On the maximum pressure rise rate in boosted HCCI operation
Wildman, Craig B.
This paper explores the combined effects of boosting, intake air temperature, trapped residual gas fraction, and dilution on the Maximum Pressure Rise Rate (MPRR) in a boosted single cylinder gasoline HCCI engine with ...
STATE OF CALIFORNIA MAXIMUM RATED TOTAL COOLING CAPACITY
/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-27-HERS Maximum Rated Total Cooling Capacity of the installed system (Btu/hr) 3b Sum of the ARI Rated Total Cooling Capacities of multiple systems installed Cooling Capacities of the installed cooling systems must be calculated and entered in row 3b. 4a MRTCC
STATE OF CALIFORNIA MAXIMUM RATED TOTAL COOLING CAPACITY
that the installed space conditioning system must have a cooling capacity rating at ARI conditions that is equal Total Cooling Capacity of the installed system (Btu/hr) 3b Sum of the ARI Rated Total Cooling Capacities, then the sum of ARI Rated Cooling Capacities of the installed cooling systems must be calculated and entered
Tadi?, Vladislav B
2009-01-01T23:59:59.000Z
This paper considers the asymptotic properties of the recursive maximum likelihood estimation in hidden Markov models. The paper is focused on the asymptotic behavior of the log-likelihood function and on the point-convergence and convergence rate of the recursive maximum likelihood estimator. Using the principle of analytical continuation, the analyticity of the asymptotic log-likelihood function is shown for analytically parameterized hidden Markov models. Relying on this fact and some results from differential geometry (Lojasiewicz inequality), the almost sure point-convergence of the recursive maximum likelihood algorithm is demonstrated, and relatively tight bounds on the convergence rate are derived. As opposed to the existing result on the asymptotic behavior of maximum likelihood estimation in hidden Markov models, the results of this paper are obtained without assuming that the log-likelihood function has an isolated maximum at which the Hessian is strictly negative definite.
What is the maximum rate at which entropy of a string can increase?
Ropotenko, Kostyantyn [State Administration of Communications, Ministry of Transport and Communications of Ukraine 22, Khreschatyk, 01001, Kyiv (Ukraine)
2009-03-15T23:59:59.000Z
According to Susskind, a string falling toward a black hole spreads exponentially over the stretched horizon due to repulsive interactions of the string bits. In this paper such a string is modeled as a self-avoiding walk and the string entropy is found. It is shown that the rate at which information/entropy contained in the string spreads is the maximum rate allowed by quantum theory. The maximum rate at which the black hole entropy can increase when a string falls into a black hole is also discussed.
Improving conversion rates in low severity coal liquefaction
Williams, B. [West Georgia College, Carrollton, GA (United States)
1995-07-01T23:59:59.000Z
A series of reactions were run with lignite coal and subbituminous coal. The purpose was: (1) to prove the importance that various treatments have in producing high conversion rates in low severity coal liquefaction, and (2) to determine their independent and combined effectiveness. The coal was pretreated with HCI and methanol. Molybdenum naphthanate and nickel octoate were independently used as catalysts. Also, the cyclic olefin, 1, 4, 5, 8, 9, 10-hexahydroanthracene (HHA), was tested as a hydrogen donor. By using all of these treatments with molybdenum naphthanate as the catalyst, the best conversion rate of 56% was achieved. This project was made possible by the U.S. Department of Energy (DOE) University Coal Research (UCR) Internship Program. This program is managed and operated for DOE by the Oak Ridge Institute for Science and Education (ORISE). Participants are assigned to universities conducting fossil energy-related research under UCR grants from the Pittsburgh Technology Center (PETC). All research was performed at Auburn University under the supervision of Dr. Christine W. Curtis.
Zi-Niu Wu
2013-10-02T23:59:59.000Z
For many natural process of growth, with the growth rate independent of size due to Gibrat law and with the growth process following a log-normal distribution, the ratio between the time (D) for maximum value and the time (L) for maximum growth rate (inflexion point) is then equal to the square root of the base of the natural logarithm (e^{1/2}). On the logarithm scale this ratio becomes one half ((1/2)). It remains an open question, due to lack of complete data for various cases with restricted growth, whether this e^{1/2} ratio can be stated as e^{1/2}-Law. Two established examples already published, one for an epidemic spreading and one for droplet production, support however this ratio. Another example appears to be the height of humain body. For boys the maximum height occurs near 23 years old while the maximum growth rate is at the age near 14, and there ratio is close to e^{1/2}. The main theoretical base to obtain this conclusion is problem independent, provided the growth process is restricted, such as public intervention to control the spreading of communicable epidemics, so that an entropy is associated with the process and the role of dissipation, representing the mechanism of intervention, is maximized. Under this formulation the principle of maximum rate of entropy production is used to make the production process problem independent.
INSTALLATION CERTIFICATE CF-6R-MECH-27-HERS Maximum Rated Total Cooling Capacity (Page 1 of 2)
INSTALLATION CERTIFICATE CF-6R-MECH-27-HERS Maximum Rated Total Cooling Capacity (Page 1 of 2) Site of the installed system (Btu/hr) 3b Sum of the ARI Rated Total Cooling Capacities of multiple systems installed Cooling Capacities of the installed cooling systems must be calculated and entered in row 3b. 4a MRTCC
NONLINEAR DEVELOPMENT OF THE R-MODE INSTABILITY AND THE MAXIMUM ROTATION RATE OF NEUTRON STARS
Bondarescu, Ruxandra [Institute for Theoretical Physics, University of Zurich, CH-8057 Zurich (Switzerland); Wasserman, Ira, E-mail: ruxandra@physik.uzh.ch, E-mail: ira@astro.cornell.edu [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)
2013-11-20T23:59:59.000Z
We describe how the nonlinear development of the R-mode instability of neutron stars influences spin up to millisecond periods via accretion. When nearly resonant interactions of the l = m = 2 R-mode with pairs of 'daughter modes' are included, the R-mode saturates at the lowest amplitude which leads to significant excitation of a pair of modes. The lower bound for this threshold amplitude is proportional to the damping rate of the particular daughter modes that are excited parametrically. We show that if dissipation occurs in a very thin boundary layer at the crust-core boundary, the R-mode saturation amplitude is too large for angular momentum gain from accretion to overcome loss to gravitational radiation. We find that lower dissipation is required to explain spin up to frequencies much higher than 300 Hz. We conjecture that if the transition from the fluid core to the crystalline crust occurs over a distance much longer than 1 cm, then a sharp viscous boundary layer fails to form. In this case, damping is due to shear viscosity dissipation integrated over the entire star. We estimate the lowest parametric instability threshold from first principles. The resulting saturation amplitude is low enough to permit spin up to higher frequencies. The requirement to allow continued spin up imposes an upper bound to the frequencies attained via accretion that plausibly may be about 750 Hz. Within this framework, the R-mode is unstable for all millisecond pulsars, whether accreting or not.
Maximum-rate, Minimum-Decoding-Complexity STBCs from Clifford Algebras
Karmakar, Sanjay
2007-01-01T23:59:59.000Z
It is well known that Space-Time Block Codes (STBCs) from orthogonal designs (ODs) are single-symbol decodable/symbol-by-symbol decodable (SSD) and are obtainable from unitary matrix representations of Clifford algebras. However, SSD codes are obtainable from designs that are not orthogonal also. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). Codes from ODs, CIODs and MDC-QODs are mutually non-intersecting classes of codes. The class of CIODs have {\\it non-unitary weight matrices} when written as a Linear Dispersion Code (LDC) proposed by Hassibi and Hochwald, whereas several known SSD codes including CODs have {\\it unitary weight matrices}. In this paper, we obtain SSD codes with unitary weight matrices (that are not CODs) called Clifford Unitary Weight SSDs (CUW-SSDs) from matrix representations of Clifford algebras. A main result of this paper is the derivation of an ach...
MicroShield analysis to calculate external radiation dose rates for several spent fuel casks
Marincel, M.K. [Missouri Univ., Rolla, MO (United States); Weiner, R.F.; Osborn, D.M. [Sandia National Laboratories, Albuquerque, NM (United States)
2007-07-01T23:59:59.000Z
The purpose of this MicroShield analysis is to calculate the external radiation, primarily gamma, dose rate for spent fuel casks. The reason for making this calculation is that currently all analyses of transportation risk assume that this external dose rate is the maximum allowed by regulation, 10 mrem/hr at 2 m from the casks, and the risks of incident-free transportation are thus always overestimated to an unknown extent. In order to do this, the program by Grove Software, MicroShield 7.01, was used to model three Nuclear Regulatory Commission (NRC) approved casks: HI-STAR 100, GA-4, and NAC-STC, loaded with specific source material. Dimensions were obtained from NUREG/CR-6672 and the Certificates of Compliance for each respective cask. Detectors were placed at the axial point at 1 m and 2 m from the outer gamma shielding of the casks. In the April 8, 2004 publication of the Federal Register, a notice of intent to prepare a Supplemental Yucca Mountain Environmental Impact Statement (DOE/EIS-0250F-S1) was published by the Office of Civilian Radioactive Waste Management (OCRWM) in order to consider design, construction, operation, and transportation of spent nuclear fuel to the Yucca Mountain repository [1]. These more accurate estimates of the external dose rates could be used in order to provide a more risk-informed analysis. (authors)
Bahrami, Majid
7-42 7-111 A Carnot heat engine is used to drive a Carnot refrigerator. The maximum rate of heat removal from the refrigerated space and the total rate of heat rejection to the ambient air are to be determined. Assumptions The heat engine and the refrigerator operate steadily. Analysis (a) The highest
Loading rate dependency of maximum nanoindentation depth in nano-grained NiTi shape memory alloy
Sun, Qing-Ping
of loading rate on nanoindentation depth for nano-grained polycrystalline superelastic (SE) NiTi SMA superelastic NiTi polycrystalline sheets were purchased from Memory Applications Inc. (USA). With X temperature (T=23 °C). To avoid plastic deformation under the tip, two spherical diamond tips with radii of R
Maximum Entropy Correlated Equilibria
Ortiz, Luis E.
2006-03-20T23:59:59.000Z
We study maximum entropy correlated equilibria in (multi-player)games and provide two gradient-based algorithms that are guaranteedto converge to such equilibria. Although we do not provideconvergence rates for these ...
Not Available
1993-07-01T23:59:59.000Z
This document provides an analysis of the potential impacts associated with the proposed action, which is continued operation of Naval Petroleum Reserve No. I (NPR-1) at the Maximum Efficient Rate (MER) as authorized by Public law 94-258, the Naval Petroleum Reserves Production Act of 1976 (Act). The document also provides a similar analysis of alternatives to the proposed action, which also involve continued operations, but under lower development scenarios and lower rates of production. NPR-1 is a large oil and gas field jointly owned and operated by the federal government and Chevron U.SA Inc. (CUSA) pursuant to a Unit Plan Contract that became effective in 1944; the government`s interest is approximately 78% and CUSA`s interest is approximately 22%. The government`s interest is under the jurisdiction of the United States Department of Energy (DOE). The facility is approximately 17,409 acres (74 square miles), and it is located in Kern County, California, about 25 miles southwest of Bakersfield and 100 miles north of Los Angeles in the south central portion of the state. The environmental analysis presented herein is a supplement to the NPR-1 Final Environmental Impact Statement of that was issued by DOE in 1979 (1979 EIS). As such, this document is a Supplemental Environmental Impact Statement (SEIS).
Robert Felix Tournier
2015-02-23T23:59:59.000Z
An undercooled liquid is unstable. The driving force of the glass transition at Tg is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Dp accompanying the enthalpy change -Vm *Dp at Tg where Vm is the molar volume. A stable glass-liquid transition model predicts the specific heat jump of fragile liquids at temperatures smaller than Tg, the Kauzmann temperature TK where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between TK and Tg, the maximum nucleation rate at TK of superclusters containing magic atom numbers, and the equilibrium latent heats at Tg and TK. Strong-to-fragile and strong-to-strong liquid transitions at Tg are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid-liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at TK of a stable glass composed of superclusters containing up to 147 atoms, touching and interpenetrating, are evaluated from nucleation rates. A fragile-to-fragile liquid transition occurs at Tg without stable-glass formation while a strong glass is stable after transition.
Not Available
1992-05-01T23:59:59.000Z
The proposed action involves the continued operation of the Naval Petroleum Reserve No. 1 (NPR-1) at the Maximum Efficiency Rate (MER) through the year approximately 2025 in accordance with the requirements of the Naval Petroleum Reserves Production Act of 1976 (P.L. 94-258). NPR-1 is a large oil and gas field comprising 74 square miles. MER production primarily includes continued operation and maintenance of existing facilities; a well drilling and abandonment program; construction and operation of future gas processing, gas compression, and steamflood, waterflood, cogeneration, and butane isomerization facilities; and continued implementation of a comprehensive environmental protection program. The basis for the draft environment impact statement (DSEIS) proposed action is the April 1989 NPR-1 Long Range Plan which describes a myriad of planned operational, maintenance, and development activities over the next 25--30 years. These activities include the continued operation of existing facilities; additional well drilling; expanded steamflood operations; expanded waterflood programs; expanded gas compression, gas lift, gas processing and gas injection; construction of a new cogeneration facility; construction of a new isobutane facility; and a comprehensive environmental program designed to minimize environmental impacts.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates FY 15 PRR worksheet (PDF - 31K) FY...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
RATES Rates Document Library SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Marketing > RATES RATES Current Rates Past Rates 2006 2007 2008 2009 2010 2011 2012 Rates Schedules Power CV-F13 CPP-2 Transmissions CV-T3 CV-NWT5 PACI-T3 COTP-T3 CV-TPT7 CV-UUP1...
Bahrami, Majid
7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k
Anderson, D.C.
1994-11-01T23:59:59.000Z
Activities associated with oil and gas development under the Maximum Efficiency Rate (MER) from 1975 to 2025 will disturb approximately 3,354 acres. Based on 1976 aerial photographs and using a dot grid methodology, the amount of land disturbed prior to MER is estimated to be 3,603 acres. Disturbances on Naval Petroleum Reserve No. 1 (NPR-1) were mapped using 1988 aerial photography and a geographical information system. A total of 6,079 acres were classified as disturbed as of June, 1988. The overall objective of this document is to provide specific information relating to the on-site habitat restoration program at NPRC. The specific objectives, which relate to the terms and conditions that must be met by DOE as a means of protecting the San Joaquin kit fox from incidental take are to: (1) determine the amount and location of disturbed lands on NPR-1 and the number of acres disturbed as a result of MER activities, (2) develop a long term (10 year) program to restore an equivalent on-site acres to that lost from prior project-related actions, and (3) examine alternative means to offset kit fox habitat loss.
MELE: Maximum Entropy Leuven Estimators
Paris, Quirino
2001-01-01T23:59:59.000Z
of the Generalized Maximum Entropy Estimator of the Generaland Douglas Miller, Maximum Entropy Econometrics, Wiley andCalifornia Davis MELE: Maximum Entropy Leuven Estimators by
Maximum Parsimony and Maximum Likelihood Methods Comparisons and Bootstrap Tests
Qiu, Weigang
Maximum Parsimony and Maximum Likelihood Methods Comparisons and Bootstrap Tests Character Likelihood Methods Comparisons and Bootstrap Tests Character Reconstruction PHYLIP and T-REX Exercises Outline 1 Maximum Parsimony and Maximum Likelihood 2 Methods Comparisons and Bootstrap Tests 3 Character
Broader source: Energy.gov [DOE]
Severance pay is authorized for full-time and part-time employees who are involuntarily separated from Federal service and who meet other conditions of eligibility.
A Requirement for Significant Reduction in the Maximum BTU Input...
