess the costs and impacts of increasing PV penetration. As is well known for wind, accounting for the potential for geographic diversity can significantly reduce the magnitude of extreme changes in aggregated PV output, the resources required to accommodate that variability, and the potential costs of managing variability. We use measured 1-min solar insolation for 23 time-synchronized sites in the Southern Great Plains network of the Atmospheric Radiation Measurement program and wind speed data from 10 sites in the same network to characterize the variability of PV with different degrees of geographic diversity and to compare the variability of PV to the variability of similarly sited wind. The relative aggregate variability of PV plants sited in a dense 10 x 10 array with 20 km spacing is six times less than the variability of a single site for variability on time scales less than 15-min. We find in our analysis of wind and PV plants similarly sited in a 5 x 5 grid with 50 km spacing that the variability of PV is only slightly more than the variability of wind on time scales of 5-15 min. Over shorter and longer time scales the level of variability is nearly identical. Finally, we use a simple approximation method to estimate the cost of carrying additional reserves to manage sub-hourly variability. We conclude that the costs of managing the short-term variability of PV are dramatically reduced by geographic diversity and are not substantially different from the costs for managing the short-term variability of similarly sited wind in this region.

Mills, Andrew; Wiser, Ryan

2010-08-23T23:59:59.000Z

453

Pierre Auger Atmosphere-Monitoring Lidar System  

E-Print Network (OSTI)

The fluorescence-detection techniques of cosmic-ray air-shower experiments require precise knowledge of atmospheric properties to reconstruct air-shower energies. Up to now, the atmosphere in desert-like areas was assumed to be stable enough so that occasional calibration of atmospheric attenuation would suffice to reconstruct shower profiles. However, serious difficulties have been reported in recent fluorescence-detector experiments causing systematic errors in cosmic ray spectra at extreme energies. Therefore, a scanning backscatter lidar system has been constructed for the Pierre Auger Observatory in Malargue, Argentina, where on-line atmospheric monitoring will be performed. One lidar system is already deployed at the Los Leones fluorescence detector site and the second one is currently (April 2003) under construction at the Coihueco site. Next to the established ones, a novel analysis method with assumption on horizontal invariance, using multi-angle measurements is shown to unambiguously measure optical depth, as well as absorption and backscatter coefficient.

A. Filipcic; M. Horvat; D. Veberic; D. Zavrtanik; M. Zavrtanik; M. Chiosso; R. Mussa; G. Sequeiros; M. A. Mostafa; M. D. Roberts

2003-05-21T23:59:59.000Z

454

Field Measurement of Am241 and Total Uranium at a Mixed Oxide Fuel Facility with Variable Uranium Enrichments Ranging from 0.3% to 97% U235  

SciTech Connect

The uranium and transuranic content of site soils and building rubble can be accurately measured using a NaI(Tl) well counter, without significant soil preparation. Accurate measurements of total uranium in uranium-transuranic mixtures can be made, despite a wide range (0.3% to 97%) of uranium enrichment, sample mass, and activity concentrations. The appropriate uranium scaling factors needed to include the undetected uranium isotopes, particularly U 234 can be readily determined on a sample by sample basis as a part of the field analysis, by comparing the relative response of the U 235 186 keV peak versus the K shell X rays of U 238 , U 235, and their immediate ingrowth daughters. The ratio of the two results is a sensitive and accurate predictor of the uranium enrichment and scaling factors. The case study will illustrate how NaI(Tl) gamma spectrometry was used to provide rapid turnaround uranium and transuranic activity levels for soil and building rubble with sample by sample determination of the appropriate scaling factor to include the U234 and Uranium238 content.

Conway, K. C.

2002-02-28T23:59:59.000Z

455

Interdecadal and Interannual Variability in the Northern Extratropical Circulation Simulated with the JMA Global Model. Part I: Wintertime Leading Mode  

Science Conference Proceedings (OSTI)

Interdecadal and interannual atmospheric variability in the extratropical Northern Hemisphere is investigated using an atmospheric GCM. The model used for this research is a T42 GCM version of the Japan Meteorological Agency (JMA-GSM89) global ...

