Powered by Deep Web Technologies
Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Property:Maximum Wave Height(m) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to:ManagingFieldOffice Jump to:Height(m) Property Type

2

Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to:ManagingFieldOffice Jump to:

3

Comparison of VLF Wave Activity in the Solar Wind During Solar Maximum and Minimum  

E-Print Network [OSTI]

second fast latitude scan (near the solar maximum) with the wave observations during the first fast Experiments (URAP) of Ulysses during its first orbit, which occurred when the solar activity was approachingComparison of VLF Wave Activity in the Solar Wind During Solar Maximum and Minimum: Ulysses

California at Berkeley, University of

4

LANGMUIR WAVE ACTIVITY: COMPARING THE ULYSSES SOLAR MINIMUM AND SOLAR MAXIMUM ORBITS  

E-Print Network [OSTI]

). The top three panels correspond to the southern segment of the solar minimum orbit; repeated passesLANGMUIR WAVE ACTIVITY: COMPARING THE ULYSSES SOLAR MINIMUM AND SOLAR MAXIMUM ORBITS R. J at the electron plasma frequency) during the solar minimum and solar maximum orbits of Ulysses. At high latitudes

California at Berkeley, University of

5

Parameterization of Maximum Wave Heights Forced by Hurricanes: Application to Corpus Christi, Texas  

E-Print Network [OSTI]

of open-coast and bay environment hurricane wave conditions and (2) expedient prediction, for rapid evaluation, of wave hazards as a function of hurricane parameters. This thesis presents the coupled ADCIRC-SWAN numerical model results of wave height...

Taylor, Sym 1978-

2012-12-07T23:59:59.000Z

6

Waves  

E-Print Network [OSTI]

Waves is the supporting document to the Master of Fine Arts thesis exhibition of the same title. Exhibited March 7-12 2010 in the Art and Design Gallery at the University of Kansas, Waves was comprised of a series of mixed media drawings...

LaCure, Mari Mae

2010-04-29T23:59:59.000Z

7

MELE: Maximum Entropy Leuven Estimators  

E-Print Network [OSTI]

of the Generalized Maximum Entropy Estimator of the Generaland Douglas Miller, Maximum Entropy Econometrics, Wiley andCalifornia Davis MELE: Maximum Entropy Leuven Estimators by

Paris, Quirino

2001-01-01T23:59:59.000Z

8

Maximum Entropy Correlated Equilibria  

E-Print Network [OSTI]

We study maximum entropy correlated equilibria in (multi-player)games and provide two gradient-based algorithms that are guaranteedto converge to such equilibria. Although we do not provideconvergence rates for these ...

Ortiz, Luis E.

2006-03-20T23:59:59.000Z

9

Wave momentum flux parameter: a descriptor for nearshore waves  

E-Print Network [OSTI]

Wave momentum flux parameter: a descriptor for nearshore waves Steven A. Hughes* US Army Engineer Available online 7 October 2004 Abstract A new parameter representing the maximum depth-integrated wave momentum flux occurring over a wave length is proposed for characterizing the wave contribution

US Army Corps of Engineers

10

Single ion heat engine with maximum efficiency at maximum power  

E-Print Network [OSTI]

We propose an experimental scheme to realize a nano heat engine with a single ion. An Otto cycle may be implemented by confining the ion in a linear Paul trap with tapered geometry and coupling it to engineered laser reservoirs. The quantum efficiency at maximum power is analytically determined in various regimes. Moreover, Monte Carlo simulations of the engine are performed that demonstrate its feasibility and its ability to operate at maximum efficiency of 30% under realistic conditions.

Obinna Abah; Johannes Rossnagel; Georg Jacob; Sebastian Deffner; Ferdinand Schmidt-Kaler; Kilian Singer; Eric Lutz

2012-05-07T23:59:59.000Z

11

Property:Maximum Wave Length(m) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to:ManagingFieldOffice Jump to:Height(m) Property

12

Gravity Waves Gravity Waves  

E-Print Network [OSTI]

;14/03/2014 6 H L H L L Phase & Group Velocity #12;14/03/2014 7 Doppler Effect #12;14/03/2014 8 Shock Waves #12;14/03/2014 14 Supernova Remnant Cassiopeia A Supernova blast waves #12;14/03/2014 15 Tycho's Remnant (SN 1572AD A SNR flythrough Theory of Supernova Blast Waves Supernovae: Type Ia Subsonic deflagration wave turning

Weijgaert, Rien van de

13

NGC2613, 3198, 6503, 7184: Case studies against `maximum' disks  

E-Print Network [OSTI]

Decompositions of the rotation curves of NGC2613, 3198, 6505, and 7184 are analysed. For these galaxies the radial velocity dispersions of the stars have been measured and their morphology is clearly discernible. If the parameters of the decompositions are chosen according to the `maximum' disk hypothesis, the Toomre Q stability parameter is systematically less than one and the multiplicities of the spiral arms as expected from density wave theory are inconsitent with the observed morphologies of the galaxies. The apparent Q<1 instability, in particular, is a strong argument against the `maximum' disk hypothesis.

B. Fuchs

1998-12-02T23:59:59.000Z

14

Estimating a mixed strategy employing maximum entropy  

E-Print Network [OSTI]

MIXED STRATEGY EMPLOYING MAXIMUM ENTROPY by Amos Golan LarryMixed Strategy Employing Maximum Entropy Amos Golan Larry S.Abstract Generalized maximum entropy may be used to estimate

Golan, Amos; Karp, Larry; Perloff, Jeffrey M.

1996-01-01T23:59:59.000Z

15

MaximumLetThrough.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImportsBG NorthMauro9 Maximum Let-Through

16

Maximum entropy principal for transportation  

SciTech Connect (OSTI)

In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

Bilich, F. [University of Brasilia (Brazil); Da Silva, R. [National Research Council (Brazil)

2008-11-06T23:59:59.000Z

17

2011 Waves -1 STANDING WAVES  

E-Print Network [OSTI]

2011 Waves - 1 STANDING WAVES ON A STRING The objectives of the experiment are: · To show that standing waves can be set up on a string. · To determine the velocity of a standing wave. · To understand the differences between transverse and longitudinal waves. APPARATUS: Buzzer board with string, meter stick

Glashausser, Charles

18

Warm wave breaking of nonlinear plasma waves with arbitrary phase velocities C. B. Schroeder, E. Esarey, and B. A. Shadwick  

E-Print Network [OSTI]

Warm wave breaking of nonlinear plasma waves with arbitrary phase velocities C. B. Schroeder, E, collisionless plasma is developed to analyze nonlinear plasma waves excited by intense drive beams. The maximum amplitude and wavelength are calculated for nonrelativistic plasma temperatures and arbitrary plasma wave

Geddes, Cameron Guy Robinson

19

Photothermoacoustic imaging of biological tissues: maximum depth characterization comparison of time and  

E-Print Network [OSTI]

Photothermoacoustic imaging of biological tissues: maximum depth characterization comparison for Advanced Diffusion-Wave Technologies Department of Mechanical and Industrial Engineering 5 King's College induced in light-absorbing materials can be observed either as a transient signal in time domain

Mandelis, Andreas

20

Maximum entropy segmentation of broadcast news  

E-Print Network [OSTI]

speech recognizer and subsequently segmenting the text into utterances and topics. A maximum entropy approach is used to build statistical models for both utterance and topic segmentation. The experimental work addresses the effect on performance...

Christensen, Heidi; Kolluru, BalaKrishna; Gotoh, Yoshihiko; Renals, Steve

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cell development obeys maximum Fisher information  

E-Print Network [OSTI]

Eukaryotic cell development has been optimized by natural selection to obey maximal intracellular flux of messenger proteins. This, in turn, implies maximum Fisher information on angular position about a target nuclear pore complex (NPR). The cell is simply modeled as spherical, with cell membrane (CM) diameter 10 micron and concentric nuclear membrane (NM) diameter 6 micron. The NM contains about 3000 nuclear pore complexes (NPCs). Development requires messenger ligands to travel from the CM-NPC-DNA target binding sites. Ligands acquire negative charge by phosphorylation, passing through the cytoplasm over Newtonian trajectories toward positively charged NPCs (utilizing positive nuclear localization sequences). The CM-NPC channel obeys maximized mean protein flux F and Fisher information I at the NPC, with first-order delta I = 0 and approximate 2nd-order delta I = 0 stability to environmental perturbations. Many of its predictions are confirmed, including the dominance of protein pathways of from 1-4 proteins, a 4nm size for the EGFR protein and the approximate flux value F =10^16 proteins/m2-s. After entering the nucleus, each protein ultimately delivers its ligand information to a DNA target site with maximum probability, i.e. maximum Kullback-Liebler entropy HKL. In a smoothness limit HKL approaches IDNA/2, so that the total CM-NPC-DNA channel obeys maximum Fisher I. Thus maximum information approaches non-equilibrium, one condition for life.

B. R. Frieden; R. A. Gatenby

2014-04-29T23:59:59.000Z

22

Weak Scale From the Maximum Entropy Principle  

E-Print Network [OSTI]

The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\

Yuta Hamada; Hikaru Kawai; Kiyoharu Kawana

2014-09-23T23:59:59.000Z

23

Weak Scale From the Maximum Entropy Principle  

E-Print Network [OSTI]

The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\

Hamada, Yuta; Kawana, Kiyoharu

2014-01-01T23:59:59.000Z

24

Integrating Correlated Bayesian Networks Using Maximum Entropy  

SciTech Connect (OSTI)

We consider the problem of generating a joint distribution for a pair of Bayesian networks that preserves the multivariate marginal distribution of each network and satisfies prescribed correlation between pairs of nodes taken from both networks. We derive the maximum entropy distribution for any pair of multivariate random vectors and prescribed correlations and demonstrate numerical results for an example integration of Bayesian networks.

Jarman, Kenneth D.; Whitney, Paul D.

2011-08-30T23:59:59.000Z

25

Vacuum Waves  

E-Print Network [OSTI]

As an example of the unification of gravitation and particle physics, an exact solution of the five-dimensional field equations is studied which describes waves in the classical Einstein vacuum. While the solution is essentially 5D in nature, the waves exist in ordinary 3D space, and may provide a way to test for an extra dimension.

Paul S. Wesson

2012-12-11T23:59:59.000Z

26

E-Print Network 3.0 - anomalous spin waves Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

superconductor possesses propagating, spin-wave type... the spin-mediated d-wave superconduct- ing gap is at maximum. If the voltage for SIN tunneling... emit a propagating spin...

27

QCD Level Density from Maximum Entropy Method  

E-Print Network [OSTI]

We propose a method to calculate the QCD level density directly from the thermodynamic quantities obtained by lattice QCD simulations with the use of the maximum entropy method (MEM). Understanding QCD thermodynamics from QCD spectral properties has its own importance. Also it has a close connection to phenomenological analyses of the lattice data as well as experimental data on the basis of hadronic resonances. Our feasibility study shows that the MEM can provide a useful tool to study QCD level density.

Shinji Ejiri; Tetsuo Hatsuda

2005-09-24T23:59:59.000Z

28

Tissue Radiation Response with Maximum Tsallis Entropy  

SciTech Connect (OSTI)

The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.

Sotolongo-Grau, O.; Rodriguez-Perez, D.; Antoranz, J. C.; Sotolongo-Costa, Oscar [UNED, Departamento de Fisica Matematica y de Fluidos, 28040 Madrid (Spain); UNED, Departamento de Fisica Matematica y de Fluidos, 28040 Madrid (Spain) and University of Havana, Catedra de Sistemas Complejos Henri Poincare, Havana 10400 (Cuba); University of Havana, Catedra de Sistemas Complejos Henri Poincare, Havana 10400 (Cuba)

2010-10-08T23:59:59.000Z

29

A global maximum power point tracking DC-DC converter  

E-Print Network [OSTI]

This thesis describes the design, and validation of a maximum power point tracking DC-DC converter capable of following the true global maximum power point in the presence of other local maximum. It does this without the ...

Duncan, Joseph, 1981-

2005-01-01T23:59:59.000Z

30

Accelerated maximum likelihood parameter estimation for stochastic biochemical systems  

E-Print Network [OSTI]

as: Daigle et al. : Accelerated maximum likelihood parame-Gillespie DT: Approximate accelerated stochastic simulationARTICLE Open Access Accelerated maximum likelihood parameter

Daigle, Bernie J; Roh, Min K; Petzold, Linda R; Niemi, Jarad

2012-01-01T23:59:59.000Z

31

articulatorily constrained maximum: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

weight spanning forests. Amitabha Bagchi; Ankur Bhargava; Torsten Suel 2005-01-01 27 Maximum Entropy Correlated Equilibria MIT - DSpace Summary: We study maximum entropy...

32

Wave represents displacement Wave represents pressure Source -Sound Waves  

E-Print Network [OSTI]

Wave represents displacement Wave represents pressure Source - Sound Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency

Colorado at Boulder, University of

33

Maximum mass of magnetic white dwarfs  

E-Print Network [OSTI]

We revisit in this work the problem of the maximum masses of magnetized White Dwarfs (WD). The impact of a strong magnetic field onto the structure equations is addressed. The pressures become anisotropic due to the presence of the magnetic field and split into a parallel and perpendicular components. We first construct stable solutions of TOV equations for the parallel pressures, and found that physical solutions vanish for the perpendicular pressure when $B \\gtrsim 10^{13}$ G. This fact establishes an upper bound for a magnetic field and the stability of the configurations in the (quasi) spherical approximation. Our findings also indicate that it is not possible to obtain stable magnetized WD with super Chandrasekhar masses because the values of the magnetic field needed for them are higher than this bound. To proceed into the anisotropic regime, we derived structure equations appropriated for a cylindrical metric with anisotropic pressures. From the solutions of the structure equations in cylindrical symme...

Paret, D Manreza; Horvath, J E

2015-01-01T23:59:59.000Z

34

Maximum screening fields of superconducting multilayer structures  

E-Print Network [OSTI]

It is shown that a multilayer comprised of alternating thin superconducting and insulating layers on a thick substrate can fully screen the applied magnetic field exceeding the superheating fields $H_s$ of both the superconducting layers and the substrate, the maximum Meissner field is achieved at an optimum multilayer thickness. For instance, a dirty layer of thickness $\\sim 0.1\\; \\mu$m at the Nb surface could increase $H_s\\simeq 240$ mT of a clean Nb up to $H_s\\simeq 290$ mT. Optimized multilayers of Nb$_3$Sn, NbN, some of the iron pnictides, or alloyed Nb deposited onto the surface of the Nb resonator cavities could potentially double the rf breakdown field, pushing the peak accelerating electric fields above 100 MV/m while protecting the cavity from dendritic thermomagnetic avalanches caused by local penetration of vortices.

Gurevich, Alex

2015-01-01T23:59:59.000Z

35

Rogue waves for a long wave-short wave resonance model with multiple short waves  

E-Print Network [OSTI]

1 Rogue waves for a long wave-short wave resonance model with multiple short waves Hiu Ning Chan (1 waves; Long-short resonance PACS Classification: 02.30.Jr; 05.45.Yv; 47.35.Fg #12;2 ABSTRACT A resonance between long and short waves will occur if the phase velocity of the long wave matches the group velocity

36

Investigation of Wave Energy Converter Effects on Near-shore Wave Fields: Model Generation Validation and Evaluation - Kaneohe Bay HI.  

SciTech Connect (OSTI)

The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.

Roberts, Jesse D.; Chang, Grace; Jones, Craig

2014-09-01T23:59:59.000Z

37

Vortices in Brain waves  

E-Print Network [OSTI]

2003). Vortices in Brain Waves 62. M. E. Raichle, ScienceVORTICES IN BRAIN WAVES WALTER J. FREEMAN Department ofthat is recorded in brain waves (electroencephalogram, EEG).

Freeman, Walter J III; Vitiello, Giuseppe

2010-01-01T23:59:59.000Z

38

Maximum Entropy Method Approach to $?$ Term  

E-Print Network [OSTI]

In Monte Carlo simulations of lattice field theory with a $\\theta$ term, one confronts the complex weight problem, or the sign problem. This is circumvented by performing the Fourier transform of the topological charge distribution $P(Q)$. This procedure, however, causes flattening phenomenon of the free energy $f(\\theta)$, which makes study of the phase structure unfeasible. In order to treat this problem, we apply the maximum entropy method (MEM) to a Gaussian form of $P(Q)$, which serves as a good example to test whether the MEM can be applied effectively to the $\\theta$ term. We study the case with flattening as well as that without flattening. In the latter case, the results of the MEM agree with those obtained from the direct application of the Fourier transform. For the former, the MEM gives a smoother $f(\\theta)$ than that of the Fourier transform. Among various default models investigated, the images which yield the least error do not show flattening, although some others cannot be excluded given the uncertainty related to statistical error.

Masahiro Imachi; Yasuhiko Shinno; Hiroshi Yoneyama

2004-06-09T23:59:59.000Z

39

GMM Estimation of a Maximum Entropy Distribution with Interval Data  

E-Print Network [OSTI]

GMM Estimation of a Maximum Entropy Distribution with Interval Data Ximing Wu* and Jeffrey M estimate it using a simple yet flexible maximum entropy density. Our Monte Carlo simulations show that the proposed maximum entropy density is able to approximate various distributions extremely well. The two

Perloff, Jeffrey M.

40

Coda wave interferometry 1 Coda wave interferometry  

E-Print Network [OSTI]

Coda wave interferometry 1 Coda wave interferometry An interferometer is an instrument that is sensitive to the interference of two or more waves (optical or acoustic). For example, an optical interferometer uses two interfering light beams to measure small length changes. Coda wave interferometry

Snieder, Roel

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Plane waves Lumped systems  

E-Print Network [OSTI]

1 Impedance · Plane waves ­ Lumped systems S x y z Impedance · Plane waves ­ Lumped systems · open tube #12;2 Impedance · Plane waves ­ Lumped systems · closed tube Impedance · Cylindrical waves z x y r #12;3 Impedance · Cylindrical waves ­ Circumferential part n=0 n=1 n=2 n=3 Impedance · Cylindrical

Berlin,Technische Universität

42

Non-diffracting chirped Bessel waves in optical antiguides  

E-Print Network [OSTI]

Chirped Bessel waves are introduced as stable (non-diffracting) solutions of the paraxial wave equation in optical antiguides with a power-law radial variation in their index of refraction. Through numerical simulations, we investigate the propagation of apodized (finite-energy) versions of such waves, with or without vorticity, in antiguides with practical parameters. The new waves exhibit a remarkable resistance against the defocusing effect of the unstable index potentials, outperforming standard Gaussians with the same full width at half maximum. The chirped profile persists even under conditions of eccentric launching or antiguide bending and is also capable of self-healing like standard diffraction-free beams in free space.

Chremmos, Ioannis

2015-01-01T23:59:59.000Z

43

A Near Maximum Likelihood Decoding Algorithm for MIMO Systems ...  

E-Print Network [OSTI]

Jul 30, 2005 ... the randomization procedure of [43], we bijectively map the .... ?1x are also in the integer grid. ... in a Maximum A Posteriori (MAP) decoder by.

2005-10-05T23:59:59.000Z

44

Solving Maximum-Entropy Sampling Problems Using Factored Masks  

E-Print Network [OSTI]

Mar 2, 2005 ... Abstract: We present a practical approach to Anstreicher and Lee's masked spectral bound for maximum-entropy sampling, and we describe...

Samuel Burer

2005-03-02T23:59:59.000Z

45

A masked spectral bound for maximum-entropy sampling  

E-Print Network [OSTI]

Sep 16, 2003 ... Abstract: We introduce a new masked spectral bound for the maximum-entropy sampling problem. This bound is a continuous generalization of...

Kurt Anstreicher

2003-09-16T23:59:59.000Z

46

Maximum entropy generation in open systems: the Fourth Law?  

E-Print Network [OSTI]

This paper develops an analytical and rigorous formulation of the maximum entropy generation principle. The result is suggested as the Fourth Law of Thermodynamics.

Umberto Lucia

2010-11-17T23:59:59.000Z

47

analog fixed maximum: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

state for given entanglement which can be viewed as an analogue of the Jaynes maximum entropy principle. Pawel Horodecki; Ryszard Horodecki; Michal Horodecki 1998-05-22...

48

IBM Research Report Solving Maximum-Entropy Sampling ...  

E-Print Network [OSTI]

Feb 28, 2005 ... Solving Maximum-Entropy Sampling Problems Using. Factored Masks. Samuel Burer. Department of Management Sciences. University of Iowa.

2005-02-28T23:59:59.000Z

49

A Requirement for Significant Reduction in the Maximum BTU Input...  

Energy Savers [EERE]

A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for...

50

Smooth sandwich gravitational waves  

E-Print Network [OSTI]

Gravitational waves which are smooth and contain two asymptotically flat regions are constructed from the homogeneous pp-waves vacuum solution. Motion of free test particles is calculated explicitly and the limit to an impulsive wave is also considered.

J. Podolsky

1998-07-16T23:59:59.000Z

51

Maximum Constant Boost Control of the Z-Source Inverter  

E-Print Network [OSTI]

Maximum Constant Boost Control of the Z-Source Inverter Miaosen Shen1 , Jin Wang1 , Alan Joseph1 Laboratory Abstract: This paper proposes two maximum constant boost control methods for the Z-source inverter to modulation index is analyzed in detail and verified by simulation and experiment. Keywords- Z-source inverter

Tolbert, Leon M.

52

Appendix 22 Draft Nutrient Management Plan and Total Maximum Daily  

E-Print Network [OSTI]

Appendix 22 Draft Nutrient Management Plan and Total Maximum Daily Load for Flathead Lake, Montana. #12;11/01/01 DRAFT i October 30, 2001 Draft Nutrient Management Plan and Total Maximum Daily Load..............................................................................................................................2-11 SECTION 3.0 APPLICABLE WATER QUALITY STANDARDS

53

Modification of hadronic spectral functions under extreme conditions: An approach based on QCD sum rules and the maximum entropy method  

E-Print Network [OSTI]

Studies of quarkonium spectral functions at finite temperature, based on an approach combining QCD sum rules and the maximum entropy method are briefly reviewed. QCD sum rules for heavy quarkonia incorporate finite temperature effects in form of changing values of gluonic condensates that appear in the operator product expansion. These changes depend on the energy density and pressure at finite temperature, which we extract from quenched lattice QCD calculations. The maximum entropy method then allows us to obtain the most probable spectral function from the sum rules, without having to introduce any specific assumption about its functional form. Our findings suggest that the charmonium ground states of both S-wave and P-wave channels dissolve into the continuum already at temperatures around or slightly above the critical temperature T_c, while the bottomonium states are less influenced by temperature effects, surviving up to about 2.5 T_c or higher for S-wave and up to about 2.0 T_c for P-wave states.

Philipp Gubler; Kei Suzuki; Kenji Morita; Makoto Oka

2012-12-07T23:59:59.000Z

54

Water Waves Roger Grimshaw  

E-Print Network [OSTI]

,2) provide a kinematic description of water waves, which to this point means that the conditionsWater Waves Roger Grimshaw May 7, 2003 Abstract A short review of the theory of weakly nonlinear water waves, prepared for the forthcoming Encyclopedia of Nonlinear Science 1 Introduction Water waves

55

PROPAGATING WAVES ALONG SPICULES  

SciTech Connect (OSTI)

Alfvenic waves are thought to play an important role in coronal heating and acceleration of solar wind. Here we investigate the statistical properties of Alfvenic waves along spicules (jets that protrude into the corona) in a polar coronal hole using high-cadence observations of the Solar Optical Telescope on board Hinode. We developed a technique for the automated detection of spicules and high-frequency waves. We detected 89 spicules and found (1) a mix of upward propagating, downward propagating, as well as standing waves (occurrence rates of 59%, 21%, and 20%, respectively); (2) the phase speed gradually increases with height; (3) upward waves dominant at lower altitudes, standing waves at higher altitudes; (4) standing waves dominant in the early and late phases of each spicule, while upward waves were dominant in the middle phase; (5) in some spicules, we find waves propagating upward (from the bottom) and downward (from the top) to form a standing wave in the middle of the spicule; and (6) the medians of the amplitude, period, and velocity amplitude were 55 km, 45 s, and 7.4 km s{sup -1}, respectively. We speculate that upward propagating waves are produced near the solar surface (below the spicule) and downward propagating waves are caused by reflection of (initially) upward propagating waves off the transition region at the spicule top. The mix of upward and downward propagating waves implies that exploiting these waves to perform seismology of the spicular environment requires careful analysis and may be problematic.

Okamoto, Takenori J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); De Pontieu, Bart, E-mail: joten.okamoto@nao.ac.jp [Lockheed Martin Solar and Astrophysics Laboratory, B/252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

2011-08-01T23:59:59.000Z

56

Gravitational wave radiometry: Mapping a stochastic gravitational wave background  

SciTech Connect (OSTI)

The problem of the detection and mapping of a stochastic gravitational wave background (SGWB), either cosmological or astrophysical, bears a strong semblance to the analysis of the cosmic microwave background (CMB) anisotropy and polarization, which too is a stochastic field, statistically described in terms of its correlation properties. An astrophysical gravitational wave background (AGWB) will likely arise from an incoherent superposition of unmodelled and/or unresolved sources and cosmological gravitational wave backgrounds (CGWB) are also predicted in certain scenarios. The basic statistic we use is the cross correlation between the data from a pair of detectors. In order to ''point'' the pair of detectors at different locations one must suitably delay the signal by the amount it takes for the gravitational waves (GW) to travel to both detectors corresponding to a source direction. Then the raw (observed) sky map of the SGWB is the signal convolved with a beam response function that varies with location in the sky. We first present a thorough analytic understanding of the structure of the beam response function using an analytic approach employing the stationary phase approximation. The true sky map is obtained by numerically deconvolving the beam function in the integral (convolution) equation. We adopt the maximum likelihood framework to estimate the true sky map using the conjugate gradient method that has been successfully used in the broadly similar, well-studied CMB map-making problem. We numerically implement and demonstrate the method on signal generated by simulated (unpolarized) SGWB for the GW radiometer consisting of the LIGO pair of detectors at Hanford and Livingston. We include 'realistic' additive Gaussian noise in each data stream based on the LIGO-I noise power spectral density. The extension of the method to multiple baselines and polarized GWB is outlined. In the near future the network of GW detectors, including the Advanced LIGO and Virgo detectors that will be sensitive to sources within a thousand times larger spatial volume, could provide promising data sets for GW radiometry.

Mitra, Sanjit [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Observatoire de la Cote d'Azur, BP 4229, 06304 Nice Cedex 4 (France); Dhurandhar, Sanjeev; Souradeep, Tarun [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Lazzarini, Albert; Mandic, Vuk; Ballmer, Stefan [LIGO Laboratory, California Institute of Technology, MS 18-34, Pasadena, California 91125 (United States); Bose, Sukanta [Department of Physics, Washington State University, Pullman, Washington 99164-2814 (United States)

2008-02-15T23:59:59.000Z

57

the wave model A traveling wave is an organized disturbance  

E-Print Network [OSTI]

1 waves the wave model A traveling wave is an organized disturbance propagating at a well-defined wave speed v. In transverse waves the particles of the medium move perpendicular to the direction of wave propagation. In longitudinal waves the particles of the medium move parallel to the direction

Winokur, Michael

58

Some criteria for the symmetry of stratified water waves  

E-Print Network [OSTI]

This paper considers two-dimensional stably stratified steady periodic gravity water waves with surface profiles monotonic between crests and troughs. We provide sufficient conditions under which such waves are necessarily symmetric. This is done by first exploiting some elliptic structure in the governing equations to show that, in certain size regimes, a maximum principle holds. This then forms the basis for a method of moving planes argument.

Samuel Walsh

2009-03-05T23:59:59.000Z

59

Linearized semiclassical initial value time correlation functions with maximum entropy analytic continuation  

E-Print Network [OSTI]

1992). J. Skilling, in Maximum entropy and Bayesian methods,1989). S. F. Gull, in Maximum entropy and Bayesian methods,with the classical maximum entropy (CME) technique (MEAC-

Liu, Jian

2008-01-01T23:59:59.000Z

60

Improved constraints on transit time distributions from argon 39: A maximum entropy approach  

E-Print Network [OSTI]

Gull (1991), Bayesian maximum entropy image reconstruction,Atlantic venti- lated? Maximum entropy inversions of bottlefrom argon 39: A maximum entropy approach Mark Holzer 1,2

Holzer, Mark; Primeau, Francois W

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Quantum Statistics Basis, Thermodynamic Analogies and the Degree of Confidence for Maximum Entropy Restoration and Estimation  

E-Print Network [OSTI]

of Confidence for Maximum Entropy Restoration and EstimationApril 3, 1992) The Maximum Entropy method, using physicalare discussed. Maximum Entropy (ME) estimation has been

Soffer, Bernard H; Kikuchi, Ryoichi

1994-01-01T23:59:59.000Z

62

On the maximum pressure rise rate in boosted HCCI operation  

E-Print Network [OSTI]

This paper explores the combined effects of boosting, intake air temperature, trapped residual gas fraction, and dilution on the Maximum Pressure Rise Rate (MPRR) in a boosted single cylinder gasoline HCCI engine with ...

Wildman, Craig B.

63

Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint  

SciTech Connect (OSTI)

This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.

2012-07-01T23:59:59.000Z

64

Maximum containment : the most controversial labs in the world  

E-Print Network [OSTI]

In 2002, following the September 11th attacks and the anthrax letters, the United States allocated money to build two maximum containment biology labs. Called Biosafety Level 4 (BSL-4) facilities, these labs were built to ...

Bruzek, Alison K. (Allison Kim)

2013-01-01T23:59:59.000Z

65

Multichannel Blind Identification: From Subspace to Maximum Likelihood Methods  

E-Print Network [OSTI]

Multichannel Blind Identification: From Subspace to Maximum Likelihood Methods LANG TONG, MEMBER, IEEE, AND SYLVIE PERREAU Invited Paper A review of recent blind channel estimation algorithms is pre-- Blind equalization, parameter estimation, system identification. I. INTRODUCTION A. What Is Blind

Tong, Lang

66

Multi-Class Classification with Maximum Margin Multiple Kernel  

E-Print Network [OSTI]

(named OBSCURE and UFO-MKL, respectively) are used to optimize primal versions of equivalent problems), the OBSCURE and UFO-MKL algorithms are compared against MCMKL #12;Multi-Class Classification with Maximum

Tomkins, Andrew

67

Maximum entropy method and oscillations in the diffraction cone  

E-Print Network [OSTI]

The maximum entropy method has been applied to investigate the oscillating structure in the pbarp- and pp-elastic scattering differential cross-section at high energy and small momentum transfer. Oscillations satisfying quite realistic reliability criteria have been found.

O. Dumbrajs; J. Kontros; A. Lengyel

2000-07-15T23:59:59.000Z

68

Efficiency at maximum power of interacting molecular machines  

E-Print Network [OSTI]

We investigate the efficiency of systems of molecular motors operating at maximum power. We consider two models of kinesin motors on a microtubule: for both the simplified and the detailed model, we find that the many-body exclusion effect enhances the efficiency at maximum power of the many-motor system, with respect to the single motor case. Remarkably, we find that this effect occurs in a limited region of the system parameters, compatible with the biologically relevant range.

N. Golubeva; A. Imparato

2012-10-22T23:59:59.000Z

69

Filtering Additive Measurement Noise with Maximum Entropy in the Mean  

E-Print Network [OSTI]

The purpose of this note is to show how the method of maximum entropy in the mean (MEM) may be used to improve parametric estimation when the measurements are corrupted by large level of noise. The method is developed in the context on a concrete example: that of estimation of the parameter in an exponential distribution. We compare the performance of our method with the bayesian and maximum likelihood approaches.

Henryk Gzyl; Enrique ter Horst

2007-09-04T23:59:59.000Z

70

The maximum entropy tecniques and the statistical description of systems  

E-Print Network [OSTI]

The maximum entropy technique (MENT) is used to determine the distribution functions of physical values. MENT naturally combines required maximum entropy, the properties of a system and connection conditions in the form of restrictions imposed on the system. It can, therefore, be employed to statistically describe closed and open systems. Examples in which MENT is used to describe equilibrium and non-equilibrium states, as well as steady states that are far from being in thermodynamic equilibrium, are discussed.

B. Z. Belashev; M. K. Suleymanov

2001-10-19T23:59:59.000Z

71

Photon wave function  

E-Print Network [OSTI]

Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, the photon wave function exists as long as it can be precisely defined and made useful.

Iwo Bialynicki-Birula

2005-08-26T23:59:59.000Z

72

Rogue Wave Modes for the Long Wave-Short Wave Resonance Kwok Wing CHOW*(1)  

E-Print Network [OSTI]

1 Rogue Wave Modes for the Long Wave-Short Wave Resonance Model Kwok Wing CHOW*(1) , Hiu Ning CHAN.45.Yv; 47.35.Fg ABSTRACT The long wave-short wave resonance model arises physically when the phase velocity of a long wave matches the group velocity of a short wave. It is a system of nonlinear evolution

73

New wave generation  

E-Print Network [OSTI]

We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123130). This ...

Mercier, Matthieu J.

74

Performance Assessment of the Wave Dragon Wave Energy Converter  

E-Print Network [OSTI]

Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave

Hansen, René Rydhof

75

Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino  

E-Print Network [OSTI]

Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy with their announcement that: "We find that a new type of sound wave, namely, the dust-acoustic waves, can appear" [1 and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some

Merlino, Robert L.