A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for...
university-logo Maximum likelihood
McCullagh, Peter
university-logo Maximum likelihood Applications and examples REML and residual likelihood Peter McCullagh REML #12;university-logo Maximum likelihood Applications and examples JAN: Some personal remarks... IC #12;university-logo Maximum likelihood Applications and examples Outline 1 Maximum likelihood REML
Maximum total organic carbon limit for DWPF melter feed
Choi, A.S.
1995-03-13T23:59:59.000Z
DWPF recently decided to control the potential flammability of melter off-gas by limiting the total carbon content in the melter feed and maintaining adequate conditions for combustion in the melter plenum. With this new strategy, all the LFL analyzers and associated interlocks and alarms were removed from both the primary and backup melter off-gas systems. Subsequently, D. Iverson of DWPF- T{ampersand}E requested that SRTC determine the maximum allowable total organic carbon (TOC) content in the melter feed which can be implemented as part of the Process Requirements for melter feed preparation (PR-S04). The maximum TOC limit thus determined in this study was about 24,000 ppm on an aqueous slurry basis. At the TOC levels below this, the peak concentration of combustible components in the quenched off-gas will not exceed 60 percent of the LFL during off-gas surges of magnitudes up to three times nominal, provided that the melter plenum temperature and the air purge rate to the BUFC are monitored and controlled above 650 degrees C and 220 lb/hr, respectively. Appropriate interlocks should discontinue the feeding when one or both of these conditions are not met. Both the magnitude and duration of an off-gas surge have a major impact on the maximum TOC limit, since they directly affect the melter plenum temperature and combustion. Although the data obtained during recent DWPF melter startup tests showed that the peak magnitude of a surge can be greater than three times nominal, the observed duration was considerably shorter, on the order of several seconds. The long surge duration assumed in this study has a greater impact on the plenum temperature than the peak magnitude, thus making the maximum TOC estimate conservative. Two models were used to make the necessary calculations to determine the TOC limit.
O'Farrell, T.P.; Harris, C.E.; Kato, T.T.; McCue, P.M.
1986-06-01T23:59:59.000Z
Between 1980 and 1986 DOE sponsored field studies to gather sufficient information to determine the status of the species on Naval Petroleum Reserve-1 and to evaluate the possible effects of MER. Transect surveys were conducted in 1979 and 1984 to document the distribution and relative density of fox dens. Radiotelemetry studies were initiated to provide information on reproductive success, den use patterns, responses to petroleum field activities, food habits, movement patterns and home ranges, and sources and rates of mortality. Techniques for conducting preconstruction surveys to minimize possible negative effects of MER activities on foxes plus a habitat restoration program were developed and implemented. DOE determined during this biological assessment that the construction projects and operational activities necessary to achieve and sustain MER may have adversely affected the San Joaquin kit fox and its habitat. However, the direct, indirect, and cumulative effects of MER will not jeopardize the continued existence of the species because: (1) results of the extensive field studies did not provide evidence that MER effected negative changes in relative abundance, reproductive success, and dispersal of the species; (2) a successful policy of conducting preconstruction surveys to protect kit fox, their dens, and portions of their habitat was initiated; (3) the Secretary of the Interior did not designate critical habitat; (4) a habitat restoration plan was developed and implemented; (5) a monitoring program was implemented to periodically assess the status of kit fox; (6) a coyote control program was established with FWS to reduce predation on fox; and (7) administrative policies to reduce vehicle speeds, contain oil spills, restrict off-road vehicle (ORV) travel, and to prohibit hunting, trapping, livestock grazing, and agricultural activities, were maintained to protect kit fox.
Achieve maximum application availability and
Bernstein, Phil
Highlights Achieve maximum application availability and data protection using SQL Server AlwaysOn and other high availability features Reduce planned downtime significantly with SQL Server on Windows and management of high availability and disaster recovery using integrated tools Achieve maximum application
Original article Restricted maximum likelihood
Paris-Sud XI, Université de
Original article Restricted maximum likelihood estimation of covariances in sparse linear models on the simplex algorithm of Nelder and Mead [40]. Kovac [29] made modifications that turned it into a stable
Wang, Yuqing
Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated is eventually dissipated due to surface friction. Since the energy production rate is a linear function while frictional dissipation rate balances the energy production rate near the radius of maximum wind (RMW
Wang, Yuqing
0 Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated is eventually dissipated due to surface friction. Since the energy production rate is a linear function while frictional dissipation rate balances the energy production rate near the radius of maximum wind (RMW
Maximum likelihood estimation for cooperative sequential adsorption
Burton, Geoffrey R.
Maximum likelihood estimation for cooperative sequential adsorption Mathew D. Penrose and Vadim;Maximum likelihood estimation for cooperative sequential adsorption M.D. Penrose, Department of the region. Keywords: cooperative sequential adsorption, space-time point pro- cess, maximum likelihood
Estimating a mixed strategy employing maximum entropy
Golan, Amos; Karp, Larry; Perloff, Jeffrey M.
1996-01-01T23:59:59.000Z
MIXED STRATEGY EMPLOYING MAXIMUM ENTROPY by Amos Golan LarryMixed Strategy Employing Maximum Entropy Amos Golan Larry S.Abstract Generalized maximum entropy may be used to estimate
Boiler Maximum Achievable Control Technology (MACT) Technical...
Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact Sheet, April 2015 Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact...
Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint
Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.
2012-07-01T23:59:59.000Z
This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.
Maximum likelihood estimation of the equity Efstathios Avdis
Kahana, Michael J.
premium is usually estimated by taking the sample mean of stock returns and subtracting a measure the expected return on the aggregate stock market less the government bill rate, is of central importance an alternative esti- mator, based on maximum likelihood, that takes into account informa- tion contained
MARTIN'S MAXIMUM AND TOWER FORCING SEAN COX AND MATTEO VIALE
Viale, Matteo
MARTIN'S MAXIMUM AND TOWER FORCING SEAN COX AND MATTEO VIALE Abstract. There are several examples, the Reflection Princi- ple (RP) implies that if I is a tower of ideals which concentrates on the class GIC1 of 1 [16], shows that if PFA+ or MM holds and there is an inaccessible cardinal, then there is a tower
Maximum entropy principal for transportation
Bilich, F. [University of Brasilia (Brazil); Da Silva, R. [National Research Council (Brazil)
2008-11-06T23:59:59.000Z
In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Rates and...
LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL
Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta
2000-02-26T23:59:59.000Z
Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.
Maximum Running Speed of Captive Bar-Headed Geese Is Unaffected by Severe Hypoxia
Scott, Graham
of Zoology, University of British Columbia, Vancouver, Canada, 6 Department of Biology, McMaster University lower than bar-headed geese. In bar-headed geese, partial pressures of oxygen and carbon dioxide in both Research Council (BBSRC) of the United Kingdom [Grant number BB/F015615/1] to CMB and PJB. The funders had
Optimization Online - Efficient Heuristic Algorithms for Maximum ...
T. G. J. Myklebust
2012-11-19T23:59:59.000Z
Nov 19, 2012 ... Efficient Heuristic Algorithms for Maximum Utility Product Pricing Problems. T. G. J. Myklebust(tmyklebu ***at*** csclub.uwaterloo.ca)
Parameterization of Maximum Wave Heights Forced by Hurricanes: Application to Corpus Christi, Texas
Taylor, Sym 1978-
2012-12-07T23:59:59.000Z
sensitivity based on the investigation of several hurricane parameters. Also presented is the development of parameterized maximum significant wave height models. These are determined by incorporating three forms of an equivalent fetch into (1) dimensionless...
The Death Effect of Severe Climate Variability
Compeán, Roberto Guerrero
Using data for all 2,454 municipalities of Mexico for the period 1980-2010, this paper analyzes the relationship between exposure to extreme temperatures and mortality rates. I find that severe heat increases mortality, ...
Maximum entropy segmentation of broadcast news
Christensen, Heidi; Kolluru, BalaKrishna; Gotoh, Yoshihiko; Renals, Steve
2005-01-01T23:59:59.000Z
speech recognizer and subsequently segmenting the text into utterances and topics. A maximum entropy approach is used to build statistical models for both utterance and topic segmentation. The experimental work addresses the effect on performance...
Cell development obeys maximum Fisher information
B. R. Frieden; R. A. Gatenby
2014-04-29T23:59:59.000Z
Eukaryotic cell development has been optimized by natural selection to obey maximal intracellular flux of messenger proteins. This, in turn, implies maximum Fisher information on angular position about a target nuclear pore complex (NPR). The cell is simply modeled as spherical, with cell membrane (CM) diameter 10 micron and concentric nuclear membrane (NM) diameter 6 micron. The NM contains about 3000 nuclear pore complexes (NPCs). Development requires messenger ligands to travel from the CM-NPC-DNA target binding sites. Ligands acquire negative charge by phosphorylation, passing through the cytoplasm over Newtonian trajectories toward positively charged NPCs (utilizing positive nuclear localization sequences). The CM-NPC channel obeys maximized mean protein flux F and Fisher information I at the NPC, with first-order delta I = 0 and approximate 2nd-order delta I = 0 stability to environmental perturbations. Many of its predictions are confirmed, including the dominance of protein pathways of from 1-4 proteins, a 4nm size for the EGFR protein and the approximate flux value F =10^16 proteins/m2-s. After entering the nucleus, each protein ultimately delivers its ligand information to a DNA target site with maximum probability, i.e. maximum Kullback-Liebler entropy HKL. In a smoothness limit HKL approaches IDNA/2, so that the total CM-NPC-DNA channel obeys maximum Fisher I. Thus maximum information approaches non-equilibrium, one condition for life.
Improving predictability of time series using maximum entropy methods
Gregor Chliamovitch; Alexandre Dupuis; Bastien Chopard; Anton Golub
2014-11-28T23:59:59.000Z
We discuss how maximum entropy methods may be applied to the reconstruction of Markov processes underlying empirical time series and compare this approach to usual frequency sampling. It is shown that, at least in low dimension, there exists a subset of the space of stochastic matrices for which the MaxEnt method is more efficient than sampling, in the sense that shorter historical samples have to be considered to reach the same accuracy. Considering short samples is of particular interest when modelling smoothly non-stationary processes, for then it provides, under some conditions, a powerful forecasting tool. The method is illustrated for a discretized empirical series of exchange rates.
Improving predictability of time series using maximum entropy methods
Chliamovitch, Gregor; Chopard, Bastien; Golub, Anton
2014-01-01T23:59:59.000Z
We discuss how maximum entropy methods may be applied to the reconstruction of Markov processes underlying empirical time series and compare this approach to usual frequency sampling. It is shown that, at least in low dimension, there exists a subset of the space of stochastic matrices for which the MaxEnt method is more efficient than sampling, in the sense that shorter historical samples have to be considered to reach the same accuracy. Considering short samples is of particular interest when modelling smoothly non-stationary processes, for then it provides, under some conditions, a powerful forecasting tool. The method is illustrated for a discretized empirical series of exchange rates.
Maximum Likelihood Haplotyping for General Pedigrees
Friedman, Nir
networks. The use of Bayesian networks enables efficient maximum likelihood haplotyping for more complex for the variables of the Bayesian network. The presented optimization algorithm also improves likelihood Analysis, Pedigree, superlink. Abstract Haplotype data is valuable in mapping disease-susceptibility genes
Weak Scale From the Maximum Entropy Principle
Yuta Hamada; Hikaru Kawai; Kiyoharu Kawana
2014-09-23T23:59:59.000Z
The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\
Weak Scale From the Maximum Entropy Principle
Hamada, Yuta; Kawana, Kiyoharu
2014-01-01T23:59:59.000Z
The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\
Integrating Correlated Bayesian Networks Using Maximum Entropy
Jarman, Kenneth D.; Whitney, Paul D.
2011-08-30T23:59:59.000Z
We consider the problem of generating a joint distribution for a pair of Bayesian networks that preserves the multivariate marginal distribution of each network and satisfies prescribed correlation between pairs of nodes taken from both networks. We derive the maximum entropy distribution for any pair of multivariate random vectors and prescribed correlations and demonstrate numerical results for an example integration of Bayesian networks.
Broader source: Energy.gov [DOE]
One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...
QCD Level Density from Maximum Entropy Method
Shinji Ejiri; Tetsuo Hatsuda
2005-09-24T23:59:59.000Z
We propose a method to calculate the QCD level density directly from the thermodynamic quantities obtained by lattice QCD simulations with the use of the maximum entropy method (MEM). Understanding QCD thermodynamics from QCD spectral properties has its own importance. Also it has a close connection to phenomenological analyses of the lattice data as well as experimental data on the basis of hadronic resonances. Our feasibility study shows that the MEM can provide a useful tool to study QCD level density.
Tissue Radiation Response with Maximum Tsallis Entropy
Sotolongo-Grau, O.; Rodriguez-Perez, D.; Antoranz, J. C.; Sotolongo-Costa, Oscar [UNED, Departamento de Fisica Matematica y de Fluidos, 28040 Madrid (Spain); UNED, Departamento de Fisica Matematica y de Fluidos, 28040 Madrid (Spain) and University of Havana, Catedra de Sistemas Complejos Henri Poincare, Havana 10400 (Cuba); University of Havana, Catedra de Sistemas Complejos Henri Poincare, Havana 10400 (Cuba)
2010-10-08T23:59:59.000Z
The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.
A global maximum power point tracking DC-DC converter
Duncan, Joseph, 1981-
2005-01-01T23:59:59.000Z
This thesis describes the design, and validation of a maximum power point tracking DC-DC converter capable of following the true global maximum power point in the presence of other local maximum. It does this without the ...
articulatorily constrained maximum: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
weight spanning forests. Amitabha Bagchi; Ankur Bhargava; Torsten Suel 2005-01-01 27 Maximum Entropy Correlated Equilibria MIT - DSpace Summary: We study maximum entropy...
Maximum Economic Yield R. Quentin Grafton*
Botea, Adi
in the biomass or stock size, the intrinsic growth rate, the discount rate 1 #12;and output and input price-state values of the biomass that maximises the sum of inter- temporal economic profits (dynamic b the biomass that maximises the sustained yield (bMSY) are evaluated under a range of conditions including when
Conductivity maximum in a charged colloidal suspension
Bastea, S
2009-01-27T23:59:59.000Z
Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.
alters heart rate: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
have been measured in yellowfin tuna (Thunnus albacares, skipjack tuna (Katsuwonus pelamis) have maximum heart rates of 154-191 beats min-1 (Brill, 1987; Farrell...
abnormal heart rate: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
have been measured in yellowfin tuna (Thunnus albacares, skipjack tuna (Katsuwonus pelamis) have maximum heart rates of 154-191 beats min-1 (Brill, 1987; Farrell...
ambulatory heart rate: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
have been measured in yellowfin tuna (Thunnus albacares, skipjack tuna (Katsuwonus pelamis) have maximum heart rates of 154-191 beats min-1 (Brill, 1987; Farrell...
angiography heart rate: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
have been measured in yellowfin tuna (Thunnus albacares, skipjack tuna (Katsuwonus pelamis) have maximum heart rates of 154-191 beats min-1 (Brill, 1987; Farrell...
LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL
Don Augenstein
2001-02-01T23:59:59.000Z
The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.
Maximum screening fields of superconducting multilayer structures
Gurevich, Alex
2015-01-01T23:59:59.000Z
It is shown that a multilayer comprised of alternating thin superconducting and insulating layers on a thick substrate can fully screen the applied magnetic field exceeding the superheating fields $H_s$ of both the superconducting layers and the substrate, the maximum Meissner field is achieved at an optimum multilayer thickness. For instance, a dirty layer of thickness $\\sim 0.1\\; \\mu$m at the Nb surface could increase $H_s\\simeq 240$ mT of a clean Nb up to $H_s\\simeq 290$ mT. Optimized multilayers of Nb$_3$Sn, NbN, some of the iron pnictides, or alloyed Nb deposited onto the surface of the Nb resonator cavities could potentially double the rf breakdown field, pushing the peak accelerating electric fields above 100 MV/m while protecting the cavity from dendritic thermomagnetic avalanches caused by local penetration of vortices.
