Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Physicalism versus quantum mechanics  

E-Print Network (OSTI)

Foundations of Quantum Mechanics. (Princeton UniversityMind, Matter, and Quantum Mechanics, (Springer, Berlin & NewMindful Universe: Quantum Mechanics and the Participating

Stapp, Henry P; Theoretical Physics Group; Physics Division

2009-01-01T23:59:59.000Z

2

Quantum chaos in elementary quantum mechanics  

E-Print Network (OSTI)

chaos in elementary quantum mechanics so-called integrableIntroduction to Quantum Mechanics (Englewoods Cliff, NJ:Lifshitz E M 1977 Quantum Mechanics (New York: Pergamon) [

Dabaghian, Yuri A; Jensen, R

2005-01-01T23:59:59.000Z

3

Quantum Mechanics Measurements, Mutually  

E-Print Network (OSTI)

Quantum Mechanics Measurements, Mutually Unbiased Bases and Finite Geometry Or why six is the first) #12;Quantum Mechanics for Dummies Finite dimensional quantum states are represented by trace one,1 -icS1,1[ ] #12;Quantum systems evolve and are measured. The evolution of a quantum system using

Gruner, Daniel S.

4

Bohmian mechanics contradicts quantum mechanics  

E-Print Network (OSTI)

Bohmian mechanics contradicts quantum mechanics Arnold Neumaier Institut fur Mathematik, Universit://solon.cma.univie.ac.at/#24;neum/ Abstract. It is shown that, for a harmonic oscillator in the ground state, Bohmian mechanics and quantum mechanics predict values of opposite sign for certain time correlations. The discrepancy can

Neumaier, Arnold

5

QUICK QUANTUM MECHANICS ---Introduction ---  

E-Print Network (OSTI)

QUICK QUANTUM MECHANICS --- Introduction --- The following notes are intended to be a supplement to your study of Liboff's ``Introductory Quantum Mechanics.'' They are not an alternative! My purpose here of Classical Mechanics After Newton found his equations of motion, physicists knew they would have to wait

Jackson, Andrew D.

6

Quantum Statistical Mechanics and Quantum Computation  

E-Print Network (OSTI)

Quantum Statistical Mechanics and Quantum Computation 22-23 March 2012 Room 111, Jadwin Hall, focused meeting to explore the intersection between quantum statistical mechanics and quantum computation, specifically quantum complexity theory. Advances in complexity theory have interesting implications for physics

7

Testing quantum mechanics  

E-Print Network (OSTI)

As experiments continue to push the quantum-classical boundary to include increasingly complex dynamical systems, the interpretation of experimental data becomes more and more challenging: when the observations are noisy, indirect, and limited, how can we be sure that we are observing quantum behavior? This tutorial highlights some of the difficulties in such experimental tests of quantum mechanics, using optomechanics as the central example, and discusses how the issues can be resolved using techniques from statistics and insights from quantum information theory.

Mankei Tsang

2013-06-12T23:59:59.000Z

8

Quantum Mechanics and Black Holes  

E-Print Network (OSTI)

This paper discusses the existence of black holes from the foundations of quantum mechanics. It is found that quantum mechanics rule out a possible gravitational collapse.

Jose N. Pecina-Cruz

2005-11-11T23:59:59.000Z

9

Quantum Mechanics Without Observers  

E-Print Network (OSTI)

The measurement problem and the role of observers have plagued quantum mechanics since its conception. Attempts to resolve these have introduced anthropomorphic or non-realist notions into physics. A shift of perspective based upon process theory and utilizing methods from combinatorial games, interpolation theory and complex systems theory results in a novel realist version of quantum mechanics incorporating quasi-local, nondeterministic hidden variables that are compatible with the no-hidden variable theorems and relativistic invariance, and reproduce the standard results of quantum mechanics to a high degree of accuracy without invoking observers.

W. H. Sulis

2013-02-18T23:59:59.000Z

10

Is quantum mechanics exact?  

SciTech Connect

We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.

Kapustin, Anton [California Institute of Technology, Pasadena, California 91125 (United States)] [California Institute of Technology, Pasadena, California 91125 (United States)

2013-06-15T23:59:59.000Z

11

Fractals and quantum mechanics  

Science Conference Proceedings (OSTI)

A new application of a fractal concept to quantum physics has been developed. The fractional path integrals over the paths of the Lévy flights are defined. It is shown that if fractality of the Brownian trajectories leads to standard quantum mechanics

Nick Laskin

2000-01-01T23:59:59.000Z

12

TRANSIENT QUANTUM MECHANICAL PROCESSES  

SciTech Connect

Our principal objective has centered on the development of sophisticated computational techniques to solve the time-dependent Schroedinger equation that governs the evolution of quantum mechanical systems. We have perfected two complementary methods, discrete variable representation and real space product formula, that show great promise in solving these complicated temporal problems. We have applied these methods to the interaction of laser light with molecules with the intent of not only investigating the basic mechanisms but also devising schemes for actually controlling the outcome of microscopic processes. Lasers now exist that produce pulses of such short duration as to probe a molecular process many times within its characteristic period--allowing the actual observation of an evolving quantum mechanical system. We have studied the potassium dimer as an example and found agreement with experimental changes in the intermediate state populations as a function of laser frequency--a simple control prescription. We have also employed elaborate quantum chemistry programs to improve the accuracy of basic input such as bound-bound and bound-free coupling moments. These techniques have far-ranging applicability; for example, to trapped quantum systems at very low temperatures such as Bose-Einstein condensates.

L. COLLINS; J. KRESS; R. WALKER

1999-07-01T23:59:59.000Z

13

On Randomness in Quantum Mechanics  

E-Print Network (OSTI)

The quantum mechanical probability densities are compared with the probability densities treated by the theory of random variables. The relevance of their difference for the interpretation of quantum mechanics is commented.

Alberto C. de la Torre

2007-07-19T23:59:59.000Z

14

Some topics in thermodynamics and quantum mechanics  

E-Print Network (OSTI)

We sketch some connecting relations involving fractional and quantum calculi, fractal structure, thermodynamics, and quantum mechanics.

Robert Carroll

2012-10-29T23:59:59.000Z

15

Quantum Mechanics and Representation Theory Columbia University  

E-Print Network (OSTI)

Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30 #12;Does Anyone Understand Quantum Mechanics? "No One Understands Quantum Mechanics" "I think

Woit, Peter

16

Quantum information in a nutshell () Quantum mechanics + information science  

E-Print Network (OSTI)

Quantum information in a nutshell (�²¤¶) Quantum mechanics + information science = quantum information science = quantum information transfer + quantum algorithm (software) + quantum computer (hardware) + quantum simulation +... = a field rapidly growing in the last 10 years ®v½d¤j¾�ª«²z¨t ±i©ú-õ #12;Brief

Chang, Ming-Che

17

129 Lecture Notes Relativistic Quantum Mechanics  

E-Print Network (OSTI)

129 Lecture Notes Relativistic Quantum Mechanics 1 Need for Relativistic Quantum Mechanics's equation of motion in mechanics. The initial condtions to solve the Newton's equation of motion

Murayama, Hitoshi

18

On a New Form of Quantum Mechanics  

E-Print Network (OSTI)

We propose a new form of nonrelativistic quantum mechanics which is based on a quantum version of the action principle.

N. N. Gorobey; A. S. Lukyanenko

2008-07-22T23:59:59.000Z

19

Scattering Relativity in Quantum Mechanics  

E-Print Network (OSTI)

Transforming from one reference frame to another yields an equivalent physical description. If quantum fields are transformed one way and quantum states transformed a different way then the physics changes. We show how to use the resulting changed physical description to obtain the equations of motion of charged, massive particles in electromagnetic and gravitational fields. The derivation is based entirely on special relativity and quantum mechanics.

Richard Shurtleff

2011-08-09T23:59:59.000Z

20

Communication: Quantum mechanics without wavefunctions  

SciTech Connect

We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications--theoretical, computational, and interpretational--are discussed.

Schiff, Jeremy [Department of Mathematics, Bar-Ilan University, Ramat Gan 52900 (Israel); Poirier, Bill [Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, Texas 79409-1061 (United States) and Department of Physics, Texas Tech University, Box 41051, Lubbock, Texas 79409-1051 (United States)

2012-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Student understanding of quantum mechanics  

Science Conference Proceedings (OSTI)

We investigate the difficulties of advanced undergraduate students toward the end of a full year upper-level quantum mechanics course with concepts related to quantum measurements and time development. Our analysis is based upon a test administered to 89 students from six universities and interviews with 9 students. Strikingly

Chandralekha Singh

2001-01-01T23:59:59.000Z

22

The Interpretation of Quantum Mechanics  

E-Print Network (OSTI)

In this paper, we demonstrate how the interpretation of quantum mechanics due to Land\\'e resolves the Schr\\"odinger cat paradox and disposes of the problem of wave function collapse.

H. V. Mweene

2004-11-09T23:59:59.000Z

23

Hyper-Hamiltonian quantum mechanics  

E-Print Network (OSTI)

We present a modification of quantum mechanics with a *possible worlds* semantics. It is shown that `gauge' degrees of freedom along possible worlds can be used to encode gravitational information.

Vladimir Trifonov

2006-03-02T23:59:59.000Z

24

Free will and quantum mechanics  

E-Print Network (OSTI)

A simple example is provided showing that violation of free will allows to reproduce the quantum mechanical predictions, and that the Clauser-Horne parameter can take the maximum value 4 for a proper choice.

Antonio Di Lorenzo

2011-05-05T23:59:59.000Z

25

Quantum mechanical Universal constructor  

E-Print Network (OSTI)

Arbitrary quantum states cannot be copied. In fact, to make a copy we must provide complete information about the system. However, can a quantum system self-replicate? This is not answered by the no-cloning theorem. In the classical context, Von Neumann showed that a `universal constructor' can exist which can self-replicate an arbitrary system, provided that it had access to instructions for making copy of the system. We question the existence of a universal constructor that may allow for the self-replication of an arbitrary quantum system. We prove that there is no deterministic universal quantum constructor which can operate with finite resources. Further, we delineate conditions under which such a universal constructor can be designed to operate dterministically and probabilistically.

Pati, A K; Pati, Arun K.; Braunstein, Samuel L.

2003-01-01T23:59:59.000Z

26

Quantum mechanical Universal constructor  

E-Print Network (OSTI)

Arbitrary quantum states cannot be copied. In fact, to make a copy we must provide complete information about the system. However, can a quantum system self-replicate? This is not answered by the no-cloning theorem. In the classical context, Von Neumann showed that a `universal constructor' can exist which can self-replicate an arbitrary system, provided that it had access to instructions for making copy of the system. We question the existence of a universal constructor that may allow for the self-replication of an arbitrary quantum system. We prove that there is no deterministic universal quantum constructor which can operate with finite resources. Further, we delineate conditions under which such a universal constructor can be designed to operate dterministically and probabilistically.

Arun K. Pati; Samuel L. Braunstein

2003-03-19T23:59:59.000Z

27

From Quantum Mechanics to String Theory  

E-Print Network (OSTI)

From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics, 2009 #12;Quantum Mechanics: Measurement and Uncertainty Thursday, May 7, 2009 #12;Puzzle: The Stern it. Quantum mechanics understanding: the particle exists in a state without definite position

28

Quantum Statistical Mechanics and Quantum Computation Thursday, 22 March 2012  

E-Print Network (OSTI)

Quantum Statistical Mechanics and Quantum Computation Thursday, 22 March 2012 8:50 am Welcoming:30 ­ 5:30 "Criticality without frustration for quantum spin-1 chains" Sergey Bravyi 6:30 pm Dinner at Triumph Brewery 138 Nassau Street Princeton, NJ 08542 609-924-7855 Quantum Statistical Mechanics

29

Bohmian Mechanics and Quantum Information  

E-Print Network (OSTI)

Many recent results suggest that quantum theory is about information, and that quantum theory is best understood as arising from principles concerning information and information processing. At the same time, by far the simplest version of quantum mechanics, Bohmian mechanics, is concerned, not with information but with the behavior of an objective microscopic reality given by particles and their positions. What I would like to do here is to examine whether, and to what extent, the importance of information, observation, and the like in quantum theory can be understood from a Bohmian perspective. I would like to explore the hypothesis that the idea that information plays a special role in physics naturally emerges in a Bohmian universe.

Sheldon Goldstein

2009-07-14T23:59:59.000Z

30

Quantum mechanics needs no interpretation  

E-Print Network (OSTI)

Probabilistic description of results of measurements and its consequences for understanding quantum mechanics are discussed. It is shown that the basic mathematical structure of quantum mechanics like the probability amplitude, Born rule, probability density current, commutation relations, momentum operator, uncertainty relations, rules for including the scalar and vector potentials and existence of antiparticles can be derived from the definition of the mean values of the space coordinates and time. Equations of motion of quantum mechanics, the Klein-Gordon equation, Schroedinger equation and Dirac equation are obtained from requirement of the relativistic invariance of the theory. Limit case of localized probability densities leads to the Hamilton-Jacobi equation of classical mechanics. Many particle systems are also discussed.

L. Skala; V. Kapsa

2004-12-22T23:59:59.000Z

31

Graduate quantum mechanics reform  

Science Conference Proceedings (OSTI)

We address four main areas in which graduatequantum mechanics education can be improved: course content

L. D. Carr; S. B. McKagan

2009-01-01T23:59:59.000Z

32

221B Lecture Notes Relativistic Quantum Mechanics  

E-Print Network (OSTI)

221B Lecture Notes Relativistic Quantum Mechanics 1 Need for Relativistic Quantum Mechanics We, similarly to the Newton's equation of motion in mechanics. The initial condtions to solve the Newton

Murayama, Hitoshi

33

221B Lecture Notes Relativistic Quantum Mechanics  

E-Print Network (OSTI)

221B Lecture Notes Relativistic Quantum Mechanics 1 Need for Relativistic Quantum Mechanics We's equation of motion in mechanics. The initial condtions to solve the Newton's equation of motion

Murayama, Hitoshi

34

THE OBJECTIVE INDEFINITENESS INTERPRETATION OF QUANTUM MECHANICS: Partition logic, logical information theory, and quantum mechanics  

E-Print Network (OSTI)

THE OBJECTIVE INDEFINITENESS INTERPRETATION OF QUANTUM MECHANICS: Partition logic, logical information theory, and quantum mechanics David Ellerman University of California at Riverside www ago that quantum mechanics was not compatible with Boolean logic, then the natural thing to do would

Wüthrich, Christian

35

Effective equations for the quantum pendulum from momentous quantum mechanics  

SciTech Connect

In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

Hernandez, Hector H.; Chacon-Acosta, Guillermo [Universidad Autonoma de Chihuahua, Facultad de Ingenieria, Nuevo Campus Universitario, Chihuahua 31125 (Mexico); Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120 (Mexico)

2012-08-24T23:59:59.000Z

36

Propagators in Nonrelativistic Quantum Mechanics  

Science Conference Proceedings (OSTI)

A discussion of propagators (Green's functions) and methods for calculating them for the simplest systems in nonrelativistic quantum mechanics is given from several points of view. The relevance of such techniques to partition function calculations is pointed out. Finally

Laurent A. Beauregard

1966-01-01T23:59:59.000Z

37

From Quantum Mechanics to String Theory  

E-Print Network (OSTI)

From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics) New Particles anti-particles (combining special relativity and quantum mechanics pions (mediator mechanics, implies an infinite tower of negative energy states, rather than a ground state suppose

38

From Quantum Mechanics to String Theory  

E-Print Network (OSTI)

From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics Extra Dimensions Strings and the Strong Force Thursday, June 4, 2009 #12;The Higgs Mechanism Summary Mechanical Particle Physics General Relativistic Quantum Gravity increasing speed decreasing size increasing

39

Probable Inference and Quantum Mechanics  

SciTech Connect

In its current very successful interpretation the quantum theory is fundamentally statistical in nature. Although commonly viewed as a probability amplitude whose (complex) square is a probability, the wavefunction or state vector continues to defy consensus as to its exact meaning, primarily because it is not a physical observable. Rather than approach this problem directly, it is suggested that it is first necessary to clarify the precise role of probability theory in quantum mechanics, either as applied to, or as an intrinsic part of the quantum theory. When all is said and done the unsurprising conclusion is that quantum mechanics does not constitute a logic and probability unto itself, but adheres to the long-established rules of classical probability theory while providing a means within itself for calculating the relevant probabilities. In addition, the wavefunction is seen to be a description of the quantum state assigned by an observer based on definite information, such that the same state must be assigned by any other observer based on the same information, in much the same way that probabilities are assigned.

Grandy, W. T. Jr. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82070 (United States)

2009-12-08T23:59:59.000Z

40

Star Products for Relativistic Quantum Mechanics  

E-Print Network (OSTI)

The star product formalism has proved to be an alternative formulation for nonrelativistic quantum mechanics. We want introduce here a covariant star product in order to extend the star product formalism to relativistic quantum mechanics in the proper time formulation.

P. Henselder

2007-05-24T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Starting from Quantum Mechanics - Programmaster.org  

Science Conference Proceedings (OSTI)

Computational Modeling and Simulation of Advanced Materials for Energy Applications: Starting from Quantum Mechanics Sponsored by: TMS/ASM: ...

42

A Criterion for Holism in Quantum Mechanics  

E-Print Network (OSTI)

A Criterion for Holism in Quantum Mechanics M.P Seevinck E-mail: M.P.Seevinck@phys.uu.nl Utrecht University, The Netherlands, August 2003. 1 #12; Motivation · The question whether or not quantum mechanics is it that makes quantum mechanics a holistic theory (if so), and other physical theories not (if so). · I propose

Seevinck, Michiel

43

Probability in modal interpretations of quantum mechanics  

E-Print Network (OSTI)

Probability in modal interpretations of quantum mechanics Dennis Dieks Institute for the History interpretations have the ambition to construe quantum mechanics as an ob- jective, man-independent description of physical reality. Their second leading idea is probabilism: quantum mechanics does not completely fix

Seevinck, Michiel

44

Conceptual Development of Quantum Mechanics: Experiences with the Visual Quantum Mechanics Materials*  

E-Print Network (OSTI)

Conceptual Development of Quantum Mechanics: Experiences with the Visual Quantum Mechanics using a portion of the materials developed by the Visual Quantum Mechanics (VQM) project1 as part of our recent efforts to investigate student understanding of basic quantum mechanics concepts. The VQM

Larkin, Teresa L.

45

On reconciling quantum mechanics and local realism  

E-Print Network (OSTI)

A necessary and natural change in our application of quantum mechanics to separated systems is shown to reconcile quantum mechanics and local realism. An analysis of separation and localization justifies the proposed change in application of quantum mechanics. An important EPRB experiment is reconsidered and it is seen that when it is correctly interpreted it supports local realism. This reconciliation of quantum mechanics with local realism allows the axiom sets of quantum mechanics, probability, and special relativity to be joined in a consistent global axiom set for physics.

Donald A. Graft

2013-09-04T23:59:59.000Z

46

Quantum Mechanics: Structures, Axioms and Paradoxes  

E-Print Network (OSTI)

Quantum Mechanics: Structures, Axioms and Paradoxes Diederik Aerts Center Leo Apostel, Brussels present an analysis of quantum mechanics and its problems and para- doxes taking into account the results that have been obtained during the last two decades by investigations in the field of `quantum structures re

Aerts, Diederik

47

Errors and paradoxes in quantum mechanics  

E-Print Network (OSTI)

Errors and paradoxes in quantum mechanics, entry in the Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy, ed. F. Weinert, K. Hentschel, D. Greenberger and B. Falkenburg (Springer), to appear

D. Rohrlich

2007-08-28T23:59:59.000Z

48

Quantum Mechanics Joachim Burgdorfer and Stefan Rotter  

E-Print Network (OSTI)

1 1 Quantum Mechanics Joachim Burgd¨orfer and Stefan Rotter 1.1 Introduction 3 1.2 Particle and Quantization 8 1.5 Angular Momentum in Quantum Mechanics 9 1.6 Formalism of Quantum Mechanics 12 1.7 Solution 29 1.8.3 Resonances 30 1.9 Semiclassical Mechanics 31 1.9.1 The WKB Approximation 31 1.9.2 The EBK

Rotter, Stefan

49

Quantum Mechanics and Closed Timelike Curves  

E-Print Network (OSTI)

General relativity allows solutions exhibiting closed timelike curves. Time travel generates paradoxes and quantum mechanics generalizations were proposed to solve those paradoxes. The implications of self-consistent interactions on acausal region of space-time are investigated. If the correspondence principle is true, then all generalizations of quantum mechanics on acausal manifolds are not renormalizable. Therefore quantum mechanics can only be defined on global hyperbolic manifolds and all general relativity solutions exhibiting time travel are unphysical.

Florin Moldoveanu

2007-04-23T23:59:59.000Z

50

Bohmian particle trajectories contradict quantum mechanics  

E-Print Network (OSTI)

The Bohmian interpretation of quantum mechanics adds particle trajectories to the wave function and ensures that the probability distribution of the particle positions agrees with quantum mechanics at any time. This is not sufficient to avoid contradictions with quantum mechanics. There are correlations between particle positions at different times which cannot be reproduced with real particle trajectories. A simple rearrangement of an experimental test of the Bell-CHSH inequality demonstrates this.

Michael Zirpel

2009-03-23T23:59:59.000Z

51

A Criterion for Holism in Quantum Mechanics  

E-Print Network (OSTI)

A Criterion for Holism in Quantum Mechanics M.P Seevinck Utrecht University, The Netherlands, June 2003. 1 #12; Motivation · The question whether or not quantum mechanics (QM) gives rise to some mechanics a holistic theory (if so), and other physical theories not (if so). · I propose an operational

Seevinck, Michiel

52

A Criterion for Holism in Quantum Mechanics  

E-Print Network (OSTI)

A Criterion for Holism in Quantum Mechanics # M.P Seevinck # # Utrecht University, The Netherlands, June 2003. # 1 #12; # Motivation # . The question whether or not quantum mechanics (QM) gives rise mechanics a holistic theory (if so), and other physical theories not (if so). . I propose an operational

Seevinck, Michiel

53

Quantum mechanical scoring for protein docking  

Science Conference Proceedings (OSTI)

We develop a docking protocol based on quantum mechanical/molecular mechanical calculations in which quantum mechanical energy is used as scoring. We test the protocol with three groups of examples with various binding site characteristics. The new docking method performs as well as or better than conventional docking methods in all three groups. In particular

Art E. Cho; Jae Yoon Chung

2009-01-01T23:59:59.000Z

54

Quantum Mechanics Dung-Hai Lee  

E-Print Network (OSTI)

Quantum Mechanics Dung-Hai Lee Summer 2000 #12;Contents 1 A brief reminder of linear Algebra 3 1.5 Bell's inequality . . . . . . . . . . . . . . . . . . . . . . . 20 3 Quantum dynamics 23 3 . . . . . . . . . . . . . . . . . . . 43 3.12 Classical approximation . . . . . . . . . . . . . . . . . . 45 3.13 Quantum statistical

Murayama, Hitoshi

55

Deformed Geometric Algebra and Supersymmetric Quantum Mechanics  

E-Print Network (OSTI)

Deforming the algebraic structure of geometric algebra on the phase space with a Moyal product leads naturally to supersymmetric quantum mechanics in the star product formalism.

Peter Henselder

2006-09-09T23:59:59.000Z

56

PERSPECTIVE Quantum Mechanics of Black Holes  

E-Print Network (OSTI)

PERSPECTIVE Quantum Mechanics of Black Holes Edward Witten The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived

57

A new stochastic interpretation of quantum mechanics  

E-Print Network (OSTI)

The reinterpretation of quantum mechanical formalism in terms of a classical model with a continuous material "$\\Psi$-field" acting upon a point-like particle which is subjected to large friction and random forces is proposed. This model gives a mechanism for sudden "quantum jumps" and provides a simple explanation of "Schrödinger Cat" phenomena.

Alicki, R

1997-01-01T23:59:59.000Z

58

A new stochastic interpretation of quantum mechanics  

E-Print Network (OSTI)

The reinterpretation of quantum mechanical formalism in terms of a classical model with a continuous material "$\\Psi$-field" acting upon a point-like particle which is subjected to large friction and random forces is proposed. This model gives a mechanism for sudden "quantum jumps" and provides a simple explanation of "Schr\\"odinger Cat" phenomena.

Robert Alicki

1997-11-24T23:59:59.000Z

59

Scaling the RMG quantum mechanics code  

Science Conference Proceedings (OSTI)

In this paper, we describe parallelization and optimizations of the RMG quantum mechanics code to achieve scaling to over a hundred thousand cores. The parallelization uses a combination of message passing and threads. Further speedups have been attained ... Keywords: nanoscience, nanotechnology, performance analysis, quantum mechanics, scalability

Shirley Moore; Emil Briggs; Miroslav Hodak; Wenchang Lu; Jerry Bernholc; Chee-Wai Lee

2012-07-01T23:59:59.000Z

60

Background Independent Quantum Mechanics, Classical Geometric Forms and Geometric Quantum Mechanics-I  

E-Print Network (OSTI)

The geometry of the symplectic structures and Fubini-Study metric is discussed. Discussion in the paper addresses geometry of Quantum Mechanics in the classical phase space. Also, geometry of Quantum Mechanics in the projective Hilbert space has been discussed for the chosen Quantum states. Since the theory of classical gravity is basically geometric in nature and Quantum Mechanics is in no way devoid of geometry, the explorations pertaining to more and more geometry in Quantum Mechanics could prove to be valuable for larger objectives such as understanding of gravity.

Aalok Pandya

2008-09-08T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Quantum Mechanical Travelling Salesman  

E-Print Network (OSTI)

A quantum simulation of a travelling salesman is described. A vector space for a graph is defined together with a sequence of operators which transform a special initial state into a superposition states representing Hamiltonian tours. The quantum amplitude for any tour is a function of the classical cost of travelling along the edges in that tour. Tours with the largest quantum amplitude may be different than those with the smallest classically-computed cost.

Ravindra N. Rao

2011-08-23T23:59:59.000Z

62

Strange Bedfellows: Quantum Mechanics and Data Mining  

SciTech Connect

Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.

Weinstein, Marvin; /SLAC

2009-12-16T23:59:59.000Z

63

A new introductory quantum mechanics curriculum  

E-Print Network (OSTI)

The Institute of Physics New Quantum Curriculum consists of freely available online learning and teaching materials (quantumphysics.iop.org) for a first course in university quantum mechanics starting from two-level systems. This approach immediately immerses students in inherently quantum mechanical aspects by focusing on experiments that have no classical explanation. It allows from the start a discussion of interpretive aspects of quantum mechanics and quantum information theory. This article gives an overview of the resources available at the IOP website. The core text is presented as around 80 articles co-authored by leading experts that are arranged in themes and can be used flexibly to provide a range of alternative approaches. Many of the articles include interactive simulations with accompanying activities and problem sets that can be explored by students to enhance their understanding. Much of the linear algebra needed for this approach is part of the resource. Solutions to activities are available ...

Kohnle, Antje; Browne, Dan; Everitt, Mark; Fomins, Aleksejs; Kok, Pieter; Kulaitis, Gytis; Prokopas, Martynas; Raine, Derek; Swinbank, Elizabeth

2013-01-01T23:59:59.000Z

64

Canonical distribution and incompleteness of quantum mechanics  

E-Print Network (OSTI)

The paper discusses the physical groundlessness of the models used for the derivation of canonical distribution and provides the experimental data demonstrating the incompleteness of quantum mechanics. The possibility of using statistical ensembles is presented as a consequence of the existence of probabilistic processes which are not accounted for by quantum mechanics. The paper provides a new analytical derivation of canonical distribution for macrosystems which takes into account subquantum processes. The paper discusses the possibility of the experimental study of a probability which is beyond quantum mechanics.

V. A. Skrebnev

2012-01-04T23:59:59.000Z

65

Four-dimensional understanding of quantum mechanics  

E-Print Network (OSTI)

In this paper I will try to convince that quantum mechanics does not have to lead to indeterminism, but is just a natural consequence of four-dimensional nature of our world - that for example particles shouldn't be imagined as 'moving points' in space, but as their trajectories in the spacetime like in optimizing action formulation of Lagrangian mechanics. There will be analyzed simplified model - Boltzmann distribution among trajectories occurs to give quantum mechanic like behavior - for example electron moving in proton's potential would make some concrete trajectory which average exactly to the probability distribution of the quantum mechanical ground state. We will use this model to build intuition about quantum mechanics and discuss its generalizations to get some effective approximation of physics. We will see that topological excitations of the simplest model obtained this way already creates known from physics particle structure, their decay modes and electromagnetic/gravitational interactions between them.

Jarek Duda

2009-10-14T23:59:59.000Z

66

Quantum Mechanics and the Generalized Uncertainty Principle  

E-Print Network (OSTI)

The generalized uncertainty principle has been described as a general consequence of incorporating a minimal length from a theory of quantum gravity. We consider a simple quantum mechanical model where the operator corresponding to position has discrete eigenvalues and show how the generalized uncertainty principle results for minimum uncertainty wave packets.

Jang Young Bang; Micheal S. Berger

2006-10-11T23:59:59.000Z

67

Quantum Mechanics and Multiply Connected Spaces  

E-Print Network (OSTI)

t is well known that the difference between Quantum Mechanics and Classical Theory appears most crucially in the non Classical spin half of the former theory and the Wilson-Sommerfelt quantization rule. We argue that this is symptomatic of the fact that Quantum Theory is actually a theory in multiply connected space while Classical Theory operates in simply connected space.

B. G. Sidharth

2006-05-16T23:59:59.000Z

68

On a New Form of Quantum Mechanics (II)  

E-Print Network (OSTI)

The correspondence of a new form of quantum mechanics based on a quantum version of the action principle, which was proposed earlier [arXiv:0807.3508], with the ordinary quantum mechanics is established. New potentialities of the quantum action principle in the interpretation of quantum mechanics are considered.

N. Gorobey; A. Lukyanenko; I. Lukyanenko

2009-12-16T23:59:59.000Z

69

CLNS 96/1399 Peculiarities of Quantum Mechanics  

E-Print Network (OSTI)

CLNS 96/1399 Peculiarities of Quantum Mechanics: Origins and Meaning Yuri F. Orlov Floyd R. Newman, specifically quantum, features of quantum mechanics --- quan­ tum nonlocality, indeterminism, interference are quantum observables themselves and are represented in quantum mechanics by density matrices of pure states

70

Nonequilibrium quantum statistical mechanics and thermodynamics  

E-Print Network (OSTI)

The purpose of this work is to discuss recent progress in deriving the fundamental laws of thermodynamics (0th, 1st and 2nd-law) from nonequilibrium quantum statistical mechanics. Basic thermodynamic notions are clarified and different reversible and irreversible thermodynamic processes are studied from the point of view of quantum statistical mechanics. Special emphasis is put on new adiabatic theorems for steady states close to and far from equilibrium, and on investigating cyclic thermodynamic processes using an extension of Floquet theory.

Walid K. Abou Salem

2006-01-23T23:59:59.000Z

71

Background Independent Quantum Mechanics, Classical Geometric Forms and Geometric Quantum Mechanics-II  

E-Print Network (OSTI)

The geometry of Quantum Mechanics in the context of uncertainty and complementarity, and probability is explored. We extend the discussion of geometry of uncertainty relations in wider perspective. Also, we discuss the geometry of probability in Quantum Mechanics and its interpretations. We give yet another interpretation to the notion of Faraday lines and loops as the locus of probability flow. Also, the possibilities of visualization of spectra of area operators by means of classical geometric forms and conventional Quantum Mechanics are explored.

Aalok Pandya

2009-01-19T23:59:59.000Z

72

Quantum Mechanics Summary/Review Spring 2009 Compton Lecture Series  

E-Print Network (OSTI)

Quantum Mechanics Summary/Review Spring 2009 Compton Lecture Series: From Quantum Mechanics one component at a time. · Planck's constant determines the scale at which quantum mechanical effects could get rid of quantum mechanical effects ­ The "wavelength" of particles given by h mv would all

73

A symmetrical theory of nonrelativistic quantum mechanics  

E-Print Network (OSTI)

This paper presents a new Symmetrical Theory (ST) of nonrelativistic quantum mechanics which postulates: quantum mechanics is a theory about complete experiments, not particles; a complete experiment is maximally described by a complex transition amplitude density; and this transition amplitude density never collapses. This new ST is compared to the Conventional Theory (CT) of nonrelativistic quantum mechanics for the analysis of a beam-splitter experiment. The ST makes several experimentally testable predictions that differ from the CT, which can be checked using existing technology. The ST also solves one part of the CT measurement problem, and resolves some of the paradoxes of the CT. This nonrelativistic ST is the low energy limit of a relativistic ST presented in an earlier paper \\cite{Heaney1}.

Michael B. Heaney

2013-10-20T23:59:59.000Z

74

Quantum mechanics of time travel through post-selected teleportation  

E-Print Network (OSTI)

This paper discusses the quantum mechanics of closed-timelike curves (CTCs) and of other potential methods for time travel. We analyze a specific proposal for such quantum time travel, the quantum description of CTCs based ...

Maccone, Lorenzo

75

NONEQUILIBRIUM QUANTUM STATISTICAL MECHANICS AND THERMODYNAMICS ?  

E-Print Network (OSTI)

The purpose of this work is to discuss recent progress in deriving the fundamental laws of thermodynamics (0 th, 1 st and 2 nd-law) from nonequilibrium quantum statistical mechanics. Basic thermodynamic notions are clarified and different reversible and irreversible thermodynamic processes are studied from the point of view of quantum statistical mechanics. Special emphasis is put on new adiabatic theorems for steady states close to and far from equilibrium, and on investigating cyclic thermodynamic processes using an extension of Floquet theory. This work is based on the author’s doctoral thesis, ETH-Diss 16187.

Walid K. Abou Salem

2006-01-01T23:59:59.000Z

76

Surveying Students’ Understanding of Quantum Mechanics  

Science Conference Proceedings (OSTI)

Development of research?based multiple?choice tests about quantum mechanics is important for assessing students’ difficulties and for evaluating curricula and pedagogies that strive to reduce the difficulties. We explore the difficulties that the undergraduate and graduate students have with non?relativistic quantum mechanics of one particle in one spatial dimension. We developed a research?based conceptual multiple?choice survey that targets these issues to obtain information about the common difficulties and administered it to more than a hundred students from seven different institutions. The issues targeted in the survey include the set of possible wavefunctions

Chandralekha Singh; Guangtian Zhu

2010-01-01T23:59:59.000Z

77

Quantum mechanics as "space-time statistical mechanics"?  

E-Print Network (OSTI)

In this paper we discuss and analyse the idea of trying to see (non-relativistic) quantum mechanics as a ``space-time statistical mechanics'', by using the classical statistical mechanical method on objective microscopic space-time configurations. It is argued that this could perhaps be accomplished by giving up the assumption that the objective ``state'' of a system is independent of a future measurement performed on the system. This idea is then applied in an example of quantum state estimation on a qubit system.

Anders Månsson

2005-01-24T23:59:59.000Z

78

Is Quantum Mechanics needed to explain consciousness ?  

E-Print Network (OSTI)

In this short comment to a recent contribution by E. Manousakis [1] it is argued that the reported agreement between the measured time evolution of conscious states during binocular rivalry and predictions derived from quantum mechanical formalisms does not require any direct effect of QM. The recursive consumption analysis process in the Ouroboros Model can yield the same behavior.

Knud Thomsen

2007-11-13T23:59:59.000Z

79

On Quantum Mechanical Aspects of Microtubules  

E-Print Network (OSTI)

We discuss possible quantum mechanical aspects of MicroTubules (MT), based on recent developments in quantum physics.We focus on potential mechanisms for `energy-loss-free' transport along the microtubules, which could be considered as realizations of Fröhlich's ideas on the rôle of solitons for superconductivity and/or biological matter. By representing the MT arrangements as cavities, we present a novel scenario on the formation of macroscopic (or mesoscopic) quantum-coherent states, as a result of the (quantum-electromagnetic) interactions of the MT dimers with the surrounding molecules of the ordered water in the interior of the MT cylinders. We suggest specific experiments to test the above-conjectured quantum nature of the microtubular arrangements inside the cell. These experiments are similar in nature to those in atomic physics, used in the detection of the Rabi-Vacuum coupling between coherent cavity modes and atoms. Our conjecture is that a similar Rabi-Vacuum-splitting phenomenon occurs in the M...

Mavromatos, Nikolaos E

1997-01-01T23:59:59.000Z

80

On Quantum Mechanical Aspects of Microtubules  

E-Print Network (OSTI)

We discuss possible quantum mechanical aspects of MicroTubules (MT), based on recent developments in quantum physics.We focus on potential mechanisms for `energy-loss-free' transport along the microtubules, which could be considered as realizations of Fr\\"ohlich's ideas on the r\\^ole of solitons for superconductivity and/or biological matter. By representing the MT arrangements as cavities,we present a novel scenario on the formation of macroscopic (or mesoscopic) quantum-coherent states, as a result of the (quantum-electromagnetic) interactions of the MT dimers with the surrounding molecules of the ordered water in the interior of the MT cylinders. We suggest specific experiments to test the above-conjectured quantum nature of the microtubular arrangements inside the cell. These experiments are similar in nature to those in atomic physics, used in the detection of the Rabi-Vacuum coupling between coherent cavity modes and atoms. Our conjecture is that a similar Rabi-Vacuum-splitting phenomenon occurs in the MT case.

