Powered by Deep Web Technologies
Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Science Plan for the Atmospheric Radiation Measurement Program (ARM)  

SciTech Connect (OSTI)

The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE`s programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols.

NONE

1996-02-01T23:59:59.000Z

2

ARM - ARM Science Board  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility Expansion Workshop (PDF, 1.46MB) Facility Activities ARM and the Recovery Act Contributions to International Polar Year Comments? We would love to hear...

3

ARM Science Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ER-ARM-0402 ER-ARM-0402 Atmospheric Radiation Measurement Program Science Plan Current Status and Future Directions of the ARM Science Program Thomas P. Ackerman, Lead Author Anthony D. Del Genio Gregory M. McFarquhar Robert G. Ellingson Peter J. Lamb Richard A. Ferrare Charles N. Long Steve A. Klein Johannes Verlinde October 2004 United States Department of Energy Office of Science, Office of Biological and Environmental Research Executive Summary The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative

4

Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting  

SciTech Connect (OSTI)

This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately.

Not Available

1994-03-01T23:59:59.000Z

5

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Measurement (ARM) Science Team Meeting The Unmanned Aerospace Vehicle (UAV) Program conducted an ARM Enhanced Shortwave Experiment (ARESE) II Intensive...

6

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at the ARM Southern Great Plains Iziomon, M.G. and Lohmann, U., Dalhousie University, Canada Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Hansen et...

7

ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Integrated Column Description An Integrated Column Description of the Atmosphere An Integrated Column Description of the Atmosphere Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Pacific Northwest National Laboratory Pacific Northwest National Laboratory The "other" Washington ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Credits to Credits to * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science team * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science team ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Outline Outline * A little philosophy

8

ARM - 2000 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 ARM Science Team Meeting 0 ARM Science Team Meeting 2000 Meeting 2000 Meeting Home Proceedings Sorted by Author Proceedings Sorted by Title Meeting Archives ARM Science Team Meeting Proceedings Past Science Team Meetings 2000 ARM Science Team Meeting March 13 - 17 | San Antonio, Texas | St. Anthony Hotel & The Municipal Auditorium St. Anthony Hotel provided rooms along with the Municipal Auditorium for the 2000 ARM Science Team Meeting. St. Anthony Hotel provided rooms along with the Municipal Auditorium for the 2000 ARM Science Team Meeting. The tenth ARM Science Team Meeting was held in San Antonio, Texas. The Science Team Meetings were intended to provide opportunities to share scientific findings, focused technical exchanges, and collectively examine the implementation and operation of ARM.

9

ARM - 1993 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Past Science Team Meetings 1993 ARM Science Team Meeting March 1 - 4 | Norman, Oklahoma | Norman, Oklahoma, is the home of the National Weather Service. Norman, Oklahoma, is...

10

ARM - 1997 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 ARM Science Team Meeting 7 ARM Science Team Meeting 1997 Meeting 1997 Meeting Home Proceedings Sorted by Author Proceedings Sorted by Title Meeting Archives ARM Science Team Meeting Proceedings Past Science Team Meetings 1997 ARM Science Team Meeting March 3 -7 | San Antonio, Texas | St. Anthony Hotel & Municipal Auditorium The St. Anthony Hotel as well as the Municipal Auditorium and Conference Center provided rooms and meeting space. The St. Anthony Hotel as well as the Municipal Auditorium and Conference Center provided rooms and meeting space. The seventh ARM Science Team Meeting was held in San Antonio, Texas. This year the ARM Science Team Meeting and the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP) science team meetings were held jointly. The Science Team Meetings were intended to provide opportunities

11

ARM - Measurements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurement Instrument Sponsor Aircraft State PositionVelocity @ 10Hz Trimble DSM(tm) AAF PitchRollAzimuth Trimble Advanced Navigation System (TANS)10Hz AAF...

12

Proceedings of the Sixteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting  

SciTech Connect (OSTI)

The ARM Program holds an annual science team meeting each spring. ARM Science Team members, members of the infrastructure, and selected individuals outside the ARM Program are invited to attend the meeting and present posters and formal presentations to share research results. These results are published electronically in the meeting proceedings.

JW Voyles

2006-09-30T23:59:59.000Z

13

ARM - Publications: Science Team Meeting Documents: Measurements of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurements of atmospheric water vapor over the oceans Measurements of atmospheric water vapor over the oceans Szczodrak, Malgorzata University of Miami Minnett, Peter University of Miami Feltz, Wayne University of Wisconsin Atmospheric water vapor is an important part of the Earth's hydrological cycle and plays a crucial role in many aspects of the climate system. The main source of the atmospheric moisture are the oceans, but the information we have about the distribution of atmospheric water vapor over the oceans is based on a relatively sparse distribution of radiosonde profiles, or on satellite-based measurements from microwave radiometers. The Marine-Atmosphere Emitted Radiance Interferometer (M-AERI) is a sea-going instrument that measures spectra of atmospheric infrared emission with ~10 minute temporal resolution. These spectra can be used to retrieve profiles

14

ARM - Measurement - Lightning stroke  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsLightning stroke ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement :...

15

ARM - 2007 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Award-Winning Posters Presentations Cover Competition Winners Meeting Archives ARM Science Team Meeting...

16

ARM - 2008 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Award-Winning Posters Presentations Cover Competition Winners Meeting Archives ARM Science Team Meeting...

17

ARM - 1996 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 ARM Science Team Meeting 6 ARM Science Team Meeting 1996 Meeting 1996 Meeting Home Proceedings Sorted by Author Proceedings Sorted by Title Meeting Archives ARM Science Team Meeting Proceedings Past Science Team Meetings 1996 ARM Science Team Meeting March 4 - 7 | San Antonio, Texas | Municipal Auditorium The St. Anthony Hotel, as well as the Municipal Auditorium and Conference Center, provided rooms and meeting space. The St. Anthony Hotel, as well as the Municipal Auditorium and Conference Center, provided rooms and meeting space. The fifth ARM Science Team Meeting was held in San Antonio, Texas, at the Municipal Auditorium and Conference Center. The Science Team Meetings were intended to provide opportunities to share scientific findings, focused technical exchanges, and collectively examine the implementation and

18

ARM - 2006 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting Meeting 2006 Meeting 2006 Meeting Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Posters Presentations Meeting Archives ARM Science Team Meeting Proceedings Past Science Team Meetings 2006 ARM Science Team Meeting March 27-18 | Albuquerque, New Mexico | Hyatt Regency Albuquerque The Hyatt Regency - Albequerque The Hyatt Regency - Albequerque Meeting Highlights Just over 300 ARM scientists and ACRF infrastructure staff took part in the 16th ARM Science Team meeting held in Albuquerque, New Mexico, on March 27-31, 2006. After an initial day of focused meetings among the ARM Working Groups, Dr. David Thomassen, Acting Associate Director of DOE's Office of Biological and Environmental Research (BER), opened the meeting's plenary session with remarks about the role of ARM within the DOE, and its

19

ARM - SGP Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Science SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Science Overall Objectives The primary goal of the Southern Great Plains (SGP) site is to produce data adequate to support significant research addressing the objectives of the overall ARM Climate Research Facility. These overall objectives, as paraphrased from the ARM Program Plan (DOE 1990), are the following: to describe the radiative energy flux profile of the clear and cloudy atmosphere to understand the processes determining the flux profile

20

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Satellite Data Link on the ARM-UAV Payload McCoy, R.F, Tooman, T.T., and Bolton, W.B., Sandia National Laboratories Thirteenth Atmospheric Radiation Measurement (ARM) Science Team...

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Dataset of the Evaluation of Large-Scale Models Using ARM Data at Manus and Nauru Jakob, C. and May, P.T., BMRC Thirteenth Atmospheric Radiation Measurement (ARM) Science Team...

22

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Measurement (ARM) Science Team Meeting Data collected during the SHEBA (Surface Heat Budget of the Arctic Ocean) field experiment and at the Barrow ARM site are used to...

23

ARM - Key Science Questions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govScienceKey Science Questions govScienceKey Science Questions Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings User Meetings Annual Meetings of the Atmospheric System Research (ASR) Science Team and Fall Working Groups Accomplishments Read about the 20 years of accomplishments (PDF, 696KB) from the ARM Program and user facility. Performance Metrics ASR Metrics 2009 2008 2007 2006 Key Science Questions The role of clouds and water vapor in climate change is not well understood; yet water vapor is the largest greenhouse gas and directly affects cloud cover and the propagation of radiant energy. In fact, there may be positive feedback between water vapor and other greenhouse gases. Carbon dioxide and other gases from human activities slightly warm the

24

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Event During the International H2O Project (IHOP 2002) Tanamachi, R.L., University of Oklahoma, School of Meteorology Fourteenth Atmospheric Radiation Measurement (ARM) Science...

25

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A.A., and Emilenko, A.S., A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Regular...

26

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A High-Altitude Cloud Climatology From Satellite Data Hobbs, R. and Rusk, D.J., Aeromet, Inc. Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Tenuous,...

27

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meteorological Operations Rusk, D.J., Aeromet, Inc. Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting It is highly desirable to use cloud radar data in...

28

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Continued Evaluation of the Microwave Radiometer Profiler Liljegren, J.C., Argonne National Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Final...

29

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Analysis of Surface Heat Budget of the Arctic Ocean (SHEBA) data has identified three distinct, preferred...

30

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Intercomparison of 3D Radiation Codes (I3RC) Cahalan, R.F., NASAGoddard Space Flight Center Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting...

31

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for an Evolving Tropical Cloud System Barker, H.W., Atmospheric Environment Service of Canada; Fu, Q., Dalhousie University Ninth Atmospheric Radiation Measurement (ARM) Science...

32

ARM - Science Team Meeting Proceedings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Science Team Meeting Proceedings Science Team Meeting Proceedings Note: For proper viewing,...

33

ARM - Measurement - Cloud size  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud size Information about the physical dimensions of a cloud, including such measurements...

34

ARM - Measurement - Vertical velocity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsVertical velocity govMeasurementsVertical velocity ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Vertical velocity The component of the velocity vector, along the local vertical. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System KAZR : Ka ARM Zenith Radar MMCR : Millimeter Wavelength Cloud Radar SODAR : Mini Sound Detection and Ranging

35

ARM - TWP Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PacificTWP Science PacificTWP Science TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts TWP Science New VSAT dish installed in the Tropical Western Pacific. New VSAT dish installed in the Tropical Western Pacific. The following are the basic science goals of the TWP component of the ARM Climate Research Facility: Determine the magnitude of the surface radiation budget terms and determine their spatial and temporal variability. Identify bulk and optical properties of clouds in the TWP and how these properties affect the radiation budget. Understand the linkages among sea surface temperature,

36

ARM - Measurement - Cloud fraction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud fraction Fraction of sky covered by clouds, observed directly or derived from SW...

37

ARM - Measurement - Radar polarization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

polarization polarization ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radar polarization The temporal and geometric behavior of the electric field vector of an electromagnetic wave transmitted or received by a radar system, e.g. elliptical polarization, differential reflectivity, phase shift, co-polar correlation coefficient, linear depolarization ratio. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CSAPR : C-Band ARM Precipitation Radar

38

ARM - Measurement - Soil moisture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

moisture moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil moisture The moisture of the soil measured near the surface. This includes soil wetness and soil water potential. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AMC : Ameriflux Measurement Component CO2FLX : Carbon Dioxide Flux Measurement Systems SOIL : Soil Measurement from the SGP SWATS : Soil Water and Temperature System SEBS : Surface Energy Balance System

39

ARM - Measurement - Horizontal wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsHorizontal wind govMeasurementsHorizontal wind ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Horizontal wind The horizontal wind in terms of either speed and direction, or the zonal (u) and meridional (v) components. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System DISDROMETER : Impact Disdrometer

40

ARM - Measurement - Precipitation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsPrecipitation govMeasurementsPrecipitation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Precipitation All liquid or solid phase aqueous particles that originate in the atmosphere and fall to the earth's surface. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems DISDROMETER : Impact Disdrometer LDIS : Laser Disdrometer MWRHF : Microwave Radiometer - High Frequency

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ARM - Measurement - Virtual temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsVirtual temperature govMeasurementsVirtual temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Virtual temperature The virtual temperature Tv = T(1 + rv/{epsilon}), where rv is the mixing ratio, and {epsilon} is the ratio of the gas constants of air and water vapor ( 0.622). Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems MWRP : Microwave Radiometer Profiler RWP : Radar Wind Profiler

42

ARM - Measurement - Hygroscopic growth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsHygroscopic growth govMeasurementsHygroscopic growth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hygroscopic growth The rate that aerosol particles grow at relative humidity values less than 100 percent. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System SMPS : Scanning mobility particle sizer TDMA : Tandem Differential Mobility Analyzer Field Campaign Instruments AOS : Aerosol Observing System

43

ARM - Measurement - Isotope ratio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsIsotope ratio govMeasurementsIsotope ratio ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Isotope ratio Ratio of stable isotope concentrations. Categories Atmospheric Carbon, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes Field Campaign Instruments FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes Datastreams FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes

44

ARM - Measurement - Backscattered radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsBackscattered radiation govMeasurementsBackscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights)

45

ARM - Measurement - Atmospheric turbulence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

turbulence turbulence ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric turbulence High frequency velocity fluctuations that lead to turbulent transport of momentum, heat, mositure, and passive scalars, and often expressed in terms of variances and covariances. Categories Atmospheric State, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

46

ARM - Measurement - Atmospheric pressure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pressure pressure ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric pressure The pressure exerted by the atmosphere as a consequence of gravitational attraction exerted upon the "column" of air lying directly above the point in question. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

47

ARM - Measurement - Atmospheric temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

48

ARM - Measurement - Hydrometeor size  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

size size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor size The size of a hydrometeor, measured directly or derived from other measurements . Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments DISDROMETER : Impact Disdrometer LDIS : Laser Disdrometer External Instruments CPOL : C-Band Polarimetric Radar Field Campaign Instruments EC-CONVAIR580-BULK : Environment Canada Convair 580 Bulk Parameters

49

ARM - Measurement - Atmospheric moisture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

moisture moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric moisture The moisture content of the air as indicated by several measurements including relative humidity, specific humidity, dewpoint, vapor pressure, water vapor mixing ratio, and water vapor density; note that precipitable water is a separate type. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer

50

ARM - Measurement - Aerosol concentration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

concentration concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol concentration A measure of the amount of aerosol particles (e.g. number, mass, volume) per unit volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer CPC : Condensation Particle Counter IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights) TDMA : Tandem Differential Mobility Analyzer

51

ARM - Measurement - Aerosol absorption  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

absorption absorption ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol absorption The process in which radiation energy is retained by aerosols. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights) PSAP : Particle Soot Absorption Photometer PASS : Photoacoustic Soot Spectrometer External Instruments OMI : Ozone Monitoring Instrument

52

ARM - Measurement - Cloud extinction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

extinction extinction ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud extinction The removal of radiant energy from an incident beam by the process of cloud absorption and/or scattering. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments NEPHELOMETER : Nephelometer Field Campaign Instruments CEP : Cloud Extinction Probe CLDAEROSMICRO : Cloud and Aerosol Microphysical Properties EC-CONVAIR580-BULK : Environment Canada Convair 580 Bulk Parameters

53

ARM - Measurement - Surface condition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

condition condition ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface condition State of the surface, including vegetation, land use, surface type, roughness, and such; often provided in model output. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments NAV : Navigational Location and Attitude SURFLOG : SGP Surface Conditions Observations by Site Technicians S-TABLE : Stabilized Platform MET : Surface Meteorological Instrumentation

54

ARM - Measurement - Surface albedo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

albedo albedo ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface albedo The fraction of incoming solar radiation at a surface (i.e. land, cloud top) that is effectively reflected by that surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFR : Multifilter Radiometer External Instruments ETA : Eta Model Runs ECMWFDIAG : European Centre for Medium Range Weather Forecasts Diagnostic Analyses ECMWF : European Centre for Medium Range Weather Forecasts Model

55

Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program  

SciTech Connect (OSTI)

The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

SA Edgerton; LR Roeder

2008-09-30T23:59:59.000Z

56

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Instrumentation for the AMR-UAV Payload McCoy, R.F., Tooman, T.T., and Bolton, W.B., Sandia National Laboratories Thirteenth Atmospheric Radiation Measurement (ARM) Science Team...

57

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of MODIS Cloud Mask Products (MOD35) with MMCR Data Zhang, Q. and Mace, G.G., University of Utah Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting...

58

ARM - Measurement - Advective tendency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsAdvective tendency govMeasurementsAdvective tendency ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Advective tendency The large-scale advective tendency of temperature and moisture used to force SCMs and CSRMs, derived from constrained variational analysis. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments ECMWFDIAG : European Centre for Medium Range Weather Forecasts Diagnostic Analyses ECMWF : European Centre for Medium Range Weather Forecasts Model

59

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Terra Aerosol and Water Vapor Measurements Using ARM SGP Data Evaluation of Terra Aerosol and Water Vapor Measurements Using ARM SGP Data Ferrare, R.A.(a), Brasseur, L.H.(b), Clayton, M.B.(b), Turner, D.D.(c), Remer, L.(d), and Gao, B.C.(e), NASA Langley (a), SAIC (b), Pacific Northwest National Laboratory (c), NASA Goddard (d), Naval Research Laboratory (e) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Measurements from the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are used to evaluate atmospheric measurements derived from NASA's Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) sensors on board the Terra satellite. MODIS and MISR AOT retrievals are evaluated using ARM SGP Cimel Sun photometer and MultiFilter Rotating

60

ARM - Measurement - Hydrometeor image  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

image image ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor image Images of hydrometeors from which one can derive characteristics such as size and shape. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments LEARJET : Lear Jet PARTIMG : Particle imager UAV-PROTEUS-MICRO : Proteus Cloud Microphysics Instruments SPEC-CPI : Stratton Park Engineering Company - Cloud particle imager UAV-PROTEUS : UAV Proteus

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

ARM - Measurement - Hydrometeor phase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

phase phase ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor phase Hydrometeor phase such as liquid ice or mixed phase Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Value-Added Products VISST : Minnis Cloud Products Using Visst Algorithm (Process) VISSTPX04G08V2MINNIS : VISST-derived pixel-level products from satellite GOES8, version 2 VISSTPX04G08V3MINNIS : VISST-derived pixel-level products from satellite GOES8, version 3

62

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterizing and Filling Temporal and Spatial Gaps in Time-Aggregated ARM Characterizing and Filling Temporal and Spatial Gaps in Time-Aggregated ARM Measurements for Use in Carbon Models Hargrove, W.W.(a), Brandt, C.C.(a), Jager, H.I.(a), Hanan, N.(b), and McCord, R.A.(a), Oak Ridge National Laboratory (ORNL)(a), Natural Resource Ecology Laboratory (NREL)(b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Data gaps limit the use of ARM data as input for simulation models. Because the ARM program records actual measurements, circumstances unavoidably arise when instrument and storage failures create gaps in the temporal stream of measurements. Most temporal gaps are short in duration and affect only one or a few related parameters. However, some rare failures, such as wide-area power outages or ice storms, occasionally affect many measurement

63

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Initial Measurements from the Compact Millimeter-Wave Radar Initial Measurements from the Compact Millimeter-Wave Radar Roman-Nieves, J.(a), Sekelsky, S.M.(a), Tooman, T.T.(b), and Bolton, W.B.(b), University of Massachusetts at Amherst (a), Sandia National Laboratories (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The University of Massachusetts at Amherst has developed a solid state compact 95 GHz millimeter-wave radar (CMR) for the ARM Unmanned Aerospace Vehicle (UAV) program. CMR has recently flown in ARM-UAV sponsored engineering flights and a cirrus science mission flying aboard the NASA Proteus aircraft. This poster presents the final CMR hardware configuration and results from ground-based and airborne engineering measurements. In addition we show airborne measurements form from the ARM-UAV 2002 Cirrus

64

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud and Radiative Properties Derived Over the ARM NSA Domain From AVHRR Cloud and Radiative Properties Derived Over the ARM NSA Domain From AVHRR Data Heck, P.W., Nguyen, L., Smith, W. L., Jr., Ayers, J.K., Doelling, D.R., and Spangenberg, D.A., Analytical Services and Materials, Inc.; Minnis, P., and Young, D.F., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurement (ARM) Program's polar sites on the North Slope of Alaska (NSA) measure time series of various atmospheric, cloud and radiative properties over a few selected areas. Satellite data are needed to provide measurements of similar properties between the sites and to estimate the radiation budget at the top of the atmosphere. Over the other ARM sites in the central United States and the Pacific, geostationary

65

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Retrieval Of Cloud Liquid Water Path For ARM Microwave Improved Retrieval Of Cloud Liquid Water Path For ARM Microwave Radiometers Liljegren, J.C., Ames Laboratory Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurement (ARM) Program has deployed dual-frequency microwave water radiometers (MWRs) at its Cloud and Radiation Testbed (CART) sites in the U. S. Southern Great Plains (SGP), the Tropical Western Pacific (TWP), and the North Slope of Alaska/Adjacent Arctic Ocean (NSA/AAO). Although the integrated water vapor amount provided by these instruments has enjoyed increasing application, the primary purpose of these instruments has been to provide measurements of the integrated liquid water path in clouds. The liquid water path measurements have been widely used by ARM investigators to test cloud life cycle

66

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Science Team Meeting 8 Science Team Meeting 1998 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1998, March 1998 Tucson, Arizona For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). History and Status of the ARM Program - March 1998 Session Papers A Cloud Climatology of the ARM CART Site S.M. Lazarus, S.K. Krueger, and G.G. Mace A Combination of the Separation of Variable and the T-Matrix Method for Computing Optical Properties of Spheroidal Particles*

67

ARM - Measurement - Hydrometeor optical properties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

optical properties ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor...

68

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Simulated Clouds in the Community Atmospheric Model (CAM2): Evaluation of Simulated Clouds in the Community Atmospheric Model (CAM2): Over the Globe and at the ARM Site Zhang, M.H.(a) and Lin, W.Y.(a), Stony Brook University Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting We first compare seasonal climatology of the global distribution of ISCCP-type clouds in the NCAR CAM2 with observations from ISCCP. Model deficiencies in simulated clouds are highlighted. Model capability of simulating the observed response of different cloud types to ENSO is also discussed. We then use ARM cloud measurements at the ARM SGP to compare with the CAM cloud statistics at the same site. It is shown that several model deficiencies in the global cloud distribution are also present at the ARM site. Relevance of these model deficiencies to the interpretation of

69

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using ARM Measurements to Evaluate and Improve the Turbulent Boundary-Layer Using ARM Measurements to Evaluate and Improve the Turbulent Boundary-Layer Parameterization in the CCM Zhang, M.H. (a) and Yu, R.C. (a), State University of New York(a) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Three-Dimensional advective tendencies at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) site, together with diurnal variation of the clear-sky boundary layer atmosphere temperature and moisture, are used to study the down-gradient and "non-local" turbulent transport of heat and moisture in the atmospheric boundary layer. The observational results are then used to evaluate the boundary layer parameterization in the National Center for Atmospheric Research (NCAR) CCM3. It is found that the down-gradient turbulent transport in the CCM3 is

70

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GPS Measured Water Vapor Variability at the ARM SGP CF GPS Measured Water Vapor Variability at the ARM SGP CF Braun, J. (a), Rocken, C. (a), and Schmid, B. (b), UCAR (a), BAER (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Ground based Global Positioning System (GPS) stations can measure precipitable water vapor (PWV) and slant water vapor (SWV). SWV is the integrated amount of water vapor along the slant path from the GPS transmitter to the station. The ARM program has sponsored the University Corporation for Atmospheric Research (UCAR) to install and operate a network of single frequency GPS receivers at the Southern Great Plains (SGP) Central Facility (CF). Fourteen stations were installed in 1999, and an additional nine stations in 2000. The entire network covers approximately 40 square kilometers roughly centered around the SGP CF. This

71

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Overview of Water Vapor IOP (WVIOP) 2000 and ARM/FIRE Water Vapor An Overview of Water Vapor IOP (WVIOP) 2000 and ARM/FIRE Water Vapor EXperiment (AFWEX) Tobin, D., Revercomb, H., and Turner, D.D., University of Wisconsin-Madison Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting WVIOP 2000 and AFWEX, two field experiments with focus on the accuracy of ARM water vapor measurements, have recently been conducted. WVIOP 2000, the third in a series of WVIOPs which have studied the accuracy of lower tropospheric water vapor measurements, ran from 18 September to 8 October 2000 and consisted of ground based operations primarily out of the SGP central facility. AFWEX was an interagency experiment with the primary goal of assessing the accuracy of upper level (~8-12 km) water vapor measurements. It was conducted from 27 November to 15 December 2000 and

72

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Radiosonde Humidity Measurements and Proposed Corrections ARM Radiosonde Humidity Measurements and Proposed Corrections Based On AWEX Radiosonde Intercomparisons Miloshevich, L.M.(a), Lesht, B.M.(b), and Voemel, H.(c), National Center for Atmospheric Research (a), Argonne National Laboratory (b), NOAA/CMDL (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM radiosonde relative humidity (RH) measurements are widely used in numerical modeling, remote sensor validation, and radiative transfer calculations, yet their accuracy as a function of temperature and RH has not been adequately quantified. During the AIRS Water vapor EXperiment (AWEX) at the SGP site in November 2003, 34 launches of multiple radiosondes on the same balloon were conducted, including 12 soundings from the University of Colorado's Cryogenic Frostpoint Hygrometer (CFH). The

73

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Three-Dimensional Radiative Transfer Computations to Complement the ARM Three-Dimensional Radiative Transfer Computations to Complement the ARM Broadband Heating Rate Profile (BBHRP) Value Added Product (VAP) OHirok, W.(a), Gautier, C.(a), and Miller, M.A.(b), University of California, Santa Barbara (a), Brookhaven National Laboratory (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A core programmatic goal of ARM is to understand how cloud variability is associated with radiative flux variability. A major effort among the ARM working groups is now underway to produce the Broadband Heating Rate Profile (BBHRP) Value Added Product (VAP). The heating rate profiles are derived from Rapid Radiative Transfer Models (RRTMs) that use best estimates of cloud characteristics, gaseous profiles, aerosols and surface

74

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physical Retrieval of PWV and CLW with MonoRTM Using ARM MWR Data Physical Retrieval of PWV and CLW with MonoRTM Using ARM MWR Data Clough, S.A.(a), Cady-Pereira, K.(a), Boukabara, S.(a), and Liljegren, J.C.(b), Atmospheric and Environmental Research, Inc. (a), Argonne National Laboratory (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The newly developed radiative transfer model, MonoRTM, has been utilized as the forward model in a physical retrieval method to obtain Precipitable Water Vapor (PWV) and Cloud Liquid Water (CLW) using ARM MWR data. The dependence of the forward model on water vapor and oxygen has been carefully analyzed in the context of the ARM dataset covering a three-year period from 1996 to 1998. A detailed error analysis for the forward model brightness temperatures at 23.8 GHz and 31.4 GHz has been has been

75

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparisons of a Cloud Resolving Model and ARM Data Comparisons of a Cloud Resolving Model and ARM Data Posselt, D., Mecikalski, J., Tanamachi, R., Feltz, W.F., Turner, D.D., Tobin, D., Knuteson, R.O., and Revercomb, H.E., University of Wisconsin - Madison Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting CIMSS/SSEC at the University of Wisconsin is currently running version 3.5 of the PSU/NCAR MM5 once per day at a resolution of 4 km over the ARM CART site domain. Simulations are performed using a sophisticated cloud-resolving microphysics scheme (Reisner 1998) and a radiative parameterization based on RRTM (Mlawer 1997). With selection of appropriate case studies, comparisons of the model output to ARM data can be used to evaluate the model's ability to reproduce boundary-layer thermal and

76

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM External Data: Recent Developments and Future Plans ARM External Data: Recent Developments and Future Plans Wagener, R., Gregory, L., Ma, L.L., and Cialella, A., Brookhaven National Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting This poster lists new datastreams collected and processed by the ARM External Data Center since the last update in 1999 (MOLTS, TOMS, 30 min OK Mesonet, CSPHOT, TWP AVHRR, ECMWF, RUC, TAO Buoy, IAP). We describe briefly the software tools employed in converting these data to netCDF files, because data-users might find them helpful in dealing with the raw files themselves (GrADS, IDL, Perl). The priorities for future data acquisitions and ingests are set by consensus of the Science Working Groups. The current high priority new collections include: Suominet GPS data, Darwin Radar and

77

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The ARM Blue/Green Period: 3-Channel Color Composites of GOES-8 Data The ARM Blue/Green Period: 3-Channel Color Composites of GOES-8 Data Wagener, R., and Gregory, L., Brookhaven National Laboratory, ARM External Data Center Konidaris, N., Carnegie Mellon University; Minnett, P.J., University of Miami, Rosenstiel School of Marine and Atmospheric Sciences Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Despite the title and the general appearance of the resulting images, this is not an attempt to emulate art nor an expression of anybody's mood. It is simply an attempt to condense as much information as possible about a day's worth of Geostationary Operational Environmental Satellite (GOES) data onto a single web page. A 24-bit red, green, blue (RGB) color composite is derived by assigning the reflectivity in the GOES-8 visible channel to red,

78

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Terra MODIS Aerosol and Water Vapor Measurements Using ARM Evaluation of Terra MODIS Aerosol and Water Vapor Measurements Using ARM SGP Data Ferrare, R.A. (a), Brasseur, L.H. (b), Turner, D.D. (c,d), Tooman, T.P. (e), Remer, L. (f), and Gao, B-C. (g), NASA Langley Research Center (a), Science Applications International Corporation/NASA/LaRC (b), Pacific Northwest National Laboratory (c), University of Wisconsin-Madison (d), Sandia National Laboratories (e), NASA Goddard Space Flight Center (f), Naval Research Laboratory (g) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting NASA's Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor on the Earth Observing System (EOS) Terra satellite platform has been measuring aerosol and water vapor parameters since February 2000. The MODIS aerosol

79

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrared Cloud Imager (ICI) Measurements of Cloud Statistics During the Infrared Cloud Imager (ICI) Measurements of Cloud Statistics During the 2003 Cloudiness Intercomparison Campaign Gregory, L., Wagener, R., Ma, L.L., and Cialella, A., Brookhaven National Laboratory Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The process of creating ARM data-streams from external data sources is described from identification of scientific need as determined by the science working groups to implementation and documentation, which involves ARM's task management tools: Engineering Change Request/Order, Baseline Change Request, Data Object Design/Birth of a Data Stream, eXternal Data Stream documentation. Pitfalls and typical delays are illustrated with recently completed data-stream ingests. Some procedural changes are

80

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diurnal Cycle of Cloud Microphysical Properties from GOES Over the ARM Diurnal Cycle of Cloud Microphysical Properties from GOES Over the ARM Southern Great Plains Minnis, P., and Young, D.F., National Aeronautics and Space Administration-Langley Research Center; Smith, W.L., Jr., and Heck, P.W., Analytical Services and Materials, Inc. Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud coverage, height and optical depth have been derived from the Geostationary Operational Environmental Satellite (GOES) data taken over the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) domain since 1994. While these parameters provide a valuable basis for understanding the interaction of clouds with the radiation budget, they do not provide a complete characterization of the cloud field. Phase

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Aerosol Forcing Calculated at the ARM Southern Great Plains Site Direct Aerosol Forcing Calculated at the ARM Southern Great Plains Site Ackerman, T.P., Flynn, D.M., and Long, C.N., Pacific Northwest National Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The continuous measurements of direct and diffuse solar radiation, water vapor column amount, and aerosol optical depth provided at the ARM SGP site permit us to calculate directly the actual magnitude of the direct aerosol forcing. Our methodology employs the clear sky detection algorithm of Long and Ackerman (2000) to identify cloudless periods. We then fit the downward solar flux at the surface during these periods with an empirical function, which provides us with a continuous mathematical representation of the surface flux under aerosol conditions. The flux under completely clear

82

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of Aerosol Properties Within and Above the Atmospheric Boundary Comparison of Aerosol Properties Within and Above the Atmospheric Boundary Layer at the ARM SGP Site Delle Monache, L.(a), Perry, K.D.(a), and Cederwall, R.T.(b), San Jose State University (a), Lawrence Livermore National Laboratory (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The objective of this work is to determine under what conditions, if any, measurements of aerosol properties made at the surface at the ARM SGP Central Facility are representative of aerosol properties within the column of air above the surface. This is important in assessing the value of data collected at the ARM Aerosol Observation System (AOS) for developing and diagnosing cloud and radiation parameterizations involving aerosol properties within and above the atmospheric boundary layer (ABL). The study

83

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of Stratus Cloud Optical Depths Retrieved from Surface and GOES Comparison of Stratus Cloud Optical Depths Retrieved from Surface and GOES Measurements over the SGP ARM Central Facility Dong, X., and Smith, W.L. Jr., Analytical Services and Materials, Inc.; Minnis, P., NASA Langley Research Center Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting For reliable application of satellite datasets in cloud process and single column models, it is important to have a reasonable estimate of the errors in the observed cloud properties. When properly used, ground-based instruments can provide a cloud truth dataset for estimating errors in the satellite products. Data taken during the spring 1994 ARM Intensive Observation Period (IOP), ARM Enhanced Shortwave Experiment (ARESE), and SUbsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) are

84

ARM - CLASIC Science Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Illinois Science Steering Committee Roni Avissar, Duke University Larry Berg, PNNL Tom Jackson, USDA Greg McFarquhar, University of Illinois Mark Miller, BNL Qilong...