Identification of Severe Multiple Contingencies in Electric Power Systems
Pinar, Ali
1 Identification of Severe Multiple Contingencies in Electric Power Systems Vaibhav Donde, Member the effectiveness of the proposed approach. I. INTRODUCTION Robust operation of a power grid requires anticipation the integrity of the grid, and 2) calculate the maximum loss of load that would be required to survive
A Distributed Approach to Maximum Power Point Tracking for Photovoltaic Sub-Module Differential
Liberzon, Daniel
of the proposed distributed algorithm. I. INTRODUCTION IN photovoltaic (PV) energy systems, PV modules are often of the system, small size and low power ratings of the power electronics circuit components. Due1 A Distributed Approach to Maximum Power Point Tracking for Photovoltaic Sub-Module Differential
Coal Severance Tax (North Dakota)
Broader source: Energy.gov [DOE]
The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...
Maximum Entropy Method Approach to $?$ Term
Masahiro Imachi; Yasuhiko Shinno; Hiroshi Yoneyama
2004-06-09T23:59:59.000Z
In Monte Carlo simulations of lattice field theory with a $\\theta$ term, one confronts the complex weight problem, or the sign problem. This is circumvented by performing the Fourier transform of the topological charge distribution $P(Q)$. This procedure, however, causes flattening phenomenon of the free energy $f(\\theta)$, which makes study of the phase structure unfeasible. In order to treat this problem, we apply the maximum entropy method (MEM) to a Gaussian form of $P(Q)$, which serves as a good example to test whether the MEM can be applied effectively to the $\\theta$ term. We study the case with flattening as well as that without flattening. In the latter case, the results of the MEM agree with those obtained from the direct application of the Fourier transform. For the former, the MEM gives a smoother $f(\\theta)$ than that of the Fourier transform. Among various default models investigated, the images which yield the least error do not show flattening, although some others cannot be excluded given the uncertainty related to statistical error.
Does Growth Rate Determine the Rate of Metabolism in Shorebird Chicks Living in the Arctic?
Williams, Jos. B.
primarily of greater metabolic inten- sities of heat-generating tissues. The maximum temperature gradient500 Does Growth Rate Determine the Rate of Metabolism in Shorebird Chicks Living in the Arctic/22/2007; Electronically Published 7/13/2007 ABSTRACT We measured resting and peak metabolic rates (RMR and PMR
Maximum Throughput Power Control in CDMA Wireless Networks
Mellor-Crummey, John
Maximum Throughput Power Control in CDMA Wireless Networks Anastasios Giannoulis Department introduce crosslayer, distributed power control algorithms that guarantee maximum possible data throughput performing dynamic routing and scheduling together with power control. The crosslayer interaction consists
GMM Estimation of a Maximum Entropy Distribution with Interval Data
Perloff, Jeffrey M.
GMM Estimation of a Maximum Entropy Distribution with Interval Data Ximing Wu* and Jeffrey M estimate it using a simple yet flexible maximum entropy density. Our Monte Carlo simulations show that the proposed maximum entropy density is able to approximate various distributions extremely well. The two
The use of maximum rate of dissipation criterion to model beams with internal dissipation
Ko, Min Seok
2004-09-30T23:59:59.000Z
This thesis deals with a systematic procedure for the derivation of exact expression for the frequency equation of composite beams undergoing forced vibration with damping. The governing differential equations of motion of the composite beam...
A Requirement for Significant Reduction in the Maximum BTU Input Rate of
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 2010 ARRAA Liquid Layer Solution for theDecorative Vented
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Tariff Rates FY 2015 Rates and Rate Schedules **Effective October 1, 2014** FY 2014 Rates and Rate Schedules FY 2013 Rates and Rate Schedules FY 2012 Rates and Rate Schedules FY...
Dynamics of multi-modes maximum entangled coherent state over amplitude damping channel
A. El Allati; Y. Hassouni; N. Metwally
2012-02-18T23:59:59.000Z
The dynamics of maximum entangled coherent state travels through an amplitude damping channel is investigated. For small values of the transmissivity rate the travelling state is very fragile to this noise channel, where it suffers from the phase flip error with high probability. The entanglement decays smoothly for larger values of the transmissivity rate and speedily for smaller values of this rate. As the number of modes increases, the travelling state over this noise channel loses its entanglement hastily. The odd and even states vanish at the same value of the field intensity.
Farrell, Anthony P.
, skipjack tuna (Katsuwonus pelamis) have maximum heart rates of 154Â191 beats min-1 (Brill, 1987; Farrell et
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Customer Letter - Preliminary Review of Drought Adder Component for 2011 Firm Power Rates 2015 Rates and Rate Schedule - Current * 2010 Rates and Rate Schedule 2009 Rates and...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Rates and Repayment Services Consolidated Rate Schedules FY 2015 Consolidated Rate Schedules FY 2014 Rates BCP Annual Rate Process Central Arizona Project Transmission Rate Process...
Fabrication of amorphous metal matrix composites by severe plastic deformation
Mathaudhu, Suveen Nigel
2006-10-30T23:59:59.000Z
Bulk metallic glasses (BMGs) have displayed impressive mechanical properties, but the use and dimensions of material have been limited due to critical cooling rate requirements and low ductility. The application of severe plastic deformation...
A Near Maximum Likelihood Decoding Algorithm for MIMO Systems ...
Amin Mobasher
2005-10-03T23:59:59.000Z
Oct 3, 2005 ... A Near Maximum Likelihood Decoding Algorithm for MIMO Systems Based ... models are also used for soft output decoding in MIMO systems.
Computing the Maximum Volume Inscribed Ellipsoid of a Polytopic ...
Jianzhe Zhen
2015-01-23T23:59:59.000Z
Jan 23, 2015 ... Abstract: This paper introduces a method for computing the maximum volume inscribed ellipsoid and k-ball of a projected polytope. It is known ...
Solving Maximum-Entropy Sampling Problems Using Factored Masks
Samuel Burer
2005-03-02T23:59:59.000Z
Mar 2, 2005 ... Abstract: We present a practical approach to Anstreicher and Lee's masked spectral bound for maximum-entropy sampling, and we describe ...
A masked spectral bound for maximum-entropy sampling
Kurt Anstreicher
2003-09-16T23:59:59.000Z
Sep 16, 2003 ... Abstract: We introduce a new masked spectral bound for the maximum-entropy sampling problem. This bound is a continuous generalization of ...
Maximum entropy generation in open systems: the Fourth Law?
Umberto Lucia
2010-11-17T23:59:59.000Z
This paper develops an analytical and rigorous formulation of the maximum entropy generation principle. The result is suggested as the Fourth Law of Thermodynamics.
annual maximum extent: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of the Sixteenth Annual Conference on Neural Information Processing Systems (NIPS2002) A Maximum Entropy Approach To Computer Technologies and Information Sciences Websites...
analog fixed maximum: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
state for given entanglement which can be viewed as an analogue of the Jaynes maximum entropy principle. Pawel Horodecki; Ryszard Horodecki; Michal Horodecki 1998-05-22...
IBM Research Report Solving Maximum-Entropy Sampling ...
2005-02-28T23:59:59.000Z
Feb 28, 2005 ... Solving Maximum-Entropy Sampling Problems Using. Factored Masks. Samuel Burer. Department of Management Sciences. University of Iowa.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Rates and Repayment Services Rates Loveland Area Projects Firm Power Rates Open Access Transmission Tariff Rates Chart of Loveland Area Projects Historical Transmission Rates...
REMARKS ON THE MAXIMUM ENTROPY METHOD APPLIED TO FINITE TEMPERATURE LATTICE QCD.
UMEDA, T.; MATSUFURU, H.
2005-07-25T23:59:59.000Z
We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.
Maximum entropy deconvolution of resonant inelastic x-ray scattering spectra
J. Laverock; A. R. H. Preston; D. Newby Jr; K. E. Smith; S. B. Dugdale
2012-02-10T23:59:59.000Z
Resonant inelastic x-ray scattering (RIXS) has become a powerful tool in the study of the electronic structure of condensed matter. Although the linewidths of many RIXS features are narrow, the experimental broadening can often hamper the identification of spectral features. Here, we show that the Maximum Entropy technique can successfully be applied in the deconvolution of RIXS spectra, improving the interpretation of the loss features without a severe increase in the noise ratio.
Remarks on the Maximum Entropy Method applied to finite temperature lattice QCD
Takashi Umeda; Hideo Matsufuru
2005-10-05T23:59:59.000Z
We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.
Appendix 22 Draft Nutrient Management Plan and Total Maximum Daily
Appendix 22 Draft Nutrient Management Plan and Total Maximum Daily Load for Flathead Lake, Montana. #12;11/01/01 DRAFT i October 30, 2001 Draft Nutrient Management Plan and Total Maximum Daily Load..............................................................................................................................2-11 SECTION 3.0 APPLICABLE WATER QUALITY STANDARDS
FAST SPEAKER ADAPTION VIA MAXIMUM PENALIZED LIKELIHOOD KERNEL REGRESSION
Tsang Wai Hung "Ivor"
of MLLR using non- linear regression. Specifically, kernel regression is applied with appropriate of Science and Technology Clear Water Bay, Hong Kong ABSTRACT Maximum likelihood linear regression (MLLR) has], and transformation-based methods, most notably, maximum likelihood linear regression (MLLR) adap- tation [3]. However
Digital tomosynthesis mammography using a parallel maximum likelihood reconstruction method
Meleis, Waleed
Digital tomosynthesis mammography using a parallel maximum likelihood reconstruction method Tao Wu , a Radiology Department, Massachusetts General Hospital, Boston, MA 02114 b Dept. of Electrical and Computer on an iterative maximum likelihood (ML) algorithm, is developed to provide fast reconstruction for digital
Instrumentation for severe processes improved
Platt, R.J.
1983-01-31T23:59:59.000Z
This article discusses the evolution of equipment to solve or at least mitigate the serious control problems involved in petroleum refineries, where control valves and sensors become fouled, lead lines plug, and overall process performance is impaired. Points out that visbreaking, coal liquefaction and residfining (resid desulfurization) are all processes that impose severe conditions on process instrumentation. Reports that experience at the Exxon Coal Liquefaction Plant (ECLP) has shown that conventional cylindrical thermowells are subject to severe erosion, which can be prevented by eliminating mechanical bending through improved shape.
Severe accident research in Canada
Simpson, L.A. [AECL Research, Pinawa, Manitoba (Canada)
1994-12-31T23:59:59.000Z
The reactor safety research program in Canada not only recognizes the unique features of the CANDU reactor, but is supplemented by a strong interaction with the LWR research community. This is especially so in the area of severe accidents. We participate in international programs such as Phebus FP and CSARP to take advantage of cooperative efforts on phenomena that are generic to all reactors, but also have our distinct programs in Canada on severe fuel damage, fission product chemistry, aerosol behaviour and hydrogen combustion and mitigation. These programs address the characteristics of Canadian nuclear fuel and containment design, and our own series of severe accident scenarios. The scope of the R&D encompasses separate effects experiments, model development and code development, leading to validation testing in several large integral test facilities including the Radioiodine Test Facility and the Blowdown Test Facility in the NRU reactor. We also have extensive hydrogen combustion test facilities including the Large Scale Vented Combustion Test Facility now under construction. The essence of the program is described with examples from recent experiments and analysis.
Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.
2012-12-01T23:59:59.000Z
The valuation of an electricity storage device is based on the expected future cash ow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the maximum potential revenue benchmark. We conclude with a sensitivity analysis with respect to key parameters.
Optimization of well rates under gas coning conditions
Urbanczyk, Christopher Henry
1989-01-01T23:59:59.000Z
production rates under gas caning conditions. This new method applies to an oil reservoir overlain by a large gas cap containing multiple wells. The cases consider have a limit on the maximum field production rate for both oil and gas. It was found... that the optimal p~ion rates are achieved when Eq. 1 is satisfied for any pair of wells i and j: ) I = constant i = 1, . . . , n dqo This condition minimizes the f ield gas production rate when the maximum field production rate for oil is met, and maximizes...
Liu, Jian
2008-01-01T23:59:59.000Z
1992). J. Skilling, in Maximum entropy and Bayesian methods,1989). S. F. Gull, in Maximum entropy and Bayesian methods,with the classical maximum entropy (CME) technique (MEAC-
Improved constraints on transit time distributions from argon 39: A maximum entropy approach
Holzer, Mark; Primeau, Francois W
2010-01-01T23:59:59.000Z
Gull (1991), Bayesian maximum entropy image reconstruction,Atlantic venti- lated? Maximum entropy inversions of bottlefrom argon 39: A maximum entropy approach Mark Holzer 1,2
Soffer, Bernard H; Kikuchi, Ryoichi
1994-01-01T23:59:59.000Z
of Confidence for Maximum Entropy Restoration and EstimationApril 3, 1992) The Maximum Entropy method, using physicalare discussed. Maximum Entropy (ME) estimation has been
Multichannel Blind Identification: From Subspace to Maximum Likelihood Methods
Tong, Lang
Multichannel Blind Identification: From Subspace to Maximum Likelihood Methods LANG TONG, MEMBER, IEEE, AND SYLVIE PERREAU Invited Paper A review of recent blind channel estimation algorithms is pre-- Blind equalization, parameter estimation, system identification. I. INTRODUCTION A. What Is Blind
Maximum containment : the most controversial labs in the world
Bruzek, Alison K. (Allison Kim)
2013-01-01T23:59:59.000Z
In 2002, following the September 11th attacks and the anthrax letters, the United States allocated money to build two maximum containment biology labs. Called Biosafety Level 4 (BSL-4) facilities, these labs were built to ...
Bacteria Total Maximum Daily Load Task Force Final Report
Jones, C. Allan; Wagner, Kevin; Di Giovanni, George; Hauck, Larry; Mott, Joanna; Rifai, Hanadi; Srinivasan, Raghavan; Ward, George; Wythe, Kathy
2009-01-01T23:59:59.000Z
In September 2006, the Texas Commission on Environmental Quality (TCEQ) and Texas State Soil and Water Conservation Board (TSSWCB) charged a seven-person Bacteria Total Maximum Daily Load (TMDL) Task Force with: * examining approaches...
Maximum Likelihood Decoding of Reed Solomon Codes Madhu Sudan
Sudan, Madhu
Maximum Likelihood Decoding of Reed Solomon Codes Madhu Sudan Abstract We present a randomized and Welch [4] (see, for instance, Gem- mell and Sudan [9]). In this paper we present an algorithm which
Multi-Class Classification with Maximum Margin Multiple Kernel
Tomkins, Andrew
(named OBSCURE and UFO-MKL, respectively) are used to optimize primal versions of equivalent problems), the OBSCURE and UFO-MKL algorithms are compared against MCMKL #12;Multi-Class Classification with Maximum
Maximum entropy method and oscillations in the diffraction cone
O. Dumbrajs; J. Kontros; A. Lengyel
2000-07-15T23:59:59.000Z
The maximum entropy method has been applied to investigate the oscillating structure in the pbarp- and pp-elastic scattering differential cross-section at high energy and small momentum transfer. Oscillations satisfying quite realistic reliability criteria have been found.
air infiltration rates: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
into the wire with a maximum rate of rise ... Jadidian, Jouya 212 Estimating Energy Savings in Compressed Air Systems Texas A&M University - TxSpace Summary: -load power...
Filtering Additive Measurement Noise with Maximum Entropy in the Mean
Henryk Gzyl; Enrique ter Horst
2007-09-04T23:59:59.000Z
The purpose of this note is to show how the method of maximum entropy in the mean (MEM) may be used to improve parametric estimation when the measurements are corrupted by large level of noise. The method is developed in the context on a concrete example: that of estimation of the parameter in an exponential distribution. We compare the performance of our method with the bayesian and maximum likelihood approaches.