76

Efficiency of autonomous soft nano-machines at maximum power  

E-Print Network [OSTI]

We consider nano-sized artificial or biological machines working in steady state enforced by imposing non-equilibrium concentrations of solutes or by applying external forces, torques or electric fields. For unicyclic and strongly coupled multicyclic machines, efficiency at maximum power is not bounded by the linear response value 1/2. For strong driving, it can even approach the thermodynamic limit 1. Quite generally, such machines fall in three different classes characterized, respectively, as "strong and efficient", "strong and inefficient", and "balanced". For weakly coupled multicyclic machines, efficiency at maximum power has lost any universality even in the linear response regime.

Udo Seifert

2010-11-11T23:59:59.000Z

77

When are microcircuits well-modeled by maximum entropy methods?  

E-Print Network [OSTI]

POSTER PRESENTATION Open Access When are microcircuits well-modeled by maximum entropy methods? Andrea K Barreiro1*, Eric T Shea-Brown1, Fred M Rieke2,3, Julijana Gjorgjieva4 From Nineteenth Annual Computational Neuroscience Meeting: CNS*2010 San... Antonio, TX, USA. 24-30 July 2010 Recent experiments in retina and cortex have demon- strated that pairwise maximum entropy (PME) methods can approximate observed spiking patterns to a high degree of accuracy [1,2]. In this paper we examine...

2010-07-20T23:59:59.000Z

78

Valence quark distributions of the proton from maximum entropy approach  

E-Print Network [OSTI]

We present an attempt of maximum entropy principle to determine valence quark distributions in the proton at very low resolution scale $Q_0^2$. The initial three valence quark distributions are obtained with limited dynamical information from quark model and QCD theory. Valence quark distributions from this method are compared to the lepton deep inelastic scattering data, and the widely used CT10 and MSTW08 data sets. The obtained valence quark distributions are consistent with experimental observations and the latest global fits of PDFs. Maximum entropy method is expected to be particularly useful in the case where relatively little information from QCD calculation is given.

Rong Wang; Xurong Chen

2014-10-14T23:59:59.000Z

79

Valence quark distributions of the proton from maximum entropy approach  

E-Print Network [OSTI]

We present an attempt of maximum entropy principle to determine valence quark distributions in the proton at very low resolution scale $Q_0^2$. The initial three valence quark distributions are obtained with limited dynamical information from quark model and QCD theory. Valence quark distributions from this method are compared to the lepton deep inelastic scattering data, and the widely used CT10 and MSTW08 data sets. The obtained valence quark distributions are consistent with experimental observations and the latest global fits of PDFs. Maximum entropy method is expected to be particularly useful in the case where relatively little information from QCD calculation is given.

Wang, Rong

2014-01-01T23:59:59.000Z

80

Assessing complexity by means of maximum entropy models  

E-Print Network [OSTI]

We discuss a characterization of complexity based on successive approximations of the probability density describing a system by means of maximum entropy methods, thereby quantifying the respective role played by different orders of interaction. This characterization is applied on simple cellular automata in order to put it in perspective with the usual notion of complexity for such systems based on Wolfram classes. The overlap is shown to be good, but not perfect. This suggests that complexity in the sense of Wolfram emerges as an intermediate regime of maximum entropy-based complexity, but also gives insights regarding the role of initial conditions in complexity-related issues.

Chliamovitch, Gregor; Velasquez, Lino

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Matter Waves and Orbital Quantum Numbers  

E-Print Network [OSTI]

The atom's orbital electron structure in terms of quantum numbers (principal, azimuthal, magnetic and spin) results in space for a maximum of: 2 electrons in the n=1 orbit, 8 electrons in the n=2 orbit, 18 electrons in the n=3 orbit, and so on. Those dispositions are correct, but that is not because of quantum numbers nor angular momentum nor a "Pauli exclusion principle". Matter waves were discovered in the early 20th century from their wavelength, which was predicted by DeBroglie to be, Planck's constant divided by the particle's momentum. But, the failure to obtain a reasonable theory for the matter wave frequency resulted in loss of interest. That problem is resolved in "A Reconsideration of Matter Waves" in which a reinterpretation of Einstein's derivation of relativistic kinetic energy [which produced his famous E = mc^2] leads to a valid matter wave frequency and a new understanding of particle kinetics and the atom's stable orbits. It is analytically shown that the orbital electron arrangement is enforced by the necessity of accommodating the space that each orbiting electron's matter wave occupies.

Roger Ellman

2005-05-18T23:59:59.000Z

82

Map-making in small field modulated CMB polarisation experiments: approximating the maximum-likelihood method  

E-Print Network [OSTI]

Map-making presents a significant computational challenge to the next generation of kilopixel CMB polarisation experiments. Years worth of time ordered data (TOD) from thousands of detectors will need to be compressed into maps of the T, Q and U Stokes parameters. Fundamental to the science goal of these experiments, the observation of B-modes, is the ability to control noise and systematics. In this paper, we consider an alternative to the maximum-likelihood method, called destriping, where the noise is modelled as a set of discrete offset functions and then subtracted from the time-stream. We compare our destriping code (Descart: the DEStriping CARTographer) to a full maximum-likelihood map-maker, applying them to 200 Monte-Carlo simulations of time-ordered data from a ground based, partial-sky polarisation modulation experiment. In these simulations, the noise is dominated by either detector or atmospheric 1/f noise. Using prior information of the power spectrum of this noise, we produce destriped maps of T, Q and U which are negligibly different from optimal. The method does not filter the signal or bias the E or B-mode power spectra. Depending on the length of the destriping baseline, the method delivers between 5 and 22 times improvement in computation time over the maximum-likelihood algorithm. We find that, for the specific case of single detector maps, it is essential to destripe the atmospheric 1/f in order to detect B-modes, even though the Q and U signals are modulated by a half-wave plate spinning at 5-Hz.

D. Sutton; B. R. Johnson; M. L. Brown; P. Cabella; P. G. Ferreira; K. M. Smith

2008-07-23T23:59:59.000Z

83

Maximum power tracking control scheme for wind generator systems  

E-Print Network [OSTI]

The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

Mena Lopez, Hugo Eduardo

2008-10-10T23:59:59.000Z

84

Maximum power tracking control scheme for wind generator systems  

E-Print Network [OSTI]

The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

Mena, Hugo Eduardo

2009-05-15T23:59:59.000Z

85

Maximum-principle-satisfying and positivity-preserving high order ...  

E-Print Network [OSTI]

conservation laws: Survey and new developments ..... Notice that in (2.10) we need to evaluate the maximum/minimum of a ..... total energy, p is the pressure, e is the internal energy, and ? > 1 is a constant ... under a standard CFL condition.

2011-04-01T23:59:59.000Z

86

Maximum Entropy in Support of Semantically Annotated Datasets  

E-Print Network [OSTI]

Maximum Entropy in Support of Semantically Annotated Datasets Paulo Pinheiro da Silva, Vladik whether two datasets describe the same quantity. The existing solution to this problem is to use these datasets' ontologies to deduce that these datasets indeed represent the same quantity. However, even when

Kreinovich, Vladik

87

Performance of Civil Aviation Receivers during Maximum Solar Activity Events  

E-Print Network [OSTI]

Performance of Civil Aviation Receivers during Maximum Solar Activity Events Lina DEAMBROGIO on the fields of ionosphere scintillations, solar energetic particles and on the implementation of operational the upcoming period of high solar activity. Emilien ROBERT got his PhD in 2005 and started to work on behalf

Boyer, Edmond

88

Rapidly Solving an Online Sequence of Maximum Flow Problems  

E-Print Network [OSTI]

... an interdictor allocates a finite amount of resources to remove arcs from a net- ... is, the next maximum flow problem in the sequence differs from the previous one by ..... the appropriate reoptimization case and then taking the appropriate action to ..... Our first set of computational experiments tested the performance of our...

2008-02-29T23:59:59.000Z

89

THE MAXIMUM CAPACITY OF A LINE PLAN IS INAPPROXIMABLE  

E-Print Network [OSTI]

THE MAXIMUM CAPACITY OF A LINE PLAN IS INAPPROXIMABLE CHRISTINA PUHL AND SEBASTIAN STILLER Abstract a network, upper arc-capacities and a line pool. E-mail: puhl@math.tu-berlin.de, stiller of the European Commission under contract no. FP6-021235-2. 1 #12;2 CHRISTINA PUHL AND SEBASTIAN STILLER We

Nabben, Reinhard

90

O(1)-Approximations for Maximum Movement Piotr Berman1  

E-Print Network [OSTI]

movement of the pebbles, motivated by minimizing either execution time or energy usage. Spe- cific problems the maximum movement made by pebbles on a graph to reach a configuration in which the pebbles form a connected. For example, in the connectivity goal, the proximity of the robots should form a connected graph. Two

Demaine, Erik

91

Maximization of Recursive Utilities: A Dynamic Maximum Principle Approach  

E-Print Network [OSTI]

Maximization of Recursive Utilities: A Dynamic Maximum Principle Approach Wahid FAIDI LAMSIN, ENIT for a class of robust utility function introduced in Bordigoni, Matoussi et Schweizer (2005). Our method-investment strategy which is characterized as the unique solution of a forward-backward system. Key words : Utility

Di Girolami, Cristina

92

Maximum stellar mass versus cluster membership number revisited  

E-Print Network [OSTI]

We have made a new compilation of observations of maximum stellar mass versus cluster membership number from the literature, which we analyse for consistency with the predictions of a simple random drawing hypothesis for stellar mass selection in clusters. Previously, Weidner and Kroupa have suggested that the maximum stellar mass is lower, in low mass clusters, than would be expected on the basis of random drawing, and have pointed out that this could have important implications for steepening the integrated initial mass function of the Galaxy (the IGIMF) at high masses. Our compilation demonstrates how the observed distribution in the plane of maximum stellar mass versus membership number is affected by the method of target selection; in particular, rather low n clusters with large maximum stellar masses are abundant in observational datasets that specifically seek clusters in the environs of high mass stars. Although we do not consider our compilation to be either complete or unbiased, we discuss the method by which such data should be statistically analysed. Our very provisional conclusion is that the data is not indicating any striking deviation from the expectations of random drawing.

Th. Maschberger; C. J. Clarke

2008-09-05T23:59:59.000Z

93

Maximum likelihood estimation of the equity Efstathios Avdis  

E-Print Network [OSTI]

premium is usually estimated by taking the sample mean of stock returns and subtracting a measure the expected return on the aggregate stock market less the government bill rate, is of central importance an alternative esti- mator, based on maximum likelihood, that takes into account informa- tion contained

Kahana, Michael J.

94

Renewable Energy Scheduling for Fading Channels with Maximum Power Constraint  

E-Print Network [OSTI]

Renewable Energy Scheduling for Fading Channels with Maximum Power Constraint Zhe Wang Electrical--In this paper, we develop efficient algorithm to obtain the optimal energy schedule for fading channel with energy harvesting. We assume that the side information of both the channel states and energy harvesting

Greenberg, Albert

95

Retrocommissioning Case Study - Applying Building Selection Criteria for Maximum Results  

E-Print Network [OSTI]

RETROCOMMISSIONING CASE STUDY ?Applying Building Selection Criteria for Maximum Results? Larry Luskay, Tudi Haasl, Linda Irvine Portland Energy Conservation, Inc. Portland, Oregon Donald Frey Architectural Energy Corporation Boulder.... The building was retrocommissioned by Portland Energy Conservation, Inc. (PECI), in conjunction with Architectural Energy Corporation (AEC). The building-specific goals were: 1) Obtain cost-effective energy savings from optimizing operation...

Luskay, L.; Haasl, T.; Irvine, L.; Frey, D.

2002-01-01T23:59:59.000Z

96

THE MAXIMUM k-COLORABLE SUBGRAPH PROBLEM AND ...  

E-Print Network [OSTI]

It is well known that such symmetry has negative effects on the performance of branch- .... The wave length assignment problem arises in the design of optical net- works (e.g. ..... their orbits under the group action of Sk. It is not hard to see that a matrix ... The solution in the previous proof lies in the relative interior of the face...

2011-03-16T23:59:59.000Z

97

A comparison between matter wave and light wave interferometers for the detection of gravitational waves  

E-Print Network [OSTI]

We calculate and compare the response of light wave interferometers and matter wave interferometers to gravitational waves. We find that metric matter wave interferometers will not challenge kilometric light wave interferometers such as Virgo or LIGO, but could be a good candidate for the detection of very low frequency gravitational waves.

Pacme Delva; Marie-Christine Angonin; Philippe Tourrenc

2006-09-20T23:59:59.000Z

98

Cycloidal Wave Energy Converter  

SciTech Connect (OSTI)

This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

Stefan G. Siegel, Ph.D.

2012-11-30T23:59:59.000Z

99

Maximum Entropy Principle and the Higgs Boson Mass  

E-Print Network [OSTI]

A successful connection between Higgs boson decays and the Maximum Entropy Principle is presented. Based on the information theory inference approach we determine the Higgs boson mass as $M_H= 125.04\\pm 0.25$ GeV, a value fully compatible to the LHC measurement. This is straightforwardly obtained by taking the Higgs boson branching ratios as the target probability distributions of the inference, without any extra assumptions beyond the Standard Model. Yet, the principle can be a powerful tool in the construction of any model affecting the Higgs sector. We give, as an example, the case where the Higgs boson has an extra invisible decay channel. Our findings suggest that a system of Higgs bosons undergoing a collective decay to Standard Model particles is among the most fundamental ones where the Maximum Entropy Principle applies.

Alves, Alexandre; da Silva, Roberto

2014-01-01T23:59:59.000Z

100

Maximum Entropy Principle and the Higgs Boson Mass  

E-Print Network [OSTI]

A successful connection between Higgs boson decays and the Maximum Entropy Principle is presented. Based on the information theory inference approach we determine the Higgs boson mass as $M_H= 125.04\\pm 0.25$ GeV, a value fully compatible to the LHC measurement. This is straightforwardly obtained by taking the Higgs boson branching ratios as the target probability distributions of the inference, without any extra assumptions beyond the Standard Model. Yet, the principle can be a powerful tool in the construction of any model affecting the Higgs sector. We give, as an example, the case where the Higgs boson has an extra invisible decay channel. Our findings suggest that a system of Higgs bosons undergoing a collective decay to Standard Model particles is among the most fundamental ones where the Maximum Entropy Principle applies.

Alexandre Alves; Alex G. Dias; Roberto da Silva

2014-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Nonlinear spherical Alfven waves  

E-Print Network [OSTI]

We present an one-dimensional numerical study of Alfven waves propagating along a radial magnetic field. Neglecting losses, any spherical Alfven wave, no matter how small its initial amplitude is, becomes nonlinear at sufficiently large radii. From previous simulations of Alfven waves in plane parallel atmospheres we did expect the waves to steepen and produce current sheets in the nonlinear regime, which was confirmed by our new calculations. On the other hand we did find that even the least nonlinear waves were damped out almost completely before 10 solar radii. A damping of that kind is required by models of Alfven wave-driven winds from old low-mass stars as these winds are mainly accelerated within a few stellar radii.

Ulf Torkelsson; G. Christopher Boynton

1997-09-23T23:59:59.000Z

102

Maximum entanglement in squeezed boson and fermion states  

SciTech Connect (OSTI)

A class of squeezed boson and fermion states is studied with particular emphasis on the nature of entanglement. We first investigate the case of bosons, considering two-mode squeezed states. Then we construct the fermion version to show that such states are maximum entangled, for both bosons and fermions. To achieve these results, we demonstrate some relations involving squeezed boson states. The generalization to the case of fermions is made by using Grassmann variables.

Khanna, F. C. [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Malbouisson, J. M. C. [Instituto de Fisica, Universidade Federal da Bahia, 40210-340, Salvador, BA (Brazil); Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Santana, A. E. [Instituto de Fisica, Universidade de Brasilia, 70910-900, Brasilia, DF (Brazil); Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Santos, E. S. [Centro Federal de Educacao Tecnologica da Bahia, 40030-010, Salvador, BA (Brazil)

2007-08-15T23:59:59.000Z

103

Maximum Entry and Mandatory Separation Ages for Certain Security Employees  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The policy establishes the DOE policy on maximum entry and mandatory separation ages for primary or secondary positions covered under special statutory retirement provisions and for those employees whose primary duties are the protection of officials of the United States against threats to personal safety or the investigation, apprehension, and detention of individuals suspected or convicted of offenses against the criminal laws of the United States. Admin Chg 1, dated 12-1-11, cancels DOE P 310.1.

2001-10-11T23:59:59.000Z

104

Maximum entropy method for reconstruction of the CMB images  

E-Print Network [OSTI]

We propose a new approach for the accurate reconstruction of cosmic microwave background distributions from observations containing in addition to the primary fluctuations the radiation from unresolved extragalactic point sources and pixel noise. The approach uses some effective realizations of the well-known maximum entropy method and principally takes into account {\\it a priori} information about finiteness and spherical symmetry of the power spectrum of the CMB satisfying the Gaussian statistics.

A. T. Bajkova

2002-05-21T23:59:59.000Z

105

Occam's Razor Cuts Away the Maximum Entropy Principle  

E-Print Network [OSTI]

I show that the maximum entropy principle can be replaced by a more natural assumption, that there exists a phenomenological function of entropy consistent with the microscopic model. The requirement of existence provides then a unique construction of the related probability density. I conclude the letter with an axiomatic formulation of the notion of entropy, which is suitable for exploration of the non-equilibrium phenomena.

Rudnicki, ?ukasz

2014-01-01T23:59:59.000Z

106

PNNL: A Supervised Maximum Entropy Approach to Word Sense Disambiguation  

SciTech Connect (OSTI)

In this paper, we described the PNNL Word Sense Disambiguation system as applied to the English All-Word task in Se-mEval 2007. We use a supervised learning approach, employing a large number of features and using Information Gain for dimension reduction. Our Maximum Entropy approach combined with a rich set of features produced results that are significantly better than baseline and are the highest F-score for the fined-grained English All-Words subtask.

Tratz, Stephen C.; Sanfilippo, Antonio P.; Gregory, Michelle L.; Chappell, Alan R.; Posse, Christian; Whitney, Paul D.

2007-06-23T23:59:59.000Z

107

Some interesting consequences of the maximum entropy production principle  

SciTech Connect (OSTI)

Two nonequilibrium phase transitions (morphological and hydrodynamic) are analyzed by applying the maximum entropy production principle. Quantitative analysis is for the first time compared with experiment. Nonequilibrium crystallization of ice and laminar-turbulent flow transition in a circular pipe are examined as examples of morphological and hydrodynamic transitions, respectively. For the latter transition, a minimum critical Reynolds number of 1200 is predicted. A discussion of this important and interesting result is presented.

Martyushev, L. M. [Russian Academy of Sciences, Institute of Industrial Ecology, Ural Division (Russian Federation)], E-mail: mlm@ecko.uran.ru

2007-04-15T23:59:59.000Z

108

Hysteresis of ionization waves  

SciTech Connect (OSTI)

A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

Dinklage, A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Bruhn, B.; Testrich, H. [Institut fuer Physik, E.-M.-Arndt Universitaet Greifswald, Felix-Hausdorff-Str. 6, 17487 Greifswald (Germany); Wilke, C. [Leibniz-Institut fuer Plasmaforschung und Technologie, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

2008-06-15T23:59:59.000Z

109

Structure-borne sound Flexural wave (bending wave)  

E-Print Network [OSTI]

1 Structure-borne sound Flexural wave (bending wave) One dimensional (beam) +(/x)dx +(/x)dx = (/x) (/x)dx=(2/x2)dx Mz +(Mz/x)dx Mz vy Fy Fy +(Fy/x)dx Structure-borne sound Bending wave flexural wave #12;2 Structure-borne sound Two obliquely propagating waves + - + + - + - Structure

Berlin,Technische Universitt

110

Wave Propagation Theory 2.1 The Wave Equation  

E-Print Network [OSTI]

2 Wave Propagation Theory 2.1 The Wave Equation The wave equation in an ideal fluid can be derived #12;66 2. Wave Propagation Theory quantities of the quiescent (time independent) medium are identified perturbations is much smaller than the speed of sound. 2.1.1 The Nonlinear Wave Equation Retaining higher

111

Shallow Water Waves and Solitary Waves Willy Hereman  

E-Print Network [OSTI]

Shallow Water Waves and Solitary Waves Willy Hereman Department of Mathematical and Computer of the Subject II. Introduction­Historical Perspective III. Completely Integrable Shallow Water Wave Equations IV. Shallow Water Wave Equations of Geophysical Fluid Dynamics V. Computation of Solitary Wave Solutions VI

Hereman, Willy A.M.

112

New wave generation  

E-Print Network [OSTI]

We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (2007). This mechanism, which involves a tunable source comprised of oscillating plates, has so far been used for a few fundamental studies of internal waves, but its full potential has yet to be realized. Our studies reveal that this approach is capable of producing a wide variety of two-dimensional wave fields, including plane waves, wave beams and discrete vertical modes in finite-depth stratifications. The effects of discretization by a finite number of plates, forcing amplitude and angle of propagation are investigated, and it is found that the method is remarkably efficient at generating a complete wave field despite forcing only one velocity component in a controllable manner. We furthermore find that the nature of the radiated wave field is well predicted using Fourier transforms of the spatial structure of the wave generator.

Mercier, Matthieu J; Mathur, Manikandan; Gostiaux, Louis; Peacock, Thomas; Dauxois, Thierry

2015-01-01T23:59:59.000Z

113

Directed Relativistic Blast Wave  

E-Print Network [OSTI]

A spherically symmetrical ultra-relativistic blast wave is not an attractor of a generic asymmetric explosion. Spherical symmetry is reached only by the time the blast wave slows down to non-relativistic velocities, when the Sedov-Taylor-von Neumann attractor solution sets in. We show however, that a directed relativistic explosion, with the explosion momentum close to the explosion energy, produces a blast wave with a universal intermediate asymptotic -- a selfsimilar directed ultra-relativistic blast wave. This universality might be of interest for the astrophysics of gamma-ray burst afterglows.

Andrei Gruzinov

2007-04-23T23:59:59.000Z

114

Beyond Boltzmann-Gibbs statistics: Maximum entropy hyperensembles out-of-equilibrium  

E-Print Network [OSTI]

1957). J. Skilling, in Maximum Entropy and Bayesian Methods,4552. J. Skilling, in Maximum Entropy and Bayesian Methods,e C. C. Rodriguez, in Maximum Entropy and Bayesian Methods,

Crooks, Gavin E.

2006-01-01T23:59:59.000Z

115

Deriving the continuity of maximum-entropy basis functions via variational analysis  

E-Print Network [OSTI]

and V. J. DellaPietra, A maximum entropy approach to naturalJ. and R. K. Bryan, Maximum entropy image reconstruction:Heidelberg, Continuity of maximum-entropy basis functions p

Sukumar, N.; Wets, R. J. -B.

2007-01-01T23:59:59.000Z

116

Wave runup on cylinders subject to deep water random waves  

E-Print Network [OSTI]

was measured close to the test cylinders are analyzed. These data on wave runup in deepwater random waves were generated at similar water depths with significant wave heights and spectral peak periods. Statistical parameters, zero crossing analysis...

Indrebo, Ann Kristin

2012-06-07T23:59:59.000Z

117

Wave-Corpuscle Mechanics for Electric Charges  

E-Print Network [OSTI]

superposition in nonlinear wave dynamics. Rev. Math. Phys.6. Babin, A. , Figotin, A. : Wave-corpuscle mechanics forV. , Fortunato, D. : Solitary waves in the nonlinear wave

Babin, Anatoli; Figotin, Alexander

2010-01-01T23:59:59.000Z

118

Characterising the acceleration phase of blast wave formation  

SciTech Connect (OSTI)

Intensely heated, localised regions in uniform fluids will rapidly expand and generate an outwardly propagating blast wave. The Sedov-Taylor self-similar solution for such blast waves has long been studied and applied to a variety of scenarios. A characteristic time for their formation has also long been identified using dimensional analysis, which by its very nature, can offer several interpretations. We propose that, rather than simply being a characteristic time, it may be interpreted as the definitive time taken for a blast wave resulting from an intense explosion in a uniform media to contain its maximum kinetic energy. A scaling relation for this measure of the acceleration phase, preceding the establishment of the blast wave, is presented and confirmed using a 1D planar hydrodynamic model.

Fox, T. E., E-mail: tef503@york.ac.uk; Pasley, J. [York Plasma Institute, University of York, York YO10 5DD (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Robinson, A. P. L.; Schmitz, H. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

2014-10-15T23:59:59.000Z

119

Self-consistent full wave simulations of lower hybrid waves  

E-Print Network [OSTI]

Self-consistent full wave simulations of lower hybrid waves John C. Wright P. T. Bonoli - MIT E .J for Simulation of Wave-Plasma Interactions L.A. Berry, D.B. Batchelor, E.F. Jaeger, E. D`Azevedo D. Green C. Milanesio #12;3 Outline · Introduction to Lower Hybrid waves · Modeling LH waves ­ Ray tracing ­ Full Wave

Wright, John C.

120

Harmonic generation of gravitational wave induced Alfven waves  

E-Print Network [OSTI]

Here we consider the nonlinear evolution of Alfven waves that have been excited by gravitational waves from merging binary pulsars. We derive a wave equation for strongly nonlinear and dispersive Alfven waves. Due to the weak dispersion of the Alfven waves, significant wave steepening can occur, which in turn implies strong harmonic generation. We find that the harmonic generation is saturated due to dispersive effects, and use this to estimate the resulting spectrum. Finally we discuss the possibility of observing the above process.

Mats Forsberg; Gert Brodin

2007-11-26T23:59:59.000Z

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Developing de Broglie Wave  

E-Print Network [OSTI]

The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity $v$, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed $c$ between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength ${\\mit\\Lambda}_d$$=(\\frac{v}{c}){\\mit\\Lambda}$ and phase velocity $c^2/v+v$ which resembles directly L. de Broglie's hypothetic phase wave. This phase wave in terms of transporting the particle mass at the speed $v$ and angular frequency ${\\mit\\Omega}_d=2\\pi v /{\\mit\\Lambda}_d$, with ${\\mit\\Lambda}_d$ and ${\\mit\\Omega}_d$ obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase) wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schr\\"odinger equation of an identical system.

J X Zheng-Johansson; P-I Johansson

2006-08-27T23:59:59.000Z

122

Maximum likelihood reconstruction for the Daya Bay Experiment  

E-Print Network [OSTI]

The Daya Bay Reactor Neutrino experiment is designed to precisely determine the neutrino mixing angle theta13. In this paper, we report a maximum likelihood (ML) method to reconstruct the vertex and energy of events in the anti-neutrino detector, based on a simplified optical model that describes light propagation. We calibrate the key paramters of the optical model with Co60 source, by comparing the predicted charges of the PMTs with the observed charges. With the optimized parameters, the resolution of the vertex reconstruction is about 25cm for Co60 gamma.

Xia Dongmei

2014-03-07T23:59:59.000Z

123

Better Nonlinear Models from Noisy Data: Attractors with Maximum Likelihood  

E-Print Network [OSTI]

A new approach to nonlinear modelling is presented which, by incorporating the global behaviour of the model, lifts shortcomings of both least squares and total least squares parameter estimates. Although ubiquitous in practice, a least squares approach is fundamentally flawed in that it assumes independent, normally distributed (IND) forecast errors: nonlinear models will not yield IND errors even if the noise is IND. A new cost function is obtained via the maximum likelihood principle; superior results are illustrated both for small data sets and infinitely long data streams.

Patrick E. McSharry; Leonard A. Smith

1999-11-30T23:59:59.000Z

124

Application of Maximum Entropy Method to Dynamical Fermions  

E-Print Network [OSTI]

The Maximum Entropy Method is applied to dynamical fermion simulations of the (2+1)-dimensional Nambu-Jona-Lasinio model. This model is particularly interesting because at T=0 it has a broken phase with a rich spectrum of mesonic bound states and a symmetric phase where there are resonances, and hence the simple pole assumption of traditional fitting procedures breaks down. We present results extracted from simulations on large lattices for the spectral functions of the elementary fermion, the pion, the sigma, the massive pseudoscalar meson and the symmetric phase resonances.

Jonathan Clowser; Costas Strouthos

2001-10-16T23:59:59.000Z

125

Improving predictability of time series using maximum entropy methods  

E-Print Network [OSTI]

We discuss how maximum entropy methods may be applied to the reconstruction of Markov processes underlying empirical time series and compare this approach to usual frequency sampling. It is shown that, at least in low dimension, there exists a subset of the space of stochastic matrices for which the MaxEnt method is more efficient than sampling, in the sense that shorter historical samples have to be considered to reach the same accuracy. Considering short samples is of particular interest when modelling smoothly non-stationary processes, for then it provides, under some conditions, a powerful forecasting tool. The method is illustrated for a discretized empirical series of exchange rates.

Gregor Chliamovitch; Alexandre Dupuis; Bastien Chopard; Anton Golub

2014-11-28T23:59:59.000Z

126

Reducing Degeneracy in Maximum Entropy Models of Networks  

E-Print Network [OSTI]

Based on Jaynes's maximum entropy principle, exponential random graphs provide a family of principled models that allow the prediction of network properties as constrained by empirical data. However, their use is often hindered by the degeneracy problem characterized by spontaneous symmetry-breaking, where predictions simply fail. Here we show that degeneracy appears when the corresponding density of states function is not log-concave. We propose a solution to the degeneracy problem for a large class of models by exploiting the nonlinear relationships between the constrained measures to convexify the domain of the density of states. We demonstrate the effectiveness of the method on examples, including on Zachary's karate club network data.

Horvt, Szabolcs; Toroczkai, Zoltn

2014-01-01T23:59:59.000Z

127

Improving predictability of time series using maximum entropy methods  

E-Print Network [OSTI]

We discuss how maximum entropy methods may be applied to the reconstruction of Markov processes underlying empirical time series and compare this approach to usual frequency sampling. It is shown that, at least in low dimension, there exists a subset of the space of stochastic matrices for which the MaxEnt method is more efficient than sampling, in the sense that shorter historical samples have to be considered to reach the same accuracy. Considering short samples is of particular interest when modelling smoothly non-stationary processes, for then it provides, under some conditions, a powerful forecasting tool. The method is illustrated for a discretized empirical series of exchange rates.

Chliamovitch, Gregor; Chopard, Bastien; Golub, Anton

2014-01-01T23:59:59.000Z

128

Excited nucleon spectrum from lattice QCD with maximum entropy method  

E-Print Network [OSTI]

We study excited states of the nucleon in quenched lattice QCD with the spectral analysis using the maximum entropy method. Our simulations are performed on three lattice sizes $16^3\\times 32$, $24^3\\times 32$ and $32^3\\times 32$, at $\\beta=6.0$ to address the finite volume issue. We find a significant finite volume effect on the mass of the Roper resonance for light quark masses. After removing this systematic error, its mass becomes considerably reduced toward the direction to solve the level order puzzle between the Roper resonance $N'(1440)$ and the negative-parity nucleon $N^*(1535)$.

K. Sasaki; S. Sasaki; T. Hatsuda; M. Asakawa

2003-09-29T23:59:59.000Z

129

Secondary dust density waves excited by nonlinear dust acoustic waves  

SciTech Connect (OSTI)

Secondary dust density waves were observed in conjunction with high amplitude (n{sub d}/n{sub d0}>2) dust acoustic waves (DAW) that were spontaneously excited in a dc glow discharge dusty plasma in the moderately coupled, {Gamma}{approx}1, state. The high amplitude dust acoustic waves produced large dust particle oscillations, displacements, and trapping. Secondary dust density waves were excited in the wave troughs of the high amplitude DAWs. The waveforms, amplitudes, wavelengths, and wave speeds of the primary DAWs and the secondary waves were measured. A dust-dust streaming instability is discussed as a possible mechanism for the production of the secondary waves.

Heinrich, J. R.; Kim, S.-H.; Meyer, J. K.; Merlino, R. L. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, M. [Department of Electrical and Computer Engineering, University of California, San Diego, California 92093 (United States)

2012-08-15T23:59:59.000Z

130

Center for Wave Phenomena Wave Phenomena  

E-Print Network [OSTI]

into a life of scientific discovery." Kurang Mehta, Ph.D. Class of 2007 Shell Exploration and Production Phil research and education program in seismic exploration, monitoring and wave propagation. The main focus and efficiency of seismic processing algorithms, especially for application to regions of structural complexity

131

Rainbow trapping of guided waves  

E-Print Network [OSTI]

Rainbow trapping of guided waves Javier Polanco and Rosa M.the propagation of a wave packet that is a superpositionof three s-polarized guided waves with different frequencies

Polanco, Javier; Fitzgerald, Rosa M; Leskova, Tamara A; Maradudin, Alexei A

2011-01-01T23:59:59.000Z

132

Arnold Schwarzenegger CALIFORNIA OCEAN WAVE  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor CALIFORNIA OCEAN WAVE ENERGY ASSESSMENT Prepared For: California this report as follows: Previsic, Mirko. 2006. California Ocean Wave Energy Assessment. California Energy Systems Integration · Transportation California Ocean Wave Energy Assessment is the final report

133

Ionization and maximum energy of nuclei in shock acceleration theory  

E-Print Network [OSTI]

We study the acceleration of heavy nuclei at SNR shocks when the process of ionization is taken into account. Heavy atoms ($Z_N >$ few) in the interstellar medium which start the diffusive shock acceleration (DSA) are never fully ionized at the moment of injection. The ionization occurs during the acceleration process, when atoms already move relativistically. For typical environment around SNRs the photo-ionization due to the background galactic radiation dominates over Coulomb collisions. The main consequence of ionization is the reduction of the maximum energy which ions can achieve with respect to the standard result of the DSA. In fact the photo-ionization has a timescale comparable to the beginning of the Sedov-Taylor phase, hence the maximum energy is no more proportional to the nuclear charge, as predicted by standard DSA, but rather to the effective ions' charge during the acceleration process, which is smaller than the total nuclear charge $Z_N$. This result can have a direct consequence in the pred...

