National Library of Energy BETA

Sample records for maximum wind capacity

  1. WINDExchange: Potential Wind Capacity

    Wind Powering America (EERE)

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. For more detailed information regarding the assumptions and calculations behind the wind potential capacity maps, see the Energy Department's Enabling Wind Power Nationwide report. Enlarge image This map shows the wind

  2. Chaninik Wind Group: Harnessing Wind, Building Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chaninik Wind Group: Harnessing Wind, Building Capacity Installation of Village Energy Information System Smart Grid Controller, Thermal Stoves and Meters to Enhance the Efficiency of Wind- Diesel Hybrid Power Generation in Tribal Regions of Alaska Department of Energy Tribal Energy Program Review November 16-20, 2009 The Chananik Wind Group Our goal is to become the "heartbeat of our region." Department of Energy Tribal Energy Program Review November 16-20, 2009 Department of Energy

  3. WINDExchange: U.S. Installed Wind Capacity

    Wind Powering America (EERE)

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Installed Wind Capacity This page has maps of the United States that show installed wind capacity by state and its progression. This map shows the installed wind capacity in megawatts. As of June 30, 2015, 67,870 megawatts have been installed. Alaska, 62 megawatts; Hawaii,

  4. Wind Gains ground, hitting 33 GW of installed capacity

    SciTech Connect (OSTI)

    2010-06-15

    The U.S. currently has 33 GW of installed wind capacity. Wind continues to gain ground, accounting for 42 percent of new capacity additions in the US in 2008.Globally, there are now 146 GW of wind capacity with an impressive and sustained growth trajectory that promises to dominate new generation capacities in many developing countries. The U.S., however, lags many European countries, with wind providing roughly 2 percent of electricity generation.

  5. Estimate of Maximum Underground Working Gas Storage Capacity in the United States

    Reports and Publications (EIA)

    2006-01-01

    This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacity seems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. The report presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.

  6. Capacity Requirements to Support Inter-Balancing Area Wind Delivery

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2009-07-01

    Paper examines the capacity requirements that arise as wind generation is integrated into the power system and how those requirements change depending on where the wind energy is delivered.

  7. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  8. Spain Installed Wind Capacity Website | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentspain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an...

  9. Property:PotentialOffshoreWindCapacity | Open Energy Information

    Open Energy Info (EERE)

    Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric...

  10. The Capacity Value of Wind in the United States: Methods and Implementation

    SciTech Connect (OSTI)

    Milligan, Michael; Porter, Kevin

    2006-03-01

    As more wind energy capacity is added in the nation, the question of wind's capacity value is raised. This article shows how the capacity value of wind is determined, both in theory and in practice. (author)

  11. Offshore Wind Energy Market Installed Capacity is Anticipated...

    Open Energy Info (EERE)

    Offshore Wind Energy Market Installed Capacity is Anticipated to Reach 52,120.9 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  12. Determining the Capacity Value of Wind: An Updated Survey of Methods and Implementation; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Porter, K.

    2008-06-01

    This paper summarizes state and regional studies examining the capacity value of wind energy, how different regions define and implement capacity reserve requirements, and how wind energy is defined as a capacity resource in those regions.

  13. Examination of Capacity and Ramping Impacts of Wind Energy on Power Systems

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2008-07-01

    When wind plants serve load within the balancing area, no additional capacity required to integrate wind power into the system. We present some thought experiments to illustrate some implications for wind integration studies.

  14. Three dimensional winds: A maximum cross-correlation application to elastic lidar data

    SciTech Connect (OSTI)

    Buttler, W.T.

    1996-05-01

    Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic backscatter lidar (light detection and ranging) data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three-dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain-following winds in the Rio Grande valley.

  15. Weakest solar wind of the space age and the current 'MINI' solar maximum

    SciTech Connect (OSTI)

    McComas, D. J.; Angold, N.; Elliott, H. A.; Livadiotis, G.; Schwadron, N. A.; Smith, C. W.; Skoug, R. M.

    2013-12-10

    The last solar minimum, which extended into 2009, was especially deep and prolonged. Since then, sunspot activity has gone through a very small peak while the heliospheric current sheet achieved large tilt angles similar to prior solar maxima. The solar wind fluid properties and interplanetary magnetic field (IMF) have declined through the prolonged solar minimum and continued to be low through the current mini solar maximum. Compared to values typically observed from the mid-1970s through the mid-1990s, the following proton parameters are lower on average from 2009 through day 79 of 2013: solar wind speed and beta (?11%), temperature (?40%), thermal pressure (?55%), mass flux (?34%), momentum flux or dynamic pressure (?41%), energy flux (?48%), IMF magnitude (?31%), and radial component of the IMF (?38%). These results have important implications for the solar wind's interaction with planetary magnetospheres and the heliosphere's interaction with the local interstellar medium, with the proton dynamic pressure remaining near the lowest values observed in the space age: ?1.4 nPa, compared to ?2.4 nPa typically observed from the mid-1970s through the mid-1990s. The combination of lower magnetic flux emergence from the Sun (carried out in the solar wind as the IMF) and associated low power in the solar wind points to the causal relationship between them. Our results indicate that the low solar wind output is driven by an internal trend in the Sun that is longer than the ?11 yr solar cycle, and they suggest that this current weak solar maximum is driven by the same trend.

  16. DOE Announces Effort to Advance U.S. Wind Power Manufacturing Capacity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Effort to Advance U.S. Wind Power Manufacturing Capacity DOE Announces Effort to Advance U.S. Wind Power Manufacturing Capacity June 2, 2008 - 12:51pm Addthis MOU Launches Government-Industry Effort to Define and Develop Technologies and Siting Strategies Necessary to Achieve 20% Wind Energy by 2030 HOUSTON, TEXAS -The U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced a Memorandum of Understanding

  17. Capacity Value of PV and Wind Generation in the NV Energy System

    SciTech Connect (OSTI)

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  18. An examination of capacity and ramping impacts of wind energy on power systems

    SciTech Connect (OSTI)

    Kirby, Brendan; Milligan, Michael

    2008-08-15

    When wind serves load outside of the host balancing area, there can be additional capacity requirements - mitigated by faster markets and exacerbated by slower markets. A series of simple thought experiments is useful in illustrating the implications for wind integration studies. (author)

  19. Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update

    Reports and Publications (EIA)

    2007-01-01

    This report provides an update to an estimate for U.S. aggregate natural gas storage capacity that was released in 2006.

  20. Investment Timing and Capacity Choice for Small-Scale Wind PowerUnder Uncertainty

    SciTech Connect (OSTI)

    Fleten, Stein-Erik; Maribu, Karl Magnus

    2004-11-28

    This paper presents a method for evaluation of investments in small-scale wind power under uncertainty. It is assumed that the price of electricity is uncertain and that an owner of a property with wind resources has a deferrable opportunity to invest in one wind power turbine within a capacity range. The model evaluates investment in a set of projects with different capacity. It is assumed that the owner substitutes own electricity load with electricity from the wind mill and sells excess electricity back to the grid on an hourly basis. The problem for the owner is to find the price levels at which it is optimal to invest, and in which capacity to invest. The results suggests it is optimal to wait for significantly higher prices than the net present value break-even. Optimal scale and timing depend on the expected price growth rate and the uncertainty in the future prices.

  1. Wind farm production cost: Optimum turbine size and farm capacity in the actual market

    SciTech Connect (OSTI)

    Laali, A.R.; Meyer, J.L.; Bellot, C.; Louche, A.