N. E. Mavromatos; D. V. Nanopoulos

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

STATISTICAL MECHANICS AND FIELD THEORY  

E-Print Network (OSTI)

1. L. 1. Schiff, Quantum Mechanics, third edition (McGraw-two-dimensional quantum mechanics problem vith a potential,Theory Methods to Statistical Mechanics Chapter I The Use of

Samuel, S.A.

2010-01-01T23:59:59.000Z

82

Philosophy of Mind and the Problem of Free Will in the Light of Quantum Mechanics.  

E-Print Network (OSTI)

Foundations of Quantum Mechanics. (Princeton UniversityMind, Matter, and Quantum Mechanics, (Springer, Berlin & NewMindful Universe: Quantum Mechanics and the Participating

Stapp, Henry P

2008-01-01T23:59:59.000Z

83

PERTURBATION-THEORY RULES FOR COMPUTING THE SELF-ENERGY OPERATOR IN QUANTUM STATISTICAL MECHANICS  

E-Print Network (OSTI)

D. J. Thouless, The Quantum Mechanics of Many-Body Systems (1962). Ba~n, Quantum Statistical Mechanics (Benjamin, I. E.IN QUANTUM STATISTICAL MECHANICS Berkeley, California

Baym, Gordon

2008-01-01T23:59:59.000Z

84

Emergence of Quantum Mechanics from a Sub-Quantum Statistical Mechanics  

E-Print Network (OSTI)

A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder's group on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schr\\"odinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level. It is further demonstrated both analytically and with the aid of computer simulations that our model provides explanations for various quantum effects such as double-slit or n-slit interference. We show the averaged trajectories emerging from our model to be identical to Bohmian trajectories, albeit without the need to invoke complex wave functions or any other quantum mechanical tool. Finally, the model provides new insights into the origins of entanglement, and, in particular, into the phenomenon of a "systemic" nonlocality.

Gerhard Groessing

2013-04-12T23:59:59.000Z

85

Integral Transforms in Relativistic Quantum Constraint Mechanics  

E-Print Network (OSTI)

In relativistic quantum constraint mechanics the state of a physical system is constrained to a 3-dimensional subspace of Minkowski 4-space. Fourier transformation can be used to relate this state between constraint spaces in 4-position and 4-momentum space. It is shown that integral transforms of this nature can be carried out using Lorentz-invariant 3-dimensional constraint space coordinates such that a complete equivalence class of 4-space representations can be constructed from the transform. This method is further applied to develop a relativistic generalization of the Segal-Bargmann transformation that leads to the representation of quantum systems in a three-dimensional subspace of Bargmann 4-space.

Robert J. Ducharme

2011-01-29T23:59:59.000Z

86

The Particle Adventure | What holds it together? | Quantum mechanics  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum mechanics Quantum mechanics One of the surprises of modern science is that atoms and sub-atomic particles do not behave like anything we see in the everyday world. They are...

87

Quantum Mechanics Evaluation of Solid Oxide Fuel Cell Cathode ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Energy Conversion/Fuel Cells. Presentation Title, Quantum Mechanics ...

88

The Objective Inde...niteness Interpretation of Quantum Mechanics  

E-Print Network (OSTI)

The Objective Inde...niteness Interpretation of Quantum Mechanics David Ellerman University of California at Riverside Draft (not for quotation) May 28, 2013 Abstract Quantum mechanics (QM models indef- inite elements that become more de...nite as distinctions are made. If quantum mechanics

Wüthrich, Christian

89

Avoiding Negative Probabilities in Quantum Mechanics  

E-Print Network (OSTI)

As currently understood since its discovery, the bare Klein-Gordon theory consists of negative quantum probabilities which are considered to be physically meaningless if not outright obsolete. Despite this annoying setback, these negative probabilities are what led the great Paul Dirac in 1928 to the esoteric discovery of the Dirac Equation. The Dirac Equation led to one of the greatest advances in our understanding of the physical world. In this reading, we ask the seemingly senseless question, "Do negative probabilities exist in quantum mechanics?" In an effort to answer this question, we arrive at the conclusion that depending on the choice one makes of the quantum probability current, one will obtain negative probabilities. We thus propose a new quantum probability current of the Klein-Gordon theory. This quantum probability current leads directly to positive definite quantum probabilities. Because these negative probabilities are in the bare Klein-Gordon theory, intrinsically a result of negative energies, the fact that we here arrive at a theory with positive probabilities, means that negative energy particles are not to be considered problematic as is the case in the bare Klein-Gordon theory. From an abstract-objective stand-point; in comparison with positive energy particles, the corollary is that negative energy particles should have equal chances to exist. As to why these negative energy particles do not exist, this is analogous to asking why is it that Dirac's antimatter does not exist in equal proportions with matter. This problem of why negative energy particles do not exist in equal proportions with positive energy particles is a problem that needs to be solved by a future theory.

Golden Gadzirayi Nyambuya

2013-08-15T23:59:59.000Z

90

Physical Interpretations of Nilpotent Quantum Mechanics  

E-Print Network (OSTI)

Nilpotent quantum mechanics provides a powerful method of making efficient calculations. More importantly, however, it provides insights into a number of fundamental physical problems through its use of a dual vector space and its explicit construction of vacuum. Physical interpretation of the nilpotent formalism is discussed with respect to boson and baryon structures, the mass-gap problem, zitterbewgung, Berry phase, renormalization, and related issues.

Peter Rowlands

2010-04-09T23:59:59.000Z

91

Hunting for Snarks in Quantum Mechanics  

SciTech Connect

A long-standing debate over the interpretation of quantum mechanics has centered on the meaning of Schroedinger's wave function {psi} for an electron. Broadly speaking, there are two major opposing schools. On the one side, the Copenhagen school(led by Bohr, Heisenberg and Pauli) holds that {psi} provides a complete description of a single electron state; hence the probability interpretation of {psi}{psi}* expresses an irreducible uncertainty in electron behavior that is intrinsic in nature. On the other side, the realist school(led by Einstein, de Broglie, Bohm and Jaynes) holds that {psi} represents a statistical ensemble of possible electron states; hence it is an incomplete description of a single electron state. I contend that the debaters have overlooked crucial facts about the electron revealed by Dirac theory. In particular, analysis of electron zitterbewegung(first noticed by Schroedinger) opens a window to particle substructure in quantum mechanics that explains the physical significance of the complex phase factor in {psi}. This led to a testable model for particle substructure with surprising support by recent experimental evidence. If the explanation is upheld by further research, it will resolve the debate in favor of the realist school. I give details. The perils of research on the foundations of quantum mechanics have been foreseen by Lewis Carroll in The Hunting of the Snark{exclamation_point}.

Hestenes, David [Physics Department, Arizona State University, Tempe, Arizona 85287 (United States)

2009-12-08T23:59:59.000Z

92

References - symmetrization postulate of quantum mechanics  

Science Conference Proceedings (OSTI)

... Paul Teller, An Interpretative Introduction to Quantum ... Body Systems, 2nd ed. (Academic Press ... Edward Witten, "Duality, Spacetime and Quantum ...

93

Measurement and Ergodicity in Quantum Mechanics  

E-Print Network (OSTI)

The experimental realization of successive non-demolition measurements on single microscopic systems brings up the question of ergodicity in Quantum Mechanics (QM). We inquire whether time averages over one realization of a single system are related to QM averages over an ensemble of similarly prepared systems. We adopt a generalization of von Neumann model of measurement, coupling the system to $N$ "probes" --with a strength that is at our disposal-- and detecting the latter. The model parallels the procedure followed in experiments on Quantum Electrodynamic cavities. The modification of the probability of the observable eigenvalues due to the coupling to the probes can be computed analytically and the results compare qualitatively well with those obtained numerically by the experimental groups. We find that the problem is not ergodic, except in the case of an eigenstate of the observable being studied.

Mariano Bauer; Pier A. Mello

2013-12-25T23:59:59.000Z

94

Quantum-Mechanical Model of Spacetime  

E-Print Network (OSTI)

We consider a possibility to construct a quantum-mechanical model of spacetime, where Planck size quantum black holes act as the fundamental constituents of space and time. Spacetime is assumed to be a graph, where black holes lie on the vertices. Our model implies that area has a discrete spectrum with equal spacing. At macroscopic length scales our model reproduces Einstein's field equation with a vanishing cosmological constant as a sort of thermodynamical equation of state of spacetime and matter fields. In the low temperature limit, where most black holes are assumed to be in the ground state, our model implies the Unruh and the Hawking effects, whereas in the high temperature limit we find, among other things, that black hole entropy depends logarithmically on the event horizon area, instead of being proportional to the area.

Makela, J

2007-01-01T23:59:59.000Z

95

Quantum-Mechanical Model of Spacetime  

E-Print Network (OSTI)

We consider a possibility to construct a quantum-mechanical model of spacetime, where Planck size quantum black holes act as the fundamental constituents of space and time. Spacetime is assumed to be a graph, where black holes lie on the vertices. Our model implies that area has a discrete spectrum with equal spacing. At macroscopic length scales our model reproduces Einstein's field equation with a vanishing cosmological constant as a sort of thermodynamical equation of state of spacetime and matter fields. In the low temperature limit, where most black holes are assumed to be in the ground state, our model implies the Unruh and the Hawking effects, whereas in the high temperature limit we find, among other things, that black hole entropy depends logarithmically on the event horizon area, instead of being proportional to the area.

Jarmo Makela

2007-01-24T23:59:59.000Z

96

5.74 Introductory Quantum Mechanics II, Spring 2005  

E-Print Network (OSTI)

Time-dependent quantum mechanics and spectroscopy. Topics covered include perturbation theory, two-level systems, light-matter interactions, relaxation in quantum systems, correlation functions and linear response theory, ...

Tokmakoff, Andrei

97

Quantum-mechanical linear filtering of random signal sequences  

Science Conference Proceedings (OSTI)

The problem of estimating a member of a scalar random signal sequence with quantum-mechanical measurements is considered. The minimum variance linear estimator based on an optimal present quantum measurement and optimal linear processing of past measurements ...

J. Baras; R. Harger; Young Park

1976-01-01T23:59:59.000Z

98

Quantum Mechanics Joachim Burgd orfer and Stefan Rotter  

E-Print Network (OSTI)

1 1 Quantum Mechanics Joachim BurgdË? orfer and Stefan Rotter 1.1 Introduction 3 1.2 Particle and Quantization 8 1.5 Angular Momentum in Quantum Mechanics 9 1.6 Formalism of Quantum Mechanics 12 1.7 Solution 29 1.8.3 Resonances 30 1.9 Semiclassical Mechanics 31 1.9.1 The WKB Approximation 31 1.9.2 The EBK

Rotter, Stefan

99

Relativity and quantum mechanics: Jorgensen revisited  

E-Print Network (OSTI)

We first define the functions which ensure the transformation of momentum and energy of a tardyon, the transformation of the wave vector and the frequency of the associated wave. Having done this, we show that they ensure the relativistic invariance of the quotient between momentum and wave vector and between energy and frequency if the product between particle velocity u and phase velocity w is a relativistic invariant (uw=c^2), a condition which is a natural combination of special relativity theory and quantum mechanics.

Bernhard Rothenstein

2007-03-25T23:59:59.000Z

100

Bhomian Mechanics vs. Standard Quantum Mechanics: a Difference in Experimental Predictions  

E-Print Network (OSTI)

Standard Quantum Mechanics (QM) predicts an anti-intuitive fenomenon here referred to as "quantum autoscattering", which is excluded by Bhomian Mechanics. The scheme of a gedanken experiment testing the QM prediction is briefly discussed.

Artur Szczepanski

2010-02-08T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Quantum mechanics as quantum information (and only a little more), Quantum Theory: Reconsideration of Foundations  

E-Print Network (OSTI)

In this paper, I try once again to cause some good-natured trouble. The issue remains, when will we ever stop burdening the taxpayer with conferences devoted to the quantum foundations? The suspicion is expressed that no end will be in sight until a means is found to reduce quantum theory to two or three statements of crisp physical (rather than abstract, axiomatic) significance. In this regard, no tool appears better calibrated for a direct assault than quantum information theory. Far from a strained application of the latest fad to a time-honored problem, this method holds promise precisely because a large part—but not all—of the structure of quantum theory has always concerned information. It is just that the physics community needs reminding. This paper, though takingquant-ph/0106166 as its core, corrects one mistake and offers several observations beyond the previous version. In particular, I identify one element of quantum mechanics that I would not label a subjective term in the theory—it is the integer parameter D traditionally ascribed to a quantum system via its Hilbert-space dimension. 1

Christopher A. Fuchs

2002-01-01T23:59:59.000Z

102

An Intrusion Detection System Using Quantum- mechanical Systems  

Technology Description A quantum mechanical-based device that detects an intrusion across a physical boundary or communication link. Because common

103

What quantum mechanics is trying to tell us  

Science Conference Proceedings (OSTI)

This article presents a novel interpretation of quantum mechanics. It extends the meaning of “measurement” to include all property-indicating facts. Intrinsically

2000-01-01T23:59:59.000Z

104

Derivation of the coefficient squared probability law in quantum mechanics  

E-Print Network (OSTI)

If one assumes there is probability of perception in quantum mechanics, then unitarity dictates that it must have the coefficient squared form, in agreement with experiment.

Casey Blood

2013-06-02T23:59:59.000Z

105

An Intrusion Detection System Using Quantum-Mechanical Systems  

ORNL 2012-G00220/tcc UT-B ID 200701995 10.2012 An Intrusion Detection System Using Quantum-Mechanical Systems Technology Summary Securing property and ...

106

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and Other Large Systems Event Sponsor: Leadership Computing Facility Seminar Start Date: Dec 5 2013 - 2:00pm...

107

Tampering detection system using quantum-mechanical systems  

DOE Patents (OSTI)

The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

Humble, Travis S. (Knoxville, TN); Bennink, Ryan S. (Knoxville, TN); Grice, Warren P. (Oak Ridge, TN)

2011-12-13T23:59:59.000Z

108

An efficient method for the calculation of quantum mechanics/molecular mechanics free energies  

Science Conference Proceedings (OSTI)

The combination of quantum mechanics (QM) with molecular mechanics (MM) offers a route to improved accuracy in the study of biological systems

Christopher J. Woods; Frederick R. Manby; Adrian J. Mulholland

2008-01-01T23:59:59.000Z

109

A Causal Net Approach to Relativistic Quantum Mechanics  

E-Print Network (OSTI)

In this paper we discuss a causal network approach to describing relativistic quantum mechanics. Each vertex on the causal net represents a possible point event or particle observation. By constructing the simplest causal net based on Reichenbach-like conjunctive forks in proper time we can exactly derive the 1+1 dimension Dirac equation for a relativistic fermion and correctly model quantum mechanical statistics. Symmetries of the net provide various quantum mechanical effects such as quantum uncertainty and wavefunction, phase, spin, negative energy states and the effect of a potential. The causal net can be embedded in 3+1 dimensions and is consistent with the conventional Dirac equation. In the low velocity limit the causal net approximates to the Schrodinger equation and Pauli equation for an electromagnetic field. Extending to different momentum states the net is compatible with the Feynman path integral approach to quantum mechanics that allows calculation of well known quantum phenomena such as diffraction.

R. D. Bateson

2010-07-14T23:59:59.000Z

110

Quantum mechanical evolution towards thermal equilibrium  

E-Print Network (OSTI)

The circumstances under which a system reaches thermal equilibrium, and how to derive this from basic dynamical laws, has been a major question from the very beginning of thermodynamics and statistical mechanics. Despite considerable progress, it remains an open problem. Motivated by this issue, we address the more general question of equilibration. We prove, with virtually full generality, that reaching equilibrium is a universal property of quantum systems: Almost any subsystem in interaction with a large enough bath will reach an equilibrium state and remain close to it for almost all times. We also prove several general results about other aspects of thermalisation besides equilibration, for example, that the equilibrium state does not depend on the detailed micro-state of the bath.

Noah Linden; Sandu Popescu; Anthony J. Short; Andreas Winter

2008-12-12T23:59:59.000Z

111

New methods for quantum mechanical reaction dynamics  

DOE Green Energy (OSTI)

Quantum mechanical methods are developed to describe the dynamics of bimolecular chemical reactions. We focus on developing approaches for directly calculating the desired quantity of interest. Methods for the calculation of single matrix elements of the scattering matrix (S-matrix) and initial state-selected reaction probabilities are presented. This is accomplished by the use of absorbing boundary conditions (ABC) to obtain a localized (L{sup 2}) representation of the outgoing wave scattering Green`s function. This approach enables the efficient calculation of only a single column of the S-matrix with a proportionate savings in effort over the calculation of the entire S-matrix. Applying this method to the calculation of the initial (or final) state-selected reaction probability, a more averaged quantity, requires even less effort than the state-to-state S-matrix elements. It is shown how the same representation of the Green`s function can be effectively applied to the calculation of negative ion photodetachment intensities. Photodetachment spectroscopy of the anion ABC{sup -} can be a very useful method for obtaining detailed information about the neutral ABC potential energy surface, particularly if the ABC{sup -} geometry is similar to the transition state of the neutral ABC. Total and arrangement-selected photodetachment spectra are calculated for the H{sub 3}O{sup -} system, providing information about the potential energy surface for the OH + H{sub 2} reaction when compared with experimental results. Finally, we present methods for the direct calculation of the thermal rate constant from the flux-position and flux-flux correlation functions. The spirit of transition state theory is invoked by concentrating on the short time dynamics in the area around the transition state that determine reactivity. These methods are made efficient by evaluating the required quantum mechanical trace in the basis of eigenstates of the Boltzmannized flux operator.

Thompson, W.H. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States)

1996-12-01T23:59:59.000Z

112

Environment-Induced Decoherence in Noncommutative Quantum Mechanics  

E-Print Network (OSTI)

We address the question of the appearence of ordinary quantum mechanics in the context of noncommutative quantum mechanics. We obtain the noncommutative extension of the Hu-Paz-Zhang master equation for a Brownian particle linearly coupled to a bath of harmonic oscillators. We consider the particular case of an Ohmic regime.

Joao Nuno Prata; Nuno Costa Dias

2006-12-02T23:59:59.000Z

113

The Born Rule in Quantum and Classical Mechanics  

E-Print Network (OSTI)

Considerable effort has been devoted to deriving the Born rule (e.g. that $|\\psi(x)|^2 dx$ is the probability of finding a system, described by $\\psi$, between $x$ and $x + dx$) in quantum mechanics. Here we show that the Born rule is not solely quantum mechanical; rather, it arises naturally in the Hilbert space formulation of {\\it classical} mechanics as well. These results provide new insights into the nature of the Born rule, and impact on its understanding in the framework of quantum mechanics.

Paul Brumer; Jiangbin Gong

2006-04-24T23:59:59.000Z

114

Efficiency of the general quantum-mechanical Carnot engine  

E-Print Network (OSTI)

A quantum-mechanical analog of the Carnot engine reversibly working at vanishing temperature, shortly termed the quantum-mechanical Carnot engine, is discussed. A general formula for the efficiency of such an engine with an arbitrary confining potential is presented. Its expression is purely given in terms of the structure of the energy spectrum. Dependency of the efficiency on the form of a potential as an analog of the working material in thermodynamics implies nonuniversality of the engine. This may be due to the absence of the second-law-like principle in pure-state quantum mechanics.

Sumiyoshi Abe

2012-08-10T23:59:59.000Z

115

24.111 Philosophy of Quantum Mechanics, Spring 2002  

E-Print Network (OSTI)

Quantum mechanics is said to describe a world in which physical objects often lack "definite" properties, indeterminism creeps in at the point of "observation," ordinary logic does not apply, and distant events are perfectly ...

Hall, Edward J. (Edward Jonathon), 1966-

116

On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos  

SciTech Connect

Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.

Lee, Sang-Bong

1993-09-01T23:59:59.000Z

117

Statistical Structures Underlying Quantum Mechanics and Social Science  

E-Print Network (OSTI)

Common observations of the unpredictability of human behavior and the influence of one question on the answer to another suggest social science experiments are probabilistic and may be mutually incompatible with one another, characteristics attributed to quantum mechanics (as distinguished from classical mechanics). This paper examines this superficial similarity in depth using the Foulis-Randall Operational Statistics language. In contradistinction to physics, social science deals with complex, open systems for which the set of possible experiments is unknowable and outcome interference is a graded phenomenon resulting from the ways the human brain processes information. It is concluded that social science is, in some ways, "less classical" than quantum mechanics, but that generalized "quantum" structures may provide appropriate descriptions of social science experiments. Specific challenges to extending "quantum" structures to social science are identified.

Ron Wright

2003-07-30T23:59:59.000Z

118

Nonlinear coupling of nano mechanical resonators to Josephson quantum circuits  

E-Print Network (OSTI)

We propose a technique to couple the position operator of a nano mechanical resonator to a SQUID device by modulating its magnetic flux bias. By tuning the magnetic field properly, either linear or quadratic couplings can be realized, with a discretely adjustable coupling strength. This provides a way to realize coherent nonlinear effects in a nano mechanical resonator by coupling it to a Josephson quantum circuit. As an example, we show how squeezing of the nano mechanical resonator state can be realized with this technique. We also propose a simple method to measure the uncertainty in the position of the nano mechanical resonator without quantum state tomography.

Xingxiang Zhou; Ari Mizel

2006-05-01T23:59:59.000Z

119

Is quantum mechanics based on an invariance principle?  

E-Print Network (OSTI)

Non-relativistic quantum mechanics for a free particle is shown to emerge from classical mechanics through an invariance principle under transformations that preserve the Heisenberg position-momentum inequality. These transformations are induced by isotropic space dilations. This invariance imposes a change in the laws of classical mechanics that exactly corresponds to the transition to quantum mechanics. The Schroedinger equation appears jointly with a second nonlinear equation describing non-unitary processes. Unitary and non-unitary evolutions are exclusive and appear sequentially in time. The non-unitary equation admits solutions that seem to correspond to the collapse of the wave function.

Leon Brenig

2006-10-27T23:59:59.000Z

120

Bohmian Trajectories as the Foundation of Quantum Mechanics  

E-Print Network (OSTI)

Bohmian trajectories have been used for various purposes, including the numerical simulation of the time-dependent Schroedinger equation and the visualization of time-dependent wave functions. We review the purpose they were invented for: to serve as the foundation of quantum mechanics, i.e., to explain quantum mechanics in terms of a theory that is free of paradoxes and allows an understanding that is as clear as that of classical mechanics. Indeed, they succeed in serving that purpose in the context of a theory known as Bohmian mechanics, to which this article is an introduction.

Sheldon Goldstein; Roderich Tumulka; Nino Zanghi

2009-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

UNIFORM SEMICLASSICAL APPROXIMATION IN QUANTUM STATISTICAL MECHANICS.  

SciTech Connect

We present a simple method to deal with caustics in the semiclassical approximation to the partition function of a one-dimensional quantum system. The procedure, which makes use of complex trajectories, is applied to the quartic double-well potential.

De Carvalho, C.A.A.; Cavalcanit, R.M.; Fraga, E.S.; Joras, S.E.

2000-10-23T23:59:59.000Z

122

Bohmian Mechanics with Complex Action: A New Trajectory-Based Formulation of Quantum Mechanics  

E-Print Network (OSTI)

In recent years there has been a resurgence of interest in Bohmian mechanics as a numerical tool because of its local dynamics, which suggest the possibility of significant computational advantages for the simulation of large quantum systems. However, closer inspection of the Bohmian formulation reveals that the nonlocality of quantum mechanics has not disappeared -- it has simply been swept under the rug into the quantum force. In this paper we present a new formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex. This leads to a single equation for complex S, and ultimately complex x and p but there is a reward for this complexification -- a significantly higher degree of localization. The quantum force in the new approach vanishes for Gaussian wavepacket dynamics, and its effect on barrier tunneling processes is orders of magnitude lower than that of the classical force. We demonstrate tunneling probabilities that are in virtually perfect agreement with the exact quantum mechanics down to 10^{-7} calculated from strictly localized quantum trajectories that do not communicate with their neighbors. The new formulation may have significant implications for fundamental quantum mechanics, ranging from the interpretation of non-locality to measures of quantum complexity.

Yair Goldfarb; Ilan Degani; David J. Tannor

2006-04-20T23:59:59.000Z

123

Quantum Field Theory Is Not Merely Quantum Mechanics Applied to Low Energy Effective Degrees of Freedom  

E-Print Network (OSTI)

It is commonly assumed that quantum field theory arises by applying ordinary quantum mechanics to the low energy effective degrees of freedom of a more fundamental theory defined at ultra-high-energy/short-wavelength scales. We shall argue here that, even for free quantum fields, there are holistic aspects of quantum field theory that cannot be properly understood in this manner. Specifically, the ``subtractions'' needed to define nonlinear polynomial functions of a free quantum field in curved spacetime are quite simple and natural from the quantum field theoretic point of view, but are at best extremely ad hoc and unnatural if viewed as independent renormalizations of individual modes of the field. We illustrate this point by contrasting the analysis of the Casimir effect, the renormalization of the stress-energy tensor in time-dependent spacetimes, and anomalies from the point of quantum field theory and from the point of view of quantum mechanics applied to the independent low energy modes of the field. Some implications for the cosmological constant problem are discussed.

Stefan Hollands; Robert M. Wald

2004-05-16T23:59:59.000Z

124

Assessing Expertise in Quantum Mechanics using Categorization Task  

Science Conference Proceedings (OSTI)

We discuss the categorization of 20 quantum mechanics problems by 6 physics professors and 22 undergraduate students from two honors?level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty members’ categorizations were overall rated better than those of students by three faculty members who evaluated all of the categorizations. But the categories created by faculty members were more diverse compared to the uniformity of the categories they created when asked to categorize introductory mechanics problems.

Shih?Yin Lin; Chandralekha Singh

2009-01-01T23:59:59.000Z

125

Mechanical Systems that are both Classical and Quantum  

E-Print Network (OSTI)

Quantum dynamics can be regarded as a generalization of classical finite-state dynamics. This is a familiar viewpoint for workers in quantum computation, which encompasses classical computation as a special case. Here this viewpoint is extended to mechanics, where classical dynamics has traditionally been viewed as a macroscopic approximation of quantum behavior, not as a special case. When a classical dynamics is recast as a special case of quantum dynamics, the quantum description can be interpreted classically. For example, sometimes extra information is added to the classical state in order to construct the quantum description. This extra information is then eliminated by representing it in a superposition as if it were unknown information about a classical statistical ensemble. This usage of superposition leads to the appearance of Fermions in the quantum description of classical lattice-gas dynamics and turns continuous-space descriptions of finite-state systems into illustrations of classical sampling theory. A direct mapping of classical systems onto quantum systems also allows us to determine the minimum possible energy scale for a classical dynamics, based on a localized rate of state change. We use a partitioning description of dynamics to define locality, and discuss the ideal energy of two model systems.

Norman Margolus

2008-05-22T23:59:59.000Z

126

Quantum mechanics in curved space-time II  

E-Print Network (OSTI)

This paper is a sequence of the work presented in [1], where, the principles of the general relativity have been used to formulate quantum wave equations taking into account the effect of the electromagnetic and strong interactions in the space-time metric of quantum systems. Now, the role of the energy-momentum tensor in this theory is studied, and it is consistent with the formulation of the general quantum mechanics shown in [1]. With this procedure, a dynamical cut-off is generated and the constant $A$ of the field equation is calculated.

C. C. Barros Jr

2005-09-01T23:59:59.000Z

127

On the Limits of Information Retrieval in Quantum Mechanics  

E-Print Network (OSTI)

The widely considered assertion is that the unitarity of quantum mechanical evolution assures the preservation of information. It is even promoted in popular literature as an established fact. (Susskind, 2008) Yet, a simple chain of reasoning demonstrates that: 1) almost any evolutionary operator can be well approximated by a degenerate (finite-rank) operator and 2) one needs an eternity to retrieve information exactly from a nonstationary quantum state and to distinguish between arbitrary unitary operator and its finite-dimensional approximations.

Peter B. Lerner

2013-11-26T23:59:59.000Z

128

Quantum mechanics from an equivalence principle  

Science Conference Proceedings (OSTI)

The authors show that requiring diffeomorphic equivalence for one-dimensional stationary states implies that the reduced action S{sub 0} satisfies the quantum Hamilton-Jacobi equation with the Planck constant playing the role of a covariantizing parameter. The construction shows the existence of a fundamental initial condition which is strictly related to the Moebius symmetry of the Legendre transform and to its involutive character. The universal nature of the initial condition implies the Schroedinger equation in any dimension.

Faraggi, A.E. [Univ. of Florida, Gainesville, FL (United States). Inst. for Fundamental Theory; Matone, M. [Univ. of Padova (Italy)

1997-05-15T23:59:59.000Z

129

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and Other Large Systems Event Sponsor: Leadership Computing Facility Seminar Start Date: Dec 5 2013 - 2:00pm Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Dmitri G. Fedorov Speaker(s) Title: National Institute of Advanced Industrial Science and Technology (AIST) Host: Yuri Alexeev Our approach to large scale calculations is based on fragmenting a molecular system into pieces, and performing quantum-mechanical calculations of these fragments and their pairs in the fragment molecular orbital method (FMO). After a brief summary of the methodology, some typical applications to protein-ligand complexes, chemical reactions in explicit solvent, and nanomaterials (silicon nanowires, zeolites.

130

Hydrodynamical interpretation of quantum mechanics: the momentum distribution  

E-Print Network (OSTI)

The quantum mechanics is considered to be a partial case of the stochastic system dynamics. It is shown that the wave function describes the state of statistically averaged system $$, but not that of the individual stochastic system $\\mathcal{S}_{st}$. It is a common practice to think that such a construction of quantum mechanics contains hidden variables, and it is incompatible with the von Neumann's theorem on hidden variables. It is shown that the original conditions of the von Neumann's theorem are not satisfied. In particular, the quantum mechanics cannot describe the particle momentum distribution. The distribution $w(\\mathbf{p}) =| \\psi_{p%}| ^{2}$ is not a particle momentum distribution at the state $\\psi $, because it cannot be attributed to a wave function. It is closer to the mean momentum distribution, although the two distributions do not coincide exactly.

Yuri A. Rylov

2004-02-15T23:59:59.000Z

131

PERTURBATION-THEORY RULES FOR COMPUTING THE SELF-ENERGY OPERATOR IN QUANTUM STATISTICAL MECHANICS  

E-Print Network (OSTI)

J. Thouless) The Quantu~ Mechanics of V ~ny-Body Systems (IN QUANTUM STA TISTICAL MECHANICS Gordon BayrrL and AndrewIN QUANTUM STATISTICAL MECHANICS Gordon Baym and Andrew M.

Baym, Gordon

2008-01-01T23:59:59.000Z

132

Dynamical probability, particle trajectories and completion of traditional quantum mechanics  

E-Print Network (OSTI)

Maintaining the position that the wave function $\\psi$ provides a complete description of state, the traditional formalism of quantum mechanics is augmented by introducing continuous trajectories for particles which are sample paths of a stochastic process determined (including the underlying probability space) by $\\psi$. In the resulting formalism, problems relating to measurements and objective reality are solved as in Bohmian mechanics (without sharing its weak points). The pitfalls of Nelson's stochastic mechanics are also avoided.

Tulsi Dass

2005-05-25T23:59:59.000Z

133

Statistical mechanics of classical and quantum computational complexity  

E-Print Network (OSTI)

The quest for quantum computers is motivated by their potential for solving problems that defy existing, classical, computers. The theory of computational complexity, one of the crown jewels of computer science, provides a rigorous framework for classifying the hardness of problems according to the computational resources, most notably time, needed to solve them. Its extension to quantum computers allows the relative power of quantum computers to be analyzed. This framework identifies families of problems which are likely hard for classical computers (``NP-complete'') and those which are likely hard for quantum computers (``QMA-complete'') by indirect methods. That is, they identify problems of comparable worst-case difficulty without directly determining the individual hardness of any given instance. Statistical mechanical methods can be used to complement this classification by directly extracting information about particular families of instances---typically those that involve optimization---by studying random ensembles of them. These pose unusual and interesting (quantum) statistical mechanical questions and the results shed light on the difficulty of problems for large classes of algorithms as well as providing a window on the contrast between typical and worst case complexity. In these lecture notes we present an introduction to this set of ideas with older work on classical satisfiability and recent work on quantum satisfiability as primary examples. We also touch on the connection of computational hardness with the physical notion of glassiness.

C. R. Laumann; R. Moessner; A. Scardicchio; S. L. Sondhi

2010-09-08T23:59:59.000Z

134

Quantum-mechanical theory of optomechanical Brillouin cooling  

SciTech Connect

We analyze how to exploit Brillouin scattering of light from sound for the purpose of cooling optomechanical devices and present a quantum-mechanical theory for Brillouin cooling. Our analysis shows that significant cooling ratios can be obtained with standard experimental parameters. A further improvement of cooling efficiency is possible by increasing the dissipation of the optical anti-Stokes resonance.

Tomes, Matthew; Bahl, Gaurav; Carmon, Tal [Department of Electrical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Marquardt, Florian [Institut fuer Theoretische Physik, Universitaet Erlangen-Nuernberg, Staudtstrasse 7, D-91058 Erlangen (Germany); Max Planck Institute for the Science of Light, Guenther-Scharowsky-Strasse 1/Bau 24, D-91058 Erlangen (Germany)

2011-12-15T23:59:59.000Z

135

Monte-carlo calculations for some problems of quantum mechanics  

Science Conference Proceedings (OSTI)

The Monte-Carlo technique for the calculations of functional integral in two one-dimensional quantum-mechanical problems had been applied. The energies of the bound states in some potential wells were obtained using this method. Also some peculiarities in the calculation of the kinetic energy in the ground state had been studied.

Novoselov, A. A., E-mail: novoselov@goa.bog.msu.ru; Pavlovsky, O. V.; Ulybyshev, M. V. [Moscow State University (Russian Federation)

2012-09-15T23:59:59.000Z

136

Quantum mechanical cluster calculations of critical scintillationprocesses  

SciTech Connect

This paper describes the use of commercial quantum chemistrycodes to simu-late several critical scintillation processes. The crystalis modeled as a cluster of typically 50 atoms embedded in an array oftypically 5,000 point charges designed to reproduce the electrostaticfield of the infinite crystal. The Schrodinger equation is solved for theground, ionized, and excited states of the system to determine the energyand electron wavefunction. Computational methods for the followingcritical processes are described: (1) the formation and diffusion ofrelaxed holes, (2) the formation of excitons, (3) the trapping ofelectrons and holes by activator atoms, (4) the excitation of activatoratoms, and (5) thermal quenching. Examples include hole diffusion in CsI,the exciton in CsI, the excited state of CsI:Tl, the energy barrier forthe diffusion of relaxed holes in CaF2 and PbF2, and prompt hole trappingby activator atoms in CaF2:Eu and CdS:Te leading to an ultra-fast (<50ps) scintillation risetime.

Derenzo, Stephen E.; Klintenberg, Mattias K.; Weber, Marvin J.

2000-02-22T23:59:59.000Z

137

The Free-Will Postulate in Quantum Mechanics  

E-Print Network (OSTI)

The so-called "free will axiom" is an essential ingredient in many discussions concerning hidden variables in quantum mechanics. In this paper we argue that "free will" can be defined in different ways. The definition usually employed is clearly invalid in strictly deterministic theories. A different, more precise formulation is proposed here, defining a condition that may well be a more suitable one to impose on theoretical constructions and models. Our axiom, to be referred to as the `unconstrained initial state' condition, has consequences similar to "free will", but does not clash with determinism, and appears to lead to different conclusions concerning causality and locality in quantum mechanics. Models proposed earlier by this author fall in this category. Imposing our `unconstrained initial state' condition on a deterministic theory underlying Quantum Mechanics, appears to lead to a restricted free-will condition in the quantum system: an observer has the free will to modify the setting of a measuring device, but has no control over the phase of its wave function. The dismissal of the usual "free will" concept does not have any consequences for our views and interpretations of human activities in daily life, and the way our minds function, but it requires a more careful discussion on what, in practice, free will actually amounts to.

Gerard 't Hooft

2007-01-15T23:59:59.000Z

138

Pure state quantum statistical mechanics and black holes  

E-Print Network (OSTI)

Chapter 3 of S. Lloyd's 1988 Ph.D. thesis, `Black Holes, Demons, and the Loss of Coherence: How complex systems get information and what they do with it,' supervisor Heinz Pagels. Reformulates statistical mechanics in terms of pure states and shows that (a) quantum statistics of typical pure states are very close to the mechanics of statistical mechanical ensembles; (b) if a system is in a typical state with energy E, then the reduced density matrix of a subsystem is very close to a thermal state. (A similar result was derived using Levy's lemma some years later by S. Popescu, A.J. Short, A.Winter, Nature Physics 2, 754-758 (2006).) Pure state quantum statistical mechanics is applied to black holesto show that for typical states of matter insideand outside a black hole, the external state is likely to be thermal. Proposes novel interpretation of probabilities in quantum statistical mechanics. Full thesis available at http://meche.mit.edu/documents/slloyd_thesis.pdf. This chapter was submitted for publication to Physical Review in 1988 but rejected by one sentence referee report: `There is no physics in this paper.' You be the judge.

Seth Lloyd

2013-07-01T23:59:59.000Z

139

Can the photosynthesis first step quantum mechanism be explained?  