Morlino, Giovanni

2011-01-01T23:59:59.000Z

134

Maximum surface level and temperature histories for Hanford waste tanks  

SciTech Connect (OSTI)

Radioactive defense waste resulting from the chemical processing of spent nuclear fuel has been accumulating at the Hanford Site since 1944. This waste is stored in underground waste-storage tanks. The Hanford Site Tank Farm Facilities Interim Safety Basis (ISB) provides a ready reference to the safety envelope for applicable tank farm facilities and installations. During preparation of the ISB, tank structural integrity concerns were identified as a key element in defining the safety envelope. These concerns, along with several deficiencies in the technical bases associated with the structural integrity issues and the corresponding operational limits/controls specified for conduct of normal tank farm operations are documented in the ISB. Consequently, a plan was initiated to upgrade the safety envelope technical bases by conducting Accelerated Safety Analyses-Phase 1 (ASA-Phase 1) sensitivity studies and additional structural evaluations. The purpose of this report is to facilitate the ASA-Phase 1 studies and future analyses of the single-shell tanks (SSTs) and double-shell tanks (DSTs) by compiling a quantitative summary of some of the past operating conditions the tanks have experienced during their existence. This report documents the available summaries of recorded maximum surface levels and maximum waste temperatures and references other sources for more specific data.

Flanagan, B.D.; Ha, N.D.; Huisingh, J.S.

1994-09-02T23:59:59.000Z

135

Diagonalization of pp-waves  

E-Print Network [OSTI]

A coordinate transformation is found which diagonalizes the axisymmetric pp-waves. Its effect upon concrete solutions, including impulsive and shock waves, is discussed.

B. V. Ivanov

1997-05-21T23:59:59.000Z

136

Wave-wave interactions in solar type III radio bursts  

SciTech Connect (OSTI)

The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

Thejappa, G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); MacDowall, R. J. [NASA/Goddard Space Flight Center, Greenbelt MD 20771 (United States)

2014-02-11T23:59:59.000Z

137

Evolution of a wave packet scattered by a one-dimensional potential  

SciTech Connect (OSTI)

We consider the evolution of a wave packet that is made up of a group of the wave functions describing the stationary scattering process and tunnels through a one-dimensional potential of arbitrary form. As the main characteristics of the time difference of the tunnelling process, use is made of the propagation speed of the wave-packet maximum. We show that the known Hartman formula for the tunnelling time corresponds to the wave packet with a wavenumber-uniform spectral composition in the case, when the phase and transmission coefficient modulus dispersions are taken into account only in the linear approximation. The amplitude of the main peak of the transmitted wave intensity is proven to be independent of the tunnelling time and is determined by the transmission coefficient of the spectral component at the carrier frequency and the spectral width of the wave packet. In the limit of an infinitely wide potential barrier the amplitude of the wave-packet maximum is shown to tend to zero slower than the tunnelling time tends to its asymptotic value, i.e., indeed we deal with the paradox of an infinitely large propagation speed of a wave disturbance through the barrier. (propagation of wave fronts)

Khachatrian, A Zh; Alexanyan, Al G; Khoetsyan, V A; Alexanyan, N A

2013-06-30T23:59:59.000Z

138

Investigation of Wave Energy Converter Effects on the Nearshore Environment: A Month-Long Study in Monterey Bay CA.  

SciTech Connect (OSTI)

A modified version of an indust ry standard wave modeling tool, SNL - SWAN, was used to perform model simulations for hourly initial wave conditio ns measured during the month of October 2009. The model was run with an array of 50 wave energy converters (WECs) and compared with model runs without WECs. Maximum changes in H s were found in the lee of the WEC array along the angles of incident wave dire ction and minimal changes were found along the western side of the model domain due to wave shadowing by land. The largest wave height reductions occurred during observed typhoon conditions and resulted in 14% decreases in H s along the Santa Cruz shoreline . Shoreline reductions in H s were 5% during s outh swell wave conditions and negligible during average monthly wave conditions.

Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

2014-09-01T23:59:59.000Z

139

Full wave simulations of lower hybrid wave propagation in tokamaks  

E-Print Network [OSTI]

Full wave simulations of lower hybrid wave propagation in tokamaks J. C. Wright , P. T. Bonoli , C hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance. Consequently these waves are well-suited to driving current in the plasma periphery where the electron

Wright, John C.

140

SEISMIC WAVES ESTIMATION AND WAVE FIELD DECOMPOSITION WITH FACTOR GRAPHS  

E-Print Network [OSTI]

SEISMIC WAVES ESTIMATION AND WAVE FIELD DECOMPOSITION WITH FACTOR GRAPHS Stefano Maranò Christoph, Dept. Information Technology & Electr. Eng., 8092 Zürich ABSTRACT Physical wave fields are often from sensors of different kinds. In this paper we propose a technique for the analysis of vector wave

Loeliger, Hans-Andrea

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Taming water waves Case study: Surface Water Waves  

E-Print Network [OSTI]

Taming water waves Case study: Surface Water Waves Few things in nature are as dramatic, and potentially dangerous, as ocean waves. The impact they have on our daily lives extends from shipping to the role they play in driving the global climate. From a theoretical viewpoint water waves pose rich

142

Selfconsistent full wave simulations of lower hybrid waves  

E-Print Network [OSTI]

Selfconsistent full wave simulations of lower hybrid waves John C. Wright P. T. Bonoli MIT E .J. Porkolab Sherwood/Spring APS Denver May 2009 #12; 2 Participants in the Center for Simulation of Wave hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance

Wright, John C.

143

On Generating Gravity Waves with Matter and Electromagnetic Waves  

E-Print Network [OSTI]

If a homogeneous plane light-like shell collides head-on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision.

C. Barrabes; P. A. Hogan

2008-04-05T23:59:59.000Z

144

Reduction in maximum time uncertainty of paired time signals  

DOE Patents [OSTI]

Reduction in the maximum time uncertainty (t/sub max/ - t/sub min/) of a series of paired time signals t/sub 1/ and t/sub 2/ varying between two input terminals and representative of a series of single events where t/sub 1/ less than or equal to t/sub 2/ and t/sub 1/ + t/sub 2/ equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t/sub min/) of the first signal t/sub 1/ closer to t/sub max/ and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20 to 800.

Theodosiou, G.E.; Dawson, J.W.

1981-02-11T23:59:59.000Z

145

Probable maximum flood control; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility.

DeGabriele, C.E.; Wu, C.L. [Bechtel National, Inc., San Francisco, CA (United States)

1991-11-01T23:59:59.000Z

146

Fracture Toughness and Maximum Stress in a Disordered Lattice System  

E-Print Network [OSTI]

Fracture in a disordered lattice system is studied. In our system, particles are initially arranged on the triangular lattice and each nearest-neighbor pair is connected with a randomly chosen soft or hard Hookean spring. Every spring has the common threshold of stress at which it is cut. We make an initial crack and expand the system perpendicularly to the crack. We find that the maximum stress in the stress-strain curve is larger than those in the systems with soft or hard springs only (uniform systems). Energy required to advance fracture is also larger in some disordered systems, which indicates that the fracture toughness improves. The increase of the energy is caused by the following two factors. One is that the soft spring is able to hold larger energy than the hard one. The other is that the number of cut springs increases as the fracture surface becomes tortuous in disordered systems.

Chiyori Urabe; Shinji Takesue

2008-12-29T23:59:59.000Z

147

Maximum Margin Clustering for State Decomposition of Metastable Systems  

E-Print Network [OSTI]

When studying a metastable dynamical system, a prime concern is how to decompose the phase space into a set of metastable states. Unfortunately, the metastable state decomposition based on simulation or experimental data is still a challenge. The most popular and simplest approach is geometric clustering which is developed based on the classical clustering technique. However, the prerequisites of this approach are: (1) data are obtained from simulations or experiments which are in global equilibrium and (2) the coordinate system is appropriately selected. Recently, the kinetic clustering approach based on phase space discretization and transition probability estimation has drawn much attention due to its applicability to more general cases, but the choice of discretization policy is a difficult task. In this paper, a new decomposition method designated as maximum margin metastable clustering is proposed, which converts the problem of metastable state decomposition to a semi-supervised learning problem so that...

Wu, Hao

2015-01-01T23:59:59.000Z

148

Improved Maximum Entropy Analysis with an Extended Search Space  

E-Print Network [OSTI]

The standard implementation of the Maximum Entropy Method (MEM) follows Bryan and deploys a Singular Value Decomposition (SVD) to limit the dimensionality of the underlying solution space apriori. Here we present arguments based on the shape of the SVD basis functions and numerical evidence from a mock data analysis, which show that the correct Bayesian solution is not in general recovered with this approach. As a remedy we propose to extend the search basis systematically, which will eventually recover the full solution space and the correct solution. In order to adequately approach problems where an exponentially damped kernel is used, we provide an open-source implementation, using the C/C++ language that utilizes high precision arithmetic adjustable at run-time. The LBFGS algorithm is included in the code in order to attack problems without the need to resort to a particular search space restriction.

Alexander Rothkopf

2013-01-07T23:59:59.000Z

149

Quantum maximum entropy principle for a system of identical particles  

SciTech Connect (OSTI)

By introducing a functional of the reduced density matrix, we generalize the definition of a quantum entropy which incorporates the indistinguishability principle of a system of identical particles. With the present definition, the principle of quantum maximum entropy permits us to solve the closure problem for a quantum hydrodynamic set of balance equations corresponding to an arbitrary number of moments in the framework of extended thermodynamics. The determination of the reduced Wigner function for equilibrium and nonequilibrium conditions is found to become possible only by assuming that the Lagrange multipliers can be expanded in powers of (Planck constant/2pi){sup 2}. Quantum contributions are expressed in powers of (Planck constant/2pi){sup 2} while classical results are recovered in the limit (Planck constant/2pi)->0.

Trovato, M. [Dipartimento di Matematica, Universita di Catania, Viale A. Doria, 95125 Catania (Italy); Reggiani, L. [Dipartimento di Ingegneria dell' Innovazione and CNISM, Universita del Salento, Via Arnesano s/n, 73100 Lecce (Italy)

2010-02-15T23:59:59.000Z

150

Surface wave interferometry  

E-Print Network [OSTI]

This thesis concerns the application of seismic interferometry to surface waves. Seismic interferometry is the process by which the wavefield between two recording locations is estimated, resulting in new recordings at ...

Halliday, David Fraser

2009-01-01T23:59:59.000Z

151

Traveling-wave photodetector  

DOE Patents [OSTI]

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

Hietala, V.M.; Vawter, G.A.

1993-12-14T23:59:59.000Z

152

Traveling-wave photodetector  

SciTech Connect (OSTI)

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

Hietala, V.M.; Vawter, G.A.

1992-12-31T23:59:59.000Z

153

WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project...  

Broader source: Energy.gov (indexed) [DOE]

WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project WaveBob (TRL 5 6 System) - Advanced Wave...

154

Mathematical Caricature of Large Waves  

E-Print Network [OSTI]

The Kadomtsev-Petviiashvili equation is considered as a mathematical caricature of large and rogue waves.

Mikhail Kovalyov

2014-03-21T23:59:59.000Z

155

Clustering of floaters by waves  

E-Print Network [OSTI]

We study experimentally how waves affect distribution of particles that float on a water surface. We show that clustering of small particles in a standing wave is a nonlinear effect with the clustering time decreasing as the square of the wave amplitude. In a set of random waves, we show that small floaters concentrate on a multi-fractal set.

P. Denissenko; G. Falkovich; S. Lukaschuk

2005-11-22T23:59:59.000Z

156

December 2010 | 23 GUIDED WAVES  

E-Print Network [OSTI]

December 2010 | 23 GUIDED WAVES Tuning Wave Dispersion in Resonant Networks Eyal Feigenbaum with meta-atoms. Resonant guided wave networks (RGWNs) are a new class of artificial photonic material,5 distinct from photonic crystals and metamateri- als, in which localized waves resonate in closed paths

Atwater, Harry

157

Autoresonant Excitation of Diocotron Waves  

E-Print Network [OSTI]

of the wave, the pump and the wave will phase lock at very low wave amplitude. When the pump reachesAutoresonant Excitation of Diocotron Waves J. Fajans E. Gilson U.C. Berkeley L. Friedland Hebrew of phase with the oscillator, and the os- cillator's amplitude will decrease, eventually reaching zero

Wurtele, Jonathan

158

Selection Rules for the Nonlinear Interactions of Internal Gravity Waves and Inertia-Gravity Waves  

E-Print Network [OSTI]

Internal Gravity Waves . . . . . . . . . . . . . . 3.2.1 Twodimensional inertia-gravity wave physics . . . . . . . . .Three dimensional inertia-gravity wave physics . . . . . .

Jiang, Chung-Hsiang

2010-01-01T23:59:59.000Z

159

Noise sustained waves in subexcitable media: From chemical waves to brain waves  

E-Print Network [OSTI]

Noise sustained waves in subexcitable media: From chemical waves to brain waves P. Junga: a subexcitable photosensitive Belousov­Zhabotinsky reaction, hippocampal slices of rat brains, and astrocyte of such a behavior for calcium wave net- works in interconnected brain cells. I. INTRODUCTION Since the early days

Showalter, Kenneth

160

Savannah River Site radioiodine atmospheric releases and offsite maximum doses  

SciTech Connect (OSTI)

Radioisotopes of iodine have been released to the atmosphere from the Savannah River Site since 1955. The releases, mostly from the 200-F and 200-H Chemical Separations areas, consist of the isotopes, I-129 and 1-131. Small amounts of 1-131 and 1-133 have also been released from reactor facilities and the Savannah River Laboratory. This reference memorandum was issued to summarize our current knowledge of releases of radioiodines and resultant maximum offsite doses. This memorandum supplements the reference memorandum by providing more detailed supporting technical information. Doses reported in this memorandum from consumption of the milk containing the highest I-131 concentration following the 1961 1-131 release incident are about 1% higher than reported in the reference memorandum. This is the result of using unrounded 1-131 concentrations of I-131 in milk in this memo. It is emphasized here that this technical report does not constitute a dose reconstruction in the same sense as the dose reconstruction effort currently underway at Hanford. This report uses existing published data for radioiodine releases and existing transport and dosimetry models.

Marter, W.L.

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein

2001-02-01T23:59:59.000Z

162

Maximum Entropy Analysis of the Spectral Functions in Lattice QCD  

E-Print Network [OSTI]

First principle calculation of the QCD spectral functions (SPFs) based on the lattice QCD simulations is reviewed. Special emphasis is placed on the Bayesian inference theory and the Maximum Entropy Method (MEM), which is a useful tool to extract SPFs from the imaginary-time correlation functions numerically obtained by the Monte Carlo method. Three important aspects of MEM are (i) it does not require a priori assumptions or parametrizations of SPFs, (ii) for given data, a unique solution is obtained if it exists, and (iii) the statistical significance of the solution can be quantitatively analyzed. The ability of MEM is explicitly demonstrated by using mock data as well as lattice QCD data. When applied to lattice data, MEM correctly reproduces the low-energy resonances and shows the existence of high-energy continuum in hadronic correlation functions. This opens up various possibilities for studying hadronic properties in QCD beyond the conventional way of analyzing the lattice data. Future problems to be studied by MEM in lattice QCD are also summarized.

M. Asakawa; T. Hatsuda; Y. Nakahara

2001-02-26T23:59:59.000Z

163

Improved Maximum Entropy Method with an Extended Search Space  

E-Print Network [OSTI]

We report on an improvement to the implementation of the Maximum Entropy Method (MEM). It amounts to departing from the search space obtained through a singular value decomposition (SVD) of the Kernel. Based on the shape of the SVD basis functions we argue that the MEM spectrum for given $N_\\tau$ data-points $D(\\tau)$ and prior information $m(\\omega)$ does not in general lie in this $N_\\tau$ dimensional singular subspace. Systematically extending the search basis will eventually recover the full search space and the correct extremum. We illustrate this idea through a mock data analysis inspired by actual lattice spectra, to show where our improvement becomes essential for the success of the MEM. To remedy the shortcomings of Bryan's SVD prescription we propose to use the real Fourier basis, which consists of trigonometric functions. Not only does our approach lead to more stable numerical behavior, as the SVD is not required for the determination of the basis functions, but also the resolution of the MEM becomes independent from the position of the reconstructed peaks.

Alexander Rothkopf

2012-08-25T23:59:59.000Z

164

Maximum entropy detection of planets around active stars  

E-Print Network [OSTI]

(shortened for arXiv) We aim to progress towards more efficient exoplanet detection around active stars by optimizing the use of Doppler Imaging in radial velocity measurements. We propose a simple method to simultaneously extract a brightness map and a set of orbital parameters through a tomographic inversion technique derived from classical Doppler mapping. Based on the maximum entropy principle, the underlying idea is to determine the set of orbital parameters that minimizes the information content of the resulting Doppler map. We carry out a set of numerical simulations to perform a preliminary assessment of the robustness of our method, using an actual Doppler map of the very active star HR 1099 to produce a realistic synthetic data set for various sets of orbital parameters of a single planet in a circular orbit. Using a simulated time-series of 50 line profiles affected by a peak-to-peak activity jitter of 2.5 km/s, we are able in most cases to recover the radial velocity amplitude, orbital phase and o...

Petit, P; Hbrard, E; Morin, J; Folsom, C P; Bhm, T; Boisse, I; Borgniet, S; Bouvier, J; Delfosse, X; Hussain, G; Jeffers, S V; Marsden, S C; Barnes, J R

2015-01-01T23:59:59.000Z

165

Calculation of safe parameters of air shock waves for underwater explosions  

SciTech Connect (OSTI)

The paper proposes a functional relationship for the calculation of the pressure at an air shock-wave front in underwater explosions of plaster-blasting charges. The maximum permissible mass of the charge and safe distance for objects can be calculated for an assigned value of the critical pressure at the air shock-wave front. The authors also state that this work was conducted as there are practically no significant results of experimental or theoretical investigations of this problem.

Smolii, N.I.; Ganopol'skii, M.I.

1985-07-01T23:59:59.000Z

166

Detecting Vanishing Dimensions Via Primordial Gravitational Wave Astronomy  

E-Print Network [OSTI]

Lower-dimensionality at higher energies has manifold theoretical advantages as recently pointed out. Moreover, it appears that experimental evidence may already exists for it - a statistically significant planar alignment of events with energies higher than TeV has been observed in some earlier cosmic ray experiments. We propose a robust and independent test for this new paradigm. Since (2+1)-dimensional spacetimes have no gravitational degrees of freedom, gravity waves cannot be produced in that epoch. This places a universal maximum frequency at which primordial waves can propagate, marked by the transition between dimensions. We show that this cut-off frequency may be accessible to future gravitational wave detectors such as LISA.

Jonas R. Mureika; Dejan Stojkovic

2011-02-16T23:59:59.000Z

167

Explosive plane-wave lens  

DOE Patents [OSTI]

An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

Marsh, S.P.

1987-03-12T23:59:59.000Z

168

Explosive plane-wave lens  

DOE Patents [OSTI]

An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

Marsh, S.P.

1988-03-08T23:59:59.000Z

169

Primordial Gravitational Waves Enhancement  

E-Print Network [OSTI]

We reconsider the enhancement of primordial gravitational waves that arises from a quantum gravitational model of inflation. A distinctive feature of this model is that the end of inflation witnesses a brief phase during which the Hubble parameter oscillates in sign, changing the usual Hubble friction to anti-friction. An earlier analysis of this model was based on numerically evolving the graviton mode functions after guessing their initial conditions near the end of inflation. The current study is based on an equation which directly evolves the normalized square of the magnitude. We are also able to make a very reliable estimate for the initial condition using a rapidly converging expansion for the sub-horizon regime. Results are obtained for the energy density per logarithmic wave number as a fraction of the critical density. These results exhibit how the enhanced signal depends upon the number of oscillatory periods; they also show the resonant effects associated with particular wave numbers.

Maria G. Romania; N. C. Tsamis; R. P. Woodard

2011-08-08T23:59:59.000Z

170

IR Hot Wave  

SciTech Connect (OSTI)

The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

Graham, T. B.

2010-04-01T23:59:59.000Z

171

Piezoelectric wave motor  

DOE Patents [OSTI]

A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

Yerganian, Simon Scott (Lee's Summit, MO)

2003-02-11T23:59:59.000Z

172

Piezoelectric wave motor  

DOE Patents [OSTI]

A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

Yerganian, Simon Scott (Lee's Summit, MO)

2001-07-17T23:59:59.000Z

173

Standing wave compressor  

DOE Patents [OSTI]

A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

1991-01-01T23:59:59.000Z

174

Adaptive multiconfigurational wave functions  

SciTech Connect (OSTI)

A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff ?. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than ?. The resulting ?-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (?+SD-CI), which is based on a small ?-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build ?-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The ?-CI and ?+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the ?-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the ?-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.

Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)

2014-03-28T23:59:59.000Z

175

Real-time Water Waves with Wave Particles  

E-Print Network [OSTI]

This dissertation describes the wave particles technique for simulating water surface waves and two way fluid-object interactions for real-time applications, such as video games. Water exists in various different forms in our environment...

Yuksel, Cem

2010-10-12T23:59:59.000Z

176

mm-Wave Phase Shifters and Switches  

E-Print Network [OSTI]

4.1.1 Slow wave transmissioncombiners . . . . . . . . . . . 5.3 mm-Wave implementationfailed to predict current mm-wave design trend [1] . . . . .

Adabi Firouzjaei, Ehsan

2010-01-01T23:59:59.000Z

177

Structural health monitoring by ultrasonic guided waves  

E-Print Network [OSTI]

E. (2005) Modeling guided wave propagation with applicationMultiple Guided Ultrasonic Wave Features, ASME Journal ofto-spar joints using guided waves and macro fiber composite

Bartoli, Ivan

2007-01-01T23:59:59.000Z

178

Heat Waves, Global Warming, and Mitigation  

E-Print Network [OSTI]

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*II. HEAT WAVE DEFINITIONS .. A . HCHANGE AND HEAT WAVES .. CLIMATE III. IV. HEAT

Carlson, Ann E.

2008-01-01T23:59:59.000Z

179

Heat Waves, Global Warming, and Mitigation  

E-Print Network [OSTI]

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177

Carlson, Ann E.

2008-01-01T23:59:59.000Z

180

Propagation of seismic waves through liquefied soils  

E-Print Network [OSTI]

the mechanisms of wave propagation and ARTICLE IN PRESS M.Numerical analysis Wave propagation Earthquake Liquefactionenergy during any wave propagation. This paper summarizes

Taiebat, Mahdi; Jeremic, Boris; Dafalias, Yannis; Kaynia, Amir; Cheng, Zhao

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Study of Different Implementation Approaches for a Maximum Power Point Florent Boico Brad Lehman  

E-Print Network [OSTI]

will study the design of a maximum power point tracker for low power solar panels (10-50W). In the process weStudy of Different Implementation Approaches for a Maximum Power Point Tracker 1 Florent Boico Brad Lehman Northeastern University Abstract: This paper studies the design of a Maximum Power Point Tracker

Lehman, Brad

182

A Maximum Entropy Algorithm for Rhythmic Analysis of Genome-Wide Expression Patterns  

E-Print Network [OSTI]

A Maximum Entropy Algorithm for Rhythmic Analysis of Genome-Wide Expression Patterns Christopher James Langmead C. Robertson McClung Bruce Randall Donald ,,,§,¶ Abstract We introduce a maximum entropy-based spectral analysis, maximum entropy spectral reconstruction is well suited to signals of the type generated

Richardson, David

183

1 A MAXIMUM ENTROPY METHOD FOR SUBNETWORK ORIGIN-DESTINATION 2 TRIP MATRIX ESTIMATION  

E-Print Network [OSTI]

1 A MAXIMUM ENTROPY METHOD FOR SUBNETWORK ORIGIN-DESTINATION 2 TRIP MATRIX ESTIMATION 3 4 Chi Xie 5, maximum entropy, linearization 36 algorithm, column generation 37 #12;C. Xie, K.M. Kockelman and S is the trip matrix of the simplified network. This paper discusses a5 maximum entropy method

Kockelman, Kara M.

184

Maximum entropy and Bayesian approaches to the ratio problem Edward Z. Shen*  

E-Print Network [OSTI]

Maximum entropy and Bayesian approaches to the ratio problem Edward Z. Shen* Jeffrey M. Perloff** January 2001 Abstract Maximum entropy and Bayesian approaches provide superior estimates of a ratio extra information in the supports for the underlying parameters for generalized maximum entropy (GME

Perloff, Jeffrey M.

185

Comparison of Maximum Entropy and Higher-Order Entropy Estimators Amos Golan* and Jeffrey M. Perloff**  

E-Print Network [OSTI]

Comparison of Maximum Entropy and Higher-Order Entropy Estimators Amos Golan* and Jeffrey M. Perloff** ABSTRACT We show that the generalized maximum entropy (GME) is the only estimation method- classes of estimators may outperform the GME estimation rule. Keywords: generalized entropy, maximum

Perloff, Jeffrey M.

186

A maximum entropy-least squares estimator for elastic origin-destination trip matrix estimation  

E-Print Network [OSTI]

A maximum entropy-least squares estimator for elastic origin- destination trip matrix estimation propose a combined maximum entropy-least squares (ME-LS) estimator, by which O- D flows are distributed-destination trip table; elastic demand; maximum entropy; least squares; subnetwork analysis; convex combination

Kockelman, Kara M.

187

Wave refraction and wave energy on Cayo Arenas  

E-Print Network [OSTI]

WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis By Donald E. Welsh Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... January 1962 Major Subject: Physical Oceanography WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis Donald E. Walsh Approved as to style and content by: Chairman of the Committee ead of Department ' / January 1962 ACKNOWLEDGMENTS...

Walsh, Donald Eugene

1962-01-01T23:59:59.000Z

188

THE MAXIMUM ENERGY OF ACCELERATED PARTICLES IN RELATIVISTIC COLLISIONLESS SHOCKS  

SciTech Connect (OSTI)

The afterglow emission from gamma-ray bursts (GRBs) is usually interpreted as synchrotron radiation from electrons accelerated at the GRB external shock that propagates with relativistic velocities into the magnetized interstellar medium. By means of multi-dimensional particle-in-cell simulations, we investigate the acceleration performance of weakly magnetized relativistic shocks, in the magnetization range 0 {approx}< {sigma} {approx}< 10{sup -1}. The pre-shock magnetic field is orthogonal to the flow, as generically expected for relativistic shocks. We find that relativistic perpendicular shocks propagating in electron-positron plasmas are efficient particle accelerators if the magnetization is {sigma} {approx}< 10{sup -3}. For electron-ion plasmas, the transition to efficient acceleration occurs for {sigma} {approx}< 3 Multiplication-Sign 10{sup -5}. Here, the acceleration process proceeds similarly for the two species, since the electrons enter the shock nearly in equipartition with the ions, as a result of strong pre-heating in the self-generated upstream turbulence. In both electron-positron and electron-ion shocks, we find that the maximum energy of the accelerated particles scales in time as {epsilon}{sub max}{proportional_to}t {sup 1/2}. This scaling is shallower than the so-called (and commonly assumed) Bohm limit {epsilon}{sub max}{proportional_to}t, and it naturally results from the small-scale nature of the Weibel turbulence generated in the shock layer. In magnetized plasmas, the energy of the accelerated particles increases until it reaches a saturation value {epsilon}{sub sat}/{gamma}{sub 0} m{sub i}c {sup 2} {approx} {sigma}{sup -1/4}, where {gamma}{sub 0} m{sub i}c {sup 2} is the mean energy per particle in the upstream bulk flow. Further energization is prevented by the fact that the self-generated turbulence is confined within a finite region of thickness {proportional_to}{sigma}{sup -1/2} around the shock. Our results can provide physically grounded inputs for models of non-thermal emission from a variety of astrophysical sources, with particular relevance to GRB afterglows.

Sironi, Lorenzo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Spitkovsky, Anatoly [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States); Arons, Jonathan, E-mail: lsironi@cfa.harvard.edu [Department of Astronomy, Department of Physics, and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States)

2013-07-01T23:59:59.000Z

189

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

2000-02-26T23:59:59.000Z

190

Secular Sediment Waves, Channel Bed Waves, and Legacy Sediment  

E-Print Network [OSTI]

Secular Sediment Waves, Channel Bed Waves, and Legacy Sediment L. Allan James* Geography Department, University South Carolina Abstract The concept of sediment waves is reviewed and clarifications are proposed for nomenclature con- cerning vertical channel responses to large fluvial sediment fluxes over a period of a decade

James, L. Allan

191

Water Waves and Integrability  

E-Print Network [OSTI]

The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.

Rossen I. Ivanov

2007-07-12T23:59:59.000Z

192

Zonal flow and field generation by finite beta drift waves and kinetic drift-Alfven waves  

E-Print Network [OSTI]

Zonal flow and field generation by finite beta drift waves and kinetic drift-Alfve´n waves P. N magnetic fields by finite beta drift waves and kinetic drift-Alfve´n waves is presented. The analysis by electrostatic drift waves to finite beta drift waves and kinetic drift-Alfve´n waves. The drift wave driven

Rubloff, Gary W.

193

Transformative Wave Technologies Kent, Washington  

E-Print Network [OSTI]

Transformative Wave Technologies Kent, Washington www.transformativewave.com #12;#12;North America are shifted to off peak times #12;#12;Transformative Wave Technologies www.transformativewave.com #12

California at Davis, University of

194

Spherical waves r Legendre polynomials  

E-Print Network [OSTI]

1 Impedance · Spherical waves r er e e Impedance · Legendre polynomials P0(x) = 1 P1(x) = x P2(x · Spherical waves ­ Spherical Hankel functions hn (2)(kr)=jn(kr)-iyn(kr) Impedance · Spherical waves Order: 0 1 4 Circumferential And azimuthal: 0,0 1,1 3,2 #12;3 Impedance · Spherical waves ­ Arbitrary

Berlin,Technische Universität

195

WAVE PIPELINES VIA LOOK-UP TABLES Eduardo I. Boemo, Sergio L6pez-Buedo, and Juan M. A4eneses  

E-Print Network [OSTI]

block for the construction of wave pipelined circuits. In this paper, this alternative is explored The construction of maximum-rate circuits or wave pipelines is centered on the equalization of all path delays pipeline topics: LUTS mask the delay of different logic functions, and also have been designed as data

Boemo, Eduardo

196

2, 70177025, 2014 Freaque wave  

E-Print Network [OSTI]

NHESSD 2, 70177025, 2014 Freaque wave occurrences in 2013 P. C. Liu Title Page Abstract to the corresponding final paper in NHESS if available. Brief Communication: Freaque wave occurrences in 2013 P. C. Liu7025, 2014 Freaque wave occurrences in 2013 P. C. Liu Title Page Abstract Introduction Conclusions References

197

2014 Tube -1 STANDING WAVES  

E-Print Network [OSTI]

2014 Tube - 1 STANDING WAVES IN AN AIR COLUMN The objective of the experiment is: · To study the harmonic structure of standing waves in an air column. APPARATUS: Computer, FFTScope software, PC speaker, meterstick, sound tube apparatus, thermometer, microphone INTRODUCTION traveling wave of sinusoidal shape

Glashausser, Charles

198

GENERATING ELECTRICITY USING OCEAN WAVES  

E-Print Network [OSTI]

GENERATING ELECTRICITY USING OCEAN WAVES A RENEWABLE SOURCE OF ENERGY REPORT FOR THE HONG KONG ELECTRIC COMPANY LIMITED Dr L F Yeung Mr Paul Hodgson Dr Robin Bradbeer July 2007 #12;Ocean Waves and construction of equipment that could measure and log wave conditions and tide levels at Hoi Ha Wan. Prototypes

Bradbeer, Robin Sarah

199

Extreme wave impinging and overtopping  

E-Print Network [OSTI]

This investigates the velocity fields of a plunging breaking wave impinging on a structure through measurements in a two-dimensional wave tank. As the wave breaks and overtops the structure, so-called green water is generated. The flow becomes multi...

Ryu, Yong Uk

2009-06-02T23:59:59.000Z

200

Gas Explosion Characterization, Wave Propagation  

E-Print Network [OSTI]

s & Dt^boooo^j Risø-R-525 Gas Explosion Characterization, Wave Propagation (Small-Scale Experiments EXPLOSION CHARACTERIZATION, WAVE PROPAGATION (Small-Scale Experiments) G.C. Larsen Abstract. A number characteristics 14 3.5. Characteristics of the primary pressure wave 21 3.6. Pressure propagation over a hard

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Derivation of the Blackbody Radiation Spectrum from a Natural Maximum-Entropy Principle Involving Casimir Energies and Zero-Point Radiation  

E-Print Network [OSTI]

By numerical calculation, the Planck spectrum with zero-point radiation is shown to satisfy a natural maximum-entropy principle whereas alternative choices of spectra do not. Specifically, if we consider a set of conducting-walled boxes, each with a partition placed at a different location in the box, so that across the collection of boxes the partitions are uniformly spaced across the volume, then the Planck spectrum correspond to that spectrum of random radiation (having constant energy kT per normal mode at low frequencies and zero-point energy (1/2)hw per normal mode at high frequencies) which gives maximum uniformity across the collection of boxes for the radiation energy per box. The analysis involves Casimir energies and zero-point radiation which do not usually appear in thermodynamic analyses. For simplicity, the analysis is presented for waves in one space dimension.