85

ARM - Other Science Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SitesOther Science Resources Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About...

86

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of Daily Broadband Surface Albedos Measured at Six Extended Comparison of Daily Broadband Surface Albedos Measured at Six Extended Facilities in the ARM Southern Great Plains Cloud and Radiation Testbed Hamm, K.G., University of Oklahoma Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting An analysis of time series of daily hemispherical broadband surface albedo for 1998-1999 from six ARM Extended Facilities has been performed. The results show that the mean annual albedo differs by as much as 30% among the six sites. The annual range of daily albedos also varies among the sites. For example, albedos measured at the tallgrass prairie near Pawhuska, OK show a range of daily albedo between 0.15 and 0.20 for 1998, while daily albedos measured at a grazed pasture near Cordell, OK for the same time period have a range between 0.17 and 0.24 (or 40% higher than at

87

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of Spectral and Broadband Measurements of Surface Flux with Comparison of Spectral and Broadband Measurements of Surface Flux with Model Calculations on Clear Days at the ARM SGP Site Arking, A. (a), Liu, F. (a), Harrison, L. C. (b), Pilewskie, P. (c), and Chou, M.-D. (d), Johns Hopkins University (a), State University of New York, Albany (b), NASA Ames Research Center (c), NASA Goddard Space Flight Center (d) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Observations of spectral and broadband solar irradiance at the ARM/SGP site have been compared with line-by-line model calculations. The spectral measurements were made with the SUNY Albany Rotating Shadowband Spectroradiometer (RSS) and the NASA Ames Solar Spectral Flux Radiometer (SSFR). The broadband measurements were made with the Baseline Solar

88

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CAGEX Version 3: Tightening Shortwave Fluxes and Measurements of Surface CAGEX Version 3: Tightening Shortwave Fluxes and Measurements of Surface Spectral Characteristics Alberta, T.L., Analytical Services and Materials, Inc.; Charlock, T.P., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Version 3 of the CAGEX (Clouds and Earth's Radiant Energy System [CERES]/Atmospheric Radiation Measurement [ARM]/Global Energy and Water Experiment [GEWEX]) is introduced. As with Version 2 (10/95) and Version 1 (4/94), Version 3 provides input data sufficient for broadband radiative transfer calculations; fluxes computed with those inputs and the Fu-Liou code as modified by Hu, Rose and Kratz; and measurements for validation and diagnostics. Along with the usual ARM data sets (Solar and Infrared

89

Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM data is collected both through permanent monitoring stations and field campaigns around the world. Airborne measurements required to answer science questions from researchers or to validate ground data are also collected. To find data from all categories of aerial operations, follow the links from the AAF information page at http://www.arm.gov/sites/aaf. Tables of information will provide start dates, duration, lead scientist, and the research site for each of the named campaigns. The title of a campaign leads, in turn, to a project description, contact information, and links to the data. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

90

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting Meeting 1999 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1999, March 1999 San Antonio, Texas For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Abshire, J.B. Development of a Compact Lidar to Profile Water Vapor in the Lower Troposphere Ackerman, T.P. A 25-Month Database of Stratus Cloud Properties Generated from Ground-Based Measurements at the ARM SGP Site

91

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrared Interferometric Measurements of the Air-Sea Temperature Difference Infrared Interferometric Measurements of the Air-Sea Temperature Difference Minnett, P.J., Rosenstiel School of Marine and Atmospheric Science, University of Miami Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Marine Atmosphere Emitted Radiance Interferometers (M-AERI) have been mounted on several research ships on cruises in the world?s oceans, several in the areas of the ARM TWP and NSA-AAO sites. Accurate measurements of the skin sea-surface temperature and near-surface air temperatures are derived from the infrared spectral measurements, which, unlike conventional measurements of air-sea temperature difference, have a common calibration. This removes the largest source of uncertainty in the measurement of air-sea temperature differences, and thereby a major uncertainty in

92

ARM - NSA Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AlaskaNSA Science AlaskaNSA Science NSA Related Links Facilities and Instruments Barrow Atqasuk ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Images Information for Guest Scientists Contacts NSA Science Scientific objectives for the NSA/AAO site are provided below: Provide the comprehensive data sets necessary to develop and test continually improved algorithms for GCMs to describe radiative transfer and cloud processes at high latitudes; Specifically focus on development of algorithms to describe: radiative transfer within both the clear and cloudy atmosphere, especially at low temperatures; physical and optical behavior of water (ice) and land surfaces, both bare and snow-covered, especially during transitions from winter to summer and back; physical and optical behavior of ice and mixed phase clouds.

93

ARM - AMF Science Questions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AzoresAMF AzoresAMF Science Questions Azores Deployment AMF Home Graciosa Island Home Data Plots and Baseline Instruments Satellite Retrievals Experiment Planning CAP-MBL Proposal Abstract and Related Campaigns Science Questions Science Plan (PDF, 4.4M) Rob Wood Website Outreach Backgrounders English Version (PDF, 363K) Portuguese Version (PDF, 327K) AMF Posters, 2009 English Version Portuguese Version Education Flyers English Version Portuguese Version News Campaign Images AMF Science Questions Which synoptic-scale features dominate the variability in subtropical low clouds on diurnal to seasonal timescales over the NEA? Do physical, optical, and cloud-forming properties of aerosols vary with these synoptic features? How well can state-of-the-art weather forecast and climate models (run in forecast mode) predict the day-to-day variability of

94

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fair - Weather Cumuli Climatology at the TWP ARM Site Fair - Weather Cumuli Climatology at the TWP ARM Site Kollias, P. and Albrecht B.A., University of Miami Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Fair-weather cumuli are fundamental in regulating the vertical structure of water vapor and entropy in the lowest 2 km of the Earths atmosphere over vast areas of the oceans. Over two years of data from the mm-wavelength cloud radar, at the Nauru (TWP-ARM) site, are analyzed and a statistical description of the field of fair weather cumulus is inferred. Frequency diagrams of cloud thickness, fractional coverage, updraft-downdraft magnitudes and cloud reflectivity are calculated for four different classes of fair weather cumuli. Seasonal patterns are identified and their relationship to the thermodynamic structure of the boundary layer (wet-dry

95

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of MM5 Forecast Shortwave Radiation with ARM SGP Data Comparison of MM5 Forecast Shortwave Radiation with ARM SGP Data Armstrong, M.A. and Ellingson, R.G., University of Maryland Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The performance of the Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model 5 (MM5), in particular the shortwave downwelling (SW) flux calculations, is examined in this paper. Selected quantities output from the MM5 were compared with ARM SGP data gathered during the SCM intensive observation period (IOP) from June 18 to July 18, 1997. MM5 was run 29 times with a forecast length of 24 hours. The data were saved and then compared to radiosonde and pyranometer data. SW flux calculated from the MM5 deviated severely from that observed at the SGP

96

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of ARM Cloud Property Observations with CRM Simulations Comparison of ARM Cloud Property Observations with CRM Simulations Xu, K.-M. (a), Cederwall, R.T. (b), Xie, S.C. (b), and Yio, J.J. (b), NASA Langley Research Center (a), Lawrence Livermore National Laboratory (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The cloud property observations are compared with cloud-resolving model simulated cloud properties in this study, using the Summer 1997 Intensive Observation Period (IOP) data of the ARM program. Midlatitude continental cumulus convection are simulated by seven 2-D and two 3-D cloud resolving models (CRMs), driven by observed large-scale advective temperature and moisture tendencies, surface turbulence fluxes, and radiative heating profiles during three subperiods of the Summer 1997 IOP. Each subperiod

97

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Indirect Effect: Evidence from the ARM SGP and NSA Sites Aerosol Indirect Effect: Evidence from the ARM SGP and NSA Sites Penner, J.E.(a), Chen, Y.(a), and Dong, X.(b), University of Michigan (a), University of North Dakota (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM SGP site and the NSA site provide a unique opportunity to examine the effects of aerosols on cloud optical properties because the aerosol concnetrations at each site span the range between polluted and clean conditions. Here, we examine whether the effect of aerosols on clouds can adequately explain the observed relationship between the liquid water path observed at each site and the cloud optical depth required to determine the observed surface flux. Aerosol number concentration at the SGP site was determined from the observed CN number concentration as well as the

98

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Overview of ARM Satellite Cloud and Radiation Budget Datasets An Overview of ARM Satellite Cloud and Radiation Budget Datasets Minnis, P.(a), Nguyen, L.(a), Smith Jr., W.L.(a), Doelling, D.R.(b), Heck, P.W.(c), Khaiyer, M.M.(b), Palikonda, R.(b), Young, D.F.(a), Spangenberg, D.A.(b), Chakrapani, V.(b), Walter, B.J.(b), and Nowicki, G.D.(b), NASA Langley Research Center (a), Analytical Services and Materials, Inc. (b), CIMSS/University of Wisconsin-Madison (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The derivation of cloud properties from satellite data has been greatly enhanced by the availability of new multispectral satellite imagers, the validation power of ARM instruments and IOPs, and increases in computer processing speeds. Likewise, the recent availability of broadband radiation

99

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Height Statistics Derived from ARM Millimeter Cloud Radar Cloud Height Statistics Derived from ARM Millimeter Cloud Radar Kato, S. (a), Clothiaux, E.E. (b), and Xu, K.-M. (c), Hampton University (a), Pennsylvania State University (b), NASA Langley Research Center(c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The probability of occurrence of the cloud top height for a given altitude and relation to the geometrical cloud thickness are derived from radar reflectivity factor taken by a millimeter cloud radar operated at ARM Oklahoma site. Statistics derived using July 1997 data show that the cloud top is likely to occur at 12 km and clouds extend to the lower troposphere. Statistics derived using January 1998 data show that single layer boundary layer clouds are dominant. There is another cloud top peak, although less

100

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LASE Characterization of Water Vapor, Aerosol, and Cloud Distributions Over LASE Characterization of Water Vapor, Aerosol, and Cloud Distributions Over the ARM Southern Great Plains Central Facility During AFWEX Ismail, S. (a), Ferrare, R.A. (a), Browell, E.V. (a), Kooi, S.A. (b), Brasseur L.H. (b), Clayton, M.B. (b), Brackett, V. (b), Goldsmith, J.E.M. (c), Whiteman, D.N. (d), and Barrick, J. (a), NASA Langley Research Center (a), SAIC Inc., Hampton, Virginia (b), Sandia National Laboratories (c), NASA Goddard Space Flight Center (d) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting NASA's Lidar Atmospheric Sensing Experiment (LASE) system was operated during the ARM/FIRE Water Vapor Experiment (AFWEX) to characterize the upper tropospheric water vapor field over the ARM Center Facility (CF) as part of the third Water Vapor Intensive Observation Period (WVIOP3). LASE

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM In The Classroom: Developing an Operational Forecasting Site for the ARM In The Classroom: Developing an Operational Forecasting Site for the NSA Harrington, J. Y.(a) and Olsson, P. Q.(b), The Pennsylvania State University (a), The University of Alaska Anchorage (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting During the fall 2002 semester, the Department of Meteorology's Computer Applications in Meteorology course took on the project of developing an operational forecasting site for the ARM North Slope of Alaska and the Alaska Region. The course was designed around team-driven forecast products similar to what the students will find in the job environment. During the fall semester, the students were provided with a data feed from Alaska consisting of various forecast fields for the ETA model Alaska grid. The

102

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Use of the ARM WSI to Estimate the Atmospheric Optical Depth at Night The Use of the ARM WSI to Estimate the Atmospheric Optical Depth at Night Musat, I.C. and Ellingson, R.G., University of Maryland Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The shortwave extinction by atmospheric constituents can be studied during the night, with the light of stars as a radiation source, using the ARM Whole Sky Imager (WSI). The digital images obtained with the WSI are processed to infer the star radiance at the TOA and the broadband atmospheric extinction coefficient. Subsequently, the broadband extinction is calculated from an atmosphere model, and the goodness of fit of the model with observations is assessed taking into account the known profiles of temperature, pressure, columnar mixing ratios of the gases, diverse

103

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sub-Grid-Scale Isentropic Transports on McRAS Evaluations Sub-Grid-Scale Isentropic Transports on McRAS Evaluations Using ARM-CART SCM Datasets Sud, Y.C., Walker, G.K., and Tao, W.-K., Climate and Radiation Branch, Laboratory for Atmospheres, NASA/Goddard Space Flight Center Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Influence of Sub-grid-Scale Isentropic Transports on McRAS: Evaluation using ARM-CART SCM Datasets. Y. C. Sud, G. K. Walker and W.-K. Tao In GCM-physics evaluations with the currently available ARM-CART SCM datasets, McRAS produced very similar character of near surface errors of simulated temperature and humidity containing typically warm and moist biases near the surface and cold and dry biases aloft. We argued it must have a common cause presumably rooted in the model physics. Lack of vertical adjustment

104

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Science Team Meeting 3 Science Team Meeting 1992 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Third Atmospheric Radiation Measurement (ARM) Science Team Meeting CONF-9303112, March 1-4,1993 Norman, Oklahoma For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. History and Status of the ARM Program - March 1993 History and Status of the Atmospheric Radiation Measurement Program - March 1993 P. Lunn, T. Cress, and G. Stokes Clear Skies A Study of Longwave Radiaiton Codes for Climate Studies: Validation with Observations and Tests in General Circulation Models - an Update R.G. Ellingson and F. Baer

105

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Vapor Intensive Operating Periods: General Results, Status and Plans Water Vapor Intensive Operating Periods: General Results, Status and Plans Revercomb, H.E., Tobin, D.C., Knuteson, R.O., and Feltz, W.F., University of Wisconsin-Madison; Turner, D.D., Pacific Northwest National Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Accurate measurements of atmospheric water vapor are very important for climate research and monitoring. Unexpectedly large uncertainties of sonde water vapor observations implied by Atmospheric Radiation Measurement (ARM) Program's radiation measurements led to special Water Vapor Intensive Observation Periods (IOPs) conducted in 1996 and 1997 at the Southern Great Plains (SGP) central facility. The goal was to use the complement of ARM advanced instrumentation to better quantify the problem and to find ways of

106

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Satellite-Based Assessment of Upper Tropospheric Water Vapor Measurements A Satellite-Based Assessment of Upper Tropospheric Water Vapor Measurements During AFWEX Soden, B.J.(a), Ferrare, R.A.(b), Goldsmith, J.E.M.(c), Smith, W.L.(d), Tobin, D.(e), Turner, D.D.(f), and Whiteman, D.N.(g), NOAA/GFDL (a), NASA/LaRC (b), Sandia National Laboratories (c), NASA/LaRC (d), UW/SSEC (e), Pacific Northwest National Laboratory (f), NASA/GSFC (g) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Accurate measuremetns of upper tropospheric water vapor are critical both for understanding the flow of radiation and formation of clouds, and for the detection and attribution of climate change. In fall of 2000 ARM conducted the ARM-FIRE Water Vapor Experiment (AFWEX) to evaluate the accuracy of upper tropospheric water vapor measurements. The experiment

107

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Assessment of Upper Tropospheric Humidity Measurements at the ARM An Assessment of Upper Tropospheric Humidity Measurements at the ARM SGP/CART Site Soden, B.J. (a), Turner, D.D. (b), and Goldsmith, J.E.M. (c), NOAA/GFDL (a), Pacific Northwest National Laboratory (b), Sandia National Laboratories (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Upper tropospheric water vapor plays a key role in regulating the flow of radiation through clear skies and the formation and dissipation of clouds. Unfortunately, due to the difficulty of accurately measuring this quantity, it remains a key uncertainty in GCM predictions of climate change. Much of the uncertainty surrounding upper tropospheric water vapor reflects an incomplete understanding of the processes which regulate its distribution and variations. This, in turn, reflects the lack of suitable observations

108

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Deep Convection During the ARM Summer 1997 IOP: CRM Study Khairoutdinov, M.F. and Randall, D.A., Colorado State University Twelfth Atmospheric Radiation Measurement (ARM)...

109

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation of CERES/MODIS Cloud Property Retrievals Using Ground-Based Validation of CERES/MODIS Cloud Property Retrievals Using Ground-Based Measurements Obtained at the DOE ARM SGP Site Dong, X.(a), Minnis, P.(b), Sun-Mack, S.(b), and Mace, G.G.(a), University of Utah (a), NASA Langley Research Center (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud macrophysical and microphysical properties derived from the NASA TERRA (EOS-AM) Moderate Resolution Spectroradiometer (MODIS) as part of the Clouds and the Earth's Radiant Energy System (CERES) project during November 2000-June 2001 are compared to simultaneous ground-based observations. The ground-based data taken by the Atmospheric Radiation Measurement (ARM) Program are used as "ground truth" data set in the validation of the CERES cloud products and to improve the CERES daytime and

110

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of Boundary Layer Cloud Properties using Surface and GOES Comparison of Boundary Layer Cloud Properties using Surface and GOES Measurements at the ARM SGP Site Dong, X. (a), Minnis, P. (b), Smith, W.L., Jr. (b), and Mace, G.G. (a), University of Utah (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Boundary layer cloud microphysical and radiative properties derived from GOES data during March 2000 cloud IOP at ARM SGP site are compared with simultaneous surface-based observations. The cloud-droplet effective radius, optical depth, and top-of-atmoshpere (TOA) albedo are retrieved from a 2-stream radiative transfer model in conjunction with ground-based measurements of cloud radar, laser ceilometer, microwave and solar radiometers. The satellite results are retrieved from GOES visible and

111

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Initial Cloud Properties Derived from GMS Over the Tropical Western Pacific Initial Cloud Properties Derived from GMS Over the Tropical Western Pacific Doelling, D.R., Ho, S.-P., Smith, W.L., Jr., Analytical Services and Materials, Inc.; Minnis, P., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite data are needed to provide measurements of the earth-atmosphere shortwave (SW) albedo, outgoing longwave radiation (OLR), and cloud and surface radiative properties for the Atmospheric Radiation Measurement (ARM) Program's Tropical Western Pacific (TWP) domain. Geostationary Meteorological Satellite (GMS) data have been archived since November 1996 and provide the basis for monitoring these essential parameters over the ARM TWP. This paper describes the initial efforts and results of developing

112

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiance Using Remotely Sensed Cloud Properties From Irradiance Using Remotely Sensed Cloud Properties From ARM's SGP Site Barker, H.W., Atmospheric Environment Service of Canada; Li, Z., Canada Centre for Remote Sensing; Clothiaux, E.E., and Ackerman, T.P., The Pennsylvania State University; Kato, S., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Time series of profiles of cloud water content and droplet effective radii have been inferred from data obtained by a 35-GHz radar and a Microwave Radiometer (MWR) at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) site. These profiles initialize a Monte Carlo algorithm that predicts time series of broadband surface solar irradiance, which in turn are compared with coeval measurements. Special attention is

113

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Science Team Meeting 7 Science Team Meeting 1997 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Seventh Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1997, March 1997 San Antonio, Texas For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. Poster abstracts are not available online for this year. However, if you would like to request a copy of a specific poster abstract, please contact the Web Administrator. A Comparison of Integrated Water Vapor Sensors: WVIOP-96 J.C. Liljegren, E.R. Westwater, and Y. Han A Comparison of Observed Clear-Sky Surface Irradiance with

114

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Science Team Meeting 1 Science Team Meeting 2001 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2001, March 2001 Atlanta, Georgia For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A 3-Year Climatology of Cloud and Radiative Properties Derived from GOES-8 Data Over the Southern Great Plains M.M. Khaiyer, A.D. Rapp, D.R. Doelling, M.L. Nordeen, W.L. Smith, Jr., and P. Minnis A 4-Year Study of the RASS Temperature Bias

115

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Science Team Meeting 7 Science Team Meeting 1997 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Seventh Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1997, March 1997 San Antonio, Texas For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. Poster abstracts are not available online for this year. However, if you would like to request a copy of a specific poster abstract, please contact the Web Administrator. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Acharya, P. Spectral Resolution Effects on Solar Irradiance Calculations Ackerman, S.A.

116

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Science Team Meeting 3 Science Team Meeting 2003 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2003, April 2003 Broomsfield, Colorado For proper viewing, extended abstracts should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A 20-year Data Set of Downwelling Longwave Flux at the Arctic Surface from TOVS Satellite Data Francis, J.A., Schweiger, A., and Key, J. A Comparison of Aerosol Scattering Parameters Obtained by Ground-Based Remote Sensing and In-situ Profile Flights*

117

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Science Team Meeting 5 Science Team Meeting 1995 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Fifth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1995, March 1995 San Diego, California For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Ackerman, T.P. A Boundary-Layer Cloud Study Using Southern Great Plains Cloud and Radiation Testbed (CART) Data A Comparison of Radiometric Fluxes Influenced by Parameterized Cirrus Clouds with Observed Fluxes at the Southern Great Plains (SGP) Cloud

118

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Science Team Meeting 0 Science Team Meeting 2000 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Tenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2000, March 2000 San Antonio, Texas For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). Poster abstracts are not available online for this year. However, if you would like to request a copy of a specific poster abstract, please contact the Web Administrator. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Abshire, J.B.

119

ARM - Measurement - Cloud top height  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud top height For a given cloud or cloud layer, the highest level of the atmosphere where...

120

ARM Science Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(to be published).Stephens, G. L., A. Slingo, and M. Webb. 1993. On measuring the greenhouse effect of the earth. High Spectral Resolution Infrared Remote Sensing for Earth's...

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Improved Technique for Producing MPL Backscatter Profiles Properly An Improved Technique for Producing MPL Backscatter Profiles Properly Characterized at All Ranges Flynn, C.J. and Powell, D.M., Pacific Northwest National Laboratory Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting An important part of ARM's mission is the quantitative study of the effect of clouds and aerosol on radiative transfer and the energy budget. Micropulse Lidar (MPL) are an integral component of the ARM Program's measurement strategy with one deployed at each of the four major sites (SGP, TWP1, TWP2, and NSA). The MPL system is capable of producing vertical profiles of cloud and aerosol from ground level to the top of the atmosphere. However, the legitimacy of these profiles is sensitive to the calibration and system corrections of the individual MPL. In particular,

122

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From Crops to Boundary Layer and Back Down Again: the ARM Carbon Project in From Crops to Boundary Layer and Back Down Again: the ARM Carbon Project in the Southern Great Plains Torn, M.S.(a), Berry, J.(b), Riley, W.J.(a), Fischer, M.L.(a), Billesbach, B.(c), Helliker, B.(b), and Giles, L.(b), Lawrence Berkeley National Laboratory (a), Carnegie Institution of Washington (b), University of Nebraska (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting One of the challenges in carbon cycle research is the vast range of scale that must be traversed by measurements and models. Our understanding of carbon cycle processes is being built from studies of enzymes, organisms and plot-scale studies of ecosystems, while our ultimate objective is to understand the mass and isotope balance of earthÂ’s atmosphere. Spanning

123

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using ARM GOES-8 Cloud and TOA Flux Properties to Estimate Surface Using ARM GOES-8 Cloud and TOA Flux Properties to Estimate Surface Radiation Budget Parameters Stackhouse, P.W., Jr. (a), Gupta, S.K. (b), Cox, S.J. (b), Minnis, P. (a), Smith, W.L., Jr. (b), and Khaiyer, M.M. (b), NASA Langley Research Center (a) Analytical Services and Materials, Inc. (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget Project (SRB) uses top-of-atmosphere (TOA) radiance measurements and cloud property retrievals to estimate surface fluxes on a global basis. Normally, GEWEX SRB algorithms rely on TOA radiances and cloud information derived from International Satellite Cloud Climatology Project (ISCCP) data. Here, we show first results of using SW and LW algorithms featured in

124

ARM - 2006 Science Team Meeting Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presentations Presentations 2006 Meeting 2006 Meeting Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Posters Presentations Meeting Archives ARM Science Team Meeting Proceedings Past Science Team Meetings 2006 Science Team Meeting Presentations Monday, March 27, 2006 ARM Orientation for New and Current PIs: Overview and History Warren Wiscombe (PDF, 6 MB) ARM Orientation for New and Current PIs: Infrastructure Overview 2006 Jimmy Voyles (PDF, 4MB) ARM Orientation for New and Current PIs: An Incomplete Introduction to ACRF Instrumentation Jim Liljegren (PDF, 4MB) ARM Orientation for New and Current PIs: ARM Data Quality Office - Real-Time Assessment of ARM Data Randy Peppler (PDF, 12MB) ARM Orientation for New and Current PIs: Getting Data from the ARM Archive

125

ARM - Measurement - Hydrometeor fall velocity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fall velocity fall velocity ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor fall velocity Fall velocity of hydrometeors (e.g. rain, snow, graupel, hail). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments DISDROMETER : Impact Disdrometer LDIS : Laser Disdrometer WSACR : Scanning ARM Cloud Radar, tuned to W-Band (95GHz) Field Campaign Instruments DISDROMETER : Impact Disdrometer PDI : Phase Doppler Interferometer

126

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Solar Spectrum 360 to 1050 nm from Rotating Shadowband The Solar Spectrum 360 to 1050 nm from Rotating Shadowband Spectroradiometer (RSS) Measurements at the Southern Great Plains Site Harrison, L.C., Berndt, J.L., Kiedron, P.W., Michalsky, J.J., Min, Q., and Schlemmer, J., Atmospheric Sciences Research Center, State University of New York, Albany Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Two years of Langley extrapolations made from the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program using two very different RSS instruments and a NIST-derived irradiance scale show larger extraterrrestrial solar irradiances in the 400 to 600 nm domain by as much as 4.5% compared to the Labs and Neckels [1968] data. Our results are more congruent with Thuiller et al. [1998] in this domain, but do not

127

ARM - Measurement - Trace gas concentration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsTrace gas concentration govMeasurementsTrace gas concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Trace gas concentration The amount per unit volume of trace gases other than carbon dioxide, ozone and water vapor, typically measured in conjunction with in situ aerosol measurements, e.g. carbon monoxide, nitrogen oxides, sulfur dioxide. Categories Atmospheric Carbon, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO : Carbon Monoxide Mixing Ratio System

128

ARM - Measurement - Soil surface temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

surface temperature surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil surface temperature The temperature of the soil measured near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AMC : Ameriflux Measurement Component CO2FLX : Carbon Dioxide Flux Measurement Systems SOIL : Soil Measurement from the SGP SWATS : Soil Water and Temperature System MET : Surface Meteorological Instrumentation

129

ARM - Measurement - Sensible heat flux  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsSensible heat flux govMeasurementsSensible heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Sensible heat flux The time rate of flow for the energy transferred from a warm or hot surface to whatever is touching it, typically air. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System EBBR : Energy Balance Bowen Ratio Station

130

ARM - Measurement - Latent heat flux  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsLatent heat flux govMeasurementsLatent heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Latent heat flux The time rate of flow for the specific enthalpy difference between two phases of a substance at the same temperature, typically water. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System EBBR : Energy Balance Bowen Ratio Station

131

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactions of Cumulus Convection and the Boundary Layer Over the Southern Interactions of Cumulus Convection and the Boundary Layer Over the Southern Great Plains Krueger, S.K. (a), Luo, Y. (a), Lazarus, S.M. (a), and Xu, K.-M. (b), University of Utah (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting We are using observations and cloud-resolving model (CRM) simulations to better understand the interaction between deep cumulus convection and the boundary layer over the southern Great Plains of the United States. The observations are from a 29-day ARM SCM IOP that took place at the ARM SGP site during June and July 1997. The cumulus effects in the boundary layer are due to rain evaporation and fluxes due to cumulus updrafts and downdrafts. These effects can substantially modify the boundary layer in

132

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Second ARM Diffuse Horizontal Irradiance Comparison Fall 2003 The Second ARM Diffuse Horizontal Irradiance Comparison Fall 2003 Michalsky, J.J.(a), Dolce, R.(b), Dutton, E.G.(c), Long, C.N.(d), Jeffries, W.Q.(e), McArthur, L.J.B.(f), Philipona, R.(g), Reda, I.(h), and Stoffel, T.L.(h), State University of New York at Albany (a), Kipp & Zonen, Inc. (b), Climate Monitoring and Diagnostics Laboratory, NOAA (c), Pacific Northwest National Laboratory (d), Yankee Environmental Systems, Inc. (e), Meteorological Service of Canada (f), World Radiation Center (g), National Renewable Energy Laboratory (h) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The first diffuse horizontal irradiance comparison in the Fall 2001 revealed a consistency near the 2 W/m2 level among more than half of the pyranometers that participated. In planning for this second comparison the

133

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boundary Layer Structure and Fair-Weather Cumulus Characteristics at the Boundary Layer Structure and Fair-Weather Cumulus Characteristics at the TWP ARM Site - Comparisons with Other Tropical and Subtropical Sites Albrecht, B. and Kollias, P., University of Miami Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Fair-weather cumuli are fundamental in regulating the vertical structure of water vapor and entropy in the lowest 2 km of the Earths atmosphere over vast areas of the oceans. Boundary layer structures and cloud characteristics observed at Nauru (ARM TWP) during suppressed convective conditions are compared with those observed at other tropical and subtropical sites. Over three years of data from the mm-wavelength cloud radar and ceilometer observations at the Nauru site are analyzed and a statistical description of the field of fair weather cumulus is inferred.