Ryuichi Kawamura; Masato Sugi; Nobuo Sato

1995-12-01T23:59:59.000Z

456

High-energy atmospheric neutrinos  

E-Print Network (OSTI)

High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV should be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, $D^\\pm$, $D^0$, $\\bar{D}{}^0$, $D_s^\\pm$, $\\Lambda^+_c$, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known hadronic models, SIBYLL 2.1 and QGSJET-II. The atmospheric neutrino flux in the energy range $10-10^7$ GeV was computed within the 1D approach to solve nuclear cascade equations in the atmosphere, which takes into account non-scaling behavior of the inclusive cross-sections for the particle production, the rise of total inelastic hadron-nucleus cross-sections and nonpower-law character of the primary cosmic ray spectrum. This approach was recently tested in the atmospheric muon flux calculations [1]. The results of the neutrino flux calculations are compared with the Frejus, AMANDA-II and IceCube measurement data.

S. I. Sinegovsky; A. A. Kochanov; T. S. Sinegovskaya

2010-10-12T23:59:59.000Z

457

Posters Comparisons of Brightness Temperature Measurements and Calculations Obtained  

NLE Websites -- All DOE Office Websites (Extended Search)

Posters Comparisons of Brightness Temperature Measurements and Calculations Obtained During the Spectral Radiance Experiment Y. Han, J. B. Snider, and E. R. Westwater National Oceanic and Atmospheric Administration Environmental Research Laboratories/Environmental Technology Laboratory Boulder, Colorado S. H. Melfi National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland R. A. Ferrare Hughes STX Corporation Lanham, Maryland Introduction In radiometric remote sensing of the atmosphere, the ability to calculate radiances from underlying state variables is fundamental. To infer temperature and water vapor profiles from satellite- or ground-based radiometers, one must determine cloud-free regions and then calculate clear-sky radiance emerging from the top of the earth's

458

Intraseasonal Variability in a Two-Layer Model and Observations  

Science Conference Proceedings (OSTI)

A two-layer shallow-water model with R15 truncation and topographic forcing is used to study intraseasonal variability in the Northern Hemisphere’s (NH’s) extratropical atmosphere. The model’s variability is dominated by oscillations with average ...

Christian L. Keppenne; Steven L. Marcus; Masahide Kimoto; Michael Ghil

2000-04-01T23:59:59.000Z

459

Atmospheric Radiation Measurement Program Climate Research Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Science, Office of Biological and Environmental Research July 1-September 30, 2010, DOESC-ARM-10-029 iii Contents 1.0 Data Availability......

460

Atmospheric Radiation Measurement Program Climate Research Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Science, Office of Biological and Environmental Research July 1-September 30, 2011, DOESC-ARM-11-022 iii Contents 1.0 Data Availability......

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Shortwave Infrared Spectroradiometer for Atmospheric Transmittance Measurements  

Science Conference Proceedings (OSTI)

The use of a shortwave infrared (SWIR) spectroradiometer as a solar radiometer is presented. The radiometer collects 1024 channels of data over the spectral range of 1.1–2.5 ?m. The system was tested by applying the Langley method to data ...

M. Sicard; K. J. Thome; B. G. Crowther; M. W. Smith

1998-02-01T23:59:59.000Z

462

The Utility of Continuous Atmospheric Measurements for  

E-Print Network (OSTI)

Norman, OK 60 Short 11.7 HFO Petersham, MA 30 Short 38.6 AMT Argyle, ME 107 Short 19.6 FRD Fraserdale

463

Meteorological Applications of Temperature and Water Vapor Retrievals from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI)  

Science Conference Proceedings (OSTI)

The Atmospheric Emitted Radiance Interferometer (AERI) is a well-calibrated ground-based instrument that measures high-resolution atmospheric emitted radiances from the atmosphere. The spectral resolution of the instrument is better than one ...

Wayne F. Feltz; William L. Smith; Robert O. Knuteson; Henry E. Revercomb; Harold M. Woolf; H. Ben Howell

1998-09-01T23:59:59.000Z

464

NIST Aperture area measurements  

Science Conference Proceedings (OSTI)

... particularly critical, for example, in climate and weather applications on ... of aperture areas used in exo-atmospheric solar irradiance measurements; ...