E-Print Network (OSTI)

Photosynthesis first step mechanism concerns the sunlight absorption and both negative and positive charges separation. Recent and important photosynthesis literature claims that this mechanism is quantum mechanics controlled, however without presenting qualitative or quantitative scientifically based mechanism. The present accepted and old-fashioned photosynthesis mechanism model suffers from few drawbacks and an important issue is the absence of driving force for negative and positive charges separation. This article presents a new qualitative model for this first step mechanism in natural catalytic systems such as photosynthesis in green leaves. The model uses a concept of semiconductor band gap engineering, such as the staggered energy band gap line-up in semiconductors. To explain the primary mechanism in natural photosynthesis the proposal is the following: incident light is absorbed inside the leaves causing charges separation. The only energetic configuration that allows charges separation under illum...

Sacilotti, Marco; Mota, Claudia C B O; Nunes, Frederico Dias; Gomes, Anderson S L

2010-01-01T23:59:59.000Z

140

Rigged Hilbert space formalism as an extended mathematical formalism for quantum systems. II. Transformation theory in nonrelativistic quantum mechanics  

Science Conference Proceedings (OSTI)

Results of a previous paper are used to obtain a rigorous mathematical formulation of the transformation theory of nonrelativistic quantum mechanics within the framework of rigged Hilbert spaces.

O. Melsheimer

1974-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Maximal Beable Subalgebras of Quantum-Mechanical Observables  

E-Print Network (OSTI)

Given a state on an algebra of bounded quantum-mechanical observables (the self-adjoint part of a C*-algebra), we investigate those subalgebras that are maximal with respect to the property that the given state's restriction to the subalgebra is a mixture of dispersion-free states---what we call maximal "beable" subalgebras (borrowing a terminology due to J. S. Bell). We also extend our investigation to the theory of algebras of unbounded observables (as developed by R. Kadison), and show how our results articulate a solid mathematical foundation for central tenets of the orthodox Copenhagen interpretation of quantum theory (such as the joint indeterminacy of canonically conjugate observables, and Bohr's defense of the completeness of quantum theory against the argument of Einstein, Podolsky, and Rosen).

Hans Halvorson; Rob Clifton

1999-05-13T23:59:59.000Z

142

Brit. J. Phil. Sci. 58 (2007), 595604 Is Standard Quantum Mechanics  

E-Print Network (OSTI)

Brit. J. Phil. Sci. 58 (2007), 595­604 Is Standard Quantum Mechanics Technologically Inadequate? F]) claims to have demonstrated that standard quantum mechanics is technologically inadequate is that Vermaas' claim that standard quantum mechanics is technologically inadequate evaporates. 1 Introduction 2

Seevinck, Michiel

143

Homogeneous decoherence functionals in standard and history quantum mechanics  

E-Print Network (OSTI)

General history quantum theories are quantum theories without a globally defined notion of time. Decoherence functionals represent the states in the history approach and are defined as certain bivariate complex-valued functionals on the space of all histories. However, in practical situations -- for instance in the history formulation of standard quantum mechanics -- there often is a global time direction and the homogeneous decoherence functionals are specified by their values on the subspace of homogeneous histories. In this work we study the analytic properties of (i) the standard decoherence functional in the history version of standard quantum mechanics and (ii) homogeneous decoherence functionals in general history theories. We restrict ourselves to the situation where the space of histories is given by the lattice of projections on some Hilbert space H. Among other things we prove the non-existence of a finitely valued extension for the standard decoherence functional to the space of all histories, derive a representation for the standard decoherence functional as an unbounded quadratic form with a natural representation on a Hilbert space and prove the existence of an Isham-Linden-Schreckenberg (ILS) type representation for the standard decoherence functional.

Oliver Rudolph; J. D. M. Wright

1998-07-23T23:59:59.000Z

144

Multi-loop Feynman integrals and conformal quantum mechanics  

E-Print Network (OSTI)

New algebraic approach to analytical calculations of D-dimensional integrals for multi-loop Feynman diagrams is proposed. We show that the known analytical methods of evaluation of multi-loop Feynman integrals, such as integration by parts and star-triangle relation methods, can be drastically simplified by using this algebraic approach. To demonstrate the advantages of the algebraic method of analytical evaluation of multi-loop Feynman diagrams, we calculate ladder diagrams for the massless $\\phi^3$ theory. Using our algebraic approach we show that the problem of evaluation of special classes of Feynman diagrams reduces to the calculation of the Green functions for specific quantum mechanical problems. In particular, the integrals for ladder massless diagrams in the $\\phi^3$ scalar field theory are given by the Green function for the conformal quantum mechanics.

A. P. Isaev

2003-03-06T23:59:59.000Z

145

Euler & Lagrange versus Heisenberg & Schroedinger: Dynamical Pictures in Classical and Quantum Mechanics  

E-Print Network (OSTI)

Using quantum-classical analogies, we find that dynamical pictures of quantum mechanics have precise counterparts in classical mechanics. In particular, the Eulerian and Lagrangian descriptions of fluid dynamics in classical mechanics are the analogs of the Schroedinger and Heisenberg pictures in quantum mechanics, respectively. Similarities between classical and quantum dynamical pictures are explored within the framework of the Koopman-von Neumann formalism. These allow for a natural definition of various dynamical pictures in classical mechanics as well as the application of classical concepts to quantum dynamics. As an illustration, we use the interaction picture to find the classical evolution of an ensemble of particles of equal initial momenta and arbitrary configuration density under the action of a constant force in one dimension. As a second example, we discuss the extension of the ideas of sensitivity to initial conditions and chaos in classical mechanics to quantum mechanics.

M. Hossein Partovi

2013-05-22T23:59:59.000Z

146

Quantum mechanics in fractional and other anomalous spacetimes  

SciTech Connect

We formulate quantum mechanics in spacetimes with real-order fractional geometry and more general factorizable measures. In spacetimes where coordinates and momenta span the whole real line, Heisenberg's principle is proven and the wave-functions minimizing the uncertainty are found. In spite of the fact that ordinary time and spatial translations are broken and the dynamics is not unitary, the theory is in one-to-one correspondence with a unitary one, thus allowing us to employ standard tools of analysis. These features are illustrated in the examples of the free particle and the harmonic oscillator. While fractional (and the more general anomalous-spacetime) free models are formally indistinguishable from ordinary ones at the classical level, at the quantum level they differ both in the Hilbert space and for a topological term fixing the classical action in the path integral formulation. Thus, all non-unitarity in fractional quantum dynamics is encoded in a contribution depending only on the initial and final states.

Calcagni, Gianluca [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Nardelli, Giuseppe [Dipartimento di Matematica e Fisica, Universita Cattolica, via Musei 41, 25121 Brescia (Italy); INFN Gruppo Collegato di Trento, Universita di Trento, 38100 Povo (Trento) (Italy); Scalisi, Marco [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

2012-10-15T23:59:59.000Z

147

Molecular quantum mechanical observers, symmetry, and string theory  

E-Print Network (OSTI)

The paper \\cite{Dance0601} tentatively suggested a physical picture that might underlie string theories. The string parameters $\\tau $ and $\\sigma_i $ were interpreted as spacetime dimensions which a simple quantum mechanical observer can observe, while symmetries of the relevant observer states could limit the observability of other dimensions. An atomic observer was the focus of the discussion. The present paper extends the discussion of\\cite{Dance0601} to molecular observers, including the nature of some common molecular bonds and their symmetries.

M. Dance

2010-11-29T23:59:59.000Z

148

The fundamental obscurity in quantum mechanics. Could the problem be considered universal?  

E-Print Network (OSTI)

The contemporary controversy about the fundamental obscurity in quantum mechanics keeps on the old one about the aim of science, which was between the founders of the quantum theory. The orthodox quantum mechanics could be created only at the cost of renunciation of reality as the aim of natural science. The description only of phenomena, i.e. results of observation, should not be universal if no one believes that these phenomena are manifestation of a unique reality. Such belief concerning quantum mechanics is quite unacceptable because of irremediably conflict with special relativity. Nevertheless the quantum mechanics was developed and apprehended by most physicists as a universal theory of a quantum world. This fundamental discrepancy between the essence of the orthodox quantum mechanics and its history of development and studying has resulted both to an illusion about the aim of its description among most physicists and to the consideration of its fundamental obscurity as a universal problem among experts in quantum foundation. The aim of this paper is to show that quantum phenomena can not be described universally. It is indicated that rather the Schrodinger's than Born's interpretation of the wave function is valid for description of many quantum phenomena. The fundamental obscurity with which we are faced at the description, for example, macroscopic quantum phenomena differs fundamentally from the one with which the founders of the quantum theory were faced on atomic level.

A. V. Nikulov

2010-12-20T23:59:59.000Z

149

A dynamical time operator in Dirac's relativistic quantum mechanics  

E-Print Network (OSTI)

A self-adjoint dynamical time operator is introduced in Dirac's relativistic formulation of quantum mechanics and shown to satisfy a commutation relation with the Hamiltonian analogous to that of the position and momentum operators. The ensuing time-energy uncertainty relation involves the uncertainty in the instant of time when the wave packet passes a particular spatial position and the energy uncertainty associated with the wave packet at the same time, as envisaged originally by Bohr. The instantaneous rate of change of the position expectation value with respect to the simultaneous expectation value of the dynamical time operator is shown to be the phase velocity, in agreement with de Broglie's hypothesis of a particle associated wave whose phase velocity is larger than c. Thus, these two elements of the original basis and interpretation of quantum mechanics are integrated into its formal mathematical structure. Pauli's objection is shown to be resolved or circumvented. Possible relevance to current developments in interference in time, in Zitterbewegung like effects in spintronics, grapheme and superconducting systems and in cosmology is noted.

Mariano Bauer

2009-08-19T23:59:59.000Z

150

Hamilton relativity group for noninertial states in quantum mechanics  

E-Print Network (OSTI)

Physical states in quantum mechanics are rays in a Hilbert space. Projective representations of a relativity group transform between the quantum physical states that are in the admissible class. The physical observables of position, time, energy and momentum are the Hermitian representation of the Weyl-Heisenberg algebra. We show that there is a consistency condition that requires the relativity group to be a subgroup of the group of automorphisms of the Weyl-Heisenberg algebra. This, together with the requirement of the invariance of classical time, results in the inhomogeneous Hamilton group that is the relativity group for noninertial frames in classical Hamilton's mechanics. The projective representation of a group is equivalent to unitary representations of its central extension. The central extension of the inhomogeneous Hamilton group and its corresponding Casimir invariants are computed. One of the Casimir invariants is a generalized spin that is invariant for noninertial states. It is the familiar inertial Galilean spin with additional terms that may be compared to noninertial experimental results.

Stephen G. Low

2007-10-18T23:59:59.000Z

151

Complementarity and Classical Limit of Quantum Mechanics: Energy Measurement aspects  

E-Print Network (OSTI)

In the present contribution we discuss the role of experimental limitations in the classical limit problem. We studied some simple models and found that Quantum Mechanics does not re-produce classical mechanical predictions, unless we consider the experimental limitations ruled by uncertainty principle. We have shown that the discrete nature of energy levels of integrable systems can be accessed by classical measurements. We have defined a precise limit for this procedure. It may be used as a tool to define the classical limit as far as the discrete spectra of integrable systems are concerned. If a diffusive environment is considered, we conclude that the "lifetime" of discreteness is approximately $1/\\kappa$ ($\\kappa$ is the diffusion constant), thus it was possible to relate the classical limit of a spectra with the action of an environment and experimental resolution.

Adélcio C. Oliveira; Zolacir T. Oliveira Junior; Nestor S. Correia

2013-07-01T23:59:59.000Z

152

Does Quantum Mechanics Make Sense?Does Quantum Mechanics Make Sense? Some relatively simple concepts show why the answer is yes.Some relatively simple concepts show why the answer is yes.  

E-Print Network (OSTI)

Does Quantum Mechanics Make Sense?Does Quantum Mechanics Make Sense? Some relatively simple Classical Mechanics Quantum Mechanics Relative Absolute What does relative vs. absolute size mean?What does relative vs. absolute size mean? Why does it matter?Why does it matter? #12;Classical Mechanics

Fayer, Michael D.

153

Mini-Proceedings ECT*: Speakable in quantum mechanics: atomic, nuclear and subnuclear physics tests  

E-Print Network (OSTI)

Mini-Proceedings ECT*: Speakable in quantum mechanics: atomic, nuclear and subnuclear physics tests, ECT*-Trento, 29 August - 2 September, 2011

Curceanu, C; Milotti, E

2011-01-01T23:59:59.000Z

154

Mini-Proceedings ECT*: Speakable in quantum mechanics: atomic, nuclear and subnuclear physics tests  

E-Print Network (OSTI)

Mini-Proceedings ECT*: Speakable in quantum mechanics: atomic, nuclear and subnuclear physics tests, ECT*-Trento, 29 August - 2 September, 2011

C. Curceanu; J. Marton; E. Milotti

2011-12-06T23:59:59.000Z

155

Frame transforms, star products and quantum mechanics on phase space  

E-Print Network (OSTI)

Using the notions of frame transform and of square integrable projective representation of a locally compact group $G$, we introduce a class of isometries (tight frame transforms) from the space of Hilbert-Schmidt operators in the carrier Hilbert space of the representation into the space of square integrable functions on the direct product group $G\\times G$. These transforms have remarkable properties. In particular, their ranges are reproducing kernel Hilbert spaces endowed with a suitable 'star product' which mimics, at the level of functions, the original product of operators. A 'phase space formulation' of quantum mechanics relying on the frame transforms introduced in the present paper, and the link of these maps with both the Wigner transform and the wavelet transform are discussed.

P. Aniello; V. I. Man'ko; G. Marmo

2008-02-28T23:59:59.000Z

156

Testing axioms for Quantum Mechanics on Probabilistic toy-theories  

E-Print Network (OSTI)

In Ref. [1] one of the authors proposed postulates for axiomatizing Quantum Mechanics as a "fair operational framework", namely regarding the theory as a set of rules that allow the experimenter to predict future events on the basis of suitable tests, having local control and low experimental complexity. In addition to causality, the following postulates have been considered: PFAITH (existence of a pure preparationally faithful state), and FAITHE (existence of a faithful effect). These postulates have exhibited an unexpected theoretical power, excluding all known nonquantum probabilistic theories. Later in Ref. [2] in addition to causality and PFAITH, postulate LDISCR (local discriminability) and PURIFY (purifiability of all states) have been considered, narrowing the probabilistic theory to something very close to Quantum Mechanics. In the present paper we test the above postulates on some nonquantum probabilistic models. The first model, "the two-box world" is an extension of the Popescu-Rohrlich model, which achieves the greatest violation of the CHSH inequality compatible with the no-signaling principle. The second model "the two-clock world" is actually a full class of models, all having a disk as convex set of states for the local system. One of them corresponds to the "the two-rebit world", namely qubits with real Hilbert space. The third model--"the spin-factor"--is a sort of n-dimensional generalization of the clock. Finally the last model is "the classical probabilistic theory". We see how each model violates some of the proposed postulates, when and how teleportation can be achieved, and we analyze other interesting connections between these postulate violations, along with deep relations between the local and the non-local structures of the probabilistic theory.

Giacomo Mauro D'Ariano; Alessandro Tosini

2009-11-29T23:59:59.000Z

157

Quantum memories with electrically controlled storage and retrieval in an opto- and electro-mechanical cavity  

E-Print Network (OSTI)

We propose a novel scheme to realize electrically controlled quantum memories in the opto- and electro-mechanical (OEM) cavity. Combining this OEM cavity with the mechanism of Electromagnetically Induced Transparency (EIT) we find that the quantum interference, arising from the two optical transitions of the $\\Lambda$ type three-level atomic ensembles, can be manipulated electrically. Numerical calculations show that the probe photon state can be well stored into the atomic spin state by sending an electric current pulse and retrieved with time-reverse symmetry by sending the other current pulse with opposite direction. The quantum interference with electric controlling is expected to apply to other quantum control aspects.

Li-Guo Qin; Zhong-Yang Wang; Gong-Wei Lin; Jing-Yun Zhao; Shang-Qing Gong

2013-09-12T23:59:59.000Z

158

Quantum mechanical analogue of the zeroth law of thermodynamics. (On the problem of incorporating Thermodynamics into Quantum Theory)  

E-Print Network (OSTI)

This approach to the incorporation of stochastic thermodynamics into quantum theory is based on the conception of consistent inclusion of the holistic stochastic environmental influence described by wave functions of the arbitrary vacuum, which was proposed in our paper previously. In this study, we implement the possibility of explicitly incorporating the zeroth law of stochastic thermodynamics in the form of the saturated Schr\\"odinger uncertainty relation into quantum theory. This allows comparatively analyzing the sets of states of arbitrary vacuums, namely, squeezed coherent states (SCSs) and correlated coherent states (CCSs). In addition, we compare the results of the construction of stochastic thermodynamics using SCSs and TCCSs with the versions involving the incorporation of thermodynamics into quantum theory developed previously and based on thermofield dynamics and quantum statistical mechanics.

O. N. Golubjeva; A. D. Sukhanov

2013-03-25T23:59:59.000Z

159

Using semiclassical trajectories for the time-evolution of interacting quantum-mechanical systems  

Science Conference Proceedings (OSTI)

We have developed a method that recasts the time-propagation of dynamic, mutually interacting quantum-mechanical wavefunctions principally as the time-evolution of many classical particles. Our approach utilizes an approximation of Feynman path integrals, ... Keywords: Feynman, WKB, grid method, interacting, lagrangian, parallel computation, particle-based, path integral, plasma PIC, quantum particle-in-cell, semiclassical, stationary phase, time evolving

D. E. Dauger; V. K. Decyk; J. M. Dawson

2005-11-01T23:59:59.000Z

160

Quantum hologram of macroscopically entangled light via the mechanism of diffuse light storage  

E-Print Network (OSTI)

In the present paper we consider a quantum memory scheme for light diffusely propagating through a spatially disordered atomic gas. The diffuse trapping of the signal light pulse can be naturally integrated with the mechanism of stimulated Raman conversion into a long-lived spin coherence. Then the quantum state of the light can be mapped onto the disordered atomic spin subsystem and can be stored in it for a relatively long time. The proposed memory scheme can be applicable for storage of the macroscopic analog of the $\\Psi^{(-)}$ Bell state and the prepared entangled atomic state performs its quantum hologram, which suggests the possibility of further quantum information processing.

L. V. Gerasimov; I. M. Sokolov; D. V. Kupriyanov; M. D. Havey

2011-11-29T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The symmetry groups of noncommutative quantum mechanics and coherent state quantization  

SciTech Connect

We explore the group theoretical underpinning of noncommutative quantum mechanics for a system moving on the two-dimensional plane. We show that the pertinent groups for the system are the two-fold central extension of the Galilei group in (2+1)-space-time dimensions and the two-fold extension of the group of translations of R{sup 4}. This latter group is just the standard Weyl-Heisenberg group of standard quantum mechanics with an additional central extension. We also look at a further extension of this group and discuss its significance to noncommutative quantum mechanics. We build unitary irreducible representations of these various groups and construct the associated families of coherent states. A coherent state quantization of the underlying phase space is then carried out, which is shown to lead to exactly the same commutation relations as usually postulated for this model of noncommutative quantum mechanics.

Chowdhury, S. Hasibul Hassan; Ali, S. Twareque [Department of Mathematics and Statistics, Concordia University, Montreal, Quebec H3G 1M8 (Canada)] [Department of Mathematics and Statistics, Concordia University, Montreal, Quebec H3G 1M8 (Canada)

2013-03-15T23:59:59.000Z

162

Analytic calculation of Witten index in D= 2 supersymmetric Yang-Mills quantum mechanics  

Science Conference Proceedings (OSTI)

We evaluate analytically the Witten index of D= 2 supersymmetric Yang-Mills quantum mechanics. We rederive a known result for the SU(2) gauge group and generalize it to any SU(N) gauge group.

Korcyl, Piotr [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)

2012-10-15T23:59:59.000Z

163

Anti-hydrogen: The cusp between quantum mechanics and general relativity  

DOE Green Energy (OSTI)

We argue that the crossing (CPT) symmetry of relativistic quantum mechanics requires that both the coulombic and the Newtonian force between pairs of particles will reverse when one is replaced by its anti-particle. For consistency, this requires a theory in which both the equivalence principles and gauge invariance are abandoned. thus whether anti-hydrogen ``falls`` up or down will provide an experiment crusis separating general relativity and gauge invariance from this version of quantum mechanics.

Noyes, H.P.

1992-09-01T23:59:59.000Z

164

Anti-hydrogen: The cusp between quantum mechanics and general relativity  

DOE Green Energy (OSTI)

We argue that the crossing (CPT) symmetry of relativistic quantum mechanics requires that both the coulombic and the Newtonian force between pairs of particles will reverse when one is replaced by its anti-particle. For consistency, this requires a theory in which both the equivalence principles and gauge invariance are abandoned. thus whether anti-hydrogen falls'' up or down will provide an experiment crusis separating general relativity and gauge invariance from this version of quantum mechanics.

Noyes, H.P.

1992-09-01T23:59:59.000Z

165

Comparison of quantum-mechanical and semiclassical approaches for an analysis of spin dynamics in quantum dots  

Science Conference Proceedings (OSTI)

Two approaches to the description of spin dynamics of electron-nuclear system in quantum dots are compared: the quantum-mechanical one is based on direct diagonalization of the model Hamiltonian and semiclassical one is based on coupled equations for precession of mean electron spin and mean spin of nuclear spin fluctuations. The comparison was done for a model problem describing periodic excitation of electron-nuclear system by optical excitation. The computation results show that scattering of parameters related to fluctuation of the nuclear spin system leads to appearance of an ordered state in the system caused by periodic excitation and to the effect of electron-spin mode locking in an external magnetic field. It is concluded that both models can qualitatively describe the mode-locking effect, however give significantly different quantitative results. This may indicate the limited applicability of the precession model for describing the spin dynamics in quantum dots in the presence of optical pumping.

Petrov, M. Yu., E-mail: m.petrov@spbu.ru; Yakovlev, S. V. [Saint Petersburg State University (Russian Federation)

2012-08-15T23:59:59.000Z

166

Quantum noise in a nano mechanical Duffing resonator  

E-Print Network (OSTI)

We determine the small signal gain and noise response of an amplifier based on the nonlinear response of a quantum nanomechanical resonator. The resonator is biased in the nonlinear regime by a strong harmonic bias force and we determine the response to a small additional driving signal detuned with respect to the bias force.

E. Babourina-Brooks; A. Doherty; G. J. Milburn

2008-04-22T23:59:59.000Z

167

Analysis of mechanisms of carrier emission in the p-i-n structures with In(Ga)As quantum dots  

SciTech Connect

With the help of the photocurrent spectroscopy, the mechanism of emission of charge carriers from energy levels of the (In,Ga)As/(Al,Ga)As quantum dots of different design are studied. Thermal activation is shown to be the main mechanism of carrier emission from the quantum dots for the isolated layer of quantum dots separated by wide (Al,Ga)As spacer layers. At a small width of the (Al,Ga)As spacer layer, when electron binding of separate layers of the quantum dots in the vertical direction takes place, the role of the tunneling mechanism of carrier emission between the vertically coupled quantum dots increases.

Shatalina, E. S., E-mail: Shatalina@mail.ioffe.ru; Blokhin, S. A.; Nadtochy, A. M.; Payusov, A. S.; Savelyev, A. V.; Maximov, M. V.; Zhukov, A. E. [St. Petersburg Academic University, Nanotechnology Research and Education Centre (Russian Federation); Ledentsov, N. N. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Kovsh, A. R.; Mikhrin, S. S.; Ustinov, V. M. [Innolume GmbH (Germany)

2010-10-15T23:59:59.000Z

168

How to verify the redshift mechanism of low-energy quantum gravity  

E-Print Network (OSTI)

In the model of low-energy quantum gravity by the author, the redshift mechanism is quantum and local, and it is not connected with any expansion of the Universe. A few possibilities to verify its predictions are considered here: the specialized ground-based laser experiment; a deceleration of massive bodies and the Pioneer anomaly; a non-universal character of the Hubble diagram for soft and hard radiations; galaxy/quasar number counts.

Michael A. Ivanov

2008-09-10T23:59:59.000Z

169

Liz McMillen  

Science Conference Proceedings (OSTI)

Marketing and Public Relations Liz McMillen Contact Information contact contact us Liz McMillen AOCS Marketing and Public Relations Specialist     

170

Probing mechanical quantum coherence with an ultracold-atom meter  

Science Conference Proceedings (OSTI)

We propose a scheme to probe quantum coherence in the state of a nanocantilever based on its magnetic coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into a rotor, its coupling with the cantilever results in a gyroscopic motion whose properties depend on the state of the cantilever: the dynamics of one of the components of the rotor angular momentum turns out to be strictly related to the presence of quantum coherence in the state of the cantilever. We also suggest a detection scheme relying on Faraday rotation, which produces only a very small back-action on the BEC and is thus suitable for a continuous detection of the cantilever's dynamics.

Lo Gullo, N.; Busch, Th. [Department of Physics, University College Cork, Cork (Ireland); Palma, G. M. [NEST Istituto Nanoscienze-CNR and Dipartimento di Fisica, Univerisita' degli Studi di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Paternostro, M. [Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN (United Kingdom)

2011-12-15T23:59:59.000Z

171

Quantum Mechanical Corrections to Simulated Shock Hugoniot Temperatures  

SciTech Connect

The authors present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a grueneisen equation of state and a quasi-harmonic approximation to the vibrational energies, they derive a simple, post-processing method for calculation of the quantum corrected Hugoniot temperatures. They have used our novel technique on ab initio simulations of both shock compressed water and methane. Our results indicate significantly closer agreement with all available experimental temperature data for these two systems. Our formalism and technique can be easily applied to a number of different shock compressed molecular liquids or covalent solids, and has the potential to decrease the large uncertainties inherent in many experimental Hugoniot temperature measurements of these systems.

Goldman, N; Reed, E; Fried, L E

2009-07-17T23:59:59.000Z

172

The Interface between Quantum Mechanics and General Relativity  

E-Print Network (OSTI)

The generation, as well as the detection, of gravitational radiation by means of charged superfluids is considered. One example of such a "charged superfluid" consists of a pair of Planck-mass-scale, ultracold "Millikan oil drops," each with a single electron on its surface, in which the oil of the drop is replaced by superfluid helium. When levitated in a magnetic trap, and subjected to microwave-frequency electromagnetic radiation, a pair of such "Millikan oil drops" separated by a microwave wavelength can become an efficient quantum transducer between quadrupolar electromagnetic and gravitational radiation. This leads to the possibility of a Hertz-like experiment, in which the source of microwave-frequency gravitational radiation consists of one pair of "Millikan oil drops" driven by microwaves, and the receiver of such radiation consists of another pair of "Millikan oil drops" in the far field driven by the gravitational radiation generated by the first pair. The second pair then back-converts the gravitional radiation into detectable microwaves. The enormous enhancement of the conversion efficiency for these quantum transducers over that for electrons arises from the fact that there exists macroscopic quantum phase coherence in these charged superfluid systems.

Raymond Y. Chiao

2006-01-29T23:59:59.000Z

173

Topological gauge theories from supersymmetric quantum mechanics on spaces of connections  

E-Print Network (OSTI)

We rederive the recently introduced $N=2$ topological gauge theories, representing the Euler characteristic of moduli spaces ${\\cal M}$ of connections, from supersymmetric quantum mechanics on the infinite dimensional spaces ${\\cal A}/{\\cal G}$ of gauge orbits. To that end we discuss variants of ordinary supersymmetric quantum mechanics which have meaningful extensions to infinite-dimensional target spaces and introduce supersymmetric quantum mechanics actions modelling the Riemannian geometry of submersions and embeddings, relevant to the projections ${\\cal A}\\rightarrow {\\cal A}/{\\cal G}$ and inclusions ${\\cal M}\\subset{\\cal A}/{\\cal G}$ respectively. We explain the relation between Donaldson theory and the gauge theory of flat connections in $3d$ and illustrate the general construction by other $2d$ and $4d$ examples.

M Blau; G Thompson

1991-12-20T23:59:59.000Z

174

Quantum mechanical and information theoretic view on classical glass transitions  

E-Print Network (OSTI)

Using the mapping of the Fokker-Planck description of classical stochastic dynamics onto a quantum Hamiltonian, we argue that a dynamical glass transition in the former must have a precise definition in terms of a quantum phase transition in the latter. At the dynamical level, the transition corresponds to a collapse of the excitation spectrum at a critical point. At the static level, the transition affects the ground state wavefunction: while in some cases it could be picked up by the expectation value of a local operator, in others the order may be non-local, and impossible to be determined with any local probe. Here we propose instead to use concepts from quantum information theory that are not centered around local order parameters, such as fidelity and entanglement measures. We show that for systems derived from the mapping of classical stochastic dynamics, singularities in the fidelity susceptibility translate directly into singularities in the heat capacity of the classical system. In classical glassy systems with an extensive number of metastable states, we find that the prefactor of the area law term in the entanglement entropy jumps across the transition. We also discuss how entanglement measures can be used to detect a growing correlation length that diverges at the transition. Finally, we illustrate how static order can be hidden in systems with a macroscopically large number of degenerate equilibrium states by constructing a three dimensional lattice gauge model with only short-range interactions but with a finite temperature continuous phase transition into a massively degenerate phase.

Claudio Castelnovo; Claudio Chamon; David Sherrington

2010-03-19T23:59:59.000Z

175

Shape-invariance and Exactly Solvable Problems in Quantum Mechanics  

E-Print Network (OSTI)

Algebraic approach to the integrability condition called shape invariance is briefly reviewed. Various applications of shape-invariance available in the literature are listed. A class of shape-invariant bound-state problems which represent two-level systems are examined. These generalize the Jaynes-Cummings Hamiltonian. Coherent states associated with shape-invariant systems are discussed. For the case of quantum harmonic oscillator the decomposition of identity for these coherent states is given. This decomposition of identity utilizes Ramanujan's integral extension of the beta function.

A. B. Balantekin

2003-09-15T23:59:59.000Z

176

Quantum mechanics of one-dimensional trapped Tonks gases  

E-Print Network (OSTI)

Several experimental groups are currently working towards realizing quasi-one-dimensional (1D) atom waveguides and loading them with ultracold atoms. The dynamics becomes truly 1D in a regime (Tonks gas) of low temperatures and densities and large positive scattering lengths for which the transverse mode becomes frozen, in which case the many-body Schrodinger dynamics becomes exactly soluble via a Fermi-Bose mapping theorem. In this paper we review our recent work on the exact ground state and quantum dynamics of 1D Tonks gases and assess the possibility of approaching the Tonks regime using Bessel beam optical dipole traps.

M. D. Girardeau; E. M. Wright

2001-04-30T23:59:59.000Z

177

Modelling Quantum Mechanics by the Quantumlike Description of the Electric Signal Propagation in Transmission Lines  

E-Print Network (OSTI)

It is shown that the transmission line technology can be suitably used for simulating quantum mechanics. Using manageable and at the same time non-expensive technology, several quantum mechanical problems can be simulated for significant tutorial purposes. The electric signal envelope propagation through the line is governed by a Schrodinger-like equation for a complex function, representing the low-frequency component of the signal, In this preliminary analysis, we consider two classical examples, i.e. the Frank-Condon principle and the Ramsauer effect.

R. Fedele; M. A. Man'ko; V. I. Man'ko; V. G. Vaccaro

2002-07-30T23:59:59.000Z

178

Student understanding of quantum mechanics at the beginning of graduate instruction  

Science Conference Proceedings (OSTI)

A survey was developed to probe student understanding of quantum mechanics at the beginning of graduate instruction. The survey was administered to 202 physicsgraduate students enrolled in first-year quantum mechanics courses from seven universities at the beginning of the first semester. We also conducted one-on-one interviews with fifteen graduate or advanced undergraduate students who had just completed a course in which all the content on the survey was covered. Although students from some universities performed better on average than others

Chandralekha Singh

2008-01-01T23:59:59.000Z

179

Philosophy of mind and the problem of free will in the light of quantum mechanics  

E-Print Network (OSTI)

Defects occasioned by the advent of quantum mechanics are described in detail of recent arguments by John Searle and by Jaegwon Kim pertaining to the question of the complete reducibility to the physical of the apparent capacity of a person's conscious thoughts to affect the behaviour of that person's physically described brain.

Henry P. Stapp

2008-05-01T23:59:59.000Z

180

Quantum mechanics and gravity as preclusion principles of four dimensional geometries  

E-Print Network (OSTI)

The goal of this paper is to employ a "preclusion principle" originally suggested by Rafael Sorkin in order to come up with a relativistically covariant model of quantum mechanics and gravity. Space-time is viewed as geometry as opposed to dynamics, and "unwanted" histories in that geometry are precluded.

Roman Sverdlov

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Quantum mechanical method of fragment's angular and energy distribution calculation for binary and ternary fission  

Science Conference Proceedings (OSTI)

In the framework of quantum-mechanical fission theory, the method of calculation for partial fission width amplitudes and asymptotic behavior of the fissile nucleus wave function with strong channel coupling taken into account has been suggested. The method allows one to solve the calculation problem of angular and energy distribution countation for binary and ternary fission.

Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Titova, L. V.; Pen'kov, N. V. [Voronezh State University (Russian Federation)

2006-08-15T23:59:59.000Z

182

Philosophy of Mind and the Problem of FreeWill in the Light of Quantum Mechanics.  

Science Conference Proceedings (OSTI)

Arguments pertaining to the mind-brain connection and to the physical effectiveness of our conscious choices have been presented in two recent books, one by John Searle, the other by Jaegwon Kim. These arguments are examined, and it is argued that the difficulties encountered arise from a defective understanding and application of a pertinent part of contemporary science, namely quantum mechanics.

Stapp, Henry; Stapp, Henry P

2008-04-01T23:59:59.000Z

183

A MOLECULAR AND QUANTUM MECHANICAL STUDY OF INDOLE-3-ACETIC ACID  

E-Print Network (OSTI)

A MOLECULAR AND QUANTUM MECHANICAL STUDY OF INDOLE-3- ACETIC ACID Rudolf Kiralj (PQ) and Márcia M with simple molecular structure. All the attempts to quantify its structure-biological activity relationship were not much successful up to date, mostly due to missing knowledge about some intrinsic molecular

Ferreira, Márcia M. C.

184

A sequential Monte Carlo/Quantum Mechanics study of the dipole polarizability of liquid benzene  

Science Conference Proceedings (OSTI)

Metropolis Monte Carlo classical simulation and quantum mechanical calculations are performed to obtain the dipole polarizability of liquid benzene. Super-molecular configurations are sampled from NVT Monte Carlo simulation of liquid benzene at room ... Keywords: Monte Carlo simulation, density-functional theory, intermediate-neglect of differential overlap (INDO), liquid benzene, polarizability

Eudes E. Fileti; Sylvio Canuto

2004-12-01T23:59:59.000Z

185

The Interface between Quantum Mechanics and General Relativity  

E-Print Network (OSTI)

The generation, as well as the detection, of gravitational radiation by means of charged superfluids is considered. One example of such a "charged superfluid" consists of a pair of Planck-mass-scale, ultracold "Millikan oil drops," each with a single electron on its surface, in which the oil of the drop is replaced by superfluid helium. When levitated in a magnetic trap, and subjected to microwave-frequency electromagnetic radiation, such a pair of "Millikan oil drops" separated by a microwave wavelength can become an efficient quantum transducer between quadrupolar electromagnetic and gravitational radiation. This leads to the possibility of a Hertz-like experiment, in which the source of microwave-frequency gravitational radiation consists of one pair of "Millikan oil drops" driven by microwaves, and the receiver of such radiation consists of another pair of "Millikan oil drops" in the far field driven by the gravitational radiation generated by the first pair. The second pair then back-converts the graviti...

Chiao, R Y

2006-01-01T23:59:59.000Z

186

About a possible path towards the reverse engineering of quantum mechanics  

E-Print Network (OSTI)

An out of the box intellectual path exploring the foundations of quantum mechanics is discussed in some detail, in order to clarify why a possibly different way to look at the relevant fundamental questions can be identified and can support further research. Two key concepts arise. (1) Einstein critics to quantum mechanics could be taken seriously, but ironically, in order to really do so, one would have to take seriously also some of Lorentz critics to special relativity - both in a possibly more modern way; such interconnection possibly having been a blocking factor to openly discuss some of the cross implications of alternative views about quantum mechanics to date. (2) The probabilistic interpretation is a by-product of (a) quantum evolution equations, (b) conservation laws for the combination of measuring system and measured object and (c) persistency of calibration of the measuring system - as such there is no intellectual conflict whatsoever between hidden variables theories and probabilistic interpretation, provided we consider multicomponent hidden variable models and we allow for the existence of an underlying network. The implications of such concepts, in particular for the development of a microscopic quantisation program, are heuristically discussed or preliminarily explored.

Alberto Ottolenghi

2011-11-17T23:59:59.000Z

187

The clouds of physics and Einstein's last query: Can quantum mechanics be derived from general relativity?  

E-Print Network (OSTI)

Towards the end of the 19th century, Kelvin pronounced as the "clouds of physics" 1) the failure of the Michelson-Morely experiment to detect an ether wind, 2) the violation of the classical mechanical equipartition theorem in statistical thermodynamics. And he believed that the removal of these clouds would bring physics to an end. But as we know, the removal of these clouds led to the two great breakthoughts of modern physics: 1) The theory of relativity, and 2) to quantum mechanics. Towards the end of the 20th century more clouds of physics became apparent. They are 1) the riddle of quantum gravity, 2) the superluminal quantum correlations, 3) the small cosmological constant. Furthermore, there is the riddle of dark energy making up 70% of the physical universe, the non-baryonic cold dark matter making up 26% and the very small initial entropy of the universe. An attempt is made to explain the importance of these clouds for the future of physics. Conjectures for a possible solution are presented. they have to do with Einstein's last query: "Can quantum mechanics be derived general relativity", and with the question is there an ether?