Timothy H. Boyer

2002-10-30T23:59:59.000Z

202

Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since  

E-Print Network [OSTI]

Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since radar involves the transmission, propagation and scattering of EM waves by various is the electrostatic force between two point charges. #12;Electromagnetic WavesElectromagnetic Waves Electric fields

Rutledge, Steven

203

Introduction Modeling of large ocean waves Propagation speed Coherent wavetrains Near-shore wave dynamics Conclusions Tsunamis and ocean waves  

E-Print Network [OSTI]

Introduction Modeling of large ocean waves Propagation speed Coherent wavetrains Near-shore wave waves #12;Introduction Modeling of large ocean waves Propagation speed Coherent wavetrains NearMaster University Tsunamis and ocean waves #12;Introduction Modeling of large ocean waves Propagation speed Coherent

Craig, Walter

204

Theory of steady-state plane tunneling-assisted impact ionization waves  

SciTech Connect (OSTI)

The effect of band-to-band and trap-assisted tunneling on the properties of steady-state plane ionization waves in p{sup +}-n-n{sup +} structures is theoretically analyzed. It is shown that such tunneling-assisted impact ionization waves do not differ in a qualitative sense from ordinary impact ionization waves propagating due to the avalanche multiplication of uniformly distributed seed electrons and holes. The quantitative differences of tunneling-assisted impact ionization waves from impact ionization waves are reduced to a slightly different relation between the wave velocity u and the maximum field strength E{sub M} at the front. It is shown that disregarding impact ionization does not exclude the possibility of the existence of tunneling-assisted ionization waves; however, their structure radically changes, and their velocity strongly decreases for the same E{sub M}. A comparison of the dependences u(E{sub M}) for various ionization-wave types makes it possible to determine the conditions under which one of them is dominant. In conclusion, unresolved problems concerning the theory of tunneling-assisted impact ionization waves are discussed and the directions of further studies are outlined.

Kyuregyan, A. S., E-mail: ask@vei.ru [Lenin All-Russian Electrical-Engineering Institute (Russian Federation)

2013-07-15T23:59:59.000Z

205

Nonlinear Hysteretic Torsional Waves  

E-Print Network [OSTI]

We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities, and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other type of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short term memory as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.

J. Cabaret; P. Bquin; G. Theocharis; V. Andreev; V. E. Gusev; V. Tournat

2015-01-09T23:59:59.000Z

206

Nonlinear Hysteretic Torsional Waves  

E-Print Network [OSTI]

We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities, and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other type of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short term memory as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control de...

Cabaret, J; Theocharis, G; Andreev, V; Gusev, V E; Tournat, V

2015-01-01T23:59:59.000Z

207

A numerical scheme for ionizing shock waves  

SciTech Connect (OSTI)

A two-dimensional (2D) visual computer code to solve the steady state (SS) or transient shock problems including partially ionizing plasma is presented. Since the flows considered are hypersonic and the resulting temperatures are high, the plasma is partially ionized. Hence the plasma constituents are electrons, ions and neutral atoms. It is assumed that all the above species are in thermal equilibrium, namely, that they all have the same temperature. The ionization degree is calculated from Saha equation as a function of electron density and pressure by means of a nonlinear Newton type root finding algorithms. The code utilizes a wave model and numerical fluctuation distribution (FD) scheme that runs on structured or unstructured triangular meshes. This scheme is based on evaluating the mesh averaged fluctuations arising from a number of waves and distributing them to the nodes of these meshes in an upwind manner. The physical properties (directions, strengths, etc.) of these wave patterns are obtained by a new wave model: ION-A developed from the eigen-system of the flux Jacobian matrices. Since the equation of state (EOS) which is used to close up the conservation laws includes electronic effects, it is a nonlinear function and it must be inverted by iterations to determine the ionization degree as a function of density and temperature. For the time advancement, the scheme utilizes a multi-stage Runge-Kutta (RK) algorithm with time steps carefully evaluated from the maximum possible propagation speed in the solution domain. The code runs interactively with the user and allows to create different meshes to use different initial and boundary conditions and to see changes of desired physical quantities in the form of color and vector graphics. The details of the visual properties of the code has been published before (see [N. Aslan, A visual fluctuation splitting scheme for magneto-hydrodynamics with a new sonic fix and Euler limit, J. Comput. Phys. 197 (2004) 1-27]). The two-dimensional nature of ION-A was presented by a planar shock wave propagating over a circular obstacle. It was demonstrated that including the effects of ionization in calculating complex flows is important, even when they appear initially negligible. This code can be used to accurately simulate the nonlinear time dependent evolution of neutral or ionized plasma flows from supersonic to hypersonic regimes.

Aslan, Necdet [Yeditepe University, Physics Department, Kayisda g-circumflex i, 34755 Istanbul (Turkey)]. E-mail: naslan@yeditepe.edu.tr; Mond, Michael [Ben Gurion University, Mechanical Engineering Department, Beer Sheva (Israel)

2005-12-10T23:59:59.000Z

208

DNA waves and water  

E-Print Network [OSTI]

Some bacterial and viral DNA sequences have been found to induce low frequency electromagnetic waves in high aqueous dilutions. This phenomenon appears to be triggered by the ambient electromagnetic background of very low frequency. We discuss this phenomenon in the framework of quantum field theory. A scheme able to account for the observations is proposed. The reported phenomenon could allow to develop highly sensitive detection systems for chronic bacterial and viral infections.

L. Montagnier; J. Aissa; E. Del Giudice; C. Lavallee; A. Tedeschi; G. Vitiello

2010-12-23T23:59:59.000Z

209

Fractional Electromagnetic Waves  

E-Print Network [OSTI]

In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.

J. F. Gmez; J. J. Rosales; J. J. Bernal; V. I. Tkach; M. Gua

2011-08-31T23:59:59.000Z

210

Wave dynamics in a sunspot umbra  

E-Print Network [OSTI]

The high spatial and time resolution data obtained with SDO/AIA for the sunspot in active region NOAA 11131 on 08 December 2010 were analysed with the time-distance plot technique and the pixelised wavelet filtering method. Oscillations in the 3 min band dominate in the umbra. The integrated spectrum of umbral oscillations contains distinct narrowband peaks at 1.9 min, 2.3 min, and 2.8 min. The power significantly varies in time, forming distinct oscillation trains. The oscillation power distribution over the sunspot in the horizontal plane reveals that the enhancements of the oscillation amplitude, or wave fronts, have a distinct structure consisting of an evolving two-armed spiral and a stationary circular patch at the spiral origin, situated near the umbra centre. This structure is seen from the temperature minimum to the corona. In time, the spiral rotates anti-clockwise. The wave front spirality is most pronounced during the maximum amplitude phases of the oscillations. In the low-amplitude phases the sp...

Sych, R

2014-01-01T23:59:59.000Z

211

Gravitational wave astronomy and cosmology  

E-Print Network [OSTI]

The first direct observation of gravitational waves' action upon matter has recently been reported by the BICEP2 experiment. Advanced ground-based gravitational-wave detectors are being installed. They will soon be commissioned, and then begin searches for high-frequency gravitational waves at a sensitivity level that is widely expected to reach events involving compact objects like stellar mass black holes and neutron stars. Pulsar timing arrays continue to improve the bounds on gravitational waves at nanohertz frequencies, and may detect a signal on roughly the same timescale as ground-based detectors. The science case for space-based interferometers targeting millihertz sources is very strong. The decade of gravitational-wave discovery is poised to begin. In this writeup of a talk given at the 2013 TAUP conference, we will briefly review the physics of gravitational waves and gravitational-wave detectors, and then discuss the promise of these measurements for making cosmological measurements in the near future.

Scott A. Hughes

2014-05-02T23:59:59.000Z

212

Spin waves in the (  

SciTech Connect (OSTI)

We use neutron scattering to show that spin waves in the iron chalcogenide Fe{sub 1.05}Te display novel dispersion clearly different from both the first principles density functional calculations and recent observations in the related iron pnictide CaFe{sub 2}As{sub 2}. By fitting to a Heisenberg Hamiltonian, we find that although the nearest-neighbor exchange couplings in the two systems are quite different, their next-nearest-neighbor (NNN) couplings are similar. This suggests that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the NNN magnetic coupling between the irons.

Lipscombe, O. J. [University of Tennessee, Knoxville (UTK); Chen, G. F. [The Institute of Physics, Chinese Academy of Sciences; Fang, Chen [Purdue University; Perring, T. G. [ISIS Facility, Rutherford Appleton Laboratory; Abernathy, Douglas L [ORNL; Christianson, Andrew D [ORNL; Egami, Takeshi [ORNL; Wang, Nanlin [The Institute of Physics, Chinese Academy of Sciences; Hu, Jiangping [Purdue University and Chinese Academy of Sciences; Dai, Pengcheng [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

213

Gravity Waves in the Sun  

E-Print Network [OSTI]

We present numerical simulations of penetrative convection and gravity wave excitation in the Sun. Gravity waves are self-consistently generated by a convective zone overlying a radiative interior. We produce power spectra for gravity waves in the radiative region as well as estimates for the energy flux of gravity waves below the convection zone. We calculate a peak energy flux in waves below the convection zone to be three orders of magnitude smaller than previous estimates for m=1. The simulations show that the linear dispersion relation is a good approximation only deep below the convective-radiative boundary. Both low frequency propagating gravity waves as well as higher frequency standing modes are generated; although we find that convection does not continually drive the standing g-mode frequencies.

Tamara M. Rogers; Gary A. Glatzmaier

2005-08-25T23:59:59.000Z

214

Wave Decay in MHD Turbulence  

E-Print Network [OSTI]

We present a model for nonlinear decay of the weak wave in three-dimensional incompressible magnetohydrodynamic (MHD) turbulence. We show that the decay rate is different for parallel and perpendicular waves. We provide a general formula for arbitrarily directed waves and discuss particular limiting cases known in the literature. We test our predictions with direct numerical simulations of wave decay in three-dimensional MHD turbulence, and discuss the influence of turbulent damping on the development of linear instabilities in the interstellar medium and on other important astrophysical processes.

Andrey Beresnyak; Alex Lazarian

2008-05-06T23:59:59.000Z

215

A Reconsideration of Matter Waves  

E-Print Network [OSTI]

Matter waves were discovered in the early 20th century from their wavelength, predicted by DeBroglie, Planck's constant divided by the particle's momentum, that is, lmw = h/mv. But, the failure to obtain a reasonable theory for the matter wave frequency resulted somewhat in loss of further interest. It was expected that the frequency of the matter wave should correspond to the particle kinetic energy, that is, fmw = 1/2mv^2/h but the resulting velocity of the matter of the particle, v = fmw x lmw, is that the matter wave moves at one half the speed of the particle, obviously absurd as the particle and its wave must move together. If relativistic mass is used (as it should in any case) the problem remains, the same mass appearing in numerator and denominator and canceling. It is no help to hypothesize that the total energy, not just the kinetic energy, yields the matter wave. That attributes a matter wave to a particle at rest. It also gives the resulting velocity as c^2/v, the wave racing ahead of its particle. A reinterpretation of Einstein's derivation of relativistic kinetic energy (which produced his famous E = mc^2) leads to a valid matter wave frequency and a new understanding of particle kinetics and of the atom's stable orbits.

Roger Ellman

2005-05-16T23:59:59.000Z

216

On the duration of the Paleocene-Eocene thermal maximum Ursula Rohl and Thomas Westerhold  

E-Print Network [OSTI]

On the duration of the Paleocene-Eocene thermal maximum (PETM) Ursula Ro¨hl and Thomas Westerhold of California, Santa Cruz, California 95064, USA [1] The Paleocene-Eocene thermal maximum (PETM) is one of global warming and a massive perturbation of the global carbon cycle from injection of isotopically light

Zachos, James

217

An Optimal Randomized Algorithm for Maximum Tukey Depth Timothy M. Chan  

E-Print Network [OSTI]

An Optimal Randomized Algorithm for Maximum Tukey Depth Timothy M. Chan Abstract We present the first optimal algorithm to compute the maximum Tukey depth (also known as location or halfspace depth , the Tukey depth of a point q IRd is defined as: min{|P | : over all halfspaces containing q}. We

Chan, Timothy M.

218

Beating the maximum cooling limit with graded thermoelectric materials Zhixi Bian and Ali Shakouria  

E-Print Network [OSTI]

.1063/1.2396895 The maximum cooling temperature is one of the perfor- mance parameters for a thermoelectric module. ExcludingBeating the maximum cooling limit with graded thermoelectric materials Zhixi Bian and Ali Shakouria cooling of a single element thermoelectric material cannot be improved by changing its geometry.3

219

Maximum Power Transfer Tracking in a Solar USB Charger for Smartphones  

E-Print Network [OSTI]

chargers do not perform the maximum power point tracking [2], [3] of the solar panel. We excludeMaximum Power Transfer Tracking in a Solar USB Charger for Smartphones Abstract--Battery life poor capacity utilization during solar energy harvesting. In this paper, we propose and demonstrate

Pedram, Massoud

220

Maximum-Power-Point Tracking Method of Photovoltaic Using Only Single Current Sensor  

E-Print Network [OSTI]

Solar cell systems Abstract This paper describes a novel strategy of maximum-power-point tracking point using only a single current sensor, i.e., a Hall-effect CT. Output power of the photovoltaic can-climbing method is employed to seek the maximum power point, using the output power obtained from only the current

Fujimoto, Hiroshi

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vegetation and Fire at the Last Glacial Maximum in Tropical South America  

E-Print Network [OSTI]

Chapter 4 Vegetation and Fire at the Last Glacial Maximum in Tropical South America Francis E temperatures. Keywords Charcoal · Last Glacial Maximum · pollen · Quaternary · tropical South America F-mail: Francis.Mayle@ed.ac.uk 89F. Vimeux et al. (eds.), Past Climate Variability in South America

Binford, Michael W.

222

A Basic Thermodynamic Derivation of the Maximum Overburden Pressure Generated in Frost Heave  

E-Print Network [OSTI]

can derive the maximum overburden pressure. A similar argument can also produce the maximum Heave Engine Frost heave is a common environmental process in which the freezing of water into ice can produce forces large enough to seriously damage roads and bridges [1]. Contrary to common belief, frost

Libbrecht, Kenneth G.

223

Frequency Moments Inverse Problem and Maximum (Shannon vs. R enyi-Tsallis) Entropy  

E-Print Network [OSTI]

) maximization of Shannon's entropy (MaxEnt), b) maximization of R#19;enyi-Tsallis entropy (maxTent). ConcerningEnt 4 1.2 Aims 5 2 Frequency moment constraints 5 2.1 Characteristics of MaxEnt choice 6 2.2 Maximum RFrequency Moments Inverse Problem and Maximum (Shannon vs. R#19;enyi-Tsallis) Entropy #3; A case

224

How Is the Maximum Entropy of a Quantized Surface Related to Its Area?  

E-Print Network [OSTI]

The maximum entropy of a quantized surface is demonstrated to be proportional to the surface area in the classical limit. The result is valid in loop quantum gravity, and in a somewhat more general class of approaches to surface quantization. The maximum entropy is calculated explicitly for some specific cases.

I. B. Khriplovich; R. V. Korkin

2001-12-27T23:59:59.000Z

225

Maximum Theoretical Efficiency Limit of Photovoltaic Devices: Effect of Band Structure on Excited State Entropy  

E-Print Network [OSTI]

, we show that the maximum conversion efficiency is limited further by the excited state entropyMaximum Theoretical Efficiency Limit of Photovoltaic Devices: Effect of Band Structure on Excited State Entropy Frank E. Osterloh* Department of Chemistry, University of CaliforniaDavis, One Shields

Osterloh, Frank

226

Topological horseshoes in travelling waves of discretized nonlinear wave equations  

SciTech Connect (OSTI)

Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.

Chen, Yi-Chiuan, E-mail: YCChen@math.sinica.edu.tw [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China)] [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China); Chen, Shyan-Shiou, E-mail: sschen@ntnu.edu.tw [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China)] [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Yuan, Juan-Ming, E-mail: jmyuan@pu.edu.tw [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)] [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)

2014-04-15T23:59:59.000Z

227

Discrete wave turbulence of rotational capillary water waves  

E-Print Network [OSTI]

We study the discrete wave turbulent regime of capillary water waves with constant non-zero vorticity. The explicit Hamiltonian formulation and the corresponding coupling coefficient are obtained. We also present the construction and investigation of resonance clustering. Some physical implications of the obtained results are discussed.

Adrian Constantin; Elena Kartashova; Erik Wahln

2010-05-12T23:59:59.000Z

228

Unification of Field Theory and Maximum Entropy Methods for Learning Probability Densities  

E-Print Network [OSTI]

Bayesian field theory and maximum entropy are two methods for learning smooth probability distributions (a.k.a. probability densities) from finite sampled data. Both methods were inspired by statistical physics, but the relationship between them has remained unclear. Here I show that Bayesian field theory subsumes maximum entropy density estimation. In particular, the most common maximum entropy methods are shown to be limiting cases of Bayesian inference using field theory priors that impose no boundary conditions on candidate densities. This unification provides a natural way to test the validity of the maximum entropy assumption on one's data. It also provides a better-fitting nonparametric density estimate when the maximum entropy assumption is rejected.

Kinney, Justin B

2014-01-01T23:59:59.000Z

229

Laboratory Studies of Nonlinear and Breaking Surface Waves  

E-Print Network [OSTI]

A. Breaking-wave generation . . . . . . . . . . . . . . . .of the wave tank. . . . . . . . . . . . . . . . . . . .On steep gravity waves meeting a vertical wall: a triple

Drazen, David

2006-01-01T23:59:59.000Z

230

Fast wave current drive in DIII-D  

SciTech Connect (OSTI)

The non-inductive current drive from fast Alfven waves launched by a directional four-element antenna was measured in the DIII-D tokamak. The fast wave frequency (60 MHz) was eight times the deuterium cyclotron frequency at the plasma center. An array of rf pickup loops at several locations around the torus was used to verify the directivity of the four-element antenna. Complete non-inductive current drive was achieved using a combination of fast wave current drive (FWCD) and electron cyclotron current drive (ECCD) in discharges for which the total plasma current was inductively ramped down from 400 to 170 kA. For discharges with steady plasma current, up to 110 kA of FWCD was inferred from an analysis of the loop voltage, with a maximum non-inductive current (FWCD, ECCD, and bootstrap) of 195 out of 310 kA. The FWCD efficiency increased linearly with central electron temperature. For low current discharges, the FWCD efficiency was degraded due to incomplete fast wave damping. The experimental FWCD was found to agree with predictions from the CURRAY ray-tracing code only when a parasitic loss of 4% per pass was included in the modeling along with multiple pass damping.

Petty, C.C.; Callis, R.W.; Chiu, S.C.; deGrassie, J.S.; Forest, C.B.; Freeman, R.L.; Gohil, P.; Harvey, R.W.; Ikezi, H.; Lin-Liu, Y.-R. [and others

1995-02-01T23:59:59.000Z

231

Wave Evolution On the Evolution of Curvelets  

E-Print Network [OSTI]

Curvelets Wave Evolution On the Evolution of Curvelets by the Wave Equation Hart F. Smith of Curvelets by the Wave Equation #12;Curvelets Wave Evolution Curvelets and the Second Dyadic Decomposition Curvelets A curvelet frame {} is a wave packet frame on L2(R2) based on second dyadic decomposition. f

Smith, Hart F.

232

Wave Mechanics and the Fifth Dimension  

E-Print Network [OSTI]

Replacing 4D Minkowski space by 5D canonical space leads to a clearer derivation of the main features of wave mechanics, including the wave function and the velocity of de Broglie waves. Recent tests of wave-particle duality could be adapted to investigate whether de Broglie waves are basically 4D or 5D in nature.

Paul S. Wesson; James M. Overduin

2013-01-28T23:59:59.000Z

233

Experimental studies of irregular water wave component interactions with comparisons to the hybrid wave model  

E-Print Network [OSTI]

computed by Wheeler Stretching and Linear Extrapolation modifications to Linear Random Wave Theory and the Hybrid Wave Model. Extreme wave acceleration fields arc compared with Hybrid Wave Model acceleration fields only. Comparisons between measurements...

Longridge, Jonathon Kent

1993-01-01T23:59:59.000Z

234

PP-waves in AdS Gauged Supergravities and Supernumerary Supersymmetry  

E-Print Network [OSTI]

Purely gravitational pp-waves in AdS backgrounds are described by the generalised Kaigorodov metrics, and they generically preserve 1/4 of the maximum supersymmetry allowed by the AdS spacetimes. We obtain 1/2 supersymmetric purely gravitational pp-wave solutions, in which the Kaigorodov component is set to zero. We construct pp-waves in AdS gauged supergravities supported by a vector field. We find that the solutions in D=4 and D=5 can then preserve 1/2 of the supersymmetry. Like those in ungauged supergravities, the supernumerary supersymmetry imposes additional constraints on the harmonic function associated with the pp-waves. These new backgrounds provide interesting novel features of the supersymmetry enhancement for the dual conformal field theory in the infinite-momentum frame.

J. Kerimo; H. Lu

2005-03-23T23:59:59.000Z

235

Creating Wave-Focusing Materials  

E-Print Network [OSTI]

Basic ideas for creating wave-focusing materials by injecting small particles in a given material are described. The number of small particles to be injected around any point is calculated. Inverse scattering problem with fixed wavenumber and fixed incident direction of the plane acoustic wave is formulated and solved.

A. G. Ramm

2008-05-16T23:59:59.000Z

236

Colliding axisymmetric pp-waves  

E-Print Network [OSTI]

An exact solution is found describing the collision of axisymmetric pp-waves with M=0. They are impulsive in character and their coordinate singularities become point curvature singularities at the boundaries of the interaction region. The solution is conformally flat. Concrete examples are given, involving an ultrarelativistic black hole against a burst of pure radiation or two colliding beam- like waves.

B. V. Ivanov

1997-10-21T23:59:59.000Z

237

Momentum Imparted by Gravitational Waves  

E-Print Network [OSTI]

We calculate momentum imparted by colliding gravitational waves in a closed Friedmann Robertson-Walker background and also by gravitational waves with toroidal wavefronts using an operational procedure. The results obtained for toroidal wavefronts are well behaved and reduce to the spherical wavefronts for a special choice.

M. Sharif

2003-04-04T23:59:59.000Z

238

Tube-wave seismic imaging  

DOE Patents [OSTI]

The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

Korneev, Valeri A. (Lafayette, CA); Bakulin, Andrey (Houston, TX)

2009-10-13T23:59:59.000Z

239

Tube-wave seismic imaging  

DOE Patents [OSTI]

The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

Korneev, Valeri A [LaFayette, CA

2009-05-05T23:59:59.000Z

240

Application of wave generator theory to the development of a Wave Energy Converter  

E-Print Network [OSTI]

Application of wave generator theory to the development of a Wave Energy Converter by Maila Sepri approve the attached thesis Application of wave generator theory to the development of a Wave Energy Application of wave generator theory to the development of a Wave Energy Converter by Maila Sepri Principal

Wood, Stephen L.

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fully nonlinear wave-current interactions and kinematics by a BEM-based numerical wave tank  

E-Print Network [OSTI]

Fully nonlinear wave-current interactions and kinematics by a BEM-based numerical wave tank S. Ryu and the resulting kinematics. In the present paper, the variation of wave amplitude and wave length and minimize wave reflections from the down- stream wall. Nonlinear wave kinematics as a result of nonlinear

Lynett, Patrick

242

Electrostatic-plasma-wave energy flux  

E-Print Network [OSTI]

would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thecomposition of electrostatic-wave-energy field degrees of

Amendt, P.; Rostoker, N.

1984-01-01T23:59:59.000Z

243

Scholte waves generated by seafloor topography  

E-Print Network [OSTI]

Seafloor topography can excite strong interface waves called Scholte waves that are often dispersive and characterized by slow propagation but large amplitude. This type of wave can be used to invert for near seafloor shear ...

Zheng, Yingcai

2012-01-01T23:59:59.000Z

244

2011 Interference -1 INTERFERENCE OF SOUND WAVES  

E-Print Network [OSTI]

2011 Interference - 1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: · To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. · To observe interference phenomena with ultrasonic sound waves. APPARATUS: Oscilloscope, function generator, ultrasonic

Glashausser, Charles

245

California Small Hydropower and Ocean Wave Energy  

E-Print Network [OSTI]

California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy................................................................. 21 #12;ii List of Tables Table 1 California Small Hydropower And Ocean Wave Energy Resources Table 2

246

Walking Wave as a Model of Particle  

E-Print Network [OSTI]

The concept of walking wave is introduced from classical relativistic positions. One- and three-dimensional walking waves considered with their wave equations and dispersion equations. It is shown that wave characteristics (de Broglie's and Compton's wavelengths) and corpuscular characteristics (energy-momentum vector and the rest mass) of particle may be expressed through parameters of walking wave. By that the new view on a number concepts of physic related with wave-particle duality is suggested.

A. V. Goryunov

2012-05-02T23:59:59.000Z

247

Are "EIT Waves" Fast-Mode MHD Waves?  

E-Print Network [OSTI]

We examine the nature of large-scale, coronal, propagating wave fronts (``EIT waves'') and find they are incongruous with solutions using fast-mode MHD plane-wave theory. Specifically, we consider the following properties: non-dispersive single pulse manifestions, observed velocities below the local Alfven speed, and different pulses which travel at any number of constant velocities, rather than at the ``predicted'' fast-mode speed. We discuss the possibility of a soliton-like explanation for these phenomena, and show how it is consistent with the above-mentioned aspects.

M. J. Wills-Davey; C. E. DeForest; J. O. Stenflo

2007-04-23T23:59:59.000Z

248

Stimulated Raman scattering of beat wave of two counter-propagating X-mode lasers in a magnetized plasma  

SciTech Connect (OSTI)

Effects of transverse static magnetic field on stimulated Raman scattering (SRS) of the beat wave excited by two counter-propagating lasers are studied. Two counter-propagating lasers with frequency difference, ?{sub 1}??{sub 2}?2?{sub p}, drive a non resonant space charge beat mode at wave number k{sup ?}{sub 0}?k{sup ?}{sub 1}+k{sup ?}{sub 2} in a plasma, where k{sup ?}{sub 1} and k{sup ?}{sub 2} are wave vectors of lasers having frequencies ?{sub 1} and ?{sub 2}, respectively. The driven beat wave acts as a pump for SRS and excites parametrically a pair of plasma wave (?,k{sup ?}) and side band electromagnetic wave (?{sub 3},k{sup ?}{sub 3}) propagating in the sideward direction in such a way that momentum remains conserved. The growth rate of Raman process is maximum for side scattering at ?{sub s}=?/2 for lower values of applied magnetic field (?1?kG), which can be three fold by applying magnetic field ?5.0?kG. Thus, optimum value of magnetic field can be utilized to achieve maximum electron acceleration in counter propagating geometry of beat wave acceleration by reducing the growth rate of Raman process.

Verma, Kanika; Sajal, Vivek, E-mail: vsajal@rediffmail.com; Varshney, Prateek; Kumar, Ravindra; Sharma, Navneet K. [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida 201307, UP (India)] [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida 201307, UP (India)

2014-02-15T23:59:59.000Z

249

Microcontroller Servomotor for Maximum Effective Power Point for Solar Cell System  

E-Print Network [OSTI]

In this paper a Maximum Power point (MPP) tracking algorithm is developed using dual-axis servomotor feedback tracking control system. An efficient and accurate servomotor system is used to increase the system efficiency and reduces the solar cell...

Al-Khalidy, M.; Al-Rawi, O.; Noaman, N.

2010-01-01T23:59:59.000Z

250

Achieving Consistent Maximum Brake Torque with Varied Injection Timing in a DI Diesel Engine  

E-Print Network [OSTI]

, the characteristics of combustion for swept injection timings along the maximum brake torque plateau are determined. The research is conducted by varying injection timing at constant engine speed and load while measuring engine emissions and in-cylinder pressure...

Kroeger, Timothy H

2013-09-19T23:59:59.000Z

251

Delay Analysis of Maximum Weight Scheduling in Wireless Ad Hoc Networks  

E-Print Network [OSTI]

This paper studies delay properties of the well-known maximum weight scheduling algorithm in wireless ad hoc networks. We consider wireless networks with either one-hop or multihop flows. Specifically, this paper shows ...

Modiano, Eytan H.

252

Tropical climate variability from the last glacial maximum to the present  

E-Print Network [OSTI]

This thesis evaluates the nature and magnitude of tropical climate variability from the Last Glacial Maximum to the present. The temporal variability of two specific tropical climate phenomena is examined. The first is the ...

Dahl, Kristina Ariel

2005-01-01T23:59:59.000Z

253

Dynamical Reconstruction of Upper-Ocean Conditions in the Last Glacial Maximum Atlantic  

E-Print Network [OSTI]

Proxies indicate that the Last Glacial Maximum (LGM) Atlantic Ocean was marked by increased meridional and zonal near sea surface temperature gradients relative to today. Using a least squares fit of a full general circulation ...

Wunsch, Carl

254

Atlantic Ocean circulation at the last glacial maximum : inferences from data and models  

E-Print Network [OSTI]

This thesis focuses on ocean circulation and atmospheric forcing in the Atlantic Ocean at the Last Glacial Maximum (LGM, 18-21 thousand years before present). Relative to the pre-industrial climate, LGM atmospheric CO? ...

Dail, Holly Janine

2012-01-01T23:59:59.000Z

255

Submodule Integrated Distributed Maximum Power Point Tracking for Solar Photovoltaic Applications  

E-Print Network [OSTI]

This paper explores the benefits of distributed power electronics in solar photovoltaic applications through the use of submodule integrated maximum power point trackers (MPPT). We propose a system architecture that provides ...

Pilawa-Podgurski, Robert C. N.

256

Acoustic Space Dimensionality Selection and Combination using the Maximum Entropy Principle  

E-Print Network [OSTI]

In this paper we propose a discriminative approach to acoustic space dimensionality selection based on maximum entropy modelling. We form a set of constraints by composing the acoustic space with the space of phone classes, and use a continuous...

Abdel-Haleem, Yasser H; Renals, Steve; Lawrence, Neil D

2004-01-01T23:59:59.000Z

257

Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane  

E-Print Network [OSTI]

Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane the current study and the previous measurements in similar flames with methane, ethane, and propane flames

Gülder, ?mer L.

258

Mapping and Assessment of the United States Ocean Wave Energy Resource  

SciTech Connect (OSTI)

This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration?¢????s (NOAA?¢????s) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

Paul T. Jacobson; George Hagerman; George Scott

2011-12-01T23:59:59.000Z

259

Nondestructive testing using stress waves: wave propagation in layered media  

E-Print Network [OSTI]

The use of stress waves in several civil engineering applications such as nondestructive testing of soil deposits or pavement systems has become extremely popular over the last few years. In all cases, a dynamic impulse is applied to the surface...

Ortega, Jose Alberto

2013-02-22T23:59:59.000Z

260

A stochastic model for sediment yield using the Principle of Maximum Entropy  

E-Print Network [OSTI]

WATER RESOURCES RESEARCH, VOL. 23, NO. 5, PAGES 781-793, MAY 1987 A Stochastic Model for Sediment Yield Using the Principle of Maximum Entropy V. P. SINGH AND P. F. KRSTANOVIC Department of Civil Engineering, Louisiana State University, Baton... Rouge The principle of maximum entropy was applied to derive a stochastic model for sediment yield from upland watersheds. By maximizing the conditional entropy subject to certain constraints, a probability distribution of sediment yield conditioned...

Singh, V. P.; Krstanovic, P. F.

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Branes are Waves and Monopoles  

E-Print Network [OSTI]

In a recent paper it was shown that fundamental strings are null waves in Double Field Theory. Similarly, membranes are waves in exceptional extended geometry. Here the story is continued by showing how various branes are Kaluza-Klein monopoles of these higher dimensional theories. Examining the specific case of the E7 exceptional extended geometry, we see that all branes are both waves and monopoles. Along the way we discuss the O(d; d) transformation of localized brane solutions not associated to an isometry and how true T-duality emerges in Double Field Theory when the background possesses isometries.

David S. Berman; Felix J. Rudolph

2014-09-22T23:59:59.000Z

262

Backreacting p-wave Superconductors  

E-Print Network [OSTI]

We study the gravitational backreaction of the non-abelian gauge field on the gravity dual to a 2+1 p-wave superconductor. We observe that as in the $p+ip$ system a second order phase transition exists between a superconducting and a normal state. Moreover, we conclude that, below the phase transition temperature $T_c$ the lowest free energy is achieved by the p-wave solution. In order to probe the solution, we compute the holographic entanglement entropy. For both $p$ and $p+ip$ systems the entanglement entropy satisfies an area law. For any given entangling surface, the p-wave superconductor has lower entanglement entropy.