    1996-12-31

    Several studies are undertaken in R&D Division of EDF in collaboration with ERASME association in order to have a good knowledge of the wind energy production costs. These studies are performed in the framework of a wind energy monitoring project and concern the influence of a few parameters like wind farm capacity, turbine size and wind speed on production costs, through an analysis of the actual market trend. Some 50 manufacturers and 140 different kind of wind turbines are considered for this study. The minimum production cost is situated at 800/900 kW wind turbine rated power. This point will probably move to more important powers in the future. This study is valid only for average conditions and some special parameters like particular climate conditions or lack of infrastructure for a special site the could modify the results shown on the curves. The variety of wind turbines (rated power as a function of rotor diameter, height and specific rated power) in the actual market is analyzed. A brief analysis of the market trend is also performed. 7 refs., 7 figs.

  2. Investigating wind power`s effective capacity: A case study in the Caribbean Island of La Martinique

    SciTech Connect (OSTI)

    Perez, R.; Germa, J.M.; Bailey, B.

    1996-12-31

    In this paper, we report on the experimental determination of the effective capacity of wind and photovoltaic (PV) power generation with respect to the utility load requirements of the Island of La Martinique. La Martinique is a French Overseas Department in the Caribbean Sea. The case study spans two years, 1990 and 1991. We consider wind generation at three locations in different wind regimes, and PV generation for fixed and tracking flat plate systems. The results presented include: (1) An overview of typical solar and wind power output at each considered site, presented in contrast to the Island`s electric load requirements; and (2) Effective capacities quantified for each resource as a function of penetration in the utility generation mix. 7 refs., 6 figs.

  3. Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030

    Broader source: Energy.gov [DOE]

    DOE recently funded a study that finds the deployment of at least 54 gigawatts of offshore wind power to be technically possible by 2030. The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS), which focused on two DOE objectives in reducing barriers to deployment of offshore wind, cost of energy and timeline of deployment.

  4. Figure 1. Annual and Cumulative Growth in U.S. Wind Power Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Other non-Renewable",0.431645,0.5352,0.220325... 4. Approximate Wind Energy Penetration in the Twenty ...0.025,0.011,0.016,,0.087 "Austria",0.03,0.002,-0.002,0.011,0...

  5. NREL Releases Estimate of National Offshore Wind Energy Potential - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Releases Estimate of National Offshore Wind Energy Potential September 10, 2010 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) announces the release of a new report that assesses the electricity generating potential of offshore wind resources in the United States. According to the Assessment of Offshore Wind Energy Resources for the United States, 4,150 gigawatts of potential wind turbine nameplate capacity (maximum turbine capacity) from offshore

  6. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  7. Summary of Time Period-Based and Other Approximation Methods for Determining the Capacity Value of Wind and Solar in the United States: September 2010 - February 2012

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2012-03-01

    This paper updates previous work that describes time period-based and other approximation methods for estimating the capacity value of wind power and extends it to include solar power. The paper summarizes various methods presented in utility integrated resource plans, regional transmission organization methodologies, regional stakeholder initiatives, regulatory proceedings, and academic and industry studies. Time period-based approximation methods typically measure the contribution of a wind or solar plant at the time of system peak - sometimes over a period of months or the average of multiple years.

  8. A test of the 'one-point method' for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martin G. De Kauwe; Serbin, Shawn P.; Lin, Yan -Shih; Wright, Ian J.; Medlyn, Belinda E.; Crous, Kristine Y.; Ellsworth, David S.; Maire, Vincent; Prentice, I. Colin; Atkin, Owen K.; et al

    2015-12-31

    Here, simulations of photosynthesis by terrestrial biosphere models typically need a specification of the maximum carboxylation rate (Vcmax). Estimating this parameter using A–Ci curves (net photosynthesis, A, vs intercellular CO2 concentration, Ci) is laborious, which limits availability of Vcmax data. However, many multispecies field datasets include net photosynthetic rate at saturating irradiance and at ambient atmospheric CO2 concentration (Asat) measurements, from which Vcmax can be extracted using a ‘one-point method’.

  9. A test of the 'one-point method' for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis

    SciTech Connect (OSTI)

    Martin G. De Kauwe; Serbin, Shawn P.; Lin, Yan -Shih; Wright, Ian J.; Medlyn, Belinda E.; Crous, Kristine Y.; Ellsworth, David S.; Maire, Vincent; Prentice, I. Colin; Atkin, Owen K.; Rogers, Alistair; Niinemets, Ulo; Meir, Patrick; Uddling, Johan; Togashi, Henrique F.; Tarvainen, Lasse; Weerasinghe, Lasantha K.; Evans, Bradley J.; Ishida, F. Yoko; Domingues, Tomas F.

    2015-12-31

    Here, simulations of photosynthesis by terrestrial biosphere models typically need a specification of the maximum carboxylation rate (Vcmax). Estimating this parameter using A–Ci curves (net photosynthesis, A, vs intercellular CO2 concentration, Ci) is laborious, which limits availability of Vcmax data. However, many multispecies field datasets include net photosynthetic rate at saturating irradiance and at ambient atmospheric CO2 concentration (Asat) measurements, from which Vcmax can be extracted using a ‘one-point method’.

  10. 2015 Distributed Wind Market Report Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Capacity Continues to Grow Distributed wind cumulative capacity now totals 934 MW from over 75,000 turbines. In 2015, 28 states added 28 MW of new distributed wind capacity, ...

  11. Capacity Adequacy and Revenue Sufficiency in Electricity Markets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Adequacy and Revenue Sufficiency in Electricity Markets with Wind Power Title Capacity Adequacy and Revenue Sufficiency in Electricity Markets with Wind Power Publication...

  12. Increasing the Capacity of Existing Power Lines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of wind cooling on transmission lines concurrent with wind power generation, identifying additional capacity and line sag and clearance concerns to the ground, or nearby object. ...

  13. 1,"Kingdom Community Wind","Wind","Green Mountain Power Corp...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Kingdom Community Wind","Wind","Green Mountain Power Corp",65 2,"J C ...

  14. 2014 Distributed Wind Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Capacity Nearing 1 GW Distributed wind cumulative capacity has reached a total of 906 MW from nearly 74,000 wind turbines. In 2014, 23 states added 63.6 MW of new distributed wind capacity, represent- ing nearly 1,700 units and $170 million in investment. 2014 a Mixed Year for Distributed Wind The market for distributed wind systems using large-scale turbines (greater than 1 MW) showed signs of a recovery after low capacity additions in 2013. The markets for distributed wind systems using

  15. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Wind Vision Wind Vision Wind Vision About In support of the President's strategy to diversify our nation's clean energy mix, an elite team of researchers, academics, scientists, engineers, and wind industry experts revisited the findings of the Energy Department's 2008 20% Wind by 2030 report and built upon its findings to conceptualize a new vision for wind energy through 2050. The Wind Vision Report takes America's current installed wind power capacity across all

  16. WINDExchange: Wind Maps and Data

    Wind Powering America (EERE)

    Wind Maps and Data WINDExchange provides wind maps and anemometer data to help homeowners, communities, states, and regions learn more about their available wind resources and plan wind energy projects. WINDExchange also maintains more than a decade of installed capacity maps showing how wind energy has progressed across the United States over time as advances in wind technology and materials make wind resources more available. A map illustration of the United States showing the various wind

  17. 2011 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2012-08-01

    An annual report on the wind energy industry including key statistics, economic data, installation, capacity, and generation statistics, and more.

  18. 2012 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2013-08-01

    An annual report on the wind energy industry including key statistics, economic data, installation, capacity, and generation statistics, and more.

  19. Wind Turbine Scaling Enables Projects to Reach New Heights |...

    Broader source: Energy.gov (indexed) [DOE]

    chapter that focuses on trends in wind turbine nameplate capacity, hub height, rotor ... chapter that focuses on trends in wind turbine nameplate capacity, hub height, rotor ...

  20. Your wind driven generator

    SciTech Connect (OSTI)

    Wolff, B.