Friedwardt Winterberg

2008-05-20T23:59:59.000Z

188

Aimee McKane  

NLE Websites -- All DOE Office Websites (Extended Search)

of Aimee McKane Aimee McKane High Tech and Industrial Systems Group Demand Response Research Center (DRRC) Lawrence Berkeley National Laboratory P.O. Box 790 MS 90R1116 Latham NY...

189

Joshua McConaha  

Energy.gov (U.S. Department of Energy (DOE))

Joshua McConaha is the Deputy Director of Public Affairs for the National Nuclear Security Administration.

190

Information and The Brukner-Zeilinger Interpretation of Quantum Mechanics: A Critical Investigation  

E-Print Network (OSTI)

In Brukner and Zeilinger's interpretation of quantum mechanics, information is introduced as the most fundamental notion and the finiteness of information is considered as an essential feature of quantum systems. They also define a new measure of information which is inherently different from the Shannon information and try to show that the latter is not useful in defining the information content in a quantum object. Here, we show that there are serious problems in their approach which make their efforts unsatisfactory. The finiteness of information does not explain how objective results appear in experiments and what an instantaneous change in the so-called information vector (or catalog of knowledge) really means during the measurement. On the other hand, Brukner and Zeilinger's definition of a new measure of information may lose its significance, when the spin measurement of an elementary system is treated realistically. Hence, the sum of the individual measures of information may not be a conserved value in real experiments.

Afshin Shafiee; Feryal Safinejad; Farnoush Naqsh

2004-07-26T23:59:59.000Z

191

Quantum Mechanical Aspects of Cell Microtubules: Science Fiction or Realistic Possibility?  

E-Print Network (OSTI)

Recent experimental research with marine algae points towards quantum entanglement at ambient temperature, with correlations between essential biological units separated by distances as long as 20 Angstr\\"oms. The associated decoherence times, due to environmental influences, are found to be of order 400 fs. This prompted some authors to connect such findings with the possibility of some kind of quantum computation taking place in these biological entities: within the decoherence time scales, the cell "quantum calculates" the optimal "path" along which energy and signal would be transported more efficiently. Prompted by these experimental results, in this talk I remind the audience of a related topic proposed several years ago in connection with the possible r\\^ole of quantum mechanics and/or field theory on dissipation-free energy transfer in microtubules (MT), which constitute fundamental cell substructures. Quantum entanglement between tubulin dimers was argued to be possible, provided there exists sufficient isolation from other environmental cell effects. The model was based on certain ferroelectric aspects of MT. In the talk I review the model and the associated experimental tests so far and discuss future directions, especially in view of the algae photo-experiments.

Nick E. Mavromatos

2010-11-29T23:59:59.000Z

192

Sound relativistic quantum mechanics for a strictly solitary nonzero-mass particle, and its quantum-field reverberations  

E-Print Network (OSTI)

It is generally acknowledged that neither the Klein-Gordon equation nor the Dirac Hamiltonian can produce sound solitary-particle relativistic quantum mechanics due to the ill effects of their negative-energy solutions; instead their field-quantized wavefunctions are reinterpreted as dealing with particle and antiparticle simultaneously--despite the clear physical distinguishability of antiparticle from particle and the empirically known slight breaking of the underlying CP invariance. The natural square-root Hamiltonian of the free relativistic solitary particle is iterated to obtain the Klein-Gordon equation and linearized to obtain the Dirac Hamiltonian, steps that have calculational but not physical motivation, and which generate the above-mentioned problematic negative-energy solutions as extraneous artifacts. Since the natural square root Hamiltonian for the free relativistic solitary particle contrariwise produces physically unexceptionable quantum mechanics, this article focuses on extending that Hamiltonian to describe a solitary particle (of either spin 0 or spin one-half) in relativistic interaction with an external electromagnetic field. That is achieved by use of Lorentz-covariant solitary-particle four momentum techniques together with the assumption that well-known nonrelativistic dynamics applies in the particle's rest frame. Lorentz-invariant solitary particle actions, whose formal Hamiltonization is an equivalent alternative approach, are as well explicitly displayed. It is proposed that two separate solitary-particle wavefunctions, one for a particle and the other for its antiparticle, be independently quantized in lieu of "reinterpreting" negative energy solutions--which indeed don't even afflict proper solitary particles.

Steven Kenneth Kauffmann

2009-09-22T23:59:59.000Z

193

Quantum Mechanics and CPT tests with neutral kaons at the KLOE experiment  

E-Print Network (OSTI)

Neutral kaons produced in the correlated pairs at the DAFNE phi-factory offer unique possibilities to perform fundamental tests of CPT invariance, as well as of the basic principles of quantum mechanics. The analysis of the data collected by the KLOE experiment allows to improve results on several parameters describing CPT violation and decoherence and to measure the regeneration cross section on the beam pipe materials.

Izabela Balwierz-Pytko

2013-08-27T23:59:59.000Z

194

Decoherent Histories Quantum Mechanics with One 'Real' Fine-Grained History  

E-Print Network (OSTI)

Decoherent histories quantum theory is reformulated with the assumption that there is one "real" fine-grained history, specified in a preferred complete set of sum-over-histories variables. This real history is described by embedding it in an ensemble of comparable imagined fine-grained histories, not unlike the familiar ensemble of statistical mechanics. These histories are assigned extended probabilities, which can sometimes be negative or greater than one. As we will show, this construction implies that the real history is not completely accessible to experimental or other observational discovery. However, sufficiently and appropriately coarse-grained sets of alternative histories have standard probabilities providing information about the real fine-grained history that can be compared with observation. We recover the probabilities of decoherent histories quantum mechanics for sets of histories that are recorded and therefore decohere. Quantum mechanics can be viewed as a classical stochastic theory of histories with extended probabilities and a well-defined notion of reality common to all decoherent sets of alternative coarse-grained histories.

Murray Gell-Mann; James B. Hartle

2011-06-03T23:59:59.000Z

195

Pure States, Mixed States and Hawking Problem in Generalized Quantum Mechanics  

E-Print Network (OSTI)

This paper is the continuation of a study into the information paradox problem started by the author in his earlier works. As previously, the key instrument is a deformed density matrix in quantum mechanics of the early universe. It is assumed that the latter represents quantum mechanics with fundamental length. It is demonstrated that the obtained results agree well with the canonical viewpoint that in the processes involving black holes pure states go to the mixed ones in the assumption that all measurements are performed by the observer in a well-known quantum mechanics. Also it is shown that high entropy for Planck remnants of black holes appearing in the assumption of the Generalized Uncertainty Relations may be explained within the scope of the density matrix entropy introduced by the author previously. It is noted that the suggested paradigm is consistent with the Holographic Principle. Because of this, a conjecture is made about the possibility for obtaining the Generalized Uncertainty Relations from the covariant entropy bound at high energies in the same way as R. Bousso has derived Heisenberg uncertainty principle for the flat space.

A. E. Shalyt-Margolin

2004-05-13T23:59:59.000Z

196

Unified Representation of Quantum Mechanics on One-dimensional Harmonic Oscillator  

E-Print Network (OSTI)

A quantum state corresponds to a specific wave function. We adopt a new mathematical method [1] to improve Dirac's ladder operator method. A set of orthonormal wave functions will be used to associate the operator with the square matrix corresponding to it. These allow us to determine the matrix elements by using the operator relations without having to know the specific wave functions. As a result, we can get the direct results of matrix mechanics and wave mechanics on one-dimensional Harmonic oscillator and their descriptions will be also unified.

Yongqin Wang

2013-03-07T23:59:59.000Z

197

Classical and Quantum-Mechanical Axioms with the Higher Time Derivative Formalism  

E-Print Network (OSTI)

A Newtonian mechanics model is essentially the model of a point body in an inertial reference frame. How to describe extended bodies in non-inertial (vibrational) reference frames with the random initial conditions? One of the most general description (known as the higher derivatives formalism) consists in taking into account the infinite number of the higher order temporal derivatives of the coordinates in the Lagrange function. Such formalism describes physical objects in the in?finite dimensional space does not contradict quantum mechanics and infinite dimensional Hilbert space.

Timur Kamalov

2013-07-04T23:59:59.000Z

198

Aimee McKane  

NLE Websites -- All DOE Office Websites (Extended Search)

and Aimee T. McKane. Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study. CEC...

199

Amanda McAlpin  

Energy.gov (U.S. Department of Energy (DOE))

Amanda McAlpin works for New West Technologies supporting the Vehicle Technologies Program at the U.S. Department of Energy.

200

Scott McGaraghan  

NLE Websites -- All DOE Office Websites (Extended Search)

Scott McGaraghan oversees business development for Nest Labs, a new entrant to the residential energy management field. His role at Nest is to establish partnerships with...

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Edward McGinnis  

Energy.gov (U.S. Department of Energy (DOE))

Mr. McGinnis is responsible for the Department of Energy's international civilian nuclear energy activities, including international nuclear energy research, development and demonstration...

202

Brewster McCracken  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab staff member. Brewster McCracken is Executive Director of Pecan Street Inc., a smart grid research and commercialization consortium headquartered at The University of...

203

An ultra-low dissipation micro-oscillator for quantum opto-mechanics  

E-Print Network (OSTI)

Generating non-classical states of light by opto-mechanical coupling depends critically on the mechanical and optical properties of micro-oscillators and on the minimization of thermal noise. We present an oscillating micro-mirror with a mechanical quality factor Q = 2.6x10^6 at cryogenic temperature and a Finesse of 65000, obtained thanks to an innovative approach to the design and the control of mechanical dissipation. Already at 4 K with an input laser power of 2 mW, the radiation-pressure quantum fluctuations become the main noise source, overcoming thermal noise. This feature makes our devices particularly suitable for the production of pondero-motive squeezing.

E. Serra; A. Borrielli; F. S. Cataliotti; F. Marin; F. Marino; A. Pontin; G. A. Prodi; M. Bonaldi

2012-08-30T23:59:59.000Z

204

An ultra-low dissipation micro-oscillator for quantum opto-mechanics  

E-Print Network (OSTI)

Generating non-classical states of light by opto-mechanical coupling depends critically on the mechanical and optical properties of micro-oscillators and on the minimization of thermal noise. We present an oscillating micro-mirror with a mechanical quality factor Q = 2.6x10^6 at cryogenic temperature and a Finesse of 65000, obtained thanks to an innovative approach to the design and the control of mechanical dissipation. Already at 4 K with an input laser power of 2 mW, the radiation-pressure quantum fluctuations become the main noise source, overcoming thermal noise. This feature makes our devices particularly suitable for the production of pondero-motive squeezing.

Serra, E; Cataliotti, F S; Marin, F; Marino, F; Pontin, A; Prodi, G A; Bonaldi, M

2012-01-01T23:59:59.000Z

205

Numerical Classical and Quantum Mechanical simulations of Charge Density wave models  

E-Print Network (OSTI)

We first present how to do a computer simulation of Charge Density Waves using a driven harmonic oscillator model by a numerical scheme as initially formulated by Littlewood, and then afterwards use this to present how the dielectric model as presented by this proceedure leads to a blow up at the initialization of a threshold field ET. We find that this is highly unphysical and this initiated our inquiry as to alternative models. Afterwards, we then investigate hwo to present this transport problem of CDW quantum mechanically, threough a numerical simulation of the massive Schwinger model. We find that this single chaing quantum mechanical simulation uwed to formulate solutions to CDW transport in itself is insufficient for transport of solitons(anti-solitons) through a pinning gap model of CDW. We show that a model Hamiltonian with Peierls condensation energy used to couple adjacent chains (or transverse wave vectors) permits formation of solitons (anti- solitons) which can be used to transport CDW through a potential barrier. This addition of the Peierls condensation energy term is essential for any quantum model of Charge Density Waves to give tunneling behavior as seen via a numerical simulation.

A. W. Beckwith

2004-09-13T23:59:59.000Z

206

Quantum Mechanics  

Science Conference Proceedings (OSTI)

... Surprise: Photon-count-based heralding is powerful! • Highlight: Pairs, squeezing and cats. ... Highlight: Pairs, squeezing and cats. (cont.) ...

2012-09-15T23:59:59.000Z

207

Quantum Mechanics  

NLE Websites -- All DOE Office Websites (Extended Search)

Mecnica cuntica Avanzar Volver Principal ESTOY PERDIDO Considere la siguiente secuencia de ideas: Los protones y los neutrones pueden migrar por todo el interior de un...

208

Academic Staff -Mechanical & Industrial Engineering (20 June 2013) ALEMAN, Dionne M. Assistant Professor (416) 978 6780 MC 319 aleman@mie.utoronto.ca  

E-Print Network (OSTI)

@mie.utoronto.ca CLEGHORN, William L. Professor (416) 978 3043 MB62 cleghrn@mie.utoronto.ca CONSENS, Mariano P. Associate@mie.utoronto.ca SHU, Lily H. Associate Professor (416) 946 3028 MC420 shu@mie.utoronto.ca SIMMONS, Craig A. Associate

Sun, Yu

209

Optimization Of Simulations And Activities For A New Introductory Quantum Mechanics Curriculum  

E-Print Network (OSTI)

The Institute of Physics New Quantum Curriculum (quantumphysics.iop.org) consists of online texts and interactive simulations with accompanying activities for an introductory course in quantum mechanics starting from two-level systems. We describe observation sessions and analysis of homework and survey responses used to optimize the simulations and activities in terms of clarity, ease-of-use, promoting exploration, sense-making and linking of multiple representations. This work led to revisions of simulations and activities and general design principles which have been incorporated wherever applicable. These include intuitive controls and on-demand text in the simulations and making explicit links between mathematical and physical representations in simulations and activities.

Kohnle, Antje; Hooley, Christopher; Torrance, Bruce

2013-01-01T23:59:59.000Z

210

Proposed test of relative phase as hidden variable in quantum mechanics  

E-Print Network (OSTI)

We consider the possibility that the relative phase in quantum mechanics plays a role in determining measurement outcome and could therefore serve as a "hidden" variable. The Born rule for measurement equates the probability for a given outcome with the absolute square of the coefficient of the basis state, which by design removes the relative phase from the formulation. The value of this phase at the moment of measurement naturally averages out in an ensemble, which would prevent any dependence from being observed, and we show that conventional frequency-spectroscopy measurements on discrete quantum systems cannot be imposed at a specific phase due to a straightforward uncertainty relation. We lay out general conditions for imposing measurements at a specific value of the relative phase so that the possibility of its role as a hidden variable can be tested, and we discuss implementation for the specific case of an atomic two-state system with laser-induced fluorescence for measurement.

Steven Peil

2013-02-15T23:59:59.000Z

211

Retrocausal Effects as a Consequence of Quantum Mechanics Refined to Accommodate the Principle of Sufficient Reason  

Science Conference Proceedings (OSTI)

The principle of sufficient reason asserts that anything that happens does so for a reason: no definite state of affairs can come into being unless there is a sufficient reason why that particular thing should happen. This principle is usually attributed to Leibniz, although the first recorded Western philosopher to use it was Anaximander of Miletus. The demand that nature be rational, in the sense that it be compatible with the principle of sufficient reason, conflicts with a basic feature of contemporary orthodox physical theory, namely the notion that nature's response to the probing action of an observer is determined by pure chance, and hence on the basis of absolutely no reason at all. This appeal to pure chance can be deemed to have no rational fundamental place in reason-based Western science. It is argued here, on the basis of the other basic principles of quantum physics, that in a world that conforms to the principle of sufficient reason, the usual quantum statistical rules will naturally emerge at the pragmatic level, in cases where the reason behind nature's choice of response is unknown, but that the usual statistics can become biased in an empirically manifest way when the reason for the choice is empirically identifiable. It is shown here that if the statistical laws of quantum mechanics were to be biased in this way then the basically forward-in-time unfolding of empirical reality described by orthodox quantum mechanics would generate the appearances of backward-time-effects of the kind that have been reported in the scientific literature.

Stapp, Henry P.

2011-05-10T23:59:59.000Z

212

Edwin Mattison McMillan - Patents  

NLE Websites -- All DOE Office Websites (Extended Search)

Patents - Edwin Mattison McMillan Patents - Edwin Mattison McMillan McMillan Page · Resources with Additional Information US 2,615,129 SYNCHRO-CYCLOTRON - McMillan, E. M.; October 21, 1962 (to U.S. Atomic Energy Commission) In this synchro-cyclotron the frequency modulation of the resonant system depends directly upon the rotating mechanical vacuum capacitor capable of producing frequencies up to the oscillating electric field and varying the ration of the frequency of the oscillation to the magnetic field strength, it is possible to accelerate deuterons to a final energy of 200 Mev. US 2,624,841 METHOD OF AND APPARATUS FOR ACCELERATING TO HIGH ENERGY ELECTRICALLY CHARGED PARTICLES - McMillan, E. M.; January 6, 1953 (to U.S. Atomic Energy Commission) This patent describes the synchrotron.

213

Andrew McNeil  

NLE Websites -- All DOE Office Websites (Extended Search)

Andrew McNeil Andrew McNeil Andrew McNeil Windows and Envelope Materials Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R3111 Berkeley CA 94720 Office Location: 90-3090A (510) 495-2309 AMcNeil@lbl.gov This publications database is an ongoing project, and not all Division publications are represented here yet. Publications 2013 Lee, Eleanor S., Luis L. Fernandes, Brian Coffey, Andrew McNeil, Robert D. Clear, Thomas L. Webster, Fred S. Bauman, Darryl J. Dickerhoff, David Heinzerling, and Tyler Hoyt. A Post-Occupancy Monitored Evaluation of the Dimmable Lighting, Automated Shading, and Underfloor Air Distribution System in The New York Times Building. Berkeley, CA: Lawrence Berkeley National Laboratory, 2013. Download: PDF (1.56 MB) McNeil, Andrew, Jacob C. Jonsson, David Appelfeld, Gregory Ward, and

214

James McMahon  

NLE Websites -- All DOE Office Websites (Extended Search)

E. McMahon E. McMahon James McMahon 1 Cyclotron Road MS 90R2002 Berkeley CA 94720 Office Location: 90-2002C (510) 520-8026 JEMcMahon@lbl.gov This publications database is an ongoing project, and not all Division publications are represented here yet. Publications 2013 Wei, Max, James H. Nelson, J. Greenblatt, Ana Mileva, Josiah Johnston, Michael K. Ting, Christopher Yang, Christopher M. Jones, James E. McMahon, and Daniel M. Kammen. "Deep carbon reductions in California require electrification and integration across economic sectors." Environmental Research Letters 8, no. 1 (2013). 2012 Taylor, Margaret, Sydny K. Fujita, Larry L. Dale, and James E. McMahon. "An Exploration of Innovation and Energy Efficiency in an Appliance Industry." In European Council for an Energy Efficiency Economy. Lawrence Berkeley

215

A quantum mechanical derivation of the Schwarzschild radius and its quantum correction using a model density distribution: Skin of a black hole  

E-Print Network (OSTI)

Using a single particle density distribution for a system of self-gravitating particles which ultimately forms a black hole, we from a condensed matter point of view derive the Schwarzschild radius and by including the quantum mechanical exchange energy we find a small correction to the Schwarzschild radius, which we designate as the skin of the black hole.

Subodha Mishra

2007-03-16T23:59:59.000Z

216

Mechanism for the suppression of quantum noise at large scales on expanding space  

E-Print Network (OSTI)

We present an exactly-solvable model for the suppression of quantum noise at large scales on expanding space. The suppression arises naturally in the de Broglie-Bohm pilot-wave formulation of quantum theory, according to which the Born probability rule has a dynamical origin. For a scalar field on a radiation-dominated background we construct the exact solution for the time-evolving wave functional and study properties of the associated field trajectories. It is shown that the time evolution of a field mode on expanding space is mathematically equivalent to that of a standard harmonic oscillator with a 'retarded time' that depends on the wavelength of the mode. In the far super-Hubble regime the equivalent oscillator evolves over only one Hubble time, yielding a simple mechanism whereby relaxation to the Born rule can be suppressed on very large scales. We present numerical simulations illustrating how the expansion of space can cause a retardation of relaxation in the super-Hubble regime. Given these results it is natural to expect a suppression of quantum noise at super-Hubble wavelengths. Such suppression could have taken place in a pre-inflationary era, resulting in a large-scale power deficit in the cosmic microwave background.

Samuel Colin; Antony Valentini

2013-06-07T23:59:59.000Z

217

Quantum-mechanical description of spin-1 particles with electric dipole moments  

E-Print Network (OSTI)

The Proca-Corben-Schwinger equations for a spin-1 particle with an anomalous magnetic moment are added by a term describing an electric dipole moment, then they are reduced to a Hamiltonian form, and finally they are brought to the Foldy-Wouthuysen representation. Relativistic equations of motion are derived. The needed agreement between quantum-mechanical and classical relativistic equations of motion is proved. The scalar and tensor electric and magnetic polarizabilities of pointlike spin-1 particles (W bosons) are calculated for the first time.

Alexander J. Silenko

2013-03-26T23:59:59.000Z

218

The method of Hill determinants in PT-symmetric quantum mechanics  

E-Print Network (OSTI)

Hill-determinant method is described and shown applicable within the so called PT-symmetric quantum mechanics. We demonstrate that in a way paralleling its traditional Hermitian applications and proofs the method guarantees the necessary asymptotic decrease of wave functions as resulting from a fine-tuned mutual cancellation of their asymptotically growing exponential components. Technically, the rigorous proof is needed/offered that in a quasi-variational spirit the method allows us to work, in its numerical implementations, with a sequence of truncated forms of the rigorous Hill-determinant power series for the normalizable bound states.

Miloslav Znojil

2004-10-04T23:59:59.000Z

219

Quantum Mechanics of Lowest Landau Level Derived from N=4 SYM with Chemical Potential  

E-Print Network (OSTI)

The low energy effective theory of N=4 super-Yang-Mills theory on S^3 with an R-symmetry chemical potential is shown to be the lowest Landau level system. This theory is a holomorphic complex matrix quantum mechanics. When the value of the chemical potential is not far below the mass of the scalars, the states of the effective theory consist only of the half-BPS states. The theory is solved by the operator method and by utilizing the lowest Landau level projection prescription for the value of the chemical potential less than or equal to the mass of the scalars. When the chemical potential is below the mass, we find that the degeneracy of the lowest Landau level is lifted and the energies of the states are computed. The one-loop correction to the effective potential is computed for the commuting fields and treated as a perturbation to the tree level quantum mechanics. We find that the perturbation term has non-vanishing matrix elements that mix the states with the same R-charge.

D. Yamada

2005-09-28T23:59:59.000Z

220

Frank McLarnon  

NLE Websites -- All DOE Office Websites (Extended Search)

Frank R. McLarnon Frank R. McLarnon Frank McLarnon Electrochemical Technologies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 70-108B Berkeley CA 94720 Office Location: 70-0119A (510) 486-4636 FRMcLarnon@lbl.gov This speaker was a visiting speaker who delivered a talk or talks on the date(s) shown at the links below. This speaker is not otherwise associated with Lawrence Berkeley National Laboratory, unless specifically identified as a Berkeley Lab staff member. This publications database is an ongoing project, and not all Division publications are represented here yet. Publications 2003 Kostecki, Robert, and Frank R. McLarnon. "Microprobe study of the effect of Li intercalation on the structure of graphite." Journal of Power Sources 119-121 (2003): 550-554.

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Exact solution for excess electrons in quantum mechanically operating solar cells, under cumulative Auger effects  

Science Conference Proceedings (OSTI)

We derive excess carrier populations in quantum wells, embedded in the intrinsic region of p-i-n solar cells. In the process of the analysis, we (a) solve for photo-generated carriers in quantum wells and (b) determine explicit dependence on incident ... Keywords: Auger recombination, material growth, quantum photovoltaics, quantum wells, solar cells, solar spectrum

Argyrios Varonides; Robert Spalletta; Andrew Berger

2007-07-01T23:59:59.000Z

222

Molecular Quantum Mechanics 2010: From Methylene to DNA and Beyond Conference Support  

SciTech Connect

This grant was $12500 for partial support of an international conference, Molecular Quantum Mechanics 2010, which was held on the campus of the University of California, Berkeley, from 24 to 29 May 2010. The conference involved more than 250 participants. The conference schedule ran from as early as 8:00 AM to as late as 10:30 PM at night, in order to accommodate six historical lectures, 16 plenary lectures, 42 invited talks and two very strong poster sessions containing 143 contributed posters. Since 1989, the Molecular Quantum Mechanics (MQM) series of international conferences has show- cased the frontiers of research in quantum chemistry with a strong focus on basic theory and algorithms, as well as highlights of topical applications. Both were strongly in evidence at MQM 2010. At the same time as embracing the future, the MQM conferences also honour the lifetime contributions of some of the most prominent scientists in the field of theoretical and computational quantum chemistry. MQM 2010 recognised the work of Prof. Henry F. ‘Fritz’ Schaefer of the Center for Computational Chemistry at the University of Georgia, who was previously on the faculty at Berkeley The travel of invited speakers was partially covered by sponsorships from Dell Computer, Hewlett-Packard, Journal of Chemical Theory and Computation, Virginia Tech College of Science, Molecular Physics, Q-Chem Inc and the American Institute of Physics. By contrast, the conference grant from the Department of Energy was used to provide fellowships and scholarships to enable graduate students and postdoctoral fellows to attend the meeting, and thereby broaden the participation of young scientists at a meeting where in the past most of the attendees have been more senior faculty researchers. We believe that we were very successful in this regard: 118 students and postdocs attended out of the total of 256 participants. In detail, the DOE sponsorship money was partially used for dormitory scholarships that covered the cost of shared accommodation for students and postdocs at Berkeley dormitories. This covered the $200-$305 cost of a shared room for the 5-day duration of the conference. The only condition of these scholarships was that the awardee must present a poster at the meeting. Approximately $7565 was spent for these dormitory scholarships. The remaining expenditures of $4800 was used for 12 merit scholarships which were awarded to students whose poster presentations were judged the best at the conference. This amount covered a significant part of their travel and registration fees.

None

2013-05-15T23:59:59.000Z

223

Quantum Signatures of Spacetime Graininess Quantum Signatures of Spacetime  

E-Print Network (OSTI)

Quantum Signatures of Spacetime Graininess Quantum Signatures of Spacetime "Graininess" Sachindeo September 2009 #12;Quantum Signatures of Spacetime Graininess Introduction 1 Length scales in physics 2 Spacetime noncommutativity from quantum uncertainties 3 Quantum Mechanics on Noncommutative Spacetime 4

224

Simulation Of Wave Function And Probability Density Of Modified Poschl Teller Potential Derived Using Supersymmetric Quantum Mechanics  

Science Conference Proceedings (OSTI)

SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.

Angraini, Lily Maysari [STKIP Hamzanwadi Selong East Lombok, NTB, PostGraduate student at Physics Department UNS, Jl. Ir. Sutami 36 A, Surakarta (Indonesia); Suparmi,; Variani, Viska Inda [Physics Department UNS, Jl. Ir. Sutami 36 A, Surakarta (Indonesia)

2010-12-23T23:59:59.000Z

225

The Schrodinger-Chetaev Equation in Bohmian Quantum Mechanics and Diffusion Mechanism for Alpha Decay, Cluster Radioactivity and Spontaneous Fission  

E-Print Network (OSTI)

In the framework of Bohmian quantum mechanics supplemented with the Chetaev theorem on stable trajectories in dynamics in the presence of dissipative forces we have shown the possibility of the classical (without tunneling) universal description of radioactive decay of heavy nuclei, in which under certain conditions so called noise-induced transition is generated or, in other words, the stochastic channel of alpha decay, cluster radioactivity and spontaneous fission conditioned by the Kramers diffusion mechanism. Based on the ENSDF database we have found the parametrized solutions of the Kramers equation of Langevin type by Alexandrov dynamic auto-regularization method (FORTRAN program REGN-Dubna). These solutions describe with high-accuracy the dependence of the half-life (decay probability) of heavy radioactive nuclei on total kinetic energy of daughter decay products. The verification of inverse problem solution in the framework of the universal Kramers description of the alpha decay, cluster radioactivity and spontaneous fission, which was based on the newest experimental data of alpha-decay of even-even super heavy nuclei (Z=114, 116, 118) have shown the good coincidence of the experimental and theoretical half-life depend upon of alpha-decay energy.

V. D. Rusov; S. Cht. Mavrodiev; M. A. Deliyergiyev

2008-10-16T23:59:59.000Z

226

Quantum discord  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum discord Quantum discord 1663 Los Alamos science and technology magazine Latest Issue:November 2013 All Issues » submit Quantum discord A distinguishing aspect of quantum mechanics discovered at Los Alamos that may be critical to building a quantum computer March 25, 2013 Spinning coins turning into binary numbers Quantum computing Quantum computing can be carried out without the delicate entanglement of qubits previously believed to be necessary Quantum computing, in which quantum bits of information (or qubits) juggle a "superposition" of multiple values simultaneously, offers to unleash tremendous computational power if the qubits can be effectively isolated to prevent decoherence: information describing quantum states dispersing into the environment. But recent research has shown that quantum computing can be carried out

227

Obtaining the Probability Vector Current Density in Canonical Quantum Mechanics by Linear Superposition  

E-Print Network (OSTI)

The quantum mechanics status of the probability vector current density has long seemed to be marginal. On one hand no systematic prescription for its construction is provided, and the special examples of it that are obtained for particular types of Hamiltonian operator could conceivably be attributed to happenstance. On the other hand this concept's key physical interpretation as local average particle flux, which flows from the equation of continuity that it is supposed to satisfy in conjunction with the probability scalar density, has been claimed to breach the uncertainty principle. Given the dispiriting impact of that claim, we straightaway point out that the subtle directional nature of the uncertainty principle makes it consistent with the measurement of local average particle flux. We next focus on the fact that the unique closed-form linear-superposition quantization of any classical Hamiltonian function yields in tandem the corresponding unique linear-superposition closed-form divergence of the probability vector current density. Because the probability vector current density is linked to the quantum physics only through the occurrence of its divergence in the equation of continuity, it is theoretically most appropriate to construct this vector field exclusively from its divergence -- analysis of the best-known "textbook" special example of a probability vector current density shows that it is thus constructed. That special example in fact leads to the physically interesting "Ehrenfest subclass" of probability vector current densities, which are closely related to their classical peers.

Steven Kenneth Kauffmann

2013-02-02T23:59:59.000Z

228

Mechanism for the suppression of quantum noise at large scales on expanding space  

E-Print Network (OSTI)

We present an exactly-solvable model for the suppression of quantum noise at large scales on expanding space. The suppression arises naturally in the de Broglie-Bohm pilot-wave formulation of quantum theory, according to which the Born probability rule has a dynamical origin. For a scalar field on a radiation-dominated background we construct the exact solution for the time-evolving wave functional and study properties of the associated field trajectories. It is shown that the time evolution of a field mode on expanding space is mathematically equivalent to that of a standard harmonic oscillator with a 'retarded time' that depends on the wavelength of the mode. In the far super-Hubble regime the equivalent oscillator evolves over only one Hubble time, yielding a simple mechanism whereby relaxation to the Born rule can be suppressed on very large scales. We present numerical simulations illustrating how the expansion of space can cause a retardation of relaxation in the super-Hubble regime. Given these results...

Colin, Samuel

2013-01-01T23:59:59.000Z

229

Quantum Thermodynamics  

E-Print Network (OSTI)

Quantum thermodynamics addresses the emergence of thermodynamical laws from quantum mechanics. The link is based on the intimate connection of quantum thermodynamics with the theory of open quantum systems. Quantum mechanics inserts dynamics into thermodynamics giving a sound foundation to finite-time-thermodynamics. The emergence of the 0-law I-law II-law and III-law of thermodynamics from quantum considerations is presented. The emphasis is on consistence between the two theories which address the same subject from different foundations. We claim that inconsistency is the result of faulty analysis pointing to flaws in approximations.

Ronnie Kosloff

2013-05-10T23:59:59.000Z

230

Quantum Mechanics of Insitu Synthesis of Inorganic Nanoparticles with in Anionic Microgels  

E-Print Network (OSTI)

In this work, we discuss the quantum mechanics of many-body systems i.e. hybrid microgel consisting of negatively charged anionic microgels possessing thick sheath of water molecules solvating its protruding anionic moieties and nanoparticle captivated with in it. Thermodynamic feasibility of synthesis of particular nanoparticle with in the microgel is dependent upon the magnitude of interaction between nanoparticle, water molecules and microgel relative to sum of magnitude of self-interaction between counterions and interaction between counterions and microgel. Nanoparticles synthesized with in the microgels have thick electronic cloud that oscillates under the influence of net interaction potential of charged anionic moieties and solvent water molecules. Hamiltonian describing energy of oscillating electronic cloud wrapped around nanoparticle is mathematically derived to be equal to product of integral of electron density and its position vector overall space multiplied with net electric force acting on the oscillating electronic cloud of nanoparticle.

Mirza Wasif Baig; Muhammad Siddiq

2013-05-28T23:59:59.000Z

231

A quantum mechanical model for the relationship between stock price and stock ownership  

SciTech Connect

The trade of a fixed stock can be regarded as the basic process that measures its momentary price. The stock price is exactly known only at the time of sale when the stock is between traders, that is, only in the case when the owner is unknown. We show that the stock price can be better described by a function indicating at any moment of time the probabilities for the possible values of price if a transaction takes place. This more general description contains partial information on the stock price, but it also contains partial information on the stock owner. By following the analogy with quantum mechanics, we assume that the time evolution of the function describing the stock price can be described by a Schroedinger type equation.

Cotfas, Liviu-Adrian [Faculty of Economic Cybernetics, Statistics and Informatics, Academy of Economic Studies, 6 Piata Romana, 010374 Bucharest (Romania)

2012-11-01T23:59:59.000Z

232

A quantum mechanical model for the relationship between stock price and stock ownership  

E-Print Network (OSTI)

The trade of a fixed stock can be regarded as the basic process that measures its momentary price. The stock price is exactly known only at the time of sale when the stock is between traders, that is, only in the case when the owner is unknown. We show that the stock price can be better described by a function indicating at any moment of time the probabilities for the possible values of price if a transaction takes place. This more general description contains partial information on the stock price, but it also contains partial information on the stock owner. By following the analogy with quantum mechanics, we assume that the time evolution of the function describing the stock price can be described by a Schrodinger type equation.

Liviu-Adrian Cotfas

2012-07-14T23:59:59.000Z

233

The dispersion interaction between quantum mechanics and effective fragment potential molecules  

SciTech Connect

A method for calculating the dispersion energy between molecules modeled with the general effective fragment potential (EFP2) method and those modeled using a full quantum mechanics (QM) method, e.g., Hartree-Fock (HF) or second-order perturbation theory, is presented. C6 dispersion coefficients are calculated for pairs of orbitals using dynamic polarizabilities from the EFP2 portion, and dipole integrals and orbital energies from the QM portion of the system. Dividing by the sixth power of the distance between localized molecular orbital centroids yields the first term in the commonly employed London series expansion. A C8 term is estimated from the C6 term to achieve closer agreement with symmetry adapted perturbation theory values. Two damping functions for the dispersion energy are evaluated. By using terms that are already computed during an ordinary HF or EFP2 calculation, the new method enables accurate and extremely rapid evaluation of the dispersion interaction between EFP2 and QM molecules.

Smith, Quentin A.; Ruedenberg, Klaus; Gordon, Mark S.; Slipchenko, Lyudmila

2012-06-26T23:59:59.000Z

234

Deformed Woods-Saxon Potential in the Frame of Supersymmetric Quantum Mechanics for Any l-State  

E-Print Network (OSTI)

A novel analytically solvable deformed Woods-Saxon potential is investigated by means of the Supersymmetric Quantum Mechanics. Hamiltonian hierarchy method and the shape invariance property are used in the calculations. The energy levels are obtained for any l-state. The interrelations for some nuclear scattering processes are also discussed

Cuneyt Berkdemir; Ayse Berkdemir; Ramazan Sever

2005-02-15T23:59:59.000Z

235

Calculation of the electron two slit experiment using a quantum mechanical variational principle  

SciTech Connect

A nonlocal relativistic variational principle (VP) has recently been proposed as an alternative to the Dirac wave equation of standard quantum mechanics. We apply that principle to the electron two-slit experiment. The detection system is modelled as a screen made of atoms, any one of which can be excited by the incident electron, but we avoid restricting the detection mechanism further. The VP is shown to predict that, at the time the electron reaches the screen, its wavefunction will be localized to the neighborhood of a single atom, resulting in a position-type measurement. In an ensemble of such experiments ('identically prepared' except that the initial phase of the wavefunction - the hidden variable in the VP formulation - is sampled over the expected uniform distribution), the distribution of measured positions will reproduce the interference pattern predicted by the Dirac equation. We also demonstrate that with a detection system designed fundamentally to detect the electron's transverse wavelength rather than its position, the VP predicts that one such mode will be detected, that is, a wavelength measurement will result. Finally, it is shown that these results are unchanged in the 'delayed choice' variant of the experiment.

Harrison, Alan K. [Los Alamos National Laboratory

2012-04-17T23:59:59.000Z

236

A Transformation Method to Construct Family of Exactly Solvable Potentials in Quantum Mechanics  

E-Print Network (OSTI)

A transformation method is applied to the second order ordinary differential equation satisfied by orthogonal polynomials to construct a family of exactly solvable quantum systems in any arbitrary dimensional space. Using the properties of orthogonal polynomials, the method transforms polynomial differential equation to D-dimensional radial Schrodinger equation which facilitates construction of exactly solvable quantum systems. The method is also applied using associated Laguerre and Hypergeometric polynomials. The quantum systems generated from other polynomials are also briefly highlighted.