The maximum entropy tecniques and the statistical description of systems
B. Z. Belashev; M. K. Suleymanov
2001-10-19T23:59:59.000Z
The maximum entropy technique (MENT) is used to determine the distribution functions of physical values. MENT naturally combines required maximum entropy, the properties of a system and connection conditions in the form of restrictions imposed on the system. It can, therefore, be employed to statistically describe closed and open systems. Examples in which MENT is used to describe equilibrium and non-equilibrium states, as well as steady states that are far from being in thermodynamic equilibrium, are discussed.
Sandia Energy - Severe Accident Modeling
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute of AdvancedSecuritySensors &Severe
Three dimensional winds: A maximum cross-correlation application to elastic lidar data
Buttler, W.T.
1996-05-01T23:59:59.000Z
Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic backscatter lidar (light detection and ranging) data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three-dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain-following winds in the Rio Grande valley.
Hanel, Rudolf; Gell-Mann, Murray
2014-01-01T23:59:59.000Z
The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems, by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there exists an ongoing controversy whether the notion of the maximum entropy principle can be extended in a meaningful way to non-extensive, non-ergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann-Gibbs-Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon-Khinchin axioms, the (c,d)-entropies. We demonstrate that the MEP is a perfectly consistent concept for non-ergodic and complex statistical systems if their relative entropy can be factored into a general...
Theoretical cosmic Type Ia supernova rates
R. Valiante; F. Matteucci; S. Recchi; F. Calura
2009-03-16T23:59:59.000Z
The aim of this work is the computation of the cosmic Type Ia supernova rates at very high redshifts (z>2). We adopt various progenitor models in order to predict the number of explosions in different scenarios for galaxy formation and to check whether it is possible to select the best delay time distribution model, on the basis of the available observations of Type Ia supernovae. We also computed the Type Ia supernova rate in typical elliptical galaxies of different initial luminous masses and the total amount of iron produced by Type Ia supernovae in each case. It emerges that: it is not easy to select the best delay time distribution scenario from the observational data and this is because the cosmic star formation rate dominates over the distribution function of the delay times; the monolithic collapse scenario predicts an increasing trend of the SN Ia rate at high redshifts whereas the predicted rate in the hierarchical scheme drops dramatically at high redshift; for the elliptical galaxies we note that the predicted maximum of the Type Ia supernova rate depends on the initial galactic mass. The maximum occurs earlier (at about 0.3 Gyr) in the most massive ellipticals, as a consequence of downsizing in star formation. We find that different delay time distributions predict different relations between the Type Ia supernova rate per unit mass at the present time and the color of the parent galaxies and that bluer ellipticals present higher supernova Type Ia rates at the present time.
Paris-Sud XI, Université de
1 Comparison of photosynthesis and antioxidant performance of several Citrus and Fortunella species stress caused by seasonal climatic changes was evaluated on adult trees by measuring net photosynthesis (Pnet), stomatal conductance (Gs), maximum photosynthesis (Pmax) and chlorophyll fluorescence (Fv
Minimum Entangling Power is Close to Its Maximum
Jianxin Chen; Zhengfeng Ji; David W Kribs; Bei Zeng
2012-10-04T23:59:59.000Z
Given a quantum gate $U$ acting on a bipartite quantum system, its maximum (average, minimum) entangling power is the maximum (average, minimum) entanglement generation with respect to certain entanglement measure when the inputs are restricted to be product states. In this paper, we mainly focus on the 'weakest' one, i.e., the minimum entangling power, among all these entangling powers. We show that, by choosing von Neumann entropy of reduced density operator or Schmidt rank as entanglement measure, even the 'weakest' entangling power is generically very close to its maximal possible entanglement generation. In other words, maximum, average and minimum entangling powers are generically close. We then study minimum entangling power with respect to other Lipschitiz-continuous entanglement measures and generalize our results to multipartite quantum systems. As a straightforward application, a random quantum gate will almost surely be an intrinsically fault-tolerant entangling device that will always transform every low-entangled state to near-maximally entangled state.
NGC2613, 3198, 6503, 7184: Case studies against `maximum' disks
B. Fuchs
1998-12-02T23:59:59.000Z
Decompositions of the rotation curves of NGC2613, 3198, 6505, and 7184 are analysed. For these galaxies the radial velocity dispersions of the stars have been measured and their morphology is clearly discernible. If the parameters of the decompositions are chosen according to the `maximum' disk hypothesis, the Toomre Q stability parameter is systematically less than one and the multiplicities of the spiral arms as expected from density wave theory are inconsitent with the observed morphologies of the galaxies. The apparent Q<1 instability, in particular, is a strong argument against the `maximum' disk hypothesis.
When are microcircuits well-modeled by maximum entropy methods?
2010-07-20T23:59:59.000Z
POSTER PRESENTATION Open Access When are microcircuits well-modeled by maximum entropy methods? Andrea K Barreiro1*, Eric T Shea-Brown1, Fred M Rieke2,3, Julijana Gjorgjieva4 From Nineteenth Annual Computational Neuroscience Meeting: CNS*2010 San... Antonio, TX, USA. 24-30 July 2010 Recent experiments in retina and cortex have demon- strated that pairwise maximum entropy (PME) methods can approximate observed spiking patterns to a high degree of accuracy [1,2]. In this paper we examine...
Valence quark distributions of the proton from maximum entropy approach
Rong Wang; Xurong Chen
2014-10-14T23:59:59.000Z
We present an attempt of maximum entropy principle to determine valence quark distributions in the proton at very low resolution scale $Q_0^2$. The initial three valence quark distributions are obtained with limited dynamical information from quark model and QCD theory. Valence quark distributions from this method are compared to the lepton deep inelastic scattering data, and the widely used CT10 and MSTW08 data sets. The obtained valence quark distributions are consistent with experimental observations and the latest global fits of PDFs. Maximum entropy method is expected to be particularly useful in the case where relatively little information from QCD calculation is given.
Valence quark distributions of the proton from maximum entropy approach
Wang, Rong
2014-01-01T23:59:59.000Z
We present an attempt of maximum entropy principle to determine valence quark distributions in the proton at very low resolution scale $Q_0^2$. The initial three valence quark distributions are obtained with limited dynamical information from quark model and QCD theory. Valence quark distributions from this method are compared to the lepton deep inelastic scattering data, and the widely used CT10 and MSTW08 data sets. The obtained valence quark distributions are consistent with experimental observations and the latest global fits of PDFs. Maximum entropy method is expected to be particularly useful in the case where relatively little information from QCD calculation is given.
Assessing complexity by means of maximum entropy models
Chliamovitch, Gregor; Velasquez, Lino
2014-01-01T23:59:59.000Z
We discuss a characterization of complexity based on successive approximations of the probability density describing a system by means of maximum entropy methods, thereby quantifying the respective role played by different orders of interaction. This characterization is applied on simple cellular automata in order to put it in perspective with the usual notion of complexity for such systems based on Wolfram classes. The overlap is shown to be good, but not perfect. This suggests that complexity in the sense of Wolfram emerges as an intermediate regime of maximum entropy-based complexity, but also gives insights regarding the role of initial conditions in complexity-related issues.
Maximum stellar mass versus cluster membership number revisited
Th. Maschberger; C. J. Clarke
2008-09-05T23:59:59.000Z
We have made a new compilation of observations of maximum stellar mass versus cluster membership number from the literature, which we analyse for consistency with the predictions of a simple random drawing hypothesis for stellar mass selection in clusters. Previously, Weidner and Kroupa have suggested that the maximum stellar mass is lower, in low mass clusters, than would be expected on the basis of random drawing, and have pointed out that this could have important implications for steepening the integrated initial mass function of the Galaxy (the IGIMF) at high masses. Our compilation demonstrates how the observed distribution in the plane of maximum stellar mass versus membership number is affected by the method of target selection; in particular, rather low n clusters with large maximum stellar masses are abundant in observational datasets that specifically seek clusters in the environs of high mass stars. Although we do not consider our compilation to be either complete or unbiased, we discuss the method by which such data should be statistically analysed. Our very provisional conclusion is that the data is not indicating any striking deviation from the expectations of random drawing.
Maximum power tracking control scheme for wind generator systems
Mena Lopez, Hugo Eduardo
2008-10-10T23:59:59.000Z
The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...
Maximum power tracking control scheme for wind generator systems
Mena, Hugo Eduardo
2009-05-15T23:59:59.000Z
The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...
annual maximum water: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
annual maximum water First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ORIGINAL PAPER The distribution of...
BRANCH-CUT-AND-PROPAGATE FOR THE MAXIMUM k ...
2011-03-16T23:59:59.000Z
maximum k-colorable subgraph problem consists of selecting a k-color- able induced subgraph of ..... a symmetric subgroup Sp of Aut(G) acts on Vp for all p ? [s]. Let Vp = {vp. 1,...,vp qp. } ...... [9] J. Crawford, M. Ginsberg, E. Luks, and A. Roy.
Renewable Energy Scheduling for Fading Channels with Maximum Power Constraint
Greenberg, Albert
Renewable Energy Scheduling for Fading Channels with Maximum Power Constraint Zhe Wang Electrical--In this paper, we develop efficient algorithm to obtain the optimal energy schedule for fading channel with energy harvesting. We assume that the side information of both the channel states and energy harvesting
What is a Hurricane? Tropical system with maximum sustained
Meyers, Steven D.
Andrew-Category 4· Category 4 Hurricane - Winds 131-155 mph. Wall failures in homes and complete roofHurricane 101 #12;What is a Hurricane? · Tropical system with maximum sustained surface wind of 74 mph or greater. A hurricane is the worst and the strongest of all tropical systems. · Also known
Individual Module Maximum Power Point Tracking for Thermoelectric Generator Systems
Schaltz, Erik
of Thermo Electric Generator (TEG) systems a power converter is often inserted between the TEG system that the TEG system produces the maximum power. However, if the conditions, e.g. temperature, health, age, etc find the best compromise of all modules. In order to increase the power production of the TEG system
Efficiency Improvement of an IPMSM using Maximum Efficiency Operating Strategy
Paderborn, Universität
Efficiency Improvement of an IPMSM using Maximum Efficiency Operating Strategy Daniel Pohlenz. These are characterized by high efficiency and high torque as well as power density. The generation of reference currents that the MTPC method deviates considerably from the best efficiency under certain boundary conditions. The use
Maximum power tracking control scheme for wind generator systems
Mena, Hugo Eduardo
2009-05-15T23:59:59.000Z
The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...
Maximum power tracking control scheme for wind generator systems
Mena Lopez, Hugo Eduardo
2008-10-10T23:59:59.000Z
The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...
Retrocommissioning Case Study - Applying Building Selection Criteria for Maximum Results
Luskay, L.; Haasl, T.; Irvine, L.; Frey, D.
2002-01-01T23:59:59.000Z
RETROCOMMISSIONING CASE STUDY ?Applying Building Selection Criteria for Maximum Results? Larry Luskay, Tudi Haasl, Linda Irvine Portland Energy Conservation, Inc. Portland, Oregon Donald Frey Architectural Energy Corporation Boulder.... The building was retrocommissioned by Portland Energy Conservation, Inc. (PECI), in conjunction with Architectural Energy Corporation (AEC). The building-specific goals were: 1) Obtain cost-effective energy savings from optimizing operation...
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Carroll, Susan
Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.
Carroll, Susan
2013-07-01T23:59:59.000Z
Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.
Craine, Roger; Martin, Vance L.
2009-01-01T23:59:59.000Z
Flows and US Interest Rates,” NBER Working Paper No 12560. [Working Paper # 2008 -03 The Interest Rate Conundrum Roger
Maximum Entropy Principle and the Higgs Boson Mass
Alves, Alexandre; da Silva, Roberto
2014-01-01T23:59:59.000Z
A successful connection between Higgs boson decays and the Maximum Entropy Principle is presented. Based on the information theory inference approach we determine the Higgs boson mass as $M_H= 125.04\\pm 0.25$ GeV, a value fully compatible to the LHC measurement. This is straightforwardly obtained by taking the Higgs boson branching ratios as the target probability distributions of the inference, without any extra assumptions beyond the Standard Model. Yet, the principle can be a powerful tool in the construction of any model affecting the Higgs sector. We give, as an example, the case where the Higgs boson has an extra invisible decay channel. Our findings suggest that a system of Higgs bosons undergoing a collective decay to Standard Model particles is among the most fundamental ones where the Maximum Entropy Principle applies.
Maximum Entropy Principle and the Higgs Boson Mass
Alexandre Alves; Alex G. Dias; Roberto da Silva
2014-11-18T23:59:59.000Z
A successful connection between Higgs boson decays and the Maximum Entropy Principle is presented. Based on the information theory inference approach we determine the Higgs boson mass as $M_H= 125.04\\pm 0.25$ GeV, a value fully compatible to the LHC measurement. This is straightforwardly obtained by taking the Higgs boson branching ratios as the target probability distributions of the inference, without any extra assumptions beyond the Standard Model. Yet, the principle can be a powerful tool in the construction of any model affecting the Higgs sector. We give, as an example, the case where the Higgs boson has an extra invisible decay channel. Our findings suggest that a system of Higgs bosons undergoing a collective decay to Standard Model particles is among the most fundamental ones where the Maximum Entropy Principle applies.
Max '91: flare research at the next solar maximum
Dennis, B.; Canfield, R.; Bruner, M.; Emslie, G.; Hildner, E.; Hudson, H.; Hurford, G.; Lin, R.; Novick, R.; Tarbell, T.
1988-01-01T23:59:59.000Z
To address the central scientific questions surrounding solar flares, coordinated observations of electromagnetic radiation and energetic particles must be made from spacecraft, balloons, rockets, and ground-based observatories. A program to enhance capabilities in these areas in preparation for the next solar maximum in 1991 is recommended. The major scientific issues are described, and required observations and coordination of observations and analyses are detailed. A program plan and conceptual budgets are provided.
Maximum Entry and Mandatory Separation Ages for Certain Security Employees
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2001-10-11T23:59:59.000Z
The policy establishes the DOE policy on maximum entry and mandatory separation ages for primary or secondary positions covered under special statutory retirement provisions and for those employees whose primary duties are the protection of officials of the United States against threats to personal safety or the investigation, apprehension, and detention of individuals suspected or convicted of offenses against the criminal laws of the United States. Admin Chg 1, dated 12-1-11, cancels DOE P 310.1.
Maximum entropy method for reconstruction of the CMB images
A. T. Bajkova
2002-05-21T23:59:59.000Z
We propose a new approach for the accurate reconstruction of cosmic microwave background distributions from observations containing in addition to the primary fluctuations the radiation from unresolved extragalactic point sources and pixel noise. The approach uses some effective realizations of the well-known maximum entropy method and principally takes into account {\\it a priori} information about finiteness and spherical symmetry of the power spectrum of the CMB satisfying the Gaussian statistics.
Occam's Razor Cuts Away the Maximum Entropy Principle
Rudnicki, ?ukasz
2014-01-01T23:59:59.000Z
I show that the maximum entropy principle can be replaced by a more natural assumption, that there exists a phenomenological function of entropy consistent with the microscopic model. The requirement of existence provides then a unique construction of the related probability density. I conclude the letter with an axiomatic formulation of the notion of entropy, which is suitable for exploration of the non-equilibrium phenomena.
PNNL: A Supervised Maximum Entropy Approach to Word Sense Disambiguation
Tratz, Stephen C.; Sanfilippo, Antonio P.; Gregory, Michelle L.; Chappell, Alan R.; Posse, Christian; Whitney, Paul D.
2007-06-23T23:59:59.000Z
In this paper, we described the PNNL Word Sense Disambiguation system as applied to the English All-Word task in Se-mEval 2007. We use a supervised learning approach, employing a large number of features and using Information Gain for dimension reduction. Our Maximum Entropy approach combined with a rich set of features produced results that are significantly better than baseline and are the highest F-score for the fined-grained English All-Words subtask.