2011-11-03T23:59:59.000Z

465

Snowpack spatial variability: towards understanding its effect on remote sensing  

E-Print Network (OSTI)

Snowpack spatial variability: towards understanding its effect on remote sensing measurements spatial variability: towards understanding its effect on remote sensing mea- surements and snow slope large errors in these basin estimates. Remote sensing measurements offer a promising alternative, due

Marshall, Hans-Peter

466

Energy Spectra, Altitude Profiles and Charge Ratios of Atmospheric Muons  

E-Print Network (OSTI)

We present a new measurement of air shower muons made during atmospheric ascent of the High Energy Antimatter Telescope balloon experiment. The muon charge ratio mu+ / mu- is presented as a function of atmospheric depth in the momentum interval 0.3-0.9 GeV/c. The differential mu- momentum spectra are presented between 0.3 and about 50 GeV/c at atmospheric depths between 13 and 960 g/cm^2. We compare our measurements with other recent data and with Monte Carlo calculations of the same type as those used in predicting atmospheric neutrino fluxes. We find that our measured mu- fluxes are smaller than the predictions by as much as 70% at shallow atmospheric depths, by about 20% at the depth of shower maximum, and are in good agreement with the predictions at greater depths. We explore the consequences of this on the question of atmospheric neutrino production.

S. Coutu; J. J. Beatty; M. A. DuVernois; S. W. Barwick; E. Schneider; A. Bhattacharyya; C. R. Bower; J. A. Musser; A. Labrador; D. Muller; S. P. Swordy; E. Torbet; C. Chaput; S. McKee; G. Tarle; A. D. Tomasch; S. L. Nutter; G. A. deNolfo

2000-04-07T23:59:59.000Z

467

Atmospheric Concentrations of CO2 from Mauna Loa, Hawaii  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Concentrations of CO2 from Mauna Loa, Hawaii Atmospheric Concentrations of CO2 from Mauna Loa, Hawaii The graphs on this page are generated from data taken from "Trends in Carbon Dioxide" page on the Department of Commerce/National Oceanic and Atmospheric Administration (NOAA) website. The NOAA website presents monthly and weekly atmospheric CO2 concentrations measured at the Mauna Loa Observatory in Hawaii. It offers weekly and monthly data, additional graphs, analysis, descriptions of how the data are collected, and an animation of historical changes in atmospheric CO2. Mauna Loa constitutes the longest record of direct measurements of CO2 in the atmosphere. The measurents were started by C. David Keeling of the Scripps Institution of Oceanography in March of 1958. Recent Monthly Average CO2

468

FOAM: Fast Ocean Atmosphere Model | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

FOAM: Fast Ocean Atmosphere Model FOAM: Fast Ocean Atmosphere Model FOAM: Fast Ocean Atmosphere Model FOAM is a fully coupled, mixed-resolution, general circulation model designed for high-throughput (simulated years per day) while still providing a good simulated mean climate and simulated variability. FOAM uses the combination of a low resolution (R15) atmosphere model, a highly efficient medium-resolution ocean model, and distributed memory parallel processing to achieve high throughput on relatively modest numbers of processors (16-64). The quality of the simulated climate compares well with higher resolution models. No flux corrections are used. FOAM's intended purpose is to study long-term natural variability in the climate system. FOAM is also well suited for paleoclimate applications. FOAM is highly

469

Atmospheric Laser Communication  

Science Conference Proceedings (OSTI)

Atmospheric laser communication, often referred to as free-space optics (FSO) or free-space laser (FSL) communication, is similar to fiber optic cable in terms of carrier wavelength and bandwidth capability, but data are transmitted directly ...

Kenneth W. Fischer*Michael R. Witiw; Jeffrey A. Baars+; T. R. Oke

2004-05-01T23:59:59.000Z

470

Atmospheric Available Energy  

Science Conference Proceedings (OSTI)

The total potential energy of the atmosphere is the sum of its internal and gravitational energies. The portion of this total energy available to be converted into kinetic energy is determined relative to an isothermal, hydrostatic, equilibrium ...

Peter R. Bannon

2012-12-01T23:59:59.000Z

471

Atmospheric Neutrinos in the MINOS Far Detector  

Science Conference Proceedings (OSTI)

The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

Howcroft, Caius L.F.; /Cambridge U.

2004-12-01T23:59:59.000Z

472

Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part I: Methodology  

Science Conference Proceedings (OSTI)

Clouds and the Earth's Radiant Energy System (CERES) investigates the critical role that clouds and aerosols play in modulating the radiative energy flow within the Earth–atmosphere system. CERES builds upon the foundation laid by previous ...