    1984-01-01

    Wind energy pioneer Benjamin Lee Wolff offers practical guidance on all aspects of setting up and operating a wind machine. Potential builders will learn how to: determine if wind energy is suitable for a specific application; choose an appropriate machine; assess the financial costs and benefits of wind energy; obtain necessary permits; sell power to local utilities; and interpret a generator's specifications. Coverage includes legislation, regulations, siting, and operation. While describing wind energy characteristics, Wolff explores the relationships among wind speed, rotor diameter, and electrical power capacity. He shows how the power of wind energy can be tapped at the lowest cost.

  1. Wind power soars

    SciTech Connect (OSTI)

    Flavin, C.

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  2. T10K Change Max Capacity

    Energy Science and Technology Software Center (OSTI)

    2013-08-16

    This command line utility will enable/disable the Oracle StorageTek T10000 tape drive's maximum capacity feature.

  3. 2010 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2011-06-01

    This report provides a comprehensive overview of trends in the U.S. wind power market in 2010. The report analyzes trends in wind power capacity, industry, manufacturing, turbines, installed project costs, project performance, and wind power prices. It also describes trends among wind power developers, project owners, and power purchasers, and discusses financing issues.

  4. WIND POWER PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2013, the U.S. wind industry totaled more than 60,000 MW of installed power capacity, over 20% of the 300,000 MW needed to achieve 20% by 2030. Wind power is expanding ...

  5. Wind Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Wind Energy Basics Wind Energy Basics Wind Energy Basics Once called windmills, the technology used to harness the power of wind has advanced significantly over the past ten years, with the United States increasing its wind power capacity 30% year over year. Wind turbines, as they are now called, collect and convert the kinetic energy that wind produces into electricity to help power the grid. Wind energy is actually a byproduct of the sun. The sun's uneven heating of

  6. 20% Wind Energy by 2030

    SciTech Connect (OSTI)

    Not Available

    2008-07-01

    This analysis explores one clearly defined scenario for providing 20% of our nations electricity demand with wind energy by 2030 and contrasts it to a scenario of no new wind power capacity.

  7. Chaninik Wind Group Wind Heat Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chaninik Wind Group Wind Heat Smart Grid Our Presentation * William Igkurak, President Chaninik Wind Group * the harness renewables to lower energy costs, * create economic opportunities * build human capacity * Dennis Meiners * Principal Intelligent Energy Systems, Anchorage Ak. * How it all works Program Highlights ²Award Tribal Energy funding 2009, Village Smart Grid ²Received funds November 2010 ²Project to be complete June 2011 ²Theme: "communities working together we can become

  8. Wind Energy Developments: Incentives In Selected Countries

    Reports and Publications (EIA)

    1999-01-01

    This paper discusses developments in wind energy for the countries with significant wind capacity. After a brief overview of world capacity, it examines development trends, beginning with the United States - the number one country in wind electric generation capacity until 1997.

  9. Wind Permitting Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    Wind farms above 5 MW capacity must receive a permit from the Ohio Power Siting Board before construction can begin.  The Ohio Power Siting Board is made up of representatives from several state...

  10. 2013 Wind Week

    Broader source: Energy.gov [DOE]

    Topping more than 61 gigawatts of installed capacity at the end of 2013 -- enough electricity to power nearly 16 million American homes a year -- wind energy is quickly becoming a critical source of clean, renewable power for the United States.

  11. WIND POWER PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department of Energy's Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department of Energy's Wind Program-Lasting Impressions State of the Industry Wind power has the potential to provide vast amounts electricity for the nation with more than 66,000 MW of installed power capacity delivering clean energy to homes and businesses. Wind power is expanding across the United States with utility-scale turbines deployed in 39 states and territories. Texas alone has more installed wind power than all but five countries around the

  12. 2014 Wind Technologies Market Report Highlights

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Technologies Market Report Highlights August 2015 Prepared for the U.S. Department of Energy Wind and Water Power Technologies Office Prepared by Lawrence Berkeley National Laboratory Berkeley, California 2014 WIND TECHNOLOGIES MARKET REPORT HIGHLIGHTS 2 Introduction The United States remains a top installer of wind energy capacity. Wind power additions rebounded in 2014, with 4,854 megawatts (MW) of new capacity added in the United States representing $8.3 billion in new investments. In

  13. 2013 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

    2014-08-01

    This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

  14. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  15. Kansas Wind Energy Consortium

    SciTech Connect (OSTI)

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  16. 2015 Distributed Wind Market Report Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Capacity Continues to Grow Distributed wind cumulative capacity now totals 934 MW from over 75,000 turbines. In 2015, 28 states added 28 MW of new distributed wind capacity, representing just over 1,700 turbines and a $102 million investment. U.S. Small Wind Manufacturers Double Exports to 21.5 MW In 2015, U.S. manufacturers dominated domestic sales of small wind turbines (up through 100 kW) and doubled exports from 2014 to 2015. Between 2012 and 2015, U.S.-based small wind turbine

  17. 2012 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Wind Technologies Market Report 2012 Wind Technologies Market Report An annual report on the wind energy industry including key statistics, economic data, installation, capacity, and generation statistics, and more. 2012_wind_technologies_market_report.pdf (3.4 MB) More Documents & Publications 2012 Wind Technologies Market Report 2013 Wind Technologies Market Report 2014

  18. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    SciTech Connect (OSTI)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  19. U.S. Fuel Ethanol Plant Production Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Note: In previous ethanol capacity reports, EIA included data on maximum sustainable ... The collection and publication efforts for the maximum sustainable data value were ...

  20. Mapping the Frontier of New Wind Power Potential | Department...

    Energy Savers [EERE]

    Addthis This map shows wind potential capacity for turbine hub heights at 140 meters. This map shows wind potential capacity for turbine hub heights at 140 meters. Brie Van Cleve ...

  1. Industry guidelines for the calibration of maximum anemometers

    SciTech Connect (OSTI)

    Bailey, B.H.

    1996-12-31

    The purpose of this paper is to report on a framework of guidelines for the calibration of the Maximum Type 40 anemometer. This anemometer model is the wind speed sensor of choice in the majority of wind resource assessment programs in the U.S. These guidelines were established by the Utility Wind Resource Assessment Program. In addition to providing guidelines for anemometers, the appropriate use of non-calibrated anemometers is also discussed. 14 refs., 1 tab.

  2. Naval Station Newport Wind Resource Assessment. A Study Prepared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... wind speeds, energy production for a generic 1.5 MW wind turbine, and capacity factor. ... resource at the selected sites at NAVSTA Newport is sufficient for a wind turbine project. ...

  3. Quiz: Test Your Wind Energy IQ | Department of Energy

    Energy Savers [EERE]

    wind capacity in the U.S. is nearing 1 gigawatt. | Energy Department photo. 13. How many offshore wind farms are there in the U.S.? 5 2 12 0 The Energy Department's Wind Program...

  4. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  5. Large Commercial Wind Exemption and Alternative Taxes

    Broader source: Energy.gov [DOE]

    The alternative taxation method has two components. The first component is an annual tax equal to $3 per kilowatt (kW) of capacity of the wind farm, prorated according to when the wind farm begins...

  6. Sales Tax Exemption for Wind Energy

    Broader source: Energy.gov [DOE]

    A wind power facility must be new or an expansion of an existing facility and placed in service on or after July 1, 2009. It must generate electricity using wind turbines that have a capacity of...

  7. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. Wind Resource Assessment of Gujarat (India)

    SciTech Connect (OSTI)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  9. 2014 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Orell, A.; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers' sales.

  10. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    SciTech Connect (OSTI)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  11. Wind Program News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to training for the clean energy workforce. December 10, 2014 This map shows wind potential capacity for turbine hub heights at 140 meters. Mapping the Frontier of New...

  12. Quality, precision and accuracy of the maximum No. 40 anemometer

    SciTech Connect (OSTI)

    Obermeir, J.; Blittersdorf, D.