Nabaratna Bhagawati; N Saikia; N Nimai Singh

2013-08-26T23:59:59.000Z

237

Ian McNulty  

NLE Websites -- All DOE Office Websites (Extended Search)

Ian McNulty received a PhD degree in physics from Stony Brook University in 1991 and joined Ian McNulty received a PhD degree in physics from Stony Brook University in 1991 and joined the Advanced Photon Source as an Enrico Fermi Postdoctoral Scholar in June that year. He became a staff physicist at Argonne in 1992 and built the first intermediate-energy x-ray microscopy beamline at APS in 1997. Ian subsequently oversaw the development of the APS Sector 2 beamlines and led the APS X-ray Microscopy Group in 2000-2004. Ian became Senior Scientist and joined the Argonne Center for Nanoscale Materials in 2012. His research focuses on ordering in nanomagnetic materials and orbital angular momentum states of light using coherent x-rays. Selected Recent Publications: Y.-C. K. Chen-Wiegart, S. Wang, W.-K. Lee, I. McNulty, P.W. Voorhees, and D.C. Dunand, "In

238

Quantum Histories and Quantum Gravity  

E-Print Network (OSTI)

This paper reviews the histories approach to quantum mechanics. This discussion is then applied to theories of quantum gravity. It is argued that some of the quantum histories must approximate (in a suitable sense) to classical histories, if the correct classical regime is to be recovered. This observation has significance for the formulation of new theories (such as quantum gravity theories) as it puts a constraint on the kinematics, if the quantum/classical correspondence principle is to be preserved. Consequences for quantum gravity, particularly for Lorentz symmetry and the idea of "emergent geometry", are discussed.

Joe Henson

2009-01-26T23:59:59.000Z

239

Erasing the traces of classical mechanics in ionization of H{sub 2} by quantum interferences  

SciTech Connect

The single ionization of hydrogen molecules by fast electron impact is studied theoretically for transitions from the ground (gerade) state to final ground (gerade) and first-excited (ungerade) states of H{sub 2}{sup +}. It is shown that under definite conditions and for particular orientations of the molecule, the main physical features of the ionization reaction, which are the binary and recoil peaks usually associated with classical mechanisms, are completely erased by quantum interference effects that resemble the ones predicted previously for photoionization reactions. However, these new effects cannot be derived from photoionization results, as the electromagnetic field cannot transfer momentum. In addition, it is found that the emission spectra of transitions leading to the final gerade and ungerade states of the H{sub 2}{sup +} residual target are analogous in certain cases to the patterns of two sources emitting waves in phase or antiphase, respectively. Finally, we show how an average of the emission from randomly oriented molecules produces a binary peak at the classical expected position, in agreement with experiments.

Fojon, O. A.; Stia, C. R.; Rivarola, R. D. [Laboratorio de Colisiones Atomicas and Instituto de Fisica Rosario, CONICET-UNR, Avenida Pellegrini 250, 2000 Rosario (Argentina)

2011-09-15T23:59:59.000Z

240

Semiclassical anomalies of the quantum mechanical systems and their modifications for the asymptotic matching  

SciTech Connect

JWKB solutions to the Initial Value Problems (IVPs) of the Time Independent Schrodinger's Equation (TISE) for the Simple Linear Potentials (SLPs) with a turning point parameter have been studied according to the turning points by graphical analysis to test the results of the JWKB solutions and suggested modifications. The anomalies happening in the classically inaccessible region where the SLP function is smaller than zero and the results of the suggested modifications, which are in consistent with the quantum mechanical theories, to remove these anomalies in this region have been presented. The origins of the anomalies and verifications of the suggested modifications showing a great success in the results have also been studied in terms of a suggested M{sub ij}=S{sup {approx}}{sub i-1,j} matrix elements made up of the JWKB expansion terms, S{sub i-1,j} (where i = 1, 2, 3 and j 1, 2). The results of the modifications for the IVPs and their application to the Bound State Problems (BSPs) with an example application of the Harmonic Oscillator (HO) have been presented and their generalization for any potential function have been discussed and classified accordingly.

Deniz, Coskun, E-mail: coskun.deniz@ege.edu.tr [Ege University, Faculty of Science, Department of Physics, Bornova 35100, Izmir (Turkey)

2011-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Relativity in binary systems as root of quantum mechanics and space-time  

E-Print Network (OSTI)

Inspired by Bohr's dictum that "physical phenomena are observed relative to different experimental setups", this article investigates the notion of relativity in Bohr's sense, starting from a set of binary elements. The most general form of information coding within such sets requires a description by four-component states. By using Bohr's dictum as a guideline a quantum mechanical description of the set is obtained in the form of a SO(3,2) based spin network. For large (macroscopic) sub-networks a flat-space approximation of SO(3,2) leads to a Poincare symmetrical Hilbert space. The concept of a position of four-component spinors relative to macroscopic sub-networks then delivers the description of 'free' massive spin-1/2 particles with a Poincare symmetrical Hilbert space. Hence Minkowskian space-time, equipped with spin-1/2 particles, is obtained as an inherent property of a system of binary elements when individual elements are described relative to macroscopic sub-systems.

W. Smilga

2004-08-14T23:59:59.000Z

242

Robert L. McGraw | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert L. McGraw Robert L. McGraw Senior Scientist McGraw has a long-standing interest in the homogeneous and heterogeneous nucleation of supercooled vapors, as mechanisms for gas-to-particle conversion. This interest began during his postdoctoral collaboration with Prof. Howard Reiss at UCLA, and continued at Brookhaven both during the early eighties and since returning to BNL in 1993. Since returning, he has been Principal Investigator for NASA programs investigating nucleation and growth processes of atmospheric aerosols and clouds and for development of MATRIX, an aerosol module currently being used in the NASA/GISS climate model. Major achievements under these programs included development of the quadrature method of moments for simulation of atmospheric aerosol processes; completion of the first rigorous kinetics study of binary

243

Does Quantum Mechanics Clash with the Equivalence Principle - and Does it Matter?  

E-Print Network (OSTI)

With an eye on developing a quantum theory of gravity, many physicists have recently searched for quantum challenges to the equivalence principle of general relativity. However, as historians and philosophers of science are well aware, the principle of equivalence is not so clear. When clarified, we think quantum tests of the equivalence principle won't yield much. The problem is that the clash/not-clash is either already evident or guaranteed not to exist. Nonetheless, this work does help teach us what it means for a theory to be geometric.

Okon, Elias

2010-01-01T23:59:59.000Z

244

Efficiency loss mechanisms in colloidal quantum-dot light-emitting diodes  

E-Print Network (OSTI)

Saturated and tunable emission colors make colloidal quantum-dot light-emitting diodes (QD-LEDs) interesting for the next generation of display and lighting technologies. However, there still remain various hurdles to the ...

Shirasaki, Yasuhiro

2013-01-01T23:59:59.000Z

245

Quantum Operations and Measurement  

E-Print Network (OSTI)

Quantum Operations and Measurement M.P Seevinck E-mail: M.P.Seevinck@phys.uu.nl Utrecht field in quantum physics ­ or perhaps better, a new way of doing quantum physics ­ . . . Surprisingly of these developments to the conceptual problems of quantum mechanics. In our view, the new work on quantum information

Seevinck, Michiel

246

Quantum Operations and Measurement  

E-Print Network (OSTI)

Quantum Operations and Measurement # M.P Seevinck # E­mail: M.P.Seevinck@phys.uu.nl Utrecht in quantum physics -- or perhaps better, a new way of doing quantum physics -- . . . Surprisingly, with few to the conceptual problems of quantum mechanics. In our view, the new work on quantum information changes

Seevinck, Michiel

247

Jessica McChesney  

NLE Websites -- All DOE Office Websites (Extended Search)

MM-Group Home MM-Group Home MMG Advisory Committees Beamlines 4-ID-C Soft Spectroscopy 4-ID-D Hard Spectroscopy 6-ID-B,C Mag. Scattering 6-ID-D HighE Scattering 29-ID IEX - ARPES,RSXS Getting Beamtime Sector Orientation Sector 4 Orientation Sector 6 Orientation Publications (4-ID) Publications (6-ID) Contact Us APS Ring Status Current APS Schedule Jessica McChesney Argonne National Laboratory 9700 S. Cass Ave 437/D003 Argonne, IL 60439 Phone: 252-7107 Fax: 252-7392 E-Mail: jmcchesn@aps.anl.gov Education/Experience: 2011 - present: Assistant Physicist, X-ray Science Division, Argonne National Laboratory. 2013 - present: Adjunct Assistant Professor, EECS, Northwestern University. 2007-2008: Postdoctoral Research Scholar, Advanced Light Source, Lawrence Berkeley National Laboratory and Fritz Haber Institute - Max

248

Quantum and Post Quantum Cryptography Abderrahmane Nitaj  

E-Print Network (OSTI)

Quantum and Post Quantum Cryptography Abderrahmane Nitaj Laboratoire de Math´ematiques Nicolas based on quantum mechanics for factoring large integers and computing discrete loga- rithms undermined Gamal and ECC. However, some cryptosystems, called post quantum cryptosystems, while not currently

Nitaj, Abderrahmane

249

Quantum Mechanical Calculations of Charge Effects on gating the KcsA channel  

DOE Green Energy (OSTI)

The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. A series of ab initio (density functional) calculations were carried out on side chains of a set of amino acids, plus water, from the (intracellular) gating region of the KcsA K+ channel. Their atomic coordinates, except hydrogen, are known from X-ray structures [D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, R. MacKinnon, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science 280 (1998) 69–77; R. MacKinnon, S.L. Cohen, A. Kuo, A. Lee, B.T. Chait, Structural conservation in prokaryotic and eukaryotic potassium channels, Science 280 (1998) 106–109; Y. Jiang, A. Lee, J. Chen, M. Cadene, B.T. Chait, R. MacKinnon, The open pore conformation of potassium channels. Nature 417 (2001) 523–526], as are the coordinates of some water oxygen atoms. The 1k4c structure is used for the starting coordinates. Quantum mechanical optimization, in spite of the starting configuration, places the atoms in positions much closer to the 1j95, more tightly closed, configuration. This state shows four water molecules forming a “basket” under the Q119 side chains, blocking the channel. When a hydrated K+ approaches this “basket”, the optimized system shows a strong set of hydrogen bonds with the K+ at defined positions, preventing further approach of the K+ to the basket. This optimized structure with hydrated K+ added shows an ice-like 12 molecule nanocrystal of water. If the water molecules exchange, unless they do it as a group, the channel will remain blocked. The “basket” itself appears to be very stable, although it is possible that the K+ with its hydrating water molecules may be more mobile, capable of withdrawing from the gate. It is also not surprising that water essentially freezes, or forms a kind of glue, in a nanometer space; this agrees with experimental results on a rather different, but similarly sized (nm dimensions) system [K.B. Jinesh, J.W.M. Frenken, Capillary condensation in atomic scale friction: how water acts like a glue, Phys. Rev. Lett. 96 (2006) 166103/1–4].

Kariev, Alisher M.; Znamenskiy, Vasiliy S.; Green, Michael E.

2007-02-06T23:59:59.000Z

250

NIST 'Quantum Tuning Forks' Demonstrate Directly Coupling ...  

Science Conference Proceedings (OSTI)

... for quantum simulations, which may help explain the mechanisms of complex quantum systems such as high-temperature superconductors. ...

2011-03-02T23:59:59.000Z

251

A bird's eye view of quantum computers  

E-Print Network (OSTI)

Quantum computers are discussed in the general framework of computation, the laws of physics and the foundations of quantum mechanics.

Giuliano Benenti; Giuliano Strini

2007-03-13T23:59:59.000Z

252

Quantum mechanics of layers with a finite number of point perturbations  

Science Conference Proceedings (OSTI)

We study spectral and scatteringproperties of a spinless quantum particle confined to an infinite planar layer with hard walls containing a finite number of point perturbations. A solvable character of the model follows from the explicit form of the Hamiltonian resolvent obtained by means of Krein’s formula. We prove the existence of bound states

P. Exner; K. N?mcová

2002-01-01T23:59:59.000Z

253

A General Systems Theory for Chaos, Quantum Mechanics and Gravity for Dynamical Systems of all Space-Time Scales  

E-Print Network (OSTI)

Non-local connections, i. e. long-range space-time correlations intrinsic to the observed subatomic dynamics of quantum systems is also exhibited by macro-scale dynamical systems as selfsimilar fractal space-time fluctuations and is identified as self-organized criticality. The author has developed a general systems theory for the observed self-organized criticality applicable to dynamical systems of all space-time scales based on the concept that spatial integration of enclosed small-scale fluctuations results in the formation of large eddy circulation. The eddy energy spectrum therefore represents the statistical normal distribution according to the Central Limit Theorem. The additive amplitudes of eddies, when squared (variance or eddy kinetic energy), represent the statistical normal (probability) distribution, a result observed in the subatomic dynamics of quantum systems. The model predicts Kepler's laws of planetary motion for eddy circulation dynamics. Inverse square law of gravitation therefore applies to the eddy continuum ranging from subatomic to macro-scale dynamical systems, e.g. weather systems. The model is similar to a superstring model for subatomic dynamics which unifies quantum mechanical and classical concepts and manifestation of matter is visualised as vibrational modes in string-like energy flow patterns. The cumulative sum of centripetal forces in a hierarchy of vortex circulations may result in the observed inverse square law form for gravitational attraction between inertial masses of the eddies.

A M Selvam

2005-03-03T23:59:59.000Z

254

Protein/Ligand Binding Free Energies Calculated with Quantum Mechanics/Molecular Frauke Gra1ter,, Sonja M. Schwarzl,, Annick Dejaegere,| Stefan Fischer,*, and  

E-Print Network (OSTI)

Protein/Ligand Binding Free Energies Calculated with Quantum Mechanics/Molecular Mechanics Frauke of the complexes are predicted (the "docking" problem) as well as in how the free energy is calculated from)solvation during the binding process.3 Typically, binding free energies calculated with these methods have average

Gräter, Frauke

255

Quantum Mechanical Energy-based Screening of Combinatorially Generated Library of Tautomers. TauTGen: A Tautomer Generator Program  

Science Conference Proceedings (OSTI)

Many computational methods have been derived from quantum mechanics for molecular and extended systems. We advocate that these methods will soon become indispensable research tools of combinatorial chemistry. Although applications of these combinatorial methods driven by quantum-mechanics-derived computational engines seem to be distant, our recent experience suggests the opposite. We developed algorithms and codes to search for the most stable tautomers of molecules. In our approach, we: (i) create large libraries of molecular tautomers using combinatorial methods, and (ii) prescreen these libraries using quantum chemical electronic structure methods. We have identified many adiabatically bound and previously unknown tautomers of anionic nucleic acid bases. Our results unraveled that ordering of nucleic acid bases according to their affinity to an excess electron is: G > U > T > C > A , when all biologically relevant tautomers are considered. Acknowledgements This work was supported by the: (i) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.) and (ii) Polish State Committee for Scientific Research (KBN) Grant DS/8221-4-0140-4 (M.H.). M.H. thanks for financial support from the European Union Social Funds ZPORR/2.22/II/2.6/ARP/U/2/O5. M.H. is a holder of the award from the Fundation for Polish Science (FNP). R.A.B. acknowledges the financial support from Nanoquant EC Marie Curie Research Training Network, contract number: MRTN-506842. Computing resources were available through: (i) the Academic Computer Center in Gda?sk (TASK) (ii) a Computational Grand Challenge Application grant from the Molecular Sciences Computing Facility (MSCF) in the Environmental Molecular Sciences Laboratory located at the Pacific Northwest National Laboratory, and (iii) the National Energy Research Scientific Computing Center (NERSC). The MSCF is funded by DOE’s Office of Biological and Environmental Research. PNNL is operated by Battelle for the U.S. DOE under Contract DE-AC06-76RLO 1830.

Haranczyk, Maciej; Gutowski, Maciej S.

2007-03-01T23:59:59.000Z

256

A Simple Quantum-Mechanical Model of Spacetime II: Thermodynamics of Spacetime  

E-Print Network (OSTI)

In this second part of our series of two papers, where spacetime is modelled by a graph, where Planck size quantum black holes lie on the vertices, we consider the thermodynamics of spacetime. We formulate an equation which tells in which way an accelerating, spacelike two-surface of spacetime interacts with the thermal radiation flowing through that surface. In the low temperature limit, where most quantum black holes constituting spacetime are assumed to lie in the ground state, our equation implies, among other things, the Hawking and the Unruh effects, as well as Einstein's field equation with a vanishing cosmological constant for general matter fields. We also consider the high temperature limit, where the microscopic black holes are assumed to lie in highly excited states. In this limit our model implies, among other things, that black hole entropy depends logarithmically on its area, instead of being proportional to the area.

J. Makela

2008-05-26T23:59:59.000Z

257

Mechanism of terahertz photoconductivity in semimetallic HgTe/CdHgTe quantum wells  

Science Conference Proceedings (OSTI)

Terahertz photoconductivity in magnetic fields in semimetallic HgTe/CdHgTe quantum wells has been studied. The main contribution to photoconductivity comes from a signal that appears as a result of electron-gas heating. It is shown that, with the cyclotron resonance conditions satisfied, the photoconductivity signal is composed of cyclotron-resonance and bolometric components. However, in this case too, the bolometric contribution predominates.

Vasilyev, Yu. B., E-mail: yu.vasilyev@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Mikhailov, N. N. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Gouider, F. [Institut fuer Angewandte Physik (Germany); Vasilyeva, G. Yu. [St. Petersburg State Polytechnic University (Russian Federation); Nachtwei, G. [Institut fuer Angewandte Physik (Germany)

2012-05-15T23:59:59.000Z

258

Symmetry, Self-Duality and the Jordan Structure of Quantum Mechanics  

E-Print Network (OSTI)

I explore several related routes to deriving the Jordan-algebraic structure of finite-dimensional quantum theory from more transparent operational or physical principles, mainly involving ideas about the symmetries of, and the correlations between, probabilistic models. The key tool is the Koecher-Vinberg Theorem, which identifies formally real Jordan algebras with finite-dimensional order-unit spaces having homogeneous, self-dual cones.

Alexander Wilce

2011-10-30T23:59:59.000Z

259

Caroline McGregor | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Caroline McGregor About Us Caroline McGregor - Policy Analyst, Office of Policy and International Affairs Most Recent by Caroline McGregor Inaugural C3E Symposium Fosters...

260

Information content of financial markets: a practical approach based on Bohmian quantum mechanics  

E-Print Network (OSTI)

The Bohmian quantum approach is implemented to analyze the financial markets. In this approach, there is a wave function that leads to a quantum potential. This potential can explain the relevance and entanglements of the agent's behaviors with the past. The light is shed by considering the relevance of the market conditions with the previous market conditions enabling the conversion of the local concepts to the global ones. We have shown that there are two potential limits for each market. In essence, these potential limits act as a boundary which limits the return values inside it. By estimating the difference between these two limits in each market, it is found that the quantum potentials of the return time series in different time scales, possess a scaling behavior. The slopes of the scaling behaviors in mature, emerging and commodity markets show different patterns. The emerge market having a slope greater than 0.5, has a higher value compared to the corresponding values for the mature and commodity mark...

Tahmasebi, F; Namaki, A; Jafari, G R

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

From Quantum Cheating to Quantum Security  

E-Print Network (OSTI)

For thousands of years, code-makers and code-breakers have been competing for supremacy. Their arsenals may soon include a powerful new weapon: quantum mechanics. We give an overview of quantum cryptology as of November 2000.

Daniel Gottesman; Hoi-Kwong Lo

2001-11-19T23:59:59.000Z

262

Barbara McNeal Lloyd  

Energy.gov (U.S. Department of Energy (DOE))

Barbara McNeal Lloyd is the Director of the Office of Business Operations within the Office of Legacy Management (LM). Mrs. Lloyd is responsible for records and information management associated...

263

Quantum Dating Market  

E-Print Network (OSTI)

We consider the dating market decision problem under the quantum mechanics point of view. Quantum states whose associated amplitudes are modified by men strategies are used to represent women. Grover quantum search algorithm is used as a playing strategy. Success is more frequently obtained by playing quantum than playing classic.

O. G. Zabaleta; C. M. Arizmendi

2010-03-04T23:59:59.000Z

264

Quantum Statistics Madalin Guta  

E-Print Network (OSTI)

Quantum Statistics Madalin Gut¸a School of Mathematics University of Nottingham 1 #12;The old paradigm Quantum Mechanics up to the 80's Quantum measurements have random results Only probability particles, any more than we can raise Ichtyosauria in the zoo 2 #12;The new paradigm Individual quantum

Guta, Madalin

265

Quantum Walks Norio Konno  

E-Print Network (OSTI)

Quantum Walks Norio Konno Yokohama National University Two types of quantum (random) walks, discrete-time (coined) or continuous- time, were introduced as the quantum mechanical extension of the corresponding classical random walks in connection with quantum computing and have been extensively studied over

Schürmann, Michael

266

Quantum-Mechanical Model of Spacetime I: Microscopic Properties of Spacetime  

E-Print Network (OSTI)

This is the first part in a series of two papers, where we consider a specific microscopic model of spacetime. In our model Planck size quantum black holes are taken to be the fundamental building blocks of space and time. Spacetime is assumed to be a graph, where black holes lie on the vertices. In this first paper we construct our model in details, and show how classical spacetime emerges at the long distance limit from our model. We also consider the statistics of spacetime.

Makela, J

2008-01-01T23:59:59.000Z

267

A Simple Quantum-Mechanical Model of Spacetime I: Microscopic Properties of Spacetime  

E-Print Network (OSTI)

This is the first part in a series of two papers, where we consider a specific microscopic model of spacetime. In our model Planck size quantum black holes are taken to be the fundamental building blocks of space and time. Spacetime is assumed to be a graph, where black holes lie on the vertices. In this first paper we construct our model in details, and show how classical spacetime emerges at the long distance limit from our model. We also consider the statistics of spacetime.

J. Makela

2008-05-26T23:59:59.000Z

268

Time-dependent simulations of large-scale quantum mechanical processes  

SciTech Connect

Time dependent linear and nonlinear equations govern the evolution of an extensive set of physical systems and processes describing, to enumerate just a few, Bose-Einstein condensates; soliton propagation in optical and photonic band-gap fibers; quantum control of atomic and molecular collisions and reactions; highly-compressed liquids; and dense and ultracold plasmas. While the media vary substantially, the basic computational procedures have many common features. We focus on the nonlinear Schrodinger equation and discuss two powerful approaches to its propagation: the Arnoldi/Lanczos(AL)l and Real Space Product Formula(RSPF)2. Both provide efficient systematic approximations to the short-time exponential propagator that moves the solution between time steps. We implement the former in a discrete variable representation (DVR)3 both in spatial grid and finite element forms and the latter in a spatial mesh with a finite difference representation of the kinetic energy operator. Both approaches require O(N) operations to propagate the wavefunction between time steps and handle multidimensional systems. We shall also draw connections with Liouville formulations used in quantum molecular dynamics simulations of large collections of atoms and molecules. After briefly outlining these formulations, we shall discuss some of the varied applications.

Collins, L. A. (Lee A.)

2002-01-01T23:59:59.000Z

269

Multiparty quantum protocols for assisted entanglement distillation  

Science Conference Proceedings (OSTI)

Quantum information theory is a multidisciplinary field whose objective is to understand what happens when information is stored in the state of a quantum system. Quantum mechanics provides us with a new resource, called quantum entanglement, ...

Nicolas Dutil

2011-01-01T23:59:59.000Z

270

New mechanism for nonlocality from string theory: UV-IR quantum entanglement and its imprints on the CMB  

Science Conference Proceedings (OSTI)

Puff field theories (PFT) arise as the decoupling limits of D3 branes in a Melvin universe and exhibit spatially nonlocal dynamics. Unlike other realizations of nonlocality in string theory, PFTs have full SO(3) rotational symmetry. In this work, we analyze the strongly coupled regime of a PFT through gravitational holography. We find a novel mechanism at the heart of the phenomenon of nonlocality: a quantum entanglement of UV and IR dynamics. In the holographic bulk, this translates to an apparent horizon splitting the space into two regions--with the UV completion of the PFT sitting at the horizon. We unravel this intricate UV-IR setting and devise a prescription for computing correlators that extends the original dictionary of holographic renormalization group. We then implement a cosmological scenario where PFT correlators set the initial conditions for primordial fluctuations. We compute the associated power spectrum of the cosmic microwave background and find that the scenario allows for a distinct stringy signature.

Minton, Gregory; Sahakian, Vatche [Harvey Mudd College, Physics Department, 241 Platt Boulevard, Claremont, California 91711 (United States)

2008-01-15T23:59:59.000Z

271

Two-electron reduction of ethylene carbonate: a quantum chemistry re-examination of mechanisms  

E-Print Network (OSTI)

Passivating solid-electrolyte interphase (SEI) films arising from electrolyte decomposition on low-voltage lithium ion battery anode surfaces are critical for battery operations. We review the recent theoretical literature on electrolyte decomposition and emphasize the modeling work on two-electron reduction of ethylene carbonate (EC, a key battery organic solvent). One of the two-electron pathways, which releases CO gas, is re-examined using simple quantum chemistry calculations. Excess electrons are shown to preferentially attack EC in the order (broken EC^-) > (intact EC^-) > EC. This confirms the viability of two electron processes and emphasizes that they need to be considered when interpreting SEI experiments. An estimate of the crossover between one- and two-electron regimes under a homogeneous reaction zone approximation is proposed.

Leung, Kevin

2013-01-01T23:59:59.000Z

272

A Quantum Mechanical Model of the Reissner-Nordstrom Black Hole  

E-Print Network (OSTI)

We consider a Hamiltonian quantum theory of spherically symmetric, asymptotically flat electrovacuum spacetimes. The physical phase space of such spacetimes is spanned by the mass and the charge parameters $M$ and $Q$ of the Reissner-Nordström black hole, together with the corresponding canonical momenta. In this four-dimensional phase space, we perform a canonical transformation such that the resulting configuration variables describe the dynamical properties of Reissner-Nordström black holes in a natural manner. The classical Hamiltonian written in terms of these variables and their conjugate momenta is replaced by the corresponding self-adjoint Hamiltonian operator, and an eigenvalue equation for the ADM mass of the hole, from the point of view of a distant observer at rest, is obtained. Our eigenvalue equation implies that the ADM mass and the electric charge spectra of the hole are discrete, and the mass spectrum is bounded below. Moreover, the spectrum of the quantity $M^2-Q^2$ is strictly positive wh...

Mäkelä, J M; Makela, Jarmo; Repo, Pasi

1998-01-01T23:59:59.000Z

273

Quantum walks: a comprehensive review  

E-Print Network (OSTI)

Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important resul...

Venegas-Andraca, Salvador E

2012-01-01T23:59:59.000Z

274

Quantum Computation Quantum Information  

E-Print Network (OSTI)

Quantum Computation and Quantum Information Samuel J. Lomonaco, Jr. and Howard E. Brandt editors Searches with a Quantum Robot .............................................. 12 pages Benioff, Paul Perturbation Theory and Numerical Modeling Quantum Logic Operations with a Large of Qubits

Lomonaco Jr., Samuel J.

275

Bohmian Mechanics  

E-Print Network (OSTI)

Bohmian mechanics is a theory about point particles moving along trajectories. It has the property that in a world governed by Bohmian mechanics, observers see the same statistics for experimental results as predicted by quantum mechanics. Bohmian mechanics thus provides an explanation of quantum mechanics. Moreover, the Bohmian trajectories are defined in a non-conspiratorial way by a few simple laws.

Detlef Duerr; Sheldon Goldstein; Roderich Tumulka; Nino Zanghi

2009-03-15T23:59:59.000Z

276

A Quantum Mechanical Model of the Reissner-Nordstrom Black Hole  

E-Print Network (OSTI)

We consider a Hamiltonian quantum theory of spherically symmetric, asymptotically flat electrovacuum spacetimes. The physical phase space of such spacetimes is spanned by the mass and the charge parameters $M$ and $Q$ of the Reissner-Nordstr\\"{o}m black hole, together with the corresponding canonical momenta. In this four-dimensional phase space, we perform a canonical transformation such that the resulting configuration variables describe the dynamical properties of Reissner-Nordstr\\"{o}m black holes in a natural manner. The classical Hamiltonian written in terms of these variables and their conjugate momenta is replaced by the corresponding self-adjoint Hamiltonian operator, and an eigenvalue equation for the ADM mass of the hole, from the point of view of a distant observer at rest, is obtained. Our eigenvalue equation implies that the ADM mass and the electric charge spectra of the hole are discrete, and the mass spectrum is bounded below. Moreover, the spectrum of the quantity $M^2-Q^2$ is strictly positive when an appropriate self-adjoint extension is chosen. The WKB analysis yields the result that the large eigenvalues of the quantity $\\sqrt{M^2-Q^2}$ are of the form $\\sqrt{2n}$, where $n$ is an integer. It turns out that this result is closely related to Bekenstein's proposal on the discrete horizon area spectrum of black holes.

Jarmo Makela; Pasi Repo

1997-08-15T23:59:59.000Z

277

NTS MC&A History  

Science Conference Proceedings (OSTI)

Within the past three years, the Nevada Test Site (NTS) has progressed from a Category IV to a Category I facility. In accordance with direction from the U. S. Department of Energy (DOE) Secretary and National Nuclear Security Administration (NNSA) Administrator, NTS received shipments of large quantities of special nuclear material from Los Alamos National Laboratory (LANL) and other sites in the DOE complex. September 2004 was the first occurrence of Category I material at the NTS, with the exception of two weeks of underground testing in 2001, since 1992. The Material Control and Accountability (MC&A) program was originally a joint-lab effort by LANL, Lawrence Livermore National Laboratory (LLNL), and Bechtel Nevada (BN), but in March 2006 the NNSA Nevada Site Office appointed the NTS Management and Operations contractor with sole responsibility. This paper will discuss the process and steps taken to transition the NTS MC&A program from multiple disciplines to a single entity and from a Category IV to a Category I program. This transition flourished as MC&A progressed from the 2004 Office of Assessment (OA) rating of “Significant Weakness” to the 2007 OA assessment rating of “Effective Performance.” The paper will provide timelines, funding and staffing issues, OA assessment findings and corrective actions, and future expectations. The process has been challenging, and MC&A’s innovative responses to the challenges have been very successful.

Mary Alice Price; Kim R. Young

2008-03-01T23:59:59.000Z

278

Quantum-mechanical model of the Kerr-Newman black hole  

E-Print Network (OSTI)

We consider a Hamiltonian quantum theory of stationary spacetimes containing a Kerr-Newman black hole. The physical phase space of such spacetimes is just six-dimensional, and it is spanned by the mass $M$, the electric charge $Q$ and angular momentum $J$ of the hole, together with the corresponding canonical momenta. In this six-dimensional phase space we perform a canonical transformation such that the resulting configuration variables describe the dynamical properties of Kerr-Newman black holes in a natural manner. The classical Hamiltonian written in terms of these variables and their conjugate momenta is replaced by the corresponding self-adjoint Hamiltonian operator and an eigenvalue equation for the Arnowitt-Deser-Misner (ADM) mass of the hole, from the point of view of a distant observer at rest, is obtained. In a certain very restricted sense, this eigenvalue equation may be viewed as a sort of "Schr\\"odinger equation of black holes". Our "Schr\\"odinger equation" implies that the ADM mass, electric charge and angular momentum spectra of black holes are discrete, and the mass spectrum is bounded from below. Moreover, the spectrum of the quantity $M^2-Q^2-a^2$, where $a$ is the angular momentum per unit mass of the hole, is strictly positive when an appropriate self-adjoint extension is chosen. The WKB analysis yields the result that the large eigenvalues of $M$, $Q$ and $a$ are of the form $\\sqrt{2n}$, where $n$ is an integer. It turns out that this result is closely related to Bekenstein's proposal on the discrete horizon area spectrum of black holes.

J. Makela; P. Repo; M. Luomajoki; J. Piilonen

2000-12-15T23:59:59.000Z

279

Biased nonlocal quantum games  

E-Print Network (OSTI)

We address the question of when quantum entanglement is a useful resource for information processing tasks by presenting a new class of nonlocal games that are simple, direct, generalizations of the Clauser Horne Shimony Holt game. For some ranges of the parameters that specify the games, quantum mechanics offers an advantage, while, surprisingly, for others quantum mechanics is no more powerful than classical mechanics in performing the nonlocal task. This sheds new light on the difference between classical, quantum and super-quantum correlations.

Thomas Lawson; Noah Linden; Sandu Popescu

2010-11-29T23:59:59.000Z

280

MC4523 Sealed Cap: Component & characteristics development report  

DOE Green Energy (OSTI)

The MC4523 Sealed Cap is a WW42C1 Percussion Primer that is pressed into a steel cylinder. Hermaticity of the input end is then provided by welding a thin steel closure disk on the input end of the MC4523. Thus, the user is provided with a component that is prequalified in terms of ignition sensitivity and hermeticity. The first customer is the Thermal Battery Department (1522). The MC4523 will be used on the MC2736A Thermal Battery which in turn will be used on the W78 JTA. Attachment of the MC4523 to the battery is with a laser weld. Combined test results of four production lots at a commercial supplier (PPI, TMS, WR1, and WR2) show an all-fire ignition sensitivity (.999 @ 50%) of approximately 60 millijoules of mechanical energy with a 2.2 gram firing pin. The firing pin had an impact tip with a radius of 0.020 inch. This firing pin is like that to be used in the W78 JTA application. Approximately 112 millijoules of mechanical energy will be supplied in the application, thus the design margin is more than adequate.

Begeal, D.R.

1997-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Quantum transducer in circuit optomechanics  

E-Print Network (OSTI)

Mechanical resonators are macroscopic quantum objects with great potential. They couple to many different quantum systems such as spins, optical photons, cold atoms, and Bose Einstein condensates. It is however difficult to measure and manipulate the phonon state due to the tiny motion in the quantum regime. On the other hand, microwave resonators are powerful quantum devices since arbitrary photon state can be synthesized and measured with a quantum tomography. We show that a linear coupling, strong and controlled with a gate voltage, between the mechanical and the microwave resonators enables to create quantum phonon states, manipulate hybrid entanglement between phonons and photons and generate entanglement between two mechanical oscillators. In circuit quantum optomechanics, the mechanical resonator acts as a quantum transducer between an auxiliary quantum system and the microwave resonator, which is used as a quantum bus.

Didier, Nicolas; Blanter, Yaroslav M; Fazio, Rosario

2012-01-01T23:59:59.000Z

282

McMaster Security 2012 Annual Report  

E-Print Network (OSTI)

McMaster Security Services 2012 Annual Report #12;McMaster Security Services ­ Annual Report 2012 2 Mission Statement Developing a safe and secure environment in this academic institution within the McMaster community is assigned to the Security Services Department. Methods and approaches

Thompson, Michael

283

Quantum Money  

Science Conference Proceedings (OSTI)

Quantum Money. Purpose: ... I will present a concrete quantum money scheme based on quantum superpositions of diagrams that encode knots. ...

2011-10-25T23:59:59.000Z

284

Fundamental decoherence in quantum gravity  

E-Print Network (OSTI)

A recently introduced discrete formalism allows to solve the problem of time in quantum gravity in a relational manner. Quantum mechanics formulated with a relational time is not exactly unitary and implies a fundamental mechanism for decoherence of quantum states. The mechanism is strong enough to render the black hole information puzzle unobservable.

Rodolfo Gambini; Rafael Porto; Jorge Pullin

2005-01-09T23:59:59.000Z

285

Property of Zero-Energy Flows and Creations and Annihilations of Vortices in Quantum Mechanics  

E-Print Network (OSTI)

Time-dependent processes accompanied by vortex creations and annihilations are investigated in terms of the eigenstates in conjugate spaces of Gel'fand triplets in 2-dimensions. Creations and annihilations of vortices are described by the insertions of unstable eigenstates with complex-energy eigenvalues into stable states written by the superposition of eigenstates with zero-energy eigenvalues. Some concrete examples are presented in terms of the eigenfunctions of the 2-dimensional parabolic potential barrier, i.e., $-m \\gamma^2 (x^2+y^2)/2$. We show that the processes accompanied by vortex creations and annihilations can be analyzed in terms of the eigenfunctions in the conjugate spaces of Gel'fand triplets. Throughout these examinations we point out three interesting properties of the zero-energy flows. (i) Mechanisms using the zero-energy flows are absolutely economical from the viewpoint of energy consumption. (ii) An enormous amount of informations can be discriminated in terms of the infinite variety of the zero-energy flows. (iii) The zero-energy flow patterns are absolutely stable in any disturbance by inserting arbitrary decaying flows with complex-energy eigenvalues.

Tsunehiro Kobayashi

2002-11-19T23:59:59.000Z

286

Quantum Algorithms for Quantum Field Theories  

E-Print Network (OSTI)

Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We develop a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (phi-fourth theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.

Stephen P. Jordan; Keith S. M. Lee; John Preskill

2011-11-15T23:59:59.000Z

287

Quantum Algorithms for Quantum Field Theories  

E-Print Network (OSTI)

Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We develop a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (phi-fourth theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.