Some interesting consequences of the maximum entropy production principle
Martyushev, L. M. [Russian Academy of Sciences, Institute of Industrial Ecology, Ural Division (Russian Federation)], E-mail: mlm@ecko.uran.ru
2007-04-15T23:59:59.000Z
Two nonequilibrium phase transitions (morphological and hydrodynamic) are analyzed by applying the maximum entropy production principle. Quantitative analysis is for the first time compared with experiment. Nonequilibrium crystallization of ice and laminar-turbulent flow transition in a circular pipe are examined as examples of morphological and hydrodynamic transitions, respectively. For the latter transition, a minimum critical Reynolds number of 1200 is predicted. A discussion of this important and interesting result is presented.
Beyond Boltzmann-Gibbs statistics: Maximum entropy hyperensembles out-of-equilibrium
Crooks, Gavin E.
2006-01-01T23:59:59.000Z
1957). J. Skilling, in Maximum Entropy and Bayesian Methods,45–52. J. Skilling, in Maximum Entropy and Bayesian Methods,e C. C. Rodriguez, in Maximum Entropy and Bayesian Methods,
Deriving the continuity of maximum-entropy basis functions via variational analysis
Sukumar, N.; Wets, R. J. -B.
2007-01-01T23:59:59.000Z
and V. J. DellaPietra, A maximum entropy approach to naturalJ. and R. K. Bryan, Maximum entropy image reconstruction:Heidelberg, Continuity of maximum-entropy basis functions p
High-Purity Germanium Spectroscopy at Rates in Excess of 10^{6} Events/s
VanDevender, Brent A.; Dion, Michael P.; Fast, James E.; Rodriguez, Douglas C.; Taubman, Matthew S.; Wilen, Christopher D.; Wood, Lynn S.; Wright, Michael E.
2014-10-05T23:59:59.000Z
Abstract—In gamma spectroscopy, a compromise must be made between energy resolution and event-rate capability. Some foreseen nuclear material safeguards applications require a spectrometer with energy resolution typical of high purity germanium (HPGe) detectors, operated at rates up to and exceeding 106 events per second. We report the performance of an HPGe spectrometer adapted to run at such rates. Our system consists of a commercial semi-coaxial HPGe detector, a modified high-voltagerail, resistive-feedback, charge-sensitive preamplifier and a continuous waveform digitizer. Digitized waveforms are analyzed offline with a novel time-variant trapezoidal filter algorithm. Several time-invariant trapezoidal filters are run in parallel and the slowest one not rejected by instantaneous pileup conditions is used to measure each pulse height. We have attained full-widthat- half-maximum energy resolution of less than 8 keV measured at 662 keV with 1:08*106 per second incoming event rate and 38% throughput. An additional constraint on the width of the fast trigger filter removes a significant amount of edge pileup that passes the first pileup cut, reducing throughput to 26%. While better resolution has been reported by other authors, our throughput is over an order of magnitude higher than any other reported HPGe system operated at such an event rate.
Paris-Sud XI, Université de
Nonparametric Stochastic Modeling Of Linear Systems With Pre- scribed Variance Of Several Natural of the inverse of the random matrix. The efficient simulation of sam- ples of random matrices according matrices, maximum entropy, probabilistic model 1 INTRODUCTION The stochastic modeling and simulation
Fahlman, Andreas
Carlo analysis decreased subject requirement without sacrificing power. This model provides a useful, the tissues contain the maximum nitrogen load possible for a given depth, so decompression from saturation saturation conditions are relatively sparse and, for ethical reasons, do not ap- proach the severe profiles
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2015 BCP Annual Rate Process (FY 2016 Base Charge & Rate) Informal Process Rate Activity Schedule (doc) Informal Customer Meeting Thursday March 11, 2015 at 10:30 A.M. Conf Rms 3&4...
Research Rate Liaison Rate for outside academic &
Gilchrist, James F.
as of 12/9/13 External Rate Spark Plasma Sintering ) Spark Plasma Sintering > 24 hrs 2 8 Vacuum Hot Press
2012 Transmission Rate Schedules
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
10012014 - 03312015 Mid-Year Change (if applicable) 10012014 - 09302015 Power Rates Annual Revenue Requirement Rate Schedule Power Revenue Requirement 70,091,227 CV-F13...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of the FY Mid-Year Change 10012013 - 03312014 04012014 - 09302014 Power Rates Annual Revenue Requirement Rate Schedule Power Revenue Requirement 73,441,557...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
for Transmission and Ancillary Services Federal Register Notice -- Rate Order WAPA-141: Notice of Extension of Formula Rates for Transmission and Ancillary Services If you have any...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
69 Rate Order Western is proposing adjustments to the Salt Lake City Area Integrated Projects firm power rate and the Colorado River Storage Project Transmission and ancillary...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
DSW Multiple System Transmission Rate Process Federal Register Notice Withdrawing Rate Proposal (PDF) Formal Process Extension Federal Register Notice (PDF) Customer Savisngs Under...
Optimization Online - Efficient Algorithmic Techniques for Several ...
Mugurel Ionut Andreica
2008-10-23T23:59:59.000Z
Oct 23, 2008 ... Efficient Algorithmic Techniques for Several Multidimensional Geometric Data Management and Analysis Problems. Mugurel Ionut ...
Better Nonlinear Models from Noisy Data: Attractors with Maximum Likelihood
Patrick E. McSharry; Leonard A. Smith
1999-11-30T23:59:59.000Z
A new approach to nonlinear modelling is presented which, by incorporating the global behaviour of the model, lifts shortcomings of both least squares and total least squares parameter estimates. Although ubiquitous in practice, a least squares approach is fundamentally flawed in that it assumes independent, normally distributed (IND) forecast errors: nonlinear models will not yield IND errors even if the noise is IND. A new cost function is obtained via the maximum likelihood principle; superior results are illustrated both for small data sets and infinitely long data streams.
Application of Maximum Entropy Method to Dynamical Fermions
Jonathan Clowser; Costas Strouthos
2001-10-16T23:59:59.000Z
The Maximum Entropy Method is applied to dynamical fermion simulations of the (2+1)-dimensional Nambu-Jona-Lasinio model. This model is particularly interesting because at T=0 it has a broken phase with a rich spectrum of mesonic bound states and a symmetric phase where there are resonances, and hence the simple pole assumption of traditional fitting procedures breaks down. We present results extracted from simulations on large lattices for the spectral functions of the elementary fermion, the pion, the sigma, the massive pseudoscalar meson and the symmetric phase resonances.
Reducing Degeneracy in Maximum Entropy Models of Networks
Horvát, Szabolcs; Toroczkai, Zoltán
2014-01-01T23:59:59.000Z
Based on Jaynes's maximum entropy principle, exponential random graphs provide a family of principled models that allow the prediction of network properties as constrained by empirical data. However, their use is often hindered by the degeneracy problem characterized by spontaneous symmetry-breaking, where predictions simply fail. Here we show that degeneracy appears when the corresponding density of states function is not log-concave. We propose a solution to the degeneracy problem for a large class of models by exploiting the nonlinear relationships between the constrained measures to convexify the domain of the density of states. We demonstrate the effectiveness of the method on examples, including on Zachary's karate club network data.
Excited nucleon spectrum from lattice QCD with maximum entropy method
K. Sasaki; S. Sasaki; T. Hatsuda; M. Asakawa
2003-09-29T23:59:59.000Z
We study excited states of the nucleon in quenched lattice QCD with the spectral analysis using the maximum entropy method. Our simulations are performed on three lattice sizes $16^3\\times 32$, $24^3\\times 32$ and $32^3\\times 32$, at $\\beta=6.0$ to address the finite volume issue. We find a significant finite volume effect on the mass of the Roper resonance for light quark masses. After removing this systematic error, its mass becomes considerably reduced toward the direction to solve the level order puzzle between the Roper resonance $N'(1440)$ and the negative-parity nucleon $N^*(1535)$.
Mailhes, Corinne
#12;#12;Abstract We study the continuous extractive distillation of minimum and maximum boiling on operating parameters: distillate product purity and recovery, reflux ratio R and entrainer feed flow rate. For the 1.0-2 class both A and B can be distillated. For one of them there exists a maximum entrainer - feed
Caspi, S.
2011-01-01T23:59:59.000Z
Correlation with Measured Heat Inputs and Reat Transfer Theas a calorimeter, deducing the heat Input directly from theand o-7G, with doubled heat input, are almost the same . We
Probable maximum flood control; Yucca Mountain Site Characterization Project
DeGabriele, C.E.; Wu, C.L. [Bechtel National, Inc., San Francisco, CA (United States)
1991-11-01T23:59:59.000Z
This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility.
Maximum Margin Clustering for State Decomposition of Metastable Systems
Wu, Hao
2015-01-01T23:59:59.000Z
When studying a metastable dynamical system, a prime concern is how to decompose the phase space into a set of metastable states. Unfortunately, the metastable state decomposition based on simulation or experimental data is still a challenge. The most popular and simplest approach is geometric clustering which is developed based on the classical clustering technique. However, the prerequisites of this approach are: (1) data are obtained from simulations or experiments which are in global equilibrium and (2) the coordinate system is appropriately selected. Recently, the kinetic clustering approach based on phase space discretization and transition probability estimation has drawn much attention due to its applicability to more general cases, but the choice of discretization policy is a difficult task. In this paper, a new decomposition method designated as maximum margin metastable clustering is proposed, which converts the problem of metastable state decomposition to a semi-supervised learning problem so that...
Efficiency at maximum power of a chemical engine
Hooyberghs, Hans; Salazar, Alberto; Indekeu, Joseph O; Broeck, Christian Van den
2013-01-01T23:59:59.000Z
A cyclically operating chemical engine is considered that converts chemical energy into mechanical work. The working fluid is a gas of finite-sized spherical particles interacting through elastic hard collisions. For a generic transport law for particle uptake and release, the efficiency at maximum power $\\eta$ takes the form 1/2+c\\Delta \\mu + O(\\Delta \\mu^2), with 1/2 a universal constant and $\\Delta \\mu$ the chemical potential difference between the particle reservoirs. The linear coefficient c is zero for engines featuring a so-called left/right symmetry or particle fluxes that are antisymmetric in the applied chemical potential difference. Remarkably, the leading constant in $\\eta$ is non-universal with respect to an exceptional modification of the transport law. For a nonlinear transport model we obtain \\eta = 1/(\\theta +1), with \\theta >0 the power of $\\Delta \\mu$ in the transport equation
Reduction in maximum time uncertainty of paired time signals
Theodosiou, George E. (West Chicago, IL); Dawson, John W. (Clarendon Hills, IL)
1983-01-01T23:59:59.000Z
Reduction in the maximum time uncertainty (t.sub.max -t.sub.min) of a series of paired time signals t.sub.1 and t.sub.2 varying between two input terminals and representative of a series of single events where t.sub.1 .ltoreq.t.sub.2 and t.sub.1 +t.sub.2 equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t.sub.min) of the first signal t.sub.1 closer to t.sub.max and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20-800.
Reduction in maximum time uncertainty of paired time signals
Theodosiou, G.E.; Dawson, J.W.
1983-10-04T23:59:59.000Z
Reduction in the maximum time uncertainty (t[sub max]--t[sub min]) of a series of paired time signals t[sub 1] and t[sub 2] varying between two input terminals and representative of a series of single events where t[sub 1][<=]t[sub 2] and t[sub 1]+t[sub 2] equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t[sub min]) of the first signal t[sub 1] closer to t[sub max] and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20--800. 6 figs.
Reduction in maximum time uncertainty of paired time signals
Theodosiou, G.E.; Dawson, J.W.
1981-02-11T23:59:59.000Z
Reduction in the maximum time uncertainty (t/sub max/ - t/sub min/) of a series of paired time signals t/sub 1/ and t/sub 2/ varying between two input terminals and representative of a series of single events where t/sub 1/ less than or equal to t/sub 2/ and t/sub 1/ + t/sub 2/ equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t/sub min/) of the first signal t/sub 1/ closer to t/sub max/ and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20 to 800.
Improved Maximum Entropy Analysis with an Extended Search Space
Alexander Rothkopf
2013-01-07T23:59:59.000Z
The standard implementation of the Maximum Entropy Method (MEM) follows Bryan and deploys a Singular Value Decomposition (SVD) to limit the dimensionality of the underlying solution space apriori. Here we present arguments based on the shape of the SVD basis functions and numerical evidence from a mock data analysis, which show that the correct Bayesian solution is not in general recovered with this approach. As a remedy we propose to extend the search basis systematically, which will eventually recover the full solution space and the correct solution. In order to adequately approach problems where an exponentially damped kernel is used, we provide an open-source implementation, using the C/C++ language that utilizes high precision arithmetic adjustable at run-time. The LBFGS algorithm is included in the code in order to attack problems without the need to resort to a particular search space restriction.
Quantum maximum entropy principle for a system of identical particles
Trovato, M. [Dipartimento di Matematica, Universita di Catania, Viale A. Doria, 95125 Catania (Italy); Reggiani, L. [Dipartimento di Ingegneria dell' Innovazione and CNISM, Universita del Salento, Via Arnesano s/n, 73100 Lecce (Italy)
2010-02-15T23:59:59.000Z
By introducing a functional of the reduced density matrix, we generalize the definition of a quantum entropy which incorporates the indistinguishability principle of a system of identical particles. With the present definition, the principle of quantum maximum entropy permits us to solve the closure problem for a quantum hydrodynamic set of balance equations corresponding to an arbitrary number of moments in the framework of extended thermodynamics. The determination of the reduced Wigner function for equilibrium and nonequilibrium conditions is found to become possible only by assuming that the Lagrange multipliers can be expanded in powers of (Planck constant/2pi){sup 2}. Quantum contributions are expressed in powers of (Planck constant/2pi){sup 2} while classical results are recovered in the limit (Planck constant/2pi)->0.
Efficient Algorithmic Techniques for Several Multidimensional ...
Mugurel
2008-10-23T23:59:59.000Z
Politehnica University of Bucharest, Romania, mugurel.andreica@cs.pub.ro. Abstract: In this paper I present several novel, efficient, algorithmic techniques for.
Maximum Utility Product Pricing Models and Algorithms Based on ...
2007-04-16T23:59:59.000Z
Apr 15, 2007 ... We consider a revenue management model for pricing a product line with several customer segments .... in a tie (in terms of the underlying utilities) for the best price for a customer segment. Without ...... However, the heuristic appears to make very few reassignments in practice. ...... CPLEX 9.1 User Manual.
RISK SEVERITY GUIDELINES For Issues Management Application
RISK SEVERITY GUIDELINES For Issues Management Application OIA/OCA Risk Methodology, Document # 04 to LBNL #12;RISK SEVERITY GUIDELINES For Issues Management Application OIA/OCA Risk Methodology, Document.03.001.000, Rev. 3 Issue Management Program Application 11-30-13 IMPACT Impact is determined by considering what
Paris-Sud XI, Université de
Effects of the maximum soil aggregates size and cyclic wetting-drying on the stiffness of a lime-treated clayey soil Anh Minh TANG, BEng, PhD; Minh Ngoc VU, BEng; Yu-Jun CUI, BEng, PhD Ecole des Ponts Paris soils used for embankment. Several studies show that lime treatment significantly modifies the physical
Savannah River Site radioiodine atmospheric releases and offsite maximum doses
Marter, W.L.
1990-11-01T23:59:59.000Z
Radioisotopes of iodine have been released to the atmosphere from the Savannah River Site since 1955. The releases, mostly from the 200-F and 200-H Chemical Separations areas, consist of the isotopes, I-129 and 1-131. Small amounts of 1-131 and 1-133 have also been released from reactor facilities and the Savannah River Laboratory. This reference memorandum was issued to summarize our current knowledge of releases of radioiodines and resultant maximum offsite doses. This memorandum supplements the reference memorandum by providing more detailed supporting technical information. Doses reported in this memorandum from consumption of the milk containing the highest I-131 concentration following the 1961 1-131 release incident are about 1% higher than reported in the reference memorandum. This is the result of using unrounded 1-131 concentrations of I-131 in milk in this memo. It is emphasized here that this technical report does not constitute a dose reconstruction in the same sense as the dose reconstruction effort currently underway at Hanford. This report uses existing published data for radioiodine releases and existing transport and dosimetry models.