Ral E. Arias; Ignacio Salazar Landea

2013-01-28T23:59:59.000Z

263

Plasma waves driven by gravitational waves in an expanding universe  

E-Print Network [OSTI]

In a Friedmann-Robertson-Walker (FRW) cosmological model with zero spatial curvature, we consider the interaction of the gravitational waves with the plasma in the presence of a weak magnetic field. Using the relativistic hydromagnetic equations it is verified that large amplitude magnetosonic waves are excited, assuming that both, the gravitational field and the weak magnetic field do not break the homogeneity and isotropy of the considered FRW spacetime.

D. B. Papadopoulos

2002-05-22T23:59:59.000Z

264

Heterogeneity-corrected vs -uncorrected critical structure maximum point doses in breast balloon brachytherapy  

SciTech Connect (OSTI)

Recent studies have reported potentially clinically meaningful dose differences when heterogeneity correction is used in breast balloon brachytherapy. In this study, we report on the relationship between heterogeneity-corrected and -uncorrected doses for 2 commonly used plan evaluation metrics: maximum point dose to skin surface and maximum point dose to ribs. Maximum point doses to skin surface and ribs were calculated using TG-43 and Varian Acuros for 20 patients treated with breast balloon brachytherapy. The results were plotted against each other and fit with a zero-intercept line. Max skin dose (Acuros) = max skin dose (TG-43) ? 0.930 (R{sup 2} = 0.995). The average magnitude of difference from this relationship was 1.1% (max 2.8%). Max rib dose (Acuros) = max rib dose (TG-43) ? 0.955 (R{sup 2} = 0.9995). The average magnitude of difference from this relationship was 0.7% (max 1.6%). Heterogeneity-corrected maximum point doses to the skin surface and ribs were proportional to TG-43-calculated doses. The average deviation from proportionality was 1%. The proportional relationship suggests that a different metric other than maximum point dose may be needed to obtain a clinical advantage from heterogeneity correction. Alternatively, if maximum point dose continues to be used in recommended limits while incorporating heterogeneity correction, institutions without this capability may be able to accurately estimate these doses by use of a scaling factor.

Kim, Leonard, E-mail: kimlh@umdnj.edu [Department of Radiation Oncology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ (United States); Narra, Venkat; Yue, Ning [Department of Radiation Oncology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ (United States)

2013-07-01T23:59:59.000Z

265

Nonlinear dust acoustic waves and shocks  

SciTech Connect (OSTI)

We describe experiments on (1) nonlinear dust acoustic waves and (2) dust acoustic shocks performed in a direct current (DC) glow discharge dusty plasma. First, we describe experiments showing nonlinear dust acoustic waves characterized by waveforms of the dust density that are typically sharper in the wave crests and flatter in the wave troughs (compared to sinusoidal waves), indicating the development of wave harmonics. We discuss this behavior in terms of a second-order fluid theory for dust acoustic waves. Second, experimental observations of the propagation and steepening of large-amplitude dust acoustic waves into dust acoustic shock waves are presented. The observed shock wave evolution is compared with numerical calculations based on the Riemann solution of the fully nonlinear fluid equations for dust acoustic waves.

Merlino, R. L.; Heinrich, J. R.; Hyun, S.-H.; Meyer, J. K. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

2012-05-15T23:59:59.000Z

266

Waves in the ocean Nick Hall, LEGOS, University of Toulouse  

E-Print Network [OSTI]

properties of waves 2) Deep and shallow water waves 3) Internal waves 4) Waves in geophysical fluids 5) Tides Books: Waves, tides and shallow water processes, Open University, Vibrations and waves in physics, Main and wavenumber #12;Wave kinematics Consider a propagating sinusoidal wave equivalently so and we note

267

Gravitational waves: a foundational review  

E-Print Network [OSTI]

The standard linear approach to the gravitational waves theory is critically reviewed. Contrary to the prevalent understanding, it is pointed out that this theory contains many conceptual and technical obscure issues that require further analysis.

J. G. Pereira

2013-07-25T23:59:59.000Z

268

Wave function as geometric entity  

E-Print Network [OSTI]

A new approach to the geometrization of the electron theory is proposed. The particle wave function is represented by a geometric entity, i.e., Clifford number, with the translation rules possessing the structure of Dirac equation for any manifold. A solution of this equation is obtained in terms of geometric treatment. Interference of electrons whose wave functions are represented by geometric entities is considered. New experiments concerning the geometric nature of electrons are proposed.

B. I. Lev

2011-02-10T23:59:59.000Z

269

Cluster Dynamics of Planetary Waves  

E-Print Network [OSTI]

The dynamics of nonlinear atmospheric planetary waves is determined by a small number of independent wave clusters consisting of a few connected resonant triads. We classified the different types of connections between neighboring triads that determine the general dynamics of a cluster. Each connection type corresponds to substantially different scenarios of energy flux among the modes. The general approach can be applied directly to various mesoscopic systems with 3-mode interactions, encountered in hydrodynamics, astronomy, plasma physics, chemistry, medicine, etc.

Elena Kartashova; Victor S. L'vov

2008-11-05T23:59:59.000Z

270

Direct Drive Wave Energy Buoy  

SciTech Connect (OSTI)

The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

271

Two-photon wave mechanics  

E-Print Network [OSTI]

The position-representation wave function for multi-photon states and its equation of motion are introduced. A major strength of the theory is that it describes the complete evolution (including polarization and entanglement) of multi-photon states propagating through inhomogeneous media. As a demonstration of the two-photon wave function's use, we show how two photons in an orbital-angular-momentum entangled state decohere upon propagation through a turbulent atmosphere.

Brian J. Smith; M. G. Raymer

2007-02-21T23:59:59.000Z

272

On the "viscosity maximum" during the uniaxial extension of a low density polyethylene  

E-Print Network [OSTI]

An experimental investigation of the viscosity overshoot phenomenon observed during uniaxial extension of a low density polyethylene is pre- sented. For this purpose, traditional integral viscosity measurements on a Muenstedt type extensional rheometer are combined with local mea- surements based on the in-situ visualization of the sample under exten- sion. For elongational experiments at constant strain rates within a wide range of Weissenberg numbers (Wi), three distinct deformation regimes are identified. Corresponding to low values of Wi (regime I), the tensile stress displays a broad maximum. This maximum can be explained by simple mathematical arguments as a result of low deformation rates and it should not be confused with the viscosity overshoot phenomenon. Corre- sponding to intermediate values of Wi (regime II), a local maximum of the integral extensional viscosity is systematically observed. However, within this regime, the local viscosity measurements reveal no maximum, but a plateau. Careful inspection of the images of samples within this regime shows that, corresponding to the maximum of the integral viscosity, sec- ondary necks develop along the sample. The emergence of a maximum of the integral elongational viscosity is thus related to the distinct in- homogeneity of deformation states and is not related to the rheological properties of the material. In the fast stretching limit (high Wi, regime III), the overall geometric uniformity of the sample is well preserved, no secondary necks are observed and both the integral and the local transient elongational viscosity show no maximum. A detailed comparison of the experimental findings with results from literature is presented.

Teodor I. Burghelea; Zdenek Stary; Helmut Muenstedt

2010-01-13T23:59:59.000Z

273

Encyclopedia of Atmospheric Sciences, 2002 ROSSBY WAVES  

E-Print Network [OSTI]

WAVES Peter B. Rhines School of Oceanography, University of Washington, Seattle, Washington Large` wave. These waves owe their existence to the rotation and spherical shape of the Earth. Weather reinforce this inequality. Waves then become possible, which are dominated by nearly horizontal wind

Bordoni, Simona

274

Wavelet Spectrum Analysis and Ocean Wind Waves  

E-Print Network [OSTI]

Wavelet Spectrum Analysis and Ocean Wind Waves Paul C. Liu Abstract. Wavelet spectrum analysis is applied to a set of measured ocean wind waves data collected during the 1990 SWADE {Surface Wave Dynamics Experi- ment) program. The results reveal significantly new and previously unexplored Insights on wave

275

SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES  

SciTech Connect (OSTI)

Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

2012-07-10T23:59:59.000Z

276

Rogue Waves UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL  

E-Print Network [OSTI]

Rogue Waves UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL OF MARINE AND ATMOSPHERIC SCIENCE 4600 Rickenbacker Causeway Miami, Florida 33149 http://www.rsmas.miami.edu Taking the Surprise Out of the Freak Wave another to create monster waves that not even the bravest surfer could love. Big waves are big news

Miami, University of

277

Modulated Amplitude Waves and Defect Formation in the One-Dimensional Complex Ginzburg-Landau Equation  

E-Print Network [OSTI]

The transition from phase chaos to defect chaos in the complex Ginzburg-Landau equation (CGLE) is related to saddle-node bifurcations of modulated amplitude waves (MAWs). First, the spatial period P of MAWs is shown to be limited by a maximum P_SN which depends on the CGLE coefficients; MAW-like structures with period larger than P_SN evolve to defects. Second, slowly evolving near-MAWs with average phase gradients $\

Lutz Brusch; Alessandro Torcini; Martin van Hecke; Martin G. Zimmermann; Markus Baer

2001-04-10T23:59:59.000Z

278

Gravity Wave Turbulence in Wave Tanks: Space and Time Statistics Sergei Lukaschuk,1,* Sergey Nazarenko,2  

E-Print Network [OSTI]

Gravity Wave Turbulence in Wave Tanks: Space and Time Statistics Sergei Lukaschuk,1,* Sergey the first simultaneous space-time measurements for gravity wave turbulence in a large laboratory flume. We found that the slopes of k and ! wave spectra depend on wave intensity. This cannot be explained by any

Nazarenko, Sergey

279

Dances with waves Air-sea interaction The generation and growth of waves due to  

E-Print Network [OSTI]

Dances with waves Air-sea interaction · The generation and growth of waves due to wind blowing over to the sea causes the waves to grow until equilibrium is reached between input and dissipation of energy. The most obvious manifestation of wave energy dissipation is breaking waves, often visible as whitecaps

Haak, Hein

280

Physica D 159 (2001) 3557 Wave group dynamics in weakly nonlinear long-wave models  

E-Print Network [OSTI]

Physica D 159 (2001) 35­57 Wave group dynamics in weakly nonlinear long-wave models Roger Grimshawa Communicated by A.C. Newell Abstract The dynamics of wave groups is studied for long waves, using the framework reserved. Keywords: Wave group dynamics; Korteweg­de Vries equation; Nonlinear Schr¨odinger equation 1

Pelinovsky, Dmitry

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Period-luminosity and period-luminosity-colour relations for Mira variables at maximum light  

E-Print Network [OSTI]

In this paper we confirm the existence of period-luminosity (PL) and period-luminosity-colour (PLC) relations at maximum light for O and C Mira variables in the LMC. We demonstrate that in the J and H bands the maximum light PL relations have a significantly smaller dispersion than their counterparts at mean light, while the K band and bolometric PL relations have a dispersion comparable to that at mean light. In the J, H and K bands the fitted PL relations for the O Miras are found to have smaller dispersion than those for the C Miras, at both mean and maximum light, while the converse is true for the relations based on bolometric magnitudes. The inclusion of a non-zero log period term is found to be highly significant in all cases except that of the C Miras in the J band, for which the data are found to be consistent with having constant absolute magnitude. This suggests the possibility of employing C Miras as standard candles. We suggest both a theoretical justification for the existence of Mira PL relations at maximum light and a possible explanation of why these relations should have a smaller dispersion than at mean light. The existence of such maximum light relations offers the possibility of extending the range and improving the accuracy of the Mira distance scale to Galactic globular clusters and to other galaxies.

S. M. Kanbur; M. A. Hendry; D. Clarke

1997-04-14T23:59:59.000Z

282

On the maximum value of the cosmic abundance of oxygen and the oxygen yield  

E-Print Network [OSTI]

We search for the maximum oxygen abundance in spiral galaxies. Because this maximum value is expected to occur in the centers of the most luminous galaxies, we have constructed the luminosity - central metallicity diagram for spiral galaxies, based on a large compilation of existing data on oxygen abundances of HII regions in spiral galaxies. We found that this diagram shows a plateau at high luminosities (-22.3 oxygen abundance 12+log(O/H) ~ 8.87. This provides strong evidence that the oxygen abundance in the centers of the most luminous metal-rich galaxies reaches the maximum attainable value of oxygen abundance. Since some fraction of the oxygen (about 0.08 dex) is expected to be locked into dust grains, the maximum value of the true gas+dust oxygen abundance in spiral galaxies is 12+log(O/H) ~ 8.95. This value is a factor of ~ 2 higher than the recently estimated solar value. Based on the derived maximum oxygen abundance in galaxies, we found the oxygen yield to be about 0.0035, depending on the fraction of oxygen incorporated into dust grains.

L. S. Pilyugin; T. X. Thuan; J. M. Vilchez

2007-01-11T23:59:59.000Z

283

HFIR Vessel Maximum Permissible Pressures for Operating Period 26 to 50 EFPY (100 MW)  

SciTech Connect (OSTI)

Extending the life of the HFIR pressure vessel from 26 to 50 EFPY (100 MW) requires an updated calculation of the maximum permissible pressure for a range in vessel operating temperatures (40-120 F). The maximum permissible pressure is calculated using the equal-potential method, which takes advantage of knowledge gained from periodic hydrostatic proof tests and uses the test conditions (pressure, temperature, and frequency) as input. The maximum permissible pressure decreases with increasing time between hydro tests but is increased each time a test is conducted. The minimum values that occur just prior to a test either increase or decrease with time, depending on the vessel temperature. The minimum value of these minimums is presently specified as the maximum permissible pressure. For three vessel temperatures of particular interest (80, 88, and 110 F) and a nominal time of 3.0 EFPY(100 MVV)between hydro tests, these pressures are 677, 753, and 850 psi. For the lowest temperature of interest (40 F), the maximum permissible pressure is 295 psi.

Cheverton, R.D.; Inger, J.R.

1999-01-01T23:59:59.000Z

284

Propagation Plane waves -High order Modes  

E-Print Network [OSTI]

1 Propagation · Plane waves - High order Modes y x a One wave: p(x,y,t)=p0 cos(k y)e-jk x e j t vy(y,t)= 0 ; y=0,a xy } ky = n a Propagation · Plane waves - High order Modes x n a p(x,y,t)=pn cos( y + - +- + + - +- + - + + +- - - (m,n) #12;4 Propagation · Circular duct ­ Helical waves (spiralling waves) kc=m/a kz k

Berlin,Technische Universität

285

Propagation Plane waves -High order Modes  

E-Print Network [OSTI]

1 Propagation · Plane waves - High order Modes y x a ky = n a One wave: p(x,y,t)=p0 cos(k y)e-jk x e j t vy(y,t)= 0 ; y=0,a xy } Propagation · Plane waves - High order Modes x n a p(x,y,t)=pn cos( y;4 Propagation · Circular duct ­ Helical waves (spiralling waves) kc=m/a kz kH Projection: Propagation #12

Berlin,Technische Universität

286

The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE  

SciTech Connect (OSTI)

All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization of further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection. The wave activity is strongest in the lower stratosphere below 22 km and, during the suppressed monsoon period, is modulated with a 3-4-day period. The concentration of the wave activity in the lower stratosphere is consistent with the properties of the environment in which these waves propagate, whereas its 3-4-day modulation is explained by the variation of the convection activity in the TWP-ICE domain. At low rainfall intensity the wave activity increases as rainfall intensity increases. At high values of rainfall intensity, however, the wave activity associated with deep convective clouds is independent of the rainfall intensity. The convection and gravity waves observed during TWP-ICE are simulated with the Weather Research and Forecasting (WRF) Model. These simulations are compared with radiosonde observations described above and are used to determine some of the properties of convectively generated gravity waves. The gravity waves appear to be well simulated by the model. The model is used to explore the relationships between the convection, the gravity waves and cirrus.

Reeder, Michael J. [Monash University; Lane, Todd P. [University of Melbourne; Hankinson, Mai Chi Nguyen [Monash University

2013-09-27T23:59:59.000Z

287

Spectral Modeling of SNe Ia Near Maximum Light: Probing the Characteristics of Hydro Models  

E-Print Network [OSTI]

We have performed detailed NLTE spectral synthesis modeling of 2 types of 1-D hydro models: the very highly parameterized deflagration model W7, and two delayed detonation models. We find that overall both models do about equally well at fitting well observed SNe Ia near to maximum light. However, the Si II 6150 feature of W7 is systematically too fast, whereas for the delayed detonation models it is also somewhat too fast, but significantly better than that of W7. We find that a parameterized mixed model does the best job of reproducing the Si II 6150 line near maximum light and we study the differences in the models that lead to better fits to normal SNe Ia. We discuss what is required of a hydro model to fit the spectra of observed SNe Ia near maximum light.

E. Baron; S. Bongard; David Branch; Peter H. Hauschildt

2006-03-03T23:59:59.000Z

288

Fast singular value decomposition combined maximum entropy method for plasma tomography  

SciTech Connect (OSTI)

The maximum entropy method (MEM) is a widely used reconstruction algorithm in plasma physics. Drawbacks of the conventional MEM are its heavy time-consuming process and possible generation of noisy reconstruction results. In this article, a modified maximum entropy algorithm is described which speeds up the calculation and shows better noise handling capability. Similar to the rapid minimum Fisher information method, the modified maximum entropy algorithm uses simple matrix operations instead of treating a fully nonlinear problem. The preprocess for rapid tomographic calculation is based on the vector operations and the singular value decomposition (SVD). The initial guess of the sought-for emissivity is calculated by SVD and this helped reconstruction about ten times faster than the conventional MEM. Therefore, the developed fast MEM can be used for intershot tomographic analyses of fusion plasmas.

Kim, Junghee; Choe, W. [Department of Physics, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701(Korea, Republic of)

2006-02-15T23:59:59.000Z

289

Estimating the maximum potential revenue for grid connected electricity storage : arbitrage and regulation.  

SciTech Connect (OSTI)

The valuation of an electricity storage device is based on the expected future cash ow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the maximum potential revenue benchmark. We conclude with a sensitivity analysis with respect to key parameters.

Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

2012-12-01T23:59:59.000Z

290

Gravitational wave recoils in non-axisymmetric Robinson-Trautman spacetimes  

E-Print Network [OSTI]

We examine the gravitational wave recoil waves and the associated net kick velocities in non-axisymmetric Robinson-Trautman spacetimes. We use characteristic initial data for the dynamics corresponding to non-head-on collisions of black holes. We make a parameter study of the kick distributions, corresponding to an extended range of the incidence angle $\\rho_0$ in the initial data. For the range of $\\rho_0$ examined ($3^{\\circ} \\leq \\rho_0 \\leq 110^{\\circ}$) the kick distributions as a function of the symmetric mass parameter $\\eta$ satisfy a law obtained from an empirical modification of the Fitchett law, with a parameter $C$ that accounts for the non-zero net gravitational momentum wave fluxes for the equal mass case. The law fits accurately the kick distributions for the range of $\\rho_0$ examined, with a rms normalized error of the order of $5 \\%$. For the equal mass case the nonzero net gravitational wave momentum flux increases as $\\rho_0$ increases, up to $\\rho_0 \\simeq 55^{\\circ}$ beyond which it decreases. The maximum net kick velocity is about $190 {\\rm km/s}$ for for the boost parameter considered. For $\\rho_0 \\geq 50^{\\circ}$ the distribution is a monotonous function of $\\eta$. The angular patterns of the gravitational waves emitted are examined. Our analysis includes the two polarization modes present in wave zone curvature.

R. F. Aranha; I. Damio Soares; E. V. Tonini

2014-07-16T23:59:59.000Z

291

Study on Two Optimization Problems: Line Cover and Maximum Genus Embedding  

E-Print Network [OSTI]

STUDY ON TWO OPTIMIZATION PROBLEMS: LINE COVER AND MAXIMUM GENUS EMBEDDING A Thesis by CHENG CAO Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements for the degree of MASTER OF SCIENCE... May 2012 Major Subject: Computer Science STUDY ON TWO OPTIMIZATION PROBLEMS: LINE COVER AND MAXIMUM GENUS EMBEDDING A Thesis by CHENG CAO Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment...

Cao, Cheng

2012-07-16T23:59:59.000Z

292

What is the maximum rate at which entropy of a string can increase?  

SciTech Connect (OSTI)

According to Susskind, a string falling toward a black hole spreads exponentially over the stretched horizon due to repulsive interactions of the string bits. In this paper such a string is modeled as a self-avoiding walk and the string entropy is found. It is shown that the rate at which information/entropy contained in the string spreads is the maximum rate allowed by quantum theory. The maximum rate at which the black hole entropy can increase when a string falls into a black hole is also discussed.

Ropotenko, Kostyantyn [State Administration of Communications, Ministry of Transport and Communications of Ukraine 22, Khreschatyk, 01001, Kyiv (Ukraine)

2009-03-15T23:59:59.000Z

293

Hydrodynamic Relaxation of an Electron Plasma to a Near-Maximum Entropy State  

SciTech Connect (OSTI)

Dynamical relaxation of a pure electron plasma in a Malmberg-Penning trap is studied, comparing experiments, numerical simulations and statistical theories of weakly dissipative two-dimensional (2D) turbulence. Simulations confirm that the dynamics are approximated well by a 2D hydrodynamic model. Statistical analysis favors a theoretical picture of relaxation to a near-maximum entropy state with constrained energy, circulation, and angular momentum. This provides evidence that 2D electron fluid relaxation in a turbulent regime is governed by principles of maximum entropy.

Rodgers, D. J.; Servidio, S.; Matthaeus, W. H.; Mitchell, T. B.; Aziz, T. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Montgomery, D. C. [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)

2009-06-19T23:59:59.000Z

294

Maximum-Entropy Closures for Kinetic Theories of Neuronal Network Dynamics  

SciTech Connect (OSTI)

We analyze (1+1)D kinetic equations for neuronal network dynamics, which are derived via an intuitive closure from a Boltzmann-like equation governing the evolution of a one-particle (i.e., one-neuron) probability density function. We demonstrate that this intuitive closure is a generalization of moment closures based on the maximum-entropy principle. By invoking maximum-entropy closures, we show how to systematically extend this kinetic theory to obtain higher-order (1+1)D kinetic equations and to include coupled networks of both excitatory and inhibitory neurons.

Rangan, Aaditya V.; Cai, David [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)

2006-05-05T23:59:59.000Z

295

Maximum Entropy Models of Shortest Path and Outbreak Distributions in Networks  

E-Print Network [OSTI]

Properties of networks are often characterized in terms of features such as node degree distributions, average path lengths, diameters, or clustering coefficients. Here, we study shortest path length distributions. On the one hand, average as well as maximum distances can be determined therefrom; on the other hand, they are closely related to the dynamics of network spreading processes. Because of the combinatorial nature of networks, we apply maximum entropy arguments to derive a general, physically plausible model. In particular, we establish the generalized Gamma distribution as a continuous characterization of shortest path length histograms of networks or arbitrary topology. Experimental evaluations corroborate our theoretical results.

Bauckhage, Christian; Hadiji, Fabian

2015-01-01T23:59:59.000Z

296

On the Vertical Decay Rate of the Maximum Tangential Winds in Tropical Cyclones DANIEL P. STERN* AND DAVID S. NOLAN  

E-Print Network [OSTI]

On the Vertical Decay Rate of the Maximum Tangential Winds in Tropical Cyclones DANIEL P. STERN independent of both the maximum wind speed and the radius of maximum winds (RMW). This can be seen winds change with height. Above 2-km height, vertical profiles of Vmaxnorm are nearly independent

Nolan, David S.

297

Energy-momentum relation for solitary waves of relativistic wave equations  

E-Print Network [OSTI]

Solitary waves of relativistic invariant nonlinear wave equation with symmetry group U(1) are considered. We prove that the energy-momentum relation for spherically symmetric solitary waves coincides with the Einstein energy-momentum relation for point particles.

T. V. Dudnikova; A. I. Komech; H. Spohn

2005-08-23T23:59:59.000Z

298

Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves  

E-Print Network [OSTI]

Price, Attenuation of acoustic waves in glacial ice and saltacoustics, South Pole, sound speed, pressure waves,shear waves PACS: 47.35.De, 47.35.Rs, 62.65. +k, 92.40.Vq,

Klein, Spencer

2010-01-01T23:59:59.000Z

299

Wave blocking and partial transmission in subcritical flows over an obstacle  

E-Print Network [OSTI]

We study and measure the transmission coefficient of counter-propagating shallow-water waves produced by a wave generator and scattered by an obstacle. To precisely compare theoretical predictions and experimental data, we consider $\\sim 25$ frequencies for 5 subcritical background flows, where the maximum value of the Froude number ranges from $0.5$ to $0.75$. For each flow, the transmission coefficient displays a sharp transition separating total transmission from wave-blocking. Both the width and the central frequency of the transition are in good agreement with their theoretical values. The shape of the obstacle is identical to that used by the Vancouver team in the recent experiment aiming at detecting the analogue of stimulated Hawking radiation. Our results are compatible with the observations that have been reported. They complete them by establishing that the contribution of the transmission coefficient cannot be neglected for the lower half of the probed frequency range.

Lo-Paul Euv; Florent Michel; Renaud Parentani; Germain Rousseaux

2014-09-12T23:59:59.000Z

300

Wave blocking and partial transmission in subcritical flows over an obstacle  

E-Print Network [OSTI]

We study and measure the transmission coefficient of counter-propagating shallow-water waves produced by a wave generator and scattered by an obstacle. To precisely compare theoretical predictions and experimental data, we consider $\\sim 25$ frequencies for 5 subcritical background flows, where the maximum value of the Froude number ranges from $0.5$ to $0.75$. For each flow, the transmission coefficient displays a sharp transition separating total transmission from wave-blocking. Both the width and the central frequency of the transition are in good agreement with their theoretical values. The shape of the obstacle is identical to that used by the Vancouver team in the recent experiment aiming at detecting the analogue of stimulated Hawking radiation. Our results are compatible with the observations that have been reported. They complete them by establishing that the contribution of the transmission coefficient cannot be neglected for the lower half of the probed frequency range.

Lo-Paul Euv; Florent Michel; Renaud Parentani; Germain Rousseaux

2015-02-06T23:59:59.000Z

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wave blocking and partial transmission in subcritical flows over an obstacle  

E-Print Network [OSTI]

We study and measure the transmission coefficient of counter-propagating shallow-water waves produced by a wave generator and scattered by an obstacle. To precisely compare theoretical predictions and experimental data, we consider $\\sim 25$ frequencies for 5 subcritical background flows, where the maximum value of the Froude number ranges from $0.5$ to $0.75$. For each flow, the transmission coefficient displays a sharp transition separating total transmission from wave-blocking. Both the width and the central frequency of the transition are in good agreement with their theoretical values. The shape of the obstacle is identical to that used by the Vancouver team in the recent experiment aiming at detecting the analogue of stimulated Hawking radiation. Our results are compatible with the observations that have been reported. They complete them by establishing that the contribution of the transmission coefficient cannot be neglected for the lower half of the probed frequency range.

Euv, Lo-Paul; Parentani, Renaud; Rousseaux, Germain

2014-01-01T23:59:59.000Z

302

Surface wave chemical detector using optical radiation  

DOE Patents [OSTI]

A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

Thundat, Thomas G.; Warmack, Robert J.

2007-07-17T23:59:59.000Z

303

Two-wave interaction in ideal magnetohydrodynamics  

E-Print Network [OSTI]

The weakly nonlinear interaction of sound and linearly polarised Alfv{\\'e}n waves propagating in the same direction along an applied magnetic field is studied. It is found that a sound wave is coupled to the Alfv{\\'e}n wave with double period and wavelength when the sound and Alfv{\\'e}n speeds are equal. The Alfv{\\'e}n wave drives the sound wave through the ponderomotive force, while the sound wave returns energy back to the Alfv{\\'e}n wave through the parametric (swing) influence. As a result, the two waves alternately exchange their energy during propagation. The process of energy exchange is faster for waves with stronger amplitudes. The phenomenon can be of importance in astrophysical plasmas, including the solar atmosphere and solar wind.

T. V. Zaqarashvili; B. Roberts

2006-02-24T23:59:59.000Z

304

Global coherence of dust density waves  

SciTech Connect (OSTI)

The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.

Killer, Carsten; Melzer, Andr [Institut fr Physik, Ernst-Moritz-Arndt-Universitt Greifswald, 17489 Greifswald (Germany)

2014-06-15T23:59:59.000Z

305

Mach reflection of spherical detonation waves  

SciTech Connect (OSTI)

When two detonation waves collide, the shape of the wave front at their intersection can be used to categorize the flow as regular or irregular reflection. In the case of regular reflection, the intersection of the waves forms a cusp. In the case of irregular reflection, the cusp is replaced by a leading shock locus that bridges the incident waves. Many workers have studied irregular or Mach reflection of detonation waves, but most of the their experimental work has focused on the interaction of plane detonation waves. Reflection of spherical detonation waves has received less attention. This study also differs from previous work in that the focus is to measure the relationship between the detonation velocity and the local wave curvatue for irregular reflection of spherical detonation waves. Two explosives with different detonation properties, PBX 9501 and PBX 9502, are compared.

Hull, L.M.

1993-07-01T23:59:59.000Z

306

Modulation and kinematics of mechanically-generated short gravity waves riding on long waves  

E-Print Network [OSTI]

for the degree of MASTER OF SCIENCE December 1992 Major Subject: Ocean Engineering MODULATION AND KINEMATICS OF MECHANICALLY- GENERATED SHORT GRAVITY WAVES RIDING ON LONG WAVES A Thesis by C~S ANTHONY SPELL Approved as to style and content by: Jun Zhang... fundamental nonlinear wave interaction occurring in an irregular wave field. The objectives of the present study are now stated: ~ Generate a dual-component wave formed from the interaction of two inde- pendently propagating monochromatic wave trains in a...

Spell, Charles Anthony

1992-01-01T23:59:59.000Z

307

Gravitational waves from gravitational collapse  

SciTech Connect (OSTI)

Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

308

B8 Page 1 B8. Using CMS-Wave  

E-Print Network [OSTI]

B8 Page 1 B8. Using CMS-Wave The most recent CMS-Wave code developed is Version 3.2. Several new capabilities and advanced features in this version include: Full-plane wind-generation of waves Automatic wave run-up calculation Infra-gravity wave calculation Nonlinear wave-wave interaction Muddy

US Army Corps of Engineers

309

Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel  

SciTech Connect (OSTI)

Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

Sati, Priti; Tripathi, V. K. [Indian Institute of Technology, Hauz Khas, Delhi 110054 (India)

2012-12-15T23:59:59.000Z

310

Reaction force control implementation of a linear generator in irregular waves for a wave power system.  

E-Print Network [OSTI]

??Most designs for wave energy converters include a hydraulic (or pneumatic) interface between the wave device and the generator to smooth electricity production, but a (more)

Li, Bin

2012-01-01T23:59:59.000Z

311

Geodesic deviation and gravitational waves  

E-Print Network [OSTI]

The detection of gravitational waves based on the geodesic deviation equation is discussed. In particular, it is shown that the only non-vanishing components of the wave field in the conventional traceless-transverse gauge in linearized general relativity do not enter the geodesic deviation equation, and therefore, apparently, no effect is predicted by that equation in that specific gauge. The reason is traced back to the fact that the geodesic deviation equation is written in terms of a coordinate distance, which is not a directly measurable quantity. On the other hand, in the proper Lorentz frame of the detector, the conventional result described in standard textbooks holds.

M. Leclerc

2006-05-24T23:59:59.000Z

312

Exact Maximum Likelihood estimator for the BL-GARCH model under elliptical distributed  

E-Print Network [OSTI]

Exact Maximum Likelihood estimator for the BL-GARCH model under elliptical distributed innovations, Brisbane QLD 4001, Australia Abstract We are interested in the parametric class of Bilinear GARCH (BL-GARCH examine, in this paper, the BL-GARCH model in a general setting under some non-normal distributions. We

Paris-Sud XI, Universit de

313

Benefits of the International Residential Code's Maximum Solar heat Gain Coefficient Requirement for Windows  

E-Print Network [OSTI]

Texas adopted in its residential building energy code a maximum 0.40 solar heat gain coefficient (SHGC) for fenestration (e.g., windows, glazed doors and skylights)-a critical driver of cooling energy use, comfort and peak demand. An analysis...

Stone, G. A.; DeVito, E. M.; Nease, N. H.

2002-01-01T23:59:59.000Z

314

Ocean Circulation During the Last Glacial Maximum Simulated by PMIP3 Climate Models  

E-Print Network [OSTI]

in the intensity of the Atlantic Overturning Circulation (distinguished by the local maximum at approximately 30 N %. In the plot corresponding to the World Ocean Circulation, an increase in the Deep Circulation, associated of the water masses as well as the impact on ocean carbon storage. References: [1] Godfrey J. S., Geophysics

Schmittner, Andreas

315

The chronology of the Last Glacial Maximum and deglacial events in central Argentine Patagonia  

E-Print Network [OSTI]

The chronology of the Last Glacial Maximum and deglacial events in central Argentine Patagonia and deglaciation in the Lago Pueyrredo´n valley of central Patagonia, 47.5 S, Argentina. The valley was a major and the onset of deglaciation occurred broadly synchronously throughout Patagonia. Deglaciation resulted

316

Single-machine scheduling with periodic and exible periodic maintenance to minimize maximum tardiness  

E-Print Network [OSTI]

periods often appear in industry due to a machine breakdown (stochastic) or preventive maintenance of machine unavailability. However, in some cases (e.g. preventive maintenance), the maintenance of a machineSingle-machine scheduling with periodic and exible periodic maintenance to minimize maximum

Paris-Sud XI, Université de

317

THE SECOND LAW OF THERMODYNAMICS AND THE GLOBAL CLIMATE SYSTEM: A REVIEW OF THE MAXIMUM  

E-Print Network [OSTI]

to absorption of solar radiation in the climate system is found to be irrelevant to the maximized prop- erties from hot to cold places, thereby producing the kinetic energy of the fluid itself. His generalTHE SECOND LAW OF THERMODYNAMICS AND THE GLOBAL CLIMATE SYSTEM: A REVIEW OF THE MAXIMUM ENTROPY

Lorenz, Ralph D.