Jordan, Stephen P; Preskill, John

2011-01-01T23:59:59.000Z

288

Quantum optical experiments and fundamentals of quantum theory  

E-Print Network (OSTI)

Quantum optical experiments and fundamentals of quantum theory Miloslav Dusek Department of Optics, Palacky University 17. listopadu 50, 772 00 Olomouc, Czech Republic ABSTRACT Quantum optics has o ered new possibilities for experimental tests of basic principles of quantum mechanics. It enables us to experimentally

Dusek, Miloslav

289

Direct Numerical Simulation of the Plumb–McEwan Laboratory Analog of the QBO  

Science Conference Proceedings (OSTI)

The laboratory experiment of Plumb and McEwan demonstrates the principal mechanism of periodically reversing winds observed in the stratosphere—the quasi-biennial oscillation (QBO). However, despite numerous studies, some aspects of the QBO and ...

Nils P. Wedi; Piotr K. Smolarkiewicz

2006-12-01T23:59:59.000Z

290

Edward McGinnis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Edward McGinnis Edward McGinnis About Us Edward McGinnis - Deputy Assistant Secretary, International Nuclear Energy Policy and Cooperation Edward McGinnis Mr. McGinnis is responsible for the Department of Energy's international civilian nuclear energy activities, including international nuclear energy research, development and demonstration cooperation, international framework and partnership development, international nuclear energy policy, and other international civilian nuclear energy-related activities carried out by the Department of Energy's Office of Nuclear Energy. As part of these responsibilities, Mr. McGinnis serves as Steering Group Chairman of the International Framework for Nuclear Energy Cooperation that consists of more than 60 countries and serves as the Departmental Representative to the

291

North Carolina Nuclear Profile - McGuire  

U.S. Energy Information Administration (EIA) Indexed Site

McGuire" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

292

MC and A instrumentation catalog  

SciTech Connect

In 1981 and 1985, two editions of a catalog of non-destructive nuclear measurement instrumentation, and material control and surveillance equipment, were published by Brookhaven National Laboratory (BNL). The last edition of the catalog included one hundred and twenty-five entries covering a wide range of devices developed in the US and abroad. More than ten years have elapsed since the publication of the more recent Catalog. Devices described in it have undergone significant modifications, and new devices have been developed. Therefore, in order to assist specialists in the field of Material Control and Accounting (MC and A), a new catalog has been created. Work on this instrumentation catalog started in 1997 as a cooperative effort of Brookhaven National Laboratory (BNL), operated by Brookhaven Science Associates under contract to the US Department of Energy, and the All-Russian Research Institute of Automatics (VNIIA), subordinate institute of the Atomic Energy Ministry of the Russian Federation, within the collaborative US-Russia Material Protection, Control, and Accounting (MPC and A) Program. Most of the equipment included in the Catalog are non-destructive assay (NDA) measurement devices employed for purposes of accounting, confirmation, and verification of nuclear materials. Other devices also included in the Catalog are employed in the detection and deterrence of unauthorized access to or removal of nuclear materials (material control: containment and surveillance). Equipment found in the Catalog comprises either: (1) complete devices or systems that can be used for MC and A applications; or (2) parts or components of complete systems, such as multi-channel analyzers, detectors, neutron generators, and software. All devices are categorized by their status of development--from prototype to serial production.

Neymotin, L. [ed.] [Brookhaven National Lab., Upton, NY (United States); Sviridova, V. [ed.] [All-Russian Research Inst. of Automatics, Moscow (Russian Federation)

1998-06-01T23:59:59.000Z

293

On Quantum Capacity and its Bound  

E-Print Network (OSTI)

The quantum capacity of a pure quantum channel and that of classical-quantum-classical channel are discussed in detail based on the fully quantum mechanical mutual entropy. It is proved that the quantum capacity generalizes the so-called Holevo bound.

Masanori Ohya; Igor V. Volovich

2004-06-29T23:59:59.000Z

294

Quantum error control codes  

E-Print Network (OSTI)

It is conjectured that quantum computers are able to solve certain problems more quickly than any deterministic or probabilistic computer. For instance, Shor's algorithm is able to factor large integers in polynomial time on a quantum computer. A quantum computer exploits the rules of quantum mechanics to speed up computations. However, it is a formidable task to build a quantum computer, since the quantum mechanical systems storing the information unavoidably interact with their environment. Therefore, one has to mitigate the resulting noise and decoherence effects to avoid computational errors. In this dissertation, I study various aspects of quantum error control codes - the key component of fault-tolerant quantum information processing. I present the fundamental theory and necessary background of quantum codes and construct many families of quantum block and convolutional codes over finite fields, in addition to families of subsystem codes. This dissertation is organized into three parts: Quantum Block Codes. After introducing the theory of quantum block codes, I establish conditions when BCH codes are self-orthogonal (or dual-containing) with respect to Euclidean and Hermitian inner products. In particular, I derive two families of nonbinary quantum BCH codes using the stabilizer formalism. I study duadic codes and establish the existence of families of degenerate quantum codes, as well as families of quantum codes derived from projective geometries. Subsystem Codes. Subsystem codes form a new class of quantum codes in which the underlying classical codes do not need to be self-orthogonal. I give an introduction to subsystem codes and present several methods for subsystem code constructions. I derive families of subsystem codes from classical BCH and RS codes and establish a family of optimal MDS subsystem codes. I establish propagation rules of subsystem codes and construct tables of upper and lower bounds on subsystem code parameters. Quantum Convolutional Codes. Quantum convolutional codes are particularly well-suited for communication applications. I develop the theory of quantum convolutional codes and give families of quantum convolutional codes based on RS codes. Furthermore, I establish a bound on the code parameters of quantum convolutional codes - the generalized Singleton bound. I develop a general framework for deriving convolutional codes from block codes and use it to derive families of non-catastrophic quantum convolutional codes from BCH codes. The dissertation concludes with a discussion of some open problems.

Abdelhamid Awad Aly Ahmed, Sala

2008-05-01T23:59:59.000Z

295

Impact of biexcitons on the relaxation mechanisms of polaritons in III-nitride based multiple quantum well microcavities  

E-Print Network (OSTI)

.2Ga0.8N (3.6 nm) stack. Both samples have129 been grown by metal organic vapor phase epitaxy (MOVPE)31130 on a 3 ?m thick GaN buffer deposited on a c-plane sapphire131 substrate. The first sample investigated here, i.e., the bare-132 MQW sample... in the two samples, given the very different 161 underlying layer morphology. More specifically, compared to 162 the bare-MQW sample, the QWs in the MC sample are more 163 compressively strained, and therefore their excitonic emission 164 line will appear...

Corfdir, Pierre; Levrat, Jacques; Rossbach, Georg; Butté, Raphaël; Feltin, Eric; Carlin, Jean-François; Christmann, Gabriel; Lefebvre, Pierre; Ganière, Jean-Daniel; Grandjean, Nicolas; Deveaud-Plédran, Benoît

2012-01-01T23:59:59.000Z

296

MC Appliance: Order (2012-CE-1508)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered CNA International Inc. d/b/a MC Appliance Corporation to pay a $8,000 civil penalty after finding MC Appliance had failed to certify that certain models of room air conditioners comply with the applicable energy conservation standards.

297

Solution of a three-body problem in quantum mechanics using sparse linear algebra on parallel computers  

Science Conference Proceedings (OSTI)

A complete description of two outgoing electrons following an ionizing collision between a single electron and an atom or molecule has long stood as one of the unsolved fundamental problems in quantum collision theory. In this paper we describe our use ...

Mark Baertschy; Xiaoye Li

2001-11-01T23:59:59.000Z

298

Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas and holographic duality  

E-Print Network (OSTI)

Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical and that do not have a simple description in terms of weakly interacting quasiparticles. Two systems that have recently ...

Adams, Allan

299

Parity splitting and E1/E2 branching in the alternating parity band of {sup 240}Pu from two-center octupole wave functions using supersymmetric quantum mechanics  

Science Conference Proceedings (OSTI)

An interpretation is suggested of the recently published experimental data on the alternating parity bands in {sup 240}Pu. The interpretation is based on the assumption that the main role in the description of the properties of the alternating parity bands plays the octupole mode which preserves the axial symmetry. The mathematical technique of the supersymmetric quantum mechanics is used for the realization of the model with the two-center octupole wave functions. A good description of the parity splitting and of the ratio of the dipole and quadrupole transitional moments is obtained for the first two bands.

Jolos, R. V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Institut fuer Kernphysik der Universitaet zu Koeln, D-50937 Koeln (Germany); Brentano, P. von [Institut fuer Kernphysik der Universitaet zu Koeln, D-50937 Koeln (Germany)

2011-08-15T23:59:59.000Z

300

Quantum Structures and their Future Diederik Aerts  

E-Print Network (OSTI)

Quantum Structures and their Future Importance Diederik Aerts FUND and CLEA, Brussels Free physical and mathematical base. The development of quantum mechanics proceeded in a rather haphazard manner, quantum mechanics, com- monly referred to as the `old quantum theory', did not even possess a coherent

Aerts, Diederik

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Quantum groups  

Science Conference Proceedings (OSTI)

The theory of Quantum groups, although rather young, since the expression Quantum ... introduction of a suitable form of the quantum group, the algebra A ...

302

McGrawMonterey1  

NLE Websites -- All DOE Office Websites (Extended Search)

PERSPECTIVES ON THE ROLE OF ÔLUCKY DROPSÕ IN DRIZZLE PERSPECTIVES ON THE ROLE OF ÔLUCKY DROPSÕ IN DRIZZLE FORMATION Robert McGraw, Yangang Liu and Peter Daum Atmospheric Sciences Division * * * * * * 10µ ... ... 20µ 30µ * ... * ... * cloud droplet growth kinetics cloud droplets drizzle drops condensation evaporation collection β g cond g D = γ g eff β g coll dg dt v dv drop dt g L = = ≈ × - 1 3 13 10 1 13 2 ( ) . (Long's polynomial collection kernel) 3. Threshold Function (T LDM ) Autoconversion parameterizations can be generically written as: where P 0 is the rate after onset of the autoconversion process and T describes the threshold behavior. T P P 0 = H H H HI I I IG G G GH H H H D D D DR R R RI I I IZ Z Z ZZ Z Z ZL L L LE E E E C C C CO O O ON N N ND D D DI I I IT T T TI I I IO O O ON N N NS S S S L L L LO O O OW W W W D D D DR R R RI I I IZ Z Z ZZ Z Z ZL L L LE E E E T LDM = 0.9 0.1 N D = droplet concentration (cm -3 ) L = liquid water fraction

303

MC-ICAM Approach to . . .  

E-Print Network (OSTI)

The question whether marginal cost pricing should be applied in the transportation sector has attained a great deal of attention during the last few years. It is argued that marginal cost pricing, or marginal social cost pricing – a term used when one wishes to emphasise that the pricing is applied by a government / regulator – would secure social efficiency by ensuring that each activity by each user of transport infrastructure would be extended to the point where the social benefit of the last unit equals the social cost. Otherwise, since marginal private costs and benefits can differ significantly from the corresponding social costs and benefits – due to various externalities and other market imperfections – the resulting market allocation would typically be inefficient. The MC-ICAM project will address issues related to the actual implementation of the pricing principle. It will investigate an implementation path of change – the transition path suggesting how to get from the current non-optimal situation with no marginal cost pricing to the optimal end state(s). The project will incorporate or cover: 1. all major modes (urban, interurban road, rail, air, water), and both freight and passenger transport;

Chris Nash; Stef Proost; Erik Verhoef; et al.

2001-01-01T23:59:59.000Z

304

McGrawNorfolk.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

CLOUD PROCESSES USING THE QUADRATURE METHOD OF CLOUD PROCESSES USING THE QUADRATURE METHOD OF MOMENTS Robert McGraw and Yangang Liu Atmospheric Sciences Division Brookhaven National Laboratory, Upton, NY 11973 0 100 200 300 400 500 600 time HsecondsL 0.15 0.175 0.2 0.225 0.25 0.275 0.3 frI 0 100 200 300 400 500 600 time HsecondsL 0.4 0.45 0.5 0.55 0.6 0.65 0.7 frII 0 100 200 300 400 500 600 time HsecondsL 0 0.1 0.2 0.3 0.4 0.5 frIII QMOM with 7 moment tracking Particle-resolved simulation (circa 100000 particles) EVOLUTION OF PARTICLE NUMBER FRACTION Population I Population II Population III QMOM with 14 moment tracking Q Q Q QM M M MO O O OM M M M s s s si i i im m m mu u u ul l l la a a at t t ti i i io o o on n n ns s s s o o o on n n n l l l la a a ap p p pt t t to o o op p p p i i i in n n n u u u un n n nd d d de e e er r r r 1 1 1 1 s s s se e e ec c c co o o on n n nd d d d 2. Evolution of moments during diffusion-controlled growth

305

Quantum Computing and Lie Theory Feynman's suggestion that the only effective way to model quantum phe-  

E-Print Network (OSTI)

Quantum Computing and Lie Theory Feynman's suggestion that the only effective way to model quantum phe- nomena on a computer would be to build a computer that made use of quantum mechanics was one of the cornerstones of the birth of quantum com- puting. In his later years he studied both classical and quantum

D'Agnolo, Andrea

306

Quantum Information Science Quantum information science is one of the most  

E-Print Network (OSTI)

____ 22 Quantum Information Science Quantum information science is one of the most dynamic areas the programme focussed were: · characterising and quantifying non-local properties of quantum states and operations; · understanding which features of quantum mechanics are responsible for the power of quantum

307

Quantum Cryptography and Quantum Computation  

E-Print Network (OSTI)

Quantum Cryptography and Quantum Computation Network Security Course Project Report by Hidayath.2 Bases of the Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Quantum principle . . . . . . . . . . . . . . . . . . . . . . 5 3 Quantum Cryptography 6 3.1 The BB84 protocol

North Carolina at Chapel Hill, University of

308

Transforming quantum operations: quantum supermaps  

E-Print Network (OSTI)

We introduce the concept of quantum supermap, describing the most general transformation that maps an input quantum operation into an output quantum operation. Since quantum operations include as special cases quantum states, effects, and measurements, quantum supermaps describe all possible transformations between elementary quantum objects (quantum systems as well as quantum devices). After giving the axiomatic definition of supermap, we prove a realization theorem, which shows that any supermap can be physically implemented as a simple quantum circuit. Applications to quantum programming, cloning, discrimination, estimation, information-disturbance trade-off, and tomography of channels are outlined.

G. Chiribella; G. M. D'Ariano; P. Perinotti

2008-04-01T23:59:59.000Z

309

McCup | Open Energy Information  

Open Energy Info (EERE)

McCup McCup Jump to: navigation, search Name McCup Place Sofia, Bulgaria Zip 1680 Sector Renewable Energy, Solar, Wind energy Product String representation "McCUP is an inv ... Energy Society." is too long. Coordinates 42.697085°, 23.32455° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.697085,"lon":23.32455,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

NREL: Energy Analysis - Joyce McLaren  

NLE Websites -- All DOE Office Websites (Extended Search)

McLaren is a member of the Market and Policy Impact Analysis Group in the Strategic Energy Analysis Center. Senior Energy Analyst On staff since February 2009 Phone number:...

311

NREL: Energy Analysis - Ryan McKeel  

NLE Websites -- All DOE Office Websites (Extended Search)

CO (2006-2009) Selected publications Ong, S.; McKeel, R. (2012). "National Utility Rate Database: Preprint." 9 pp.; NREL Report No. CP-6A20-54633. Linderman, Mark; Combs,...

312

Quantum Communication Technology  

E-Print Network (OSTI)

Quantum communication is built on a set of disruptive concepts and technologies. It is driven by fascinating physics and by promising applications. It requires a new mix of competencies, from telecom engineering to theoretical physics, from theoretical computer science to mechanical and electronic engineering. First applications have already found their way to niche markets and university labs are working on futuristic quantum networks, but most of the surprises are still ahead of us. Quantum communication, and more generally quantum information science and technologies, are here to stay and will have a profound impact on the XXI century.

Gisin, Nicolas

2010-01-01T23:59:59.000Z

313

Quantum Buckling  

E-Print Network (OSTI)

We study the mechanical buckling of a two dimensional membrane coated with a thin layer of superfluid. It is seen that a singularity (vortex or anti-vortex defect) in the phase of the quantum order parameter, distorts the membrane metric into a negative conical singularity surface, irrespective of the defect sign. The defect-curvature coupling and the observed instability is in striking contrast with classical elasticity where, the in-plane strain induced by positive (negative) disclinations is screened by a corresponding positive (negative) conical singularity surface. Defining a dimensionless ratio between superfluid stiffness and membrane bending modulus, we derive conditions under which the quantum buckling instability occurs. An ansatz for the resulting shape of the buckled membrane is analytically and numerically confirmed.

N. Upadhyaya; V. Vitelli

2011-06-23T23:59:59.000Z

314

Magnetic Blockade Mechanism for Quantum Nucleation of Superconducting Vortex-Antivortex Pairs in Zero External Magnetic Field  

E-Print Network (OSTI)

We propose a magnetic dual of the Coulomb blockade effect for quantum nucleation of flux vortex pairs in high-Tc superconducting (HTS) films and grain boundaries in zero applied field. The magnetic blockade instability occurs at {\\theta} = {\\pi}, where {\\theta} is the "vacuum" or theta angle. The {\\theta} term has recently been discussed in the context of several other systems, including charge and spin density waves, topological insulators, the quantum Hall effect, and spontaneous CP violation. Our model predicts a sharp pair creation threshold current at {\\theta} = {\\pi}, analogous to the Coulomb blockade voltage of a tunnel junction, and explains the observed thickness dependence of critical currents in HTS coated conductors. We use the Schr\\"odinger equation to compute the evolving macrostate amplitudes, coupled by a generalized tunneling matrix element. The simulations yield excellent quantitative agreement with measured voltage-current characteristics of bi-crystal and other HTS grain boundary junctions. The model also predicts non-sinusoidal behavior in the voltage oscillations resulting from time-correlated vortex tunneling.

J. H. Miller Jr.; A. I. Wijesinghe

2011-10-12T23:59:59.000Z

315

Quantum Tetrahedra  

E-Print Network (OSTI)

We discuss in details the role of Wigner 6j symbol as the basic building block unifying such different fields as state sum models for quantum geometry, topological quantum field theory, statistical lattice models and quantum computing. The apparent twofold nature of the 6j symbol displayed in quantum field theory and quantum computing -a quantum tetrahedron and a computational gate- is shown to merge together in a unified quantum-computational SU(2)-state sum framework.

Mauro Carfora; Annalisa Marzuoli; Mario Rasetti

2010-01-25T23:59:59.000Z

316

Quantum physics meets biology  

E-Print Network (OSTI)

Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the last decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world view of quantum coherences, entanglement and other non-classical effects, has been heading towards systems of increasing complexity. The present perspective article shall serve as a pedestrian guide to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future quantum biology, its current status, recent experimental progress and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.

Markus Arndt; Thomas Juffmann; Vlatko Vedral

2009-11-01T23:59:59.000Z

317

Nonlinear Quantum Gravity  

E-Print Network (OSTI)

Nonlinear quantum mechanics at the Planck scale can produce nonlocal effects contributing to resolution of singularities, to cosmic acceleration, and modified black-hole dynamics, while avoiding the usual causality issues.

George Svetlichny

2006-02-01T23:59:59.000Z

318

Quantum History cannot be Copied  

E-Print Network (OSTI)

We show that unitarity does not allow cloning of any two points in a ray. This has implication for cloning of the geometric phase information in a quantum state. In particular, the quantum history which is encoded in the geometric phase during cyclic evolution of a quantum system cannot be copied. We also prove that the generalized geometric phase information cannot be copied by a unitary operation. We argue that our result also holds in the consistent history formulation of quantum mechanics.

Arun K. Pati

2005-07-26T23:59:59.000Z

319

Multiphoton Quantum Optics and Quantum State Engineering  

E-Print Network (OSTI)

We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical

Silvio De Siena; Fabrizio Illuminati

2007-01-01T23:59:59.000Z

320

Multiphoton Quantum Optics and Quantum State Engineering  

E-Print Network (OSTI)

We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromnagnetic field, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.

F. Dell'Anno; S. De Siena; F. Illuminati

2007-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Quantum Key Distribution Using Quantum Faraday Rotators  

E-Print Network (OSTI)

We propose a new quantum key distribution (QKD) protocol based on the fully quantum mechanical states of the Faraday rotators. The protocol is unconditionally secure against eavesdropping for single-photon source on a noisy environment and robust against impersonation attacks. It also allows for unconditionally secure key distribution for multiphoton source up to two photons. The protocol could be implemented experimentally with the current spintronics technology on semiconductors.

Choi, T; Choi, Mahn-Soo; Choi, Taeseung

2006-01-01T23:59:59.000Z

322

Quantum Inequalities That Test Locality Dennis Dieks  

E-Print Network (OSTI)

Quantum Inequalities That Test Locality Dennis Dieks Institute for the History and Foundations.g.b.j.dieks@phys.uu.nl 20 June 2002 Abstract Quantum theory violates Bell's inequality, but not to the maxi- mum extent). These are quantum analogues of Bell inequalities, and we show that they can be used to test quantum mechanical lo

Seevinck, Michiel

323

Quantum Field Theory and Representation Theory  

E-Print Network (OSTI)

Quantum Field Theory and Representation Theory Peter Woit woit@math.columbia.edu Department of Mathematics Columbia University Quantum Field Theory and Representation Theory ­ p.1 #12;Outline of the talk · Quantum Mechanics and Representation Theory: Some History Quantum Field Theory and Representation Theory

Woit, Peter

324

McKinsey Global Institute Big data: The next frontier  

E-Print Network (OSTI)

McKinsey Global Institute Big data: The next frontier for innovation, competition, and productivity June 2011 #12;The McKinsey Global Institute The McKinsey Global Institute (MGI), established in 1990, is McKinsey & Company's business and economics research arm. MGI's mission is to help leaders

Chen, Keh-Hsun

325

Nolan McCarty 9/25/12 Nolan McCarty  

E-Print Network (OSTI)

of Georgia (2010) University of Kentucky, Department of Political Science (2000) University of MinnesotaNolan McCarty 9/25/12 Nolan McCarty Department of Politics Princeton University Princeton, NJ 08544 and Public Affairs, Princeton University, 2007- present. Research associate, National Bureau of Economic

326

Quantum computers: Definition and implementations  

Science Conference Proceedings (OSTI)

The DiVincenzo criteria for implementing a quantum computer have been seminal in focusing both experimental and theoretical research in quantum-information processing. These criteria were formulated specifically for the circuit model of quantum computing. However, several new models for quantum computing (paradigms) have been proposed that do not seem to fit the criteria well. Therefore, the question is what are the general criteria for implementing quantum computers. To this end, a formal operational definition of a quantum computer is introduced. It is then shown that, according to this definition, a device is a quantum computer if it obeys the following criteria: Any quantum computer must consist of a quantum memory, with an additional structure that (1) facilitates a controlled quantum evolution of the quantum memory; (2) includes a method for information theoretic cooling of the memory; and (3) provides a readout mechanism for subsets of the quantum memory. The criteria are met when the device is scalable and operates fault tolerantly. We discuss various existing quantum computing paradigms and how they fit within this framework. Finally, we present a decision tree for selecting an avenue toward building a quantum computer. This is intended to help experimentalists determine the most natural paradigm given a particular physical implementation.

Perez-Delgado, Carlos A.; Kok, Pieter [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH (United Kingdom)

2011-01-15T23:59:59.000Z

327

The MC&A Council at SSC RF-IPPE as a Coordinating Body for System Sustainability  

SciTech Connect

The State Scientific Center of the Russian Federation - Institute of Physics and Power Engineering's (SSC RF - IPPE) practice of nuclear material control and accounting (MC&A) has undergone significant changes during the period of cooperation with U.S. national laboratories from 1995 to the present. These changes corresponded with general changes of the Russian system of state control and accounting of nuclear materials resulting from the new Concept of the System for State Regulating and Control of Nuclear Materials (1996) and further regulatory documents, which were developed and implemented to take into account international experience in the MC&A [1]. During the upgrades phase of Russian-U.S. cooperation, an MC&A laboratory was specially created within the SSC RF - IPPE for the purpose of guiding the creation of the upgraded MC&A system, coordinating the activities of all units involved in the creation of this system, and implementing a unified technical policy during the transition period. After five years of operation of the MC&A laboratory and the implementation of new components for the upgraded MC&A system, it was decided that a greater degree of attention must be paid to the MC&A system's operation in addition to the coordination activities carried out by the MC&A laboratory. To meet this need, an organization for operation of the nuclear material (NM) control and accounting system was created as part of the Division of NM Transportation and Storage. It was also recognized that a new mechanism was required for effective coordination of MC&A activities in IPPE, including the implementation of a unified MC&A policy in methodological, technical and practical areas. This mechanism should allow the IPPE management to gain an objective evaluation of the MC&A system status and provide leading specialists with objective recommendations on maintenance of MC&A system and on basic directions for further improvements. Preliminary discussions indicated that such a mechanism could be created through the establishment of an MC&A Council at SSC RF - IPPE. The MC&A Council has been created in SSC RF - IPPE as an advisory body without administrative functions. However it is stated in the Council Regulations that if the IPPE Director General or his Deputy responsible for NM control and accounting approves Council recommendations, the recommendations become obligatory. In this paper, the experience of the Council and its initial activities are presented and discussed in, as are possible activities and roles the Council could play in the future.

Poplavko, V; Skorkin, V; Myakishev, G

2004-07-12T23:59:59.000Z

328

Quantum Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Institute Quantum Institute Quantum Institute A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. Contact Leader Malcolm Boshier (505) 665-8892 Email Two of LANL's most successful quantum technology initiatives: quantum cryptography and the race for quantum computer The area of quantum information, science, and technology is rapidly evolving, with important applications in the areas of quantum cryptography, quantum computing, quantum metrology, and advanced quantum-based sensors, some of which are directly relevant to the Laboratory's national security mission. Mission Foster a vigorous intellectual environment at LANL Define and develop strategic thrusts Target and pursue funding opportunities

329

McElroy grows longwall production safely  

Science Conference Proceedings (OSTI)

One of America's leading underground coal mines has successfully transitions to a two-panel mine. A second longwall face way installed by CONSOL Energy at the McElroy mine south of Moundsville, W.Va. as part of a $200 m upgrade some five years ago. The article describes this installation and the current operations. 3 photos.

Fiscor, S.

2009-05-15T23:59:59.000Z

330

Quantum irreversible process in a simple model  

E-Print Network (OSTI)

We present a very simple model of a quantum system in which an irreversible process happens. The model can be used as an example of a quantum dynamical problem in introductory courses of Quantum Mechanics or as the introduction to courses on Quantum Irreversible Processes. In both cases it will help students to build some intuition on dynamical behaviour of quantum systems consisting of many degrees of freedom beyond perturbation theory and classical thermodynamics.

Wójcik, Krzysztof Piotr

2012-01-01T23:59:59.000Z

331

Quantum Locality?  

Science Conference Proceedings (OSTI)

Robert Griffiths has recently addressed, within the framework of a ‘consistent quantum theory’ (CQT) that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues, on the basis of his examination of certain arguments that claim to demonstrate the existence of such nonlocal influences, that such influences do not exist. However, his examination was restricted mainly to hidden-variable-based arguments that include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. One cannot logically prove properties of a system by attributing to the system properties alien to that system. Hence Griffiths’ rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his ‘consistent quantum theory’ shows that the cited proof is valid within that restrictive framework. This necessary existence, within the ‘consistent’ framework, of long range essentially instantaneous influences refutes the claim made by Griffiths that his ‘consistent’ framework is superior to the orthodox quantum theory of von Neumann because it does not entail instantaneous influences. An added section responds to Griffiths’ reply, which cites a litany of ambiguities that seem to restrict, devastatingly, the scope of his CQT formalism, apparently to buttress his claim that my use of that formalism to validate the nonlocality theorem is flawed. But the vagaries that he cites do not upset the proof in question. It is show here in detail why the precise statement of this theorem justifies the specified application of CQT. It is also shown, in response to his challenge, why a putative proof of locality that he has proposed is not valid.

Stapp, Henry

2011-11-10T23:59:59.000Z

332

Quantum Computation: Towards the Construction of a `Between Quantum and Classical Computer'  

E-Print Network (OSTI)

Quantum Computation: Towards the Construction of a `Between Quantum and Classical Computer-Mails: diraerts@vub.ac.be, bdhooghe@vub.ac.be Abstract Using the `between quantum and classical' models that have been constructed explicitly within the hidden measurement approach of quantum mechanics we investigate

Aerts, Diederik

333

Algorithmic randomness, quantum physics, and incompleteness  

Science Conference Proceedings (OSTI)

Is randomness in quantum mechanics “algorithmically random”? Is there any relation between Heisenberg's uncertainty relation and Gödel's incompleteness? Can quantum randomness be used to trespass the Turing's barrier? Can ...

Cristian S. Calude

2004-09-01T23:59:59.000Z

334

Quantum Harmonic Black Holes  

E-Print Network (OSTI)

Inspired by the recent conjecture that black holes are condensates (of gravitons), we investigate a simple model for the black hole degrees of freedom that is consistent both from the point of view of Quantum mechanics and of General Relativity. Since the two perspectives should converge for small, Planck size, black holes, we expect our construction is useful for understanding the physics of microscopic, quantum black holes.

Casadio, R

2013-01-01T23:59:59.000Z

335

McMASTER SECURITY SERVICES ANNUAL REPORT 2006  

E-Print Network (OSTI)

McMASTER SECURITY SERVICES ANNUAL REPORT 2006 Making McMaster a safe place to work, live, learn 1 CPTED Ontario Conference ­ Oshawa 1 Diversity Education 19 Due Diligence Training 5 Front Line

Thompson, Michael

336

McMASTER SECURITY SERVICES ANNUAL REPORT 2005  

E-Print Network (OSTI)

McMASTER SECURITY SERVICES ANNUAL REPORT 2005 Making McMaster a safe place to work, live and learn Training Front Line Officers ­ HPS 4 OACUSA Annual Conference 3 OACUSA Security Officer Training

Thompson, Michael

337

McLeod Cooperative Power Assn | Open Energy Information  

Open Energy Info (EERE)

McLeod Cooperative Power Assn Jump to: navigation, search Name McLeod Cooperative Power Assn Place Minnesota Utility Id 11910 Utility Location Yes Ownership C NERC Location MRO...

338

The MC21 Monte Carlo Transport Code  

SciTech Connect

MC21 is a new Monte Carlo neutron and photon transport code currently under joint development at the Knolls Atomic Power Laboratory and the Bettis Atomic Power Laboratory. MC21 is the Monte Carlo transport kernel of the broader Common Monte Carlo Design Tool (CMCDT), which is also currently under development. The vision for CMCDT is to provide an automated, computer-aided modeling and post-processing environment integrated with a Monte Carlo solver that is optimized for reactor analysis. CMCDT represents a strategy to push the Monte Carlo method beyond its traditional role as a benchmarking tool or ''tool of last resort'' and into a dominant design role. This paper describes various aspects of the code, including the neutron physics and nuclear data treatments, the geometry representation, and the tally and depletion capabilities.

Sutton TM, Donovan TJ, Trumbull TH, Dobreff PS, Caro E, Griesheimer DP, Tyburski LJ, Carpenter DC, Joo H

2007-01-09T23:59:59.000Z

339

Smartphone data safety with quantum cryptography  

NLE Websites -- All DOE Office Websites (Extended Search)

Smartphone data safety with quantum cryptography Smartphone data safety with quantum cryptography Smartphone data safety with quantum cryptography Laws of quantum physics and information theory ensure that smartphones with QKarD could never be compromised. January 20, 2012 The QKarD encodes security keys on a photon using quantum mechanical principles. The miniature transmitter communicates with a trusted authority to generate random cryptographic keys to encode and decode information. The QKarD encodes security keys on a photon using quantum mechanical principles. The laws of quantum physics and information theory ensure that these keys never can be cracked, regardless of advancements in computer technology. New technology brings quantum cryptography to handhelds Laws of quantum physics and information theory ensure that smartphones with

340

Quantum-enhanced absorption refrigerators  

E-Print Network (OSTI)

Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators.

Luis A. Correa; José P. Palao; Daniel Alonso; Gerardo Adesso

2013-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

WA_06_013_McDERMOTT_TECHNOLOGY_INC_Waiver_of_Patent_Rights_t...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3McDERMOTTTECHNOLOGYINCWaiverofPatentRightst.pdf WA06013McDERMOTTTECHNOLOGYINCWaiverofPatentRightst.pdf WA06013McDERMOTTTECHNOLOGYINCWaiverofPatentRights...

342

Quantum computation and hidden variables  

E-Print Network (OSTI)

Many physicists limit oneself to an instrumentalist description of quantum phenomena and ignore the problems of foundation and interpretation of quantum mechanics. This instrumentalist approach results to "specialization barbarism" and mass delusion concerning the problem, how a quantum computer can be made. The idea of quantum computation can be described within the limits of quantum formalism. But in order to understand how this idea can be put into practice one should realize the question: "What could the quantum formalism describe?", in spite of the absence of an universally recognized answer. Only a realization of this question and the undecided problem of quantum foundations allows to see in which quantum systems the superposition and EPR correlation could be expected. Because of the "specialization barbarism" many authors are sure that Bell proved full impossibility of any hidden-variables interpretation. Therefore it is important to emphasize that in reality Bell has restricted to validity limits of the no- hidden-variables proof and has shown that two-state quantum system can be described by hidden variables. The later means that no experimental result obtained on two-state quantum system can prove the existence of superposition and violation of the realism. One should not assume before unambiguous experimental evidence that any two-state quantum system is quantum bit. No experimental evidence of superposition of macroscopically distinct quantum states and of a quantum bit on base of superconductor structure was obtained for the present. Moreover same experimental results can not be described in the limits of the quantum formalism.

V. V. Aristov; A. V. Nikulov

2010-07-12T23:59:59.000Z

343

Quantum Weak Measurements and Cosmology  

E-Print Network (OSTI)

The indeterminism of quantum mechanics generally permits the independent specification of both an initial and a final condition on the state. Quantum pre-and-post-selection of states opens up a new, experimentally testable, sector of quantum mechanics, when combined with statistical averages of identical weak measurements. In this paper I apply the theory of weak quantum measurements combined with pre-and-post-selection to cosmology. Here, pre-selection means specifying the wave function of the universe or, in a popular semi-classical approximation, the initial quantum state of a subset of quantum fields propagating in a classical back-ground spacetime. The novel feature is post-selection: the additional specification of a condition on the quantum state in the far future. I discuss "natural" final conditions, and show how they may lead to potentially large and observable effects at the present cosmological epoch. I also discuss how pre-and-post-selected quantum contrast to the expectation value of the stress-energy-momentum tensor, resolving a vigorous debate from the 1970's. The paper thus provides a framework for computing large-scale cosmological effects arising from this new sector of quantum mechanics. A simple experimental test is proposed.

Paul Davies

2013-09-03T23:59:59.000Z

344

Fundamental Quantum Effects from a Quantum-Optics Perspective  

E-Print Network (OSTI)

This article provides a brief overview of some fundamental effects of quantum fields under extreme conditions. For the Schwinger mechanism, Hawking radiation, and the Unruh effect, analogies to quantum optics are discussed, which might help to approach to these phenomena from an experimental point of view.

Ralf Schützhold

2010-04-14T23:59:59.000Z

345

McNeil Biomass Power | Open Energy Information  

Open Energy Info (EERE)

McNeil Biomass Power McNeil Biomass Power Jump to: navigation, search Name McNeil Biomass Power Place Burlington, VT Website http://www.mcneilbiomasspower. References McNeil Biomass Power[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! McNeil Biomass Power is a company located in Burlington, VT. References ↑ "McNeil Biomass Power" Retrieved from "http://en.openei.org/w/index.php?title=McNeil_Biomass_Power&oldid=379514" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

346

Quantum Chromodynamics  

E-Print Network (OSTI)

Quantum chromodynamics is the quantum gauge field theory that describes the strong interactions. This article reviews the basic structure, successes and challenges of quantum chromodynamics as it manifests itself at short and long distances, including the concepts of asymptotic freedom, confinement and infrared safety.

George Sterman

2005-12-27T23:59:59.000Z

347

Fritz Hasenohrl and E = mc^2  

E-Print Network (OSTI)

In 1904, the year before Einstein's seminal papers on special relativity, Austrian physicist Fritz Hasenohrl examined the properties of blackbody radiation in a moving cavity. He calculated the work necessary to keep the cavity moving at a constant velocity as it fills with radiation and concluded that the radiation energy has associated with it an apparent mass such that E = 3/8 mc^2. Also in 1904, Hasenohrl achieved the same result by computing the force necessary to accelerate a cavity already filled with radiation. In early 1905, he corrected the latter result to E = 3/4 mc^2. In this paper, Hasenohrl's papers are examined from a modern, relativistic point of view in an attempt to understand where he went wrong. The primary mistake in his first paper was, ironically, that he didn't account for the loss of mass of the blackbody end caps as they radiate energy into the cavity. However, even taking this into account one concludes that blackbody radiation has a mass equivalent of m = 4/3 E/c^2 or m = 5/3 E/c^2 depending on whether one equates the momentum or kinetic energy of radiation to the momentum or kinetic energy of an equivalent mass. In his second and third papers that deal with an accelerated cavity, Hasenohrl concluded that the mass associated with blackbody radiation is m = 4/3 E/c^2, a result which, within the restricted context of Hasenohrl's gedanken experiment, is actually consistent with special relativity. Both of these problems are non-trivial and the surprising results, indeed, turn out to be relevant to the "4/3 problem" in classical models of the electron. An important lesson of these analyses is that E = mc^2, while extremely useful, is not a "law of physics" in the sense that it ought not be applied indiscriminately to any extended system and, in particular, to the subsystems from which they are comprised.