134

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Towards Parameterization of Frontal Mesoscale Circulations and Cloudiness Towards Parameterization of Frontal Mesoscale Circulations and Cloudiness in GCMs Based on ARM Observations Norris, J.R.(a), Weaver, C.P.(b), Gordon, N.D.(c), and Klein, S.A.(d), Scripps Institution of Oceanography (a), Rutgers University (b), Scripps Institution of Oceanography (c), GFDL/NOAA (d) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloudiness associated with extratropical cyclones is currently poorly represented in GCMs due to incorrect and insufficient representation of subgrid-scale processes. Since this can lead to erroneous cloud-climate feedbacks it is necessary to develop an understanding of the relationship between mesoscale cloud variability and large-scale synoptic forcing that will result in improved parameterization. Observations from the ARM

135

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

I Method I Method Potter, G.L.(a), Boyle, J.S.(a), Cederwall, R.T.(a), Fiorino, M.(a), Hnilo, J.J.(a), Phillips, T.J.(a), and Williamson, D.(b), Lawrence Livermore National Laboratory (a), National Center for Atmospheric Research (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting We present a methodology to diagnose GCM errors by using NWP analyses to initialize a climate model. The analysis is used as input in conjunction with ARM data to study the initial model drift (6-36 hours) from the observations. Simply put, a climate model is used in a weather forecast mode to see how quickly it drifts from the observed weather and detailed observations provided by the ARM program. This approach can be used to improve parameterizations responsible for models errors on longer time

136

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Pyrgeometer and Absolute Sky-scanning Radiometer Comparison International Pyrgeometer and Absolute Sky-scanning Radiometer Comparison at the NSA ARM site Barrow Stamnes, K. (a), Dutton, E.G. (b), Marty, Ch. (c), Michalsky, J.J. (d), Philipona, R. (e), Stoffel, T. (f), Storvold, R. (c), and Zak, B.D. (g), Stevens Institute of Technology, New Jersey (a), NOAA, Climate Monitoring and Diagnostics Laboratory (b), University of Alaska Fairbanks (c), State University of New York at Albany (d), World Radiation Center, Davos, Switzerland (e), National Renewable Energy Lab, Boulder (f), Sandia National Laboratories, Albuquerque (g) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The first International Prgeometer and Absolute Sky-scanning Radiometer Comparison (IPASRC I), which was held in fall 1999 at the ARM SGP site in

137

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development and Comparison of Ground- and Satellite-based Retrievals of Development and Comparison of Ground- and Satellite-based Retrievals of Cirrus Cloud Physical Properties d'Entremont, R.P.(a) and Mitchell, D.L.(b), Atmospheric and Environmental Research, Inc. (a), Desert Research Institute (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting This project is designed to (1) develop new ground- and space-based retrieval methods for cirrus cloud ice water path (IWP), effective size (Deff), and visible extinction optical thickness (OT) using thermal infrared wavelength bands from 3.7 to 13 um, and (2) to compare these retrievals with others obtained by ARM investigators during various ARM IOPs. During year 1 of this project research focused primarily on the enhancing of satellite- and ground-based thermal infrared retrievals of

138

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Pyrheliometer Comparisons - 2002 NREL Pyrheliometer Comparisons - 2002 Reda, I. and Stoffel, T.L., National Renewable Energy Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting All broadband shortwave radiometers used by the ARM Program are calibrated with absolute cavity radiometers traceable to the World Radiometric Reference (WRR). The WRR was developed and is maintained by the World Radiation Center under the auspices of the World Meteorological Organization. Each fall, the National Renewable Energy Laboratory (NREL) hosts annual comparisons of absolute cavity radiometers at the Solar Radiation Research Laboratory in Golden, Colorado. Since 1995, NREL has maintained the Transfer Standard Group (TSG) consisting of five radiometers belonging to NREL and the ARM Program. Our poster summarizes the results of

139

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sizes, Fractional Coverage, and Radar Doppler Moments Profiles of Sizes, Fractional Coverage, and Radar Doppler Moments Profiles of Fair-Weather Cumulus Clouds at the TWP ARM Site Kollias, P., Albrecht B.A., and Dow B.J., University of Miami Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Fair-weather cumuli are fundamental in regulating the vertical structure of water vapor and entropy in the lowest 2 km of the Earth's atmosphere over vast areas of the oceans. Using data from the mm-wavelength cloud radar, the micro-pulse lidar and ceilometer at the Nauru (TWP-ARM) site, a statistical description of the field of fair weather cumulus is inferred. Frequency diagrams of cloud thickness, fractional coverage, updraft-downdraft magnitudes and cloud reflectivity are calculated. The relationship of the statistical behavior of the cumulus field to the

140

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shortwave and Longwave Flux and Cooling Rate Profiles for the ARM Central Shortwave and Longwave Flux and Cooling Rate Profiles for the ARM Central Facility Clough, S.A. (a), Delamere, J.S. (a), Mlawer, E.J. (a), Cederwall, R.T. (b), Revercomb, H. (c), Tobin, D. (c), Turner, D.D. (c), Knuteson, R.O. (c), Michalsky, J.J. (d), Kiedron, P.W. (d), Ellingson, R.G. (e), Krueger, S.K. (f), Mace, G.G. (f), Shippert, T. (g), and Zhang, M.H.(h), Atmospheric and Environmental Research, Inc. (a), Lawrence Livermore National Laboratory (b), University of Wisconsin-Madison (c), State University of New York, Albany (d), University of Maryland (e), University of Utah (f), Pacific Northwest National Laboratory (g), State University of New York, Stony Brook (h) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Accurate representations of the cooling rate profile, the surface flux and

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an Improved Convective Triggering Mechanism in the NCAR CAM2 an Improved Convective Triggering Mechanism in the NCAR CAM2 under the CCPP-ARM Parameterization Testbed (CAPT) Framework Xie, S.C.(a), Cederwall, R.T.(a), Potter, G.L.(a), Boyle, J.S.(a), Yio, J.J.(a), Zhang, M.H.(b), and Lin, W.Y.(b), Lawrence Livermore National Laboratory (a), State University of New York at Stony Brook (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting In this study, we implement an improved convective triggering mechanism, which was developed by Xie and Zhang [2000] based on the ARM observations and Single-Column Model (SCM) tests, in the NCAR Community Atmosphere Model (CAM2) in order to reduce the problem that the model produces excessive warm season daytime precipitation over land. This problem is closely

142

ARM - Measurement - Organic Carbon Concentration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsOrganic Carbon Concentration govMeasurementsOrganic Carbon Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Organic Carbon Concentration The concentration of carbon bound in organic compounds. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments ACSM : Aerosol Chemical Speciation Monitor Field Campaign Instruments AEROSCARBON : Aerosol Carbon Analyzer AEROSMASSSPEC : Aerosol Mass Spectrometer Datastreams AOS : Aerosol Observing System Datastreams

143

ARM - Measurement - Soil moisture flux  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

moisture flux moisture flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil moisture flux A quantity measured according to the formula B = {lambda}(dq/dz), where {lambda} is the conductivity of the soil that the moisture is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems External Instruments ECMWFDIAG : European Centre for Medium Range Weather Forecasts

144

ARM - Measurement - Soil heat flux  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heat flux heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil heat flux A quantity measured according to the formula B = {lambda}(dT/dz), where {lambda} is the conductivity of the soil that the heat is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments

145

ARM - Measurement - Backscatter depolarization ratio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsBackscatter depolarization ratio govMeasurementsBackscatter depolarization ratio ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Backscatter depolarization ratio The ratio of cross polarized to co-polarized elastic backscatter. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments HSRL : High Spectral Resolution Lidar RL : Raman Lidar Field Campaign Instruments HSRL : High Spectral Resolution Lidar MIRAI : JAMSTEC Research Vessel Mirai MPL-AIR : Micropulse Lidar- Airborne

146

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Results of the Atmospheric Aerosol Condensation Activity Studies Results of the Atmospheric Aerosol Condensation Activity Studies Isakov, A.A. and Golitsyn, G.S., A.M.Obukhov Institute of Atmospheric Physics Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Some new results are presented. of investigations of optical and microphysical characteristics of the atmospheric surface layer aerosol by means of spectropolarimeter The daily measurements were carried out in February - April 2000 at the Zvenigorod Scientific Station of the Institute within the Institut's ARM measurements Program. The spectropolarimeter measured the spectral dependencies of the polarization components of direct scattering coefficient D at three angles j = 450,900,1350 in spectral region l= 0.4 -0.75 mcm. During the measurement period about 500 records

147

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Compact Millimeter-Wave Radar for UAV Applications A Compact Millimeter-Wave Radar for UAV Applications Bambha, R., Carswell, J., and Swift, C., University of Massachusetts Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Assembly of the Compact Millimeter-wave Radar (CMR) has been completed at the University of Massachusetts, and ground-based cloud measurements have been acquired. The CMR is a 95-GHz solid-state radar intended for airborne cloud measurements. Funding for the project was provided by the Atmospheric Radiation Measurement-Unmanned Aerospace Vehicle (ARM-UAV) program with the eventual goal of developing a radar capable of operating on the Altus UAV. Simultaneous measurements made by CMR and the Cloud Profiling Radar System (CPRS) have been made to evaluate CMR's performance. CPRS is a larger

148

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Correction of Sonde Upper Tropospheric Humidity Through Radiance Correction of Sonde Upper Tropospheric Humidity Through Radiance Assimilation Soden, B.J.(a), Turner, D.D.(b), and Lesht, B.M.(c), NOAA/GFDL (a), Pacific Northwest Natinal Laboratory (b), Argonne National Laboratory (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The difficulty of measuring upper tropospheric water vapor from radiosonde instrumentation is widely recognized. Recent results from several ARM IOPs and the AFWEX field campaign have demonstrated a substantial dry bias in sonde measurements. Existing corrections for these measurements can improve the moisture concentrations at lower levels, but offer little improvement in the upper troposphere. Unfortunately, accurate measurements of upper tropospheric water vapor are necessary to constrain the transfer of

149

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Change of Atmospheric Boundary Layer Thermal Regime Induced by Aerosol as Change of Atmospheric Boundary Layer Thermal Regime Induced by Aerosol as Measured by MTP-5 Koldaev, A.V.(a), Kadygrov, E.N.(a), Khaikine, M.N.(a), Kuznetsova, I.N.(b), and Golitsyn, G.S.(c), Central Aerological Observatory (a), Hydrometeorological Center (b), A.M.Obukhov Institute of Atmospheric Physics Russian Academy of Science (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Change in atmospheric boundary layer (ABL) radiation balance as caused by natural and anthropogenic reasons is an important topic of ARM Project. The influence of aerosol while its concentration was extremely high within a long period of time was studied experimentally. The case was observed in Moscow region with the transport of combustion products from peat and

150

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization and Calibration of the Commercial RSS Slated for Permanent Characterization and Calibration of the Commercial RSS Slated for Permanent Deployment at SGP Kiedron, P., Berndt, J., Yager, E., Harrison, L., and Michalsky, J., Atmospheric Sciences Research Center, SUNY at Albany, New York Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM program purchased a rotating shadowband spectroradiometer (RSS) that was manufactured by Yankee Environmental Systems, Inc. At ASRC the instrument went through initial acceptance tests and after corrections and modifications made by the manufacturer the instrument was characterized. The angular response, linearity, wavelength registration, out-of-band rejection, slit function, absolute spectral response and noise were measured. The purpose of instrument characterization is to provide the

151

ARM - Measurement - Aerosol optical depth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

depth depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical depth A measure of how much light aerosols prevent from passing through a column of atmosphere. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments HSRL : High Spectral Resolution Lidar MPL : Micropulse Lidar MFRSR : Multifilter Rotating Shadowband Radiometer NIMFR : Normal Incidence Multifilter Radiometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

152

ARM - Measurement - Surface skin temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

skin temperature skin temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface skin temperature The radiative surface skin temperature, from an IR thermometer measuring the narrowband radiating temperature of the ground surface in its field of view. Categories Radiometric, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments IRT : Infrared Thermometer MFRIRT : Multifilter Radiometer and Infrared Thermometer External Instruments

153

ARM - Measurement - Shortwave narrowband radiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

narrowband radiance narrowband radiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband radiance A measure of the intrinsic radiant energy flux intensity, at wavelengths between 0.4 and 4 {mu}, emitted by a radiator in a given direction, expressed in units of energy per unit time per unit solid angle. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CSPHOT : Cimel Sunphotometer SWS : Shortwave Spectroradiometer

154

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Property Retrieval Using Combined Ground-Based Remote Sensors Cloud Property Retrieval Using Combined Ground-Based Remote Sensors Wang, Z. and Sassen, K., University of Utah Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurements Program (ARM) is making measurements with diverse ground-based remote sensors. To provide more complete and accurate cloud information, it is necessary to combine diverse measurements because of the different capabilities of various sensors. In this study, a remote sensing cloud detection algorithm has been developed that can differentiate between various atmospheric targets such as ice and water clouds, virga, precipitation, and aerosol layers. Cloud type and macrophysical properties are identified by combining ground-based polarization lidar, millimeter wave radar, infrared radiometer, and dual

155

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterizing Diurnal CO2 Cycles in the Continental Boundary Layer Using Characterizing Diurnal CO2 Cycles in the Continental Boundary Layer Using Precise Concentration Measurements and a Simple Numerical Model Torn, M.S.(a), Riley, W.(a), Rischer, M.L.(a), Biraud, S.(a), and Berry, J.(b), Lawrence Berkeley National Laboratory (a), Carnegie Institution of Washington (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting In continental regions, atmospheric CO2 profiles are strongly influenced by atmospheric dynamics as well as ecosystem and anthropogenic fluxes. Relating site level measurements or atmospheric profiles to regional CO2 budgets may require methods to represent or evaluate these influences. At the Southern Great Plains ARM-CART, we are measuring precise CO2 concentrations continuously at 2-60 m and weekly at 300 and 3300 m agl. CO2

156

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LASE Characterization of Water Vapor Over the ARM SGP During AFWEX LASE Characterization of Water Vapor Over the ARM SGP During AFWEX Ismail, S.(a), Ferrare, R.A.(a), Browell, E.V.(a), Kooi, S.A.(b), Brasseur, L.H.(b), Clayton, M.B.(b), Brackett, V.(b), Turner, D.D. (c), Goldsmith, J.E.M.(d), Whiteman, D.N.(e), Barrick, J.(a), Sachse, G.(a), Diskin, G.(a), Podolske, J.(f), Schmidlin, F.J.(g), and Bosenberg, J.(h), NASA Langley (a), SAIC (b), Pacific Northwest National Laboratory (c), Sandia National Laboratories (d), NASA Goddard (e), NASA Ames (f), NASA Wallops (g), Max Planck Institute (h) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting NASA's Lidar Atmospheric Sensing Experiment (LASE) system was operated during the ARM/FIRE Water Vapor Experiment (AFWEX) to characterize the upper tropospheric (UT) water vapor field over the ARM Center Facility (CF)

157

ARM - 2007 Science Team Meeting Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Award-Winning Posters Presentations Cover Competition Winners Meeting Archives ARM Science Team Meeting...

158

ARM - 2009 Science Team Meeting Pictures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Award-Winning Posters Presentations Cover Competition Winners Meeting Archives ARM Science Team Meeting...

159

ARM - Measurement - Hydrometeor Size Distribution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Size Distribution Size Distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor Size Distribution The number of hydrometeors observed in a given size range. Categories Cloud Properties, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments LDIS : Laser Disdrometer Datastreams LDIS : Laser Disdrometer Datastreams PARS2 : OTT Parsivel2 Laser Disdrometer VDIS : Video Disdrometer Datastreams VDIS : Video Disdrometer Drop Size Distribution

160

ARM - Measurement - Cloud ice particle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ice particle ice particle ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud ice particle Particles made of ice found in clouds. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MET : Surface Meteorological Instrumentation Field Campaign Instruments REPLICATOR : Balloon-borne Ice Crystal Replicator CPI : Cloud Particle Imager CVI-AIR : Counterflow Virtual Impactor LEARJET : Lear Jet PARTIMG : Particle imager UAV-PROTEUS-MICRO : Proteus Cloud Microphysics Instruments

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ARM - Measurement - Particle size distribution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

size distribution size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle size distribution The number of particles present in any given volume of air within a specified size range. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer TDMA : Tandem Differential Mobility Analyzer UHSAS : Ultra-High Sensitivity Aerosol Spectrometer Field Campaign Instruments

162

ARM - Measurement - Cloud condensation nuclei  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

condensation nuclei condensation nuclei ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud condensation nuclei Small particles (typically 0.0002 mm, or 1/100 th the size of a cloud droplet) about which cloud droplets coalesce. Categories Aerosols, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CCN : Cloud Condensation Nuclei Particle Counter Field Campaign Instruments AOS : Aerosol Observing System

163

ARM - Measurement - Longwave spectral radiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

spectral radiance spectral radiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave spectral radiance The rate at which the spectrally resolved radiant energy in the longwave portion of the spectrum is emitted in a particular direction per unit area perpendicular to the direction of radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer ASSIST : Atmospheric Sounder Spectrometer for Infrared Spectral

164

ARM - Measurement - Aerosol optical properties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

properties properties ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical properties The optical properties of aerosols, including asymmetry factor, phase-function, single-scattering albedo, refractive index, and backscatter fraction. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CSPHOT : Cimel Sunphotometer NEPHELOMETER : Nephelometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

165

ARM - Measurement - Cloud base height  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

base height base height ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud base height For a given cloud or cloud layer, the lowest level of the atmosphere where cloud properties are detectable. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments BLC : Belfort Laser Ceilometer MPL : Micropulse Lidar MWRP : Microwave Radiometer Profiler RL : Raman Lidar VCEIL : Vaisala Ceilometer External Instruments NOAASURF : NOAA Surface Meteorology Data, collected by NWS and NCDC

166

ARM - Measurement - Aerosol backscattered radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

backscattered radiation backscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System MPL : Micropulse Lidar NEPHELOMETER : Nephelometer

167

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting Meeting 2002 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2002, April 2002 St. Petersburg, Florida For proper viewing, extended abstracts should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Ackerman, S.A. Cloud Phase Determination in the Arctic Using AERI Data ERBE OLR and Cloud Type by Split Window* Ackerman, T.P. A Climatology of Shortwave Cloud Radiative Forcing Using Ground-Based Broadband Radiometric Time-Series*

168

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting Meeting 2003 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2003, April 2003 Broomsfield, Colorado For proper viewing, extended abstracts should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Abdou, W.A. Intercomparison of MISR Aerosol Retrievals with Sunphotometer and MODIS Results* Ackerman, T.P. Comparison of Observed and Modelled Liquid Water Path for Stratus and Stratocumulus Clouds at the SGP*

169

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rotating Shadow Arm for Broadband Hemispheric Radiometers: Instrument Design and Concept Verification Using Atmospheric Radiation Measurement Southern Great Plains Radiometer...

170

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploration of Statistical Angular Radiance Closure in Cloudy Skies Exploration of Statistical Angular Radiance Closure in Cloudy Skies Evans, K.F.(a) and Wiscombe, W.J.(b), University of Colorado (a), NASA/Goddard (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Most ARM cloudy sky radiation closure experiments have been performed with broadband fluxes. However, it is difficult to understand the causes of the inevitable discrepencies between the modeled and observed broadband fluxes in those closure experiments because the fluxes are extensively integrated over angle and wavelength. For example, knowing that a particular comparison disagrees by 50 W/m^2 is not particularly helpful in discovering which aspects of cloud remote sensing, radiative transfer, or measurements might be in error. Angular radiance closure compares the measured and

171

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Methods for Broadband Outdoor Radiometer Calibration (BORCAL) Improved Methods for Broadband Outdoor Radiometer Calibration (BORCAL) Wilcox, S.M., Andreas, A.M., Reda, I., and Myers, D.R., National Renewable Energy Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM Program deploys approximately 100 radiometers to measure broadband solar radiation at stations in the North Slope of Alaska (NSA), Southern Great Plains (SGP), and Tropical Western Pacific (TWP) Cloud and Radiation Testbed (CART) sites. Two calibration events performed at the SGP Radiometer Calibration Facility (RCF) each year maintain radiometer calibration traceability to the World Radiometric Reference and assure reliable and uniform measurements at each CART site. Calibrations are performed using the Radiometer Calibration and Characterization (RCC)

172

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Surface Shortwave Radiation Budget in the ECMWF Forecast System The Surface Shortwave Radiation Budget in the ECMWF Forecast System Morcrette, J.-J., European Centre for Medium-Range Weather Forecasts, United Kingdom Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The surface shortwave radiation (SSR) produced by the ECMWF forecast system since 1989 is studied with reference to the various versions of the shortwave radiation scheme. For the latest 6-spectral interval version, model SSR is compared with surface radiation measurements for recent periods, available as part of the Baseline Surface Radiation Network (BSRN), Surface Radiation Network (SURFRAD), and Atmospheric Radiation Measurement (ARM) programs. Comparisons on one-hour basis are emphasized to allow discrepancies to be more easily linked to differences between model

173

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation of TERRA MODIS Cloud Properties Using Ground-Based Measurements Validation of TERRA MODIS Cloud Properties Using Ground-Based Measurements at the DOE ARM SGP Site Dong, X.(a), Xi, B.(a), Minnis, P.(b), Wielicki, B.(b), Sun-Mack, S.(c), Chen,Y.(c), and Mace, G.G.(d), University of North Dakota (a), NASA/Langley Research Center (b), SAIC, Inc. (c), University of Utah (d) Cloud macrophysical and microphysical/optical properties derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra as part of the Clouds and the Earth's Radiant Energy System (CERES) project during February 2000-December 2001 are compared to simultaneous ground-based observations. The ground-based data taken over the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) site are used as cloud truth data set in the validation of the CERES Science Team derived

174

ARM - CLASIC Measurement Platforms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

provide spaceborne measurements, including surface albedo, surface fluxes, soil moisture remote sensing (Polarimetric Scanning Radiometer), vegetation indices and derived...

175

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Science Team Meeting 2 Science Team Meeting 1992 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Second Atmospheric Radiation Measurement (ARM) Science Team Meeting DOE CONF-9110336, October 26-30, 1992 Denver, Colorado For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Ackerman, T. An Integrated Cloud Observation and Modeling Investigation in Support of the Atmospheric Radiation Measurement Program Tropical Western Pacific Project: Status Albrecht, B.

176

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Science Team Meeting 2 Science Team Meeting 1992 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Second Atmospheric Radiation Measurement (ARM) Science Team Meeting DOE CONF-9110336, October 26-30, 1992 Denver, Colorado For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. Technical Sessions A Field Evaluation of NOAA Remote Sensor Measurements of Wind, Temperature, and Moisture B.E. Martner A Stochastic Formulation of Radiant Transfer in Clouds and Radiative Properties of Non-Uniform Clouds G.L. Stephens and P.D. Gabriel A Study of Longwave Radiation Codes for Climate Studies: Validation

177

ARM - Publications: Science Team Meeting Documents: Using ARM data to  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using ARM data to evaluate the dependence of surface downward longwave Using ARM data to evaluate the dependence of surface downward longwave radiation on near-surface temperature and water vapour path, in both ARM observations and the Met Office NWP model. Henderson, Peter Environmental Systems Science Centre Slingo, Anthony Environmental Systems Science Centre In this work, we continue our comparisons between ARM data and simulations from the UK Met Office Numerical Weather Prediction (NWP) model. The present analysis focuses on the variables that control the downwelling longwave radiation at the surface, in particular the column water vapour and near-surface temperature. Water vapour is both a source and a sink of latent heat, is an active modulator of atmospheric radiative transfer and therefore influences both the general circulation and the global energy

178

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using a MFRSR to Calculate Direct and Diffuse Broadband Measurements from Using a MFRSR to Calculate Direct and Diffuse Broadband Measurements from Global Broadband Measurements Cornwall, C.R. (a,b), Hodges, G.B. (a,b), and DeLuisi, J.D. (b), University of Colorado Cooperative Institute for Research in Environmental Sciences (a), NOAA Air Resources Lab (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Research Objective: To infer values of direct solar irradiance using data from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) and a broadband pyranometer measuring global horizontal irradiance. Methodology: The MFRSR measures global and diffuse radiation over six narrow spectral bands as well as one broadband (silicon pyranometer). Values for corresponding direct normal irradiances are automatically calculated as part of the MFRSR

179

ARM - Selected Science Team Proposals - FY 1995  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings User Meetings Annual Meetings of the Atmospheric System Research (ASR) Science Team and Fall Working Groups Accomplishments Read about the 20 years of accomplishments (PDF, 696KB) from the ARM Program and user facility. Performance Metrics ASR Metrics 2009 2008 2007 2006 Selected Science Team Proposals - FY 1995 Dr. R. Nelson Byrne, SAIC: "Evolution of a New GCM-Capable Stochastic Cloud/Radiation Parameterization Using ARM Data - Phase II" Dr. Steven J. Ghan, Pacific Northwest National Laboratory: "Parameterization of Convective Cloud Coverage in GCMs" Dr. George Golitsyn, Russian Academy of Sciences, Institute of

180

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Formation of Fair-Weather Cumuli Formation of Fair-Weather Cumuli Zhu, P. and Albrecht, B., University of Miami Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting This study includes two related parts. In the first part, The formation of fair-weather cumuli has been analyzed based on both a simple mixed layer model and the data collected from the Atmospheric Radiation Measurement (ARM) program at the Southern Great Plains (SGP) site. By analyzing the conditions for the formation of fair-weather cumuli, we illustrate how different processes, such as the surface heat fluxes, the entrainment process at the boundary layer top, the vertical thermodynamic structure above the boundary layer, and the large-scale subsidence, control the formation of clouds. The results of our analysis show that it is the highly

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigation of the Aerosol Indirect Effect at the Southern Great Plains Investigation of the Aerosol Indirect Effect at the Southern Great Plains Using Ground Based Remote Sensors and Modeling Feingold, G.(a), Lane, D.(b), and Min, Q.(c), NOAA/ETL (a), Rutgers University (b), ASRC, SUNY Albany (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting We are using ground-based remote sensors, supplemented by in situ measurements when available, to explore the aerosol indirect effect in non-precipitating, ice-free clouds. The study uses archived ARM data on sub-cloud aerosol extinction, cloud liquid water path, cloud optical depth, drop effective radius, and boundary layer dynamics to investigate the relationship between aerosol extinction and drop effective radius. Two approaches are being taken: the first is an empirical approach which

182

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiative Effects of Cloud Inhomogeneity and Geometric Association over the Radiative Effects of Cloud Inhomogeneity and Geometric Association over the Tropical Western Pacific Warm Pool Jensen, M.P.(a) and DelGenio, A.D.(b), Department of Applied Physics and Applied Mathematics, Columbia University, NASA GISS (a), NASA GISS (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The radiative and microphysical characteristics for several precipitating anvil systems observed by the TRMM satellite over the Manus or Nauru Island ARM sites are modelled. Reflectivity data from the TRMM Precipitation radar and GMS satellite infrared radiometer measurements are used to parametrize the three-dimensional cloud microphysics of each precipitating cloud system. These parameterized cloud properties are used as input for a

183

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Radiative Properties of Uniform and Broken Stratus: An Observational The Radiative Properties of Uniform and Broken Stratus: An Observational and Modelling Study Utilizing the Independent Column Approximation for Solar Radiative Transfer Clothiaux, E.E., The Pennsylvania State University; Barker, H.W., Atmospheric Environment Service of Canada; Kato, S., Hampton University; Dong, X., Analytical Service and Materials, Inc. Ackerman, T.P., The Pennsylvania State University; Liljegren, J.C., Ames Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Millimeter-Wave Cloud Radar (MMCR) has operated continuously at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) site since November 11, 1996. As yet, much of the early data has not been calibrated correctly and insect contamination in the boundary layer is

184

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Upper Tropospheric Water Vapor in the NCAR Community Climate Evaluation of Upper Tropospheric Water Vapor in the NCAR Community Climate Model, CCM3, Using Modeled and Observed HIRS Radiances Iacono, M.J., Delamere, J.S., Mlawer, E.J., and Clough, S.A., Atmospheric and Environmental Research, Inc. Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Upper tropospheric water vapor (UTWV) simulated by the National Center for Atmospheric Research Community Climate Model, CCM3, is evaluated by comparing modeled, clear sky, brightness temperatures to those observed from space by the High-resolution Infrared Radiation Sounder (HIRS). The climate model was modified to utilize a highly accurate longwave radiation model, RRTM, and a separate radiance module, both developed for the Atmospheric Radiation Measurement (ARM) Program. The radiance module

185

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anomalous Radiative Absorption and Unbounded Cascade Models of Cloud Anomalous Radiative Absorption and Unbounded Cascade Models of Cloud Fields Schertzer, D., and Larchevêque, M., Université P.&M. Curie, Paris, France; Lovejoy, S., McGill University; Naud, C., Blackett Laboratory, Imperial College, London Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting One of the most achieving results of Atmospheric Radiation Measurement (ARM) Program could well have been the empirical finding of the anomalous radiative absorption of the atmosphere. We demonstrate that unbounded cascade models of cloud fields, rather than bounded cascade models, could give a theoretical and quantitative understanding of this phenomenon. Indeed, the former models keep contact with the physics and coherence of the turbulent cascades (velocity, temperature and liquid water content) and

186

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of the Aerosol-Cloud Interactions from Aircraft, Surface Analysis of the Aerosol-Cloud Interactions from Aircraft, Surface Measurements, and Cloud Parcel Model During the March 2000 IOP at the ARM SGP Site Delene, D.J.(a), Dong, X.(a), Chen, Y.(b), Poellot, M.(a), and Penner, J.E.(b), University of North Dakota (a), University of Michigan (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting One of the largest uncertainties in estimating anthropogenic forcing of climate change and in predicting future climates is the relationship between atmospheric aerosols and cloud properties. Aerosols affect cloud optical properties, cloud water content and cloud lifetime. A higher aerosol number concentration generally results in the nucleation of more smaller cloud droplets, which increases cloud albedo and results in a

187

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cirrus Cloud Statistics from a Cloud-Resolving Model Simulation Compared to Cirrus Cloud Statistics from a Cloud-Resolving Model Simulation Compared to Cloud Radar Observations Krueger, S.K. (a), Luo, Y. (a), Mace, G.G. (a), and Xu, K.-M. (b), University of Utah (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Mace, Clothiaux, and Ackerman (2000; MCA) determined the properties of cirrus clouds derived from one year (December 1996 to November 1997) of MMCR data collected at the SGP ARM site in Oklahoma. They also used additional measurements to retrieve the bulk microphysical properties of thin cirrus cloud layers. We sampled CRM results in a way that allows direct comparison to MCA's observations and retrievals of cirrus cloud properties. This allows evaluation, in a statistical sense, of the CRM's

188

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spatial Hetergeneity in Mid-Summer Fluxes of Carbon, Water and Energy in Spatial Hetergeneity in Mid-Summer Fluxes of Carbon, Water and Energy in Agriculutural Plots Near the SGP Central Facility Fischer, M.L.(a), Billesbach, D.(b), Berry, J.(c), Riley, W.R.(a), and Torn, M.S.(a), Lawrence Berkeley National Laboratory (a), University of Nebraska (b), Carnegie Institution of Washington (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Patterns of land use and management are likely to dominate the spatial heterogeneity in cycles of energy, carbon, and water in ecosystems of the Southern Great Plains (SGP). We report recent progress on measuring and modeling spatial heterogeneity in land surface-atmosphere exchange for different crops in the footprint of a flux system mounted on the ARM SGP Central Facility 60 m tower. The first phase of our the "Portable Flux

189

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Winter Surface Radiative Energy Exchange at NSA: Cloudy vs. Clear Sky Winter Surface Radiative Energy Exchange at NSA: Cloudy vs. Clear Sky Stramler, K.(a), Del Genio, A.D.(b), and Rossow, W.(b), Columbia University (a), NASA/GISS (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM measurements at Point Barrow, Alaska show that atmospheric emission drives the winter variability of the surface radiative energy exchange, as the incursion of air masses of differing properties alternately warm and cool the snow surface and the snow-ground interface. The magnitude of the surface radiative energy exchange, however, appears to be in part dictated by the more slowly varying sub-surface temperatures. This is most evident when observing the inter-annual variability of clear-sky surface net longwave radiation at NSA; winter cloudy-sky surface net longwave radiation

190

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Preliminary Analysis of Horizontal Inhomogeneity for ARESE II Clouds Preliminary Analysis of Horizontal Inhomogeneity for ARESE II Clouds Marshak, A. (a), Wiscombe, W.J. (b), Davis, A.B. (c), and Pilewskie, P. (d), UMBC/JCET (a), NASA/GSFC (b), LANL (c), NASA/Ames (d) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM Enhanced Shortwave Experiment (ARESE) II was conducted at the SGP site from February 21 through April 15, 2000. The identical set of radiometers simultaneously measured the broadband and narrowband fluxes, as well as spectral fluxes and radiances from the aircraft flying above clouds and on the ground. To escape sampling problems with only one aircraft flying a daisy pattern over the central facility, the whole experiment was focused on optically thick stratocumulus clouds. However, even heavy stratus clouds

191

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of an Improved Longwave Radiation Model, RRTM, on the Energy Budget Impact of an Improved Longwave Radiation Model, RRTM, on the Energy Budget and Thermodynamic Properties of the NCAR Climate Model, CCM3 Iacono, M.J., Mlawer, E.J., and Clough, S.A., Atmospheric and Environmental Research, Inc. Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The effect of introducing a new longwave radiation parameterization, Rapid Radiative Transfer Model (RRTM), on the energy budget and thermodynamic properties of Version 3 of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3) will be presented. RRTM is a rapid and accurate k-distribution radiative transfer model that has been developed for the Atmospheric Radiation Measurement (ARM) Program. Among the important features of the RRTM are its connection to radiation

192

ARM - Measurement - Sea surface temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsSea surface temperature govMeasurementsSea surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Sea surface temperature The temperature of sea water near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model Data Field Campaign Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model Data MIRAI : JAMSTEC Research Vessel Mirai

193

ARM - Measurement - Radiative heating rate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsRadiative heating rate govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments MOLTS : Model Output Location Time Series Datastreams MOLTS : Model Output Location Time Series Datastreams MOLTSEDASSNDCLASS1 : Model Output Loc. Time Ser. (MOLTS): EDAS

194

ARM - 2006 Science Team Meeting Pictures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pictures Pictures 2006 Meeting 2006 Meeting Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Posters Presentations Meeting Archives ARM Science Team Meeting Proceedings Past Science Team Meetings 2006 Science Team Meeting Pictures Photos ARM Chief Scientist Warren Wiscombe presents "The ARM Chief Scientist Report" during Tuesday morning's plenary session. The Instantaneous Radiative Flux (IRF) Working Group report is presented at Tuesday morning's plenary session. Dr. David Thomassen, Acting Associate Director of DOE's Office of Biological and Environmental Research, attended this year's ARM Science Team Meeting. Meeting attendees listen at the morning plenary session. Rick Petty engages in a discussion after the plenary session. The ARM Science Team meeting allows scientists to collaborate and share their data and research.