318

Hydraulic limits on maximum plant transpiration and the emergence of the safetyefficiency trade-off  

E-Print Network [OSTI]

Hydraulic limits on maximum plant transpiration and the emergence of the safetyefficiency trade.12126 Key words: hydraulic limitation, safety efficiency trade-off, soilplantatmosphere model, trait hydraulics constrain ecosystem productivity by setting physical limits to water transport and hence carbon

Jackson, Robert B.

319

Performance of Photovoltaic Maximum Power Point Tracking Algorithms in the Presence of Noise  

E-Print Network [OSTI]

Performance of Photovoltaic Maximum Power Point Tracking Algorithms in the Presence of Noise tracking (MPPT) algorithms for photovoltaic systems, including how noise affects both tracking speed-performance photovoltaic sys- tems. An intelligent controller adjusts the voltage, current, or impedance seen by a solar

Odam, Kofi

320

Towards a frequency-dependent discrete maximum principle for the implicit Monte Carlo equations  

SciTech Connect (OSTI)

It has long been known that temperature solutions of the Implicit Monte Carlo (IMC) equations can exceed the external boundary temperatures, a so-called violation of the 'maximum principle.' Previous attempts at prescribing a maximum value of the time-step size {Delta}{sub t} that is sufficient to eliminate these violations have recommended a {Delta}{sub t} that is typically too small to be used in practice and that appeared to be much too conservative when compared to numerical solutions of the IMC equations for practical problems. In this paper, we derive a new estimator for the maximum time-step size that includes the spatial-grid size {Delta}{sub x}. This explicitly demonstrates that the effect of coarsening {Delta}{sub x} is to reduce the limitation on {Delta}{sub t}, which helps explain the overly conservative nature of the earlier, grid-independent results. We demonstrate that our new time-step restriction is a much more accurate means of predicting violations of the maximum principle. We discuss how the implications of the new, grid-dependent timestep restriction can impact IMC solution algorithms.

Wollaber, Allan B [Los Alamos National Laboratory; Larsen, Edward W [Los Alamos National Laboratory; Densmore, Jeffery D [Los Alamos National Laboratory

2010-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hydroelastic analysis of the floating plate optimized for maximum radiation damping  

E-Print Network [OSTI]

Hydroelastic analysis of the floating plate optimized for maximum radiation damping Christopher J t In previous work, the problem of optimizing the shape of a thin floating plate to maximize radiation damping, incompressible ocean of infinite extent. For simplicity, only rigid heave motions were considered and the damping

Damaren, Christopher J.

322

Maximum late Holocene extent of the western Greenland Ice Sheet during the late 20th century  

E-Print Network [OSTI]

the 20th century. This suggests a lagged ice-margin response to prior cooling, such as the Little Ice AgeMaximum late Holocene extent of the western Greenland Ice Sheet during the late 20th century Samuel Keywords: Greenland Ice Sheet Little Ice Age 10 Be exposure dating Ice-dammed lake Lake sediment core a b

Briner, Jason P.

323

Maximum Likelihood Estimation of Mixture Densities for Binned and Truncated Multivariate  

E-Print Network [OSTI]

Maximum Likelihood Estimation of Mixture Densities for Binned and Truncated Multivariate Data in data analysis and machine learning. This paper addresses the problem of fitting mixture densities to multivariate binned and truncated data. The EM approach proposed by McLachlan and Jones (1988

Smyth, Padhraic

324

Design of wind farm layout for maximum wind energy capture Andrew Kusiak*, Zhe Song  

E-Print Network [OSTI]

Design of wind farm layout for maximum wind energy capture Andrew Kusiak*, Zhe Song Intelligent Accepted 24 August 2009 Available online 22 September 2009 Keywords: Wind farm Wind turbine Layout design Optimization Evolutionary algorithms Operations research a b s t r a c t Wind is one of the most promising

Kusiak, Andrew

325

Maximum Class Separability for Rough-Fuzzy C-Means Based Brain MR Image Segmentation  

E-Print Network [OSTI]

Maximum Class Separability for Rough-Fuzzy C-Means Based Brain MR Image Segmentation Pradipta Maji of brain MR images. The RFCM algorithm comprises a judicious integration of the of rough sets, fuzzy sets with vagueness and incompleteness in class definition of brain MR images, the membership function of fuzzy sets

Pal, Sankar Kumar

326

EXTENSION OF THE MAXIMUM POWER REGION OF DOUBLY-SALIENT VARIABLE RELUCTANCE MOTORS  

E-Print Network [OSTI]

-Salient Variable Reluctance Motors (DSVRM) has been investigated and developed for variable-speed drives during, variable-frequency generators, wind wheels, machine tools, etc.). In these applications, it is generally necessary to operate in a regime of a high speed ux-weakening (zone of maximum constant power), for a better

Paris-Sud XI, Université de

327

Maximum-entropy meshfree method for nonlinear static analysis of planar reinforced concrete structures  

E-Print Network [OSTI]

the nonlinear system of equations. Maximum-entropy basis functions are used to discretize the two displacement control method is implemented to solve the nonlinear system of equations and to obtain tools in the field of structural engineering, Yaw and co-workers [1] presented a blended FE and meshfree

Sukumar, N.

328

Maximum Utility Product Pricing Models and Algorithms Based on Reservation Prices  

E-Print Network [OSTI]

Maximum Utility Product Pricing Models and Algorithms Based on Reservation Prices R. Shioda L. Tun for pricing a product line with several customer segments under the assumption that customers' product choices utility model and formulate it as a mixed-integer programming problem, design heuristics and valid cuts

Tunçel, Levent

329

Self-Assembly for Maximum Yields Under Constraints Michael J. Fox and Jeff S. Shamma  

E-Print Network [OSTI]

Self-Assembly for Maximum Yields Under Constraints Michael J. Fox and Jeff S. Shamma Abstract-- We present an algorithm that, given any target tree, synthesizes reversible self-assembly rules that provide states that cannot be recovered from the unlabeled graph. I. INTRODUCTION Self-assembly is the phenomenon

Shamma, Jeff S.

330

Generalized Local Maximum Principles for Finite-Difference Operators Author(s): Achi Brandt  

E-Print Network [OSTI]

Generalized Local Maximum Principles for Finite-Difference Operators Author(s): Achi Brandt Source://www.jstor.org/action/showPublisher?publisherCode=ams. . Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars

331

Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated Tropical Cyclone  

E-Print Network [OSTI]

0 Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated) viewed as a heat engine converts heat energy extracted from the ocean to kinetic energy of the TC, which is eventually dissipated due to surface friction. Since the energy production rate is a linear function while

Wang, Yuqing

332

Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated Tropical Cyclone*  

E-Print Network [OSTI]

Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated as a heat engine converts heat energy extracted from the ocean into the kinetic energy of the TC, which is eventually dissipated due to surface friction. Since the energy production rate is a linear function while

Wang, Yuqing

333

NOAA Technical Memorandum NWS HYDRO 39 PROBABLE MAXIMUM PRECIPITATION FOR THE UPPER  

E-Print Network [OSTI]

NOAA Technical Memorandum NWS HYDRO 39 PROBABLE MAXIMUM PRECIPITATION FOR THE UPPER DEERFIELD RIVER The Office of Hydrology (HYDRO) of the National Weather Service (NWS) develops procedures for making river agencies, and conducts pertinent research and development. NOAA Technical Memorandums in the NWS HYDRO

334

Integrating ecophysiology and plankton dynamics into projected changes in maximum fisheries catch potential under climate  

E-Print Network [OSTI]

). In addition, average surface water pH of the ocean has dropped by 0.1 units since pre- industrial timesIntegrating ecophysiology and plankton dynamics into projected changes in maximum fisheries catch 7TJ, UK 2 Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft

Pauly, Daniel

335

Blind Equalization via Approximate Maximum Likelihood Source Seungjin CHOI x1 and Andrzej CICHOCKI y  

E-Print Network [OSTI]

Blind Equalization via Approximate Maximum Likelihood Source Separation Seungjin CHOI x1, RIKEN 2-1 Hirosawa, Wako-shi Saitama 351-0198, JAPAN Abstract Blind equalization of single input multiple output (SIMO) FIR channels can be refor- mulated as the problem of blind source separation

Choi, Seungjin

336

Power and Sample Size Determination for a Stepwise Test Procedure for Finding the Maximum Safe Dose  

E-Print Network [OSTI]

Power and Sample Size Determination for a Stepwise Test Procedure for Finding the Maximum Safe Dose This paper addresses the problem of power and sample size calculation for a stepwise multiple test procedure of a compound. A general expression for the power of this procedure is derived. It is used to find the minimum

Tamhane, Ajit C.

337

Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture  

E-Print Network [OSTI]

Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture Stefano Accepted 26 September 2013 Available online 9 October 2013 Keywords: Optimization Photosynthesis Soil moisture Stomatal conductance Transpiration a b s t r a c t Optimization theories explain a variety

Katul, Gabriel

338

A Distributed Approach to Maximum Power Point Tracking for Photovoltaic Sub-Module Differential  

E-Print Network [OSTI]

of the proposed distributed algorithm. I. INTRODUCTION IN photovoltaic (PV) energy systems, PV modules are often of the system, small size and low power ratings of the power electronics circuit components. Due1 A Distributed Approach to Maximum Power Point Tracking for Photovoltaic Sub-Module Differential

Liberzon, Daniel

339

Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release?  

E-Print Network [OSTI]

Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release? Miriam E realms that has been attributed to a massive methane (CH4) release from marine gas hydrate reservoirs. Previously proposed mechanisms for this methane release rely on a change in deepwater source region

340

Electrical Estimation of Conditional Probability for Maximum-likelihood Based PMD Mitigation  

E-Print Network [OSTI]

Xi, Tulay Adali, and John Zweck Department of Computer Science and Electrical Engineering UniversityElectrical Estimation of Conditional Probability for Maximum-likelihood Based PMD Mitigation Wenze probability density functions in the presence of both all-order PMD and ASE noise are estimated electronically

Zweck, John

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hydrogen Molecules inside Fullerene C70: Quantum Dynamics, Energetics, Maximum Occupancy, And Comparison with C60  

E-Print Network [OSTI]

Hydrogen Molecules inside Fullerene C70: Quantum Dynamics, Energetics, Maximum Occupancy of Chemistry, New York UniVersity, New York, New York 10003, Department of Chemistry, Brown UniVersity, ProVidence, Rhode Island 02912, and Department of Chemistry, Columbia UniVersity, New York, New York 10027 Received

Turro, Nicholas J.

342

Maximum Power Point Tracking Control for Photovoltaic System Using Adaptive Neuro-Fuzzy  

E-Print Network [OSTI]

conventional controller like Adaptive Neuro-Fuzzy "ANFIS" and fuzzy logic controller is proposed and simulated power point tracking (MPPT) technique will be used. Fuzzy logic control "FLC" and adaptive neuro-fuzzyMaximum Power Point Tracking Control for Photovoltaic System Using Adaptive Neuro- Fuzzy "ANFIS

Paris-Sud XI, Université de

343

Magnetofossil spike during the Paleocene-Eocene thermal maximum: Ferromagnetic resonance, rock magnetic, and electron microscopy  

E-Print Network [OSTI]

Magnetofossil spike during the Paleocene-Eocene thermal maximum: Ferromagnetic resonance, rock,2 Timothy D. Raub,3,4 Dirk Schumann,5 Hojatollah Vali,5 Alexei V. Smirnov,3,6 and Joseph L. Kirschvink1 controversial hypothesis that a cometary impact triggered the PETM. Here we present ferromagnetic resonance (FMR

344

Extraction of Spectral Functions from Dyson-Schwinger Studies via the Maximum Entropy Method  

E-Print Network [OSTI]

It is shown how to apply the Maximum Entropy Method (MEM) to numerical Dyson-Schwinger studies for the extraction of spectral functions of correlators from their corresponding Euclidean propagators. Differences to the application in lattice QCD are emphasized and, as an example, the spectral functions of massless quarks in cold and dense matter are presented.

Dominik Nickel

2006-07-20T23:59:59.000Z

345

Parameters estimation for spatio-temporal maximum entropy distributions: application to neural spike trains  

E-Print Network [OSTI]

We propose a numerical method to learn Maximum Entropy (MaxEnt) distributions with spatio-temporal constraints from experimental spike trains. This is an extension of two papers [10] and [4] who proposed the estimation of parameters where only spatial constraints were taken into account. The extension we propose allows to properly handle memory effects in spike statistics, for large sized neural networks.

Nasser, Hassan

2014-01-01T23:59:59.000Z

346

Beyond Boltzmann-Gibbs statistics: Maximum entropy hyperensembles out of equilibrium Gavin E. Crooks*  

E-Print Network [OSTI]

Beyond Boltzmann-Gibbs statistics: Maximum entropy hyperensembles out of equilibrium Gavin E at equilibrium? Here, we argue the most appropriate additional parameter is the nonequilibrium entropy of ways that the same system can be out of equilibrium. That the equilibrium entropy is maximized given

347

Extraction of spectral functions from Dyson-Schwinger studies via the maximum entropy method  

SciTech Connect (OSTI)

It is shown how to apply the Maximum Entropy Method (MEM) to numerical Dyson-Schwinger studies for the extraction of spectral functions of correlators from their corresponding Euclidean propagators. Differences to the application in lattice QCD are emphasized and, as an example, the spectral functions of massless quarks in cold and dense matter are presented.

Nickel, Dominik [Institut fuer Kernphysik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)]. E-mail: dominik.nickel@physik.tu-darmstadt.de

2007-08-15T23:59:59.000Z

348

Lattice Field Theory with the Sign Problem and the Maximum Entropy Method  

E-Print Network [OSTI]

Although numerical simulation in lattice field theory is one of the most effective tools to study non-perturbative properties of field theories, it faces serious obstacles coming from the sign problem in some theories such as finite density QCD and lattice field theory with the $\\theta$ term. We reconsider this problem from the point of view of the maximum entropy method.

Masahiro Imachi; Yasuhiko Shinno; Hiroshi Yoneyama

2007-02-09T23:59:59.000Z

349

A PROXIMITY CONTROL ALGORITHM TO MINIMIZE NONSMOOTH AND NONCONVEX SEMI-INFINITE MAXIMUM  

E-Print Network [OSTI]

in the context of eigen- value optimization, and [8] gives an overview of the history. The bases for the presentA PROXIMITY CONTROL ALGORITHM TO MINIMIZE NONSMOOTH AND NONCONVEX SEMI-INFINITE MAXIMUM EIGENVALUE function, semi-infinite problem, H-norm. 1. Introduction. Proximity control for bundle methods has been

Noll, Dominikus

350

A PROXIMITY CONTROL ALGORITHM TO MINIMIZE NONSMOOTH AND NONCONVEX SEMI-INFINITE MAXIMUM  

E-Print Network [OSTI]

in the context of eigen- value optimization, and [9] gives an overview of the history. The bases for the presentA PROXIMITY CONTROL ALGORITHM TO MINIMIZE NONSMOOTH AND NONCONVEX SEMI-INFINITE MAXIMUM EIGENVALUE function, semi-infinite problem, H-norm. 1. Introduction. Proximity control for bundle methods has been

Noll, Dominikus

351

Undulations from amplified low frequency surface waves  

SciTech Connect (OSTI)

We study the linear scattering of gravity waves in longitudinal inhomogeneous stationary flows. When the flow becomes supercritical, it is known that counterflow propagating shallow waves are blocked and converted into deep waves. Here we show that in the zero-frequency limit, the reflected waves are amplified in such a way that the free surface develops an undulation, i.e., a zero-frequency wave of large amplitude with nodes located at specific places. This amplification involves negative energy waves and implies that flat surfaces are unstable against incoming perturbations of arbitrary small amplitude. The relation between this instability and black hole radiation (the Hawking effect) is established.

Coutant, Antonin, E-mail: antonin.coutant@aei.mpg.de [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Muhlenberg 1, 14476 Golm (Germany)] [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Muhlenberg 1, 14476 Golm (Germany); Parentani, Renaud, E-mail: renaud.parentani@th.u-psud.fr [Laboratoire de Physique Thorique, CNRS UMR 8627, Btiment 210, Universit Paris-Sud 11, 91405 Orsay Cedex (France)] [Laboratoire de Physique Thorique, CNRS UMR 8627, Btiment 210, Universit Paris-Sud 11, 91405 Orsay Cedex (France)

2014-04-15T23:59:59.000Z

352

SALTSTONE DISPOSAL FACILITY: DETERMINATION OF THE PROBABLE MAXIMUM WATER TABLE ELEVATION  

SciTech Connect (OSTI)

A coverage depicting the configuration of the probable maximum water table elevation in the vicinity of the Saltstone Disposal Facility (SDF) was developed to support the Saltstone program. This coverage is needed to support the construction of saltstone vaults to assure that they remain above the maximum elevation of the water table during the Performance Assessment (PA) period of compliance. A previous investigation to calculate the historical high water table beneath the SDF (Cook, 1983) was built upon to incorporate new data that has since become available to refine that estimate and develop a coverage that could be extended to the perennial streams adjacent to the SDF. This investigation incorporated the method used in the Cook, 1983 report to develop an estimate of the probable maximum water table for a group of wells that either existed at one time at or near the SDF or which currently exist. Estimates of the probable maximum water table at these wells were used to construct 2D contour lines depicting this surface beneath the SDF and extend them to the nearby hydrologic boundaries at the perennial streams adjacent to the SDF. Although certain measures were implemented to assure that the contour lines depict a surface above which the water table will not rise, the exact elevation of this surface cannot be known with complete certainty. It is therefore recommended that the construction of saltstone vaults incorporate a vertical buffer of at least 5-feet between the base of the vaults and the depicted probable maximum water table elevation. This should provide assurance that the water table under the wet extreme climatic condition will never rise to intercept the base of a vault.

Hiergesell, R

2005-04-01T23:59:59.000Z

353

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

354

Atargis Energy (TRL 4 System) - Cycloidal Wave Energy Converter...  

Broader source: Energy.gov (indexed) [DOE]

Atargis Energy (TRL 4 System) - Cycloidal Wave Energy Converter Atargis Energy (TRL 4 System) - Cycloidal Wave Energy Converter Atargis Energy (TRL 4 System) - Cycloidal Wave...

355

Identifying two steps in the internal wave energy cascade  

E-Print Network [OSTI]

1.1.1 The internal wave energy cascade . . . . . . .? ? , which contain only wave energy trav- eling upward anddistinction is made between wave energy propagating upward

Sun, Oliver Ming-Teh

2010-01-01T23:59:59.000Z

356

MHK Technologies/New Knowledge Wind and Wave Renewable Mobile...  

Open Energy Info (EERE)

Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge Wind and Wave Renewable...

357

Langmuir Waves and Electron Acceleration at Heliospheric Shocks  

E-Print Network [OSTI]

Results for S/WAVES . . . . . . . . . . . . . A.7 Rheometry2.4 MHD Wave Modes . . . . . . . . . . . . . . . . . . . .Electron Acceleration, Plasma Waves, and Radio Emission 3.1

Pulupa, Marc Peter

2010-01-01T23:59:59.000Z

358

Airborne observations of the kinematics and statistics of breaking waves  

E-Print Network [OSTI]

v 3 Observations of wave breaking kinematics in fetch-crest length . . . . . C.6 Wave elevation . . . . . . . .breaking waves in the images . . . . . . . . . . . 3.3.3

Kleiss, Jessica M.

2009-01-01T23:59:59.000Z

359

atmospheric gravity waves: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gravity waves (AGWs). Satellite imagery shows evidence the characteristics of these waves. The favorable wave propagation conditions in 12;this region are illustrated 5...

360

Wave VelocityWave Velocity Diff t f ti l l itDifferent from particle velocity  

E-Print Network [OSTI]

Wave VelocityWave Velocity v=/T =f Diff t f ti l l itDifferent from particle velocity Depends on the medium in which the wave travelsDepends on the medium in which the wave travels stringaonvelocity F v of Waves11-8. Types of Waves Transverse wave Longitudinal wave Liu UCD Phy1B 2014 37 #12;Sound Wave

Yoo, S. J. Ben

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Wave Energy challenges and possibilities  

E-Print Network [OSTI]

into a reservoir, with low head turbines as power take off. Articulating tubes with hydraulic power take off. Point or fixed coastal installation. Air based Wells turbines as power take off. Over topping waves absorber, with either water pumps, linear generators or hydraulic power take off systems. Multi point

362

Wave functions of linear systems  

E-Print Network [OSTI]

Complete analysis of quantum wave functions of linear systems in an arbitrary number of dimensions is given. It is shown how one can construct a complete set of stationary quantum states of an arbitrary linear system from purely classical arguments. This construction is possible because for linear systems classical dynamics carries the whole information about quantum dynamics.

Tomasz Sowinski

2007-06-05T23:59:59.000Z

363

The application scope of the reductive perturbation method and the upper limit of the dust acoustic solitary waves in a dusty plasma  

SciTech Connect (OSTI)

The dust acoustic solitary waves have been numerically investigated by using one dimensional electrostatic particle-in-cell method. By comparing the numerical results with those obtained from the traditional reductive perturbation method, it is found that there exist the maximum dimensionless amplitude and propagation speed of the dust acoustic solitary wave. And these limitations of the solitary wave are explained by using the Sagdeev potential technique. Furthermore, it is noticed that although ? ? 1 is required in the reductive perturbation method generally, the reductive perturbation method is also valid for ??

Qi, Xin; Xu, Yan-xia; Duan, Wen-shan, E-mail: duanws@nwnu.edu.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou, 730070 Gansu (China)] [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou, 730070 Gansu (China); Yang, Lei, E-mail: lyang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou, 730070 Gansu (China) [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou, 730070 Gansu (China); Department of Physics, Lanzhou University, Lanzhou 730000 (China)

2014-01-15T23:59:59.000Z

364

WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA  

E-Print Network [OSTI]

case, the electrons have negative wave energy for 2w ne w wave energy for 2w .w > 0 nl Hence, unstable waves with negative phase velocity,

Cary, John R.

2012-01-01T23:59:59.000Z

365

On quantization of nondispersive wave packets  

SciTech Connect (OSTI)

Nondispersive wave packets are widely used in optics and acoustics. We found it interesting that such packets could be also a subject of quantum field theory. Canonical commutation relations for the nondispersive wave packets are constructed.

Altaisky, M. V. [Space Research Institute RAS, Profsoyuznaya 84/32, Moscow 117997 (Russian Federation)] [Space Research Institute RAS, Profsoyuznaya 84/32, Moscow 117997 (Russian Federation); Kaputkina, N. E. [National University of Science and Technology MISIS Leninsky prospect 4, Moscow 119049 (Russian Federation)] [National University of Science and Technology MISIS Leninsky prospect 4, Moscow 119049 (Russian Federation)

2013-10-15T23:59:59.000Z

366

Wave Mechanics and General Relativity: A Rapprochement  

E-Print Network [OSTI]

Using exact solutions, we show that it is in principle possible to regard waves and particles as representations of the same underlying geometry, thereby resolving the problem of wave-particle duality.

Paul S. Wesson

2006-01-16T23:59:59.000Z

367

Wind Wave Float | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

(TRL 1 2 3 Component) Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale PowerBuoy Project WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project...

368

Stratified Shear Flow: Instability and Wave Radiation  

E-Print Network [OSTI]

Stratified Shear Flow: Instability and Wave Radiation B. R. Sutherland Dept. Mathematical of internal waves in the atmosphere and ocean, but the evolution of the shear layer itself is significantly

Sutherland, Bruce

369

Wave Patterns and Southern Hemisphere Convergence Zones  

E-Print Network [OSTI]

-rate days, a wave pattern is identified that is characteristic of high rain events. This wave pattern is then compared to the patterns of variability of brightness temperature using empirical orthogonal functions. A linear regression technique is used...

Ramotowski, Michelle R.

2013-04-11T23:59:59.000Z

370

Analysis of optimum Lamb wave tuning  

E-Print Network [OSTI]

Guided waves are of enormous interest in the nondestructive evaluation of thin-walled structures and layered media. Due to their dispersive and multi-modal nature, it is desirable to tune the waves by discriminating one ...

Shi, Yijun, 1970-

2002-01-01T23:59:59.000Z

371

Strings in plane-fronted gravitational waves  

E-Print Network [OSTI]

Brinkmann's plane-fronted gravitational waves with parallel rays --~shortly pp-waves~-- are shown to provide, under suitable conditions, exact string vacua at all orders of the sigma-model perturbation expansion.

C. Duval; Z. Horvath; P. A. Horvathy

2006-02-13T23:59:59.000Z

372

Symmetries and Interaction coefficients of Kelvin waves  

E-Print Network [OSTI]

We considered symmetry restriction on the interaction coefficients of Kelvin waves and demonstrated that linear in small wave vector asymptotic is not forbidden, as one can expect by naive reasoning.

Vladimir V. Lebedev; Victor S. L'vov

2010-05-25T23:59:59.000Z

373

Fracture compliance estimation using borehole tube waves  

E-Print Network [OSTI]

We tested two models, one for tube-wave generation and the other for tube-wave attenuation at a fracture intersecting a borehole that can be used to estimate fracture compliance, fracture aperture, and lateral extent. In ...

Bakku, Sudhish Kumar

374

Nonlinear Saturation of Vertically Propagating Rossby Waves  

E-Print Network [OSTI]

The interaction between vertical Rossby wave propagation and wave breaking is studied in the idealized context of a beta-plane channel model. Considering the problem of propagation through a uniform zonal flow in an ...

Giannitsis, Constantine

375

Gravitational waves from merging compact binaries  

E-Print Network [OSTI]

Largely motivated by the development of highly sensitive gravitational-wave detectors, our understanding of merging compact binaries and the gravitational waves they generate has improved dramatically in recent years. ...

Hughes, Scott A.

376

Non-expanding impulsive gravitational waves  

E-Print Network [OSTI]

We investigate a class of impulsive gravitational waves which propagate either in Minkowski or in the (anti-)de Sitter background. These waves are constructed as impulsive members of the Kundt class $P(\\Lambda)$ of non-twisting, non-expanding type N solutions of vacuum Einstein equations with a cosmological constant $\\Lambda$. We show that the only non-trivial waves of this type in Minkowski spacetime are impulsive pp-waves. For $\\Lambda\

J. Podolsky

1998-07-29T23:59:59.000Z

377

Wave-driven Countercurrent Plasma Centrifuge  

SciTech Connect (OSTI)

A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the ? channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

A.J. Fetterman and N.J. Fisch

2009-03-20T23:59:59.000Z

378

Electromagnetic wave scattering by Schwarzschild black holes  

E-Print Network [OSTI]

We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section, and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.

Lus C. B. Crispino; Sam R. Dolan; Ednilton S. Oliveira

2009-05-20T23:59:59.000Z

379

Wave Propagation in Fractured Poroelastic Media  

E-Print Network [OSTI]

Seismic wave propagation through fractures and cracks is an important subject in exploration and production geophysics, earthquake seismology and mining.

380

Effects of ion abundances on electromagnetic ion cyclotron wave growth rate in the vicinity of the plasmapause  

SciTech Connect (OSTI)

Electromagnetic ion cyclotron (EMIC) waves in multi-ion species plasmas propagate in branches. Except for the branch corresponding to the heaviest ion species, which has only a resonance at its gyrofrequency, these branches are bounded below by a cutoff frequency and above by a resonant gyrofrequency. The condition for wave growth is determined by the thermal anisotropies of each ion species, j, which sets an upper bound, ?{sub j}{sup ?}, on the wave frequency below which that ion species contributes positively to the growth rate. It follows that the relative positions of the cutoffs and the critical frequencies ?{sub j}{sup ?} play a crucial role in determining whether a particular wave branch will be unstable. The effect of the magnetospheric ion abundances on the growth rate of each branch of the EMIC instability in a model where all the ion species have kappa velocity distributions is investigated by appealing to the above ideas. Using the variation of the cutoff frequencies predicted by cold plasma theory as a guide, optimal ion abundances that maximise the EMIC instability growth rate are sought. When the ring current is comprised predominantly of H{sup +} ions, all branches of the EMIC wave are destabilised, with the proton branch having the maximum growth rate. When the O{sup +} ion abundance in the ring current is increased, a decrease in the growth rate of the proton branch and cyclotron damping of the helium branch are observed. The oxygen branch, on the other hand, experiences an increase in the maximum growth rate with an increase in the O{sup +} ion abundance. When the ring current is comprised predominantly of He{sup +} ions, only the helium and oxygen branches of the EMIC wave are destabilised, with the helium branch having the maximum growth rate.

Henning, F. D., E-mail: farranalfonso@gmail.com; Mace, R. L., E-mail: macer@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000 (South Africa)

2014-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Multi-reflective acoustic wave device  

DOE Patents [OSTI]

An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

Andle, Jeffrey C.

2006-02-21T23:59:59.000Z

382

Wave guides: vacuum w/ tube of conductor  

E-Print Network [OSTI]

Wave guides: vacuum w/ tube of conductor boundary conditions for conductor Properties: non-transverse waves except TEM mode in coaxial cable speed normal modes (from Liouville problem) TE or TM TEM for coaxial cable cuto frequency otherwise evanescent waves separation into and components with 1 #12;B

Hart, Gus

383

WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS  

E-Print Network [OSTI]

WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS C. L. Liu and Thomas J. Ahrens Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 In order to record P- and S-waves on the interactions between incident P- and SV-waves and free-surfaces of rocks. The relations between particle

Stewart, Sarah T.

384

Wave Packets and Turbulent Peter Jordan1  

E-Print Network [OSTI]

Wave Packets and Turbulent Jet Noise Peter Jordan1 and Tim Colonius2 1 Departement Fluides-control efforts is incomplete. Wave packets are intermittent, advecting disturbances that are correlated over review evidence of the existence, energetics, dynamics, and acous- tic efficiency of wave packets. We

Dabiri, John O.

385

An Introduction to Wave-Current Interactions  

E-Print Network [OSTI]

-scale wave focusing across a storm can re-direct the wind-stress? #12;1. Adiabatic interaction StartAn Introduction to Wave-Current Interactions Jerry Smith, MPL-SIO-UCSD jasmith@ucsd.edu http just want to hold up your hand. #12;Some Questions in Wave-Current Interaction Physics 1. Adiabatic

Smith, Jerome A.

386

Visualizing the kinematics of relativistic wave packets  

E-Print Network [OSTI]

This article investigates some solutions of the time-dependent free Dirac equation. Visualizations of these solutions immediately reveal strange phenomena that are caused by the interference of positive- and negative-energy waves. The effects discussed here include the Zitterbewegung, the opposite direction of momentum and velocity in negative-energy wave packets, and the superluminal propagation of the wave packet's local maxima.

Bernd Thaller

2004-09-14T23:59:59.000Z

387

Wave propagation Remco Hartkamp (University of Twente)  

E-Print Network [OSTI]

) waves Sound: 20 Hz 20 kHz Gas: P Liquid: P Plasma: P Solid: P & S #12;Stretched string example 1D wave Dispersion: Waves with different wavelengths propagate at different speeds 6 k c k k Shallow water: c gh mJ K material parameter (related to the strain saturation of the material) det FJ bulk modulus

Entekhabi, Dara

388

CURRENTS DRIVEN BY ELECTRON CYCLOTRON WAVES  

E-Print Network [OSTI]

CURRENTS DRIVEN BY ELECTRON CYCLOTRON WAVES C.F.F. KARNEY, NJ. FISCH Plasma Physics Laboratory of the generation of steady-state currents by electron cyclotron waves are explored. A numerical solution of electron cyclotron wave absorption appears to be one of the more promising schemes of providing a steady

Karney, Charles

389

SCATTERING BEHAVIOR OF TRANSITIONAL SHOCK WAVES  

E-Print Network [OSTI]

SCATTERING BEHAVIOR OF TRANSITIONAL SHOCK WAVES Kevin R. Zumbrun Bradley J. Plohr Dan Marchesin September, 1991 Abstract. We study the stability and asymptotic behavior of transitional shock waves as solutions of a parabolic system of conservation laws. In contrast to classical shock waves, transitional

New York at Stoney Brook, State University of

390

Waves on unsteady currents Merrick C. Haller  

E-Print Network [OSTI]

Waves on unsteady currents Merrick C. Haller School of Civil and Construction Engineering, Oregon 2007; published online 3 December 2007 Models for surface gravity wave propagation in the presence of currents often assume the current field to be quasi-stationary, which implies that the absolute wave

Haller, Merrick

391

Bifurcation Theory of Meandering Spiral Waves  

E-Print Network [OSTI]

Bifurcation Theory of Meandering Spiral Waves Claudia Wul Freie Universitat Berlin, Fachbereich Mathematik und Informatik, Arnimallee 2{6, 14195 Berlin, email: wul @math.fu-berlin.de Abstract. Spiral waves-Zhabotinsky reaction. We develop a mathematical theory for the Hopf bifurcation from rigidly rotating spiral waves

Wulff, Claudia

392

Autoresonance of coupled nonlinear waves L. Friedland  

E-Print Network [OSTI]

wave train solutions of the decoupled problem. At the same time, the waves are globally phase locked, allowing the continuation of the phase locking between the waves despite the variation of system's param and sustaining this multidimensional autoresonance are the internal reso- nant excitation of one of the coupled

Friedland, Lazar

393

EFFECTS OF SOUND WAVES ON YOUNG SALMON  

E-Print Network [OSTI]

EFFECTS OF SOUND WAVES ON YOUNG SALMON Marine Biological Laboratory X. 1 33 R A. RTT ir.':; WOODS instantaneously to sounds. It was con- were tested in an experimental tank and in eluded that sound waves were, Wash . sound studies conducted under the above contract are terminated. #12;EFFECTS OF SOUND WAVES

394

Hybrid wave model and its applications  

E-Print Network [OSTI]

A nonlinear hybrid wave model (HWM) is developed. It uses the conventional mode-coupling method (MCM) and the phase modulation method (PMM) to address the nonlinear interactions between free-wave components in an ocean wave field. The PMM is a...