    1996-12-31

    This paper synthesizes available calibration data for the Maximum No. 40 anemometer. Despite its long history in the wind industry, controversy surrounds the choice of transfer function for this anemometer. Many users are unaware that recent changes in default transfer functions in data loggers are producing output wind speed differences as large as 7.6%. Comparison of two calibration methods used for large samples of Maximum No. 40 anemometers shows a consistent difference of 4.6% in output speeds. This difference is significantly larger than estimated uncertainty levels. Testing, initially performed to investigate related issues, reveals that Gill and Maximum cup anemometers change their calibration transfer functions significantly when calibrated in the open atmosphere compared with calibration in a laminar wind tunnel. This indicates that atmospheric turbulence changes the calibration transfer function of cup anemometers. These results call into question the suitability of standard wind tunnel calibration testing for cup anemometers. 6 refs., 10 figs., 4 tabs.

  13. GIZ-Best Practices in Capacity Building Approaches | Open Energy...

    Open Energy Info (EERE)

    Building Approaches: Recommendations for the Design of a Long -Term Capacity Building Strategy for the Wind and Solar Sectors by the MEF Working Group AgencyCompany Organization:...

  14. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  15. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  16. AWEA State Wind Energy Forum- Michigan

    Broader source: Energy.gov [DOE]

    Michigan has 988 MW of installed wind capacity, representing close to $2B in investment; and officials are considering plans and a policy framework for additional capacity in the near future....

  17. 2014 Year-End Wind Power Capacity

    Wind Powering America (EERE)

    2 0 1 4 Y e a r E n d Wi n d P o we r C a p a c i t y ( MW)

  18. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  19. Maximum-likelihood

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jurisdiction waters of the Gulf of Mexico. Alaska is all onshore. Total crews includes crews with unknown survey dimension. Data are reported on the first and fifteenth of each month, except January when they are reported only on the fifteenth. When semi-monthly values differ for the month, the larger of the two values is shown here. Consequently, this table reflects the maximum number of crews at work at any time during the month. See Definitions, Sources, and Notes link above for more

  20. Large Wind Property Tax Reduction

    Broader source: Energy.gov [DOE]

    Currently, all centrally-assessed wind turbines with a capacity of 100 kW or greater that are constructed after June 30, 2006, and before January 1, 2015, are valued at 1.5% of their assessed...

  1. Systems Performance Analyses of Alaska Wind-Diesel Projects; Toksook Bay, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Toksook Bay, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, estimated fuel savings, and wind system availability.

  2. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  3. Systems Performance Analyses of Alaska Wind-Diesel Projects; Selawik, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Selawik, Alaska. Data provided for this project include community load data, wind turbine output, diesel plant output, thermal load data, average wind speed, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, and estimated fuel savings.

  4. NREL's Wind Powering America Team Helps Indiana Develop Wind Resources (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    How does a state advance, in just five years, from having no installed wind capacity to having more than 1000 megawatts (MW) of installed capacity? The Wind Powering America (WPA) initiative, based at the National Renewable Energy Laboratory (NREL), employs a state-focused approach that has helped accelerate wind energy deployment in many states. One such state is Indiana, which is now home to the largest wind plant east of the Mississippi.

  5. How to Build a Small Wind Energy Business: Lessons from California; Preprint

    SciTech Connect (OSTI)

    Sinclair, K.

    2007-07-01

    This paper highlights the experience of one small wind turbine installer in California that installed more than 1 MW of small wind capacity in 6 years.

  6. DOE Releases 2010 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Wind Technologies Market Report DOE Releases 2010 Wind Technologies Market Report October 3, 2011 - 12:05pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. The Department of Energy released its 2010 Wind Technologies Market Report produced by Lawrence Berkeley National Laboratory (LBNL) in July. The report analyzes trends in capacity, manufacturing, performance, and costs. According to the report, wind power capacity grew by a healthy 15%

  7. Wind Simulation

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  8. Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... HomeStationary PowerEnergy Conversion EfficiencyWind EnergyOffshore Wind Offshore Wind Tara Camacho-Lopez 2016-0... March 2014, Barcelona, Spain, PO 225. Griffith, D.T., and ...

  9. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  10. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... laboratory mission technologies and ... By admin| ... participating in the Wind Turbine Radar Interference ... Association AWEA WindPower 2015 event in Orlando, Florida. ...

  11. Airborne Wind Turbine

    SciTech Connect (OSTI)

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  12. 2014 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2015-08-01

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditional power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.

  13. Operational Impacts of Large Deployments of Offshore Wind (Poster)

    SciTech Connect (OSTI)

    Ibanez, E.; Heaney, M.

    2014-10-01

    The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

  14. 2014 Distributed Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Market Report 2014 Distributed Wind Market Report The cover of the 2014 Distributed Wind Market Report. According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170

  15. EERE Success Story-Mapping the Frontier of New Wind Power Potential...

    Energy Savers [EERE]

    Addthis This map shows wind potential capacity for turbine hub heights at 140 meters. This map shows wind potential capacity for turbine hub heights at 140 meters. Partnered with ...

  16. 2013 Wind Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Wind Report 2013 Wind Report 1 of 9 #DidYouKnow: The U.S. ranks 2nd in the world for installed wind capacity, equal to nearly 4.5 percent of its total electrical demand. | Photo courtesy of Ruth Baranowski, NREL. 2 of 9 Last year, the wind industry invested $1.8 billion in America's clean energy future, bringing the total of wind energy investments to $125 billion since the 1980s. | Photo courtesy of Casey Joyce, RMT, Inc. 3 of 9 The price of wind energy for new contracts signed in 2013 is at

  17. A review of the international experience with integrating wind energy generation

    SciTech Connect (OSTI)

    Porter, Kevin; Yen-Nakafuji, Dora; Morgenstern, Brett

    2007-10-15

    Regions in the U.S. that are planning significant capacity additions of wind can learn from the experience of countries that have developed wind forecasting strategies and grid codes addressing wind power systems. (author)

  18. U.S. Department of Energy Wind and Water Power Program Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... portfolio of innovative technologies for clean, domestic ... States had more wind turbine generating capacity ... Generation Drivetrain FOA Florida Project Description ...

  19. New Report Shows Domestic Offshore Wind Industry Potential, 21...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuing to increase in size, the average offshore wind turbine installed in 2014 had a 377-foot-diameter rotor on a 279-foot-tall tower. The average capacity of offshore wind ...

  20. Fact Sheet: Multilateral Solar and Wind Working Group | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar and Wind Working Group will focus its initial work on developing a Global Atlas for Solar and Wind Energy and a corresponding Long-Term Strategy on Joint Capacity ...

  1. Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis NREL Doubling Geothermal Capacity.pdf (890.69 KB) More Documents & Publications Geothermal Exploration Policy Mechanisms Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios track 1: systems analysis | geothermal 2015 peer review

  2. Optimum propeller wind turbines

    SciTech Connect (OSTI)

    Sanderson, R.J.; Archer, R.D.

    1983-11-01

    The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

  3. Cisco Wind Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Wind Easements

    Broader source: Energy.gov [DOE]

    The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property...

  5. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  6. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains, about 50-60 miles southwest. The numeric grid values indicate wind potential, with a range from 1 (poor) to 7 (superb). Just inside Texas in the southern Guadalupe Mountains, the Delaware Mountain Wind Power Facility in Culbertson County, Texas currently generates over 30 MW, and could be expanded to a 250 MW

  7. Removal to Maximum Extent Practical

    Broader source: Energy.gov [DOE]

    Summary Notes from 1 November 2007 Generic Technical Issue Discussion on Removal of Highly Radioactive Radionuclides/Key Radionuclides to the Maximum Extent Practical

  8. Reduced Form of Detailed Modeling of Wind Transmission and Intermitten...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    most capacity expansion models do not have significant geographic disaggregation. These models cannot track the geographic dispersion of the installed wind and cannot estimate...

  9. Next-Generation Wind Technology | Department of Energy

    Office of Environmental Management (EM)

    commonly known as 3D printing, to the production of wind turbine blade molds. ... Since 1999, the average turbine generating capacity has increased, with turbines installed ...