195

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Science Team Meeting 6 Science Team Meeting 1996 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Sixth Atmospheric Radiation Measurement (ARM) Science Team Meeting DOE CONF-9603149, March 1996 San Antonio, Texas For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. Poster abstracts are not available online for this year. However, if you would like to request a copy of a specific poster abstract, please contact the Web Administrator. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Ackerman, T.P. A Comparison Between Clear Sky Shortwave Flux Calculations and Observations During ARESE

196

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Science Team Meeting 4 Science Team Meeting 1994 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Fourth Atmospheric Radiation Measurement (ARM) Science Team Meeting DOE CONF-940277, March 1994 Charleston, South Carolina For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Abreu, L.W. MODTRAN3: Suitability as a Flux-Divergence Code Acharya, P. MODTRAN3: Suitability as a Flux-Divergence Code Ackerman, S.A. Atmospheric Emitted Radiance Interferometer Data Analysis Methods

197

ARM - Measurement - Aerosol particle size  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particle size particle size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size Linear size (e.g. radius or diameter) of an aerosol particle. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments AEROSMASSSPEC : Aerosol Mass Spectrometer CPI : Cloud Particle Imager DRI-GND : Desert Research Institute Ground-Based Aerosol Instruments DRUM-AEROSOL : Drum Aerosol Sampler AEROSOL-TOWER-EML : EML Tower based Aerosol Measurements

198

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On Problems in Simulating Boundary-layer Cumulus Clouds with Third-Order On Problems in Simulating Boundary-layer Cumulus Clouds with Third-Order Turbulence Closure Models Cheng, A.(a) and Xu, K.-M.(b), Atmospheric Sciences, NASA Langley Research Center (a), Center for Atmospheric Sciences, Hampton University (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A hierarchy of third-order turbulence closure models are used to simulate boundary-layer cumulus clouds from the Atmospheric Radiation Measurement in this study. A moist spurious oscillation is found in the Level-3 model, which predicts all third moments. The period of the oscillation is about 1000 s, which is resulted from the interaction of the mean liquid water gradient and the liquid water buoyancy terms in the third-moment equations. A reasonably large diffusion coefficient and a large dissipation at its

199

ARM - Publications: Science Team Meeting Documents: Update on the ARM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Update on the ARM SCM/CRM multi-year continuous forcing datasets at SGP Update on the ARM SCM/CRM multi-year continuous forcing datasets at SGP Xie, Shaocheng Lawrence Livermore National Laboratory Yio, John DOE/Lawrence Livermore National Laboratory Klein, Stephen Lawrence Livermore National Laboratory Cederwall, Richard Lawrence Livermore National Laboratory Statistical study of SCM/CRM simulations requires a long-term (preferably, multiyear) large-scale forcing data. The current approach to develop such multiyear datasets at SGP is to use the NOAA mesoscale model RUC (Rapid Update Cycle) analyses constrained with the ARM surface and TOA measurements by using a variational analysis approach. Using this method, the LLNL ARM data infrastructure team developed a 2-year continuous forcing dataset for 1999-2000 two years ago. Since then, several ARM surface and

200

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud-Radiation-Aerosol Experiment (1996) at IAPh, Russia Cloud-Radiation-Aerosol Experiment (1996) at IAPh, Russia Golitsyn, G.S., Anikine, P.P., and Sviridenkov, M.A., Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting In 1996, local measurements of the optical properties of the near-surface aerosol were carried out parallel with aureole measurements of the aerosol in the atmospheric column. The spectral radiation was measured by a complex of spectrometers. Global radiation was controlled by standard equipment (pyrheliometer, pyranometer, pyrgeometer). A microwave sounder was used to determine the liquid water path of clouds and water vapor content. Advanced Very High Resolution Radiometer (AVHRR) data from the National Oceanic and

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ARM - Publications: Science Team Meeting Documents: In-Situ Measurements of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In-Situ Measurements of Aerosol Optical Properties using new Cavity In-Situ Measurements of Aerosol Optical Properties using new Cavity Ring-Down and Comparison with more Traditional Techniques Strawa, Anthony Ames Research Center Hallar, Anna NASA Ames Research Center Arnott, Pat Desert Research Institute Covert, David University of Washington Elleman, Robert University of Washington Ogren, John NOAA/CMDL Schmid, Beat Bay Area Environmental Research Institute Luu, A BAER Carbonaceous species (BC and OC) are responsible for most of the absorption associated with aerosol particles. The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult aerosol properties to measure. A new cavity ring-down (CRD) instrument, called

202

ARM - Measurement - Total cloud water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

203

ARM - Measurement - Cloud droplet size  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

droplet size droplet size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud droplet size Linear size (e.g. radius or diameter) of a cloud particle Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments CPI : Cloud Particle Imager CVI-AIR : Counterflow Virtual Impactor MIRAI : JAMSTEC Research Vessel Mirai PDI : Phase Doppler Interferometer UAV-PROTEUS-MICRO : Proteus Cloud Microphysics Instruments SPEC-CPI : Stratton Park Engineering Company - Cloud particle imager

204

ARM - Measurement - Cloud optical depth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

optical depth optical depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud optical depth Amount of light cloud droplets or ice particles prevent from passing through a column of atmosphere. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments GOES : Geostationary Operational Environmental Satellites Field Campaign Instruments EC-CONVAIR580-BULK : Environment Canada Convair 580 Bulk Parameters GOES : Geostationary Operational Environmental Satellites

205

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Surface Emissivities Derived from Multispectral Satellite Data Improved Surface Emissivities Derived from Multispectral Satellite Data Over the ARM SGP Smith, W.L., Jr., Minnis, P., and Young, D.F., NASA Langley Research Center Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Surface emissivity is an important parameter for many remote sensing applications but is difficult to determine because it requires an accurate specification of the surface skin temperature. Because of this, laboratory estimates of the emissivity of pure surfaces are often relied on which generally do not adequately simulate the Earth's natural surfaces as seen from a satellite imager in space. A technique has been developed to derive surface emissivity from clear-sky, multispectral satellite data for three infrared channels (3.9 or 3.7, 10.8 and 12.0 um) common to many of today's

206

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Comparison of the TSI/WSI Cloud Fraction Estimates at the SGP A Comparison of the TSI/WSI Cloud Fraction Estimates at the SGP Slater, D.W.(a), Long, C.N.(a), and Tooman, T.P.(b), Pacific Northwest National Laboratory (a), Sandia National Laboratory (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Beginning with the installation of the Total Sky Imager (TSI) at the ARM Southern Great Plains site in July, 2000, both the TSI and the Whole Sky Imager (WSI) have operated simultaneously in close proximity to one another. Both systems produce all-sky cloud fraction estimates as part of their primary products, though each uses distinctly different methods to arrive at these estimates. The purpose of this study is to provide a link between the large body of estimates produced by the WSI before the

207

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Tale of Two Cirrus A Tale of Two Cirrus Poellot, M.R.(a), Mace, G.G.(b), and Arnott, W.P. (c), University of North Dakota (a), University of Utah (b), Desert Research Institute (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting On May 8, 1998, an orographically-forced cirrus layer overspread the DOE ARM Program's Southern Great Plains site and subsequently became mixed with anvil outflow from thunderstorms. These clouds were sampled in situ by the University of North Dakota Citation aircraft and remotely by an array of ground-based radar, lidar and radiometric instrumentation. The first of two aircraft flights sampled the orographic cirrus through a series of step climbs and spirals. During that time, the cloud was relatively uniform in depth and structure. Shortly after the start of the second flight, the

208

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Eddy Simulations of Fair-Weather Cumulus Case at SGP Site Large Eddy Simulations of Fair-Weather Cumulus Case at SGP Site Zhu, P. and Albrecht, B.A., University of Miami Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A fair-weather cumulus (FWC) case observed on July 6, 1997 at the ARM SGP site is simulated using RAMS model. In this study, we performed a series of numerical experiments to study the basic physics underlying the FWC and the evolution of these clouds in response to the change of external forcings and conditions. The simulations indicate that the evolution of shallow cumuli is very sensitive to the initial vertical structure of moisture and the variation of the entrainment moisture fluxes. Based on the penetration theory, we are able to develop a cloud initiation parameterization using

209

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping of Surface Reflectance over the Southern Great Plains Region from Mapping of Surface Reflectance over the Southern Great Plains Region from Multiple Satellites Trishchenko, A.P.(a), Li, Z. (a,b), and Park, W. (a), Canada Centre for Remote Sensing, Ottawa, Canada (a), Now at ESSIC, Department of Meteorology, College Park (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The ground-based ARM observations are limited to a handful of locations sparsely distributed in the South Great Plains (SGP). Mapping of surface narrow and broadband albedos are necessary for modeling and remote sensing studies to better describe the spatial variability of surface boundary conditions. In this study, we present surface narrowband and broadband reflectance, as well as the normalized difference vegetation index over the

210

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On the Uncertainty of Inferring Absolute Cloud Fraction from Time Series of On the Uncertainty of Inferring Absolute Cloud Fraction from Time Series of Narrow Field of View Observations Ma, Y.-T.(a) and Ellingson, R. G.(b), University of Maryland at College Park (a), Florida State University (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting One way to parameterize longwave 3-D cloud effects is to relate the various cloud properties to a statistical cloud field parameter called the Probability of Clear Line of Sight (PCLS) and then to a simple integral parameter - the effective cloud fraction. In our ongoing study, we are trying to test various PCLS models with ARM cloud observations. Many of the cloud properties must be inferred from time series of zenith observations, whereas spatially averaged quantities are the ones desired. What are the

211

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Influence of Clouds, Aerosols, and Water Vapor on the Discrepancy The Influence of Clouds, Aerosols, and Water Vapor on the Discrepancy Between Modeled and Observed Atmospheric Absorption Arking, A. Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Daily mean estimates of atmospheric absorption of solar radiation at the ARM/SGP site are obtained for 36 days during the fall season in 1995 and 1997. They are based on broadband observations of surface flux and satellite estimates of TOA albedo. Mean absorption in the vertical column is 0.246 (expressed as a ratio with respect to the incident flux at TOA). For 13 of the days, which are entirely free of clouds, the mean absorption is 0.245. Although clouds have no systematic effect on absorption, they do have an effect---sometimes causing an increase and sometimes a decrease

212

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Latitude Cloud Microphysical Properties from FTIR Data High Latitude Cloud Microphysical Properties from FTIR Data Lubin, D., Scripps Institution of Oceanography Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM AERI instruments record downwelling radiance spectra with sufficient radiometric calibration to enable the retrieval of important cloud microphysical properties. This poster will describe how radiative transfer simulations that include cloud thermodynamic phase (liquid water, ice, mixed phase) can be utilized with Fourier Transform Infrared (FTIR) spectroradiometer data. The presence of the ice phase in cloud alters the slope of the brightness temperature spectrum between 800 - 1200 inverse centimeters, such that ice can often be detected. The AERI near infrared channel also may have potential for cloud phase as discrimination.

213

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D Delta-Diffusion and IR Monte-Carlo Methods for Radiative Transfer 3D Delta-Diffusion and IR Monte-Carlo Methods for Radiative Transfer Applied to Inhomogeneous Cirrus over the ARM-SGP Site Chen, Y.(a), Liou, K.N.(a), Gu, Y.(a), Ou, S.C.(a), and Mace, G.G.(b), University of California, Los Angeles (a), University of Utah (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting An efficient method based on a full multigrid approach has been developed to solve the 3D delta-diffusion radiative transfer equation, which utilizes four-term spherical harmonics expansion for the phase function and intensity. This method first solves the inhomogeneous partial differential equation on a number of coarse grids and subsequently performs interpolation to predivided fine grids to speed up the convergence of the solution, particularly useful for cloud radiation parameterization in

214

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Consistency of ARESE II Cloud Absorption Estimates and Sampling Issues Consistency of ARESE II Cloud Absorption Estimates and Sampling Issues Oreopoulos, L.(a), Marshak, A.(a), and Cahalan, R.F.(b), JCET – University of Maryland Baltimore County (a), NASA-GSFC (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Data from three cloudy days (March 3, 21, 29, 2000) of the ARM Enhanced Shortwave Experiment II (ARESE II) were analyzed. Grand averages of broadband absorptance among three sets of instruments were compared. Values of fractional absorptance were ~0.20-0.22 for all three days with the exception of March 3 when two sets of instruments gave values smaller by ~ 0.03-0.04. The robustness of these values was investigated by looking into possible sampling problems mainly with the aid of 500 nm spectral fluxes.

215

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On the Detection and Analysis of Multilayered Clouds: Comparison of MODIS On the Detection and Analysis of Multilayered Clouds: Comparison of MODIS Analyses with ARM CART Site Cloud Products Baum, B.A.(a), Nasiri, S.L.(b), and Mace, G.G.(c), NASA Langley Research Center (a), University of Wisconsin-Madison (b), University of Utah (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting We will present new ideas regarding the detection and analysis of multilayered clouds in Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Over the past year, the MODIS cloud property retrieval effort has matured considerably as algorithms have been improved and the instrument performance has been characterized more accurately. Errors caused by noise, striping, and out-of-band response have been reduced. We have developed and tested different approaches for daytime and nighttime

216

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parameterizing the Radiative Properties of Midlatitude Clouds Parameterizing the Radiative Properties of Midlatitude Clouds Sassen, K. (a), Comstock, J.M. (b), and Wang, Z. (a), University of Utah (a), Pacific Northwest National Laboratory (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A major goal of the ARM program is to obtain the requisite information needed to improve the treatment of the radiative effects of clouds in large-scale models that ultimately must be relied on to predict the impact of human-induced activities on global climate change. The clouds of the middle and upper troposphere are especially difficult to treat because of their variable optical properties, which range from optically thin in the visible, and graybody emitters in the infrared, to dense blackbody emitters. Approaches to obtain this information involve the development of

217

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Day-Night Continuity in Retrievals of Cloud Properties from Evaluation of Day-Night Continuity in Retrievals of Cloud Properties from GOES Heck, P.W.(a), Minnis, P.(b), Khaiyer, M.M.(a), Smith, Jr., W.L.(b), Young, D.F.(b), and Nguyen, L.(b), Analytical Services & Materials, Inc. (a), NASA Langley Research Center (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Currently, multi-spectral algorithms are being used to retrieve microphysical and radiative cloud p roperties from Geostationary Operational Environmental Satellite (GOES) imagery in a near-real time over a domain that includes the ARM Southern Great Plains (SGP) site. The Visible-Infrared-Solar i nfrared-Split window Technique (VISST) and Solar infrared- Infrared-Split window Technique (SIST) a re applied to half-hourly GOES data. The VISST is utilized during daylight hours while

218

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Continuous Baseline Microphysical Retrieval (MICROBASE): Status of SGP A Continuous Baseline Microphysical Retrieval (MICROBASE): Status of SGP Version 1.2 and Prototype TWP Version Miller, M.A.(a), Johnson, K.L.(a), Jensen, M.P.(b), Mace, G.G.(c), Dong, X.(d), and Vogelmann, A.M.(a), Brookhaven National Laboratory (a), Columbia University (b), University of Utah (c), University of North Dakota (d) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The interaction of clouds with incoming and outgoing radiation streams produces discontinuous regions of heating and cooling within the atmospheric column. These regions can influence the atmospheric circulations at multiple scales, as well as modify the existing cloud structures. The Broadband Heating Rate Project (BBHRP) within ARM has the goal of producing instantaneous snapshots of the heating and cooling rate

219

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applications of the Aerosonde at NSA Applications of the Aerosonde at NSA Curry, J.A. and Holland, G.J., University of Colorado Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The first ARM Aerosonde flights at Barrow in April 1999 were not successful owing to the aircraft's inability to fly under severe icing conditions. However, we were sufficiently encouraged by these initial flights to pursue further developments to make feasible Aerosonde flights in the Arctic. NSF has funded a major project to establish a long-term Aerosonde facility based in Barrow. Extensive research is underway on the topic of icing mitigation. A limited but successful mission was undertaken in Barrow during August 2000. In the coming year, flights are planned for April, August 2001. We hope to be able to fly the originally proposed

220

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluating the NCEP Global Forecast Model Clouds Evaluating the NCEP Global Forecast Model Clouds Lazarus, S.M. (a), Krueger, S.K. (a), Jenkins, M.A. (a), and Pan, H.-L. (b), University of Utah (a), National Centers for Environmental Prediction (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting As part of a collaborative effort with the National Center for Environmental Prediction (NCEP), the University of Utah is now archiving (daily) column data from the NCEP Medium Range Forecast (MRF) model. Data are collected for 8 sites, 4 of which directly coincide with ARM facilities at Manus, Nauru, Barrow, and the Southern Great Plains (SGP) Central Facility (CF). The bevy of observational data at these locations offers a unique opportunity to evaluate model performance. Because cloud feedback

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Base Height Cloud Base Height Kassianov, E., Long, C., and Christy, J., Pacific Northwest National Laboratory Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting We have suggested a method for estimating Cloud Base Height (CBH) by using paired ground-based Total Sky Imagers (TSI) hemispherical observations (Kassianov and Long, 2003). Our results of the model-output inverse problem showed that, for broken clouds (single layer), moderately accurate CBH retrieval is possible. Both a TSI and a Hemispherical Sky Imager (HSI) were run simultaneously during the ARM Cloudiness Intercomparison IOP (Oklahoma, 2003). We use the data from these two instruments to evaluate the suggested method. We perform the CBH retrieval for a few fields of broken clouds (occurring at different altitudes) by using the suggested method. Then we

222

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Properties Over the North Slope of Alaska: A Comparison of Properties Over the North Slope of Alaska: A Comparison of Ground-Based and Space-Based Retrievals Storvold, R.(a), Marty, C.(a), Xiong, X.(b), Stamnes, K.H.(c), and Zak, B.D.(d), University of Alaska Fairbanks (a), QSS group Inc. (b), Stevens Institute of Technology (c), Sandia National Laboratories (d) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting In the Arctic there is a large seasonal variability in cloud cover, cloud base height, and cloud liquid water content. Cloud properties above the ARM/NSA CART site in Barrow are retrieved using a suite of different instruments and retrieval techniques. Daily and monthly averages of the cloud properties are derived for a full annual cycle using data from LIDAR, Whole Sky Imager, Cloud Radar, Micro Wave Radiometer, and Broadband

223

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A High Spectral Resolution Lidar for the Arctic - A Progress Report A High Spectral Resolution Lidar for the Arctic - A Progress Report Eloranta, E.W., Razenkov, I., Kuehn, R., Holz, R., Hedrick, J., and Garcia, J., University of Wisconsin-Madison Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The University of Wisconsin is constructing a High Spectral Resolution Lidar for deployment in the Arctic. It is designed to operate as an internet appliance and require minimal attention from an onsite attendent. It will provide continuous well calibrated profiles of optical depth, cloud phase and backscatter cross sections. Deployment at the Point Barrow ARM facility is proposed. This poster will describe progess to date. Initial testing has demonstrated that the shared transmitter/reciever telescope design functions properly. While this approach eliminates alignment

224

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of Measurements of Liquid Water Path Comparison of Measurements of Liquid Water Path Lane, D.E. (a), Fairall, C.W. (b), Hazen, D. (b), and Orr, B. (b), Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder (a), Environmental Technology Laboratory, National Oceanic and Atmospheric Administration, Boulder (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Investigation of ship-based microwave radiometer observations from the equatorial Pacific during EPIC 99 indicated anomalously high values of liquid water content during clear sky conditions. Several possible sources of error were examined including the radiative transfer model employed to the original sondings, and application of the TIP calibrations. Further research has suggested that incorrect brightness temperatures were observed

225

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Partially Prognostic Third-Order Closure Model for Modeling the Boundary A Partially Prognostic Third-Order Closure Model for Modeling the Boundary Layer Cheng, A.C.(a) and Xu, K.-M.(b), Center for Atmospheric Sciences, Hampton University (a), Atmospheric Sciences, NASA Langley Research Center (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A new partially prognostic third-order closure (TOC) model is developed to model boundary-layer clouds in this study. The model assumes joint double Gaussian distributions of vertical velocity, temperature and moisture. The first and second moments of all variables as well as the third moments of vertical velocity, liquid-water potential temperature and total water mixing ratio are predicted to determine a proper probability density function (PDF). Once the PDF is known, the rest of the third moments and

226

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aircraft Measurements of Spectral and Broadband Shortwave Albedo from the Aircraft Measurements of Spectral and Broadband Shortwave Albedo from the NASA Langley OV-10 Smith, W.L., Jr.(a), Charlock, T.P.(a), Roback, V.E.(a), Rutledge, C.K.(b), and Zhang, T.P.(b), NASA Langley Research Center (a), Analytical Services and Materials, Inc. (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting In order to validate and improve surface radiative fluxes derived as part of the Clouds and the Earth's Radiant Energy System (CERES) program, The CERES Fixed-wing Airborne Radiometer (CFAR) was developed to make measurements of upwelling and downwelling shortwave (spectral and broadband) and longwave (broadband) radiative fluxes. The CFAR consists of an OV-10A Bronco twin-turboprop, originally developed for military applications but chosen by NASA for atmospheric radiation measurements

227

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photoacoustic Instrument for Measurement of Aerosol or Gaseous Light Photoacoustic Instrument for Measurement of Aerosol or Gaseous Light Absorption Arnott, W.P., Moosmuller, H., and Rogers, C.F., Desert Research Institute Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting A photoacoustic instrument has been developed and evaluated for measurement of aerosol light absorption. This instrument produces a direct measure of absorption by use of a calibrated microphone and determination of laser power, in contrast to filter methods that require empirical calibration and are subject to strong effects of aerosol extinction. The instrument was evaluated during the winter of 1996-97 in Brighton, Colorado, during the North Front Range Air Quality Study (NFRAQS). Results of the instrument intercomparison with other methods during NFRAQS will be given along with

228

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Variations in the Ratio of IR Window Radiance to Microwave Water Path Variations in the Ratio of IR Window Radiance to Microwave Water Path Observed Under Cloudless Convection Platt, C.M.(a) and Austin, R.T.(b), Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The measurement of the radiance of cirrus (and other) clouds at atmospheric window 8-13 micron wavelengths requires a correction for the water vapor radiance and transmittance below the clouds. Calculating radiances at the times of routine radiosonde ascents and interpolating the radiance/water path ratio between ascents can achieve this. However it has been observed experimentally that IR radiance/water path ratios appear to vary between radiosonde ascents away from the interpolated values. This occurs

229

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Raman Lidar Characterization of the Vertical Variability of Aerosols and Raman Lidar Characterization of the Vertical Variability of Aerosols and Water Vapor Over the SGP Ferrare, R.A. (a), Turner, D.D. (b,g), Brasseur, L.H. (c), Tooman, T.P. (d), Dubovik, O. (e), Goldsmith, J.E.M. (d), Ogren, J.A. (f), and Feltz, W. (g), NASA Langley Research Center (a), Pacific Northwest National Laboratory (b), Science Applications International Corporation/NASA/LaRC (c), Sandia National Laboratories (d), SSAI/NASA Goddard Space Flight Center (e), NOAA Climate Monitoring and Diagnostics Laboratory (f), University of Wisconsin-Madison (g) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The automated Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar routinely measures profiles of water vapor mixing ratio,

230

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spectral Diffuse Irradiance in UV, VIS, and NIR During the 2001 Diffuse IOP Spectral Diffuse Irradiance in UV, VIS, and NIR During the 2001 Diffuse IOP Kiedron, P., Michalsky, J., Berndt, J., Min, Q., and Harrison, L., Atmospheric Sciences Research Center, SUNY Albany, New York Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Two rotating shadowband spectroradiometers (RSS) participated in the 2001 Diffuse IOP. The UV-RSS covered the 300-360 nm range and the VIS-NIR RSS covered 360-1050 nm. Both instruments were calibrated with NIST traceable spectral irradiance. The two instruments were able to measure approximately 95% of total diffuse radiation for clear-sky conditions. The missing shortwave infrared beyond 1050 nm is estimated with a model in order to calculate a total shortwave irradiance. The results are compared with

231

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TriggeringCapping Inversions in the Southern Great Plains Cripe, D.G. (a) and Randall, D.A. (b), Colorado State University Eleventh Atmospheric Radiation Measurement (ARM)...

232

Science and Arm Sciene- Prof. Kibble  

ScienceCinema (OSTI)

Le Prof. Twb.Kibble qui a fait ses études de physique théorique a l'Université d'Edinbourg nous parle de la science et la sciene d'arme.

None

2011-04-25T23:59:59.000Z

233

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Passive Remote Sensing of Aerosol Properties from Aircraft Measurements Passive Remote Sensing of Aerosol Properties from Aircraft Measurements Over the SGP Cairns, B. (a), Lacis, A.A. (b), Carlson, B.E. (b), Alexandrov, A. (a), and Barnard, J.C. (c), Columbia University (a), NASA Goddard Institute for Space Studies (b), Pacific Northwest National Laboratory (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The principal difficulties in retrieving aerosol loadings and microphysical properties using passive remote sensing measurements over land surfaces are the significant spectral and spatial variations in the observed intensities that are caused by the land surface. The may also be of use in remote sensing of the surface, being indicative of its roughness, or in the case of vegetation its leaf inclination distribution. It is believed that the

234

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Remote Sensing of the Single Scattering Albedo of Aerosols Evaluation of Remote Sensing of the Single Scattering Albedo of Aerosols During the Aerosol IOP Cairns, B.(a), Gianelli, S.M.(a), Carlson, B.E.(b), and Lacis, A.A.(b), Columbia University (a), NASA GISS (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting It has long been known that diffuse sky radiance and irradiance measurements are sensitive to the single scattering albedo of aerosols. The main difficulties in exploiting this sensitivity to try and remotely estimate the single scattering albedo of aerosols are uncertainties in the albedo and bidirectional reflectance distribution function of the surface and uncertainties in the calibration of the instruments used to make the measurements. The surface albedo measurements that are currently being

235

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of the Plane-Parallel Model from MISR Measurements Evaluation of the Plane-Parallel Model from MISR Measurements Horvath, A.(a), Davies, R.(b), and Diner, D.J.(b), University of Arizona (a), Jet Propulsion Laboratory (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Due to its simplicity and computational speed, the 1-D plane-parallel model enjoys widespread popularity in the satellite remote sensing of cloud microphysical properties. Just how well this model describes real clouds is a question rather difficult to answer with traditional single-angle observations. With the advent of near-simultaneous multiangle measurements, it is possible to evaluate the validity of the plane-parallel approach. This study used data from the Multiangle Imaging SpectroRadiometer (MISR) on NASA's TERRA (EOS-AM) platform. Only liquid clouds over oceans were

236

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parameterization of Hygroscopic Aerosols in a Climate GCM Parameterization of Hygroscopic Aerosols in a Climate GCM Lacis, A.A., Mishchenko, M.I., and Carlson, B.E., Goddard Institute for Space Studies Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Real and imaginary refractive indices are needed over the full range of solar and thermal wavelengths in order to compute the radiative forcing due to atmospheric aerosols. Laboratory measurements are available for dry ammonium sulfate [Toon and Pollack, 1976] over the spectral range 0.3 – 40 ?m, and for dry sea salt [Shettle and Fenn, 1979; Nilsson, 1979; both based on Volz, 1972 measurements] over 0.2 – 40 ?m. Partial spectrum measurements from 0.7 to 2.6 ?m of the imaginary refractive index of ammonium sulfate and ammonium nitrate are also available [Gosse et al.,

237

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Anthology of Tropical Convection: Dynamical and Thermodynamical An Anthology of Tropical Convection: Dynamical and Thermodynamical Interactions and the Organization of Large-Scale Tropical Convection Webster, P.J., Program in Atmospheric and Oceanic Sciences, University of Colorado Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting There appears to be no universal relationship between large-scale organized convection and the magnitude of sea surface temperature (SST). Convection and mean precipitation maxima are often found on the equatorward side of maximum SST or even in the winter hemisphere of the tropics. Thus, there must exist other rules besides thermodynamical forcing that provide necessary conditions for convection. A survey of large-scale organized convection has been conducted in order to find necessary conditions for the

238

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sun Photometer Laser and Lamp Based Radiometric Calibrations Sun Photometer Laser and Lamp Based Radiometric Calibrations Allen, D.W.(a), Souaidia, N.(a), Pietras, C.(b), Brown, S.(a), Lykke, R.(a), Frouin, R.(c), Deschamps, P.Y.(d), Fargion, G.(b), and Johnson, B.C.(a), National Institute of Standards and Technology (a), National Aeronautics and Space Administration, SAIC (b), Scripps Institution of Oceanography (c), Laboratoire d'Optique Atmospherique, France (d) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The goals of this study were to calibrate the radiometers using independent methods, evaluate the uncertainties for each method, and assess the influence of the results in terms of the science requirements. The radiometers were calibrated in irradiance and radiance mode using a monochromatic, laser-illuminated integrating sphere, in radiance mode using

239

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introducing WEB_MADS Introducing WEB_MADS Dedecker, R.G., Quinn, G.M., Garcia, R.K., and Revercomb, H.E., University of Wisconsin-Madison Space Science and Engineering Center Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Multiple AERI Display System (MADS) is a software package developed to allow remote access to and viewing of the operational AERI data streams produced by remotely operated AERI instruments. The MADS system was developed some years ago and operates on stand alone Personal Computers that run the OS/2 operating system and that acquire remote AERI data via the Internet. WEB-MADS is a Web based prototype version of MADS that allows remote access to the same AERI data and information using any standard Web Browser. As was the case with the original MADS, WEB-MADS provides a means for real

240

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detection of Thin Cirrus using a Combinaton of 1.38-um Reflectance and Detection of Thin Cirrus using a Combinaton of 1.38-um Reflectance and Window Brightness Temperature Difference Roskovensky, J.K. and Liou, K.N., Department of Atmospheric Sciences University of California, Los Angeles Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A new cloud detection scheme has been developed that utilizes 1.38-um reflectance in combination with 8.6-11 um brightness temperature difference to detect cirrus clouds. The 1.38-um channel on board MODIS is useful in detecting thin cirrus due to its high sensitivity to upper tropospheric clouds and a nearly negligible sensitivity to low-level reflectance. Dependent upon neighboring cloud type, water vapor concentration, and the viewing geometry, specific 1.38-um reflectance threshold levels can be

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lidar Remote Sensing of Cirrus Clouds at the Southern Great Plains Site: Lidar Remote Sensing of Cirrus Clouds at the Southern Great Plains Site: Comparisons of Extinction and Backscatter Coefficients Derived Using Raman and Backscatter Lidar Technique Comstock, J.M.(a), Fu, Q.(b), Turner, D.D.(c), and Ackerman, T.P.(a), Pacific Northwest National Laboratory (a), Department of Atmospheric Sciences, University of Washington (b), University of Wisconsin/Pacific Northwest National Laboratory(c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Horizontal and vertical inhomogeneity of cirrus clouds is an important issue in radiation modeling and the representation of cirrus clouds in general circulation models (GCMs). Lidar remote sensing is a useful tool for determining the vertical structure of cirrus clouds. Backscatter

242

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Topography of Cloud Tops The Topography of Cloud Tops Pincus, R., Gunshor, M., Space Science and Engineering Center, University of Wisconsin-Madison; Marshak, A., and Wiscombe, W., National Aeronautics and Space Administration-Goddard Space Flight Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The geometric shape of cloud top affects the amount and distribution of radiation reflected by the cloud. The angular redistribution is more relevant to remote sensing applications, while changes in the total amount of energy reflected affect cloud albedo. The difference between reflection by "bumpy" and plane-parallel clouds is greatest when both clouds and bumps are optically thick and solar zenith angle low. Quantitative assessment of these effects requires a description of topography of a cloud top. We

243

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Semianalytic Technique to Speed Up Successive Order of Scattering Model A Semianalytic Technique to Speed Up Successive Order of Scattering Model for Optically Thick Media Duan, M. and Min, Q., Atmospheric Sciences Research Center, State University of New York Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A semianalytic technique has been developed to speed up integration of radiative transfer over optically thick media for the successive order of scattering method. Based on characteristics of internal distribution of scattering intensity, this technique uses piece-wise analytic eigenfunctions to fit internal scattering intensities and integrates them analytically over optical depth. This semianalytic approach greatly reduces the number of sub-grids for accurately solving radiative transfer based on

244

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Long-Period Variations of UV-B Radiation From Results of Ozone Long-Period Variations of UV-B Radiation From Results of Ozone Reconstruction from Dendrochronologic Data Zuev, V.V. and Bondarenko, S.L., Institute of Atmospheric Optics Russian Academy of Sciences Tomsk, Russia Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The thickness of stratospheric ozone layer modulates the level of UV-B radiation reaching the surface without cloudiness. The high level of UV-B radiation causes a stress of vegetation including trees. The stress-induced changes in physiologic processes are reflected in tree ring characteristics. The multi-centennial history of ozonosphere behavior is contained in annual tree rings on the basis of response to UV-B radiation effect. The dendrochronologic time series are statistically representative,

245

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3-D Reconstruction of a Regional-Scale Cloud Field from Satellite Data 3-D Reconstruction of a Regional-Scale Cloud Field from Satellite Data for Use in a Broadband Monte Carlo Radiative Transfer Model Galinsky, V., Ramanathan, V., Boer, E., Podgorny, I., and Vogelmann, A. M., Center for Atmospheric Sciences-Scripps Institution of Oceanography Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The absence of realistic 3-D cloud fields and their associated radiative transfer in current general circulation models (GCM) or radiative transfer models may result in large inconsistencies in the Earth's energy budget calculations. We investigate these effects by reconstructing the regional-scale, 3-D cloud field structure from multi-spectral satellite imagery. From this reconstruction, we compute the radiative fluxes using a

246

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud-Resolving Simulations of Boundary-Layer Cloud Regimes with a Cloud-Resolving Simulations of Boundary-Layer Cloud Regimes with a Third-Order Turbulence Cheng, A.(a,b) and Xu, K.-M.(a), Atmospheric Sciences, NASA Langley Research Center (a), Hampton University (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting LES (large eddy simulation) models can explicitly resolve large turbulent eddies, which contain m ost of the turbulent kinetic energy and do most of the transport in the boundary layer. These edd ies have to be parameterized in cloud-resolving models (CRMs), which have much coarser resolution . A sophisticated turbulent parameterization is needed in order to produce adequate simulations o f cloud processes in CRMs. Most CRMs use a one- and a half-order prognostic turbulent kinetic ene rgy closure. Third-order

247

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Availability and Status of MISR Geophysical Data Products Availability and Status of MISR Geophysical Data Products Diner, D.J. and the MISR Science Team, Jet Propulsion Laboratory, California Institute of Technology Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the Terra spacecraft has been collecting Earth imagery since February 2000. MISR contains nine cameras pointed at fixed along-track directions, and acquires images with view angles at the Earth’s surface ranging from 70.5º forward of nadir to 70.5º aftward, in four spectral bands. The MISR experiment routinely generates geophysical data products using new algorithms developed specifically to capitalize on MISR's observational strategy. Included among these products are aerosol optical depths and