Yang, Jun

1998-01-01T23:59:59.000Z

395

Coupled Parabolic Equations for Wave Propagation  

E-Print Network [OSTI]

Coupled Parabolic Equations for Wave Propagation Kai Huang, Knut Solna and Hongkai Zhao #3; April simulation of wave propagation over long distances. The coupled parabolic equations are derived from a two algorithms are important in order to understand wave propagation in complex media. Resolving the wavelength

Zhao, Hongkai

396

Seminario de Matemtica Aplicada "Renowable wave energy  

E-Print Network [OSTI]

Abstract: Among the various renewable energy sources, ocean wave energy has been only recently investigaSeminario de Matemática Aplicada "Renowable wave energy: potencial and technical challenges will be at first to introduce the potential of wave energy, as a significant, and often neglected, contributor

Tradacete, Pedro

397

WAVE HEIGHTS IN A 4D OCEAN WAVE FIELD Paul C. Liu  

E-Print Network [OSTI]

WAVE HEIGHTS IN A 4D OCEAN WAVE FIELD Paul C. Liu NOAA Great Lakes Environmental Research a preliminary examination and analysis of a small suite of 4-D wave data to explore what new insight century. We feel it is timely to encourage further 4-D ocean wave measurement and thereby facilitate fresh

398

Wave Front Interaction Model of Stabilized Propagating Wave Segments Vladimir S. Zykov1  

E-Print Network [OSTI]

Wave Front Interaction Model of Stabilized Propagating Wave Segments Vladimir S. Zykov1 and Kenneth; published 14 February 2005) A wave front interaction model is developed to describe the relationship between excitability and the size and shape of stabilized wave segments in a broad class of weakly excitable media

Showalter, Kenneth

399

Wave Turbulence in Superfluid 4 Energy Cascades, Rogue Waves & Kinetic Phenomena  

E-Print Network [OSTI]

Outline Wave Turbulence in Superfluid 4 He: Energy Cascades, Rogue Waves & Kinetic Phenomena Conference, Chernogolovka, 3 August 2009 McClintock Efimov Ganshin Kolmakov Mezhov-Deglin Wave Turbulence in Superfluid 4 He #12;Outline Outline 1 Introduction Motivation 2 Modelling wave turbulence Need for models

Fominov, Yakov

400

Wave-pinned filaments of scroll waves Tams Bnsgi, Jr., Kevin J. Meyer, and Oliver Steinbocka  

E-Print Network [OSTI]

Wave-pinned filaments of scroll waves Tams Bnsgi, Jr., Kevin J. Meyer, and Oliver Steinbocka Received 5 November 2007; accepted 26 December 2007; published online 6 March 2008 Scroll waves are three can be pinned to the wake of traveling wave pulses. This pinning is studied in experiments with the 1

Steinbock, Oliver

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Lossless Tapers, Gaussian Beams, Free-Space Modes: Standing Waves Versus Through-Flowing Waves  

E-Print Network [OSTI]

Lossless Tapers, Gaussian Beams, Free-Space Modes: Standing Waves Versus Through-Flowing Waves inconsistencies, in Marcatili's lossless tapers through-flowing waves must be drastically different from standing waves. First, we reconfirm this by means of numerical results based on an extended BPM algorithm. Next

Curtarolo, Stefano

402

Segmented Waves from a Spatiotemporal Transverse Wave Instability Lingfa Yang, Igal Berenstein, and Irving R. Epstein*  

E-Print Network [OSTI]

Segmented Waves from a Spatiotemporal Transverse Wave Instability Lingfa Yang, Igal Berenstein observe traveling waves emitted from Turing spots in the chlorine dioxide-iodine-malonic acid reaction. The newborn waves are continuous, but they break into segments as they propagate, and the propagation

Epstein, Irving R.

403

THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES  

SciTech Connect (OSTI)

One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ({sup f}ast waves{sup )}. In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

Pongkitiwanichakul, Peera; Chandran, Benjamin D. G. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Karpen, Judith T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); DeVore, C. Richard, E-mail: pbu3@unh.edu, E-mail: benjamin.chandran@unh.edu, E-mail: judy.karpen@nasa.gov, E-mail: devore@nrl.navy.mil [Naval Research Laboratory, Washington, DC 20375 (United States)

2012-09-20T23:59:59.000Z

404

Beauty waves: an artistic representation of ocean waves using Bezier curves  

E-Print Network [OSTI]

In this thesis, we present a method for computing an artistic representation of ocean waves using Bezier curves. Wave forms are loosely based on procedural wave models and are designed to emulate those found in both art and nature. The wave forms...

Faulkner, Jay Allen

2007-04-25T23:59:59.000Z

405

High amplitude wave propagation in collapsible tubes. II. Forerunners and high amplitude waves  

E-Print Network [OSTI]

773 High amplitude wave propagation in collapsible tubes. II. Forerunners and high amplitude waves that, under certain circumstances, a pressure wave of large amplitude which propagates in a fluid feature of such a shock wave propagation inside an initially collapsed tube is the presence ofwavelets

Paris-Sud XI, Université de

406

Thompson/Ocean 420/Winter 2004 2D waves 1 Two-dimensional wave propagation  

E-Print Network [OSTI]

Thompson/Ocean 420/Winter 2004 2D waves 1 Two-dimensional wave propagation So far we have talked about wave propagation in one-dimension. For two or three spatial dimensions, we vectorize our ideas propagation. For surface waves, there is no vertical propagation, and we are only concerned with the two

Thompson, LuAnne

407

Wave Impact Study on a Residential Building Wave Impact Study on a Residential Building  

E-Print Network [OSTI]

Wave Impact Study on a Residential Building Paper: Wave Impact Study on a Residential Building John residential light- frame wood buildings and wave and surge loading be- cause often little is left residential structures and wave loading. To do this, one-sixth scale residen- tial building models typical

Cox, Dan

408

CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland  

E-Print Network [OSTI]

CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland ABSTRACT Ocean Wave Energy Converters (OWECs) operating on the water surface are subject to storms gradient technologies. This paper is focused on Ocean Wave Energy Converters (OWECs) and the need

Haller, Merrick

409

The Effects of Wave Energy Converters on a Monochromatic Wave Climate  

E-Print Network [OSTI]

available from the National Oceanic and Atmospheric Administration (NOAA). Wave energy converters were converters as well as the availability of energy in the ocean. This study will examine the effects of a wave and mean wave period of wave energy fields. There is tremendous energy potential in the ocean. Solar energy

Fox-Kemper, Baylor

410

Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in Mesoscale Wave Dynamics  

E-Print Network [OSTI]

and idealized numerical modeling. The linear theory for ow without terrain shows that the solution depends on two parameters: a nondimensional coastal width L and a nondimensional wind speed U. For U 6= 0 the solution is composed of three distinct wave branches...

Qian, Tingting

2010-07-14T23:59:59.000Z

411

On the minimum and maximum mass of neutron stars and the delayed collapse  

E-Print Network [OSTI]

The minimum and maximum mass of protoneutron stars and neutron stars are investigated. The hot dense matter is described by relativistic (including hyperons) and non-relativistic equations of state. We show that the minimum mass ($\\sim$ 0.88 - 1.28 $M_{\\sun}$) of a neutron star is determined by the earliest stage of its evolution and is nearly unaffected by the presence of hyperons. The maximum mass of a neutron star is limited by the protoneutron star or hot neutron star stage. Further we find that the delayed collapse of a neutron star into a black hole during deleptonization is not only possible for equations of state with softening components, as for instance, hyperons, meson condensates etc., but also for neutron stars with a pure nucleonic-leptonic equation of state.

Strobel, K; Strobel, Klaus; Weigel, Manfred K.

2001-01-01T23:59:59.000Z

412

On the minimum and maximum mass of neutron stars and the delayed collapse  

E-Print Network [OSTI]

The minimum and maximum mass of protoneutron stars and neutron stars are investigated. The hot dense matter is described by relativistic (including hyperons) and non-relativistic equations of state. We show that the minimum mass ($\\sim$ 0.88 - 1.28 $M_{\\sun}$) of a neutron star is determined by the earliest stage of its evolution and is nearly unaffected by the presence of hyperons. The maximum mass of a neutron star is limited by the protoneutron star or hot neutron star stage. Further we find that the delayed collapse of a neutron star into a black hole during deleptonization is not only possible for equations of state with softening components, as for instance, hyperons, meson condensates etc., but also for neutron stars with a pure nucleonic-leptonic equation of state.

Klaus Strobel; Manfred K. Weigel

2000-12-14T23:59:59.000Z

413

A comparison of maximum likelihood and other estimators of eigenvalues from several correlated Monte Carlo samples  

SciTech Connect (OSTI)

The maximum likelihood method for the multivariate normal distribution is applied to the case of several individual eigenvalues. Correlated Monte Carlo estimates of the eigenvalue are assumed to follow this prescription and aspects of the assumption are examined. Monte Carlo cell calculations using the SAM-CE and VIM codes for the TRX-1 and TRX-2 benchmark reactors, and SAM-CE full core results are analyzed with this method. Variance reductions of a few percent to a factor of 2 are obtained from maximum likelihood estimation as compared with the simple average and the minimum variance individual eigenvalue. The numerical results verify that the use of sample variances and correlation coefficients in place of the corresponding population statistics still leads to nearly minimum variance estimation for a sufficient number of histories and aggregates.

Beer, M.

1980-12-01T23:59:59.000Z

414

An Ad-Hoc Method for Obtaining chi**2 Values from Unbinned Maximum Likelihood Fits  

E-Print Network [OSTI]

A common goal in an experimental physics analysis is to extract information from a reaction with multi-dimensional kinematics. The preferred method for such a task is typically the unbinned maximum likelihood method. In fits using this method, the likelihood is a goodness-of-fit quantity in that it effectively discriminates between available hypotheses; however, it does not provide any information as to how well the best hypothesis describes the data. In this paper, we present an {\\em ad-hoc} procedure for obtaining chi**2/n.d.f. values from unbinned maximum likelihood fits. This method does not require binning the data, making it very applicable to multi-dimensional problems.

M. Williams; C. A. Meyer

2008-06-30T23:59:59.000Z

415

Maximum-Entropy Meshfree Method for Compressible and Near-Incompressible Elasticity  

SciTech Connect (OSTI)

Numerical integration errors and volumetric locking in the near-incompressible limit are two outstanding issues in Galerkin-based meshfree computations. In this paper, we present a modified Gaussian integration scheme on background cells for meshfree methods that alleviates errors in numerical integration and ensures patch test satisfaction to machine precision. Secondly, a locking-free small-strain elasticity formulation for meshfree methods is proposed, which draws on developments in assumed strain methods and nodal integration techniques. In this study, maximum-entropy basis functions are used; however, the generality of our approach permits the use of any meshfree approximation. Various benchmark problems in two-dimensional compressible and near-incompressible small strain elasticity are presented to demonstrate the accuracy and optimal convergence in the energy norm of the maximum-entropy meshfree formulation.

Ortiz, A; Puso, M A; Sukumar, N

2009-09-04T23:59:59.000Z

416

How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems  

E-Print Network [OSTI]

The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems, by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there exists an ongoing controversy whether the notion of the maximum entropy principle can be extended in a meaningful way to non-extensive, non-ergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann-Gibbs-Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon-Khinchin axioms, the (c,d)-entropies. We demonstrate that the MEP is a perfectly consistent concept for non-ergodic and complex statistical systems if their relative entropy can be factored into a general...

Hanel, Rudolf; Gell-Mann, Murray

2014-01-01T23:59:59.000Z

417

Exact computation of the Maximum Entropy Potential of spiking neural networks models  

E-Print Network [OSTI]

Understanding how stimuli and synaptic connectivity in uence the statistics of spike patterns in neural networks is a central question in computational neuroscience. Maximum Entropy approach has been successfully used to characterize the statistical response of simultaneously recorded spiking neurons responding to stimuli. But, in spite of good performance in terms of prediction, the ?tting parameters do not explain the underlying mechanistic causes of the observed correlations. On the other hand, mathematical models of spiking neurons (neuro-mimetic models) provide a probabilistic mapping between stimulus, network architecture and spike patterns in terms of conditional proba- bilities. In this paper we build an exact analytical mapping between neuro-mimetic and Maximum Entropy models.

Cofre, Rodrigo

2014-01-01T23:59:59.000Z

418

Maximum-entropy principle for static and dynamic high-field transport in semiconductors  

SciTech Connect (OSTI)

Within the maximum entropy principle we present a general theory able to provide, in a dynamical context, the macroscopic relevant variables for carrier transport under electric fields of arbitrary strength. For the macroscopic variables the linearized maximum entropy approach is developed including full-band effects within a total energy scheme. Under spatially homogeneous conditions, we construct a closed set of hydrodynamic equations for the small-signal (dynamic) response of the macroscopic variables. The coupling between the driving field and the energy dissipation is analyzed quantitatively by using an arbitrary number of moments of the distribution function. The theoretical approach is applied to n-Si at 300 K and is validated by comparing numerical calculations with ensemble Monte Carlo simulations and with experimental data.

Trovato, M. [Dipartimento di Matematica, Universita di Catania, Viale A. Doria, 95125 Catania (Italy); Reggiani, L. [Dipartimento di Ingegneria dell' Innovazione e Nanotechnology National Laboratory of CNR-INFM, Universita di Lecce, Via Arnesano s/n, 73100 Lecce (Italy)

2006-06-15T23:59:59.000Z

419

Wave turbulent statistics in non-weak wave turbulence  

E-Print Network [OSTI]

In wave turbulence, it has been believed that statistical properties are well described by the weak turbulence theory, in which nonlinear interactions among wavenumbers are assumed to be small. In the weak turbulence theory, separation of linear and nonlinear time scales derived from the weak nonlinearity is also assumed. However, the separation of the time scales is often violated even in weak turbulent systems where the nonlinear interactions are actually weak. To get rid of this inconsistency, closed equations are derived without assuming the separation of the time scales in accordance with Direct-Interaction Approximation (DIA), which has been successfully applied to Navier--Stokes turbulence. The kinetic equation of the weak turbulence theory is recovered from the DIA equations if the weak nonlinearity is assumed as an additional assumption. It suggests that the DIA equations is a natural extension of the conventional kinetic equation to not-necessarily-weak wave turbulence.

Naoto Yokoyama

2011-05-08T23:59:59.000Z

420

ITB KNAW UTwente Lectures on Free Surface Waves  

E-Print Network [OSTI]

, Acknowledgment Surface waves are phenomena that are characterised by the dynamic interplay between linear.3 Linear Dispersive wave model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Wave groupsITB KNAW UTwente Lectures on Free Surface Waves Brenny van Groesen, Applied Analysis & Mathematical

Al Hanbali, Ahmad

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Wave Energy Resource Analysis for Use in Wave Energy Conversion  

E-Print Network [OSTI]

spectra for that given region from a selected deep-water calibration station. METHODOLOGY FOR ESTIMATING THE AVAILABLE WAVE ENERGY RESOURCE This section will describe the methodology for estimating the naturally available and technically recoverable... resource in a given region. In a recent study done by the EPRI, data was gathered from U.S. coastal waters for a 51- month Wavewatch III hindcast database that was developed specifically for the EPRI by NOAAs National Centers for Environmental...

Pastor, J.; Liu, Y.; Dou, Y.

2014-01-01T23:59:59.000Z

422

Computation of the maximum loadability of a power system using nonlinear optimization  

E-Print Network [OSTI]

Between Generator and Load. . . . . . . . . 34 E. Flowchart for Optimization Program F. Tutorial Example G. Conclusion. . 35 36 44 V SIMULATION RESULTS. 45 A. Introduction. B. Results of Simulation for Maximum Loadability of the Total System. I... of this work starting from the basics. Chapter III will cover concepts of power flow and loadability along with tutorial example. The literature survey over this topic and previous work as well as problem statement and solution method will be covered...

Khabirov, Abdufarrukh

2001-01-01T23:59:59.000Z

423

An Analysis of Maximum Residential Energy Efficiency in Hot and Humid Climates  

E-Print Network [OSTI]

the high efficiency instantaneous water heater with electronic ignition. The largest equipment energy savings (20%) was achieved from the horizontal-axis clothes washer. Compact fluorescent lamps (CFLs) saved 75% lighting energy use. Among all...AN ANALYSIS OF MAXIMUM RESIDENTIAL ENERGY EFFICIENCY IN HOT AND HUMID CLIMATES Mini Malhotra Graduate Research Assistant Jeff Haberl, Ph.D., P.E. Professor/Associate Director Energy Systems Laboratory, Texas A&M University College...

Malhotra, M.; Haberl, J. S.

2006-01-01T23:59:59.000Z

424

A maximum entropy theorem with applications to the measurement of biodiversity  

E-Print Network [OSTI]

This is a preliminary article stating and proving a new maximum entropy theorem. The entropies that we consider can be used as measures of biodiversity. In that context, the question is: for a given collection of species, which frequency distribution(s) maximize the diversity? The theorem provides the answer. The chief surprise is that although we are dealing not just with a single entropy, but a one-parameter family of entropies, there is a single distribution maximizing all of them simultaneously.

Leinster, Tom

2009-01-01T23:59:59.000Z

425

Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle  

SciTech Connect (OSTI)

The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.

Barletti, Luigi, E-mail: luigi.barletti@unifi.it [Dipartimento di Matematica e Informatica Ulisse Dini, Universit degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze (Italy)

2014-08-15T23:59:59.000Z

426

REMARKS ON THE MAXIMUM ENTROPY METHOD APPLIED TO FINITE TEMPERATURE LATTICE QCD.  

SciTech Connect (OSTI)

We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.

UMEDA, T.; MATSUFURU, H.

2005-07-25T23:59:59.000Z

427

Towards the application of the Maximum Entropy Method to finite temperature Upsilon Spectroscopy  

E-Print Network [OSTI]

According to the Narnhofer Thirring Theorem interacting systems at finite temperature cannot be described by particles with a sharp dispersion law. It is therefore mandatory to develop new methods to extract particle masses at finite temperature. The Maximum Entropy method offers a path to obtain the spectral function of a particle correlation function directly. We have implemented the method and tested it with zero temperature Upsilon correlation functions obtained from an NRQCD simulation. Results for different smearing functions are discussed.

M. Oevers; C. Davies; J. Shigemitsu

2000-09-22T23:59:59.000Z

428

Maximum entropy deconvolution of resonant inelastic x-ray scattering spectra  

E-Print Network [OSTI]

Resonant inelastic x-ray scattering (RIXS) has become a powerful tool in the study of the electronic structure of condensed matter. Although the linewidths of many RIXS features are narrow, the experimental broadening can often hamper the identification of spectral features. Here, we show that the Maximum Entropy technique can successfully be applied in the deconvolution of RIXS spectra, improving the interpretation of the loss features without a severe increase in the noise ratio.

J. Laverock; A. R. H. Preston; D. Newby Jr; K. E. Smith; S. B. Dugdale

2012-02-10T23:59:59.000Z

429

Remarks on the Maximum Entropy Method applied to finite temperature lattice QCD  

E-Print Network [OSTI]

We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.

Takashi Umeda; Hideo Matsufuru

2005-10-05T23:59:59.000Z

430

Traveling wave device for combining or splitting symmetric and asymmetric waves  

DOE Patents [OSTI]

A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.

Mbius, Arnold (Eggenstein, DE); Ives, Robert Lawrence (Saratoga, CA)

2005-07-19T23:59:59.000Z

431

Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage  

SciTech Connect (OSTI)

This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrally buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.

Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.

2012-03-01T23:59:59.000Z

432

From antinode clusters to node clusters: The concentration dependent transition of floaters on a standing Faraday wave  

E-Print Network [OSTI]

A hydrophilic floating sphere that is denser than water drifts to an amplitude maximum (antinode) of a surface standing wave. A few identical floaters therefore organize into antinode clusters. However, beyond a transitional value of the floater concentration $\\phi$, we observe that the same spheres spontaneously accumulate at the nodal lines, completely inverting the self-organized particle pattern on the wave. From a potential energy estimate we show (i) that at low $\\phi$ antinode clusters are energetically favorable over nodal ones and (ii) how this situation reverses at high $\\phi$, in agreement with the experiment.

Ceyda Sanl?; Detlef Lohse; Devaraj van der Meer

2014-05-08T23:59:59.000Z

433

Gravitational waves from a test particle scattered by a neutron star: Axial mode case  

E-Print Network [OSTI]

Using a metric perturbation method, we study gravitational waves from a test particle scattered by a spherically symmetric relativistic star. We calculate the energy spectrum and the waveform of gravitational waves for axial modes. Since metric perturbations in axial modes do not couple to the matter fluid of the star, emitted waves for a normal neutron star show only one peak in the spectrum, which corresponds to the orbital frequency at the turning point, where the gravitational field is strongest. However, for an ultracompact star (the radius $R \\lesssim 3M$), another type of resonant periodic peak appears in the spectrum. This is just because of an excitation by a scattered particle of axial quasinormal modes, which were found by Chandrasekhar and Ferrari. This excitation comes from the existence of the potential minimum inside of a star. We also find for an ultracompact star many small periodic peaks at the frequency region beyond the maximum of the potential, which would be due to a resonance of two waves reflected by two potential barriers (Regge-Wheeler type and one at the center of the star). Such resonant peaks appear neither for a normal neutron star nor for a Schwarzschild black hole. Consequently, even if we analyze the energy spectrum of gravitational waves only for axial modes, it would be possible to distinguish between an ultracompact star and a normal neutron star (or a Schwarzschild black hole).

Kazuhiro Tominaga; Motoyuki Saijo; Kei-ichi Maeda

1999-09-20T23:59:59.000Z

434

Matter Wave Radiation Leading to Matter Teleportation  

E-Print Network [OSTI]

The concept of matter wave radiation is put forward, and its equation is established for the first time. The formalism solution shows that the probability density is a function of displacement and time. A free particle and a two-level system are reinvestigated considering the effect of matter wave radiation. Three feasible experimental designs, especially a modified Stern-Gerlach setup, are proposed to verify the existence of matter wave radiation. Matter wave radiation effect in relativity has been formulated in only a raw formulae, which offers another explanation of Lamb shift. A possible mechanics of matter teleportation is predicted due to the effect of matter wave radiation.

Yong-Yi Huang

2015-02-12T23:59:59.000Z

435

Ponderomotive Forces On Waves In Modulated Media  

SciTech Connect (OSTI)

Nonlinear interactions of waves via instantaneous cross-phase modulation can be cast in the same way as ponderomotive wave-particle interactions in high-frequency electromagnetic fi eld. The ponderomotive effect arises when rays of a probe wave scatter off perturbations of the underlying medium produced by a second, modulation wave, much like charged particles scatter off a quasiperiodic field. Parallels with the point-particle dynamics, which itself is generalized by this theory, lead to new methods of wave manipulation, including asymmetric barriers for light.

Dodin, I.Y; Fisch, Nathaniel

2014-02-28T23:59:59.000Z

436

Kinematic dynamo induced by helical waves  

E-Print Network [OSTI]

We investigate numerically the kinematic dynamo induced by the superposition of two helical waves in a periodic box as a simplified model to understand the dynamo action in astronomical bodies. The effects of magnetic Reynolds number, wavenumber and wave frequency on the dynamo action are studied. It is found that this helical-wave dynamo is a slow dynamo. There exists an optimal wavenumber for the dynamo growth rate. A lower wave frequency facilitates the dynamo action and the oscillations of magnetic energy emerge at some particular wave frequencies.

Wei, Xing

2014-01-01T23:59:59.000Z

437

Reconstruction of nonlinear wave propagation  

DOE Patents [OSTI]

Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.

Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie

2013-04-23T23:59:59.000Z

438

Standing waves in the Universe  

E-Print Network [OSTI]

At first, a review of our knowledge on the distribution of galaxies at large-scale, leading to a foam-like large-scale structure of the Universe, is presented in the Introduction. Then, it is shown how, according to the present theory for the formation of superclusters, wave scalar perturbations of the same frequency traveling in opposite directions give rise to standing waves, which cause a motion of the cosmic material towards the nodes, resulting in the concentration of the cosmic material around the nodes. Generalizing this effect to two (three) dimensions, the cosmic material is concentrated around the node lines (node surfaces). It is proposed that the three-dimensional effect is responsible for the foam-like large-scale structure of the Universe.

Evangelos Chaliasos

2005-12-06T23:59:59.000Z

439

Millimeter-wave active probe  

DOE Patents [OSTI]

A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

Majidi-Ahy, Gholamreza (Sunnyvale, CA); Bloom, David M. (Portola Valley, CA)

1991-01-01T23:59:59.000Z

440

Gravitational waves from perturbed stars  

E-Print Network [OSTI]

Non radial oscillations of neutron stars are associated with the emission of gravitational waves. The characteristic frequencies of these oscillations can be computed using the theory of stellar perturbations, and they are shown to carry detailed information on the internal structure of the emitting source. Moreover, they appear to be encoded in various radiative processes, as for instance in the tail of the giant flares of Soft Gamma Repeaters. Thus, their determination is central to the theory of stellar perturbation. A viable approach to the problem consists in formulating this theory as a problem of resonant scattering of gravitational waves incident on the potential barrier generated by the spacetime curvature. This approach discloses some unexpected correspondences between the theory of stellar perturbations and the theory of quantum mechanics, and allows us to predict new relativistic effects.

Valeria Ferrari

2011-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Aqueous blackbody calibration source for millimeter-wave/terahertz metrology  

SciTech Connect (OSTI)

This paper describes a calibrated broadband emitter for the millimeter-wave through terahertz frequency regime, called the aqueous blackbody calibration source. Due to its extremely high absorption, liquid water is chosen as the emitter on the basis of reciprocity. The water is constrained to a specific shape (an optical trap geometry) in an expanded polystyrene (EPS) container and maintained at a selected, uniform temperature. Uncertainty in the selected radiometric temperature due to the undesirable reflectance present at a water interface is minimized by the trap geometry, ensuring that radiation incident on the entrance aperture encounters a pair of s and a pair of p reflections at 45 deg. . For water reflectance Rw of 40% at 45 deg. in W-band, this implies a theoretical effective aperture emissivity of (1-R{sup 2}wsR{sup 2}wp)>98.8%. From W-band to 450 GHz, the maximum radiometric temperature uncertainty is {+-}0.40 K, independent of water temperature. Uncertainty from 450 GHz to 1 THz is increased due to EPS scattering and absorption, resulting in a maximum uncertainty of -3 K at 1 THz.

Dietlein, Charles; Popovic, Zoya; Grossman, Erich N

2008-10-20T23:59:59.000Z

442

Sequentially pulsed traveling wave accelerator  

DOE Patents [OSTI]

A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

2009-08-18T23:59:59.000Z

443

Progress towards Gravitational Wave Astronomy  

E-Print Network [OSTI]

I will review the most recent and interesting results from gravitational wave detection experiments, concentrating on recent results from the LIGO Scientific Collaboration (LSC). I will outline the methodologies utilized in the searches, explain what can be said in the case of a null result, what quantities may be constrained. I will compare these results with prior expectations and discuss their significance. As I go along I will outline the prospects for future improvements.

M. Alessandra Papa

2008-02-07T23:59:59.000Z

444

Rabi Waves in Carbon Nanotubes  

E-Print Network [OSTI]

QED-model for the multichain qubit system with interactions of qubits and chains between themselves on the example of the system of $\\sigma$-polarons in carbon zigzag nanotubes, interacting with quantized EM-field, is considered analytically. The possibility of experimental detection of Rabi waves in conventional stationary optical experiments for any quasi-1D system with strong electron-photon interaction is predicted.

Alla Dovlatova; Dmitry Yearchuck

2010-09-08T23:59:59.000Z

445

Corvino's construction using Brill waves  

E-Print Network [OSTI]

For two-black-hole time-symmetric initial data we consider the Corvino construction of gluing an exact Schwarzschild end. We propose to do this by using Brill waves. We address the question of whether this method can be used to reduce the overall energy, which seems to relate to the question of whether it can reduce the amount of `spurious' gravitational radiation. We find a positive answer at first order in the inverse gluing radius.

Domenico Giulini; Gustav Holzegel

2005-08-17T23:59:59.000Z

446

Freak waves in white dwarfs and magnetars  

SciTech Connect (OSTI)

We report properties of ion acoustic freak waves that propagate in a plasma composed of warm ions and ultrarelativistic electrons and positrons. The dynamics of the nonlinear freak waves is governed by the nonlinear Schroedinger equation. The possible region for the freak waves to exist is defined precisely for typical parameters of white dwarfs and magnetars corona. It is found that for low wave number, the nonlinear ion-acoustic wave packets are structurally stable in magnetars corona than in white dwarfs. However, for large wave numbers the situation is opposite. The critical wave number threshold (k{sub c}), which indicates where the modulational instability sets in, is defined for both applications. It is seen that near to k{sub c} the freak wave amplitude becomes high, but it decreases whenever we stepped away from k{sub c}. For the wave numbers close to k{sub c}, the increase of the unperturbed density ratio of positrons-to-electrons ({beta}) would lead to increase the freak wave amplitude, but for larger wave numbers the amplitude decreases with the increase of {beta}.

Sabry, R. [Theoretical Physics Group, Physics Department, Faculty of Science, Damietta University, New Damietta 34517 (Egypt); Department of Physics, College of Science and Humanitarian Studies, Salman bin Abdulaziz University, Alkharj (Saudi Arabia); International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); Moslem, W. M. [International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt); Shukla, P. K. [International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); Department of Mechanical and Aerospace Engineering and Center for Energy Research, University of California, San Diego, La Jolla, California 92093 (United States)

2012-12-15T23:59:59.000Z

447

Where and how long ago was water in the western North Atlantic ventilated? Maximum entropy inversions of bottle data from WOCE line A20  

E-Print Network [OSTI]

Gull (1991), Bayesian maximum entropy image reconstruction,F. Primeau (2006), A maximum entropy approach to water massSouth- ern Ocean? A maximum entropy approach to global water

Holzer, Mark; Primeau, Francois W; Smethie, William M; Khatiwala, Samar

2010-01-01T23:59:59.000Z

448

Effect of immiscible liquid contaminants on P-wave transmission through natural aquifer samples  

SciTech Connect (OSTI)

We performed core-scale laboratory experiments to examine the effect of non-aqueous phase liquid (NAPL) contaminants on P-wave velocity and attenuation in heterogeneous media. This work is part of a larger project to develop crosswell seismic methods for minimally invasive NAPL detection. The test site is the former DOE Pinellas Plant in Florida, which has known NAPL contamination in the surficial aquifer. Field measurements revealed a zone of anomalously high seismic attenuation, which may be due to lithology and/or contaminants (NAPL or gas phase). Intact core was obtained from the field site, and P-wave transmission was measured by the pulse-transmission technique with a 500 kHz transducer. Two types of samples were tested: a clean fine sand from the upper portion of the surficial aquifer, and clayey-silty sand with shell fragments and phosphate nodules from the lower portion. Either NAPL trichloroethene or toluene was injected into the initially water-saturated sample. Maximum NAPL saturations ranged from 30 to 50% of the pore space. P-wave velocity varied by approximately 4% among the water-saturated samples, while velocities decreased by 5 to 9% in samples at maximum NAPL saturation compared to water-saturated conditions. The clay and silt fraction as well as the larger scatterers in the clayey-silty sands apparently caused greater P-wave attenuation compared to the clean sand. The presence of NAPLs caused a 34 to 54% decrease in amplitudes of the first arrival. The central frequency of the transmitted energy ranged from 85 to 200 kHz, and was sensitive to both grain texture and presence of NAPL. The results are consistent with previous trends observed in homogeneous sand packs. More data will be acquired to interpret P-wave tomograms from crosswell field measurements, determine the cause of high attenuation observed in the field data and evaluate the sensitivity of seismic methods for NAPL detection.

Geller, Jil T.; Ajo-Franklin, Jonathan B.; Majer, Ernest L.