Stephen Boughn

2013-03-28T23:59:59.000Z

348

Multiphoton Quantum Optics and Quantum State Engineering  

E-Print Network (OSTI)

We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states...

Dell'Anno, F; Illuminati, F; 10.1016/j.physrep.2006.01.004

2009-01-01T23:59:59.000Z

349

EM Program Update -- McNeil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the the Transportation External Coordination Working Group February 6, 2008 Ella McNeil Acting Director Office of Packaging and Transportation Office of Environmental Management U.S. Department of Energy Environmental Management Program Update There's a New EM Transportation Organization * Combines all packaging and transportation functions in a single office * Office of Transportation * Packaging and Certification Program * Reorganization will be transparent * Underlying principles and philosophy remains * Packaging and transport critical to mission success * Safety is in the package * Packaging certifying official remains at the Deputy Assistant Secretary level 2 Completion by 2013 -Lawrence Berkeley Nat'l Lab -Inhalation Toxicology Lab -Brookhaven National Lab

350

Bohmian Mechanics Detlef Durr, Sheldon Goldstein,  

E-Print Network (OSTI)

Bohmian Mechanics Detlef D¨urr, Sheldon Goldstein, Roderich Tumulka, and Nino Zangh`i December 31, 2004 Quantum Mechanics and Reality. While quantum mechanics, as presented in physics text- books (within the realm of quantum mechanics). A description of re- ality, in contrast, would tell us what

Goldstein, Sheldon

351

Quantum Information Portal  

Science Conference Proceedings (OSTI)

... Quantum Devices; Quantum Information Technology; Quantum Key Distribution; ... Entangled photon generation in a phase-modulated, quasi ...

2013-10-23T23:59:59.000Z

352

Hybrid Rotaxanes: Interlocked Structures for Quantum Computing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the...

353

Quantum bundles and quantum interactions  

E-Print Network (OSTI)

A geometric framework for describing quantum particles on a possibly curved background is proposed. Natural constructions on certain distributional bundles (`quantum bundles') over the spacetime manifold yield a quantum ``formalism'' along any 1-dimensional timelike submanifold (a `detector'); in the flat, inertial case this turns out to reproduce the basic results of the usual quantum field theory, while in general it could be seen as a local, ``linearized'' description of the actual physics.

Daniel Canarutto

2005-06-22T23:59:59.000Z

354

Quantum Zeno effect: Quantum shuffling and Markovianity  

E-Print Network (OSTI)

The behavior displayed by a quantum system when it is perturbed by a series of von Neumann measurements along time is analyzed. Because of the similarity between this general process with giving a deck of playing cards a shuffle, here it is referred to as quantum shuffling, showing that the quantum Zeno and anti-Zeno effects emerge naturally as two time limits. Within this framework, a connection between the gradual transition from anti-Zeno to Zeno behavior and the appearance of an underlying Markovian dynamics is found. Accordingly, although a priori it might result counterintuitive, the quantum Zeno effect corresponds to a dynamical regime where any trace of knowledge on how the unperturbed system should evolve initially is wiped out (very rapid shuffling). This would explain why the system apparently does not evolve or decay for a relatively long time, although it eventually undergoes an exponential decay. By means of a simple working model, conditions characterizing the shuffling dynamics have been determined, which can be of help to understand and to devise quantum control mechanisms in a number of processes from the atomic, molecular and optical physics.

A. S. Sanz; C. Sanz-Sanz; T. Gonzalez-Lezana; O. Roncero; S. Miret-Artes

2011-12-16T23:59:59.000Z

355

Quantum Cosmology  

E-Print Network (OSTI)

We give an introduction into quantum cosmology with emphasis on its conceptual parts. After a general motivation we review the formalism of canonical quantum gravity on which discussions of quantum cosmology are usually based. We then present the minisuperspace Wheeler--DeWitt equation and elaborate on the problem of time, the imposition of boundary conditions, the semiclassical approximation, the origin of irreversibility, and singularity avoidance. Restriction is made to quantum geometrodynamics; loop quantum gravity and string theory are discussed in other contributions to this volume.

Claus Kiefer; Barbara Sandhoefer

2008-04-04T23:59:59.000Z

356

Quantum Cloning Machines and the Applications  

E-Print Network (OSTI)

No-cloning theorem is fundamental for quantum mechanics and for quantum information science that states an unknown quantum state cannot be cloned perfectly. However, we can try to clone a quantum state approximately with the optimal fidelity, or instead, we can try to clone it perfectly with the largest probability. Thus various quantum cloning machines have been designed for different quantum information protocols. Specifically, quantum cloning machines can be designed to analyze the security of quantum key distribution protocols such as BB84 protocol, six-state protocol, B92 protocol and their generalizations. Some well-known quantum cloning machines include universal quantum cloning machine, phase-covariant cloning machine, the asymmetric quantum cloning machine and the probabilistic quantum cloning machine etc. In the past years, much progress has been made in studying quantum cloning machines and their applications and implementations, both theoretically and experimentally. In this review, we will give a complete description of those important developments about quantum cloning and some related topics. On the other hand, this review is self-consistent, and in particular, we try to present some detailed formulations so that further study can be taken based on those results. In addition, this review also contains some new results, for example, the study of quantum retrodiction protocol.

Heng Fan; Yi-Nan Wang; Li Jing; Jie-Dong Yue; Han-Duo Shi; Yong-Liang Zhang; Liang-Zhu Mu

2013-01-14T23:59:59.000Z

357

d/b/a MC Applhmcc Corp.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ruteruntionnl, Ii,c,, ruteruntionnl, Ii,c,, d/b/a MC Applhmcc Corp. (fi~ezers) BEFORic: THE U.S. DEPARTMENT OF ENERGY Wllshlngton, D.C. 20585 ) ) ) ) ) ) Case Number: 2013-SE-1430 COMPROMlSE AGREEMENT The U.S. Depl'lt'lJUent ofEnel'gy C'DOE' 1 ) Office of the General Counse], Office of Enforcement, initiated this acUon·against CNA International, Inc., d/b/a MC Appliance Coip. ("CNN' or "Respondent)!) pursuant to 10 C.F.R. § 429.122 by Notice ofProposed Civil Penalty. DOE alleged tha~reezer basic model - whiclt Respondent Jtnp01ted and distributed in commerce 1n the lhited States as Magic Chef-b1·and model HMCF7W, foiled to meet the applicable stnndard for maximum energy use. Soe 10 C.P.R. § 430.32(a). Respondent, on behalf of itself and mty pm·ent, sttbsidbwy, division or.othcr related entity, m\<1 DOE, by theh· authorized

358

Fritz Hasenohrl and E = mc^2  

E-Print Network (OSTI)

In 1904, the year before Einstein's seminal papers on special relativity, Austrian physicist Fritz Hasenohrl examined the properties of blackbody radiation in a moving cavity. He calculated the work necessary to keep the cavity moving at a constant velocity as it fills with radiation and concluded that the radiation energy has associated with it an apparent mass such that E = 3/8 mc^2. Also in 1904, Hasenohrl achieved the same result by computing the force necessary to accelerate a cavity already filled with radiation. In early 1905, he corrected the latter result to E = 3/4 mc^2. In this paper, Hasenohrl's papers are examined from a modern, relativistic point of view in an attempt to understand where he went wrong. The primary mistake in his first paper was, ironically, that he didn't account for the loss of mass of the blackbody end caps as they radiate energy into the cavity. However, even taking this into account one concludes that blackbody radiation has a mass equivalent of m = 4/3 E/c^2 or m = 5/3 E/c^...

Boughn, Stephen

2013-01-01T23:59:59.000Z

359

Infinite dimensional quantum information geometry  

Science Conference Proceedings (OSTI)

We present the construction of an infinite dimensional Banach manifold of quantum mechanical states on a Hilbert space H using different types of small perturbations of a given Hamiltonian H 0 . We provide the manifold with a flat connection

Matheus R. Grasselli

2001-01-01T23:59:59.000Z

360

Quantum Mechanics Lecture Notes for  

E-Print Network (OSTI)

.922 Thulium (Tm) [Xe]4f13 6s2 0.880 0,04 Mendelevium (Md) [Rn]5f13 7s2 0.912 Ytterbium (Yb) [Xe]4f14 6s2 0

Bittner, Eric R.

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Quantum Path Interference through Incoherent Motions in Multilevel Quantum Systems  

E-Print Network (OSTI)

The fluctuating incoherent environment in the condensed phase plays an important role in the dynamics and steady states of open quantum systems. The most fascinating aspect in open quantum systems is quantum coherence induced by path interference of incoherent motions. We propose a modified Ehrenfest scheme to study the path interference of incoherent motions in multi-level quantum systems. The detailed balance is enforced by considering the quantum correction of two-time correction functions based on second order master (rate) equations. With the modified Ehrenfest method, we can study the steady state populations and other quantum observables under different thermal dynamic conditions, such as energy relaxation and non-Markovian effects. For the three level system under incoherent coupling, we show how the steady state populations are influenced by the quantum path interference of incoherent fluctuations (Agarwal-Fano-like interference). We discuss the modified Ehrenfest method and its connection with stochastic Langevin equations and second order master equations. Most existing quantum MD simulation methods, particularly Master equation techniques, fall into the category of the weak coupling limit due to the nature of detailed balance. Although the modified Ehrenfest method is amicable to second-order master equations, it is actually a better way to model the quantum path interference since it preserves multi-time memory kernels. Therefore, it enables us to study the quantum path interference. This method can be used as quantum MD simulators for large open quantum systems like solar cell, (organic) LED, etc. The future extension of this method beyond the modified Ehrenfest scheme can be done with efficient wavepacket propagation methods by treating the bath modes in full quantum mechanical way.

Xin Chen

2013-05-17T23:59:59.000Z

362

From quantum graphs to quantum random walks  

E-Print Network (OSTI)

We give a short overview over recent developments on quantum graphs and outline the connection between general quantum graphs and so-called quantum random walks.

Gregor Tanner

2005-04-29T23:59:59.000Z

363

Women @ Energy: Elaine McCluskey | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Elaine McCluskey Elaine McCluskey Women @ Energy: Elaine McCluskey March 18, 2013 - 11:47am Addthis Elaine McCluskey has worked as a civil /structural engineer and project manager for thirty-five years. Elaine McCluskey has worked as a civil /structural engineer and project manager for thirty-five years. Elaine McCluskey has worked as a civil /structural engineer and project manager for thirty-five years. Her experience at Fermilab in the last 27 years has included work in the Facilities Engineering Services Section in project and line management roles, as well as project management roles in the Accelerator Division and the LBNE Project. Currently she is the project manager for the $867M Long-Baseline Neutrino Experiment Project. She served as Project Manager for the $18M WH Safety Improvements Project

364

Quantum-Bayesian Coherence  

E-Print Network (OSTI)

In a quantum-Bayesian take on quantum mechanics, the Born Rule cannot be interpreted as a rule for setting measurement-outcome probabilities from an objective quantum state. But if not, what is the role of the rule? In this paper, we argue that it should be seen as an empirical addition to Bayesian reasoning itself. Particularly, we show how to view the Born Rule as a normative rule in addition to usual Dutch-book coherence. It is a rule that takes into account how one should assign probabilities to the consequences of various intended measurements on a physical system, but explicitly in terms of prior probabilities for and conditional probabilities consequent upon the imagined outcomes of a special counterfactual reference measurement. This interpretation is seen particularly clearly by representing quantum states in terms of probabilities for the outcomes of a fixed, fiducial symmetric informationally complete (SIC) measurement. We further explore the extent to which the general form of the new normative rule implies the full state-space structure of quantum mechanics. It seems to get quite far.

Christopher A. Fuchs; Ruediger Schack

2009-06-11T23:59:59.000Z

365

Microsoft Word - McFarlane-SA.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Water Cloud Retrievals - A Bayesian Approach Liquid Water Cloud Retrievals - A Bayesian Approach S. A. McFarlane and K. F. Evans University of Colorado Boulder, Colorado A. S. Ackerman National Aeronautics and Space Administration Ames Research Center Moffet Field, California Introduction We developed a new algorithm to retrieve properties of non-precipitating liquid water clouds from millimeter wave radar and Microwave Radiometer (MWR) data using Bayes' theorem of conditional probability. Bayes' theorem relates the inverse problem (retrieving cloud properties from remote- sensing observations) to the forward problem (modeling remote-sensing observations given a set of cloud properties). It also formally includes prior information about cloud microphysics, with this information explicitly modeled by a probability distribution function in the parameter space, not hidden

366

Western's CRSP-MC web site  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact CRSP Customers Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Contact CRSP Customers Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Colorado River Storage Project Management Center service area map. The Colorado River Storage Project Management Center is Western Area Power Administration's one management center that reports to the Administrator. CRSP-MC markets power from the Colorado River Storage, Collbran and Rio Grande projects (marketed together as Salt Lake City Area Integrated Projects), the Provo River Project in Utah, and the Falcon/Amistad Project in Texas. Transmission service is provided on transmission facilities in Arizona, New Mexico, Colorado, Utah, Texas and Wyoming. Management Center highlights KAFB-SNL Prototype Power Purchase Contract added 4/26/2013

367

McArthur, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

McArthur, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2464596, -82.4784898 Loading map... "minzoom":false,"mappingservice":"google...

368

DOE - Office of Legacy Management -- Kerr McGee - 028  

Office of Legacy Management (LM)

Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Kerr McGee...

369

Central McPherson, South Dakota: Energy Resources | Open Energy...  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Central McPherson, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

370

McMinnville Water & Light- Conservation Service Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

McMinnville Water & Light offers financing to residential and commercial customers to make energy efficient improvements to eligible facilities and homes. Financing is available for pre...

371

Quantum Communications  

Science Conference Proceedings (OSTI)

... In summary, we perform research and development (R&D) in quantum communication and related measurement areas with an emphasis on ...

2013-07-24T23:59:59.000Z

372

Quantum Electrical Measurements Portal  

Science Conference Proceedings (OSTI)

NIST Home > Quantum Electrical Measurements Portal. Quantum Electrical Measurements Portal. Subject Areas. Electrical ...

2013-03-21T23:59:59.000Z

373

Quantum Networks for Generating Arbitrary Quantum States  

E-Print Network (OSTI)

Quantum protocols often require the generation of specific quantum states. We describe a quantum algorithm for generating any prescribed quantum state. For an important subclass of states, including pure symmetric states, this algorithm is efficient.

Phillip Kaye; Michele Mosca

2004-07-14T23:59:59.000Z

374

Quantum Conductance Project/Graphene-Based Quantum ...  

Science Conference Proceedings (OSTI)

Quantum Conductance Project/Graphene-Based Quantum Metrology. Summary: ... Graphene Hall bar developed at NIST by undergraduate students. ...

2011-10-03T23:59:59.000Z

375

Gaussian quantum information  

E-Print Network (OSTI)

The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography, and quantum ...

Weedbrook, Christian

376

An investigation of precision and scaling issues in nuclear spin and trapped-ion quantum simulators  

E-Print Network (OSTI)

Quantum simulation offers the possibility of using a controllable quantum-mechanical system to implement the dynamics of another quantum system, performing calculations that are intractable on classical computers for all ...

Clark, Robert J., Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

377

Functional quantum biology in photosynthesis and magnetoreception  

E-Print Network (OSTI)

Is there a functional role for quantum mechanics or coherent quantum effects in biological processes? While this question is as old as quantum theory, only recently have measurements on biological systems on ultra-fast time-scales shed light on a possible answer. In this review we give an overview of the two main candidates for biological systems which may harness such functional quantum effects: photosynthesis and magnetoreception. We discuss some of the latest evidence both for and against room temperature quantum coherence, and consider whether there is truly a functional role for coherence in these biological mechanisms. Finally, we give a brief overview of some more speculative examples of functional quantum biology including the sense of smell, long-range quantum tunneling in proteins, biological photoreceptors, and the flow of ions across a cell membrane.

Lambert, Neill; Cheng, Yuan-Chung; Li, Che-Ming; Chen, Guang-Yin; Nori, Franco

2012-01-01T23:59:59.000Z

378

Functional quantum biology in photosynthesis and magnetoreception  

E-Print Network (OSTI)

Is there a functional role for quantum mechanics or coherent quantum effects in biological processes? While this question is as old as quantum theory, only recently have measurements on biological systems on ultra-fast time-scales shed light on a possible answer. In this review we give an overview of the two main candidates for biological systems which may harness such functional quantum effects: photosynthesis and magnetoreception. We discuss some of the latest evidence both for and against room temperature quantum coherence, and consider whether there is truly a functional role for coherence in these biological mechanisms. Finally, we give a brief overview of some more speculative examples of functional quantum biology including the sense of smell, long-range quantum tunneling in proteins, biological photoreceptors, and the flow of ions across a cell membrane.

Neill Lambert; Yueh-Nan Chen; Yuan-Chung Cheng; Che-Ming Li; Guang-Yin Chen; Franco Nori

2012-05-04T23:59:59.000Z

379

Quantum and Classical Variance in the Quantum Realm  

E-Print Network (OSTI)

This paper examines the variance of quantum and classical predictions in the quantum realm, as well as unexpected presence and absence of variances. Some features are found that share an indirect commonality with the Aharonov-Bohm and Aharonov-Casher effects in that there is a quantum action in the absence of a force. Variances are also found in the presence of a force that are more subtle as they are of higher order. Significant variances related to the harmonic oscillator and particle in a box periods are found. This paper raises the question whether apparent quantum self-inconsistency may be examined internally, or must be empirically ascertained. These inherent variances may either point to inconsistencies in quantum mechanics that should be fixed, or that nature is manifestly more non-classical than expected. For the harmonic oscillator it is proven that the second spatial moment is the same in QM and CM.

Mario Rabinowitz

2007-07-08T23:59:59.000Z

380

Analyzing uncertainty in TG protection graphs with TG/MC  

Science Conference Proceedings (OSTI)

We introduce TG/MC, a Monte Carlo approach for evaluating the impact of uncertainty about vulnerabilities upon forecasts of security for a real-world system modeled by a protection graph. A TG/MC model defines a vulnerability as a potential change to ... Keywords: Monte Carlo, TG, Take-Grant, protection graph, security

James R. Conrad; Jim Alves-Foss; Sauchi Stephen Lee

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

An Overview of Quantum Computing for Technology Managers  

E-Print Network (OSTI)

Faster algorithms, novel cryptographic mechanisms, and alternative methods of communication become possible when the model underlying information and computation changes from a classical mechanical model to a quantum mechanical one. Quantum algorithms perform a select set of tasks vastly more efficiently than any classical algorithm, but for many tasks it has been proved that quantum algorithms provide no advantage. The breadth of quantum computing applications is still being explored. Major application areas include security and the many fields that would benefit from efficient quantum simulation. The quantum information processing viewpoint provides insight into classical algorithmic issues as well as a deeper understanding of entanglement and other non-classical aspects of quantum physics. This overview is aimed at technology managers who wish to gain a high level understanding of quantum information processing, particularly quantum computing.

Eleanor G. Rieffel

2008-04-14T23:59:59.000Z

382

The Quantum Mellin transform  

E-Print Network (OSTI)

We uncover a new type of unitary operation for quantum mechanics on the half-line which yields a transformation to ``Hyperbolic phase space''. We show that this new unitary change of basis from the position x on the half line to the Hyperbolic momentum $p_\\eta$, transforms the wavefunction via a Mellin transform on to the critial line $s=1/2-ip_\\eta$. We utilise this new transform to find quantum wavefunctions whose Hyperbolic momentum representation approximate a class of higher transcendental functions, and in particular, approximate the Riemann Zeta function. We finally give possible physical realisations to perform an indirect measurement of the Hyperbolic momentum of a quantum system on the half-line.

J. Twamley; G. J. Milburn

2007-02-12T23:59:59.000Z

383

McMinnville Water and Light - Conservation Service Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

McMinnville Water and Light - Conservation Service Loan Program McMinnville Water and Light - Conservation Service Loan Program McMinnville Water and Light - Conservation Service Loan Program < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Windows, Doors, & Skylights Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $10,000 Program Info State Oregon Program Type Utility Loan Program Rebate Amount $500-$10,000 Provider McMinnville Water and Light McMinnville Water and Light offers financing to residential and commercial customers to make energy efficient improvements to eligible facilities and homes. Financing is available for pre-approved conservation measures only.

384

McNeilus Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

McNeilus Wind Farm II McNeilus Wind Farm II Facility McNeilus Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner G. McNeilus Developer G. McNeilus Energy Purchaser Xcel Energy Location Mower County MN Coordinates 43.673251°, -92.665436° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.673251,"lon":-92.665436,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Clean Start/McClellan Technology Incubator | Open Energy Information  

Open Energy Info (EERE)

Start/McClellan Technology Incubator Start/McClellan Technology Incubator Jump to: navigation, search Logo: Clean Start/McClellan Technology Incubator Name Clean Start/McClellan Technology Incubator Address 5022 Bailey Loop Place McClellan, California Zip 95652 Region Bay Area Coordinates 38.657365°, -121.390278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.657365,"lon":-121.390278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

McAdoo Wind Farm | Open Energy Information  

Open Energy Info (EERE)

McAdoo Wind Farm McAdoo Wind Farm Jump to: navigation, search Name McAdoo Wind Farm Facility McAdoo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Location McAdoo TX Coordinates 33.747757°, -100.996846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.747757,"lon":-100.996846,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

McCabe Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

McCabe Geothermal Facility McCabe Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home McCabe Geothermal Facility General Information Name McCabe Geothermal Facility Facility McCabe Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.80548694467°, -122.80856609344° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.80548694467,"lon":-122.80856609344,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Viking-McBain Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Viking-McBain Biomass Facility Viking-McBain Biomass Facility Jump to: navigation, search Name Viking-McBain Biomass Facility Facility Viking-McBain Sector Biomass Owner Suez Renewable Energy NA Location McBain, Michigan Coordinates 44.1936227°, -85.2133756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1936227,"lon":-85.2133756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

McGuiness Hills Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

McGuiness Hills Geothermal Area McGuiness Hills Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: McGuiness Hills Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: McGuiness Hills Geothermal Area McGuiness Hills Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

390

Graph-based simulation of quantum computation in the density matrix representation  

Science Conference Proceedings (OSTI)

Quantum-mechanical phenomena are playing an increasing role in information processing, as transistor sizes approach the nanometer level, and quantum circuits and data encoding methods appear in the securest forms of communication. Simulating such phenomena ... Keywords: QuIDDs, decision diagrams, density matrices, graph data structures, quantum algorithms, quantum circuits, quantum errors, simulation

George F. Viamontes; Igor L. Markov; John P. Hayes

2005-03-01T23:59:59.000Z

391

M-C Power commercialization program overview  

DOE Green Energy (OSTI)

Competition in the electric generation market will increase, owing to unbundling and repackaging of electric energy services. One technology that will enable electric companies to expand their role in the energy services marketplace is the molten carbonate fuel cell (MCFC). Distributed power plants using MCFCs can fill the demand for localized, efficient, and environmentally friendly energy supplies at the lowest possible cost. This type of equipment will allow electric companies to supply the majority of a customer`s electric and thermal energy needs from small power plants located at the customer`s facilities. M-C Power`s mission is the development and commercialization of MCFC stacks. Advanced separator plates were designed, and cost of non-repeat hardware was reduced. In the technology development phase of the commercialization program, a 250 KW MCFC demonstration plant at the Naval Air Station Miramar in Sand Diego is the culminating event in the product development test project. Product requirements, economic analysis, and market entry are discussed. This is the 2nd year of a 5-year program.

Camara, E.H.

1996-12-31T23:59:59.000Z

392

Quantum Criticality and Black Holes  

SciTech Connect

I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

Sachdev, Subir (Harvard)

2007-08-22T23:59:59.000Z

393

Parallel Adaptive Quantum Trajectory Method for Wavepacket Simulations  

Science Conference Proceedings (OSTI)

Time-dependent wavepackets are widely used to model various phenomena in physics. One approach in simulating the wavepacket dynamics is the quantum trajectory method (QTM). Based on the hydrodynamic formulation of quantum mechanics, the QTM represents ...

Ricolindo L. Cariño; Ioana Banicescu; Ravi K. Vadapalli; Charles A. Weatherford; Jianping Zhu

2003-04-01T23:59:59.000Z

394

Distilling relevant documents by means of dynamic quantum clustering  

Science Conference Proceedings (OSTI)

Dynamic Quantum Clustering (DQC) is a recent clustering technique based on physical intuition from quantum mechanics. Clusters are identified as the minima of the potential function of the Schrödinger equation. In this poster, we apply this technique ...

Emanuele Di Buccio; Giorgio Maria Di Nunzio

2011-09-01T23:59:59.000Z

395

Ultrafast sources of entangled photons for quantum information processing  

E-Print Network (OSTI)

Recent advances in quantum information processing (QIP) have enabled practical applications of quantum mechanics in various fields such as cryptography, computation, and metrology. Most of these applications use photons ...

Kuzucu, Oktay Onur, 1980-

2008-01-01T23:59:59.000Z

396

Mechanisms for Fluorescence Blinking and Charge Carrier Trapping in Single Semiconductor Nanocrystals  

E-Print Network (OSTI)

Trapping Mechanisms in Single CdSe/ZnS Quantum Dots fromTrapping Mechanisms in Single CdSe/ZnS Quantum Dots fromintermittency of single CdSe/ZnS core/shell quantum dot

Cordones, Amy Ashbrook

2012-01-01T23:59:59.000Z

397

Quantum Computational Complexity  

E-Print Network (OSTI)

This article surveys quantum computational complexity, with a focus on three fundamental notions: polynomial-time quantum computations, the efficient verification of quantum proofs, and quantum interactive proof systems. Properties of quantum complexity classes based on these notions, such as BQP, QMA, and QIP, are presented. Other topics in quantum complexity, including quantum advice, space-bounded quantum computation, and bounded-depth quantum circuits, are also discussed.

John Watrous

2008-04-21T23:59:59.000Z

398

Using Quantum Computers to Learn Physics  

E-Print Network (OSTI)

Since its inception at the beginning of the twentieth century, quantum mechanics has challenged our conceptions of how the universe ought to work; however, the equations of quantum mechanics can be too computationally difficult to solve using existing computers for even modestly large systems. Here I will show that quantum computers can sometimes be used to address such problems and that quantum computer science can assign formal complexities to learning facts about nature. Hence, computer science should not only be regarded as an applied science; it is also of central importance to the foundations of science.

Nathan Wiebe

2014-01-18T23:59:59.000Z

399

Barbara McClintock, Jumping Genes, and Transposition  

NLE Websites -- All DOE Office Websites (Extended Search)

Barbara McClintock and Transposable Genetic Elements McClintock Honored · Woman of Science · Educational Material · Resources with Additional Information Barbara McClintock's remarkable life spanned the history of genetics in the twentieth century. ... [T]he science of genetics, to which McClintock made seminal contributions both experimental and conceptual, has come to dominate all of the biological sciences, from molecular biology, through cell and developmental biology, to medicine and agriculture. ... Barbara McClintock Courtesy of the Cold Spring Harbor Laboratory Archives McClintock made her first significant contribution as a graduate student, developing cytological techniques that allowed her to identify each of the ten maize chromosomes. These early experiments laid the groundwork for a remarkable series of cytogenetic discoveries ... [for which] McClintock was the intellectual driving force ... . These include identification of maize linkage groups with individual chromosomes, the well-known cytological proof of genetic crossing-over, evidence of chromatid crossing-over, cytological determination of the physical location of genes within chromosomes, identification of the genetic consequences of nonhomologous pairing, establishment of the causal relationship between the instability of ring-shaped chromosomes and phenotypic variegation, discovery that the centromere is divisible, and identification of a chromosomal site essential for the formation of the nucleolus. ...

400

MC&A System Effectiveness Tool (MSET) (Presentation 2)  

SciTech Connect

MSET is a self-assessment or inspection tool utilizing probabilistic risk assessment (PRA) methodology to calculate the system effectiveness of a nuclear facility's material control and accountability (MC&A) system. MSET analyzes the effectiveness of an MC&A system based on defined performance metrics for MC&A functions defined based on U.S. and international best practices and regulations. MSET analysis is based on performance of the entire MC&A system including defense-in-depth attributes and sensitivity analysis of changes in the system, both positive and negative. MSET analysis considers: accounting; containment; access control; surveillance capabilities of the system; and other interfaces with the physical protection systems that provide detection of an unauthorized action. MSET performs a system effectiveness calculation evaluation against a defined performance metric. MSET uses PRA techniques to analyze the MC&A system. MSET is a tool for evaluating the system effectiveness of MC&A systems during self-assessment or external inspection. MSET has been developed, tested, and benchmarked by the U.S. DOE. In collaboration with the U.S. DOE, Rosatom is developing a Russian version (MSET-R) planned for pilot implementation at select material balance areas in 2011. MSET has been shown to be an effective training and communication tool for MC&A.

Powell, Danny H [ORNL; Elwood Jr, Robert H [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ex parte memo - McKinsey & Company; February 16, 2011 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ex parte memo - McKinsey & Company; February 16, 2011 ex parte memo - McKinsey & Company; February 16, 2011 DOE is waiting for McKinsey to provide documents and information...

402

McNary Dam, Ice Harbor Dam, and Lower Monumental Dam Smolt Monitoring Program; 1996 Annual Report.  

DOE Green Energy (OSTI)

The Washington Department of Fish & Wildlife (WDFW) assumed responsibility for the Smolt Monitoring Program at McNary Dam on the Columbia River in 1990 and at the new juvenile collection facility at Lower Monumental Dam on the Snake River in 1993. In 1996, Smolt Monitoring Program activities also began at the new juvenile collection facility located at Ice Harbor Dam. This report summarizes the 1996 Smolt Monitoring work at all three sites. The work at Ice Harbor consisted of Gas Bubble Trauma (GBT) monitoring only. In general, the 1996 passage season at both the McNary and Lower Monumental sites can be characterized by reduced passage of juveniles through the collection systems due to elevated river flows and spill, and low (<1%) overall facility mortality rates most likely resulting from cooler water temperatures. In accordance with the National Marine Fisheries Service recommendations (NMFS, 1995) all spring migrants were bypassed at McNary Dam in 1996. Mechanical problems within the McNary collection system resulted in collection and sampling activities being delayed until April 18 at this site, while sampling and collection began on the scheduled starting date of April 1 at Lower Monumental Dam. Monitoring operations were conducted through December 14 at McNary Dam and through October 28 at Lower Monumental Dam. An ongoing transportation evaluation summer migrant marking program was conducted at McNary Dam in 1996 by the NMFS. This necessitated the sampling of 394,211 additional fish beyond the recommended sampling guidelines. All total, 509,237 and 31,219 juvenile salmonids were anesthetized and individually counted, examined for scale loss, injuries, and brands by WDFW Smolt Monitoring personnel in 1996 at McNary Dam and Lower Monumental Dam, respectively.

Hillson, Todd; Lind, Sharon; Price, William (Washington Department of Fish and Wildlife, Olympia, WA)

1997-07-01T23:59:59.000Z

403

Repeated interactions in open quantum systems  

E-Print Network (OSTI)

Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.

Laurent Bruneau; Alain Joye; Marco Merkli

2013-05-11T23:59:59.000Z

404

Spinless Quantum Field Theory and Interpretation  

E-Print Network (OSTI)

Quantum field theory is mostly known as the most advanced and well-developed theory in physics, which combines quantum mechanics and special relativity consistently. In this work, we study the spinless quantum field theory, namely the Klein-Gordon equation, and we find that there exists a Dirac form of this equation which predicts the existence of spinless fermion. For its understanding, we start from the interpretation of quantum field based on the concept of quantum scope, we also extract new meanings of wave-particle duality and quantum statistics. The existence of spinless fermion is consistent with spin-statistics theorem and also supersymmetry, and it leads to several new kinds of interactions among elementary particles. Our work contributes to the study of spinless quantum field theory and could have implications for the case of higher spin.

Dong-Sheng Wang

2013-03-07T23:59:59.000Z

405

DOE - Office of Legacy Management -- Pathfinder Lucky Mc Site - 042  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathfinder Lucky Mc Site - 042 Pathfinder Lucky Mc Site - 042 FUSRAP Considered Sites Site: Pathfinder Lucky Mc Site (042) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Pathfinder Lucky Mc site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in the Gas Hills Uranium Mining District west of Casper, Wyoming. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The majority of the milling conducted at these sites was for private sale, but a portion was sold to the U.S. Government. After the owner completes U.S. Nuclear Regulatory Commission license termination,

406

Richard D. McKnight wins Technical Excellence Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Richard D. McKnight wins Technical Excellence Award Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Richard D. McKnight wins Technical Excellence Award Dr. Richard McKnight Dr. Richard McKnight, holding his award plaque. Jim Morman, Award subcommittee chair, is shown at right. Click on photo to view larger size

407

McLean Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

McLean Electric Coop, Inc McLean Electric Coop, Inc Jump to: navigation, search Name McLean Electric Coop, Inc Place North Dakota Utility Id 12090 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Heat Rate(Submeter-October to April) Off Peak Grain Drying Commercial Residential Rate Residential Three Phase Accounts Industrial Three Phase Irrigation Average Rates Residential: $0.0955/kWh Commercial: $0.0945/kWh Industrial: $0.0518/kWh The following table contains monthly sales and revenue data for McLean

408

McKay Bay Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

McKay Bay Facility Biomass Facility McKay Bay Facility Biomass Facility Jump to: navigation, search Name McKay Bay Facility Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597°, -82.3017728° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9903597,"lon":-82.3017728,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

McGrath Light & Power Co | Open Energy Information  

Open Energy Info (EERE)

McGrath Light & Power Co McGrath Light & Power Co Jump to: navigation, search Name McGrath Light & Power Co Place Alaska Utility Id 12119 Utility Location Yes Ownership I NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.4030/kWh Commercial: $0.3670/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=McGrath_Light_%26_Power_Co&oldid=411052

410

MC Squared Energy Services, LLC | Open Energy Information  

Open Energy Info (EERE)

MC Squared Energy Services, LLC MC Squared Energy Services, LLC Jump to: navigation, search Name MC Squared Energy Services, LLC Place Illinois Utility Id 56379 Utility Location Yes Ownership R RTO PJM Yes Operates Generating Plant Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0700/kWh Industrial: $0.0747/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=MC_Squared_Energy_Services,_LLC&oldid=411021"

411

McKenna Charter School Wind Project | Open Energy Information  

Open Energy Info (EERE)

McKenna Charter School Wind Project McKenna Charter School Wind Project Jump to: navigation, search Name McKenna Charter School Wind Project Facility McKenna Charter School Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.125595°, -115.703819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.125595,"lon":-115.703819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

McNeilus Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

I I Jump to: navigation, search Name McNeilus Wind Farm I Facility McNeilus Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner McNeilus Developer McNeilus Energy Purchaser Xcel Energy Location Mower County MN Coordinates 43.673251°, -92.665436° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.673251,"lon":-92.665436,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

McDowell Research Ltd | Open Energy Information  

Open Energy Info (EERE)

McDowell Research Ltd McDowell Research Ltd Jump to: navigation, search Name McDowell Research Ltd Place Waco, Texas Zip 76701 Product Established in 1992, McDowell designs and manufactures power solutions and accessories to support military communications systems. Coordinates 31.571821°, -97.149507° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.571821,"lon":-97.149507,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

McKinsey Carbon Supply Curves | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » McKinsey Carbon Supply Curves Jump to: navigation, search Tool Summary LAUNCH TOOL Name: McKinsey Carbon Supply Curves Agency/Company /Organization: McKinsey and Company Sector: Energy, Land Topics: GHG inventory, Resource assessment, Pathways analysis, Background analysis Website: www.mckinsey.com/clientservice/ccsi/ References: McKinsey Climate Change Special Initiative[1] "The transition to a low-carbon economy represents one of the key challenges facing leaders in the early 21st century. Our Climate Change Special Initiative is a cross-functional and cross-industry effort, which

415

Materials Sustainability: Digital Resource Center - McDonald's case ...  

Science Conference Proceedings (OSTI)

Jul 2, 2008 ... The McDonald's case series is comprised of three cases, two supporting notes and a video that lay the foundation for an active discussion of a ...

416

Kelly McMasters, Brookhaven Statement on Shirley Memoir, Welcome...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regarding Claims in 'Shirley' Memoir and 'Atomic States' Film Kelly McMaster's 2008 book, "Welcome to Shirley: A Memoir from an Atomic Town" presents an often-inaccurate...

417

Microsoft Word - McNary_ShuntCapAddition_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorandum Charla M. Burke Project Manager, TEP-TPP-1 Proposed Action: McNary Substation Shunt Capacitor Addition Categorical Exclusion Applied (from Subpart D, 10 C.F.R....

418

McMinnville Water & Light- Commercial Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE))

McMinnville Water and Light Company offers a variety of rebates for commercial and industrial customers to make energy efficient improvements to eligible facilities. MW&L offers rebates in...

419

Microsoft PowerPoint - McFarquhar_2007.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Ice Crystals during TWP-ICE Greg M. McFarquhar 1 , Junshik Um 1 , Matt Freer 1 , Darrel Baumgardner 2 , Gregory L. Kok 3 and Gerald G. Mace 4 1 Department of Atmospheric...

420

Kelly McMasters, Brookhaven Statement on Shirley Memoir, Welcome...  