248

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Enhancement of Cloud Albedo Shown by Satellite Measurements and Aerosol Enhancement of Cloud Albedo Shown by Satellite Measurements and Chemical Transport Modeling Schwartz, S.E. (a), Harshvardhan (b), and Benkovitz C.M.(a), Brookhaven National Laboratory (a), Purdue University (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Twomey effect of enhanced cloud droplet concentration, optical depth, and albedo due to anthropogenic aerosols is thought to contribute substantially to radiative forcing of climate change over the industrial period. Present model-based estimates of this indirect forcing are highly uncertain. Increased cloud drop concentration and decreased effective radius indicative of the indirect effect have previously been shown in interhemispheric comparisons of satellite remote sensing data, but efforts

249

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Some Results of the Comparison of the Solar Almucantar Sky Brightness Some Results of the Comparison of the Solar Almucantar Sky Brightness Observed Under the Cirri Conditions and the Calculated One Petrushin, A.G.(b), Shukurov, A.K.(a), Shukurov, K.A.(a), and Golitsyn, G.S.(a), A.M. Obukhov Institute of Atmospheric Physics, RAS (a), Institute of Experimental Meteorology, NPO "Typhoon" (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The selected measurements of the solar almucantar sky brightness were carried out at the Zvenigorod Research Facility of the A.M.Obukhov Institute of Atmospheric Physics (IAPh) RAS using the scanning photometer [1] developed in IAPh. These measurements were took place at the cloudy sky and the clear one and at various optical depth t that was controlled with

250

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combination of Temperature and Humidity Profiles from a Scanning 5-mm Combination of Temperature and Humidity Profiles from a Scanning 5-mm Radiometer and MWR-Scaled Radiosondes During the 1999 Winter NSA/AAO Radiometer Experiment Westwater, E.R.(a), Leuski, V.(a), and Racette, P.(b), CIRES, University of Colorado/NOAA-ETL (a), NASA/ Goddard Space Flight Center (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A scanning 5-mm-wavelength radiometer was deployed during an Intensive Operating Periods (IOP) at the Atmospheric Radiation Measurement Program's Cloud and Radiation Testbed (CART) facilities. at the North Slope of Alaska/Adjacent Arctic Ocean site near Barrow, Alaska, during March of 1999. One goal was to evaluate the ability of an oxygen-band 5-mm microwave radiometer for measuring sharp temperature inversions that are typical

251

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Influence of Smoke over Haze on Heating Rate and Radiative Forcing: Influence of Smoke over Haze on Heating Rate and Radiative Forcing: Consistency of Measurements from Aircraft, Ground and Satellite Vant-Hull, B., Taubman, B.F., and Li, Z., Department of Meteorology, University of Maryland, College Park Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting On 8 July 2002, heavy and widespread smoke advected from fires in Quebec to the eastern seaboard of the US, rending an interesting aerosol scenario with strong absorbing aerosols (smoke) overlying scattering aerosols (industrial pollution). An aircraft equipped with a variety of aerosol and chemical sensors flew over five locations in Virginia and Maryland. This study evaluates the consistency of aerosol measurements made by a suite of air-borne, space-borne and ground-based instruments and evaluates the

252

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spurious Oscillation in Simulating Boundary-Layer Cumulus Clouds with Spurious Oscillation in Simulating Boundary-Layer Cumulus Clouds with Third-Order Turbulence Closure Models Fischer, M.L.(a), Billesbach, D.P.(b), Riley, W.J.(a), Berry, J.A.(c), and Torn, M.S.(a), E.O. Lawrence Berkeley National Laboratory (a), University of Nebraska (b), Carnegie Institution of Washington (c) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Spatial heterogeneity in the mass and energy fluxes in the Southern Great Plains are controlled by a combination of driving variables (e.g. climate, topography and soil, vegetation, and land use and management). Accurate estimation of landscape-averaged ecosystem-atmosphere exchange hence suggests the need for predictive models tested with extensive ground based measurements and/or a measurement method with regional coverage. This is

253

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Vapor Profiling During WVIOP#3 and AFWEX2000 Using Ground-Based Water Vapor Profiling During WVIOP#3 and AFWEX2000 Using Ground-Based Differential Absorption Lidar Boesenberg, J. (a), Linne, H. (a), Jansen, F. (a), Ertel, K. (a), Lammert, A. (a), and Wilkerson, T. (b), Max-Planck-Institut fuer Meteorologie, Hamburg (a), Utah State Univerity (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The differential absorption lidar (DIAL) system of the MPI participated in both the WVIOP#3 and AFWEX2000 experiments. It was operated on 11 days during each experiment for periods up to 12 hours per day. The time slot for these measurements was 12 noon to 2am due to FAA restrictions. The measurements were focussed on the day-night-transition and the following hours during WVIOP#3 and on LASE overflights during AFWEX. The MPI DIAL

254

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparisons Between Measured and Modeled Longwave Irradiances During Arctic Comparisons Between Measured and Modeled Longwave Irradiances During Arctic Winter: Results from the Second International Pyrgeometer and Absolute Sky-Scanning Radiometer Comparison (IPARSC-II) Marty, Ch.(a), Storvold, R.(a), Philipona, R.(b), Delamere, J.(c), Dutton, E.(d), Michalsky, J.(e), Stamnes, K.(f), Eide, H.(f), and Stoffel, T.(g), Geophysical Institute, University of Alaska Fairbanks (a), World Radiation Center, Davos, Switzerland (b), Atmospheric and Environmental Research, Boston (c), Climate Monitoring and Diagnostics Laboratory NOAA, Boulder (d), State University of New York at Albany (e), Stevens Institute of Technology, Hoboken, New Jersey (f), National Renewable Energy Laboratory, Golden (g) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting

255

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Absorption, Optical Depth and Vertical Extent Estimates Using Aerosol Absorption, Optical Depth and Vertical Extent Estimates Using UV/blue Satellite Measurements Cairns, B., and Alexandrov, M.D., Columbia University; Carlson, B.E., and Lacis, A.A., NASA Goddard Institute for Space Studies Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The radiative balance of the atmosphere and the climatological response of the atmospheric circulation to changes in aerosol loading is principally determined by the vertical extent and single-scatter albedo of the aerosols. Although UV radiance measurements made by the Total Ozone Mapping Experiment Spectrometer (TOMS) instrument have been used to detect UV absorbing aerosols and estimate their properties, the unknown verticalextent of the aerosol affects the sensitivity of the radiances to

256

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle Shupe, M.D. and Intrieri, J.M., NOAA - Environmental Technology Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting An annual cycle of cloud and radiation measurements made as part of the Surface Heat Budget of the Arctic program are utilized to determine which properties of Arctic clouds control the surface radiation balance. Surface cloud radiative forcing (CF), defined as the difference between the all-sky net surface radiative flux and the clear sky net surface flux, was calculated from measurements of broadband fluxes and results from a clear sky model. Longwave cloud forcing (CFLW) is shown to be a function of cloud

257

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stratus Microphysical Parameters Using Radar and Visible Stratus Microphysical Parameters Using Radar and Visible Optical Depth Austin, R.T. and Stephens, G.L., Colorado State University, Fort Collins Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A new algorithm for the retrieval of stratus cloud microphysical parameters was introduced last year and applied to measurements of maritime stratus clouds off the coast of California. The retrieval has been refined and applied to data from the Southern Great Plains CART site, as well as to the original California marine measurements. The poster will describe these refined results, discuss error analysis of the algorithm, show how the retrieval compares with analogous radar-only retrievals, and discuss other products and benefits of the algorithm's estimation theory formulation

258

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimation of Temperature Effect of Fires Near Moscow in Summer-Fall 2002 Estimation of Temperature Effect of Fires Near Moscow in Summer-Fall 2002 Mokhov, I.I. and Gorchakova, I.A., Obukhov Institute of Atmosphere Physics RAS, Russia Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Local effect of cooling ΔT due to peatbog and forest fires near Moscow in summer-fall 2002 is estimated. These estimates are based on coordinated measurements at the Zvenigorod Scientific Station (55°42'N, 36°46'E) of our Institute. Continuous measurements of radiation balance components at the surface together with meteorological and aerological observations and determination of the aerosol optical depth τ were used to calculate the aerosol radiative forcing (ARF) at the surface ARF(0), at the top of the atmosphere ARF(∞), and for the whole atmosphere ARF (∞)- ARF(0).

259

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Retrieval of Mean Cosine of Aerosol Phase Function from Extinction and Sky Retrieval of Mean Cosine of Aerosol Phase Function from Extinction and Sky Brightness Measurements Zhuravleva, T.B.(a), Sviridenkov, M.A.(b), and Anikin, P.P.(b), Institute of Atmospheric Optics SB RAS, Tomsk, Russia (a), A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Asymmetry of the aerosol phase function together with optical thickness drive the magnitude of the aerosol radiative forcing. Two approaches are usually used to obtain the mean cosine of the phase function retrieval of the single scattering phase function from sky brightness measurements or calculations for the given aerosol size distribution and refractive index. We studied the possibility to determine the mean cosine directly from

260

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Absorption of NIR Solar Radiation by Precipitation The Absorption of NIR Solar Radiation by Precipitation Evans, W.F.J.(a) and Puckrin, E.(b), Physics Department, Trent University (a), DRDC,Canada (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting It has recently been shown by Ackerman (Physics Today; 2003) that good radiation codes can model the absorption of up to 100 W/m2 of short wave by clouds. However, spectral measurements of the transmission of solar infrared radiation through clear and cloudy skies with FTIR spectroscopy have indicated that still are certain clouds which absorb unexpectedly large amounts of near-infrared (NIR) radiation. The amounts are unexpected in the sense that radiation codes, including sophisticated algorithms such as MODTRAN4, do not model this strong NIR absorption effect. The absorption

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Empirical Model of Aerosol Uplifting from the Arid Area Empirical Model of Aerosol Uplifting from the Arid Area Gorchakov, G.I., Shukurov, K.A., and Golitsyn, G.S., A.M. Obukhov Institute of Atmospheric Physics, RAS Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The model enables to make the estimates of the vertical fluxes of arid aerosol using measured data of the wind velocity. The model includes the following main elements: 1. The parameterization of the microstructure of the aerosol uplifted from the area. 2. Relationship between wind velocity and the submicron aerosol concentration. 3. The aerosol uplifting rates. It is found that there is the synchronism of the submicron and coarse aerosol fluctuation in convective conditions at the arid area. Vertical turbulent fluxes of the aerosol were determined regarding two regimes of aerosol

262

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Time-Height Cross-Sections of Cumulus Cloud Fields for Solar Using Time-Height Cross-Sections of Cumulus Cloud Fields for Solar Radiative Transfer Pincus, R.(a), Hannay, C.(a), and Evans, K.F.(b), NOAA-CIRES Climate Diagnostics Center (a), University of Colorado (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting How much must be known about a cloud field in order to accurately compute the reflected and transmitted flux? Given our limited abilities to measure the time-evolving three-dimensional structure of clous, and the high cost of making three-dimensional (3D) radiative transfer computations, we would like to determine the accuracy of various approximations used to convert remote sensing observations to domain averaged solar fluxes. We use highly resolved (50 m, 1 min) clouds fields from large eddy simulations of

263

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inferring Optical Depth of Broken Clouds above Green Vegetation. Part Inferring Optical Depth of Broken Clouds above Green Vegetation. Part I:Methodology for Surface- and Aircraft-based Observations Barker, H.W. (a), Marshak, A. (b), Pavloski C.F. (c), and Clothiaux E.E.(c), Environment Canada (a), UMBC/JCET (b), The Pennsylvania State University (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A method for inferring cloud optical depth is introduced and assessed using simulated radiometric measurements produced by a 3D Monte Carlo algorithm acting on fields of broken, single-layer, boundary layer clouds. These fields contain numerous small cumuli and broken stratiform clouds and represent demanding tests. The method, which resembles the Normalized Difference Cloud Index, utilizes the DISORT radiative transfer model and

264

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AERI-Lidar Retrievals of Ice Cloud Physical Properties, Including the First AERI-Lidar Retrievals of Ice Cloud Physical Properties, Including the First Estimates of Photon Tunneling Contributions to Absorption Mitchell, D.L.(a) and DeSlover, D.H.(b), Desert Research Institute (a), Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Emitted Radiance Interferometer (AERI) and the High Spectral Resolution Lidar (HSRL) have been used to determine the spectral dependence of alpha in the window region (8.5-12.5 micron wavelength), where alpha is the ratio of optical depth at a visible wavelength to infrared absorption optical depth for a cirrus cloud. Using alpha and cloud emissivity measurements, it is generally possible to retrieve effective

265

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Analytic Solution of Two-Stream Stochastic Radiative Transfer in An Analytic Solution of Two-Stream Stochastic Radiative Transfer in Spatially Correlated Media Hu, Y.X.(a) and Davis, A.B.(b), NASA Langley Research Center (a), Los Alamos National Laboratory (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting In situ cloud microphysics measurements show spatial auto-correlations of extinction cross sections over a wide range of scales. At some of those scales, homogeneity and independent-column assumptions fail and a three-dimensional treatment of the radiative transfer is required to capture the effect of the correlations. A simple differential form of transport equation is developed for correlated media in order to account for the first-order impact of the spatial auto-correlations. Two-stream

266

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inferring Cloud Optical Depth Using Spectrally Varying Surface Albedo: Inferring Cloud Optical Depth Using Spectrally Varying Surface Albedo: Frozen Turbulence vs. Time Evolution Barker, H.W.(a), Pavloski, C.F.(b), Ovtchinnikov, M.(c), Kassianov, E.(c), Clothiaux, E.E.(b), and Marshak, A.(d), Meteorological Service of Canada (a), The Pennsylvania State University (b), Pacific Northwest National Laboratory (c), UMBC/NASA-GSFC (d) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Barker and Marshak (2001) proposed a method for inferring cloud optical depth from measurements of surface spectral radiance and irradiance made close to, but on either side of, wavelength 700 nm (approximately where absorption by chlorophyll ends). Their method has been tested by applying a Monte Carlo photon transport algorithm to cloud fields simulated by

267

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inferring Cloud Properties from Narrow-Field-of-View Spectral Radiometers Inferring Cloud Properties from Narrow-Field-of-View Spectral Radiometers Marshak, A.(a), Knyazikhin, Y.(b), Evans, K.(c), and Wiscombe, W.(a), NASA/GSFC (a), Boston University (b), UMBC/JCET (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The most common approach for retrieving cloud optical depth from ground-based observations uses downwelling fluxes measured by pyranometers and Multi-Filter Rotating Shadowband Radiometers (MFRSR). The key element in both retrieval techniques is the one-to-one mapping of the "observed" fluxes into cloud optical depth through plane-parallel radiative transfer. Both methods are expected to work well only for completely overcast clouds giving an effective optical depth for the whole sky. To infer cloud optical

268

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Angular Distribution of Intensity in a Flux of Radiation Scattered by a Angular Distribution of Intensity in a Flux of Radiation Scattered by a Cloud Dvoryashin, S.V., Shukurov, K.A., Shukurov, A.K., and Golitsyn, G.S., A.M.Obukhov Institute of Atmospheric Physics, RAS Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A study of the angular distribution of intensity in a flux of solar radiation scattered by a cloud was carried out in conditions of translucent clouds (the disk of the Sun is visible). Using the digital video camera KODAK DC200, mounted on the sun tracker, the sky images with the angle of view 38 0) have been obtained in cloudy and cloudless conditions. During measurements the disk of the Sun was closed with a blend. Using the specially developed program the photometry of the received images was

269

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Comparison of Surface Sensible Heat Flux at Atqasuk and Barrow A Comparison of Surface Sensible Heat Flux at Atqasuk and Barrow Shaw, W.J. (a), Doran, J.C. (b), and Hubbe, J.M. (c), Pacific Northwest National Laboratory Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting As part of the effort to discover the feedbacks between low-level arctic stratus and surface fluxes, we have operated an acoustic anemometer near Barrow, Alaska and a dual wavelength scintillometer near Atqasuk, which is 100 km to the south, in order to measure the surface turbulence heat flux. The systems operated unattended during the spring melt period of 2000, and the data were logged via internet or telephone connections. The acoustic anemometer was mounted on a tower attached to a barge grounded on a low island on the northeast side of Elson Lagoon. The anemometer was 8.5 m

270

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Retrievals of Vertical Profiles of Cloud Ice Mass and Particle Retrievals of Vertical Profiles of Cloud Ice Mass and Particle Characteristic Size from MMCR Data Matrosov, S.Y.(a), Heymsfield, A.J.(b), Shupe, M.D.(c), and Korolev, A.V.(d), CIRES, University of Colorado and NOAA ETL (a), NCAR (b), STC (c), Canadian Atmospheric Service (d) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A remote sensing method is proposed for the retrievals of vertical profiles of ice cloud microphysical parameters from ground-based measurements of radar reflectivity and Doppler velocity with a vertically pointed cloud radar. This method relates time-averaged Doppler velocities (which are used as a proxy for the reflectivity weighted particle fall velocities) to particle characteristic sizes such as median or mean. With estimated

271

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spectral Characterization of the Scattering and Absorption of Solar Spectral Characterization of the Scattering and Absorption of Solar Radiation by Aerosols and Clouds: Results from Several Recent Field Studies Pilewskie, P.(a), Rabbette, M.(b), Bergstrom, R.(b), Pommier, J.(b), and Howard, S.(b), NASA Ames Research Center (a), Bay Area Environmental Research Institute (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Efforts to reduce the uncertainty in climate forcing due to the radiative effects of aerosols and clouds have led to the improvement of radiometric sensors used to measure the spectral distribution of solar radiation in the atmosphere. Because much of our current understanding of the solar radiation budget is derived from broadband (spectrally integrated) observations, newer spectrally resolved observations need to be examined in

272

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Clear-Sky Diffuse 'Problem' at SGP: RSS Data & Analysis The Clear-Sky Diffuse 'Problem' at SGP: RSS Data & Analysis Harrison, L., Kiedron, P., and Min, Q., State University of new York, Albany Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting We analyze the spectral RSS data from the fall of 1999, when there were an unusual series of clear-sky cloud-free days at SGP. The RSS makes measurements of the spectral diffuse/direct ratio which are independent of calibration. We also extract typical optical depth analyis data from Langley regressions, and we retrieve column NO2 from correlation spectroscopy. We show that column NO2 is often well above clean-climatological background at SGP, and that this interacts with simple forms of aerosol-optical depth retrievals (which do not account for this)

273

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evidence for Aerosol Effects on AERI Clear-Sky Radiance at the SGP Evidence for Aerosol Effects on AERI Clear-Sky Radiance at the SGP Ma, Y., and Ellingson, R.G., University of Maryland Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Emitted Radiance Interferometer (AERI) Line-by-Line Radiative Transfer Model (LBLRTM) Quality Measurement Experiment (QME) 10-micron window residuals have been examined relative to the Multifilter Rotating Shadowband Radiometer (MFRSR) 0.87-micron optical depth for clear-sky periods during 1997-98. The analysis shows an increasing aerosol influence on the downwelling radiance with aerosol optical depth for columnar water totals below about 3 cm. Above 3 cm, the residuals become negatively correlated with both aerosol optical depth and precipitable water. This change in the characteristics suggests that the current LBLRTM

274

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Water Vapor Continuum Model: MT_CKD_1.0 A New Water Vapor Continuum Model: MT_CKD_1.0 Mlawer, E.J.(a), Clough, S.A.(a), and Tobin, D.C.(b), Atmospheric and Environmental Research, Inc. (a) University of Wisconsin - Madison (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting For the first time since its inception, a new formulation for the CKD approach to the water vapor continuum has been generated. This new version is designated MT_CKD_1.0. The original CKD formulation, derived in 1980 based upon laboratory measurements due to Burch and collaborators, applied an empirically derived multiplicative factor (different for the self and foreign continua) to the line wing of the impact line shape. This resulted in a line shape that was super-Lorentzian in the near and intermediate line

275

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Comparison of High Spectral Resolution Infrared Cloud Boundary Algorithms A Comparison of High Spectral Resolution Infrared Cloud Boundary Algorithms using S-HIS and AERI Measurements Holz, R.E.(a), Antonelli, P.(a), Ackerman, S.(a), McGill, M.J.(a), Nagel, F.(a), Feltz, W.F.(a), and Turner, D.D.(b), Univeristy of Wisconsin, Madison (a), Pacific Northwest National Laboratory (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud top pressure is an important parameter in determining the radiative impact of clouds on climate. In addition, atmospheric temperature and moister retrievals of cloudy scenes using high spectral resolution data require the cloud altitude be known. The S-HIS is scheduled to fly on the Proteus during the upcoming M-PACE experiment. In addition to the SHIS a lidar system and an imager will accompany the SHIS during MPACE. This paper

276

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seasonal Variability in Cloud Cover, Cloud Base Height, and Cloud Liquid Seasonal Variability in Cloud Cover, Cloud Base Height, and Cloud Liquid Water Content at the North Slope of Alaska and the Adjacent Arctic Ocean Storvold, R. (a), Stamnes, K. (b), Marty, C. (a), and Zak, B.D. (c), University of Alaska Fairbanks (a), Stevens Institute of Technology (b), Sandia National Laboratories (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting There is great seasonal variability in cloud cover, cloud base height, and cloud liquid water in the Arctic. This seasonal variability in cloud properties has been quantified based on a full year of data from the Atmospheric Radiation Measurement Program Sites in Barrow and Atqasuk during 1999-2000. We compare these results with similar results obtained in the Arctic Ocean during the one-year SHEBA experiment. We also compare the

277

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiative Forcing of Arctic Boundary Layers During SHEBA Radiative Forcing of Arctic Boundary Layers During SHEBA Pinto, J.O., Mirocha, J., Reeder, R.A., and Curry, J.A., University of Colorado Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Field measurements obtained during the Surface Heat Budget of the Arctic (SHEBA) experiment are used to ascertain the importance of radiation in the evolution of the Arctic boundary layer. Radiation effects the boundary layer structure through the vertical flux divergence of longwave and shortwave fluxes as well as through radiative heating/cooling of the surface which determines the sensible heat flux. The mean and turbulence structure of the both clear and cloud boundary layers in winter, spring and summer are determined from aircraft data, radiosonde soundings, the ASFG

278

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Humidity Halos Around Trade Wind Cumulus Clouds Analysis of Humidity Halos Around Trade Wind Cumulus Clouds Lu, M.-L.(a), Wang, J.(b), Freedman, A.(c), Jonsson, H.H.(d), Flagan, R.C.(a), McClatchey, R.A.(c), and Seinfeld, J.H.(a), California Institute of Technology (a), Brookhaven National Laboratory (b), Aerodyne Research, Inc. (c), Naval Postgraduate School (d) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Regions of enhanced humidity in the vicinity of cumulus clouds, so-called cloud halos, reflect features of cloud evolution, exert radiative effects and may serve as a locus for new particle formation. We describe here the results of an aircraft sampling campaign carried out near Oahu, Hawaii from July 31- Aug. 10, 2001, aimed at characterizing the properties of trade wind cumulus cloud halos. An Aerodyne Research Inc. fast spectroscopic

279

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radar Observations of Large-Eddy Circulations and Turbulence in Boundary Radar Observations of Large-Eddy Circulations and Turbulence in Boundary Layer Clouds Albrecht, B.A. and Kollias, P., Umiversity of Miami Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting With the development and application of Doppler short wavelength radars, there has been an increased capability for explicitly resolving the vertical structure of boundary layer cloud circulations. Further, Doppler mm-wavelength radars used in a vertically pointing mode can provide information on the turbulence structure within the cloud volume sampled by the radar. Since these radar large eddy observations (LEO) are of the same resolution as that of Large Eddy Simulation models, they provide a means for explicitly evaluating LES (LEO for LES). Further the radar observations

280

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Full Spectrum Correlated-k for Shortwave Atmospheric Radiative Transfer Full Spectrum Correlated-k for Shortwave Atmospheric Radiative Transfer Pawlak, D.T.(a,b), Clothiaux, E.E.(a), Modest, M.M.(c), and Cole, J.N.S.(a), Department of Meteorology, The Pennsylvania State University (a), Air Force Institute of Technology, Civilian Institutions Graduate Programs Division (b), Department of Mechanical Engineering, The Pennsylvania State University (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Fast and accurate atmospheric radiation heating and cooling rate calculations are important for improving global climate and numerical weather prediction model performance. The radiative transfer calculations in atmospheric models must be fast so that the underlying methods can actually be implemented in the models and the calculations must be accurate

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Darwin 2005 IOP The Darwin 2005 IOP May, P.T.(a), Jakob,C.(a), Long, C.N.(b), and Keenan, T.D.(a), Bureau of Meteorology Research Centre (a), Pacific Northwest National Laboratory (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A major field project is planned for Darwin in January to February 2005. Amongst its aims are the study of the structure and evolution of cirrus in monsoonal convection and how it differs from coastal and island storm generated cirrus, providing a data set suitable for CRM and SCM single column modeling efforts and validation of ground based remote sensors. Northern Australia experiences three distinct cloud regimes, a pronounced dry season, a transition season dominated by deep coastal convection and continental squall lines and a monsoon where the convection has a

282

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Climatology of Cloud & Radiative Properties Derived from GMS-5 Data Over A Climatology of Cloud & Radiative Properties Derived from GMS-5 Data Over the Tropical Western Pacific Nordeen, M.L.(a), Doelling, D.R.(a), Khaiyer, M.M.(a), Rapp, A.D.(a), and Minnis, P.(b), Analytical Services & Materials, Inc. (a), National Aeronautics and Space Administration-Langley Research Center (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite derived cloud and radiative properties can provide continuous spatial and temporal coverage over the Tropical Western Pacific (TWP). The TWP is an area with few meteorological stations, but is an interesting region in global climate studies. Starting with the Nauru99 Intensive Operational Period (IOP) (June-July 1999), two years of hourly Geostationary Meteorological Satellite (GSM-5) images are used in the

283

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resolving Models as Scaffolding for Cloud Parameterizations in Resolving Models as Scaffolding for Cloud Parameterizations in Large-Scale Models Pincus, R.(a), Klein, S.A.(b), Hannay, C.(a), and Xu, K.-M.(c), NOAA-CIRES Climate Diagnostics Center (a), NOAA Geophysical Fluid Dynamics Laboratory (b), NASA Langley Research Center (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The treatment of clouds in large scale models has evolved from fixed to diagnostics to predictive as the importance of cloud feedbacks has become clear. In development now are schemes which account for the resolution-dependent sub-grid scale variability in condensate, which is thought to be a significant factor driving ad hoc model tuning. Parameterizations have their roots in theory, experiment, and observational data. It's very hard, though, to observe the four-dimensional structure of

284

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Continuous Initial Estimate of Cloud Microphysical Structure Using A Continuous Initial Estimate of Cloud Microphysical Structure Using Surface-Based Remote Sensors and Parameterized Microphysics Miller, M.A. and Johnson, K.L., Brookhaven National Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Realistic heating rate profiles require an accurate and continuous accounting of cloud microphysical structure. To date, several highly constrained microphysical retrieval algorithms have been designed that operate on specific cloud systems. These algorithms are sufficiently specialized that they are generally applicable in a relatively narrow range of conditions. When these conditions are satisfied, heating profiles can be computed. While it may be possible to link several of these specialized algorithms to produce a semi-continuous description of cloud microphysical

285

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effective Diameter in Radiation Transfer: Definition, Applications and Effective Diameter in Radiation Transfer: Definition, Applications and Limitations Mitchell, D. L., Desert Research Institute Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Although the use of an effective radius for radiation transfer calculations in water clouds has been common for many years, the export of this concept to ice clouds has been fraught with uncertainty. A consensus appears to be building that a general definition of effective diameter, Deff, should involve the ratio of the size distribution (SD) volume (at bulk density) to projected area. This work further endorses this concept, describes its physical basis in terms of an effective photon path, and demonstrates the equivalency of a derived Deff definition for both water and ice clouds.

286

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mean 3D Radiative Transfer in Cloudy Columns: Further Empirical Evidence Mean 3D Radiative Transfer in Cloudy Columns: Further Empirical Evidence for Propagation Kernels with Power-Law Tails Davis, A.B. (a), Marshak, A. (b), and Barker, H.W. (c), Los Alamos National Laboratory (a), NASA Goddard Space Flight Center (b), Meteorological Service of Canada (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting For reasons of computational efficiency, current radiation parameterizations in GCMs are uniformly based on analytical 2-stream solutions of the 1D integro-differential radiative transfer equation (RTE). This is true even when there is an effort to account for subgrid variability which would normally call for the full 3D RTE. Indeed, state-of-the-art GCM radiation schemes use linear combinations of clear-

287

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combination of the Separation of Variable and the T-matrix Method for Combination of the Separation of Variable and the T-matrix Method for Computing Optical Properties of Spheroidal Particles Schulz, F.M., Eide, H.A., and Stamnes, K., University of Alaska, Fairbanks; Stamnes, J.J., University of Bergen, Norway Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The growing interest in nonspherical particles in recent years has led to significant improvements of various light scattering models for different kinds of nonspherical particles. One approach is to model size-shape distributions of randomly oriented particles by spheroids, whose light scattering properties can be rigorously calculated with the separation of variable method (SVM). The SVM can be used to model particles with spheroidal shapes departing significantly from sphericity. In contrast, the

288

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Approach for Computing Single Scattering Properties of Ice Clouds A New Approach for Computing Single Scattering Properties of Ice Clouds Using a Size-Shape Distribution of Spheroidal Particles Eide, H.A., and Stamnes, K., University of Alaska, Fairbanks; Stamnes, J.J., University of Bergen, Norway; Schulz, F.M., University of Rochester Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Clouds are of paramount importance for the global energy balance and hence for our climate. In global circulation models (GCMs), designed to predict future climate, the effects of clouds are commonly based on the scattering and absorption properties of spherical particles. At high latitudes as well as at high enough altitudes anywhere on our planet, clouds frequently consist of ice particles that are far from spherical in shape. Ice

289

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale Analysis of Spatial and Temporal Variability of Aerosol Optical Scale Analysis of Spatial and Temporal Variability of Aerosol Optical Properties Over the SGP Site based on MFRSR and MODIS Data Alexandrov, M.D.(a,b), Marshak, A.(b), Cairns, B.(a,b), Lacis, A.A.(b), and Carlson, B.E.(b), Columbia University (a), NASA (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting We present scale-by-scale analysis of variability of atmospheric aerosol optical thickness (AOT) and (preliminary) of the Angstrom exponent. This analysis is based on retrievals from Multi-Filter Rotating Shadowband Radiometers (MFRSRs) and from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. This type of analysis has been applied to a remote sensing aerosol dataset for the first time. The MFRSR data were collected

290

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Retrieval of Cirrus Particle Sizes Using a Spit-Window Technique: A Retrieval of Cirrus Particle Sizes Using a Spit-Window Technique: A Sensitivity Study Fu, Q. (a) and Sun, W.B. (b), University of Washington (a), Dalhousie University (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The 8 - 12 um atmospheric window is an important spectral region for the remote sensing of the earth-atmosphere system. Since clouds are the major regulator of the global radiative energy budget, numerous methods have been developed to detect clouds and cloud properties based on satellite observations. Among them are the split-window techniques which are particularly useful for remote sensing of cirrus clouds. Owing to the large spectral variation of ice's imaginary refractive index over the atmospheric window, one can infer the effective ice particle sizes of cirrus clouds

291

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intial Results from an Automated High Spectral Resolution Lidar Intial Results from an Automated High Spectral Resolution Lidar Eloranta, E.W., University of Wisconsin-Madison Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting An automated High Spectral Resolution Lidar constructed at the University of Wisconsin is nearly ready for an Arctic deployment. It is designed for remote operation as an Internet appliance requiring only minimal onsite attention. The system is currently installed in our roof top laboratory and is operating continuously as part of an extended shakedown test. Several months of data have been collected and archived on our web site (see arctic HSRL at "lidar.ssec.wisc.edu"). A web interface to browse and visualize data is provided along with tools to generate calibrated plots of

292

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Use of Performance Metrics to Enhance Meteorological Operations The Use of Performance Metrics to Enhance Meteorological Operations Jakob, C.(a), Pincus, R.(b), Hannay, C.(b), and Xu, K.-M.(c), BMRC (a), NOAA/CIRES CDC (b), NASA Langley (c) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting It is highly desirable to use cloud radar data in the evaluation of model simulations of clouds at various scales. Unfortunately there is an inherent mismatch between the spatial and temporal scales of the models and the observations. Usually this mismatch is overcome by time-averaging the observations and declaring the averages as representative for a given model spatial scale. Here we explore an alternative method of model evaluation that is based on the interpretation of model cloud predictions as probabilistic forecasts at the observation point. First we contrast

293

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Narrowband, Narrow Field-of-View Fast Infrared Filter Radiometry: Future Narrowband, Narrow Field-of-View Fast Infrared Filter Radiometry: Future Operation at CART Sites and Some Aspects of Water Vapor Absorption and Emission Platt, C.M.R. (a), Bennett, J.A. (b), Petraitis, B. (b), Austin, R.T. (a), and Young, S.A. (b), Colorado State University, Fort Collins (a), CSIRO Atmospheric Research, Aspendale, Australia (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting An infrared filter radiometer is being installed at the SGP CART site early in 2001. The radiometer is based on a previous Mark I version that was used successfully in field experiments in tropical Australia. The radiometer has a narrow field-of-view, compatible with lidar, is fast, at one-second-time constant, and has three channels at 8.62, 10.86 and 12.12 microns. It