  10. Offshore Wind Market and Economic Analysis Report 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Economic Analysis Page 16 Document Number DE-EE0005360 by combining an excellent wind source and efficient large capacity turbines with the design, fabrication, and...

  11. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the

  12. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, James L.; Somers, Dan M.

    1996-01-01

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  13. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, J.L.; Somers, D.M.

    1996-10-08

    Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

  14. Effects of increasing tip velocity on wind turbine rotor design.

    SciTech Connect (OSTI)

    Resor, Brian Ray; Maniaci, David Charles; Berg, Jonathan Charles; Richards, Phillip William

    2014-05-01

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  15. 2010 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Exeter Associates; National Renewable Energy Laboratory; Energetics Incorporated; Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naim; Hoen, Ben; Mills, Andrew; Seel, Joachim; Porter, Kevin; Buckley, Michael; Fink, Sari; Oteri, Frank; Raymond, Russell

    2011-06-27

    The U.S. wind power industry experienced a trying year in 2010, with a significant reduction in new builds compared to both 2008 and 2009. The delayed impact of the global financial crisis, relatively low natural gas and wholesale electricity prices, and slumping overall demand for energy countered the ongoing availability of existing federal and state incentives for wind energy deployment. The fact that these same drivers did not impact capacity additions in 2009 can be explained, in part, by the 'inertia' in capital-intensive infrastructure investments: 2009 capacity additions were largely determined by decisions made prior to the economy-wide financial crisis that was at its peak in late 2008 and early 2009, whereas decisions on 2010 capacity additions were often made at the height of the financial crisis. Cumulative wind power capacity still grew by a healthy 15% in 2010, however, and most expectations are for moderately higher wind power capacity additions in 2011 than witnessed in 2010, though those additions are also expected to remain below the 2009 high.

  16. 20% Wind Energy by 2030 - Chapter 1: Executive Summary and Overview Summary Slides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Executive Summary and Overview Summary Slides 20% Wind Energy by 2030: technical report Explores one scenario for reaching 20% wind energy by 2030 (20% Wind Scenario) and contrasts it to a scenario in which no new U.S. wind power capacity (No New Wind) is installed Is not a prediction or goal, but an analysis based on one scenario Does not assume specific policy support for wind Involved more than 100 individuals from 2006 - 2008 (government, industry, utilities, NGOs) Analyzes wind's

  17. Wind Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Wind Turbine Manufacturing Transforms with Three-Dimensional Printing Wind Turbine Manufacturing Transforms with Three-Dimensional Printing May 19, 2016 - 12:57pm Addthis From medical devices to airplane components, three-dimensional (3-D) printing (also called additive manufacturing) is transforming the manufacturing industry. Now, research that supports the Energy Department's Atmosphere to Electrons (A2e) initiative is applying 3-D-printing processes to create wind

  18. Why Are We Talking About Capacity Markets? (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.

    2011-06-01

    Capacity markets represent a new and novel way to achieve greater economic use of variable generation assets such as wind and solar, and this concept is discussed in this presentation.

  19. Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-08-01

    An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

  20. Flatback airfoil wind tunnel experiment.

    SciTech Connect (OSTI)

    Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-04-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  1. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  2. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Wind Energy Wind Energy Tara Camacho-Lopez 2016-08-30T20:56:10+00:00 Increasing the viability of wind energy technology by applying research to improve wind turbine performance and reliability http://windworkshops.sandia.gov/ Rotor Innovation Advancing rotor technology such that they capture more energy, more reliably, with relatively lower system loads-all at a lower end cost. SWiFT Facility & Testing Improving the performance and reducing the

  3. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  4. NREL: Wind Research - Wind Career Map Shows Wind Industry Career...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Career Map Shows Wind Industry Career Opportunities, Paths A screenshot of the wind career map showing the various points on a chart that show different careers in the wind...

  5. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect (OSTI)

    Turtle Mountain Community College

    2003-12-30

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate

  6. Stetson Wind Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale...

  7. State Fair Wind Energy Education Center Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Fair Wind Energy Education Center Wind Farm Jump to: navigation, search Name State Fair Wind Energy Education Center Wind Farm Facility Wind Energy Education Center Sector Wind...

  8. Wind Power Partners '94 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Wethersfield Wind Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  10. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Abbey School Wind Turbine Wind Farm Jump to: navigation, search Name Portsmouth Abbey School Wind Turbine Wind Farm Facility Portsmouth Abbey School Wind Turbine Sector Wind energy...

  11. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  12. NREL: Wind Research - Offshore Wind Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience ... Testing Applying 35 years of wind turbine testing expertise, NREL has developed ...

  13. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the ...

  14. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m ...

  15. FAQs about Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    about Storage Capacity How do I determine if my tanks are in operation or idle or ... Do I have to report storage capacity every month? No, only report storage capacity with ...

  16. Danielson Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Danielson Wind Facility Danielson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  17. Kawailoa Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Kawailoa Wind Facility Kawailoa Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  18. Palouse Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Palouse Wind Facility Palouse Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  19. Harbor Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Harbor Wind Facility Harbor Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Harbor Wind LLC...

  20. Kahuku Wind | Open Energy Information

    Open Energy Info (EERE)

    Kahuku Wind Jump to: navigation, search Name Kahuku Wind Facility Kahuku Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  1. Wiota Wind | Open Energy Information

    Open Energy Info (EERE)

    Wiota Wind Jump to: navigation, search Name Wiota Wind Facility Wiota Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Wiota Wind Energy LLC...

  2. Bravo Wind | Open Energy Information

    Open Energy Info (EERE)

    Bravo Wind Jump to: navigation, search Name Bravo Wind Facility Bravo Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Bravo Wind LLC...

  3. Auwahi Wind | Open Energy Information

    Open Energy Info (EERE)

    Auwahi Wind Jump to: navigation, search Name Auwahi Wind Facility Auwahi Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy...

  4. Traer Wind | Open Energy Information

    Open Energy Info (EERE)

    Traer Wind Jump to: navigation, search Name Traer Wind Facility Traer Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Norsemen Wind Energy LLC...

  5. Sheffield Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Sheffield Wind Facility Sheffield Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  6. Rollins Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rollins Wind Facility Rollins Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  7. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  8. 2014 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Technologies Market Report 2014 Wind Technologies Market Report A photo of the cover of the 2014 Wind Technologies Market Report. According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of

  9. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  10. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy The DTU SpinnerLidar installed in the nacelle of the SWiFT facility A1 turbine Permalink Gallery First Wake Data Captured During Wake Steering Experiment at the SWiFT Facility News, Renewable Energy, SWIFT, Wind Energy, Wind News First Wake Data Captured During Wake Steering Experiment at the SWiFT Facility Researchers at Sandia National Laboratories and the National Renewable Energy Laboratory (NREL) have met a major project milestone as part of the Department of Energy Atmosphere

  11. 2009 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2010-08-01

    The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

  12. 2011 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naim; Hoen, Ben; Mills, Andrew; Porter, Kevin; Buckley, Michael; Fink, Sari; Oteri, Frank; Tegen, Suzanne

    2012-08-01

    The U.S. wind power industry is facing uncertain times. With 2011 capacity additions having risen from 2010 levels and with a further sizable increase expected in 2012, there are – on the surface – grounds for optimism. Key factors driving growth in 2011 included continued state and federal incentives for wind energy, recent improvements in the cost and performance of wind power technology, and the need to meet an end-of-year construction start deadline in order to qualify for the Section 1603 Treasury grant program. At the same time, the currently-slated expiration of key federal tax incentives for wind energy at the end of 2012 – in concert with continued low natural gas prices and modest electricity demand growth – threatens to dramatically slow new builds in 2013.