Norman G. Loeb; Natividad Manalo-Smith; Seiji Kato; Walter F. Miller; Shashi K. Gupta; Patrick Minnis; Bruce A. Wielicki

2003-02-01T23:59:59.000Z

473

NOTES AND CORRESPONDENCE Tropical Atmospheric Variability Forced by Oceanic Internal Variability  

E-Print Network (OSTI)

to the equatorial heat budget because they not only move heat horizontally toward the equator (Hansen and Paul 1984 to the equatorial heat budget led to the hy- pothesis that a part of the observed interannual vari- ability in SST. Introduction This study is part of a series of studies aimed at quan- tifying the effect of tropical

Jochum, Markus

474

Compact range for variable-zone measurements  

DOE Patents (OSTI)

A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector. 2 figs.

Burnside, W.D.; Rudduck, R.C.; Yu, J.S.

1987-02-27T23:59:59.000Z

475

Compact range for variable-zone measurements  

DOE Patents (OSTI)

A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

Burnside, Walter D. (Columbus, OH); Rudduck, Roger C. (Columbus, OH); Yu, Jiunn S. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

476

Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets  

Science Conference Proceedings (OSTI)

Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2?3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute are captured. Influence functions, derived using a Lagrangian Particle Dispersion model driven by the CSU Regional Atmospheric Modeling System and nudged to NCEP reanalysis meteorological fields, are used to determine source regions for the towers. The influence functions are combined with satellite vegetation observations to interpret the observed trends in CO2 concentration. Full inversions will combine these elements in a more formal analytic framework.

Davis, K.J.; Richardson, S.J.; Miles, N.L.

2007-03-07T23:59:59.000Z

477

Radiosonde measurements of turbulence  

NLE Websites -- All DOE Office Websites (Extended Search)

at Cranwell, Lincolnshire, W. H. Pick and G. A. Bull, 1926. 3 Talk structure * Geomagnetic sensors to measure orientation * Orientation variability as a turbulence measure *...

478

THERMALLY DRIVEN ATMOSPHERIC ESCAPE  

Science Conference Proceedings (OSTI)

Accurately determining the escape rate from a planet's atmosphere is critical for determining its evolution. A large amount of Cassini data is now available for Titan's upper atmosphere and a wealth of data is expected within the next decade on escape from Pluto, Mars, and extra-solar planets. Escape can be driven by upward thermal conduction of energy deposited well below the exobase, as well as by nonthermal processes produced by energy deposited in the exobase region. Recent applications of a model for escape driven by upward thermal conduction, called the slow hydrodynamic escape model, have resulted in surprisingly large loss rates for the atmosphere of Titan, Saturn's largest moon. Based on a molecular kinetic simulation of the exobase region, these rates appear to be orders of magnitude too large. Therefore, the slow hydrodynamic model is evaluated here. It is shown that such a model cannot give a reliable description of the atmospheric temperature profile unless it is coupled to a molecular kinetic description of the exobase region. Therefore, the present escape rates for Titan and Pluto must be re-evaluated using the atmospheric model described here.

Johnson, Robert E., E-mail: rej@virginia.ed [Engineering Physics, Thornton Hall B102, University of Virginia, Charlottesville, VA 22902 (United States); Physics Department, New York University, New York, NY 10003 (United States)

2010-06-20T23:59:59.000Z

479

Strategic Environmental Research and Development Program: Atmospheric Remote Sensing and Assessment Program -- Final Report. Part 1: The lower atmosphere  

Science Conference Proceedings (OSTI)

This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns were undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.

Tooman, T.P. [ed.] [Sandia National Labs., Livermore, CA (United States). Exploratory Systems Technology Dept.

1997-01-01T23:59:59.000Z

480

Article Atmospheric Science  

NLE Websites -- All DOE Office Websites (Extended Search)

© The Author(s) 2012. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp © The Author(s) 2012. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp *Corresponding author (email: luchunsong110@gmail.com) Article Atmospheric Science February 2013 Vol.58 No.4-5: 545  551 doi: 10.1007/s11434-012-5556-6 A method for distinguishing and linking turbulent entrainment mixing and collision-coalescence in stratocumulus clouds LU ChunSong 1,2* , LIU YanGang 2 & NIU ShengJie 1 1 Key Laboratory for Atmospheric Physics and Environment of China Meteorological Administration, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2 Atmospheric Sciences Division, Brookhaven National Laboratory, New York 11973, USA

Note: This page contains sample records for the topic "measurement variable atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