294

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The North Slope of Alaska CART and Arctic Change 2002 The North Slope of Alaska CART and Arctic Change 2002 Zak, B.D., Zirzow, J.A., and Einfeld, W., Sandia National Laboratories Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The North Slope of Alaska/Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART), operational since spring of 1998, is maturing just in time for the push to understand the far-reaching changes in the Arctic presently occurring. From the mid 1970s to the mid 1990s, arctic sea ice areal coverage has decreased about 5%, but ice thickness appears to have decreased about 40%. In addition, temperature and salinity patterns in the Arctic Ocean and the associated thermohaline circulation have been affected, as have many other climate-related processes. An Arctic

295

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Impact of a Revised Treatment of Cirrus Microphysics on the Radiation The Impact of a Revised Treatment of Cirrus Microphysics on the Radiation Budget of the Unified Model Edwards, J.M. (a), Mitchell, D.L. (b), Ivanova, D. (b), and Wilson, D.R. (a), Met Office, Hadley Centre for Climate Prediction and Research (a), Desert Research Institute (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Unified Model is used for both NWP and climate simulations at the Met Office. A parametrization of ice crystals as planar polycrystals was recently introduced into the climate and mesoscale NWP versions of this model, resulting in improvements to the radiation budget and a reduction in the upper tropospheric cold bias. Based on field observations, the size distribution is taken as bimodal and is characterized by a mean maximum

296

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uncertainties in the Line Intensities in the 1130 nm Band of Water Vapor Uncertainties in the Line Intensities in the 1130 nm Band of Water Vapor Giver, L.P. (a), Pilewskie, P. (a), Gore, W.J. (a), Chackerian, Jr., C. (b), Varanasi, P. (c), Freedman, R.S. (d), and Bergstrom, R. (e), NASA-Ames Research Center (a), SETI Institute (b), State University of New York at Stony Brook (c), Space Physics Research Institute (d), Bay Area Environmental Research Insitute (e) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Belmiloud et al (GRL 27, 3703-3706 (2000)) have recently asserted that the line intensities in the 1130 nm band of water vapor band listed in the HITRAN database are much too weak. Giver et al (JQSRT 66, 101-105(2000)) pointed unit-conversion errors out in the intensity data previously appearing in the HITRAN database and corrected the intensity data so that

297

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of a Bulk Cloud Microphysics Model in Simulating Low-Level Evaluation of a Bulk Cloud Microphysics Model in Simulating Low-Level Arctic Mixed-Phase Clouds Using a New Single-Column Model Morison, H., Curry, J.A., and Mirocha, J., University of Colorado Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The MM5 NCAR/Penn State mixed-phase bulk microphysical parameterization is evaluated using a new single column model (ARCSCM) in the context of arctic low-level mixed-phase clouds. ARCSCM is developed from the Arctic Regional Climate System Model (ARCSyM). Three mixed-phase clouds over SHEBA in May 1998 are simulated using the MM5 parameterization. Liquid water path (LWP) is underpredicted by ~ 75% compared to observations for the two cases that have a significant ice content, while LWP is accurately predicted (within

298

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Case Studies of Water Vapor Variability During the International H20 Case Studies of Water Vapor Variability During the International H20 Project 2002 Using GPS Braun, J., Rocken, C., and Kuo, Y.H., UCAR/COSMIC Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The International H20 Project 2002 (IHOP_2002) was a field experiment located in the United States Southern Great Plains whose primary objective was to improve warm season rainfall prediction through the collection of precise observations of the water cycle and their assimilation into numerical weather models. As part of a wide range of observing systems, more than 40 Global Positioning System (GPS) stations were operating in the experiment region during IHOP_2002. We present an analysis of the evolution of the water vapor field for significant storms that were captured by the

299

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Parameterization of Shallow Cumulus Convection The Parameterization of Shallow Cumulus Convection Zhu, P. and Albrecht, B.A., University of Miami Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A successful representation of shallow cumulus convection in GCMs requires two parameterizations: one for calculating the subgrid fluxes of heat, moisture, and momentum; and the other for estimating the cloud cover and the associated cloud liquid water. Two common schemes used for these two parameterizations are the mass flux approach and the distribution approach such as SDM's (Sommeria, Deardorff, and Mellor) scheme, respectively. In this study, we verified the assumptions that lead to these schemes using LES data. The analyses indicate that the assumptions may not be appropriate for shallow cumulus convections, especially those over land when diurnal

300

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dust-Climate Interactions: A Conceptual Model Dust-Climate Interactions: A Conceptual Model Shell, K. M. and Somerville, R. C. J., Scripps Institution of Oceanography, University of California, San Diego Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Paleoclimatic evidence strongly suggests that airborne mineral dust can be a climatically important atmospheric aerosol, but little is known quantitatively about the mechanisms of dust-climate interactions. We have developed a conceptual global model with which to study processes and feedbacks within the dust-climate system. We solve numerically for equilibrium climate states defined by temperature as a function of latitude. Our zonally averaged model includes both an atmosphere and a surface that becomes ice-covered at sufficiently low temperatures. We

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intraseasonal Variation Observed from Multi-Infrared Channel Intraseasonal Variation Observed from Multi-Infrared Channel Inoue, T., Meteorological Research Institute Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Intraseasonal variations (MJO) of convective cloud, sea surface temperature (SST) and water vapor information are studied using three infrared channels (6.7, 11, 12 um). Split window(11 and 12 um) can classify optically thin ice cloud and optically thick cloud. Further SST and water vapor information can be retrieved from the split window over the cloud free region. We can estimate upper level relative humidity from the 6.7 um data. Composite analysis of cloud type associated with the intraseasonal variation during May 1998 showed the horse shoe shape deep convective cloud area near the center of the MJO, cirrus type cloud area to the west of the

302

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Radiative Influences on Drop Growth Solar Radiative Influences on Drop Growth Harrington, J.Y, Hartman, C., and Verlinde, J., The Pennsylvania State University Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The offsetting effects of solar heating and infrared cooling on the vapor-depositional growth of cloud droplets is investigated. In this study, a marine stratocumulus cloud was simulated by using a large eddy simulation (LES) model and a detailed microphysical bin model. Including infrared cooling as well as solar heating had two effects. The first effect is related to the fact that vapor-depositional growth of drops is radius dependent - solar heating effects dominated at larger drop sizes (> 100 microns) and infrared cooling effects dominated at smaller drop sizes

303

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Importance and Parameterization of Longwave Radiative Scattering by Mineral Importance and Parameterization of Longwave Radiative Scattering by Mineral Aerosols Gautier, C., Dufresne, J.-L., and Ricchiazzi, P.J., University of California Santa Barbara Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The effect of scattering is not always included in longwave models of radiative forcing due to mineral aerosols. In this presentation, we quantify and highlight the importance of scattering in the longwave domain for a wide range of conditions commonly encountered during dust events. We show that the neglect of scattering may lead to an underestimate of longwave aerosol forcing. This underestimate may reach 50% of the forcing at the top of atmosphere and 15% at the surface for aerosol effective radius greater than a few tenths of a micron. In contrast, the heating rate

304

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links Between Mesoscale Dynamics and Cloud Water in High-Resolution March Links Between Mesoscale Dynamics and Cloud Water in High-Resolution March 2000 RAMS Simulations Weaver, C.P.(a), Gordon, N.D.(b), Norris, J.R.(b), and Klein, S.A.(d), Rutgers University (a), Scripps Institution of Oceanography (b), NOAA/GFDL (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Regional Atmospheric Modeling System (RAMS) is applied as a tool for improving our understanding of sub-GCM-grid-scale cloudiness. Specifically, we use high-resolution simulations of March 2000 IOP days to identify the important mesoscale dynamic and thermodynamic controls on cloud water distributions. The resolution dependence of the simulated results is also investigated as a way to identify potential deficiencies in coarser-resolution models, such as GCMs. The main finding from the

305

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ERBE OLR and Cloud Type by Split Window ERBE OLR and Cloud Type by Split Window Inoue, T.(a) and Ackerman, S.A.(b), Meteorological Research Institute (a), University of Wisconsin (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Using collocated ERBE and split window/AVHRR on board NOAA-9, we studied the relationship between cloud type and OLR. NOAA operational OLR estimation is based on flux equivalent temperature defined by the narrow band TBB. We found the relationship between ERBE OLR and brightness temperature (TBB) was different depending on cloud type classified by the split window. The brightness temperature difference between the split window (BTD) is a good indicator of water vapor amount and cloud optical properties. Therefore, we use the TBB and BTD to determine the regression

306

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Implementing Flexible Cloud Vertical Structure in GFDL's AM-2 Large-Scale Implementing Flexible Cloud Vertical Structure in GFDL's AM-2 Large-Scale Model Using Stochastic Clouds Pincus, R.(a), Klein, S.A.(b), and Hemmler, R.(b), NOAA-CIRES Climate DiagnosticsCenter (a), Geophysical Fluid Dynamics Laboratory (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud vertical structure has a significant impact on radiation and precipitation fluxes, which can then feed back to the general circulation. In large-scale models with partial cloudiness in each grid cell, this structure is usually imposed in the form of "overlap assumptions," which are typically implemented separately in the radiation and precipitation codes. To date, GFDL's global atmospheric model AM-2 has used the random overlap assumption, which is easy to implement but known to be unrealistic

307

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol-Cloud-Radiation Interaction: A Comparison of GCM Results versus Aerosol-Cloud-Radiation Interaction: A Comparison of GCM Results versus Surface Observations Liepert, B.G., Lamont-Doherty Earth Observatory of Columbia University; Lohmann, U., Dalhousie University, Halifax, Canada Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The change in cloud properties due to increased anthropogenic emissions of aerosols and their precursor gases is referred to as "indirect aerosol effect." Estimates with general circulation models (GCMs) assumed that an increase in aerosol concentration would lead to a cooling effect of about -1Wm2. To evaluate the anthropogenic indirect aerosol effect, we compared two ECHAM GCM experiments with long-term surface observations covering the United States and Germany. The model prognosticates the number of cloud

308

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Terminal Velocities of Droplets and Crystals: Power Laws with Continuous Terminal Velocities of Droplets and Crystals: Power Laws with Continuous Parameters Over the Size Spectrum Khvorostyanov, V.I. and Curry, J.A., University of Colorado Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting This paper presents a unified treatment of cloud particle fall velocities Vt for both liquid and crystalline cloud particles over the entire size range observed in the atmosphere. The fall velocity representation is formulated in terms of the Best (or Davies) number X and the Reynolds number Re. For the power law representations used in many applications, and with D being the particle diameter (or maximum length), the coefficients aRe, bRe, av, bRe are found as the continuous analytical functions of X or D over the entire hydrometeors size range. Analytical asymptotic solutions

309

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical and Microphysical Characteristics of the Smoke Aerosol in the Optical and Microphysical Characteristics of the Smoke Aerosol in the Moscow Region During the Summer-Autumn of 2002 Gorchakov, G.I.(a), Golitsyn, G.S.(a), Anikin, P.P.(a), Emilenko, A.S.(a), Isakov, A.A. (a), Kopeikin, V.M.(a), Rublev, A.N.(b), Sviridenkov, M.A.(a), and Shukurov, K.A.(a), A.M.Obukhov Institute of Atmospheric Physics, RAS (a), Russian Research Center "Kurchatov Institute" (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Observational results will be presented for the optical and microphysical characteristics of the smoke aerosol produced by wild fires at peatbogs in the Moscow region during the July-September of 2002. Characteristics in the visual range and mass concentration of the submicron aerosol had been

310

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A First Look at the Radiative Impact of Tropical Cirrus Systems Encountered A First Look at the Radiative Impact of Tropical Cirrus Systems Encountered During CRYSTAL-FACE Pilewskie, P. (a), Gore, W. (a), Rabbette, M. (b), Howard, S. (b), and Pommier, J. (b), NASA Ames Research Center (a), Bay Area Environmental Research Institute (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting During the 2002 CRYSTAL-FACE experiment we deployed identical solar spectral and broad-band infrared sensors on the ER-2 and CIRPAS Twin Otter in order to characterize the column radiative energy budget in the tropical atmosphere under varying conditions such as thick anvil cirrus, thin sub-visible cirrus, and cloud free conditions. The data are used to determine cirrus and clear sky heating and cooling rates. The solar spectral reflectance and transmittance data are used to infer cloud

311

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diurnal Cycle of Convection, Clouds, and Water Vapor in the Tropical Diurnal Cycle of Convection, Clouds, and Water Vapor in the Tropical Upper Troposphere Soden, B.J., NOAA/GFDL Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The presence of large diurnal variations in convection over the tropics is well documented. The amplitude of the diurnal cycle is typically largest over land areas, but important variations are also observed over oceans. Precipitation, for example, generally peaks in the early evening over tropical land regions and in the early morning over oceans. Such land/ ocean phase differences have been the topic of considerable research and debate. Many of the most widely studied diurnal variations, such as precipitation, cloud cover, and outgoing longwave radiation, are directly associated with the atmospheric hydrologic cycle. Given its obvious role in

312

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of Clouds on the Atmospheric Absorption of SW - Comparing Theory and Impact of Clouds on the Atmospheric Absorption of SW - Comparing Theory and Observation at SGP Rose, F.G. (a), Charlock, T.P. (b), and Rutan, D.A. (a), Analytical Services & Materials Inc. (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting This group, and also Li and Trishchenko, have earlier determined the cloud forcing to the atmospheric absorption of SW by combining surface data at SGP with CERES at TOA. Detailed analysis of our results show a systematic trend in the difference of all-sky and clear-sky atmospheric absorption with cosSZA: All-sky absorbs significantly more than clear-sky as cosSZA increases. From radiative transfer theory, all-sky absorption of SW is expected to be greater (less) than clear sky absoption when clouds are low

313

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Subgrid Representation of Precipitating Marine Boundary Layer Clouds A Subgrid Representation of Precipitating Marine Boundary Layer Clouds Leung, L.R., and Ghan, S.J., Pacific Northwest National Laboratory; Feingold, G., Cooperative Institute for Research in the Atmosphere, Colorado State University Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting A subgrid parameterization is being developed to account for subgrid variations of precipitating marine stratocumulus clouds in general circulation models (GCMs). The method assumes an idealized form for the probability density function (pdf) for the cloud variables and predicts/diagnoses the parameters describing the pdfs. A level 2.5 turbulence closure model is used to calculate turbulence fluxes. Cloud-water-related turbulence fluxes are estimated using a partial

314

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Relationships Among Tropical Cloud Characteristics and Components of the Relationships Among Tropical Cloud Characteristics and Components of the Surface Heat Budget Curry, J.A., and Webster, P.J., University of Colorado; Clayson, C.A., Purdue University Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite data obtained during the TOGA COARE Intensive Observation Period (IOP) has been used to create a high resolution dataset (50 km, 3 hrs) of cloud characteristics (phase, height, precipitation) and components of the surface energy budget (radiation, sensible and latent heat fluxes). The satellite dataset has been evaluated using in situ observations obtained during TOGA COARE. A cloud classification scheme based upon cloud top height, phase, and precipitation is used as a framework to interpret the effect of the different cloud types on the component surface fluxes and

315

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Parameterization for Three-Dimensional Inhomogeneous Cirrus Radiation Parameterization for Three-Dimensional Inhomogeneous Cirrus Clouds: Application to Climate Models Gu, Y. and Liou, K.N., University of California, Los Angeles Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A three-dimensional (3D) radiative transfer model has been developed to simulate the transfer of solar and thermal infrared radiation in inhomogeneous cirrus clouds. The model utilizes a diffusion approximation approach (four-term expansion in the intensity) for application to inhomogeneous media employing Cartesian coordinates. The extinction coefficient, single-scattering albedo, and asymmetry factor are functions of spatial position and wavelength and are parameterized in terms of the ice water content and mean effective ice crystal size. We employ the

316

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cirrus Cloud Particle Mass and Terminal Velocity Derived from Airborne 2D-C Cirrus Cloud Particle Mass and Terminal Velocity Derived from Airborne 2D-C Probe and Counterflow Virtural Impactor Data for Selected Cases During the Spring 2000 Cloud IOP Benson-Troth, S.(a), Mace, G.G.(a), Twohy, C.(b), and Poellot, M.(c), University of Utah (a), Oregon State University (b), University of North Dakota (c) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting When cirrus cloud particles are sampled by an airborne 2D-C probe, the shadows of the particles on the diode array are preserved. Analysis of the raw 2D-C data provides a size distribution and number concentration of the cloud particles sampled. The airborne counterflow virtural impactor provides the ice water content of the sampled cloud particles. Using the size distribution and the ice water content, we derive the coefficient and

317

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Influence of Age-Dependent Optical and Thermal Snow Properties on the Influence of Age-Dependent Optical and Thermal Snow Properties on the Modeled Surface Temperature and Albedo in the Arctic Curry, J.A., and Schramm, J.L., University of Colorado Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting A new multi-level snow model has been developed to simulate the time-varying snow thermal and optical characteristics in response to precipitation events and snow aging. The model is forced by observations from the Russian ice islands in the Arctic Ocean, and also using some preliminary data from SHEBA. A comparison of the modeled surface temperature and albedo with the commonly used 0-level snow model is made. The new model shows much better agreement with time-series observations of surface temperature and albedo. When the snow model is used over a sea ice

318

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Whole-Sky Imager Data Retrieval Whole-Sky Imager Data Retrieval Tooman, T.P., Christensen, G.J., Sandia National Laboratories; Shields, J., and Karr, M., Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego; Moore, S., and Sowle, D., Mission Research Corporation Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Whole-Sky Imager (WSI) is an automated imager used for assessing and documenting cloud fields and cloud field dynamics. Four WSI instruments have been deployed on hard surfaces: one in the Southern Great Plains, two in the Tropical Western Pacific, and one in the North Slope of Alaska. Additionally another instrument has been deployed on an ice breaker in the Polar Ice Cap - Surface Heat Budget of the Arctic (SHEBA). These electronic

319

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Satellite Cloud, Radiation and Precipitation Data Set for Cloud Model A Satellite Cloud, Radiation and Precipitation Data Set for Cloud Model Evaluation Xu, K.-M.(a), Wielicki, B.A.(a), Wong, T.(a), and Randall, D.A.(b), NASA Langley Research Center (a), Colorado State University (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting To systematically evaluate cloud models including large-eddy simulation (LES), cloud-resolving models (CRMs), cloud parameterizations in general circulation models (GCMs), one needs a large set of cloud, radiation and precipitation data that are matched with simultaneous atmospheric state data. We have been using a technique to produce such a data set at the NASA Langley Research Center. Specifically, this technique classifies EOS (Earth Observing System) satellite data into distinct cloud systems or "cloud

320

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NCDX: NetCdr Data eXtraction utility for Examination and Visualization of NCDX: NetCdr Data eXtraction utility for Examination and Visualization of Netcdf Data Flynn, C.J. and Ermold, B., Pacific Northwest National Laboratory Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting NCDX is a command-line utility designed for routine examination and extraction of data from netcdf files. Data can be displayed graphically (line-plot, scatter-plot, overlay, color-intensity, etc.) or extracted as ASCII data. In either case, results can be saved to disk or viewed directly on screen. Date and time can be displayed in a large variety of formats including calendar, julian, HHMMSS, fractional day, and others. It can accept multiple netcdf files as input producing merged results. NCDX can be used in either interactive or batch-processing mode making it suitable for

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Absolute Radiance Calibration Techniques for the Whole Sky Imager Absolute Radiance Calibration Techniques for the Whole Sky Imager Shields, J.E. (a), Johnson, R.W. (a), Tooman, T.P. (b), Karr, M.E. (a), Burden, A.R. (a), and Baker, J.G. (a), Scripps Institution of Oceanography (a), Sandia National Laboratories (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Day/Night Whole Sky Imager is designed to provide absolute radiance distributions over the full upper hemisphere, as well as providing an assessment of cloud fraction and cloud spatial properties. In order to provide radiance distributions, the instrument must be calibrated using absolute radiometry techniques adapted for use with an imager. These techniques are particularly demanding due to the large dynamic range required to acquire data from full daylight to starlight. For example, a

322

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activation Control: An Alternate Framework for Explaining Variation of Deep Activation Control: An Alternate Framework for Explaining Variation of Deep Convection Barr-Kumarakulasinghe, S.A., Brookhaven National Laboratory Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting An alternate conceptual framework with the ability to explain large scale variation in convection, but still have the ability to explain shorter time scale (weekly) variation of convection is presented. In contrast, the current quasi-equilibrium and statistical equilibrium control framework, appears to be only successful in explaining monthly and large scale variations in convection and circulation patterns. Mapes has referred to an alternate concept as activation control, though not actually offering a solution or methodology. This abstract presents an activation control

323

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulation of the Annual Cycle of Surface Albedo for SHEBA Simulation of the Annual Cycle of Surface Albedo for SHEBA Schramm, J.L., and Curry, J.A., University of Colorado Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting A single-column ice thickness distribution model is used to simulate the annual cycle of sea ice, snow and surface radiation characteristics over the Surface Heat Budget of the Arctic Ocean (SHEBA). The model is forced using surface flux data obtained at SHEBA. This poster focuses on the simulated surface albedo and the principal factors that determine it (snow and melt ponds). By comparing the model simulations with SHEBA observations, an assessment of our current parameterizations of snow, melt ponds and surface albedo is given. Some improvements to our model parameterizations have already been made based upon the comparison with

324

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Fraction Retrieval Utilizing Whole Sky Imagers Cloud Fraction Retrieval Utilizing Whole Sky Imagers Tooman, T.P., Sandia National Laboratories; Moore, S., and Sowle, D., Mission Research Corporation; Shields, J., Marine Physical Laboratory Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting Long-term statistics on cloud cover and cloud thickness are desirable for understanding how clouds affect climate. We are attempting to use images collected by the Whole Sky Imager (WSI) to extract this information. For nighttime retrieval, we intend to develop algorithms and software to detect star occultations due to clouds. For daytime retrievals, we intend to develop an appoach based on sky radiance variations. We have implemented software to detect star locations, to map image pixel space to celestial

325

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parameterization of Cloud-Radiation Interactions as Relevant to Climate Parameterization of Cloud-Radiation Interactions as Relevant to Climate Models: A New Dimension Stephens, G.L.(a), Wood, N.B.(a), Barker, H.W.(b), and Gabriel,P.(a), Colorado State University (a), Meteorological Service of Canada (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The parameterization of cloud-radiation interactions involve a number of levels of approximation. The focus of past programs like ICRCCM and I3RC have been directed largely towards assessing methods of solution while other efforts have gone into evaluating the parameterization of cloud optical properties. The parameterization of unresolved cloud variability, however, has received much less attention. A study that attempts to assess a number of the current empirical sub-grid parameterization methods has

326

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Approach for Obtaining Advection Profiles: Application to the SHEBA A New Approach for Obtaining Advection Profiles: Application to the SHEBA Column Morrison, H.(a) and Pinto, J.O.(b), University of Colorado (a), NCAR/University of Colorado (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Time-averaged vertically-integrated 3-D advections are inferred from heat and moisture budgets obtained from observations at SHEBA for April, May, June and July. Advection was a source of heat and moisture in the column budgets during the time period, balanced mostly by precipitation and radiative cooling. These inferred advections are used to evaluate and correct the 3D temperature and water vapor advection profiles obtained from operational forecasts of the ECMWF model. Advections from the ECMWF model are generally too warm and moist, particularly in July. These biases lead

327

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluating Stochastic Radiative Transfer Evaluating Stochastic Radiative Transfer Lane, D.E. (a), Somerville, R.C.J. (b), and Iacobellis, S.F. (b), CIRES, University of Colorado, Boulder (a), Scripps Institution of Oceanography, University of California, San Diego (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Stochastic modeling is a promising technique for representing shortwave radiative transfer through scattered, low-level clouds. A distinct advantage of this approach is that a stochastic model can accurately calculate the radiative heating rates through a broken cloud layer without requiring an exact description of the cloud geometry. In this paper a single-column model is employed to quantify the influence of the stochastic approach on model thermodynamics for times when broken cloud fields were

328

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Numerical Tests of the Cloud-Surface Interaction Based Broken-Cloud Field Numerical Tests of the Cloud-Surface Interaction Based Broken-Cloud Field Optical Depth Retrieval: Sensitivity to Surface Albedo, Droplet Phase Function, Aerosol, and Instrument Noise Beaulne, A.(a), Barker, H.W.(b), Blanchet, J.P.(a), Pavloski, C.F.(c), Clothiaux, E.E.(c), and Marshak, A.(d), Universite du Quebec a Montreal (a), Environment Canada (b), The Pennsylvania State University (c), NASA-GSFC (d) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The algorithm proposed by Barker and Marshak for inferring optical depth of broken clouds using surface radiometric data has been subject to several sensitivity tests. These include the impacts of uncertainties in specification of effective local surface albedo, droplet phase function,

329

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seasonal Variability in Cloud Cover, Cloud Base Height, and Cloud Liquid Seasonal Variability in Cloud Cover, Cloud Base Height, and Cloud Liquid Water Content at the North Slope of Alaska and the Adjacent Arctic Ocean Takara, E.E. and Ellingson, R.G., University of Maryland Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting It is well known that complete radiative transfer calculations for broken cloud fields are extremely complex and time consuming. Furthermore, the solution for a particular broken cloud field is not particularly useful for evaluating cloud effects. For that reason, is common to parameterize the cloud effects by using an effective cloud fraction. In general circulation models, it is common to use theabsolute cloud amount as the effective cloud fractions. This can be an effective for cloud fields where the cloud

330

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiosonde Intercomparison During the Fall 2000 Water Vapor IOP Radiosonde Intercomparison During the Fall 2000 Water Vapor IOP Lesht, B.M. (a) and Richardson, S.J. (b), Argonne National Laboratory (a), University of Oklahoma (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting We conducted 160 dual-radiosonde soundings during the fall 2000 Water Vapor Intensive Operations Period (WVIOP). The soundings were done every three hours at the SGP/CART site central facility from 1430 on 18 September 2000 through 1130 on 8 October 2000. The dual soundings included Vaisala RH-80H radiosondes from four different calibration lots as well as Vaisala RS-90 radiosondes. The radisondes were distributed during the experiment so as to conduct pairwise comparisons between RS-80s, RS-90s and RS-80s/RS-90s. Prior to the WVIOP we tested the calibration of these types of radiosondes

331

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Application of a Non-local Turbulence Closure Scheme to a Single Column Application of a Non-local Turbulence Closure Scheme to a Single Column Model Ghan, S.J. (a) and Moeng, C.-H. (b), Pacific Northwest National Laboratory (a), National Center for Atmospheric Research (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A non-local countergradient transport term is added to a turbulence kinetic energy scheme embedded in a single column model (SCM). The countergradient term is expressed in terms of a planetary boundary layer (PBL) velocity scale, the vertical profile of diffusivity, the depth of the PBL, and the fluxes of heat and moisture at the surface and at the top of the PBL. The fluxes at the top of the PBL are expressed in terms of the cloud top radiative cooling rate, the jump in liquid potential temperature and total

332

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Longwave Irradiance Uncertainty Atmospheric Longwave Irradiance Uncertainty Philipona, R. (a), Dutton, E.G. (b), Wood, N. (b), Anderson, G. (b), Stoffel, T. (c), Reda, I. (c), Michalsky, J.J. (d), Wendling, P. (e), Stiffter, A. (e), Clough, S.A. (f), Mlawer, E.J. (f), Revercomb, H. (g), and Shippert, T. (h), World Radiation Center, Davos, Switzerland (a), NOAA, Climate Monitoring and Diagnosic Laboratory (b), National Renewable Energy Laboratory (c), State University of New York at Albany (d), DLR, Oberfaffenhofen, Germany (e), Atmospheric and Environmental Research Inc. (f), University of Wisconsin-Madison (g), Pacific Northwest National Laboratory (h) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The first International Pyrgeometer and Absolute Sky-scanning Radiometer

333

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detection of Thin Cirrus Using MODIS 1.38 Micron Reflection Detection of Thin Cirrus Using MODIS 1.38 Micron Reflection Roskovensky, J.K. and Liou, K.N., University of California, Los Angeles Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The 1.38 µm channel on board MODIS may have significant advantage in detecting thin cirrus over existing methods due to its high sensitivity to upper tropospheric clouds and a nearly negligible sensitivity to low level reflectance. To investigate this potential, three different cloud schemes are employed. One based on the MODIS Cloud Mask Product (MOD35) which utilizes both visible and 1.38 µm reflectance thresholds. The second is a modified version of the cloud phase detection scheme presented in the paper by Ou et al (1996) that incorporates a series of visible, near and far

334

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tropical Cloud Radiative Forcing and the Large-Scale Atmospheric Energy Tropical Cloud Radiative Forcing and the Large-Scale Atmospheric Energy Transport Tian, B. (a) and Ramanathan, V. (b), Scripps Institution of Oceanography, UCSD Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Moist static energy is exported within the atmosphere column, from equatorial latitudes to the subtropics by the Hadley circulation and from the western Pacific warm pool to the eastern Pacific cold tongue by the Walker circulation. It is the net energy fluxes into the atmosphere, i.e., the radiative and the turbulent latent and sensible heat fluxes from surface and the radiative flux at the top of the atmosphere, that maintain this energy transport and balance the resulting divergence of energy. We demonstrate here that the dominant term that provides the balance is the

335

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of Cloud-Radiative Properties from Regional Very-High-Resolution Comparison of Cloud-Radiative Properties from Regional Very-High-Resolution Modeling and Satellite Retrievals Wang, D.-H. (a,b) and Minnis, P.(b), Hampton University (a), NASA Langley Research Center (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Data from a regional very-high-resolution modeling/assimilation and the GOES satellite-derived cloud-radiative properties including cloud fraction, temperature, height, thickness, phase, optical depth, effective particle size and ice or liquid water path; and TOA fluxes and albedos, are used in this study. The preliminary results of the intercomparison show that the cloud fields from model and satellite-derived compare well. The frequencies are computed for the individual cloud system. Comparisons of frequency

336

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Differences in Cloud Characteristics at Barrow and Atqasuk at the NSA/AAO Differences in Cloud Characteristics at Barrow and Atqasuk at the NSA/AAO CART Doran, J.C., Barnard, J.C., Zhong, S., and Jakob, C., Pacific Northwest National Laboratory Pacific Northwest National Laboratory, European Centre for Medium-Range Weather Forecasting Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Data obtained from multifilter rotating shadowband radiometers (MFRSRs) and microwave radiometers (MWRs) have been used to examine the differences in the cloud characteristics at Barrow and Atqasuk during the period June-September of 1999. Because the size of a grid cell in a GCM may be on the order of 100 km or more, it is important to determine to what extent meteorological and radiometric observations made at Barrow or Atqasuk

337

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Particle Size Distributions Estimated During the 2001 Multi-Frequency Radar Particle Size Distributions Estimated During the 2001 Multi-Frequency Radar IOP Williams, C.R.(a) and Sekelsky, S.M.(b), University of Colorado at Boulder (a), University of Massachusetts at Amherst (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The 2001 Multi-Frequency Radar Intensive Operational Period (IOP) was designed to collect a long dataset of W-band (95 GHz), Ka-band (35 GHz), and S-band (2.8 GHz) vertical profiling observations to investigate insect scattering and precipitating particle scattering above the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site. The 95 and 2.8 GHz vertically pointing radars were placed next to the permanently installed 35 GHz Millimeter Wave Cloud Radar (MMCR) at the SGP Central Facility from

338

ARM - 2009 Science Team Meeting Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presentations Presentations 2009 Meeting 2009 Meeting Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Posters Presentations Meeting Archives ARM Science Team Meeting Proceedings Past Science Team Meetings 2009 Science Team Meeting Presentations Monday, March 30, 2009 ARM Orientation for New and Current PIs Chief Scientist's Perspective (PDF, 3,362K) Warren Wiscombe ARM Instruments (PDF, 1,828K) Jimmy Voyles Infrastructure (PDF, 607K) Jim Mather How to Get Data (PDF, 9,307) Raymond McCord Working Group Sessions Radiative Properties Working Group 2009 Breakout Session Agenda (PDF, 36K) Dave Turner Radiative Constraints in Tropical Upper Troposphere and Lower Stratosphere (PDF, 281K) Qiang Fu Ground-Based Microwave Cloud Tomography Experiment (PDF, 597K) Dong Huang

339

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

participate in the ARM Mixed-Phase Arctic Cloud Experiment in the Fall of 2004. From the UAV platform, the S-HIS measures the up and downwelling infrared radiance at high spectral...

340

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Broadband Surface Flux Closure Under Cloudy Skies at Nauru McFarlane, S.A. and Evans, K.F., University of Colorado Twelfth Atmospheric Radiation Measurement (ARM)...

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development Li,Z.(a), Cribb, M.(a), and Trishchenko, A.P.(b), University of Maryland (a), Canada Centre for Remote Sensing (b) Twelfth Atmospheric Radiation Measurement (ARM)...