Maximum gravitational-wave energy emissible in magnetar flares
Alessandra Corsi; Benjamin J. Owen
2011-02-16T23:59:59.000Z
Recent searches of gravitational-wave (GW) data raise the question of what maximum GW energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (\\sim 10^{49} erg) predicted so far come from a model [K. Ioka, Mon. Not. Roy. Astron. Soc. 327, 639 (2001)] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 10^{48}-10^{49} erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.
Maximum Entropy Analysis of the Spectral Functions in Lattice QCD
M. Asakawa; T. Hatsuda; Y. Nakahara
2001-02-26T23:59:59.000Z
First principle calculation of the QCD spectral functions (SPFs) based on the lattice QCD simulations is reviewed. Special emphasis is placed on the Bayesian inference theory and the Maximum Entropy Method (MEM), which is a useful tool to extract SPFs from the imaginary-time correlation functions numerically obtained by the Monte Carlo method. Three important aspects of MEM are (i) it does not require a priori assumptions or parametrizations of SPFs, (ii) for given data, a unique solution is obtained if it exists, and (iii) the statistical significance of the solution can be quantitatively analyzed. The ability of MEM is explicitly demonstrated by using mock data as well as lattice QCD data. When applied to lattice data, MEM correctly reproduces the low-energy resonances and shows the existence of high-energy continuum in hadronic correlation functions. This opens up various possibilities for studying hadronic properties in QCD beyond the conventional way of analyzing the lattice data. Future problems to be studied by MEM in lattice QCD are also summarized.
Improved Maximum Entropy Method with an Extended Search Space
Alexander Rothkopf
2012-08-25T23:59:59.000Z
We report on an improvement to the implementation of the Maximum Entropy Method (MEM). It amounts to departing from the search space obtained through a singular value decomposition (SVD) of the Kernel. Based on the shape of the SVD basis functions we argue that the MEM spectrum for given $N_\\tau$ data-points $D(\\tau)$ and prior information $m(\\omega)$ does not in general lie in this $N_\\tau$ dimensional singular subspace. Systematically extending the search basis will eventually recover the full search space and the correct extremum. We illustrate this idea through a mock data analysis inspired by actual lattice spectra, to show where our improvement becomes essential for the success of the MEM. To remedy the shortcomings of Bryan's SVD prescription we propose to use the real Fourier basis, which consists of trigonometric functions. Not only does our approach lead to more stable numerical behavior, as the SVD is not required for the determination of the basis functions, but also the resolution of the MEM becomes independent from the position of the reconstructed peaks.
Maximum entropy detection of planets around active stars
Petit, P; Hébrard, E; Morin, J; Folsom, C P; Böhm, T; Boisse, I; Borgniet, S; Bouvier, J; Delfosse, X; Hussain, G; Jeffers, S V; Marsden, S C; Barnes, J R
2015-01-01T23:59:59.000Z
(shortened for arXiv) We aim to progress towards more efficient exoplanet detection around active stars by optimizing the use of Doppler Imaging in radial velocity measurements. We propose a simple method to simultaneously extract a brightness map and a set of orbital parameters through a tomographic inversion technique derived from classical Doppler mapping. Based on the maximum entropy principle, the underlying idea is to determine the set of orbital parameters that minimizes the information content of the resulting Doppler map. We carry out a set of numerical simulations to perform a preliminary assessment of the robustness of our method, using an actual Doppler map of the very active star HR 1099 to produce a realistic synthetic data set for various sets of orbital parameters of a single planet in a circular orbit. Using a simulated time-series of 50 line profiles affected by a peak-to-peak activity jitter of 2.5 km/s, we are able in most cases to recover the radial velocity amplitude, orbital phase and o...
Bernstein, Hans C.; Konopka, Allan; Melnicki, Matthew R.; Hill, Eric A.; Kucek, Leo A.; Zhang, Shuyi; Shen, Gaozhong; Bryant, Donald A.; Beliaev, Alex S.
2014-08-30T23:59:59.000Z
Synechococcus sp. PCC 7002 was grown to steady state in optically thin turbidostat cultures under conditions for which light quantity and quality was systematically varied by modulating the output of narrow-band LEDs. Cells were provided photons absorbed primarily by chlorophyll (680 nm) or phycocyanin (630 nm) as the organism was subjected to four distinct mono- and dichromatic regimes. During cultivation with dichromatic light, growth rates displayed by Synechococcus sp. PCC 7002 were generally proportional to the total incident irradiance at values < 275 µmol photons m-2 s-1 and were not affected by the ratio of 630:680 nm wavelengths. Notably, under monochromatic light conditions, cultures exhibited similar growth rates only when they were irradiated with 630 nm light; cultures irradiated with only 680 nm light grew at rates that were 60 – 70% of those under other light quality regimes at equivalent irradiances. The functionality of photosystem II and associated processes such as maximum rate of photosynthetic electron transport, rate of cyclic electron flow, and rate of dark respiration generally increased as a function of growth rate. Nonetheless, some of the photophysiological parameters measured here displayed distinct patterns with respect to growth rate of cultures adapted to a single wavelength including phycobiliprotein content, which increased under severely light-limited growth conditions. Additionally, the ratio of photosystem II to photosystem I increased approximately 40% over the range of growth rates, although cells grown with 680 nm light only had the highest ratios. These results suggest the presence of effective mechanisms which allow acclimation of Synechococcus sp. PCC 7002 acclimation to different irradiance conditions.
A METHODOLOGY FOR DETERMINING THE DOSE RATE FOR BOUNDING MASS LIMITS IN A 9977 PACKAGING
Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.
2012-05-24T23:59:59.000Z
The Small Gram Quantity (SGQ) concept is based on the understanding that the hazards associated with the shipment of a radioactive material are directly proportional to its mass. This study describes a methodology that estimates the acceptable masses for several neutron and gamma emitting isotopes that can be shipped in a 9977 Package compliant with the Title 10 of the Code of Federal Regulations, Part 71 (10CFR71) external radiation level limits. 10CFR71.33 states that a shipping application identifies the radioactive and fissile materials at their maximum quantity and provides an evaluation demonstrating compliance with the external radiation standards. Since rather small amounts of some isotopes emit sufficiently strong radiation to produce a large external dose rate, quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. A methodology was established for determining the dose rate for bounding mass limits for a set of isotopes in the Model 9977 Shipping Package. Calculations were performed to estimate external radiation levels using the MCNP radiation transport code to develop a set of response multipliers (Green's functions) for 'dose per source particle' for each neutron and photon spectral group. The source spectrum from one gram of each isotope was folded with the response multipliers to generate the dose rate per gram of each isotope in the 9977 shipping package and its associated shielded containers. The maximum amount of a single isotope that could be shipped within the regulatory limits for dose rate at the surface was determined. For a package containing a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. Furthermore, the results of this analysis can be easily extended to additional radioisotopes by simply evaluating the neutron and/or photon spectra of those isotopes and folding the spectral data with the Green's functions provided.
Maximum Power Point Tracking Control for Photovoltaic System Using Adaptive Neuro-Fuzzy
Paris-Sud XI, Université de
Maximum Power Point Tracking Control for Photovoltaic System Using Adaptive Neuro- Fuzzy "ANFIS energy demand. The mathematical modeling and simulation of the photovoltaic system is implemented) like ANFIS. This paper presents Maximum Power Point Tracking Control for Photovoltaic System Using
Relation Between Heart Rate and Problem Behaviors
Freeman, Rachel L.; Horner, Robert H.; Reichle, Joe
1999-01-01T23:59:59.000Z
American Journal on Mental Retardation, 1999, Vol. 104, No. 4, 330-345 Relation Between Heart Rate and Problem Behaviors Rachel L. Freeman and Robert H. Horner University of Oregon Joe Reichle University of Minnesota A new... methodological approach for understanding self-injury, aggression, and property destruction exhibited by individuals with severe developmental disabilities was evaluated in this descriptive study. Measures of heart-rate changes before, during, and after...
Constant Sustainable Consumption Rate in Optimal Growth with Exhaustible Resources*
Wan, Frederic Yui-Ming
's criterion of maximum sustainable consumption rate, previously formulated as a minimum-resource-extraction or not the constant unit resource extraction cost vanishes. The related problem of maximizing the terminal capital appetite for the earth's finite stock of nonrenew- able resources, such as fossil fuel and minerals, have
Total lightning observations of severe convection over North Texas
McKinney, Christopher Michael
2009-05-15T23:59:59.000Z
Density GSD Gridded Source Density LDAR Lightning Detection and Ranging MCS Mesoscale Convective System MSI Mesocyclone Strength Index MxFED Maximum Flash Extent Density MxFIDT Maximum Flash Initiation Density Total MxGSD Maximum Gridded Source.......................................................................................... 1 1.2 Background ....................................................................................... 4 1.3 Thesis Objectives and Hypothesis...................................................... 19 2. DATA AND METHODOLOGY...
A Maximum Entropy Algorithm for Rhythmic Analysis of Genome-Wide Expression Patterns
Richardson, David
A Maximum Entropy Algorithm for Rhythmic Analysis of Genome-Wide Expression Patterns Christopher James Langmead C. Robertson McClung Bruce Randall Donald ,,,Â§,Â¶ Abstract We introduce a maximum entropy-based spectral analysis, maximum entropy spectral reconstruction is well suited to signals of the type generated
1 A MAXIMUM ENTROPY METHOD FOR SUBNETWORK ORIGIN-DESTINATION 2 TRIP MATRIX ESTIMATION
Kockelman, Kara M.
1 A MAXIMUM ENTROPY METHOD FOR SUBNETWORK ORIGIN-DESTINATION 2 TRIP MATRIX ESTIMATION 3 4 Chi Xie 5, maximum entropy, linearization 36 algorithm, column generation 37 #12;C. Xie, K.M. Kockelman and S is the trip matrix of the simplified network. This paper discusses a5 maximum entropy method
Maximum entropy and Bayesian approaches to the ratio problem Edward Z. Shen*
Perloff, Jeffrey M.
Maximum entropy and Bayesian approaches to the ratio problem Edward Z. Shen* Jeffrey M. Perloff** January 2001 Abstract Maximum entropy and Bayesian approaches provide superior estimates of a ratio extra information in the supports for the underlying parameters for generalized maximum entropy (GME
Perloff, Jeffrey M.
Comparison of Maximum Entropy and Higher-Order Entropy Estimators Amos Golan* and Jeffrey M. Perloff** ABSTRACT We show that the generalized maximum entropy (GME) is the only estimation method- classes of estimators may outperform the GME estimation rule. Keywords: generalized entropy, maximum
A maximum entropy-least squares estimator for elastic origin-destination trip matrix estimation
Kockelman, Kara M.
A maximum entropy-least squares estimator for elastic origin- destination trip matrix estimation propose a combined maximum entropy-least squares (ME-LS) estimator, by which O- D flows are distributed-destination trip table; elastic demand; maximum entropy; least squares; subnetwork analysis; convex combination
Bacteria Total Maximum Daily Load Task Force Final Report
Jones, C. Allan; Wagner, Kevin; Di Giovanni, George; Hauck, Larry; Mott, Joanna; Rifai, Hanadi; Srinivasan, Raghavan; Ward, George; Wythe, Kathy
for TMDL and Watershed Studies at Virginia Tech (http://www.tmdl.bse.vt.edu/outreach/C85/). Bacteria Indicator Tool (BIT) Another MB tool is the BIT provided by EPA (http://www.epa.gov/waterscience/ftp/basins/system/BASINS3/bit.htm). The BIT is a... spreadsheet that can be used to estimate the monthly accumulation rate of fecal coliform bacteria on four land uses (cropland, forested, built-up and pastureland). The tool also estimates the direct input of fecal coliform bacteria to streams from grazing...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
CPP-2 (Supersedes Schedule CPP-1) UNITED STATES DEPARTMENT OF ENERGY WESTERN AREA POWER ADMINISTRATION CENTRAL VALLEY PROJECT SCHEDULE OF RATES FOR CUSTOM PRODUCT POWER Effective:...
Broader source: Energy.gov [DOE]
Notepad text file provides the LCC guidance rates in a numbered format for the various regions throughout the U.S.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
charges or credits associated with the creation, termination, or modification to any tariff, contract, or rate schedule accepted or approved by the Federal Energy Regulatory...
Residential Solar Valuation Rates
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...
Slew-rate dependence of tracer magnetization response in magnetic particle imaging
Shah, Saqlain A.; Krishnan, K. M., E-mail: kannanmk@uw.edu [Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States); Ferguson, R. M. [LodeSpin Labs, P.O. Box 95632, Seattle, Washington 98145 (United States)
2014-10-28T23:59:59.000Z
Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25?kHz and 20?mT/?{sub 0} excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude (H{sub o}) and frequency (?). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particle Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2?kHz, with field amplitudes ranging from 7 to 52?mT/?{sub 0}. For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate (?H{sub o}) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics Power Electronics PowerPowerRates
Power Rates Announcements (pbl/rates)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics Power Electronics PowerPowerRates
A maximum entropy framework for non-exponential distributions
Peterson, Jack; Dill, Ken A
2015-01-01T23:59:59.000Z
Probability distributions having power-law tails are observed in a broad range of social, economic, and biological systems. We describe here a potentially useful common framework. We derive distribution functions $\\{p_k\\}$ for situations in which a `joiner particle' $k$ pays some form of price to enter a `community' of size $k-1$, where costs are subject to economies-of-scale (EOS). Maximizing the Boltzmann-Gibbs-Shannon entropy subject to this energy-like constraint predicts a distribution having a power-law tail; it reduces to the Boltzmann distribution in the absence of EOS. We show that the predicted function gives excellent fits to 13 different distribution functions, ranging from friendship links in social networks, to protein-protein interactions, to the severity of terrorist attacks. This approach may give useful insights into when to expect power-law distributions in the natural and social sciences.
NETL- Severe Environment Corrosion Erosion Facility
None
2013-09-12T23:59:59.000Z
NETL's Severe Environment Corrosion Erosion Facility in Albany studies how new and old materials will stand up to new operating conditions. Work done in the lab supports NETL's oxy-fuel combustion oxidation work, refractory materials stability work, and the fuels program, in particular the hydrogen membrane materials stability work, to determine how best to upgrade existing power plants.
NETL- Severe Environment Corrosion Erosion Facility
None
2014-06-16T23:59:59.000Z
NETL's Severe Environment Corrosion Erosion Facility in Albany studies how new and old materials will stand up to new operating conditions. Work done in the lab supports NETL's oxy-fuel combustion oxidation work, refractory materials stability work, and the fuels program, in particular the hydrogen membrane materials stability work, to determine how best to upgrade existing power plants.
Strategic Rate Design: The Role of Industrial Tariffs
Rosenblum, J. I.; House, R.
STRA TEGIC RA TE DESIGN: THE ROLE OF INDUSTRIAL TARIFFS Jeffrey 1. Rosenblum Rate Design Section Public Utility Commission of Texas Austin, Texas ABSTRACT Strategic rate design refers to the use of deliberate pricing strategies... occurred in cogeneration capacity in Texas. The utilities use their rate tariffs strategically to influence the growth of self-generation. This paper will discuss several aspects of strategic rate design to influence industrial energy sales (measured...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2015 Firm Power Rates & Rate Schedules The Pick-Sloan Missouri Basin Program--Eastern Division: Firm Electric Service Pick Sloan Missouri River -Eastern Division Rates Effective...