  13. WINDExchange: Selling Wind Power

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  14. Potential market of wind farm in China

    SciTech Connect (OSTI)

    Pengfei Shi

    1996-12-31

    Wind energy resources are abundant in China, in southeast coast area along with the rapid economic growth, electricity demand has been sharply increased, due to complex terrain detailed assessments are in urgent need. Advanced methodology and computer model should be developed. In this paper the existing wind farms, installed capacity, manufacturers share and projects in the near future are presented. For further development of wind farm in large scale, different ways of local manufacturing wind turbine generators (WTG) are going on. Current policy and barriers are analyzed. 4 refs., 2 figs., 4 tabs.

  15. 2014 Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Market Report 2014 Wind Market Report 1 of 8 2 of 8 3 of 8 4 of 8 5 of 8 6 of 8 7 of 8 8 of 8 Energy Department Reports Highlight Trends of Growing U.S. Wind Energy Industry In 2014, U.S. turbines in distributed applications reached a cumulative installed capacity of more than 906 megawatts, enough to power more than 168,000 average American homes. | Photo courtesy of Aegis Renewable Energy; Waitsfield, Vermont. Reports show wind energy industry continued impressive growth in 2014,

  16. Sandia Wind Turbine Loads Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sandia Wind Turbine Loads Database is divided into six files, each corresponding to approximately 16 years of simulation. The files are text files with data in columnar format. The 424MB zipped file containing six data files can be downloaded by the public. The files simulate 10-minute maximum loads for the NREL 5MW wind turbine. The details of the loads simulations can be found in the paper: “Decades of Wind Turbine Loads Simulations”, M. Barone, J. Paquette, B. Resor, and L. Manuel, AIAA2012-1288 (3.69MB PDF). Note that the site-average wind speed is 10 m/s (class I-B), not the 8.5 m/s reported in the paper.

  17. Sandia Wind Turbine Loads Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sandia Wind Turbine Loads Database is divided into six files, each corresponding to approximately 16 years of simulation. The files are text files with data in columnar format. The 424MB zipped file containing six data files can be downloaded by the public. The files simulate 10-minute maximum loads for the NREL 5MW wind turbine. The details of the loads simulations can be found in the paper: Decades of Wind Turbine Loads Simulations, M. Barone, J. Paquette, B. Resor, and L. Manuel, AIAA2012-1288 (3.69MB PDF). Note that the site-average wind speed is 10 m/s (class I-B), not the 8.5 m/s reported in the paper.

  18. 2014 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Daghouth, Naim; Hoen, Ben; Mills, Andrew; Hamachi LaCommare, Kristina; Millstein, Dev; Hansen, Dana; Porter, Kevin; Widiss, Rebecca; Buckley, Michael; Oteri, Frank; Smith, Aaron; Tegen, Suzanne

    2015-08-06

    Wind power capacity additions in the United States rebounded in 2014, and continued growth through 2016 is anticipated. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—which is available for projects that began construction by the end of 2014. Wind additions are also being driven by recent improvements in the cost and performance of wind power technologies, which have resulted in the lowest power sales prices ever seen in the U.S. wind sector. Growing corporate demand for wind energy and state-level policies play important roles as well. Expectations for continued technological advancements and cost reductions may further boost future growth. At the same time, the prospects for growth beyond 2016 are uncertain. The PTC has expired, and its renewal remains in question. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on growth expectations. These trends, in combination with increasingly global supply chains, have limited the growth of domestic manufacturing of wind equipment. What they mean for wind power additions through the end of the decade and beyond will be dictated in part by future natural gas prices, fossil plant retirements, and policy decisions.

  19. NREL and Alstom Celebrate Wind Turbine Installation - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Alstom Celebrate Wind Turbine Installation 3 MW, 60 Hz Alstom ECO 100 Now Fully Operational at National Wind Technology Center April 26, 2011 Golden, Colo., April 26, 2011 - Officials from the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL), along with officials from Alstom, today commemorated the successful installation and full capacity operation of a 3 megawatt Alstom ECO 100 wind turbine at NREL's National Wind Technology Center. This event

  20. LLNL Predicts Wind Power with Greater Accuracy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLNL Predicts Wind Power with Greater Accuracy LLNL Predicts Wind Power with Greater Accuracy May 18, 2015 - 5:05pm Addthis A multicolored scatter plot that curves from left to right, bottom to top to show the wind power capacity factor and wind speed meters per second. The colors relate atmospheric stability conditions to reported power-output observations with black, dark blue, and lighter blue representing stable conditions; light blue, green and light green representing neutral conditions;

  1. PNNL Reports Distributed Wind Installations Down, Exports Up in 2013 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Reports Distributed Wind Installations Down, Exports Up in 2013 PNNL Reports Distributed Wind Installations Down, Exports Up in 2013 March 31, 2014 - 11:14am Addthis According to the second annual Market Report on Wind Technologies in Distributed Applications soon to be published by DOE's Pacific Northwest National Laboratory, U.S. wind turbines in distributed applications reached a cumulative installed capacity of 842 MW at the end of 2013, reflecting nearly 72,000

  2. Milford Wind Corridor Phase I (Clipper) Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Clipper) Wind Farm Jump to: navigation, search Name Milford Wind Corridor Phase I (Clipper) Wind Farm Facility Milford Wind Corridor Phase I (Clipper) Sector Wind energy Facility...

  3. Three-dimensional elastic lidar winds

    SciTech Connect (OSTI)

    Buttler, W.T.

    1996-07-01

    Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic backscatter lidar data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three- dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain following winds in the Rio Grande valley.

  4. DOE Releases 2011 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Wind Technologies Market Report DOE Releases 2011 Wind Technologies Market Report October 1, 2012 - 11:27am Addthis This is an excerpt from the Third Quarter 2012 edition of the Wind Program R&D Newsletter. According to the 2011 Wind Technologies Market Report released by the U.S. Department of Energy (DOE) in August, the United States remained one of the fastest-growing wind power markets in the world in 2011-second only to China. Roughly 6,800 megawatts (MW) of new wind power capacity

  5. Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  6. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kasigluk, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kasigluk, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  7. An assessment of the economic impact of the wind turbine supply chain in Illinois

    SciTech Connect (OSTI)

    Carlson, J. Lon; Loomis, David G.; Payne, James

    2010-08-15

    The enormous growth of wind energy in Illinois and around the country has led to a shortage of wind turbines. Turbine manufacturers have sold out their capacity into 2010. To the extent that Illinois manufacturing can integrate itself into the wind turbine supply chain, Illinois can enjoy the economic benefits from both having wind farms and supplying the parts to build them. (author)

  8. Refinery Capacity Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 9 Shell Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 10...

  9. JD Wind 6 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 6 Wind Farm Jump to: navigation, search Name JD Wind 6 Wind Farm Facility JD Wind 6 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  10. JD Wind 7 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 7 Wind Farm Jump to: navigation, search Name JD Wind 7 Wind Farm Facility JD Wind 7 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  11. Metro Wind LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind LLC Wind Farm Jump to: navigation, search Name Metro Wind LLC Wind Farm Facility Metro Wind LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Michigan Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  13. Garnet Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water...

  14. Lime Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Lime Wind Facility Lime Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Joseph Millworks Inc...

  15. Fairhaven Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Fairhaven Wind Facility Fairhaven Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy Palmer...

  16. Scituate Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Scituate Wind Facility Scituate Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy ...

  17. Pacific Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Pacific Wind Facility Pacific Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer...

  18. Galactic Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Galactic Wind Facility Galactic Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Epic Systems...

  19. Rockland Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rockland Wind Facility Rockland Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Ridgeline...

  20. Greenfield Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Greenfield Wind Facility Greenfield Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Greenfield Wind Power...

  1. Willmar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Willmar Wind Facility Willmar Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Willmar...

  2. NREL: Innovation Impact - Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems ...

  3. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  4. Wind Program News

    SciTech Connect (OSTI)

    2012-01-06

    Stay current on the news about the wind side of the Wind and Water Power Program and important wind energy events around the U.S.