342

DOE ARM Data and Measurement Needs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Philosophy Philosophy Practice Proposal DOE ARM Data and Measurement Needs Ann Fridlind * NASA GISS 10 March 2008 Ann Fridlind * NASA GISS DOE ARM Data and Measurement Needs Philosophy Practice Proposal Programmatic goals Programmatic tools Pursue the newest technologies "Build it and they will come" Ann Fridlind * NASA GISS DOE ARM Data and Measurement Needs Philosophy Practice Proposal Programmatic goals Programmatic tools Pursue the newest technologies "Build it and they will come" Inspire the masses (and money providers) Ann Fridlind * NASA GISS DOE ARM Data and Measurement Needs Philosophy Practice Proposal Programmatic goals Programmatic tools Pursue the newest technologies "Build it and they will come" Inspire the masses (and money providers) Hope that scientific results follow Ann Fridlind * NASA GISS DOE ARM Data and Measurement Needs

343

Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Style Guide Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility March 2013 Style Guide Atmospheric Radiation Measurement Climate Research Facility March 2013 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research March 2013 ii Contents 1.0 Introduction .......................................................................................................................................... 1 2.0 Acronyms and Abbreviations ............................................................................................................... 1 2.1 Usage ............................................................................................................................................ 1

344

ARM - Publications: Science Team Meeting Documents: Abstracts sorted by  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting Meeting 2005 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Fifteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2005, March 2005 Daytona Beach, Florida For proper viewing, extended abstracts should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. * Poster abstract only; an extended abstract was not provided by the author(s). View session papers by Author or Title. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Abdou, W. Determination of Aerosol and Surface Reflectance Characteristics at the ARM CART Site Using MISR Observations* Ackerman, A. Factors Controlling the Properties of Multi-Phase Arctic

345

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Direct Forcing at TOA and Surface for Clear and Cloudy Conditions Aerosol Direct Forcing at TOA and Surface for Clear and Cloudy Conditions Charlock, T.P.(a), Rose, F.G.(b), Rutan, D.A.(b), Fillmore, D.(c), and Collins, W.(c), NASA Langley Research Center (a), Analytical Services and Materials, Inc. (b), National Center for Atmospheric Research (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Direct aerosol forcing can be affected dramatically by cloudiness. For example, with a continental AOT of 0.25 and soot AOT of 0.05 at scale height 2km over the tropical ocean with cosSZA of 0.33, the computed forcing to SW reflection at TOA is 15 Wm-2. If we include a boundary layer cloud with a top at 1km and an optical depth 20, the same TOA forcing then reverses sign and becomes -22 Wm-2. A new CERES Terra Surface and

346

ARM - Measurement - Cloud particle size distribution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

size distribution size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle size distribution The number of cloud particles present in any given volume of air within a specified size range, including liquid and ice. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments WSACR : Scanning ARM Cloud Radar, tuned to W-Band (95GHz) Field Campaign Instruments CPI : Cloud Particle Imager CLDAEROSMICRO : Cloud and Aerosol Microphysical Properties

347

ARM - Publications: Science Team Meeting Documents: ARM-UAV Instrument...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM-UAV Instrumentation Used On The Proteus Aircraft During The M-PACE Experiment McCoy, Robert Sandia National Laboratories Tooman, Tim Sandia National Laboratories The...

348

Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Radiation Measurement (ARM) Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

349

ARM - Measurement - Net broadband total irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsNet broadband total irradiance govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model

350

ARM - Measurement - Planetary boundary layer height  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsPlanetary boundary layer height govMeasurementsPlanetary boundary layer height ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Planetary boundary layer height Top of the planetary boundary layer; also known as depth or height of the mixing layer. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments VCEIL : Vaisala Ceilometer External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments

351

ARM - Measurement - Longwave broadband downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave broadband downwelling irradiance The total diffuse and direct radiant energy, at wavelengths longer than approximately 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments BSRN : Baseline Solar Radiation Network BRS : Broadband Radiometer Station CO2FLX : Carbon Dioxide Flux Measurement Systems

352

ARM - Measurement - Longwave narrowband brightness temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

narrowband brightness temperature narrowband brightness temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave narrowband brightness temperature A descriptive measure of radiation in terms of the temperature of a hypothetical black body emitting an identical amount of radiation in the same narrow band of wavelengths. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments IRT : Infrared Thermometer Field Campaign Instruments RAD-AIR : Airborne Radiometers

353

ARM - Measurement - Shortwave broadband total downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AMC : Ameriflux Measurement Component BSRN : Baseline Solar Radiation Network

354

ARM - Measurement - Shortwave narrowband total upwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

upwelling irradiance upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFR : Multifilter Radiometer Field Campaign Instruments RAD-AIR : Airborne Radiometers

355

ARM - Measurement - Aerosol particle size distribution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particle size distribution particle size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size distribution The number of aerosol particles present in any given volume of air within a specificied size range Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SMPS : Scanning mobility particle sizer TDMA : Tandem Differential Mobility Analyzer UHSAS : Ultra-High Sensitivity Aerosol Spectrometer Field Campaign Instruments

356

ARM - Measurement - Shortwave narrowband total downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFRSR : Multifilter Rotating Shadowband Radiometer NFOV : Narrow Field of View Zenith Radiometer

357

ARM - Measurement - Shortwave narrowband diffuse upwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

upwelling irradiance upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband diffuse upwelling irradiance The rate at which radiant energy in narrow bands of wavelengths shorter than approximately 4 {mu}m, that has been scattered in the atmosphere at least once, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFR : Multifilter Radiometer

358

ARM - Measurement - Shortwave spectral diffuse downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diffuse downwelling irradiance diffuse downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral diffuse downwelling irradiance The rate at which spectrally resolved radiant energy at wavelengths shorter than approximately 4 {mu}m, that has been scattered in the atmosphere at least once, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments RSS : Rotating Shadowband Spectroradiometer

359

ARM - Measurement - Shortwave broadband direct normal irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

normal irradiance normal irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband direct normal irradiance The rate at which radiant energy in broad bands of wavelengths shorter than approximately 4{mu}m, that comes directly from the Sun without being scattered or absorbed in the atmosphere, passes through a unit area perpendicular to the direction from the Sun. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments

360

ARM - Measurement - Shortwave broadband diffuse downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diffuse downwelling irradiance diffuse downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband diffuse downwelling irradiance All of the solar radiation, across the wavelength range of 0.4 and 4 {mu}m, coming directly from the sky except for solar radiation coming directly from the sun and the circumsolar irradiance within approximately three degrees of the sun. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(a), Cohn, S.A. (a), and Yoneyama, K. (b), National Center for Atmospheric Research (a), Japan Marine Science and Technology Center (b) Eleventh Atmospheric Radiation Measurement...

362

ARM - 2008 Science Team Meeting Pictures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Director (left), engages an ARM researcher during one of the poster sessions. Larry Berg, ARM scientist (left), listens to a visiting scientist from Niamey, Niger, who...

363

ARM - Measurement - Longwave narrowband radiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Send Measurement : Longwave narrowband radiance The rate at which radiant energy in the longwave portion of the spectrum is emitted in narrow wavelength bands in a...

364

Atmospheric Radiation Measurement (ARM) Data Products from Principal Investigators  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

365

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Observations and Stochastic Modeling of Shortwave Radiative Transfer at the Observations and Stochastic Modeling of Shortwave Radiative Transfer at the ARM CART Sites Secora, J.M. and Veron, D.E., Rutgers University Stochastic modeling has been shown to be a promising technique for representing shortwave radiative transfer through fractional cloud fields and may be a suitable approach for characterizing the impact of macroscale inhomogeneity of the cloud field on the radiation in an Atmospheric General Circulation Model (AGCM) environment. To ascertain the conditions under which the stochastic approach would be appropriate in an AGCM, several steps have been taken. Initially, we have analyzed both microphysical and geometrical cloud characteristics for one year at three Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART)

366

ARM - Publications: Science Team Meeting Documents: ARM Site Atmospheric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Site Atmospheric State Best Estimates for AIRS Forward Model and ARM Site Atmospheric State Best Estimates for AIRS Forward Model and Retrieval Validation Tobin, David University of Wisconsin-Madison Revercomb, Henry University Of Wisconsin-Madison Knuteson, Robert University Of Wisconsin Feltz, Wayne University of Wisconsin Moy, Leslie University of Wisconsin-Madison Lesht, Barry Argonne National Laboratory Cress, Ted Pacific Northwest National Laboratory Strow, Larrabee Hannon, Scott Fetzer, Eric Jet Propulsion Laboratory The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua platform is the first of a new generation of advanced hyperspectral atmospheric sounders with the capability of retrieving temperature and trace gas profiles with high vertical resolution and absolute accuracy. In the past few years ARM has played a major role in the validation of AIRS, including the launch of

367

ARM - Measurement - Shortwave narrowband direct downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband direct downwelling irradiance The direct unscattered radiant energy from the Sun, in a narrow band of wavelengths shorter than approximately 4 {mu}m, passing through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments SOAR : Shipboard Oceanographic and Atmospheric Radiation

368

ARM - Measurement - Longwave narrowband upwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

narrowband upwelling irradiance narrowband upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave narrowband upwelling irradiance The total radiant energy, in a narrow band of wavelengths longer than approximately 4 {mu}m, passing through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments OTTER : Twin Otter UAV-EGRETT : UAV-Egrett Value-Added Products LBTM-MINNIS : Minnis Cloud Products Using LBTM Algorithm (Process)

369

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Team Meeting Counting from when MMCR's were first intalled at the 4 ARM sites, the ARM dataset consists of nearly 10 years of total data collected. This volume of data presents...

370

Charter for the ARM Climate Research Facility Science Board  

SciTech Connect (OSTI)

The objective of the ARM Science Board is to promote the Nation’s scientific enterprise by ensuring that the best quality science is conducted at the DOE’s User Facility known as the ARM Climate Research Facility. The goal of the User Facility is to serve scientific researchers by providing unique data and tools to facilitate scientific applications for improving understanding and prediction of climate science.

Ferrell, W

2013-03-08T23:59:59.000Z

371

Simultaneous Spectral Albedo Measurements Near the ARM SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simultaneous Spectral Albedo Measurements Simultaneous Spectral Albedo Measurements Near the ARM SGP Central Facility J. J. Michalsky and Q.-L. Min Atmospheric Sciences Research Center State University of New York Albany, New York J. C. Barnard and R. T. Marchand Pacific Northwest National Laboratory P. Pilewskie National Aeronautics and Space Administration Ames Research Center Moffett Field, California Introduction During ARM Enhanced Shortwave Experiment II (ARESE II) the Twin Otter aircraft made low-altitude (100-300-m) passes over the Central Facility (CF) at the Southern Great Plains (SGP) Clouds and Radiation Testbed (CART) site as part of the flight pattern design for the experiment. The National Aeronautics and Space Administration (NASA) Ames Research Center's Solar Spectral Flux

372

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Association of the Cirrus Properties Over the Western Tropical Pacific The Association of the Cirrus Properties Over the Western Tropical Pacific with Tropical Deep Convection Deng, M.(a), Mace, G.G.(a), and Soden, B.J.(b), Univesity of Utah (a), Geophysical Fluid Dynamics Laboratory (b) The microphysical and radiative properties of upper tropospheric clouds in the tropics are known to have a substantial influence on climate. Observations from long term cloud radar measurements in the tropics show that upper tropospheric clouds are observed above 10 km as much as 40% of the time depending on location. By combining satellite observations with observations from the tropical ARM site on Nauru and Manus Islands we examine the macro and microphysical properties of these clouds in terms of their association with deep convection. The fundamental questions we will

373

ARM - Selected Science Team Applications - FY 2009  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brian Mapes, University of Miami: "Parameterizing Convective Organization" Dr. Roger Marchand: "Atmospheric Classification for the Analysis of ARM Observations and Global Climate...

374

ARM - Publications: Science Team Meeting Documents: Autonomous...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Autonomous Retrieval of Cloud and Aerosol Properties from ARM Micropulse Lidar Flynn, Connor Pacific Northwest National Laboratory Christy, Jason Columbia University Beus, Sherman...

375

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radar and Microwave Radiometer Data from the Southern Great Plains (SGP) Multi-Angle Satellite Retrieval of Cumulus Thickness at the ARM TWP Site: Validation Tests Stochastic...

376

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

algorithms, which are now being applied to ARM data and will be applied to NASA A-Train satellite data, vary in complexity from simple regression equations to more complex...

377

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Mobile Facility - Overview and Status Miller, M.A.(a), Widener, K.B.(b), and Jones, L.(c), Brookhaven National Laboratory(a) Pacific Northwest National Laboratory (b), Los...

378

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The ARM Shipboard Oceanographic and Atmospheric Radiation (SOAR) Program: A Review of Instrumentation and Results to Date Reynolds, R.M. (a), MIller, M.A. (a), Bartholomew, M.J....

379

ARM - Selected Science Team Proposals - FY 1994  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Climate GCM" Dr. Jean-Francois Louis, AER, Inc.: "Variational Single Column Data Assimilation for ARM" Dr. Robert McIntosh, University of Mass.: "The Use of a Ground-Based...

380

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Sites and the CRYSTAL Field Experiment Laribee-Dowd, K. (a), Mace, G. G. (a), and Marchand, R.T. (b), University of Utah (a) Pacific Northwest National Laboratory (b)...

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Y.A. Pkhalagov A Two-Year Cloud Climatology for the Southern Great Plains Site R.T. Marchand, T.P. Ackerman, and E.E. Clothiaux AERI + GOES Retrievals at the SGP ARM Site: SCM...

382

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Cover and Phase During Arctic Winter from DABul Lidar Guest, P. Preliminary Surface Heat Budget Results from SHEBA Guo, Y.-R. Assimilation of ARM WVIOP-96 Data with the...

383

ARM - Publications: Science Team Meeting Documents: Improved...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

imagery over the ARM NSA area using VISST, SIST and, in addition, Solar-infrared Infrared Near-infrared Technique (SINT). VISST and SINT utilize visible (0.65m) and near-infrared...

384

ARM -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center Blog Center Blog Media Contact Lynne Roeder lynne-dot-roeder-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes89 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 BAECC 1 BBOP 4 MAGIC 12 MC3E 17 SGP 2 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field Notes Blog feed Events feed Employment Research Highlights Data Announcements Education News Archive What's this? Social Media Guidance AMF2 Arrives in Finland Jan 02, 2014 [ ARM Mobile Facility 2, BAECC, Blog, Field Notes ] After nine months at sea aboard the Horizon Spirit, the AMF2 reached land for an extended stay at the Station for Measuring Forest Ecosystem-Atmosphere Relations (SMEAR II) in Hyytiala, Finland. This nine-month, land-based deployment is in support of the Biogenic Aerosols-Effects on Clouds and Climate (BAECC) project. The deployment begins February 1, 2014, and [...]

385

ARM - Measurement - Shortwave broadband total net irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Range Weather Forecasts Diagnostic Analyses ECMWF : European Centre for Medium Range Weather Forecasts Model Data Value-Added Products ARMBE : ARM Best Estimate Data Products...

386

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PWV and CLW from ARM MicroWave Radiometers Clough, S.A.(a), Clothiaux, E.E.(b), Cady-Pereira, K.(a), Boukabara,S.(a), Liljegren, J.C.(c), and Turner,D.D.(d), Atmospheric &...

387

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2000 ARM Cloud IOP Dong, X.(a), Minnis, P.(b), Mace, G.G.(c), Smith, W.L., Jr.(b), Marchand, R.T.(d), and Rapp, A.D.(e), University of North Dakota (a), NASA Langley Research...

388

Atmospheric Radiation Measurement (ARM) Data from the ARM Specific Measurement Categories  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The ARM Program gathers a wide variety of measurements from many different sources. Each day, the Data Archive stores and distributes large quantities of data collected from these sources. Scientists then use these data to research atmospheric radiation balance and cloud feedback processes, which are critical elements of global climate change. The huge archive of ARM data can be organized by measurement categories into six "collections:" Aerosols, Atmospheric Carbon, Atmospheric State, Cloud Properties, Radiometric, and Surface Properties. Clicking on one of the measurement categories leads to a page that breaks that category down into sub-categories. For example, "Aerosols" is broken down into Microphysical and Chemical Properties (with 9 subsets) and Optical and Radiative Properties (with 7 subsets). Each of the subset links, in turn, leads to detailed information pages and links to specific data streams. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

389

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The CCPP-ARM Parameterization Test Bed (CAPT) The CCPP-ARM Parameterization Test Bed (CAPT) Potter, G.L.(a), Williamson, D.L.(b), Cederwall, R.T.(a), and Xie, S.(a), Lawrence Livermore National Laboratory (a), National Center for Atmospheric Research (b) In an attempt to improve GCMs that are used to project future climate change, we have borrowed a technique from the NWP community to identify and isolate model errors. We are using high-frequency (~6 hourly) NWP analyses both to realistically initialize (using the state fields: T, U, V, Q, and Ps) a climate GCM to evaluate the accuracy of its subsequent short-range weather forecasts and to diagnose the structure and growth of the identified forecast errors. The rationale is that most of the climate GCM's forecast errors can be attributed to parameterization deficiencies, once

390

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Meteorological Applications Using AERI Thermodynamic Profiling New Meteorological Applications Using AERI Thermodynamic Profiling Feltz, W.F.(a), Howell, H.B.(a), Knuteson, R.O.(a), Mecikalski, J.(b), Bedka, K.(a), Tanamachi, R.L.(c), and Posselt, D.(d), University of Wisconsin SSEC/CIMSS (a), University of Alabama - Huntsville (b), University of Oklahoma (c), Colorado State University (d) The DOE ARM program has supported the development of a robust and operational thermodynamic retrieval algorithm using AERI high spectral resolution infrared radiances. These retrievals of temperature and water vapor have been used for a number of ARM research projects including planetary boundary layer (PBL) large eddy simulation, NWP validation, PBL height estimation, and for investigating the utility of driving SCM/CRM models continuously at the SGP site. New AERIplus retrieval meteorological

391

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The MERGED_SOUNDING VAP: A Status Report and Description The MERGED_SOUNDING VAP: A Status Report and Description Miller, M.A.(a), Troyan, D.T.(a), and Mace, G.G.(b), Brookhaven National Laboratory (a), University of Utah (b) The Value-added Product (VAP) known as MERGED_SOUNDING has been deemed a very desirous component of ARMs suite of VAPs. To have a thermodynamics profile of the atmosphere at one-minute temporal intervals and uniform height levels available for ARM data users eliminates much redundancy and inconsistency as investigators will now have standard atmospheric profiles at their disposal. The values which constitute the thermodynamics profile include: Temperature, Relative Humidity, Vapor Pressure, Barometric Pressure, Wind Speed and Direction, and Dewpoint. The data integrated to form the MERGED_SOUNDING data stream comes from radiosonde launches, model

392

ARM - Publications: Science Team Meeting Documents: Comparison of ECMWF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of ECMWF Model and ARSCL Cloudiness at the ARM SGP site Comparison of ECMWF Model and ARSCL Cloudiness at the ARM SGP site Kollias, Pavlos RSMAS/University of Miami Albrecht, Bruce University of Miami The Department of Energy (DOE) Atmospheric Radiation Measurements (ARM) Program operates a comprehensive suite of active remote sensors at Southern Great Plains (SGP) in Oklahoma since 1996 to detect all hydrometeors in the atmospheric column above. Due to its location, the ARM SGP site cloud and precipitation climatology it is believed to be representative of mid-latitudes. Long-term (6.5 years) observations from this ARM site are used to provide a cloud and precipitation climatology. A cloud classification scheme based on cloud base height, fractional coverage, cloud thickness, cloud reflectivity and precipitation detection at the

393

CIMEL Measurements of Zenith Radiances at the ARM SGP Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CIMEL Measurements of Zenith Radiances CIMEL Measurements of Zenith Radiances at the ARM SGP Site W. J. Wiscombe National Aeronautics and Space Administration Goddard Space Flight Center Climate and Radiation Branch Greenbelt, Maryland A. Marshak and K. Evans Joint Center for Earth Systems Technology University of Maryland Baltimore, Maryland Y. Knyazikhin Department of Geography Boston University Boston, Massachusetts H. W. Barker Environment Canada Downsview, Ontario, Canada C. F. Pavloski Department of Meteorology Pennsylvania State University University Park, Pennsylvania A. B. Davis Los Alamos National Laboratory Space and Remote Sensing Sciences Los Alamos, New Mexico M. Miller Brookhaven National Laboratory Upton, New York Introduction The objective of our study is to exploit the sharp spectral contrast in vegetated surface reflectance across

394

ARM - ARM Organization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARMARM Organization ARMARM Organization Laboratory Partners Nine DOE national laboratories share the responsibility of managing and operating the ARM Climate Research Facility. ARM Group Links Science Board SISC Charter Data Archive Data Management Facility Data Quality Program Engineering Support External Data Center ARM Organization The ARM Climate Research Facility operates field research sites around the world for global change research. Three primary locations-Southern Great Plains, Tropical Western Pacific, North Slope of Alaska-plus aircraft and the portable ARM Mobile Facilities-are heavily instrumented to collect massive amounts of atmospheric measurements needed to create data files. Scientists use these data to study the effects and interactions of sunlight, clouds, and radiant energy, as well as interdisciplinary research

395

ARM - Publications: Science Team Meeting Documents: Assessing physical  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessing physical processes in the ECMWF model forecasts through the ARM Assessing physical processes in the ECMWF model forecasts through the ARM SGP site measurements Neggers, Roel European Centre for Medium-range Weather Forecasts (ECMWF) Cheinet, Sylvain ECMWF (UK) Beljaars, Anton ECMWF Koehler, M European Centre for Medium-range Weather Forecasts, Reading, Morcrette, Jean-Jacques European Centre for Medium-Range Weather Forecasts Viterbo, Pedro ECMWF In this study, we compare short-term weather forecasts of the ECMWF model (Integrated Forecast System, IFS) to measurements at the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) program in July 2003. By using a number of ARM instruments and complementary satellite and radar network data, a number of systematic deficiencies are characterized in the IFS, focusing on mixing processes.

396

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institute for Research in Environmental Sciences; Blanchet, J.-P., University of Quebec at Montreal; Curry, J.A., University of Colorado Ninth Atmospheric Radiation...

397

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Cess, R.D.(d), Institute of Atmospheric Physics, Chinese Academy of Sciences (a), Hadley Centre for Climate Prediction and Research (b), Lawrence Livermore National Laboratory...

398

ARM - Publications: Science Team Meeting Documents: W-Band ARM Cloud Radar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W-Band ARM Cloud Radar System W-Band ARM Cloud Radar System Mead, James ProSensing Inc. Widener, Kevin Pacific Northwest National Laboratory The W-Band ARM Cloud Radar (WACR) is a dual polarization 95 GHz radar that will be deployed at the SGP CART site in the spring of 2005. The WACR system will be installed in the existing MMCR shelter, and will provide continuous zenith pointing measurements of clouds to compliment measurements provided by MMCR. Built by ProSensing Inc. of Amherst, MA, the WACR system include a high peak power (1.5 kW) EIKA transmitter, low noise receiver, and PC-based digital receiver. In addition to an internal calibration procedure, an electronically controlled deflector plate mounted on the roof of the MMCR shelter will be used to periodically illuminate a

399

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Concepts for Improved Performance of Dynamical and Microphysical New Concepts for Improved Performance of Dynamical and Microphysical Parameterization of Clouds Sud, Y.C.(a) and Walker, G.K.(b), NASA/Laboratory for Atmospheres Goddard Space Flight Center Three new concepts were launched for: i) simulating more shallow convection, ii) capturing mid-level convection and iii) better simulating the boundary-layer convection forced boundary-layer clouds. Each process was prameterized and evaluated in the ARM-CART SCM environment. The individual and combined influence of these on the simulated boundary-layer, shallow cumulus, mid-level cloudiness were examined. In addition, a physically based vertical adjustment of the advective air-mass transport was parameterized to better capture the isentropic character of horizontal advection. This modification eliminated the near surface temperature biases

400

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Variability of Continental Liquid-Water Cloud and Its Parameterization Variability of Continental Liquid-Water Cloud and Its Parameterization Using ARM Data Kim, B.-G.(a), Klein, S.A.(b), and Norris, J.R.(c), Princeton University (a), GFDL (b), Scripps Institute of Oceanography (c) Cloud radiative properties are important in the determination of cloud-climate interactions. Additionally, the boundary layer cloud inhomogeneity has a primary influence in reducing the albedo relative to that computed using plane-parallel approximation. Variability in cloud properties at scales smaller than those resolved by large-scale motions may cause significant biases and therefore must parameterized. An attractive solution is to introduce the cloud statistical scheme that uses a probability distribution function (PDF) to represent its subgrid-scale

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The March 2000 Cloud Intensive Observing Period; The Evolution of the The March 2000 Cloud Intensive Observing Period; The Evolution of the Synoptic-Scale Atmosphere and the Associated Cloud Radiative Forcing Mace, G.G.(a), Sonntag, K.L.(b), Kato, S.(c), Poellot, M.(d), Twohy, C.(e), Troth, S.(a), Zhang, Q.(a), and Minnis, P.(c), University of Utah (a), Unviersity of Oklahoma (b), NASA Langley Research Center (c), University of North Dakota (d), Oregon State University (e) During the first 3 weeks of March 2000, an intensive observing period (IOP) was held near the central facility of the Southern Great Plains ARM site. In conjunction with the ARESE II campaign, the objective of this IOP was to observe the 3-dimensional structure of the cloud field using multiple scanning and vertically pointing millimeter radars. In anticipation of

402

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Retrieving Cloud Height Using Infrared Thermometer Measurements Sengupta, M., and Long, C.N., Pacific Northwest National Laboratory Thirteenth Atmospheric Radiation Measurement...

403

E-Print Network 3.0 - arms science government Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

science government Search Powered by Explorit Topic List Advanced Search Sample search results for: arms science government Page: << < 1 2 3 4 5 > >> 1 UQ Heraldry Project The...

404

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Measurement Southern Great Plains Site: Temporal and Spatial Variability Berg, L., Kassianov, E., Long, C., and Gustafson, W. A Comparison Between Principal...

405

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

estimates of horizontal advection terms, the parameterizations within the SCM produce time-dependent fields which can be compared directly with measurements. Within the...

406

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maintaining careful instrument calibrations traceable to an international standard is the first step in establishing research quality solar irradiance measurement capabilities. All...

407

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3) Characterize the measurements in terms of other parameters derived from other sensors (e. g., column water content, aerosol optical depth). 4) Promote the development...

408

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

measurements were based on four-dimensional cloud fields produced by a large eddy simulation model. In particular, we demonstrated that 15-minute averages of frequently sampled...

409

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On Aerosol Optical Depth Determination from Zenith Measurements of On Aerosol Optical Depth Determination from Zenith Measurements of Scattered Light Polarization Degree Shukurov, A.Kh., Shukurov K.A., and Golitsyn G.S., A.M. Obukhov Institute of Atmospheric Physics RAS Investigations on relationships between variations of aerosol optical depth Ï„aer and maximal polarization degree Pmax of scattered light (from part of a sky within 90 angular distance of Sun in its almucantar or vertical) are well known (see e.g. Coulson K.L. Izvestia Atmospheric Oceanic Physics. V.10, No.3, 1974). But these results show insufficient correlation coefficient R between Pmax and Ï„aer. In the current work the results of measurements of variations P(h) dependence of polarization degree P on the Sun angular height () obtained from zenith measurements of scattered light

410

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simplifying Access to the North Slope of Alaska Data Streams Simplifying Access to the North Slope of Alaska Data Streams Bahrmann, C.P.(a), Richardson, S.R.(a), Clothiaux, E.E.(a), Verlinde, J.(a), McCord, R.A.(b), and Horwedel, B.(b), Department of Meteorology, The Pennsylvania State University (a), Oak Ridge National Laboratory (b) In August 2003, the NSA Site Scientist Team initiated a meta-data investigation on all NSA data streams. This investigation started by examining data streams for measurement name discrepancies. For example, the nsaskyrad60sC1.a1 data stream contains the measurement from a Shaded PSP. From 1998-02-14 through 2001-03-31 the measurement was called psps_mean (PSP shaded mean). On 2003-04-01 the measurement was renamed to down_short_diffuse_hemisp (Downwelling Shortwave Diffuse Hemispheric

411

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NASAGSFC Scanning Raman Lidar Measurements of Water Vapor and Cirrus Clouds During WVIOP2000 and AFWEX Whiteman, D.N.(a), Evans, K.D.(b), Di Girolamo, P.(c), Demoz, B.B.(b),...

412

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

feedback of cirrus clouds on the Earths climate. We use a unique, year-long dataset of water vapor mixing ratio inferred from ground-based Raman lidar measurements at...

413

ARM Orientation: Overview and History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Orientation: ARM Orientation: Overview and History Warren Wiscombe ARM Chief Scientist Brookhaven & NASA ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement 2 Mar 2006 ARM Orientation You want me to be Chief Scientist? Can you believe this guy? ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement 3 Mar 2006 ARM Orientation ARM in a nutshell ARM in a nutshell * * Largest global change research program Largest global change research program funded by the U.S. Department of Energy funded by the U.S. Department of Energy ($44M/yr; ~ ($44M/yr; ~ $10M/yr fo $10M/yr fo r Science Team r Science Team ) ) * * Created to improve cloud and radiation Created to improve cloud and radiation physics and cloud simulation capabilities in physics and cloud simulation capabilities in

414

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shapes and Light Scattering Properties of Quasi-Spherical Ice Crystals Shapes and Light Scattering Properties of Quasi-Spherical Ice Crystals Nousiainen, T.P. and McFarquhar, G.M., University of Illinois The shapes and single-scattering properties of small, irregular, quasi-spherical ice crystals are studied using two-dimensional images measured by a Cloud Particle Imager in mid-latitude cirrus during the 2000 Cloud Intensive Operation Period conducted over the Atmospheric Radiation Measurement program's Southern Great Plains site. A statistical shape analysis of the ice crystal images is carried out to obtain size-dependent relative standard deviations of radius and correlation functions of logradius which together define the shape statistics of the sample ice crystals. The former describes the overall variation in the lengths of

415

ARM - Publications: Science Team Meeting Documents: Cloud Radiative Forcing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Radiative Forcing at the ARM Climate Research Facility: Part 2. The Cloud Radiative Forcing at the ARM Climate Research Facility: Part 2. The Vertical Redistribution of Radiant Energy by Clouds. Mace, Gerald University of Utah Benson, Sally University of Utah Kato, Seiji Hampton University/NASA Langley Research Center Documentation with data of the effects of clouds on the radiant energy balance of the surface and atmosphere represent a critical shortcoming in the set of observations that are needed to ascertain the validity of model simulations of the earth's climate. While clouds are known to cool the climate system from TOA radiation budget studies, the redistribution of energy between the surface and atmosphere and within the atmosphere by clouds has not been examined in detail. Using data collected at the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP)

416

ARM - Publications: Science Team Meeting Documents: Millimeter-wave (183  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Millimeter-wave (183 GHz) Radiometer for High Sensitivity Water Vapor Millimeter-wave (183 GHz) Radiometer for High Sensitivity Water Vapor Measurements at the North Slope of Alaska ARM Site Pazmany, Andrew ProSensing Inc. Funded by a Phase II DOE SBIR contract, ProSensing Inc. is developing a turn-key 183 GHz water vapor radiometer for measuring low concentrations of atmospheric water vapor and liquid water at the North Slope of Alaska ARM site during the dry winter months. The first prototype instrument measures brightness temperature at four double sideband channels centered 1, 3, 7 and 14 GHz from the 183.31 GHz water vapor resonance line. The combination of 0.1 K delta T measurement precision and less than 1 K accuracy integrated hot (~350 K) and warm (~300 K) calibration targets, is expected to result an absolute water vapor measurement accuracy of less than 0.1 mm

417

ARM - Publications: Science Team Meeting Documents: Simultaneously  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simultaneously retrieving cloud optical depth and effective radius for Simultaneously retrieving cloud optical depth and effective radius for clouds with low liquid water path Min, Qilong State University of New York at Albany Duan, Minzheng State University of New York at Albany A new technique for simultaneously retrieving cloud optical depth and effective radius has been proposed. This approach is based on the angular distribution of scattered light in the forward scattering lobe of cloud drops. The angular distributions can be observed by multiple shadowband scans. Simulations demonstrate that accuracies for cloud optical depth, effective radius, and liquid water path are 2%, 10%, and 2g/m2, respectively for given possible instrument noise and uncertainties. Further, different measurement strategies have been tested and show good

418

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding the Effects of Uncertainties in Ice Processes, Entrainment Understanding the Effects of Uncertainties in Ice Processes, Entrainment and Updraft Velocities on the Relationship Between Cloud Optical Depth and Liquid Water Path at the NSA and SGP Sites Chen, Y.(a), Penner, J.E.(a), and Dong, X.(b), University of Michigan (a), University of North Dakota (b) The relationship between the cloud optical depth (tc) and the cloud liquid water path (LWP) inferred from surface observations of shortwave radiative fluxes and measured LWP shows significant variability. Our previous study1 used a warm-cloud microphysics model to explain the average relationship between the cloud optical depth (tc) and the cloud liquid water path (LWP). Here, we examine some of the processes that contribute to the observed variability in this relationship. We examine the possible effects of

419

Atmospheric Radiation Measurement (ARM) Data Plots and Figures  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

ARM Program data is available in daily diagnostic plots that can be easily grouped into daily, weekly, monthly, and even yearly increments. By visualizing ARM data in thumbnail-sized data plots, users experience highly-browsable subsets of data available at the Data Archive including complimentary data products derived from data processed by ARM. These thumbnails allow users to quickly scan for a particular type of condition, like a clear day or a day with persistent cirrus. From a diagnostics perspective, the data plots assist in looking for missing data, for data exceeding a particular range, or for loading multiple variables (e.g., shortwave fluxes and precipitation), and to determine whether a certain science or data quality condition is associated with some other parameter (e.g., high wind or rain).[taken from http://www.arm.gov/data/data_plots.stm] Several interfaces and tools have been developed to make data plots easy to generate and manipulate. For example, the NCVWeb is an interactive NetCDF data plotting tool that ARM users can use to plot data as they order it or to plot regular standing data orders. It allows production of detailed tables, extraction of data, statistics output, comparison plotting, etc. without the need for separate visualization software. Users will be requested to create a password, but the data plots are free for viewing and downloading.