BNL | Atmospheric Systems Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric System Research is a DOE observation-based research program Atmospheric System Research is a DOE observation-based research program created to advance process-level understanding of the key interactions among aerosols, clouds, precipitation, radiation, dynamics, and thermodynamics, with the ultimate goal of reducing the uncertainty in global and regional climate simulations and projections. General areas of research at BNL under this program include studies of aerosol and cloud lifecycles, and cloud-aerosol-precipitation interactions. Contact Robert McGraw, 631.344.3086 aerosols Aerosol Life Cycle The strategic focus of the Aerosol Life Cycle research is observation-based process science-examining the properties and evolution of atmospheric aerosols. Observations come from both long-term studies conducted by the

482

Atmospheric Radiation Measurement (ARM) Data from ARM's Specific Measurement Categories  

DOE Data Explorer (OSTI)

The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

483

Heat Budget of Tropical Ocean and Atmosphere  

Science Conference Proceedings (OSTI)

Heat budget estimates for the global tropics are derived from recent calculations of the oceanic heat budget and satellite measurements of net radiation at the top of the atmosphere. Annual mean heat export from the zone 30°N–30°S amounts to 101 ...

Stefan Hastenrath

1980-02-01T23:59:59.000Z

484

Simulation of El Niño-Southern Oscillation-like Variability in a Global AOGCM and its Response to CO2 Increase  

Science Conference Proceedings (OSTI)

A 75-year integration of a coupled atmosphere–ocean model is examined for tropical interannual variability. The atmospheric model has interactive cloud and a seasonal cycle. The fluxes of heat and salinity into the ocean component of the model ...

Simon Tett

1995-06-01T23:59:59.000Z

485

Precomputed atmospheric scattering  

Science Conference Proceedings (OSTI)

We present a new and accurate method to render the atmosphere in real time from any viewpoint from ground level to outer space, while taking Rayleigh and Mie multiple scattering into account. Our method reproduces many effects of the scattering of light, ...

Eric Bruneton; Fabrice Neyret

2008-06-01T23:59:59.000Z

486

Generalized Inversion of Tropical Atmosphere–Ocean Data and a Coupled Model of the Tropical Pacific  

Science Conference Proceedings (OSTI)

It is hypothesized that the circulation of the tropical Pacific Ocean and atmosphere satisfies the equations of a simple coupled model to within errors having specified covariances, and that the Tropical Atmosphere–Ocean array (TAO) measures the ...

Andrew F. Bennett; Boon S. Chua; D. Ed Harrison; Michael J. McPhaden

1998-07-01T23:59:59.000Z

487

A Study of the Incoming Longwave Atmospheric Radiation from a Clear Sky  

Science Conference Proceedings (OSTI)

A band model for atmospheric absorption is used to calculate the incoming longwave atmospheric radiative flux for some typical clear sky conditions. The sky radiation is also measured using a specially-designed calorimetric apparatus over a wide ...

J. W. Ramsey; H. D. Chiang; R. J. Goldstein

1982-04-01T23:59:59.000Z

488

Error Structure and Atmospheric Temperature Trends in Observations from the Microwave Sounding Unit  

Science Conference Proceedings (OSTI)

The Microwave Sounding Unit (MSU) onboard the National Oceanic and Atmospheric Administration polar-orbiting satellites measures the atmospheric temperature from the surface to the lower stratosphere under all weather conditions, excluding ...

Cheng-Zhi Zou; Mei Gao; Mitchell D. Goldberg

2009-04-01T23:59:59.000Z

489

A time-varying subsidence parameterization for the atmospheric boundary layer  

E-Print Network (OSTI)

This study examines the effect of a time-varying parameterization for subsidence in the atmospheric boundary layer (ABL) on a one-dimensional coupled land-atmosphere model. Measurements of large-scale divergence in the ABL ...

Flagg, David D. (David Douglas)

2005-01-01T23:59:59.000Z

490

Viable alternative for conducting cost-effective daily atmospheric soundings in developing countries  

Science Conference Proceedings (OSTI)

Radiosonde-collected data are of vital importance to a wide variety of studies that aim at understanding the interaction between land-surface and the atmosphere, amongst others. However, atmospheric measurements in developing countries, some of which ...

Thomas Lafon; Jennifer Fowler; John Fredy Jiménez; Gabriel Jaime Tamayo Cordoba

491

A New Bruker IFS 125HR FTIR Spectrometer for the Polar Environment Atmospheric Research Laboratory at Eureka, Nunavut, Canada: Measurements and Comparison with the Existing Bomem DA8 Spectrometer  

Science Conference Proceedings (OSTI)

A new Bruker IFS 125HR Fourier transform spectrometer has been installed at the Polar Environment Atmospheric Research Laboratory at Eureka, Nunavut, Canada (80.05°N, 86.42°W). This instrument will become the Network for the Detection of ...