  5. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  6. Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    continues to be one of the world's largest and fastest growing wind markets. In 2012, wind energy became the number one source of new U.S. electricity generation capacity for...

  7. Maximum Performance Group MPG | Open Energy Information

    Open Energy Info (EERE)

    Maximum Performance Group MPG Jump to: navigation, search Name: Maximum Performance Group (MPG) Place: College Point, New York Zip: 11356 Product: Technology based energy and asset...

  8. Boiler Maximum Achievable Control Technology (MACT) Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact Sheet, April 2015 Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact ...

  9. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PRIME Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by ...

  10. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, James L.; Somers, Dan M.

    2000-01-01

    Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

  11. NREL: Wind Research - Site Wind Resource Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. ...

  12. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens For more than eight years, NREL has worked with the U.S. Department of Energy (DOE) to become an international leader in offshore wind energy research. NREL's offshore wind turbine research capabilities focus on critical areas that reflect the long-term needs of the industry and DOE. National Wind Technology Center (NWTC) researchers are perpetually exploring new wind and water power concepts, materials, and

  13. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Energy Sources Renewable Energy Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay ...

  14. Wind Spires as an Alternative Energy Source

    SciTech Connect (OSTI)

    Majid Rashidi, Ph.D., P.E.

    2012-10-30

    This report discloses the design and development of an innovative wind tower system having an axisymmetric wind deflecting structure with a plurality of symmetrically mounted rooftop size wind turbines near the axisymmetric structure. The purpose of the wind deflecting structure is to increase the ambient wind speed that in turn results in an overall increase in the power capacity of the wind turbines. Two working prototypes were constructed and installed in the summer of 2009 and 2012 respectively. The system installed in the Summer of 2009 has a cylindrical wind deflecting structure, while the tower installed in 2012 has a spiral-shape wind deflecting structure. Each tower has 4 turbines, each rated at 1.65 KW Name-Plate-Rating. Before fabricating the full-size prototypes, computational fluid dynamic (CFD) analyses and scaled-down table-top models were used to predict the performance of the full-scale models. The performance results obtained from the full-size prototypes validated the results obtained from the computational models and those of the scaled-down models. The second prototype (spiral configuration) showed at a wind speed of 11 miles per hour (4.9 m/s) the power output of the system could reach 1,288 watt, when a typical turbine installation, with no wind deflecting structure, could produce only 200 watt by the same turbines at the same wind speed. At a wind speed of 18 miles per hour (8 m/sec), the spiral prototype produces 6,143 watt, while the power generated by the same turbines would be 1,412 watt in the absence of a wind deflecting structure under the same wind speed. Four US patents were allowed, and are in print, as the results of this project (US 7,540,706, US 7,679,209, US 7,845,904, and US 8,002,516).

  15. NREL: Wind Research - Wind Energy Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As ...

  16. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced

  17. Wind Integration National Dataset (WIND) Toolkit

    Broader source: Energy.gov [DOE]

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  18. Wind Powering America Webinar: Wind Power Economics: Past, Present, and

    Broader source: Energy.gov (indexed) [DOE]

    Future Trends | Department of Energy Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines installed in the United States have increased significantly, while other design improvements have also boosted turbine energy production. In combination, these various trends have had a significant-and sometimes

  19. U.S. Distributed Wind Sector Finds Support from NREL

    SciTech Connect (OSTI)

    Sinclair, Karin

    2015-02-02

    Small and mid-sized wind turbine manufacturers in the United States have led the international distributed wind market in installed capacity for decades. Continued reductions in the cost of distributed wind systems are essential to successfully compete with currently economical photovoltaic systems. Annual capacity additions in 2013 were particularly low. In an effort to reduce the levelized cost of energy (LCOE) of distributed wind systems manufactured in the United States, the U.S. Department of Energy (DOE) has provided funding through the National Renewable Energy Laboratory (NREL) to support several projects.

  20. REDUCTION CAPACITY OF SALTSTONE AND SALTSTONE COMPONENTS

    SciTech Connect (OSTI)

    Roberts, K.; Kaplan, D.

    2009-11-30

    The duration that saltstone retains its ability to immobilize some key radionuclides, such as technetium (Tc), plutonium (Pu), and neptunium (Np), depends on its capacity to maintain a low redox status (or low oxidation state). The reduction capacity is a measure of the mass of reductants present in the saltstone; the reductants are the active ingredients that immobilize Tc, Pu, and Np. Once reductants are exhausted, the saltstone loses its ability to immobilize these radionuclides. The reduction capacity values reported here are based on the Ce(IV)/Fe(II) system. The Portland cement (198 {micro}eq/g) and especially the fly ash (299 {micro}eq/g) had a measurable amount of reduction capacity, but the blast furnace slag (820 {micro}eq/g) not surprisingly accounted for most of the reduction capacity. The blast furnace slag contains ferrous iron and sulfides which are strong reducing and precipitating species for a large number of solids. Three saltstone samples containing 45% slag or one sample containing 90% slag had essentially the same reduction capacity as pure slag. There appears to be some critical concentration between 10% and 45% slag in the Saltstone formulation that is needed to create the maximum reduction capacity. Values from this work supported those previously reported, namely that the reduction capacity of SRS saltstone is about 820 {micro}eq/g; this value is recommended for estimating the longevity that the Saltstone Disposal Facility will retain its ability to immobilize radionuclides.

  1. Wind Development on Tribal Lands

    SciTech Connect (OSTI)

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  2. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Vacuum State/Refiner/Location Barrels per Atmospheric Crude Oil Distillation Capacity Barrels per Operating Idle Operating Idle Downstream Charge Capacity Thermal Cracking Delayed Fluid Coking Visbreaking Other/Gas Calendar Day Stream Day Distillation Coking Oil Table 3. Capacity of Operable Petroleum Refineries by State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) ......................................................... Alabama 131,675 0 140,500 0 47,000 32,000 0 0 0

  3. WINDExchange: Utility-Scale Land-Based 80-Meter Wind Maps

    Wind Powering America (EERE)

    Maps & Data Printable Version Bookmark and Share Land-Based Utility-Scale Maps Potential Capacity Maps Offshore Wind Maps Community-Scale Maps Residential-Scale Maps Installed Capacity Maps Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United States with links to state wind maps. States, utilities, and wind energy developers use utility-scale wind resource maps to locate and quantify the

  4. WINDExchange: Puerto Rico and U.S. Virgin Islands 50-Meter Wind Resource

    Wind Powering America (EERE)

    Map Maps & Data Printable Version Bookmark and Share Land-Based Utility-Scale Maps Potential Capacity Maps Offshore Wind Maps Community-Scale Maps Residential-Scale Maps Installed Capacity Maps Puerto Rico and U.S. Virgin Islands 50-Meter Wind Resource Map Puerto Rico and U.S. Virgin Islands wind resource map. Click on the image to view a larger version. Enlarge image This Puerto Rico wind map and the U.S. Virgin Islands wind map shows the wind resource at 50 meters. Download a printable

  5. GIS Method for Developing Wind Supply Curves

    SciTech Connect (OSTI)

    Kline, D.; Heimiller, D.; Cowlin, S.

    2008-06-01

    This report describes work conducted by the National Renewable Energy Laboratory (NREL) as part of the Wind Technology Partnership (WTP) sponsored by the U.S. Environmental Protection Agency (EPA). This project has developed methods that the National Development and Reform Commission (NDRC) intends to use in the planning and development of China's 30 GW of planned capacity. Because of China's influence within the community of developing countries, the methods and the approaches here may help foster wind development in other countries.

  6. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels ... Catalytic Cracking Downstream Charge Capacity (Barrels per Stream Day) Cracking Thermal ...

  7. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  10. wind turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turbines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  11. JD Wind 5 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    5 Wind Farm Jump to: navigation, search Name JD Wind 5 Wind Farm Facility JD Wind 5 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  12. Cow Branch Wind Energy Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cow Branch Wind Energy Center Wind Farm Jump to: navigation, search Name Cow Branch Wind Energy Center Wind Farm Facility Cow Branch Wind Energy Center Sector Wind energy Facility...