2003-01-31T23:59:59.000Z

449

Wave propagation in axion electrodynamics  

E-Print Network [OSTI]

In this paper, the axion contribution to the electromagnetic wave propagation is studied. First we show how the axion electrodynamics model can be embedded into a premetric formalism of Maxwell electrodynamics. In this formalism, the axion field is not an arbitrary added Chern-Simon term of the Lagrangian, but emerges in a natural way as an irreducible part of a general constitutive tensor.We show that in order to represent the axion contribution to the wave propagation it is necessary to go beyond the geometric approximation, which is usually used in the premetric formalism. We derive a covariant dispersion relation for the axion modified electrodynamics. The wave propagation in this model is studied for an axion field with timelike, spacelike and null derivative covectors. The birefringence effect emerges in all these classes as a signal of Lorentz violation. This effect is however completely different from the ordinary birefringence appearing in classical optics and in premetric electrodynamics. The axion field does not simple double the ordinary light cone structure. In fact, it modifies the global topological structure of light cones surfaces. In CFJ-electrodynamics, such a modification results in violation of causality. In addition, the optical metrics in axion electrodynamics are not pseudo-Riemannian. In fact, for all types of the axion field, they are even non-Finslerian.

Yakov Itin

2007-06-20T23:59:59.000Z

450

Topological Aspects of Wave Propagation  

E-Print Network [OSTI]

In the context of wave propagation on a manifold X, the characteristic functions are real valued functions on cotangent bundle of X that specify the allowable phase velocities of the waves. For certain classes of differential operators (e.g Maxwell's Equations) the associated characteristic functions have singularities. These singularities account for phenomena like conical refraction and the transformation of longitudinal waves into transversal ones (or viceversa). For a specific class of differential operators on surface, we prove that the singularities of the characteristic functions can be accounted from purely topological considerations. We also prove that there is a natural way to desingularsize the characteristic functions, and observe that this fact and Morse Theory establishes a specific connection between singularities and critical points of these functions. The relation between characteristic functions and differential operators is obtained through what is known as the symbol of the operator. We establish a connection between these symbols and holomorphic vector fields, which will provide us with symbols whose characteristic functions have interesting singularity sets.

Carlos Valero

2014-06-13T23:59:59.000Z

451

On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry  

E-Print Network [OSTI]

Effective, economic extraction of ocean wave energy requires an intimate under- standing of the ocean waveOn the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry

Victoria, University of

452

Rank deficiency and Tikhonov regularization in the inverse problem for gravitational-wave bursts  

E-Print Network [OSTI]

Coherent techniques for searches of gravitational-wave bursts effectively combine data from several detectors, taking into account differences in their responses. The efforts are now focused on the maximum likelihood principle as the most natural way to combine data, which can also be used without prior knowledge of the signal. Recent studies however have shown that straightforward application of the maximum likelihood method to gravitational waves with unknown waveforms can lead to inconsistencies and unphysical results such as discontinuity in the residual functional, or divergence of the variance of the estimated waveforms for some locations in the sky. So far the solutions to these problems have been based on rather different physical arguments. Following these investigations, we now find that all these inconsistencies stem from rank deficiency of the underlying network response matrix. In this paper we show that the detection of gravitational-wave bursts with a network of interferometers belongs to the category of ill-posed problems. We then apply the method of Tikhonov regularization to resolve the rank deficiency and introduce a minimal regulator which yields a well-conditioned solution to the inverse problem for all locations on the sky.

Malik Rakhmanov

2006-09-19T23:59:59.000Z

453

On Weyl channels being covariant with respect to the maximum commutative group of unitaries  

E-Print Network [OSTI]

We investigate the Weyl channels being covariant with respect to the maximum commutative group of unitary operators. This class includes the quantum depolarizing channel and the "two-Pauli" channel as well. Then, we show that our estimation of the output entropy for a tensor product of the phase damping channel and the identity channel based upon the decreasing property of the relative entropy allows to prove the additivity conjecture for the minimal output entropy for the quantum depolarizing channel in any prime dimesnsion and for the "two Pauli" channel in the qubit case.

G. G. Amosov

2006-08-10T23:59:59.000Z

454

A reliable, fast and low cost maximum power point tracker for photovoltaic applications  

SciTech Connect (OSTI)

This work presents a new maximum power point tracker system for photovoltaic applications. The developed system is an analog version of the ''P and O-oriented'' algorithm. It maintains its main advantages: simplicity, reliability and easy practical implementation, and avoids its main disadvantages: inaccurateness and relatively slow response. Additionally, the developed system can be implemented in a practical way at a low cost, which means an added value. The system also shows an excellent behavior for very fast variables in incident radiation levels. (author)

Enrique, J.M.; Andujar, J.M.; Bohorquez, M.A. [Departamento de Ingenieria Electronica, de Sistemas Informaticos y Automatica, Universidad de Huelva (Spain)

2010-01-15T23:59:59.000Z

455

A New Maximum-Likelihood Change Estimator for Two-Pass SAR Coherent Change Detection.  

SciTech Connect (OSTI)

In this paper, we derive a new optimal change metric to be used in synthetic aperture RADAR (SAR) coherent change detection (CCD). Previous CCD methods tend to produce false alarm states (showing change when there is none) in areas of the image that have a low clutter-to-noise power ratio (CNR). The new estimator does not suffer from this shortcoming. It is a surprisingly simple expression, easy to implement, and is optimal in the maximum-likelihood (ML) sense. The estimator produces very impressive results on the CCD collects that we have tested.

Wahl, Daniel E.; Yocky, David A.; Jakowatz, Charles V,

2014-09-01T23:59:59.000Z

456

Application of Maximum Entropy Method to Lattice Field Theory with a Topological Term  

E-Print Network [OSTI]

In Monte Carlo simulation, lattice field theory with a $\\theta$ term suffers from the sign problem. This problem can be circumvented by Fourier-transforming the topological charge distribution $P(Q)$. Although this strategy works well for small lattice volume, effect of errors of $P(Q)$ becomes serious with increasing volume and prevents one from studying the phase structure. This is called flattening. As an alternative approach, we apply the maximum entropy method (MEM) to the Gaussian $P(Q)$. It is found that the flattening could be much improved by use of the MEM.

M. Imachi; Y. Shinno; H. Yoneyama

2003-09-22T23:59:59.000Z

457

Conditional maximum-entropy method for selecting prior distributions in Bayesian statistics  

E-Print Network [OSTI]

The conditional maximum-entropy method (abbreviated here as C-MaxEnt) is formulated for selecting prior probability distributions in Bayesian statistics for parameter estimation. This method is inspired by a statistical-mechanical approach to systems governed by dynamics with largely-separated time scales and is based on three key concepts: conjugate pairs of variables, dimensionless integration measures with coarse-graining factors and partial maximization of the joint entropy. The method enables one to calculate a prior purely from a likelihood in a simple way. It is shown in particular how it not only yields Jeffreys's rules but also reveals new structures hidden behind them.

Abe, Sumiyoshi

2014-01-01T23:59:59.000Z

458

Charmonium spectra at finite temperature from QCD sum rules with the maximum entropy method  

E-Print Network [OSTI]

Charmonia spectral functions at finite temperature are studied using QCD sum rules in combination with the maximum entropy method. This approach enables us to directly obtain the spectral function from the sum rules, without having to introduce any specific assumption about its functional form. As a result, it is found that while J/psi and eta_c manifest themselves as significant peaks in the spectral function below the deconfinement temperature T_c, they quickly dissolve into the continuum and almost completely disappear at temperatures between 1.0 T_c and 1.1 T_c.

Philipp Gubler; Kenji Morita; Makoto Oka

2011-08-30T23:59:59.000Z

459

Spectral density analysis of time correlation functions in lattice QCD using the maximum entropy method  

E-Print Network [OSTI]

We study various aspects of extracting spectral information from time correlation functions of lattice QCD by means of Bayesian inference with an entropic prior, the maximum entropy method (MEM). Correlator functions of a heavy-light meson-meson system serve as a repository for lattice data with diverse statistical quality. Attention is given to spectral mass density functions, inferred from the data, and their dependence on the parameters of the MEM. We propose to employ simulated annealing, or cooling, to solve the Bayesian inference problem, and discuss practical issues of the approach.

H. Rudolf Fiebig

2002-10-31T23:59:59.000Z

460

Maximum Entropy and the Stress Distribution in Soft Disk Packings Above Jamming  

E-Print Network [OSTI]

We show that the maximum entropy hypothesis can successfully explain the distribution of stresses on compact clusters of particles within disordered mechanically stable packings of soft, isotropically stressed, frictionless disks above the jamming transition. We show that, in our two dimensional case, it becomes necessary to consider not only the stress but also the Maxwell-Cremona force-tile area, as a constraining variable that determines the stress distribution. The importance of the force-tile area was suggested by earlier computations on an idealized force-network ensemble.

Yegang Wu; S. Teitel

2014-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Spectral Functions, Maximum Entropy Method and Unconventional Methods in Lattice Field Theory  

E-Print Network [OSTI]

We present two unconventional methods of extracting information from hadronic 2-point functions produced by Monte Carlo simulations. The first is an extension of earlier work by Leinweber which combines a QCD Sum Rule approach with lattice data. The second uses the Maximum Entropy Method to invert the 2-point data to obtain estimates of the spectral function. The first approach is applied to QCD data, and the second method is applied to the Nambu--Jona-Lasinio model in (2+1)D. Both methods promise to augment the current approach where physical quantities are extracted by fitting to pure exponentials.

Chris Allton; Danielle Blythe; Jonathan Clowser

2002-04-26T23:59:59.000Z

462

On Weyl channels being covariant with respect to the maximum commutative group of unitaries  

SciTech Connect (OSTI)

We investigate the Weyl channels being covariant with respect to the maximum commutative group of unitary operators. This class includes the quantum depolarizing channel and the 'two-Pauli' channel as well. Then, we show that our estimation of the output entropy for a tensor product of the phase damping channel and the identity channel based upon the decreasing property of the relative entropy allows to prove the additivity conjecture for the minimal output entropy for the quantum depolarizing channel in any prime dimension and for the two-Pauli channel in the qubit case.

Amosov, Grigori G. [Department of Higher Mathematics, Moscow Institute of Physics and Technology, Dolgoprudny 141700 (Russian Federation)

2007-01-15T23:59:59.000Z

463

Maximum entropy analysis of hadron spectral functions and excited states in quenched lattice QCD  

E-Print Network [OSTI]

Employing the maximum entropy method we extract the spectral functions from meson correlators at four lattice spacings in quenched QCD with the Wilson quark action. We confirm that the masses and decay constants, obtained from the position and the area of peaks, agree well with the results from the conventional exponential fit. For the first excited state, we obtain $m_{\\pi_1} = 660(590)$ MeV, $m_{\\rho_1} = 1540(570)$ MeV, and $f_{\\rho_1} = 0.085(36)$ in the continuum limit.

CP-PACS Collaboration; :; S. Aoki; R. Burkhalter; M. Fukugita; S. Hashimoto; N. Ishizuka; Y. Iwasaki; K. Kanaya; T. Kaneko; Y. Kuramashi; M. Okawa; Y. Taniguchi; A. Ukawa; T. Yamazaki; T. Yoshi

2001-10-16T23:59:59.000Z

464

SPECTROSCOPIC OBSERVATIONS OF A CORONAL MORETON WAVE  

SciTech Connect (OSTI)

We observed a coronal wave (EIT wave) on 2011 February 16, using EUV imaging data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) and EUV spectral data from the Hinode/EUV Imaging Spectrometer (EIS). The wave accompanied an M1.6 flare that produced a surge and a coronal mass ejection (CME). EIS data of the wave show a prominent redshifted signature indicating line-of-sight velocities of {approx}20 km s{sup -1} or greater. Following the main redshifted wave front, there is a low-velocity period (and perhaps slightly blueshifted), followed by a second redshift somewhat weaker than the first; this progression may be due to oscillations of the EUV atmosphere set in motion by the initial wave front, although alternative explanations may be possible. Along the direction of the EIS slit the wave front's velocity was {approx}500 km s{sup -1}, consistent with its apparent propagation velocity projected against the solar disk as measured in the AIA images, and the second redshifted feature had propagation velocities between {approx}200 and 500 km s{sup -1}. These findings are consistent with the observed wave being generated by the outgoing CME, as in the scenario for the classic Moreton wave. This type of detailed spectral study of coronal waves has hitherto been a challenge, but is now possible due to the availability of concurrent AIA and EIS data.

Harra, Louise K. [UCL-Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Sterling, Alphonse C. [Space Science Office, VP62, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Goemoery, Peter [Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranska Lomnica (Slovakia); Veronig, Astrid, E-mail: lkh@mssl.ucl.ac.uk, E-mail: alphonse.sterling@nasa.gov, E-mail: gomory@astro.s, E-mail: astrid.veronig@uni-graz.at [Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria)

2011-08-10T23:59:59.000Z

465

Abstract--The many different techniques for maximum power point tracking of photovoltaic arrays are discussed. The  

E-Print Network [OSTI]

Abstract--The many different techniques for maximum power point tracking of photovoltaic arrays on implementation. This manuscript should serve as a convenient reference for future work in photovoltaic power generation. Index Terms--maximum power point tracking, MPPT, photovoltaic, PV. I. INTRODUCTION RACKING

Chapman, Patrick

466

On Maximum Available Feedback and PID Control -1 IEEE SMC UK&RI Applied Cybernetics Dr Richard Mitchell 2005  

E-Print Network [OSTI]

On Maximum Available Feedback and PID Control - 1 IEEE SMC UK&RI Applied Cybernetics © Dr Richard Mitchell 2005 ON MAXIMUM AVAILABLE FEEDBACK AND PID CONTROL Dr Richard Mitchell, Cybernetics, University frequencies A recent IEEE SMC Paper describes a robust PID controller whose phase is flat at key frequencies

Mitchell, Richard

467

One of the most clearly established and widely known facts in locomotor physiology is that the maximum force exerted by  

E-Print Network [OSTI]

(musculoskeletal systems and man-made machines such as piston engines, jets, and electric motors that use rotary) that simulated in vivo maximum musculoskeletal performance was proportional to muscle mass0.83, a significant increase in the scaling exponent over that of maximum isometric force output. The dynamic performance

Marden, James

468

Blind Joint Maximum Likelihood Channel Estimation and Data Detection for Single-Input Multiple-Output Systems  

E-Print Network [OSTI]

Blind Joint Maximum Likelihood Channel Estimation and Data Detection for Single-Input Multiple of Southampton, Southampton SO17 1BJ, U.K. Abstract--A blind adaptive scheme is proposed for joint maximum. A simulation example is used to demon- strate the effectiveness of this joint ML optimization scheme for blind

Chen, Sheng

469

Wave  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 WaterFebruary 18, 20141 Summer 2001

470

Variable Selection for Modeling the Absolute Magnitude at Maximum of Type Ia Supernovae  

E-Print Network [OSTI]

We discuss what is an appropriate set of explanatory variables in order to predict the absolute magnitude at the maximum of Type Ia supernovae. In order to have a good prediction, the error for future data, which is called the "generalization error," should be small. We use cross-validation in order to control the generalization error and LASSO-type estimator in order to choose the set of variables. This approach can be used even in the case that the number of samples is smaller than the number of candidate variables. We studied the Berkeley supernova database with our approach. Candidates of the explanatory variables include normalized spectral data, variables about lines, and previously proposed flux-ratios, as well as the color and light-curve widths. As a result, we confirmed the past understanding about Type Ia supernova: i) The absolute magnitude at maximum depends on the color and light-curve width. ii) The light-curve width depends on the strength of Si II. Recent studies have suggested to add more va...

Uemura, Makoto; Kawabata, S; Ikeda, Shiro; Maeda, Keiichi

2015-01-01T23:59:59.000Z

471

Analysis to determine the maximum dimensions of flexible apertures in sensored security netting products.  

SciTech Connect (OSTI)

Although technological advances provide new capabilities to increase the robustness of security systems, they also potentially introduce new vulnerabilities. New capability sometimes requires new performance requirements. This paper outlines an approach to establishing a key performance requirement for an emerging intrusion detection sensor: the sensored net. Throughout the security industry, the commonly adopted standard for maximum opening size through barriers is a requirement based on square inches-typically 96 square inches. Unlike standard rigid opening, the dimensions of a flexible aperture are not fixed, but variable and conformable. It is demonstrably simple for a human intruder to move through a 96-square-inch opening that is conformable to the human body. The longstanding 96-square-inch requirement itself, though firmly embedded in policy and best practice, lacks a documented empirical basis. This analysis concluded that the traditional 96-square-inch standard for openings is insufficient for flexible openings that are conformable to the human body. Instead, a circumference standard is recommended for these newer types of sensored barriers. The recommended maximum circumference for a flexible opening should be no more than 26 inches, as measured on the inside of the netting material.

Murton, Mark; Bouchier, Francis A.; vanDongen, Dale T.; Mack, Thomas Kimball; Cutler, Robert Paul; Ross, Michael P.

2013-08-01T23:59:59.000Z

472

Quantifying extrinsic noise in gene expression using the maximum entropy framework  

E-Print Network [OSTI]

We present a maximum entropy framework to separate intrinsic and extrinsic contributions to noisy gene expression solely from the profile of expression. We express the experimentally accessible probability distribution of the copy number of the gene product (mRNA or protein) by accounting for possible variations in extrinsic factors. The distribution of extrinsic factors is estimated using the maximum entropy principle. Our results show that extrinsic factors qualitatively and quantitatively affect the probability distribution of the gene product. We work out, in detail, the transcription of mRNA from a constitutively expressed promoter in {\\it E. coli}. We suggest that the variation in extrinsic factors may account for the observed {\\it wider than Poisson} distribution of mRNA copy numbers. We successfully test our framework on a numerical simulation of a simple gene expression scheme that accounts for the variation in extrinsic factors. We also make falsifiable predictions, some of which are tested on previous experiments in {\\it E. coli} while others need verification. Application of the current framework to more complex situations is also discussed.

Purushottam D. Dixit

2013-04-04T23:59:59.000Z

473

Quantum maximum-entropy principle for closed quantum hydrodynamic transport within a Wigner function formalism  

SciTech Connect (OSTI)

By introducing a quantum entropy functional of the reduced density matrix, the principle of quantum maximum entropy is asserted as fundamental principle of quantum statistical mechanics. Accordingly, we develop a comprehensive theoretical formalism to construct rigorously a closed quantum hydrodynamic transport within a Wigner function approach. The theoretical formalism is formulated in both thermodynamic equilibrium and nonequilibrium conditions, and the quantum contributions are obtained by only assuming that the Lagrange multipliers can be expanded in powers of ({h_bar}/2{pi}){sup 2}. In particular, by using an arbitrary number of moments, we prove that (1) on a macroscopic scale all nonlocal effects, compatible with the uncertainty principle, are imputable to high-order spatial derivatives, both of the numerical density n and of the effective temperature T; (2) the results available from the literature in the framework of both a quantum Boltzmann gas and a degenerate quantum Fermi gas are recovered as a particular case; (3) the statistics for the quantum Fermi and Bose gases at different levels of degeneracy are explicitly incorporated; (4) a set of relevant applications admitting exact analytical equations are explicitly given and discussed; (5) the quantum maximum entropy principle keeps full validity in the classical limit, when ({h_bar}/2{pi}){yields}0.

Trovato, M. [Dipartimento di Matematica, Universita di Catania, Viale A. Doria, I-95125 Catania (Italy); Reggiani, L. [Dipartimento di Ingegneria dell' Innovazione and CNISM, Universita del Salento, Via Arnesano s/n, I-73100 Lecce (Italy)

2011-12-15T23:59:59.000Z

474

Wave maps on a wormhole  

E-Print Network [OSTI]

We consider equivariant wave maps from a wormhole spacetime into the three-sphere. This toy-model is designed for gaining insight into the dissipation-by-dispersion phenomena, in particular the soliton resolution conjecture. We first prove that for each topological degree of the map there exists a unique static solution (harmonic map) which is linearly stable. Then, using the hyperboloidal formulation of the initial value problem, we give numerical evidence that every solution starting from smooth initial data of any topological degree evolves asymptotically to the harmonic map of the same degree. The late-time asymptotics of this relaxation process is described in detail.

Piotr Bizo?; Micha? Kahl

2014-12-17T23:59:59.000Z

475

Elgen Wave | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revisionWind,Soils and RocksElement Power Name:Elgen Wave

476

Emergent cosmological constant from colliding electromagnetic waves  

E-Print Network [OSTI]

In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.

M. Halilsoy; S. Habib Mazharimousavi; O. Gurtug

2014-10-15T23:59:59.000Z

477

Refrigeration system having standing wave compressor  

DOE Patents [OSTI]

A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

Lucas, Timothy S. (Glen Allen, VA)

1992-01-01T23:59:59.000Z

478

Wave Heating of the Solar Atmosphere  

E-Print Network [OSTI]

Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding on coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding on the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation, and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us understanding and quantifying magnetic wave heating of the sola...

Arregui, I

2015-01-01T23:59:59.000Z

479

Particle acceleration in superluminal strong waves  

E-Print Network [OSTI]

We calculate the electron acceleration in random superluminal strong waves (SLSWs) and radiation from them by using numerical methods in the context of the termination shock of the pulsar wind nebulae. We pursue the electrons by solving the equation of motion in the analytically expressed electromagnetic turbulences. These consist of primary SLSW and isotropically distributed secondary electromagnetic waves. Under the dominance of the secondary waves, all electrons gain nearly equal energy. On the other hand, when the primary wave is dominant, selective acceleration occurs. The phase of the primary wave felt by the electrons moving nearly along the wavevector changes very slowly compared to the oscillation of the wave, which is called "phase locked", and such electrons are continuously accelerated. This acceleration by SLSWs may play a crucial role in the pre-acceleration for the shock acceleration. In general, the radiation from the phase-locked population is different from the synchro-Compton radiation. How...

Teraki, Yuto; Nagataki, Shigehiro

2015-01-01T23:59:59.000Z

480

Some Wave Equations for Electromagnetism and Gravitation  

E-Print Network [OSTI]

The paper studies the inferences of wave equations for electromagnetic fields when there are gravitational fields at the same time. In the description with the algebra of octonions, the inferences of wave equations are identical with that in conventional electromagnetic theory with vector terminology. By means of the octonion exponential function, we can draw out that the electromagnetic waves are transverse waves in a vacuum, and rephrase the law of reflection, Snell's law, Fresnel formula, and total internal reflection etc. The study claims that the theoretical results of wave equations for electromagnetic strength keep unchanged in the case for coexistence of gravitational and electromagnetic fields. Meanwhile the electric and magnetic components of electromagnetic waves can not be determined simultaneously in electromagnetic fields.

Zi-Hua Weng

2010-08-11T23:59:59.000Z

Note: This page contains sample records for the topic "maximum wave heightm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Speed selection for coupled wave equations  

E-Print Network [OSTI]

We discuss models for coupled wave equations describing interacting fields, focusing on the speed of travelling wave solutions. In particular, we propose a general mechanism for selecting and tuning the speed of the corresponding (multi-component) travelling wave solutions under certain physical conditions. A number of physical models (molecular chains, coupled Josephson junctions, propagation of kinks in chains of adsorbed atoms and domain walls) are considered as examples.

Mariano Cadoni; Giuseppe Gaeta

2015-01-13T23:59:59.000Z

482

The Nonlinear Essence of Gravitational Waves  

E-Print Network [OSTI]

A critical review of gravitational wave theory is made. It is pointed out that the usual linear approach to the gravitational wave theory is neither conceptually consistent nor mathematically justified. Relying upon that analysis it is then argued that -- analogously to a Yang-Mills propagating field, which must be nonlinear to carry its gauge charge -- a gravitational wave must necessarily be nonlinear to transport its own charge -- that is, energy-momentum.

R. Aldrovandi; J. G. Pereira; K. H. Vu

2007-09-11T23:59:59.000Z

483

Wave Propagation in Fractured Poroelastic Media  

E-Print Network [OSTI]

Wave Propagation in Fractured. Poroelastic Media. WCCM, Barcelona, Spain, July 2014. Juan E. Santos,. 1. 1. Instituto del Gas y del Petroleo (IGPUBA), UBA,

2014-06-22T23:59:59.000Z

484

Stochastic Quantum Trajectories without a Wave Function  

E-Print Network [OSTI]

After summarizing three versions of trajectory-based quantum mechanics, it is argued that only the original formulation due to Bohm, which uses the Schr\\"odinger wave function to guide the particles, can be readily extended to particles with spin. To extend the two wave function-free formulations, it is argued that necessarily particle trajectories not only determine location, but also spin. Since spin values are discrete, it is natural to revert to a variation of Bohm's pilot wave formulation due originally to Bell. It is shown that within this formulation with stochastic quantum trajectories, a wave function free formulation can be obtained.

Jeroen C. Vink

2015-03-16T23:59:59.000Z

485

Wave Packets Propagation in Quantum Gravity  

E-Print Network [OSTI]

Wave packet broadening in usual quantum mechanics is a consequence of dispersion behavior of the medium which the wave propagates in it. In this paper, we consider the problem of wave packet broadening in the framework of Generalized Uncertainty Principle(GUP) of quantum gravity. New dispersion relations are derived in the context of GUP and it has been shown that there exists a gravitational induced dispersion which leads to more broadening of the wave packets. As a result of these dispersion relations, a generalized Klein-Gordon equation is obtained and its interpretation is given.

Kourosh Nozari; S. H. Mehdipour

2005-07-03T23:59:59.000Z

486

Fast methods for inverse wave scattering problems  

E-Print Network [OSTI]

Inverse wave scattering problems arise in many applications including computerized/diffraction tomography, seismology, diffraction/holographic grating design, object identification from radar singals, and semiconductor ...

Lee, Jung Hoon, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

487

European Wave and Tidal Energy Conference  

Broader source: Energy.gov [DOE]

The European Wave and Tidal Energy Conference (EWTEC) series are international, technical and scientific conferences, focussed on ocean renewable energy and widely respected for their commitment to...

488

Aspects of the PP wave/ CFT correspondence  

E-Print Network [OSTI]

In this thesis, I discuss various aspects of the PP wave/CFT duality as a concrete example of the gauge-gravity correspondence.

Grsoy, Umur

2005-01-01T23:59:59.000Z

489

Elastic Wave Behavior Across Linear Slip Interfaces  

E-Print Network [OSTI]

plane waves incident at arbitrary angles upon a plane linear slip interface are computed ... Also included in these sections is an analysis ... ish, Ut is of the form.

Schoenberg, M.

490

Sharp shock model for propagating detonation waves  

SciTech Connect (OSTI)

Recent analyses of the reactive Euler equations have led to an understanding of the effect of curvature on an underdriven detonation wave. This advance can be incorporated into an improved sharp shock model for propagating detonation waves in hydrodynamic calculations. We illustrate the model with two simple examples: time dependent propagation of a diverging detonation wave in 1-D, and the steady 2-D propagation of a detonation wave in a rate stick. Incorporating this model into a 2-D front tracking code is discussed. 20 refs., 3 figs.

Bukiet, B.; Menikoff, R.

1989-01-01T23:59:59.000Z

491

Emergence of exponentially small reflected waves  

E-Print Network [OSTI]

We study the time-dependent scattering of a quantum mechanical wave packet at a barrier for energies larger than the barrier height, in the semi-classical regime. More precisely, we are interested in the leading order of the exponentially small scattered part of the wave packet in the semiclassical parameter when the energy density of the incident wave is sharply peaked around some value. We prove that this reflected part has, to leading order, a Gaussian shape centered on the classical trajectory for all times soon after its birth time. We give explicit formulas and rigorous error bounds for the reflected wave for all of these times.

Volker Betz; Alain Joye; Stefan Teufel

2008-04-23T23:59:59.000Z

492

Experiment Indicates Sound Waves Can Trigger Quakes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in a laboratory setting, a Los Alamos researcher and his colleagues have shown that seismic waves-the sounds radiated from earthquakes-can induce earthquake aftershocks, often...

493

Holographic p-wave Josephson junction  

E-Print Network [OSTI]

In this work we generalized holographic model for s-wave DC Josephson junction constructed in arXiv:1101.3326[hep-th] to a holographic description for p-wave Josephson junction. By solving numerically the coupled equations of motion of Yang-Mills theory for a non-Abelian SU(2) gauge fields in (3+1)-dimensional AdS spacetimes, we shown that DC current of the p-wave Josephson junction is proportional to the sine of the phase difference across the junction like the s-wave case.

Wang, Yong-Qiang; Zhao, Zhen-Hua

2011-01-01T23:59:59.000Z

494

Holographic p-wave Josephson junction  

E-Print Network [OSTI]

In this work we generalized holographic model for s-wave DC Josephson junction constructed in arXiv:1101.3326[hep-th] to a holographic description for p-wave Josephson junction. By solving numerically the coupled equations of motion of Yang-Mills theory for a non-Abelian SU(2) gauge fields in (3+1)-dimensional AdS spacetimes, we shown that DC current of the p-wave Josephson junction is proportional to the sine of the phase difference across the junction like the s-wave case.

Yong-Qiang Wang; Yu-Xiao Liu; Zhen-Hua Zhao

2011-09-20T23:59:59.000Z

495

Reflection of electromagnetic waves from mixtures of plane gravitational and scalar waves  

E-Print Network [OSTI]

We consider colliding wave packets consisting of hybrid mixtures of electromagnetic, gravitational and scalar waves. Irrespective of the scalar field, the electromagnetic wave still reflects from the gravitational wave. Some reflection processes are given for different choice of packets in which the Coulomb-like component $\\Psi_2$ vanishes. Exact solution for multiple reflection of an electromagnetic wave from successive impulsive gravitational waves is obtained in a closed form. It is shown that a succesive sign flip in the Maxwell spinor arises as a result of encountering with an impulsive train (i.e. the Dirac's comb curvature) of gravitational waves. Such an observable effect may be helpful in the detection of gravitational wave bursts.

Ozay Gurtug; Mustafa Halilsoy; Ozlem Unver

2006-08-22T23:59:59.000Z

496

Measurements and Linear Wave Theory Based Simulations of Vegetated Wave Hydrodynamics for Practical Applications  

E-Print Network [OSTI]

Wave attenuation by vegetation is a highly dynamic process and its quantification is important for accurately understanding and predicting coastal hydrodynamics. However, the influence of vegetation on wave dissipation is not yet fully established...

Anderson, Mary Elizabeth

2011-10-21T23:59:59.000Z

497

Full-wave modeling of lower hybrid waves on Alcator C-Mod  

E-Print Network [OSTI]

This thesis focuses on several aspects of the Lower Hybrid (LH) wave physics, the common theme being the development of full-wave simulation codes based on Finite Element Methods (FEM) used in support of experiments carried ...

Meneghini, Orso (Orso-Maria Cornelio)

2012-01-01T23:59:59.000Z

498

Parameter-space correlations of the optimal statistic for continuous gravitational-wave detection  

E-Print Network [OSTI]

The phase parameters of matched-filtering searches for continuous gravitational-wave signals are sky position, frequency and frequency time-derivatives. The space of these parameters features strong global correlations in the optimal detection statistic. For observation times smaller than one year, the orbital motion of the Earth leads to a family of global-correlation equations which describes the "global maximum structure" of the detection statistic. The solution to each of these equations is a different hypersurface in parameter space. The expected detection statistic is maximal at the intersection of these hypersurfaces. The global maximum structure of the detection statistic from stationary instrumental-noise artifacts is also described by the global-correlation equations. This permits the construction of a veto method which excludes false candidate events.

Holger J. Pletsch

2009-05-19T23:59:59.000Z

499

"Nonrelativistic" kinematics: Particles or waves?  

E-Print Network [OSTI]

The kinematics of particles refer to events and tangent vectors, while that of waves refer to dual gradient planes. Special relativity [1-3] applies to both objects alike. Here we show that spacetime exchange symmetry [7] implicit in the SIdefinition of length based on the universal constant c has profound consequences at low velocities. Galilean physics, exact in the limit c \\to \\infty, is mirrored by a dual so-called Carrollian superluminal kinematics [4-6] exact in the limit c \\to 0. Several new results follow. The Galilean limit explains mass conservation in Newtonian mechanics, while the dual limit is a kinematical prerequisite for wavelike tachyonic motion [8, 9]. As an example, the Land\\'e paradox [19, 20] of waveparticle duality has a natural resolution within special relativity in terms of superluminal, particlelike waves. It is emphasized that internal particle energy mc^2 can not be ignored, while kinetic energy leads to an extended Galilei group. We also demonstrate that Maxwell's equations have magnetic and electric limits covariant under Galilean and Carrollian symmetry.

Jens Madsen Houlrik; Germain Rousseaux

2010-05-11T23:59:59.000Z

500

Sound Waves from Quenched Jets  

E-Print Network [OSTI]

Heavy ion collisions at RHIC/LHC energies are well described by the (nearly ideal) hydrodynamics. Last year this success has been extended to higher angular harmonics, $v_n,n=3..9$ induced by initial-state perturbations, in analogy to cosmic microwave background fluctuations. Here we use hydrodynamics to study sound propagation emitted by quenched jets. We use the so called "geometric acoustics" to follow the sound propagation, on top of the expanding fireball. The conical waves, known as "Mach cones", turn out to be strongly distorted. We show that large radial flow makes the observed particle spectra to be determined mostlly by the vicinity of their intersection with the fireball's space-like and time-like freezeout surfaces. We further show how the waves modify the freezeout surfaces and spectra. We end up comparing our calculations to the two-particle correlation functions at RHIC, while emphasizing that studies of dijet events observed at LHC should provide much better test of our theory.

Vladimir Khachatryan; Edward Shuryak

2011-08-15T23:59:59.000Z