Rebecca L. Batchelor; Kimberly Strong; Rodica Lindenmaier; Richard L. Mittermeier; Hans Fast; James R. Drummond; Pierre F. Fogal

2009-07-01T23:59:59.000Z

492

An Investigation of Terrain Effects on the Mesoscale Spectrum of Atmospheric Motions  

Science Conference Proceedings (OSTI)

Wind and temperature data collected on commercial aircraft during the Global Atmospheric Sampling Program (GASP) are used to investigate the effects of underlying terrain on mesoscale variability, and the observational results are interpreted ...

G. D. Nastrom; D. C. Fritts; K. S. Gage

1987-10-01T23:59:59.000Z

493

On the Annual Cycle of the Tropical Pacific Atmosphere and Ocean  

Science Conference Proceedings (OSTI)

The annual cycle in sea surface temperature (SST), surface wind and other atmospheric variables in the tropical Pacific are described. The primary data sets of SST and surface wind are derived from ship observations in the Pacific between 29°N ...

John D. Horel

1982-12-01T23:59:59.000Z

494

Vertical Transports by Plumes within the Moderately Convective Marine Atmospheric Surface Layer  

Science Conference Proceedings (OSTI)

Bursts in the kinematic vertical transports of heat and horizontal momentum in a moderately convective marine atmospheric surface layer are studied by applying the variable interval time averaging (VITA) detection method to principal components ...

Richard A. Mason; Hampton N. Shirer; Robert Wells; George S. Young

2002-04-01T23:59:59.000Z

495

The Regional Atmospheric Water Budget over Southwestern Germany under Different Synoptic Conditions  

Science Conference Proceedings (OSTI)

This study addresses the question of how complex topography in a low-mountain region affects the partitioning and the variability of the atmospheric water budget components (WBCs) as a function of synoptic-scale flow conditions. The WBCs are ...

Romi Sasse; Gerd Schädler; Christoph Kottmeier

2013-02-01T23:59:59.000Z

496

Characterization of Turbulent Latent and Sensible Heat Flux Exchange between the Atmosphere and Ocean in MERRA  

Science Conference Proceedings (OSTI)

Turbulent fluxes of heat and moisture across the atmosphere–ocean interface are fundamental components of the earth’s energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and ...

J. Brent Roberts; Franklin R. Robertson; Carol A. Clayson; Michael G. Bosilovich

2012-02-01T23:59:59.000Z

497

Extreme Cold Winter Temperatures in Europe under the Influence of North Atlantic Atmospheric Blocking  

Science Conference Proceedings (OSTI)

North Atlantic atmospheric blocking conditions explain part of the winter climate variability in Europe, being associated with anomalous cold winter temperatures. In this study, the generalized extreme value (GEV) distribution is fitted to monthly ...

Jana Sillmann; Mischa Croci-Maspoli; Malaak Kallache; Richard W. Katz

2011-11-01T23:59:59.000Z

498

January and July Global Distributions of Atmospheric Heating for 1986, 1987, and 1988  

Science Conference Proceedings (OSTI)

Three-dimensional global distributions of atmospheric heating are estimated for January and July of the 3-year period 1986–88 from the ECMWF/TOGA assimilated datasets. Emphasis is placed on the interseasonal and interannual variability of heating ...

Todd K. Schaack; Donald R. Johnson

1994-08-01T23:59:59.000Z

499

The Monsoon as a Selfregulating Coupled OceanAtmosphere System  

E-Print Network (OSTI)

DRAFT The Monsoon as a Self­regulating Coupled Ocean­Atmosphere System Peter J. Webster 1 Observational studies have shown that the Asian­Australasian monsoon system exhibits variability over a wide, the South Asian monsoon (at least as described by Indian precipitation) exhibits a smaller range

Webster, Peter J.

500

Tropical Convective Variability as 1/f Noise  

Science Conference Proceedings (OSTI)

Evidence is presented that the tropical convective variability behaves as 1/f noise for a 1–30-day period. This behavior is shown by analyzing the time series of convective available potential energy, which measures the degree of convective ...

Jun-Ichi Yano; Klaus Fraedrich; Richard Blender

2001-09-01T23:59:59.000Z