Homogeneous ice nucleation evaluated for several water models
J. R. Espinosa; E. Sanz; C. Valeriani; C. Vega
2014-11-25T23:59:59.000Z
In this work, we evaluate by means of computer simulations the rate for ice homogeneous nucleation for several water models such as TIP4P, TIP4P/2005,TIP4P/ICE, and mW (following the same procedure as in Sanz et al. [J. Am. Chem. Soc.135, 15008 (2013)]) in a broad temperature range. We estimate the ice-liquid interfacial free-energy, and conclude that for all water models {\\gamma} decreases as the temperature decreases. Extrapolating our results to the melting temperature, we obtain a value of the interfacial free-energy between 25 and 32 mN/m in reasonable agreement with the reported experimental values. Moreover, we observe that the values of {\\gamma} depend on the chosen water model and this is a key factor when numerically evaluating nucleation rates, given that the kinetic prefactor is quite similar for all water models with the exception of the mW (due to the absence of hydrogens). Somewhat surprisingly the estimates of the nucleation rates found in this work for TIP4P/2005 are slightly higher than those of the mW model, even though the former has explicit hydrogens. Our results suggest that it may be possible to observe in computer simulations spontaneous crystallization of TIP4P/2005 at about 60 K below the melting point.
Robust Maximum Lifetime Routing and Energy Allocation in Wireless Sensor Networks
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Paschalidis, Ioannis Ch.; Wu, Ruomin
2012-01-01T23:59:59.000Z
We consider the maximum lifetime routing problem in wireless sensor networks in two settings: (a) when nodes’ initial energy is given and (b) when it is subject to optimization. The optimal solution and objective value provide optimal flows and the corresponding predicted lifetime, respectively. We stipulate that there is uncertainty in various network parameters (available energy and energy depletion rates). In setting (a) we show that for specific, yet typical, network topologies, the actual network lifetime will reach the predicted value with a probability that converges to zero as the number of nodes grows large. In setting (b) the samemore »result holds for all topologies. We develop a series of robust problem formulations, ranging from pessimistic to optimistic. A set of parameters enable the tuning of the conservatism of the formulation to obtain network flows with a desirably high probability that the corresponding lifetime prediction is achieved. We establish a number of properties for the robust network flows and energy allocations and provide numerical results to highlight the tradeoff between predicted lifetime and the probability achieved. Further, we analyze an interesting limiting regime of massively deployed sensor networks and essentially solve a continuous version of the problem.« less
Su-Jong Yoon; Piyush Sabharwall
2014-07-01T23:59:59.000Z
The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as district heating, desalination, hydrogen production and other process heat applications, etc. The process heat industry/facilities will be located outside the nuclear island due to safety measures. This thermal energy from the reactor has to be transported a fair distance. In this study, analytical analysis was conducted to identify the maximum distance that thermal energy could be transported using various coolants such as molten-salts, helium and water by varying the pipe diameter and mass flow rate. The cost required to transport each coolant was also analyzed. The coolants analyzed are molten salts (such as: KClMgCl2, LiF-NaF-KF (FLiNaK) and KF-ZrF4), helium and water. Fluoride salts are superior because of better heat transport characteristics but chloride salts are most economical for higher temperature transportation purposes. For lower temperature water is a possible alternative when compared with He, because low pressure He requires higher pumping power which makes the process very inefficient and economically not viable for both low and high temperature application.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Rates & Repayment Services Power Reporting MISCELLANEOUS REPORTING Power Supply Report October 2014 (59kb pdf) September 2014 (58kb pdf) August 2014 (47kb pdf) July 2014 (57kb pdf)...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Regulation and Frequency Response DollarsKW-month 4.56 CV-RFS4 Spinning Reserve The formula rate for spinning reserve service is the price consistent with the California...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and Frequency Response DollarsKW-month 3.98 4.17 CV-RFS4 Spinning Reserve The formula rate for spinning reserve service is the price consistent with the California...
On Thermonuclear Reaction Rates
H. J. Haubold; A. M. Mathai
1996-12-02T23:59:59.000Z
Nuclear reactions govern major aspects of the chemical evolution od galaxies and stars. Analytic study of the reaction rates and reaction probability integrals is attempted here. Exact expressions for the reaction rates and reaction probability integrals for nuclear reactions in the case of nonresonant, modified nonresonant, screened nonresonant and resonant cases are given. These are expressed in terms of H-functions, G-functions and in computable series forms. Computational aspects are also discussed.
ANS severe accident program overview & planning document
Taleyarkhan, R.P.
1995-09-01T23:59:59.000Z
The Advanced Neutron Source (ANS) severe accident document was developed to provide a concise and coherent mechanism for presenting the ANS SAP goals, a strategy satisfying these goals, a succinct summary of the work done to date, and what needs to be done in the future to ensure timely licensability. Guidance was received from various bodies [viz., panel members of the ANS severe accident workshop and safety review committee, Department of Energy (DOE) orders, Nuclear Regulatory Commission (NRC) requirements for ALWRs and advanced reactors, ACRS comments, world-wide trends] were utilized to set up the ANS-relevant SAS goals and strategy. An in-containment worker protection goal was also set up to account for the routine experimenters and other workers within containment. The strategy for achieving the goals is centered upon closing the severe accident issues that have the potential for becoming certification issues when assessed against realistic bounding events. Realistic bounding events are defined as events with an occurrency frequency greater than 10{sup {minus}6}/y. Currently, based upon the level-1 probabilistic risk assessment studies, the realistic bounding events for application for issue closure are flow blockage of fuel element coolant channels, and rapid depressurization-related accidents.
Response to several FOIA requests - Renewable Energy. | Department...
several FOIA requests - Renewable Energy. Response to several FOIA requests - Renewable Energy. Response to several FOIA requests - Renewable Energy. National Energy Policy, coal...
Response to several FOIA requests - Renewable Energy. Demand...
Office of Environmental Management (EM)
Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA...
Severance, Colorado: Energy Resources | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlers HillMile,Severance,
Severe Accident Studies | Department of Energy
Office of Environmental Management (EM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergy SmallImplementingSecuritySemiannual US DepartmentSessionalongSevere
Severe Accident Studies | Department of Energy
Office of Environmental Management (EM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer toSensor Technologies for a SmartSevere Accident Studies
Nuclear astrophysical plasmas: ion distribution functions and fusion rates
Marcello Lissia; Piero Quarati
2005-11-15T23:59:59.000Z
This article illustrates how very small deviations from the Maxwellian exponential tail, while leaving unchanged bulk quantities, can yield dramatic effects on fusion reaction rates and discuss several mechanisms that can cause such deviations.
Merger Rates of Dark-Matter Haloes
Eyal Neistein; Avishai Dekel
2008-05-22T23:59:59.000Z
We derive analytic merger rates for dark-matter haloes within the framework of the Extended Press-Schechter (EPS) formalism. These rates become self-consistent within EPS once we realize that the typical merger in the limit of a small time-step involves more than two progenitors, contrary to the assumption of binary mergers adopted in earlier studies. We present a general method for computing merger rates that span the range of solutions permitted by the EPS conditional mass function, and focus on a specific solution that attempts to match the merger rates in N-body simulations. The corrected EPS merger rates are more accurate than the earlier estimates of Lacey & Cole, by ~20% for major mergers and by up to a factor of ~3 for minor mergers of mass ratio 1:10^4. Based on the revised merger rates, we provide a new algorithm for constructing Monte-Carlo EPS merger trees, that could be useful in Semi-Analytic Modeling. We provide analytic expressions and plot numerical results for several quantities that are very useful in studies of galaxy formation. This includes (a) the rate of mergers of a given mass ratio per given final halo, (b) the fraction of mass added by mergers to a halo, and (c) the rate of mergers per given main progenitor. The creation and destruction rates of haloes serve for a self-consistency check. Our method for computing merger rates can be applied to conditional mass functions beyond EPS, such as those obtained by the ellipsoidal collapse model or extracted from $N$-body simulations.
Position paper -- Tank ventilation system design air flow rates
Goolsby, G.K.
1995-01-04T23:59:59.000Z
The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.
Use of Two Distillation Columns in Systems with Maximum Temperature Limitations
Gilchrist, James F.
Use of Two Distillation Columns in Systems with Maximum Temperature Limitations Rebecca H. Masel, Pennsylvania 18015, United States ABSTRACT: Maximum temperature limitations are encountered in distillation of the bottoms product fixes the column base pressure and, hence, the condenser pressure. The distillate
Maximum Power Transfer Tracking in a Solar USB Charger for Smartphones
Pedram, Massoud
chargers do not perform the maximum power point tracking [2], [3] of the solar panel. We excludeMaximum Power Transfer Tracking in a Solar USB Charger for Smartphones Abstract--Battery life poor capacity utilization during solar energy harvesting. In this paper, we propose and demonstrate
LANGMUIR WAVE ACTIVITY: COMPARING THE ULYSSES SOLAR MINIMUM AND SOLAR MAXIMUM ORBITS
California at Berkeley, University of
). The top three panels correspond to the southern segment of the solar minimum orbit; repeated passesLANGMUIR WAVE ACTIVITY: COMPARING THE ULYSSES SOLAR MINIMUM AND SOLAR MAXIMUM ORBITS R. J at the electron plasma frequency) during the solar minimum and solar maximum orbits of Ulysses. At high latitudes
Efficiency at maximum power of low dissipation Carnot engines Massimiliano Esposito
Kawai, Ryoichi
Efficiency at maximum power of low dissipation Carnot engines Massimiliano Esposito Center the efficiency at maximum power, , of engines performing finite-time Carnot cycles between a hot and a cold reservoir at temperatures Th and Tc, respectively. For engines reaching Carnot efficiency C = 1 - Tc
Osterloh, Frank
Maximum Theoretical Efficiency Limit of Photovoltaic Devices: Effect of Band Structure on Excited a theoretical limit for the maximum energy conversion efficiency of single junction photovoltaic cells for the efficiency variations observed for real photovoltaic devices today.4-6 Here, we show that the extractable
Maximum-Power-Point Tracking Method of Photovoltaic Using Only Single Current Sensor
Fujimoto, Hiroshi
» «Solar cell systems» Abstract This paper describes a novel strategy of maximum-power-point tracking point using only a single current sensor, i.e., a Hall-effect CT. Output power of the photovoltaic can-climbing method is employed to seek the maximum power point, using the output power obtained from only the current
Ranade, Abhiram G.
An Improved Maximum Likelihood Formulation for Accurate Genome Assembly Aditya Varma, Abhiram maximum likelihood method for genome assembly. We formulate the problem as one of direct convex estimate of the length of the genome or the need to use further expectation minimization to predict
How Is the Maximum Entropy of a Quantized Surface Related to Its Area?
I. B. Khriplovich; R. V. Korkin
2001-12-27T23:59:59.000Z
The maximum entropy of a quantized surface is demonstrated to be proportional to the surface area in the classical limit. The result is valid in loop quantum gravity, and in a somewhat more general class of approaches to surface quantization. The maximum entropy is calculated explicitly for some specific cases.
Dose calculations for severe LWR accident scenarios
Margulies, T.S.; Martin, J.A. Jr.
1984-05-01T23:59:59.000Z
This report presents a set of precalculated doses based on a set of postulated accident releases and intended for use in emergency planning and emergency response. Doses were calculated for the PWR (Pressurized Water Reactor) accident categories of the Reactor Safety Study (WASH-1400) using the CRAC (Calculations of Reactor Accident Consequences) code. Whole body and thyroid doses are presented for a selected set of weather cases. For each weather case these calculations were performed for various times and distances including three different dose pathways - cloud (plume) shine, ground shine and inhalation. During an emergency this information can be useful since it is immediately available for projecting offsite radiological doses based on reactor accident sequence information in the absence of plant measurements of emission rates (source terms). It can be used for emergency drill scenario development as well.
EPR Severe Accident Threats and Mitigation
Azarian, G. [Framatome ANP SAS, Tour Areva, Place de la Coupole 92084 Paris la Defense (France); Kursawe, H.M.; Nie, M.; Fischer, M.; Eyink, J. [Framatome ANP GmbH, Freyeslebenstrasse, 1, D-91058 Erlangen (Germany); Stoudt, R.H. [Framatome ANP Inc. - 3315 Old Forest Rd, Lynchburgh, VA 24501 (United States)
2004-07-01T23:59:59.000Z
Despite the extremely low EPR core melt frequency, an improved defence-in-depth approach is applied in order to comply with the EPR safety target: no stringent countermeasures should be necessary outside the immediate plant vicinity like evacuation, relocation or food control other than the first harvest in case of a severe accident. Design provisions eliminate energetic events and maintain the containment integrity and leak-tightness during the entire course of the accident. Based on scenarios that cover a broad range of physical phenomena and which provide a sound envelope of boundary conditions associated with each containment challenge, a selection of representative loads has been done, for which mitigation measures have to cope with. This paper presents the main critical threats and the approach used to mitigate those threats. (authors)
Severe environment turbine powered steerable motors
Gaynor, T.M. [Neyrfor-Weir Ltd., Aberdeen (United Kingdom). Dept. of Operations
1995-12-31T23:59:59.000Z
Turbine powered downhole motors have advantages for high temperature, high pressure, sour gas or hard formation drilling which stem from turbodrill construction rather than metallurgy, and from their power characteristics. The first part of the paper will discuss this, and compare turbine and Moineau powered motors in this context. The introduction in the last three years of new bearing materials, hydraulic thrust balancing devices and high performance flexible couplings have extended turbodrill performance and reliability margins in severe environment drilling. It is perfecting feasible to build steerable motors capable of drilling for 250 hours in 6-in. hole at 200 degrees Celsius (392 degrees Fahrenheit) in a deviated high pressure well since the individual problems in this ``Well from Hell`` have successfully been overcome. The second part of the paper will illustrate this through field examples.
Unification of Field Theory and Maximum Entropy Methods for Learning Probability Densities
Kinney, Justin B
2014-01-01T23:59:59.000Z
Bayesian field theory and maximum entropy are two methods for learning smooth probability distributions (a.k.a. probability densities) from finite sampled data. Both methods were inspired by statistical physics, but the relationship between them has remained unclear. Here I show that Bayesian field theory subsumes maximum entropy density estimation. In particular, the most common maximum entropy methods are shown to be limiting cases of Bayesian inference using field theory priors that impose no boundary conditions on candidate densities. This unification provides a natural way to test the validity of the maximum entropy assumption on one's data. It also provides a better-fitting nonparametric density estimate when the maximum entropy assumption is rejected.
Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Di Giustino, Leonardo; /SLAC
2011-08-19T23:59:59.000Z
A key problem in making precise perturbative QCD predictions is the uncertainty in determining the renormalization scale {mu} of the running coupling {alpha}{sub s}({mu}{sup 2}): The purpose of the running coupling in any gauge theory is to sum all terms involving the {beta} function; in fact, when the renormalization scale is set properly, all non-conformal {beta} {ne} 0 terms in a perturbative expansion arising from renormalization are summed into the running coupling. The remaining terms in the perturbative series are then identical to that of a conformal theory; i.e., the corresponding theory with {beta} = 0. The resulting scale-fixed predictions using the 'principle of maximum conformality' (PMC) are independent of the choice of renormalization scheme - a key requirement of renormalization group invariance. The results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The PMC is also the theoretical principle underlying the BLM procedure, commensurate scale relations between observables, and the scale-setting method used in lattice gauge theory. The number of active flavors nf in the QCD {beta} function is also correctly determined. We discuss several methods for determining the PMC/BLM scale for QCD processes. We show that a single global PMC scale, valid at leading order, can be derived from basic properties of the perturbative QCD cross section. The elimination of the renormalization scheme ambiguity using the PMC will not only increase the precision of QCD tests, but it will also increase the sensitivity of collider experiments to new physics beyond the Standard Model.