NLE Websites -- All DOE Office Websites (Extended Search)

Statement on 'Shirley' Memoir Kelly McMasters has published a book about growing up in Shirley, New York, in a neighborhood about 6 miles south of Brookhaven National Laboratory....

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Flow modification in McGill Heat Pipes.  

E-Print Network (OSTI)

??A heat pipe is a heat transfer device of very high thermal conductance that features two-phase flow. Research at McGill University has led to the… (more)

Lee, JuHee, 1973-

2005-01-01T23:59:59.000Z

422

EA-1262: McKay Bypass Canal Extension, Golden, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposal to extend the McKay Bypass Canal in order to route water from the existing Canal north of the Walnut Creek drainage on the east side of...

423

McMULLEN VALLEY WATER CONSERVATION & DRAINAGE DISTRICT  

NLE Websites -- All DOE Office Websites (Extended Search)

McMULLEN VALLEY WATER CONSERVATION & DRAINAGE DISTRICT P.O. Box 70 Marcos Andrade, President 66768 Highway 60 Kemper Brown, Vice-President Salom e, AZ 85348 Richard O. Cramer,...

424

Software: MC2-2 - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Software MC2-2 (Fast Reactor Cross Section Processing Codes) Bookmark and Share Standard Code Description Name and...

425

Joint Base Lewis-McChord Innovations in Facility Energy Improvements...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Base Lewis-McChord Innovations in Facility Energy Improvements Joint Base Lewis-McChord Innovations in Facility Energy Improvements Presentation covers Innovations in...

426

MC++: Parallel, portable, Monte Carlo neutron transport in C++  

Science Conference Proceedings (OSTI)

We have developed an implicit Monte Carlo neutron transport code in C++ using the Parallel Object-Oriented Methods and Applications (POOMA) class library. MC++ runs in parallel on and is portable to a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and parallelism. Current capabilities of MC++ are discussed, along with future plans and physics and performance results on many different platforms.

Lee, S.R.; Cummings, J.C. [Los Alamos National Lab., NM (United States); Nolen, S.D. [Texas A& M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

1997-02-01T23:59:59.000Z

427

Quantum discord in open quantum systems  

E-Print Network (OSTI)

Open quantum systems have attracted great attentions for the inevitable interaction between quantum systems and their environment would largely affect the features of interest in the systems. Quantum discord, as a measure of the total nonclassical correlation in a quantum system, includes but not only the distinct property of quantum entanglement. Quantum discord can exist in separated quantum states and it has been shown to play important roles in many fundamental physical problems and practical quantum information tasks. There have been plentiful investigations on the quantum discord and its counterpart classical correlation in open quantum systems. In this short review, we would focus on the recent development and applications of distinctive properties of quantum discord and classical correlation in open quantum systems. Several related experimental works are included.

Xu, Jin-Shi

2012-01-01T23:59:59.000Z

428

A toy model for Macroscopic Quantum Coherence  

E-Print Network (OSTI)

The present article deals with Macroscopic Quantum Coherence resorting only to basic quantum mechanics. A square double well is used to illustrate the Leggett-Caldeira oscillations. The effect of thermal-radiation on two-level systems is discussed to some extent. The concept of decoherence is introduced at an elementary level. Handles are deduced for the energy, temperature and time scales involved in Macroscopic Quantum Coherence.

R. Muñoz-Vega; José-Job J. Flores-Godoy; G. Fernández-Anaya; Encarnación Salinas-Hernández

2012-10-29T23:59:59.000Z

429

Energy Inequalities in Quantum Field Theory  

E-Print Network (OSTI)

Quantum fields are known to violate all the pointwise energy conditions of classical general relativity. We review the subject of quantum energy inequalities: lower bounds satisfied by weighted averages of the stress-energy tensor, which may be regarded as the vestiges of the classical energy conditions after quantisation. Contact is also made with thermodynamics and related issues in quantum mechanics, where such inequalities find analogues in sharp Gaarding inequalities.

Christopher J. Fewster

2005-01-31T23:59:59.000Z

430

Quantum Coulomb Gases  

E-Print Network (OSTI)

Lectures on Quantum Coulomb gases delivered at the CIME summer school on Quantum Many Body Systems 2010

Jan Philip Solovej

2010-12-23T23:59:59.000Z

431

High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation  

E-Print Network (OSTI)

We study a hybrid quantum computing system using nitrogen-vacancy center ensemble (NVE) as quantum memory, current-biased Josephson junction (CBJJ) superconducting qubit fabricated in a transmission line resonator (TLR) as quantum computing processor and the microwave photons in TLR as quantum data bus. The storage process is seriously treated by considering all kinds of decoherence mechanisms. Such a hybrid quantum device can also be used to create multi-qubit W states of NVEs through a common CBJJ. The experimental feasibility and challenge are justified using currently available technology.

W. L. Yang; Zhang-qi Yin; Y. Hu; M. Feng; J. F. Du

2011-06-15T23:59:59.000Z

432

Nonexistence of a universal quantum machine to examine the precision of unknown quantum states  

Science Conference Proceedings (OSTI)

In this work, we reveal a type of impossibility discovered in our recent research which forbids comparing the closeness of multiple unknown quantum states with any nontrivial threshold in a perfect or unambiguous way. This impossibility is distinct from the existing impossibilities in that it is a ''collective'' impossibility on multiple quantum states; most other ''no-go'' theorems are concerned with only one single state each time, i.e., it is an impossibility on a nonlocal quantum operation. This impossibility may provide new insight into the nature of quantum mechanics, and it implies more limitations on quantum information tasks than the existing no-go theorems.

Pang, Shengshi; Wu, Shengjun; Chen, Zeng-Bing [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2011-12-15T23:59:59.000Z

433

Dark Energy from Quantum Uncertainty of Simultaneity  

E-Print Network (OSTI)

The observed acceleration expansion of the universe was thought attribute to a mysterious dark energy in the framework of the classical general relativity. The dark energy behaves very similar with a vacuum energy in quantum mechanics. However, once the quantum effects are seriously taken into account, it predicts a wrong order of the vacuum energy and leads to a severe fine-tuning, known as the cosmological constant problem. We abandon the standard interpretation that time is a global parameter in quantum mechanics, replace it by a quantum dynamical variable playing the role of an operational quantum clock system. In the framework of reinterpretation of time, we find that the synchronization of two quantum clocks distance apart can not be realized in all rigor at quantum level. Thus leading to an intrinsic quantum uncertainty of simultaneity between spatial interval, which implies a visional vacuum energy fluctuation and gives an observed dark energy density $\\rho_{de}=\\frac{6}{\\pi}L_{P}^{-2}L_{H}^{-2}$, where $L_{P}$ and $L_{H}$ are the Planck and Hubble scale cut-off. The expectation value of zero-point energy automatically vanishes under the quantum dynamical time variable. The fraction of the dark energy is precisely given by $\\Omega_{de}=\\frac{2}{\\pi}$, which does not evolve with the quantum dynamical time variable, so it is "always" comparable to the matter energy density or the critical density. This theory is consistent with current cosmic observations.

M. J. Luo

2014-01-11T23:59:59.000Z

434

Quantum Interference in Plasmonic Circuits  

E-Print Network (OSTI)

Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal-dielectric interfaces. This interaction allows sub-wavelength confinement of light, beyond the diffraction limit inherent to dielectric structures. The resulting electromagnetic fields are more intense and the strength of optical interactions between metallic structures and light-sources or detectors can be increased. Plasmons maintain non-classical photon statistics and preserve entanglement on plasmon-assisted transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beam splitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate quantum mechanical interaction between pair...

Heeres, Reinier W; Zwiller, Valery

2013-01-01T23:59:59.000Z

435

Quantum control limited by quantum decoherence  

E-Print Network (OSTI)

We describe quantum controllability under the influences of the quantum decoherence induced by the quantum control itself. It is shown that, when the controller is considered as a quantum system, it will entangle with its controlled system and then cause quantum decoherence in the controlled system. In competition with this induced decoherence, the controllability will be limited by some uncertainty relation in a well-armed quantum control process. In association with the phase uncertainty and the standard quantum limit, a general model is studied to demonstrate the possibility of realizing a decoherence-free quantum control with a finite energy within a finite time. It is also shown that if the operations of quantum control are to be determined by the initial state of the controller, then due to the decoherence which results from the quantum control itself, there exists a low bound for quantum controllability.

Fei Xue; S. X. Yu; C. P. Sun

2005-07-22T23:59:59.000Z

436

Comprehending Quantum Theory from Quantum Fields  

E-Print Network (OSTI)

At the primary level of reality as described by quantum field theory, a fundamental particle like an electron represents a stable, discrete, propagating excited state of its underlying quantum field. QFT also tells us that the lowest vacuum state as well as the excited states of such a field is always very active with spontaneous, unpredictable quantum fluctuations. Also an underlying quantum field is known to be indestructible and immutable possessing the same value in each element of spacetime comprising the universe. These characteristics of the primary quantum fields together with the fact that the quantum fluctuations can be cogently substantiated to be quantum coherent throughout the universe provide a possible ontology of the quantum theory. In this picture, the wave function of a quantum particle represents the reality of the inherent quantum fluctuations at the core of the universe and endows the particle its counter intuitive quantum behavior.

Mani Bhaumik

2013-10-04T23:59:59.000Z

437

Quantum network coding for quantum repeaters  

E-Print Network (OSTI)

This paper considers quantum network coding, which is a recent technique that enables quantum information to be sent on complex networks at higher rates than by using straightforward routing strategies. Kobayashi et al. have recently showed the potential of this technique by demonstrating how any classical network coding protocol gives rise to a quantum network coding protocol. They nevertheless primarily focused on an abstract model, in which quantum resource such as quantum registers can be freely introduced at each node. In this work, we present a protocol for quantum network coding under weaker (and more practical) assumptions: our new protocol works even for quantum networks where adjacent nodes initially share one EPR-pair but cannot add any quantum registers or send any quantum information. A typically example of networks satisfying this assumption is {\\emph{quantum repeater networks}}, which are promising candidates for the implementation of large scale quantum networks. Our results thus show, for the...

Satoh, Takahiko; Imai, Hiroshi

2012-01-01T23:59:59.000Z

438

QWalk: A quantum Monte Carlo program for electronic structure  

Science Conference Proceedings (OSTI)

We describe QWalk, a new computational package capable of performing quantum Monte Carlo electronic structure calculations for molecules and solids with many electrons. We describe the structure of the program and its implementation of quantum Monte ... Keywords: Monte Carlo, Quantum mechanics, Stochastic methods

Lucas K. Wagner; Michal Bajdich; Lubos Mitas

2009-05-01T23:59:59.000Z

439

NIST Quantum Physics Division - 1998  

Science Conference Proceedings (OSTI)

... QUANTUM PHYSICS DIVISION. Fluorescence Trajectory of a Single 30 Angstrom Radius CdSe Quantum Dot. The quantum ...

440

Quantum Money from Hidden Subspaces  

E-Print Network (OSTI)

Forty years ago, Wiesner pointed out that quantum mechanics raises the striking possibility of money that cannot be counterfeited according to the laws of physics. We propose the first quantum money scheme that is (1) public-key, meaning that anyone can verify a banknote as genuine, not only the bank that printed it, and (2) cryptographically secure, under a "classical" hardness assumption that has nothing to do with quantum money. Our scheme is based on hidden subspaces, encoded as the zero-sets of random multivariate polynomials. A main technical advance is to show that the "black-box" version of our scheme, where the polynomials are replaced by classical oracles, is unconditionally secure. Previously, such a result had only been known relative to a quantum oracle (and even there, the proof was never published). Even in Wiesner's original setting -- quantum money that can only be verified by the bank -- we are able to use our techniques to patch a major security hole in Wiesner's scheme. We give the first private-key quantum money scheme that allows unlimited verifications and that remains unconditionally secure, even if the counterfeiter can interact adaptively with the bank. Our money scheme is simpler than previous public-key quantum money schemes, including a knot-based scheme of Farhi et al. The verifier needs to perform only two tests, one in the standard basis and one in the Hadamard basis -- matching the original intuition for quantum money, based on the existence of complementary observables. Our security proofs use a new variant of Ambainis's quantum adversary method, and several other tools that might be of independent interest.

Scott Aaronson; Paul Christiano

2012-03-21T23:59:59.000Z

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Reversible computation as a model for the quantum measurement process  

E-Print Network (OSTI)

One-to-one reversible automata are introduced. Their applicability to a modelling of the quantum mechanical measurement process is discussed.

Karl Svozil

2009-04-15T23:59:59.000Z

442

Quantum computing  

E-Print Network (OSTI)

This article gives an elementary introduction to quantum computing. It is a draft for a book chapter of the "Handbook of Nature-Inspired and Innovative Computing", Eds. A. Zomaya, G.J. Milburn, J. Dongarra, D. Bader, R. Brent, M. Eshaghian-Wilner, F. Seredynski (Springer, Berlin Heidelberg New York, 2006).

J. Eisert; M. M. Wolf

2004-01-05T23:59:59.000Z

443

McMaster Learning Portfolio Terms of Use July 31, 2013  

E-Print Network (OSTI)

McMaster Learning Portfolio Terms of Use July 31, 2013 Thank you for visiting the Learning Portfolio website (the "Website") of McMaster University ("McMaster"). McMaster has established these Terms of Use ("Terms") to ensure that the Website is useful, safe for everyone and provides a valuable resource

Hitchcock, Adam P.

444

G. McNeilus Wind Farm | Open Energy Information  

Open Energy Info (EERE)

McNeilus Wind Farm McNeilus Wind Farm Jump to: navigation, search Name G. McNeilus Wind Farm Facility G. McNeilus Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer G. McNeilus Energy Purchaser Dairyland Power Cooperative/others Location Adams MN Coordinates 43.554778°, -92.728908° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.554778,"lon":-92.728908,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Quantum Geometry and Quantum Gravity  

E-Print Network (OSTI)

The purpose of this contribution is to give an introduction to quantum geometry and loop quantum gravity for a wide audience of both physicists and mathematicians. From a physical point of view the emphasis will be on conceptual issues concerning the relationship of the formalism with other more traditional approaches inspired in the treatment of the fundamental interactions in the standard model. Mathematically I will pay special attention to functional analytic issues, the construction of the relevant Hilbert spaces and the definition and properties of geometric operators: areas and volumes.

J. Fernando Barbero G.

2008-04-23T23:59:59.000Z

446

QUANTUM STOCHASTIC CALCULUS AND QUANTUM NONLINEAR FILTERING  

E-Print Network (OSTI)

QUANTUM STOCHASTIC CALCULUS AND QUANTUM NONLINEAR FILTERING V. P. BELAVKIN Abstract. A ?­algebraic inde...nite structure of quantum stochastic (QS) cal- culus is introduced and a continuity property...nitely dimensional nuclear space. The class of nondemolition output QS processes in quantum open systems

Belavkin, Viacheslav P.

447

Classical and quantum randomness and the financial market  

E-Print Network (OSTI)

We analyze complexity of financial (and general economic) processes by comparing classical and quantum-like models for randomness. Our analysis implies that it might be that a quantum-like probabilistic description is more natural for financial market than the classical one. A part of our analysis is devoted to study the possibility of application of the quantum probabilistic model to agents of financial market. We show that, although the direct quantum (physical) reduction (based on using the scales of quantum mechanics) is meaningless, one may apply so called quantum-like models. In our approach quantum-like probabilistic behaviour is a consequence of contextualy of statistical data in finances (and economics in general). However, our hypothesis on "quantumness" of financial data should be tested experimentally (as opposed to the conventional description based on the noncontextual classical probabilistic approach). We present a new statistical test based on a generalization of the well known in quantum physics Bell's inequality.

Andrei Khrennikov

2007-04-22T23:59:59.000Z

448

NMR quantum simulation of localization effects induced by decoherence  

E-Print Network (OSTI)

The loss of coherence in quantum mechanical superposition states limits the time for which quantum information remains useful. Similarly, it limits the distance over which quantum information can be transmitted, resembling Anderson localization, where disorder causes quantum mechanical states to become localized. Here, we investigate in a nuclear spin-based quantum simulator, the localization of the size of spin clusters that are generated by a Hamiltonian driving the transmission of information, while a variable-strength perturbation counteracts the spreading. We find that the system reaches a dynamic equilibrium size, which decreases with the square of the perturbation strength.

Gonzalo A. Alvarez; Dieter Suter

2010-04-28T23:59:59.000Z

449

ex parte memo - McKinsey & Company; February 16, 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

McKinsey to provide documents and information that can be publicly shared. McKinsey to provide documents and information that can be publicly shared. This memo discloses information discussed during the meeting, pursuant to the Department's transparency commitment for the DOE-QTR, and will be supplemented by McKinsey provided documents when they are received. Document received by DOE from McKinsey: A "discussion document" titled "Decarbonization pathways for the United States" (confidential and proprietary). DOE continues to wait a non-proprietary document from McKinsey for public dissemination. Subject: McKinsey provided briefing on recent work and indicated potential connection with QER Date: Feb 16, 2011 List of External Attendees: Jon Wilkins (McKinsey) Stefan Heck (McKinsey) Rob McNish (McKinsey)

450

QKarD Quantum Smart Card  

NLE Websites -- All DOE Office Websites (Extended Search)

QKarD Quantum Smart Card QKarD Quantum Smart Card QKarD Quantum Smart Card Los Alamos National Laboratory (LANL) scientists have developed a revolutionary technology entitled "QKarD" that implements the quantum mechanical laws of physics rather than complex mathematical problems to encrypt information. July 11, 2013 QKarD Quantum Smart Card Available for thumbnail of Feynman Center (505) 665-9090 Email QKarD Quantum Smart Card Applications: Telecommunications: cell /smartphone; multi-party secure phone calls; videoconferencing; Voice over IP (VoIP) Banking and financial transactions:ATM, debit / credit card and e-Commerce e-Business; e-gaming; e-books; e-music; e-movies; e-gambling Wireless internet Electronic voting Facility and vehicle access Information exchange for government/defense

451

Complementarity and Entanglement in Quantum Information Theory  

E-Print Network (OSTI)

The restrictions that nature places on the distribution of correlations in a multipartite quantum system play fundamental roles in the evolution of such systems, and yield vital insights into the design of protocols for the quantum control of ensembles with potential applications in the field of quantum computing. We show how this entanglement sharing behavior may be studied in increasingly complex systems of both theoretical and experimental significance and demonstrate that entanglement sharing, as well as other unique features of entanglement, e.g. the fact that maximal information about a multipartite quantum system does not necessarily entail maximal information about its component subsystems, may be understood as specific consequences of the phenomenon of complementarity extended to composite quantum systems. We also present a local hidden-variable model supplemented by an efficient amount of classical communication that reproduces the quantum-mechanical predictions for the entire class of Gottesman-Kni...

Tessier, T E

2004-01-01T23:59:59.000Z

452

Multiple-user quantum optical communication  

E-Print Network (OSTI)

A fundamental understanding of the information carrying capacity of optical channels requires the signal and physical channel to be modeled quantum mechanically. This thesis considers the problems of distributing multi-party ...

Yen, Brent J., 1977-

2005-01-01T23:59:59.000Z

453

Programmable quantum simulation by dynamic Hamiltonian engineering  

E-Print Network (OSTI)

Quantum simulation is a promising near term application for mesoscale quantum information processors, with the potential to solve computationally intractable problems at the scale of just a few dozen interacting quantum systems. Recent experiments in a range of technical platforms have demonstrated the basic functionality of quantum simulation applied to quantum magnetism, quantum phase transitions, and relativistic quantum mechanics. In all cases, the underlying hardware platforms restrict the achievable inter-particle interaction, forming a serious constraint on the ability to realize a versatile, programmable, quantum simulator. In this work, we address this problem by developing novel sequences of unitary operations that engineer desired effective Hamiltonians in the time-domain. The result is a hybrid programmable analog simulator permitting a broad class of interacting spin-lattice models to be generated starting only with an arbitrary native inter-particle interaction and single-qubit addressing. Building on previous work proving that universal simulation is possible using both entangling gates and single-qubit unitaries, we show how determining the relevant hardware "program" of unitary pulses to implement an arbitrary spin Hamiltonian on such a simulator can be formulated as a linear program that runs in polynomial time and scales efficiently in hardware resources. Our analysis extends from circuit model quantum information to adiabatic quantum evolutions, where our approach allows for the creation of non-native ground state solutions to a computation.

David L. Hayes; Steven T. Flammia; Michael J. Biercuk

2013-09-26T23:59:59.000Z

454

J. Michael McQuade | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vice President, Science and Technology - United Vice President, Science and Technology - United Technologies Corporation J. Michael McQuade J. Michael McQuade is Senior Vice President for Science & Technology at United Technologies Corporation. His responsibilities include providing strategic oversight and guidance for research, engineering and development activities throughout the business units of the corporation and at the United Technologies Research Center. Dr. McQuade held senior positions with technology development and business oversight at 3M, Imation and Eastman Kodak. Prior to joining UTC in 2006, he served as Vice President of 3M's Medical Division. Previously, he was President of Eastman Kodak's Health Imaging Business. His early career at 3M was focused on research and development of high-end

455

McKinsey on Smart Grid | Open Energy Information  

Open Energy Info (EERE)

McKinsey on Smart Grid McKinsey on Smart Grid Jump to: navigation, search Tool Summary LAUNCH TOOL Name: McKinsey on Smart Grid Focus Area: Renewable Energy Topics: Best Practices Website: origin.mckinsey.com/clientservice/electricpowernaturalgas/downloads/Mo Equivalent URI: cleanenergysolutions.org/content/mckinsey-smart-grid Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: "Enabling Legislation,Resource Integration Planning" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

456

Boston's McCormack Building Gets Makeover | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boston's McCormack Building Gets Makeover Boston's McCormack Building Gets Makeover Boston's McCormack Building Gets Makeover November 4, 2010 - 10:53am Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE Constructed from 1931 to 1933, the U.S. Post Office and Courthouse in Boston created quite a buzz with its Art Deco design. A departure from the Classical Revival style popular among federal buildings of the time, its aluminum windows, unadorned granite and limestone base and stepped parapets illustrated its modernity. But over time, the building once hailed for its forward-thinking design grew weary and only an overhaul could restore its architectural significance and its tenants' enthusiasm. "The original vision was to take this tired, old building--but a magnificent historical building-- and restore it to meet the modern,

457

McCoy Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

McCoy Geothermal Area McCoy Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: McCoy Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

458

McCoy Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

McCoy Geothermal Area McCoy Geothermal Area (Redirected from Mccoy Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: McCoy Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

459

McGinness Hills Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

McGinness Hills Geothermal Project McGinness Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: McGinness Hills Geothermal Project Project Location Information Coordinates 39.493055555556°, -117.06638888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.493055555556,"lon":-117.06638888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

McCoy, Nevada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

McCoy, Nevada: Energy Resources McCoy, Nevada: Energy Resources Jump to: navigation, search Name McCoy, Nevada GeoNames ID 5706201 Coordinates 40.320193°, -117.2251052° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.320193,"lon":-117.2251052,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

McMinnville Electric System | Open Energy Information  

Open Energy Info (EERE)

McMinnville Electric System McMinnville Electric System Jump to: navigation, search Name McMinnville Electric System Place Tennessee Utility Id 12186 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial < 50 kW Commercial Commercial 1000-5000 kW Commercial Commercial 50-1000 kW Commercial Commercial 5000-15000 kW Commercial Manufacturing Metered kW 1001-5000 kW Industrial Manufacturing Metered kW 5001-15000 kW Industrial Outdoor Lighting 1000w M.H. Lighting Outdoor Lighting 100w H.P.S. Lighting

462

McNeilus Wind Farm III | Open Energy Information  

Open Energy Info (EERE)

III III Facility McNeilus Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner G. McNeilus Developer G. McNeilus Energy Purchaser Dairyland Power /Alliant Location Mower County MN Coordinates 43.673251°, -92.665436° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.673251,"lon":-92.665436,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

J. Michael McQuade | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VP, United Technologies Corporation VP, United Technologies Corporation Photo of J. Michael McQuade J. Michael McQuade is Senior Vice President for Science & Technology at United Technologies Corporation. His responsibilities include providing strategic oversight and guidance for research, engineering and development activities throughout the business units of the Corporation and at the United Technologies Research Center. He also provides leadership to UTC Power, UTC's business unit responsible for the research, design, commercialization and aftermarket support of stationary and transportation fuel cells. McQuade has held senior positions with technology development and business oversight at 3M, Imation and Eastman Kodak. Prior to joining UTC in 2006 he served as Vice President of 3M's Medical Division. Previously, he was

464

McHenry-121913 - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

McHenry-121913 McHenry-121913 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Michael McHenry IEEE Distinguished Lecturer, Carnegie Mellon University TITLE: Nanocomposite Magnets for Power Electronic Applications DATE: Thursday, Dec. 19, 2013 TIME: 11:00 am PLACE: ESB 241, Conference Room D172 HOST: Olle Heinonen ABSTRACT: Recent USDOE workshops highlight the need for advanced soft magnetic materials leveraged in novel designs of power electronic components and systems for power conditioning and grid integration. Similarly soft magnetic materials figure prominently in applications in electric vehicles and high torque motors. Dramatic weight and size reductions are possible in such applications. Nanocomposites also hold potential for applications in active magneocaloric cooling of such devices.

465

McNeilus Wind Farm IV | Open Energy Information  

Open Energy Info (EERE)

IV IV Facility McNeilus Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner G. McNeilus Developer G. McNeilus Energy Purchaser Xcel Energy Location Mower County MN Coordinates 43.673251°, -92.665436° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.673251,"lon":-92.665436,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

McKinley Wind Park | Open Energy Information  

Open Energy Info (EERE)

McKinley Wind Park McKinley Wind Park Facility McKinley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Detroit Edison Developer Detroit Edison Energy Purchaser Detroit Edison Location Pigeon MI Coordinates 43.87277698°, -83.26126099° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.87277698,"lon":-83.26126099,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

Characteristics and development report for the MC3714 thermal battery  

SciTech Connect

This report describes the design intent, design considerations, system use, development, product characteristics, and early production history of the MC3714 Thermal Battery. This battery has a required operating life of 146 s above 24.0 V with a constant current load of 0.5 A. It is activated when the MC3830 Actuator initiates the WW42C1 Percussion Primer in the battery. The MC3714 employs the Li(Si)/LiCl-CCl/lithiated FeS{sub 2} electrochemical system. The battery is a hermetically sealed right-circular cylinder with an antirotation ring brazed to the base of the cylinder. The battery is 50 mm long and 38.1 mm in diameter. The mass of the battery is 165 g. The battery was designed and developed to provide the power for the W82 JTA Telemetry System. 8 refs., 12 figs., 11 tabs.

Scharrer, G.L.; Lasky, F.P.

1990-08-01T23:59:59.000Z

468

Control of non-controllable quantum systems: A quantum control algorithm based on Grover iteration  

E-Print Network (OSTI)

A new notion of controllability, eigenstate controllability, is defined for finite-dimensional bilinear quantum mechanical systems which are neither strongly completely controllably nor completely controllable. And a quantum control algorithm based on Grover iteration is designed to perform a quantum control task of steering a system, which is eigenstate controllable but may not be (strongly) completely controllable, from an arbitrary state to a target state.

Chen-Bin Zhang; Dao-Yi Dong; Zong-Hai Chen

2005-03-02T23:59:59.000Z

469

On the Changes in Mechanical Behavior of Fish Scales by Polar ...  

Science Conference Proceedings (OSTI)

Presentation Title, On the Changes in Mechanical Behavior of Fish Scales by Polar Solvents. Author(s), Guihua Li, Mobin Yahyazadehfar, Adriana MC Garrano

470

Quantum Nanomechanics Pritiraj Mohanty  

E-Print Network (OSTI)

Quantum Nanomechanics Pritiraj Mohanty Abstract Quantum Nanomechanics is the emerging field which pertains to the me- chanical behavior of nanoscale systems in the quantum domain. Unlike the conven- tional studies of vibration of molecules and phonons in solids, quantum nanome- chanics is defined as the quantum

471

Model Theory and Quantum  

E-Print Network (OSTI)

Model Theory and Quantum Groups Sonia L'Innocente Model Theory and Quantum Groups Sonia L'Innocente (University of Mons) Model Theory and Quantum Groups 1 / 40 #12;Model Theory and Quantum Groups Sonia L quantum plane, submitted. This work is inspired by Ivo Herzog's paper: The pseudo-finite dimensional

Mons-Hainaut, Université de

472

Finite groups and quantum physics  

Science Conference Proceedings (OSTI)

Concepts of quantum theory are considered from the constructive 'finite' point of view. The introduction of a continuum or other actual infinities in physics destroys constructiveness without any need for them in describing empirical observations. It is shown that quantum behavior is a natural consequence of symmetries of dynamical systems. The underlying reason is that it is impossible in principle to trace the identity of indistinguishable objects in their evolution-only information about invariant statements and values concerning such objects is available. General mathematical arguments indicate that any quantum dynamics is reducible to a sequence of permutations. Quantum phenomena, such as interference, arise in invariant subspaces of permutation representations of the symmetry group of a dynamical system. Observable quantities can be expressed in terms of permutation invariants. It is shown that nonconstructive number systems, such as complex numbers, are not needed for describing quantum phenomena. It is sufficient to employ cyclotomic numbers-a minimal extension of natural numbers that is appropriate for quantum mechanics. The use of finite groups in physics, which underlies the present approach, has an additional motivation. Numerous experiments and observations in the particle physics suggest the importance of finite groups of relatively small orders in some fundamental processes. The origin of these groups is unclear within the currently accepted theories-in particular, within the Standard Model.

Kornyak, V. V., E-mail: kornyak@jinr.ru [Joint Institute for Nuclear Physics, Laboratory of Information Tecnnologies (Russian Federation)

2013-02-15T23:59:59.000Z

473

Superfluid {sup 4}He Quantum Interference Grating  

Science Conference Proceedings (OSTI)

We report the first observation of quantum interference from a grating structure consisting of four weak link junctions in superfluid {sup 4}He. We find that an interference grating can be implemented successfully in a superfluid matter wave interferometer to enhance its sensitivity while trading away some of its dynamic range. We also show that this type of device can be used to measure absolute quantum mechanical phase differences. The results demonstrate the robust nature of superfluid phase coherence arising from quantum mechanics on a macroscopic scale.

Sato, Yuki; Joshi, Aditya; Packard, Richard [Physics Department, University of California, Berkeley, California 94720 (United States)

2008-08-22T23:59:59.000Z

474

Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and Holographic Duality  

E-Print Network (OSTI)

Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These systems differ by more than 20 orders of magnitude in temperature, but they were shown to exhibit very similar hydrodynamic flow. In particular, both fluids exhibit a robustly low shear viscosity to entropy density ratio which is characteristic of quantum fluids described by holographic duality, a mapping from strongly correlated quantum field theories to weakly curved higher dimensional classical gravity. This review explores the connection between these fields, and it also serves as an introduction to the Focus Issue of New Journal of Physics on Strongly Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas. The presentation is made accessible to the general physics reader and includes discussions of the latest research developments in all three areas.

Allan Adams; Lincoln D. Carr; Thomas Schaefer; Peter Steinberg; John E. Thomas

2012-05-23T23:59:59.000Z

475

McKenzie Solar Power Facility | Open Energy Information  

Open Energy Info (EERE)

McKenzie Solar Power Facility McKenzie Solar Power Facility Jump to: navigation, search Name McKenzie Solar Power Facility Facility McKenzie Solar Plant Sector Solar Facility Type Photovoltaic Facility Status In Service Owner Recurrent Energy Developer Recurrent Energy Energy Purchaser Sacramento Municipal Utility District Location Galt, California Coordinates 38.3102818°, -121.3012755° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.3102818,"lon":-121.3012755,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

476

Solar Cells in 2009 and Beyond Mike McGehee  

E-Print Network (OSTI)

Solar Cells in 2009 and Beyond Mike McGehee Materials Science and Engineering These slidesTunesU and Youtube. #12;To provide the world with 10 TW of solar electricity by 2030 · We need to grow the industry parity cost depends on location #12;Conventional p-n junction photovoltaic (solar) cell #12;Efficiency

McGehee, Michael

477

McNamee Lawrence & Co | Open Energy Information  

Open Energy Info (EERE)

McNamee Lawrence & Co McNamee Lawrence & Co Jump to: navigation, search Logo: McNamee Lawrence & Co Name McNamee Lawrence & Co Address 399 Boylston Street Place Boston, Massachusetts Zip 02116 Region Greater Boston Area Product Financial Advisory Services Number of employees 11-50 Year founded 2001 Phone number 6176382600 Website http://www.mlcllc.com/ Coordinates 42.3518°, -71.0721° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3518,"lon":-71.0721,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

478

Stone & McCarthy Research Associates | Open Energy Information  

Open Energy Info (EERE)

Stone & McCarthy Research Associates Stone & McCarthy Research Associates Jump to: navigation, search Logo: Stone & McCarthy Research Associates Name Stone & McCarthy Research Associates Address 101 Business Park Drive Place Princeton, New Jersey Zip 08540 Region Northeast - NY NJ CT PA Area Number of employees 11-50 Year founded 1989 Phone number 609-683-4261 Coordinates 40.4400025°, -74.6013294° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4400025,"lon":-74.6013294,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

McFadden Ridge Wind Farm | Open Energy Information  

Open Energy Info (EERE)

McFadden Ridge Wind Farm McFadden Ridge Wind Farm Jump to: navigation, search Name McFadden Ridge Wind Farm Facility McFadden Ridge Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PacifiCorp Developer PacifiCorp Energy Purchaser PacifiCorp Location Southwest of Rock River WY Coordinates 41.718626°, -106.107001° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.718626,"lon":-106.107001,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

The Oil Searching Problem Andrew McGregor1  

E-Print Network (OSTI)

The Oil Searching Problem Andrew McGregor1 , Krzysztof Onak2 , and Rina Panigrahy3 1 University@mit.edu 3 Microsoft Research Silicon Valley. Email: rina@microsoft.com Abstract. Given n potential oil locations, where each has oil at a certain depth, we seek good trade-offs between the number of oil sources

Pratt, Vaughan

Note: This page contains sample records for the topic "mc quantum mechanics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

An Overview of Solar Cell Technology Mike McGehee  

E-Print Network (OSTI)

An Overview of Solar Cell Technology Mike McGehee Materials Science and Engineering Global Climate;Primary Photovoltaic (PV) Markets Residential Rooftop Commercial Rooftop Ground mounted (Usually 2Watt and Evergreen Solar went bankrupt Jon Stewart, The Daily Show Solyndra, SpectraWatt and Evergreen Solar went

McGehee, Michael

482

MC3196 Detonator Shipping Package Hazard Classification Assessment  

SciTech Connect

An investigation was made to determine whether the MC3196 detonator should be assigned a DOT hazard classification of Detonating Fuze, Class C Explosives per 49 CFR 173.113. This study covers the Propagation Test and the External Heat Test as approved by DOE Albuquerque Operations Office. Test data led to the recommeded hazard classification of detonating fuze, Class C explosives.

Jones; Robert B.

1979-05-31T23:59:59.000Z

483

Quantum limit in continuous quantum measurement  

E-Print Network (OSTI)

The quantum noise is calculated based on the description of imprecise measurement theory, which is used to analyse the general detector's quantum limit in continuous quantum measurement. Different from the traditional description of the linear-response theory, we don't introduce the hypotheses on the properties of the susceptibilities of the detector, and first show a rigorous result: The minimum noise added by the detector in quantum measurement is precisely equal to the zero-point noise. We also discuss the statistic characters of the back-action force in quantum measurement and show how to reach the quantum limit.

Shao, ChengGang

2012-01-01T23:59:59.000Z

484

KT McDonald IDS-NF Plenary Meeting (RAL) Apr 6, 20132 1 Engineering Issues for the  

E-Print Network (OSTI)

Diagnostics Controls and Interlocks Health and Safety Mechanical Decommissioning Remote Handling and Hot Cells 10,730,099 1.06.07 - Remote Handling Systems 14,348,362 1.06.08 - Controls 3,076,899 1.06.09 - Beam. #12;KT McDonald IDS-NF Plenary Meeting (RAL) Apr 6, 20132 19 We must have an activated-air handling

McDonald, Kirk

485

Effects of alterations in sarcomere structure and prestretch timing on cardiac muscle mechanics  

E-Print Network (OSTI)

of cardiac ventricular mechanics to lumped systems models ofWaldman LK, McCulloch AD. Mechanics of active contraction inin passive ventricular mechanics. Am J Physiol Heart Circ

Tangney, Jared Rylan

2012-01-01T23:59:59.000Z

486

Dark Energy from Quantum Uncertainty of Simultaneity  

E-Print Network (OSTI)

The observed acceleration expansion of the universe was thought attribute to a mysterious dark energy in the framework of the classical general relativity. The dark energy behaves very similar with a vacuum energy in quantum mechanics. However, once the quantum effects are seriously taken into account, it predicts a wrong order of the vacuum energy and leads to a severe fine-tuning, known as the cosmological constant problem. We abandon the standard interpretation that time is a global parameter in quantum mechanics, replace it by a quantum dynamical variable playing the role of an operational quantum clock system. In the framework of reinterpretation of time, we find that the synchronization of two quantum clocks distance apart can not be realized in all rigor at quantum level. Thus leading to an intrinsic quantum uncertainty of simultaneity between spatial interval, which implies a visional vacuum energy fluctuation and gives an observed dark energy density $\\rho_{de}=\\frac{6}{\\pi}L_{P}^{-2}L_{H}^{-2}$, whe...

Luo, M J

2014-01-01T23