  13. JD Wind 4 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name JD Wind 4 Wind Farm Facility JD Wind 4 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  14. JD Wind 1 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name JD Wind 1 Wind Farm Facility JD Wind 1 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWSJohn...

  15. North Dakota Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name North Dakota Wind II Wind Farm Facility North Dakota Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. Venture Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Venture Wind II Wind Farm Facility Venture Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  17. MinWind I & II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    I & II Wind Farm Jump to: navigation, search Name MinWind I & II Wind Farm Facility MinWind I & II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  18. New Report Evaluates Impacts of DOE's Wind Powering America Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Evaluates Impacts of DOE's Wind Powering America Initiative New Report Evaluates Impacts of DOE's Wind Powering America Initiative August 1, 2013 - 2:59pm Addthis This is an excerpt from the Second Quarter 2013 edition of the Wind Program R&D Newsletter. The goal of the Wind Powering America (WPA) initiative, established by the U.S. Department of Energy (DOE) in 1999, was to facilitate a rapid increase in U.S. wind power capacity by engaging in activities that

  19. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  20. Variable capacity gasification burner

    SciTech Connect (OSTI)

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  1. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    CORPORATION / Refiner / Location Table 5. Refiners' Total Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2016 Calendar Day Barrels per CORPORATION / Refiner / Location Calendar Day Barrels per Companies with Capacity Over 100,000 bbl/cd .............................................................................................................................. VALERO ENERGY CORP 2,062,300 Valero Refining Co Texas LP

  2. Tribal Wind Assessment by the Eastern Shoshone Tribe of the Wind River Reservation

    SciTech Connect (OSTI)

    Pete, Belvin; Perry, Jeremy W.; Stump, Raphaella Q.

    2009-08-28

    The Tribes, through its consultant and advisor, Distributed Generation Systems (Disgen) -Native American Program and Resources Division, of Lakewood CO, assessed and qualified, from a resource and economic perspective, a wind energy generation facility on tribal lands. The goal of this feasibility project is to provide wind monitoring and to engage in preproject planning activities designed to provide a preliminary evaluation of the technical, economic, social and environmental feasibility of developing a sustainable, integrated wind energy plan for the Eastern Shoshone and the Northern Arapahoe Tribes, who resides on the Wind River Indian Reservation. The specific deliverables of the feasibility study are: 1) Assessments of the wind resources on the Wind River Indian Reservation 2) Assessments of the potential environmental impacts of renewable development 3) Assessments of the transmission capacity and capability of a renewable energy project 4) Established an economic models for tribal considerations 5) Define economic, cultural and societal impacts on the Tribe

  3. Wind energy | Open Energy Information

    Open Energy Info (EERE)

    Wind energy (Redirected from Wind power) Jump to: navigation, search Wind energy is a form of solar energy.1 Wind energy (or wind power) describes the process by which wind is...

  4. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  5. GL Wind | Open Energy Information

    Open Energy Info (EERE)

    GL Wind Jump to: navigation, search Name GL Wind Facility GL Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner GL Wind Developer Juhl...

  6. Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-03-01

    An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

  7. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru; Reese, Jason M.

    2014-05-15

    We present a Knudsen heat capacity as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  8. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2014 - 2016 (Barrels per Calendar Day) Reformers Capacity Inputs 2014 2,686,917 5,616,015 2,034,689 2,337,425 4,884,975 1,662,603 2,591,992 3,419,407 74,900 475,800 41,500 47,633 407,342 29,849 PADD I 175,036 240,550 520,521 1,213,427 310,950 444,060 1,023,877 267,016 PADD II 645,874 837,754 1,479,496 2,916,764 1,118,239

  9. Wind Power Price Trends in the United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2009-07-15

    For the fourth year in a row, the United States led the world in adding new wind power capacity in 2008, and also surpassed Germany to take the lead in terms of cumulative installed wind capacity. The rapid growth of wind power in the U.S. over the past decade (Figure 1) has been driven by a combination of increasingly supportive policies (including the Federal production tax credit (PTC) and a growing number of state renewables portfolio standards), uncertainty over the future fuel costs and environmental liabilities of natural gas and coal-fired power plants, and wind's competitive position among generation resources. This article focuses on just the last of these drivers - i.e., trends in U.S. wind power prices - over the period of strong capacity growth since 1998.

  10. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    SciTech Connect (OSTI)

    David Wenzhong Gao

    2012-09-30

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An

  11. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  12. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its ...

  13. Brazos Wind Ranch Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind EnergyMitsui Developer Cielo Wind PowerOrion Energy Energy Purchaser Green...

  14. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind ...

  15. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in ...

  16. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project September 11, 2014 - ...

  17. First Wind (Formerly UPC Wind) (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    First Wind (Formerly UPC Wind) Address: 1001 S.W. Fifth Avenue Place: Portland, Oregon Zip: 97204 Region: Pacific Northwest Area Sector: Wind energy Product: Wind power developer...

  18. Operating Reserves and Wind Power Integration: An International Comparison

    SciTech Connect (OSTI)

    Milligan, M.; Donohoo, P.; Lew, D.; Ela, E.; Kirby, B.; Holttinen, H.; Lannoye, E.; Flynn, D.; O'Malley, M.; Miller, N.; Ericksen, P. B.; Gottig, A.; Rawn, B.; Frunt, J.; Kling, W. L.; Gibescu, M.; Gomez-Lazaro, E.; Robitaille, A.; Kamwa, I.

    2010-01-01

    The determination of additional operating reserves in power systems with high wind penetration is attracting a significant amount of attention and research. Wind integration analysis over the past several years has shown that the level of operating reserve that is induced by wind is not a constant function of the installed capacity. Observations and analysis of actual wind plant operating data has shown that wind does not change its output fast enough to be considered as a contingency event. However, the variability that wind adds to the system does require the activation or deactivation of additional operating reserves. This paper provides a high-level international comparison of methods and key results from both operating practice and integration analysis, based on the work in International Energy Agency IEA WIND Task 25 on Large-scale Wind Integration. The paper concludes with an assessment of the common themes and important differences, along with recent emerging trends.

  19. Sandias Wind Energy Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Installed Wind Capacity (MW as of Jan 16, 2008) Alaska 2 California 2439 Colorado 1067 Hawaii 63 Iowa 1273 Kansas 364 Maine 42 New Hampshire 1 Massachusetts 5 Michigan 3 ...

  20. DWEA Webinar: IRS Guidance for Small Wind Turbines

    Broader source: Energy.gov [DOE]

    The U.S. Internal Revenue Service (IRS) has issued Notice 2015-4 providing new performance and quality standards of small wind turbines – defined as having a nameplate capacity of up to 100 kW – in...

  1. Rock River LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wyoming. It consists of 50 turbines and has a total capacity of 50 MW. It is owned by Shell Wind Energy.1 Based on assertions that the site is near Arlington, its approximate...

  2. Small Wind Innovation Zone Program and Model Ordinance

    Broader source: Energy.gov [DOE]

    Under this program, small wind is considered to be any turbine with a rated capacity of 100 kilowatts (kW) or less. The model ordinance requirements include, but are not limited to:

  3. 2012 Market Report on Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  4. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 5, 1, 2 SO2 Case Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts ...

  5. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 4, 1, 2 SO2 Case Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts ...

  6. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 3, 1, 2 SO2 Case Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts ...

  7. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    SciTech Connect (OSTI)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  8. Royal Wind | Open Energy Information

    Open Energy Info (EERE)

    Name: Royal Wind Place: Denver, Colorado Sector: Wind energy Product: Vertical Wind Turbines Year Founded: 2008 Website: www.RoyalWindTurbines.com Coordinates: 39.7391536,...

  9. Solar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Solar Wind Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind...

  10. Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of ...