420

ARM - Measurement - Shortwave narrowband direct normal irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurement : Shortwave narrowband direct normal irradiance The rate at which radiant energy in narrow bands of wavelengths shorter than approximately 4mum, that comes directly...

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ARM - Measurement - Shortwave broadband total upwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flights) MFR : Multifilter Radiometer MFRIRT : Multifilter Radiometer and Infrared Thermometer RAD : Radiation Measurements at AMF SIRS : Solar and Infrared Radiation Station...

422

Atmospheric Radiation Measurement (ARM) Data from Field Campaigns or Intensive Operational Periods (IOP)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

423

ARM - Publications: Science Team Meeting Documents: Testing and Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing and Deployment of an Infrared Thermometer Network at the ARM Testing and Deployment of an Infrared Thermometer Network at the ARM Southern Great Plains Climate Research Facility Morris, Victor Pacific Northwest National Laboratory Long, Chuck Pacific Northwest National Laboratory To increase our ability to calculate heating rate profiles to study the variability across the Global Climate Model scale area and for inferring information about distribution and character of cloudiness across the Southern Great Plains (SGP) domain, downwelling Infrared Thermometers (IRT) will be installed at the SGP Extended Facilities (EF). Initially, IRTs will be installed at five of the twenty-one EFs and one at the Central Facility (CF). The sky brightness temperature measurements will be sampled at a rate of 5 Hz to capture the inherent variability under cloudy and partly cloudy

424

ARM - Publications: Science Team Meeting Documents: MICROBASE, A Continuous  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MICROBASE, A Continuous Baseline Microphysical Retrieval: Status and Future MICROBASE, A Continuous Baseline Microphysical Retrieval: Status and Future Plans Miller, Mark Brookhaven National Laboratory Johnson, Karen Brookhaven National Laboratory Michael, Paul Brookhaven National Laboratory Mace, Gerald University of Utah The MICROBASE_PI and MICROBASE_PA value-added products (VAPs) are integral components of the Broadband Heating Rate Profile (BBHRP) project of the Atmospheric Radiation Measurement (ARM) Program. The goal of the BBHRP project is to determine atmospheric heating and cooling rate profiles in the column above the active sensors at each ARM Climate Research Facility (ACRF) sites and within a larger volume around each site, representative of a global climate model grid cell. To produce the heating rate profiles,

425

ARM - PI Product - Radiosondes Corrected for Inaccuracy in RH Measurements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsRadiosondes Corrected for Inaccuracy in RH ProductsRadiosondes Corrected for Inaccuracy in RH Measurements Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Radiosondes Corrected for Inaccuracy in RH Measurements 2000.01.01 - 2005.12.31 Site(s) SGP General Description Corrections for inaccuracy in Vaisala radiosonde RH measurements have been applied to ARM SGP radiosonde soundings. The magnitude of the corrections can vary considerably between soundings. The radiosonde measurement accuracy, and therefore the correction magnitude, is a function of atmospheric conditions, mainly T, RH, and dRH/dt (humidity gradient). The corrections are also very sensitive to the RH sensor type, and there are 3 Vaisala sensor types represented in this dataset (RS80-H, RS90, and RS92).

426

ARM - Publications: Science Team Meeting Documents: External Data Stream  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

External Data Stream Review External Data Stream Review Wagener, Richard Brookhaven National Laboratory Ma, Lynn DOE/Brookhaven National Laboratory Gregory, Laurie Brookhaven National Laboratory Tichler, Joyce DOE/Brookhaven National Laboratory Horwedel, Betsy Oak Ridge National Laboratory Cialella, Alice Brookhaven National Laboratory In terms of data volume, about half the data in the ACRF archive were generated outside of the ARM program and collected by the eXternal Data Center (XDC) from external sources, processed to standard formats, documented, and forwarded to the archive. This constitutes a unique resource drawing many users to the archive, however it involves a significant effort and we must assure that the effort is spent where it provides the most benefit to the ACRF science mission. Here, we present a

427

ARM - Publications: Science Team Meeting Documents: Data Products...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

McCoy, Robert Sandia National Laboratories The ARM-Unmanned Aerospace Vehicle (ARM-UAV) program is an airborne complement to the primarily ground-based Atmospheric Radiation...

428

ARM - Publications: Science Team Meeting Documents: Measuring...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

region with a wavelength dependent resolution from 1 to 33 nm. SIM is providing the first-ever continuous record of solar variability throughout the visible and near infrared...

429

ARM - Publications: Science Team Meeting Documents: Validation of infrared  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation of infrared cloud radiative transfer simulations and spectral Validation of infrared cloud radiative transfer simulations and spectral cloud properties retrievals using S-HIS, AERI and HSRL measurements from M-PACE Holz, Robert University of Wisconsin, CIMMS DeSlover, Daniel University of Wisconsin Revercomb, Henry University Of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Knuteson, Robert University Of Wisconsin Turner, David Pacific Northwest National Laboratory Eloranta, Edwin University of Wisconsin As part of the Mixed-Phase Arctic Cloud Experiment (M-PACE) the Scanning High spectral resolution Interferometer Sounder (S-HIS) flew on the Proteus high altitude aircraft with the ARM-UAV instrumentation. The University of North Dakota Cessna Citation capable of cloud situ measurements was coordinated with the Proteus to obtain coincident down looking and situ

430

ARM Climate Research Facility | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research » Climate and Research » Climate and Environmental Sciences Division (CESD) » ARM Climate Research Facility Biological and Environmental Research (BER) BER Home About Research Research Abstracts Searchable Archive of BER Highlights External link Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program Subsurface Biogeochemical Research Terrestrial Carbon Sequestration External link Terrestrial Ecosystem Science Facilities Science Highlights Benefits of BER

431

ARM - Procedure for Submitting Science and Research Products to the Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DocumentationProcedure for Submitting Science and Research DocumentationProcedure for Submitting Science and Research Products to the Data Archive Policies, Plans, Descriptions Data Documentation Home Data Sharing and Distribution Policy Data Management and Documentation Plan Data Product Registration and Submission Reading netCDF and HDF Data Files Time in ARM netCDF Data Files Data Archive Documentation ARM Archive's Catalog of Data Streams (Updated monthly) Access to Historical ARM Data More on Understanding and Finding ARM Data Data Quality Problem Reporting Procedure for Submitting Science and Research Products to the Data Archive The Principal Investigator (PI) establishes contact with an ARM Translator to describe the data product. The Translator collects enough information to describe the PI Product within the Translator group; thereby resulting in assignment of the

432

ARM - Publications: Science Team Meeting Documents: Deployment of a  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment of a scintillometer for optical turbulence investigation at NSA Deployment of a scintillometer for optical turbulence investigation at NSA - Barrow Moudry, Dana University of Alaska Fairbanks Sassen, Kenneth University of Alaska Fairbanks Vaucher, Gail Army Research Laboratory Zak, Bernard Sandia National Laboratories The University of Alaska Fairbanks in collaboration with the White Sands Army Research Lab deployed a reciprocal-path scintillometer to the ARM - NSA site at Barrow in fall 2004 for investigation of optical turbulence over the course of a year. The instrument consists of a transmitter and a receiver located approximately 1km apart. The instrument transmitter includes two arrays of nearIR LEDs which emit light in a 125-Hz pulsed mode. The receiver measures the temporal variability of the radiation after

433

ARM - Publications: Science Team Meeting Documents: An Assessment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stereo-derived Cloud Top Heights Using Cloud Optical Depths Derived from ARM Data Marchand, Roger Pacific Northwest National Laboratory Ackerman, Thomas DOEPacific Northwest...

434

ARM - Events Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, 2007 [Events] , 2007 [Events] Climate Scientists Cool Their Heels at Science Team Meeting in Monterey Bookmark and Share Nearly 300 participants from countries as far away as Japan, Australia, and Finland attended the 2007 ARM Science Team Meeting. Nearly 300 participants from countries as far away as Japan, Australia, and Finland attended the 2007 ARM Science Team Meeting. A spring mix of sunny skies and stormy weather provided an appropriate setting for the Seventeenth Atmospheric Radiation Measurement (ARM) Program Science Team Meeting, held March 26 through March 30 in Monterey, California. Held annually since 1990, this meeting brings together ARM scientists, ARM infrastructure staff, and user facility researchers to review program progress and plan future activities.

435

Atmospheric radiation measurement unmanned aerospace vehicle (ARM-UAV) program  

SciTech Connect (OSTI)

ARM-UAV is part of the multi-agency U.S. Global Change Research Program and is addressing the largest source of uncertainty in predicting climatic response: the interaction of clouds and the sun`s energy in the Earth`s atmosphere. An important aspect of the program is the use of unmanned aerospace vehicles (UAVs) as the primary airborne platform. The ARM-UAV Program has completed two major flight series: The first series conducted in April, 1994, using an existing UAV (the General Atomics Gnat 750) consisted of eight highly successful flights at the DOE climate site in Oklahoma. The second series conducted in September/October, 1995, using two piloted aircraft (Egrett and Twin Otter), featured simultaneous measurements above and below clouds and in clear sky. Additional flight series are planned to continue study of the cloudy and clear sky energy budget in the Spring and Fall of 1996 over the DOE climate site in Oklahoma. 3 refs., 4 figs., 1 tab.

Bolton, W.R. [Sandia National Laboratories, Livermore, CA (United States)

1996-11-01T23:59:59.000Z

436

Atmospheric Radiation Measurement (ARM) Data from Specific Instruments Used in the ARM Program  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

ARM is known for its comprehensive set of world-class, and in some cases, unique, instruments available for use by the global scientific community. In addition to the ARM instruments, the ARM Climate Research Facility identifies and acquires a wide variety of data including model, satellite, and surface data, from "external instruments," to augment the data being generated within the program. External instruments belong to organizations that are outside of the ARM Program. Field campaign instruments are another source of data used to augment routine observations. The huge archive of ARM data can be organized by instrument categories into twelve "collections:" Aerosols, Airborne Observations, Atmospheric Carbon, Atmospheric Profiling, Cloud Properties, Derived Quantities and Models, Ocean Observations, Radiometric, Satellite Observations, Surface Meteorology, Surface/Subsurface Properties, and Other. Clicking on one of the instrument categories leads to a page that breaks that category down into sub-categories. For example, "Atmospheric Profiling" is broken down into ARM instruments (with 11 subsets), External Instruments (with 6 subsets), and Field Campaign Instruments (with 42 subsets). Each of the subset links, in turn, leads to detailed information pages and links to specific data streams. Users will be requested to create a password, but the data files are free for viewing and downloading.

437

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Capabilities Promoted at Air & Waste Management Conference Bookmark and Share From left, Dr. Sylvia Edgerton, Science Liaison for the ARM Science Board, Dr. John Watson,...

438

Atmospheric Radiation Measurement (ARM) Data from Point Reyes, California for the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) Project  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Point Reyes National Seashore, on the California coast north of San Francisco, was the location of the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The ARM Program collaborated with the U.S. Office of Naval Research and DOE's Aerosol Science Program in the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) project. Their objectives were to collect data from cloud/aerosol interactions and to improve understanding of cloud organization that is often associated with patches of drizzle. Between March and September 2005, the AMF and at least two research aircraft were used to collect data.

439

ARM - Publications: Science Team Meeting Documents: Determination of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determination of Aerosol and Surface Reflectance Characteristics at the ARM Determination of Aerosol and Surface Reflectance Characteristics at the ARM CART Site Using MISR Observations Martonchik, John Jet Propulsion Laboratory Diner, David Jet Propulsion Laboratory Kahn, Ralph Jet Propulsion Laboratory Abdou, Wedad Jet Propulsion Laboratory Gaitley, Barbara Jet Propulsion Laboratory Aerosol optical depth and surface directional reflectance at the ARM CART site are routinely determined from data obtained with the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra platform. The observations span the four years 2001-2004, with an overpass frequency of about four views per month. The MISR aerosol/surface retrieval process provides aerosol products at a spatial resolution of 17.6 km and surface products at a higher resolution of 1.1 km. This study is part of a larger

440

ARM - Publications: Science Team Meeting Documents: AERI Thermodynamic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AERI Thermodynamic Profiling VAP Improvements and Status AERI Thermodynamic Profiling VAP Improvements and Status Feltz, Wayne University of Wisconsin Howell, Ben University of Wisconsin-Madison Turner, David Pacific Northwest National Laboratory Mahon, Rick Pacific Northwest National Laboratory Knuteson, Robert University Of Wisconsin The Atmospheric Emitted Radiance Interferometer (AERI) was one of the primary instruments developed under the DOE ARM instrument development program (IDP) to be deployed to the Climate Research Facility (CRF) Southern Great Plains (SGP) central site near Lamont, Oklahoma. A prototype AERI was deployed in March 1993 where it collected data until the first AERI operational instrument replaced it in July 1999. The ARM archive contains AERI data from the ARM CART SGP central facility site from January

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Department of Computer Science & Engineering Control of a Robotic Arm Using Low-Dimensional EMG and ECoG  

E-Print Network [OSTI]

Department of Computer Science & Engineering 2007-39 Control of a Robotic Arm Using Low a human body to allow control of a small robot arm. We compare direct joystick control with electromyogram dimensional data and map specific patterns to resulting actions of a robot arm. #12;WASHINGTON UNIVERSITY

Smart, William

442

Simultaneous Authentication and Certification of Arms-Control Measurement Systems  

SciTech Connect (OSTI)

Most arms-control-treaty-monitoring scenarios involve a host party that makes a declaration regarding its nuclear material or items and a monitoring party that verifies that declaration. A verification system developed for such a use needs to be trusted by both parties. The first concern, primarily from the host party's point of view, is that any sensitive information that is collected must be protected without interfering in the efficient operation of the facility being monitored. This concern is addressed in what can be termed a 'certification' process. The second concern, of particular interest to the monitoring party, is that it must be possible to confirm the veracity of both the measurement system and the data produced by this measurement system. The monitoring party addresses these issues during an 'authentication' process. Addressing either one of these concerns independently is relatively straightforward. However, it is more difficult to simultaneously satisfy host party certification concerns and monitoring party authentication concerns. Typically, both parties will want the final access to the measurement system. We will describe an alternative approach that allows both parties to gain confidence simultaneously. This approach starts with (1) joint development of the measurement system followed by (2) host certification of several copies of the system and (3) random selection by the inspecting party of one copy to be use during the monitoring visit and one (or more) copy(s) to be returned to the inspecting party's facilities for (4) further hardware authentication; any remaining copies are stored under joint seal for use as spares. Following this process, the parties will jointly (5) perform functional testing on the selected measurement system and then (6) use this system during the monitoring visit. Steps (1) and (2) assure the host party as to the certification of whichever system is eventually used in the monitoring visit. Steps (1), (3), (4), and (5) increase the monitoring party's confidence in the authentication of the measurement system.

MacArthur, Duncan W. [Los Alamos National Laboratory; Hauck, Danielle K. [Los Alamos National Laboratory; Thron, Jonathan L. [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

443

ARM - Datastreams - 05okm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5okm 5okm Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 05OKM Oklahoma Mesonet (OKM): 5-min averages, meteorological data from 111 stations Active Dates 1994.01.01 - 2013.11.30 Measurement Categories Atmospheric State, Radiometric Originating Instrument Oklahoma Mesonet (OKM) Description These data can only be distributed to ARM scientists. ARM scientists who obtain these data must agree to acknowledge use of the data in their publications and not to share the data with others who are not on the ARM Science Team. Measurements The measurements below provided by this product are those considered scientifically relevant. Measurement Variable

444

Atmospheric Radiation Measurement Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan - ARM in the next 5 years ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement ARM Status - Science ARM Status - Science * Steadily increasing productivity - Poster session - over 220 posters (may need to do something about submissions next year) - Peer-reviewed articles: 2.5 to 3 per year per

445

ARM - Publications: Science Team Meeting Documents: Seasonal Dependance of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seasonal Dependance of the Infrared Land Surface Emissivity in the Vicinity Seasonal Dependance of the Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility Knuteson, Robert University Of Wisconsin Feltz, Wayne University of Wisconsin Revercomb, Henry University Of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Satellite observations have been used to derive a seasonal dependance of the infrared land surface emissivity in the vicinity of the ARM Southern Great Plains (SGP) Central Facility site. In particular, the observations of the Atmospheric InfraRed Sounder (AIRS) on the NASA EOS Aqua platform have been used over the two year period from Sept 2002 to Sept 2004 to derive spectra of IR land surface emissivity across the IR window regions. These satellite observations have been used to empirically fit the

446

ARM - Publications: Science Team Meeting Documents: A decade long aerosol  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A decade long aerosol and cloud statistics and aerosol indirect effect at A decade long aerosol and cloud statistics and aerosol indirect effect at the ARM SGP site Min, Qilong State University of New York at Albany Duan, Minzheng State University of New York at Albany Harrison, Lee State University of New York Joseph, Everette Howard University Twelve-year data of MFRSR and MWR have been used to derive aerosol and cloud optical properties at the ARM SGP. Diurnal, monthly, seasonal and interannual variability of aerosol (optical depth and Angstrom coefficient) and cloud (optical depth and effective radius) have been analyzed. We specially focused on aerosol-cloud interactions. We found a signature of indirect aerosol effect for summer data: increased aerosol index has a statistically-significant anti-correlation with mean effective radius. No

447

ARM Aerial Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govSitesAerial Facility govSitesAerial Facility AAF Information Proposal Process Science (PDF) Baseline Instruments Campaign Instruments Instrumentation Workshop 2008 AAF Fact Sheet G-1 Fact Sheet Images Field Campaigns AAF Campaigns 2007 - UAV Campaigns 1993 - 2006, 2015 Other Aircraft Campaigns 1993 - 2010 AAF Contacts Rickey Petty DOE AAF Program Director Beat Schmid Technical Director ARM Aerial Facility Numerous instrumented aircraft participated in CLASIC, a cross-disciplinary interagency research effort. Numerous instrumented aircraft participated in CLASIC, a cross-disciplinary interagency research effort. As an integral measurement capability of the ARM Climate Research Facility, the ARM Aerial Facility (AAF) provides airborne measurements required to answer science questions proposed by the ARM Science Team and the external

448

ARM - Datastreams - ecmwfsupp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Datastreamsecmwfsupp Datastreamsecmwfsupp Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : ECMWFSUPP ECMWF: supplemental data, entire coverage Active Dates 1996.10.01 - 2013.11.30 Measurement Categories Atmospheric State, Cloud Properties, Radiometric, Surface Properties Originating Instrument European Centre for Medium Range Weather Forecasts Model Data (ECMWF) Description These data can only be distributed to ARM scientists. ARM scientists who obtain these data must agree to acknowledge use of the data in their publications and not to share the data with others who are not on the ARM Science Team. Measurements The measurements below provided by this product are those considered

449

ARM - Datastreams - ecmwfvar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Datastreamsecmwfvar Datastreamsecmwfvar Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : ECMWFVAR ECMWF: model met. and cloud variables at altitude, entire coverage, 1-hr avg Active Dates 1995.04.17 - 2013.12.31 Measurement Categories Atmospheric State, Cloud Properties Originating Instrument European Centre for Medium Range Weather Forecasts Diagnostic Analyses (ECMWFDIAG) Description These data can only be distributed to ARM scientists. ARM scientists who obtain these data must agree to acknowledge use of the data in their publications and not to share the data with others who are not on the ARM Science Team. Measurements The measurements below provided by this product are those considered

450

ARM - Datastreams - ecmwfflx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Datastreamsecmwfflx Datastreamsecmwfflx Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : ECMWFFLX ECMWF: radiative fluxes at altitude, 1-hr avg, entire coverage Active Dates 1995.04.17 - 2013.12.31 Measurement Categories Radiometric Originating Instrument European Centre for Medium Range Weather Forecasts Diagnostic Analyses (ECMWFDIAG) Description These data can only be distributed to ARM scientists. ARM scientists who obtain these data must agree to acknowledge use of the data in their publications and not to share the data with others who are not on the ARM Science Team. Measurements The measurements below provided by this product are those considered

451

Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction  

SciTech Connect (OSTI)

We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: â?¢ Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. â?¢ Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. â?¢ Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.

Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu

2011-05-24T23:59:59.000Z

452

Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

453

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7, 2009 [Facility News] 7, 2009 [Facility News] Town Hall Meeting at AGU 2009 Fall Meeting Bookmark and Share ARM Climate Research Facility - New Measurement Capabilities for Climate Research Thursday, December 17, 6:15-7:15 pm, Moscone West Room 2002 American Recovery and Reinvestment Act American Recovery and Reinvestment Act Scientists from around the world use data from the ARM Climate Research Facility to study the interactions between clouds, aerosol and radiation. Through the American Recovery and Reinvestment Act of 2009, the DOE Office of Science received $1.2 billion, with $60 million allocated to the ARM Climate Research Facility. With these funds, ARM will purchase and deploy dual-frequency scanning cloud radars to all the ARM sites, enhance several sites with precipitation radars and energy flux measurement capabilities,

454

ARM - Publications: Science Team Meeting Documents: University of Wisconsin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Wisconsin High Spectral Resolution Lidar operations during University of Wisconsin High Spectral Resolution Lidar operations during MPACE Eloranta, Edwin University of Wisconsin The Arctic High Spectral Resolution Lidar(AHSRL) operated at the North Slope ARM site as part of MPACE from 24-Sept-04 to 17-Nov-04. Data was archived 24-hours/day for the entire period with only minor interruptions: One day data was lost due to a problem in the laser cooling system, and one-half of a day was lost due to an electrical power failure at the site. All of the data is archived on our web site and can be accessed using web routines which process data on demand. This allows users to specify the exact time and altitude range of the data they wish acquire and to specify both the temporal and spatial averaging which is most appropriate for their

455

ARM - Publications: Science Team Meeting Documents: Establishing Continuous  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Establishing Continuous Atmospheric Profiles at the North Slope of Alaska Establishing Continuous Atmospheric Profiles at the North Slope of Alaska ACRF Delamere, Jennifer Atmospheric and Environmental Research, Inc. Turner, David Pacific Northwest National Laboratory Mlawer, Eli Atmospheric & Environmental Research, Inc. Clough, Shepard Atmospheric and Environmental Research Miller, Mark Brookhaven National Laboratory Troyan, David Brookhaven National Laboratory Clothiaux, Eugene The Pennsylvania State University Accurate and continuous vertical profiles of the atmospheric state above the North Slope of Alaska ARM Climate Research Facility (NSA ACRF) are a necessity for both accurate forward radiative transfer calculations and cloud microphysical retrievals. In particular, such profiles are a critical component of two important initiatives at the NSA site, the Broadband

456

ARM - Publications: Science Team Meeting Documents: Clouds in the Darwin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clouds in the Darwin area and their relation to large-scale conditions Clouds in the Darwin area and their relation to large-scale conditions Jakob, Christian BMRC Hoeglund, Sofia Lulea University of Technology This poster shows a climatological overview of the cloud cover in the Darwin region (location of a TWP ARM site) in the very north of Australia. Information on optical thickness and cloud top pressure from the ISCCP Stage D1 product over the time period 1985 to 2000 has been used to examine how the cloud cover changes over the course of a year, and also how it is affected by the seasonal changes in the region. The most remarkable changes can be seen during the wet (summer) season, when wet westerly winds sweep in over Darwin and dramatically change the weather conditions. By dividing the cloud cover into cloud regimes, one can also see an

457

ARM - Publications: Science Team Meeting Documents: Ensemble Single Column  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ensemble Single Column Modelling (ESCM) in the Tropical Western Pacific Ensemble Single Column Modelling (ESCM) in the Tropical Western Pacific Hume, Timothy Bureau of Meteorology Research Centre Jakob, Christian BMRC Single column models (SCMs) are useful tools for the evaluation of parameterisations of radiative and moist processes used in general circulation models. Most SCM studies to date have concentrated on regions where there is a sufficiently dense observational network to derive the required forcing data, such as the Southern Great Plains. This poster describes an ensemble single column modelling (ESCM) approach, where an ensemble of SCM forcing data sets are derived from numerical weather prediction (NWP) analyses. The technique is applied to SCM runs at the Manus Island and Nauru ARM sites in the Tropical Western Pacific (TWP). It

458

ARM - Publications: Science Team Meeting Documents: Using EOF analysis to  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using EOF analysis to uncover inhomogeneities in data from ground-based Using EOF analysis to uncover inhomogeneities in data from ground-based aerosol monitoring devices Gianelli, Scott NASA/GISS Carlson, Barbara NASA/Goddard Institute for Space Studies Lacis, Andrew NASA/Goddard Institute for Space Studies Empirical Orthogonal Function (EOF) analysis is performed on ground-based shadowband and sun photometer data. The instruments examined for this study include the Rotating Shadowband Spectroradiometer (RSS) and the CIMEL sun photometer CSPHOT located at the central facility of the Southern Great Plains (SGP) site; networks of Multi-Filter Rotating Shadowband Radiometer (MFRSR) devices sponsored by ARM and the USDA; and the network of nephelometers and aerosol particle counters of the Climate Monitoring Diagnostics Laboratory (CMDL). The original purpose of this investigation

459

ARM - Publications: Science Team Meeting Documents: Spatially Distributed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spatially Distributed CO2, Sensible, and Latent Heat Fluxes over the Spatially Distributed CO2, Sensible, and Latent Heat Fluxes over the Southern Great Plains Biraud, Sebastien Lawrence Berkeley National Laboratory Riley, William Lawrence Berkeley National Laboratory Fischer, Marc Lawrence Berkeley National Laboratory Torn, Margaret Lawrence Berkeley National Laboratoroy Berry, Joseph Carnegie Inst.of Washington Cooley, Heather Lawrence Berkeley National Laboratory Vegetation and vegetation processes strongly influence the spatial distribution of sensible and latent heat fluxes, as well as controlling ecosystem-atmosphere CO2 exchange. Estimating spatially distributed ecosystem fluxes is important for ARM cloud modeling and for the North American Carbon Program. We describe here a methodology to estimate surface energy fluxes and net ecosystem CO2 Exchange (NEE) continuously over the

460

ARM - Publications: Science Team Meeting Documents: Rotating Shadowband  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rotating Shadowband Spectroradiometer (RSS) at SGP: Performance, Data Rotating Shadowband Spectroradiometer (RSS) at SGP: Performance, Data Processing, and Value-Added Products Kiedron, Piotr State University of New York Albany Schlemmer, Jim The first ARM owned RSS was deployed at SGP central site in May 2003. This RSS provides direct-normal, diffuse-horizontal andtotal-horizontal components of irradiance at 1001 pixels in 360nm-1050nm spectral range every minute between dawn and dusk. The instrument operated continuously since the deployment date. At first bi-weekly radiometric calibrations were instituted and upon the discovery of significant responsivity drift this rigorous calibration schedule was continued till present. However the rate of change was steadily decreasing. By September 2004 the drift was less than 1% per month. Within three month from deployment date a slight

Note: This page contains sample records for the topic "measurement arm science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20, 2008 Facility News ARM Scientists Lead International Radiation Symposium in Brazil Bookmark and Share The ARM Science Team showed up in force at the 2008 International...

462

Ozonesonde measurements from the Atmospheric Radiation Measurement (ARM) site in Billings, Oklahoma  

SciTech Connect (OSTI)

Ozonesonde instruments were prepared and released at the Atmospheric Radiation Measurement (ARM) site located near Billings, Oklahoma. Ozone sensors, associated radiosondes, balloons, and other parts and pieces required for the ozone observations were provided by WFF on a reimbursable arrangement with ANL. Observations were scheduled daily at 1,700 UTC beginning on September 22, 1995. Attempts to maintain this schedule were frustrated by a few simultaneous operations involving different electronic devices in use resulting in considerable rf noise. Since radiosondes are necessarily low-cost instruments their reception is particularly susceptible to noisy rf fields. Overall, however, 36 ozonesonde flights were made with the last observation occurring on November 1, 1995. Ozone data were processed on-site through the ground-station software and preliminary data delivered to Mike Splitt at the ARM site.

NONE

1998-12-01T23:59:59.000Z

463

ARM - 2008 Performance Metrics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Performance Metrics 8 Performance Metrics Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings User Meetings Annual Meetings of the Atmospheric System Research (ASR) Science Team and Fall Working Groups Accomplishments Read about the 20 years of accomplishments (PDF, 696KB) from the ARM Program and user facility. Performance Metrics ASR Metrics 2009 2008 2007 2006 2008 Performance Metrics Each year, the ARM Program must submit to DOE an overall performance measure related to scientific achievement. The overall performance measure includes specific metrics for reporting progress each quarter. This reporting process includes support documentation (usually a report or data file) appropriate for the metric. Overall Performance Measures

464

Atmospheric Radiation Measurement (ARM) Data from the Southern Great Plains (SGP) Site  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. Scientists are using the information obtained from the permanent SGP site to improve cloud and radiative models and parameterizations and, thereby, the performance of atmospheric general circulation models used for climate research. More than 30 instrument clusters have been placed around the SGP site. The locations for the instruments were chosen so that the measurements reflect conditions over the typical distribution of land uses within the site. The continuous observations at the SGP site are supplemented by intensive observation periods, when the frequency of measurements is increased and special measurements are added to address specific research questions. During such periods, 2 gigabytes or more of data (two billion bytes) are generated daily. SGP data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/ http. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

465

ARM - Site Index  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govSite Index govSite Index Expand | Collapse Site Index Videos Image Library About ARM About ARM (home) ARM and the Recovery Act ARM and the Recovery Act (home) ARM Recovery Act Project FAQs Recovery Act Instruments ARM Climate Research Facility Contributions to International Polar Year (IPY) ARM Climate Research Facility Contributions to International Polar Year (IPY) (home) ARM Education and Outreach Efforts Support IPY Research Support for International Polar Year (IPY) ARM Organization ARM Organization (home) Laboratory Partners ARM Safety Policy ARM Science Board ARM Science Board (home) Board Business Become a User Comments and Questions Contacts Contacts (home) ARM Engineering and Operations Contacts Facility Statistics Facility Statistics (home) Historical Field Campaign Statistics

466

ARM - Collaborations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govScienceCollaborations govScienceCollaborations Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings User Meetings Annual Meetings of the Atmospheric System Research (ASR) Science Team and Fall Working Groups Accomplishments Read about the 20 years of accomplishments (PDF, 696KB) from the ARM Program and user facility. Performance Metrics ASR Metrics 2009 2008 2007 2006 Collaborations The ARM Climate Research Facility collaborates extensively with other U.S. Department of Energy (DOE) programs and laboratories, agencies, universities, and private firms in gathering and sharing data. This collaborative approach allows ARM to leverage its investment in instruments, sites, data, and science and to gain the knowledge necessary

467

ARM - Datastreams - ecmwften  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Datastreamsecmwften Datastreamsecmwften Documentation Data Quality Plots Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : ECMWFTEN ECMWF: total and physical tendencies for met and cloud vars, entire coverage, 1-hr avg Active Dates 1995.04.17 - 2013.12.31 Measurement Categories Atmospheric State Originating Instrument European Centre for Medium Range Weather Forecasts Diagnostic Analyses (ECMWFDIAG) Description These data can only be distributed to ARM scientists. ARM scientists who obtain these data must agree to acknowledge use of the data in their publications and not to share the data with others who are not on the ARM Science Team. Measurements The measurements below provided by this product are those considered scientifically relevant.

468

ARM - Publications: Science Team Meeting Documents: Comparison of broadband  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of broadband solar irradiances measured on fixed and stabilized Comparison of broadband solar irradiances measured on fixed and stabilized platforms Ellingson, Robert Florida State University Takara, Ezra Florida State University Tooman, Tim Sandia National Laboratories Fixed and stabilized platform CM-22 radiometer observations obtained on long, constant altitude flight legs during the 2002 UAV flight series have been compared to estimate the possible improvements to shortwave absorption estimates that might be realized from stabilized measurements on stacked aircraft. This poster will chronicle the methods necessary to correct fixed platform measurements for aircraft pitch, roll and heading and will highlight the magnitude of the irradiance uncertainties resulting from the standard corrections. The fixed platform uncertainties at one level,

469

ARM - Publications: Science Team Meeting Documents: Observations of Natural  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Observations of Natural Variability in Marine Stratocumulus Clouds Observations of Natural Variability in Marine Stratocumulus Clouds Albrecht, Bruce University of Miami Kollias, Pavlos RSMAS/University of Miami Jo, Ieng Rosentiel School of Marine & Atmospheric Science Ghate, Virendra RSMAS/Univ. Miami Serpetzoglou, Efthymious Minnis, Patrick NASA Langley Research Center Sun-Mack, Szedung SAIC Large to mesoscale features affecting the albedo of marine stratocumulus clouds are observed frequently and can have a substantial impact on t