Hunter, Steven L. (Livermore, CA)
2002-01-01T23:59:59.000Z
A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARDenergyEnergy InnovationRecentPreviouspower-rates
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARDenergyEnergytransmission-rates Sign In About |
Iodine chemical forms in LWR severe accidents
Beahm, E.C.; Weber, C.F.; Kress, T.S.; Parker, G.W.
1991-01-01T23:59:59.000Z
Calculated data from seven severe accident sequences in light-water reactor plants were used to assess the chemical forms of iodine in containment. In most of the calculations for the seven sequences, iodine entering containment from the reactor coolant system was almost entirely in the form of CsI with very small contributions of I or HI. The largest fraction of iodine in forms other than CsI was a total of 3.2% as I plus HI. Within the containment, the CsI will deposit onto walls and other surfaces, as well as in water pools, largely in the form of iodide (I{sup {minus}}). The radiation induced conversion of I{sup {minus}} in water pools into I{sub 2} is strongly dependent on pH. In systems where the pH was controlled above 7, little additional elemental iodine would be produced in the containment atmosphere. When the pH falls below 7, it may be assumed that it is not being controlled, and large fractions of iodine as I{sub 2} within the containment atmosphere may be produced. 16 refs.
Analytical Improvements in PV Degradation Rate Determination
Jordan, D. C.; Kurtz, S. R.
2011-02-01T23:59:59.000Z
As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.
Tentner, A. M.; Parma, E.; Wei, T.; Wigeland, R.; Nuclear Engineering Division; SNL; INL
2010-03-01T23:59:59.000Z
An important goal of the US DOE reactor development program is to conceptualize advanced safety design features for a demonstration Sodium Fast Reactor (SFR). The treatment of severe accidents is one of the key safety issues in the design approach for advanced SFR systems. It is necessary to develop an in-depth understanding of the risk of severe accidents for the SFR so that appropriate risk management measures can be implemented early in the design process. This report presents the results of a review of the SFR features and phenomena that directly influence the sequence of events during a postulated severe accident. The report identifies the safety features used or proposed for various SFR designs in the US and worldwide for the prevention and/or mitigation of Core Disruptive Accidents (CDA). The report provides an overview of the current SFR safety approaches and the role of severe accidents. Mutual understanding of these design features and safety approaches is necessary for future collaborations between the US and its international partners as part of the GEN IV program. The report also reviews the basis for an integrated safety approach to severe accidents for the SFR that reflects the safety design knowledge gained in the US during the Advanced Liquid Metal Reactor (ALMR) and Integral Fast Reactor (IFR) programs. This approach relies on inherent reactor and plant safety performance characteristics to provide additional safety margins. The goal of this approach is to prevent development of severe accident conditions, even in the event of initiators with safety system failures previously recognized to lead directly to reactor damage.
LIBOR rate models, related derivatives and model calibration April 6, 1999
Schoenmakers, John
better stability properties. 1 Introduction Recently, several models for LIBOR rates and valuation methods for LIBOR rate related derivatives have appeared, e.g. Brace, Gatarek and Musiela (1997), 2
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department ofDepartmentPower-Rates Sign In About |
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department ofDepartmentPower-Rates Sign
[FIXED RATE GUARANTEED OBLIGATIONS]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015Visiting Strong,Women @JoinEnergy ZEROFIXED RATE GUARANTEED
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting the Stage for the Next SolarRate
Comparison of the susceptibility of several cultivars of avocado to the persea mite, Oligonychus
Hoddle, Mark S.
Comparison of the susceptibility of several cultivars of avocado to the persea mite, Oligonychus cultivars of avocado, Persea americana, to feeding by Oligonychus perseae. Based on the percentage of leaf reproduction and intrinsic rate of increase were signi®cantly higher on Hass avocados in mid summer (July
Bennett, Albert F.
4111 Movement of oxygen from the atmosphere to the mitochondria occurs via several convective and diffusive steps (Weibel et al., 1981). In mammals, maximal rate of oxygen consumption (VOmax) is not limited by any one step of the oxygen cascade; rather limitations to VOmax are distributed across all steps
Atlantic Ocean circulation at the last glacial maximum : inferences from data and models
Dail, Holly Janine
2012-01-01T23:59:59.000Z
This thesis focuses on ocean circulation and atmospheric forcing in the Atlantic Ocean at the Last Glacial Maximum (LGM, 18-21 thousand years before present). Relative to the pre-industrial climate, LGM atmospheric CO? ...
Tropical climate variability from the last glacial maximum to the present
Dahl, Kristina Ariel
2005-01-01T23:59:59.000Z
This thesis evaluates the nature and magnitude of tropical climate variability from the Last Glacial Maximum to the present. The temporal variability of two specific tropical climate phenomena is examined. The first is the ...
Investigating the angle or response and maximum stability of a cohesive granular pile
Nowak, Sara Alice, 1982-
2004-01-01T23:59:59.000Z
In this thesis, I investigate the static and dynamic properties of a granular heap made cohesive by an interstitial fluid. I present the results of experimental work measuring the maximum angle of stability and the angle ...
Dynamical Reconstruction of Upper-Ocean Conditions in the Last Glacial Maximum Atlantic
Wunsch, Carl
Proxies indicate that the Last Glacial Maximum (LGM) Atlantic Ocean was marked by increased meridional and zonal near sea surface temperature gradients relative to today. Using a least squares fit of a full general circulation ...
Achieving Consistent Maximum Brake Torque with Varied Injection Timing in a DI Diesel Engine
Kroeger, Timothy H
2013-09-19T23:59:59.000Z
, revealing the premixed and diffusion burn fractions as well as important engine and exhaust design criteria such as maximum in-cylinder pressure and exhaust composition. These results are significant in diesel engine design because cheaper, lighter engines...
Microcontroller Servomotor for Maximum Effective Power Point for Solar Cell System
Al-Khalidy, M.; Al-Rawi, O.; Noaman, N.
2010-01-01T23:59:59.000Z
In this paper a Maximum Power point (MPP) tracking algorithm is developed using dual-axis servomotor feedback tracking control system. An efficient and accurate servomotor system is used to increase the system efficiency ...
Submodule Integrated Distributed Maximum Power Point Tracking for Solar Photovoltaic Applications
Pilawa-Podgurski, Robert C. N.
This paper explores the benefits of distributed power electronics in solar photovoltaic applications through the use of submodule integrated maximum power point trackers (MPPT). We propose a system architecture that provides ...
Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane
Gülder, Ömer L.
Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane the current study and the previous measurements in similar flames with methane, ethane, and propane flames
Microcontroller Servomotor for Maximum Effective Power Point for Solar Cell System
Al-Khalidy, M.; Al-Rawi, O.; Noaman, N.
2010-01-01T23:59:59.000Z
In this paper a Maximum Power point (MPP) tracking algorithm is developed using dual-axis servomotor feedback tracking control system. An efficient and accurate servomotor system is used to increase the system efficiency and reduces the solar cell...
Maximum Network Lifetime in Wireless Sensor Networks with Adjustable Sensing Ranges
Wu, Jie
1 Maximum Network Lifetime in Wireless Sensor Networks with Adjustable Sensing Ranges Mihaela problem in wireless sensor networks with adjustable sensing range. Communication and sensing consume Wireless sensor networks (WSNs) constitute the foundation of a broad range of applications related
A more efficient formulation for computation of the maximum loading points in electric power systems
Chiang, H.D. [Cornell Univ., Ithaca, NY (United States). School of Electrical Engineering; Jean-Jumeau, R. [Electricite d`Haita, Port-au-Prince (Haiti)
1995-05-01T23:59:59.000Z
This paper presents a more efficient formulation for computation of the maximum loading points. A distinguishing feature of the new formulation is that it is of dimension (n + 1), instead of the existing formulation of dimension (2n + 1), for n-dimensional load flow equations. This feature makes computation of the maximum loading points very inexpensive in comparison with those required in the existing formulation. A theoretical basis for the new formulation is provided. The new problem formulation is derived by using a simple reparameterization scheme and exploiting the special properties of the power flow model. Moreover, the proposed test function is shown to be monotonic in the vicinity of a maximum loading point. Therefore, it allows one to monitor the approach to maximum loading points during the solution search process. Simulation results on a 234-bus system are presented.
Acoustic Space Dimensionality Selection and Combination using the Maximum Entropy Principle
Abdel-Haleem, Yasser H; Renals, Steve; Lawrence, Neil D
2004-01-01T23:59:59.000Z
In this paper we propose a discriminative approach to acoustic space dimensionality selection based on maximum entropy modelling. We form a set of constraints by composing the acoustic space with the space of phone classes, and use a continuous...
Energy Management Through Innovative Rates
Williams, M. L.
1982-01-01T23:59:59.000Z
of energy efficiency in the industrial sector and specific rate design alternatives for doing so....
An Analysis of Maximum Residential Energy Efficiency in Hot and Humid Climates
Malhotra, M.; Haberl, J. S.
2006-01-01T23:59:59.000Z
Systems in Hot and Humid Climates, Orlando, Florida, July 24-26, 2006 Methodology 1. Development of the Basecase Simulation Model 2. Analysis of Energy Saving Measures 3. Development of the Maximum Energy-Efficient House 4. Economic Analysis DOE-2 Input...AN ANALYSIS OF MAXIMUM RESIDENTIAL ENERGY EFFICIENCY IN HOT AND HUMID CLIMATES Mini Malhotra Graduate Research Assistant Jeff Haberl, Ph.D., P.E. Professor/Associate Director Energy Systems Laboratory, Texas A&M University College...
ON THE PROBLEM OF UNIQUENESS FOR THE MAXIMUM STIRLING NUMBER(S) OF THE SECOND KIND
Pomerance, Carl
ON THE PROBLEM OF UNIQUENESS FOR THE MAXIMUM STIRLING NUMBER(S) OF THE SECOND KIND E. Rodney Say that an integer n is exceptional if the maximum Stirling number of the second kind S(n, k) occurs or equal to x is O(x3/5+ ), for any > 0. 1. Introduction Let S(n, k) be the Stirling number of the second
A stochastic model for sediment yield using the Principle of Maximum Entropy
Singh, V. P.; Krstanovic, P. F.
WATER RESOURCES RESEARCH, VOL. 23, NO. 5, PAGES 781-793, MAY 1987 A Stochastic Model for Sediment Yield Using the Principle of Maximum Entropy V. P. SINGH AND P. F. KRSTANOVIC Department of Civil Engineering, Louisiana State University, Baton... Rouge The principle of maximum entropy was applied to derive a stochastic model for sediment yield from upland watersheds. By maximizing the conditional entropy subject to certain constraints, a probability distribution of sediment yield conditioned...
Kim, Leonard, E-mail: kimlh@umdnj.edu [Department of Radiation Oncology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ (United States); Narra, Venkat; Yue, Ning [Department of Radiation Oncology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ (United States)
2013-07-01T23:59:59.000Z
Recent studies have reported potentially clinically meaningful dose differences when heterogeneity correction is used in breast balloon brachytherapy. In this study, we report on the relationship between heterogeneity-corrected and -uncorrected doses for 2 commonly used plan evaluation metrics: maximum point dose to skin surface and maximum point dose to ribs. Maximum point doses to skin surface and ribs were calculated using TG-43 and Varian Acuros for 20 patients treated with breast balloon brachytherapy. The results were plotted against each other and fit with a zero-intercept line. Max skin dose (Acuros) = max skin dose (TG-43) ? 0.930 (R{sup 2} = 0.995). The average magnitude of difference from this relationship was 1.1% (max 2.8%). Max rib dose (Acuros) = max rib dose (TG-43) ? 0.955 (R{sup 2} = 0.9995). The average magnitude of difference from this relationship was 0.7% (max 1.6%). Heterogeneity-corrected maximum point doses to the skin surface and ribs were proportional to TG-43-calculated doses. The average deviation from proportionality was 1%. The proportional relationship suggests that a different metric other than maximum point dose may be needed to obtain a clinical advantage from heterogeneity correction. Alternatively, if maximum point dose continues to be used in recommended limits while incorporating heterogeneity correction, institutions without this capability may be able to accurately estimate these doses by use of a scaling factor.
Relations Of Ammonium Minerals At Several Hydrothermal Systems...
Minerals At Several Hydrothermal Systems In The Western Us Abstract Ammonium bound to silicate and sulfate minerals has recently been located at several major hydrothermal systems...
LOCA feasibility study of Almaraz NPP 110% power up-rate
Orive, Raul; Gallego, Ines; Garcia, Pablo; Concejal, Alberto [IBERDROLA Ingenieria y Construccion S.A.U. Avda. de Burgos, 8B, 28036 Madrid (Spain); Martinez-Murillo, Juan-Carlos [Almaraz-Trillo AIE, Avda. de Manoteras , 28050 Madrid (Spain)
2006-07-01T23:59:59.000Z
Knowledge about accidents and fuel response in extreme conditions has progressed in parallel with the simulation tools development and consequently results are today highly satisfactory. This fact allows nuclear power plants (NPP) to carry out optimization processes of its operation and yield improvements due to the development of new methodologies and tools. Power up-rates open a demand in areas like the analyses of Loss Of Coolant Accidents (LOCA's), which impact on plant design may limit the maximum operation power in a nuclear power plant. TRAC-PF1 is a thermal-hydraulic calculation code that allows the complete treatment of two-phase flows in balance, combining a three dimensional vessel, that simulates in detail the accident phenomena, with one dimensional components. TRAC-PF1 code capacities in the reproduction of experiments, transients and accidents have been widely proved. IBERINCO has modified the original code to develop a conservative model applicable to a 3-loop Westinghouse NPP. These circumstances have allowed Almaraz NPP to get deeper in the study of the plant behaviour during a LOCA, after a hypothetical Power Up-rate. The scope of the study includes the development of the plant model and the reproduction of several accidents with loss of coolant. These accidents have been simulated with the improved option and the conservative version of the modified code (TRAC-PF1/IBER). The limiting case at the current power is analyzed in 110% Power Up-rate conditions and different sensitivity studies are performed, focused in impact of axial power distribution, discharge coefficients and emergency core cooling system availability. These studies allow to verify the effectiveness of Almaraz NPP safety systems in LOCA scenarios to guarantee the required safety margins. (authors)
National Utility Rate Database: Preprint
Ong, S.; McKeel, R.
2012-08-01T23:59:59.000Z
When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.
Period-luminosity and period-luminosity-colour relations for Mira variables at maximum light
S. M. Kanbur; M. A. Hendry; D. Clarke
1997-04-14T23:59:59.000Z
In this paper we confirm the existence of period-luminosity (PL) and period-luminosity-colour (PLC) relations at maximum light for O and C Mira variables in the LMC. We demonstrate that in the J and H bands the maximum light PL relations have a significantly smaller dispersion than their counterparts at mean light, while the K band and bolometric PL relations have a dispersion comparable to that at mean light. In the J, H and K bands the fitted PL relations for the O Miras are found to have smaller dispersion than those for the C Miras, at both mean and maximum light, while the converse is true for the relations based on bolometric magnitudes. The inclusion of a non-zero log period term is found to be highly significant in all cases except that of the C Miras in the J band, for which the data are found to be consistent with having constant absolute magnitude. This suggests the possibility of employing C Miras as standard candles. We suggest both a theoretical justification for the existence of Mira PL relations at maximum light and a possible explanation of why these relations should have a smaller dispersion than at mean light. The existence of such maximum light relations offers the possibility of extending the range and improving the accuracy of the Mira distance scale to Galactic globular clusters and to other galaxies.
HFIR Vessel Maximum Permissible Pressures for Operating Period 26 to 50 EFPY (100 MW)
Cheverton, R.D.; Inger, J.R.
1999-01-01T23:59:59.000Z
Extending the life of the HFIR pressure vessel from 26 to 50 EFPY (100 MW) requires an updated calculation of the maximum permissible pressure for a range in vessel operating temperatures (40-120 F). The maximum permissible pressure is calculated using the equal-potential method, which takes advantage of knowledge gained from periodic hydrostatic proof tests and uses the test conditions (pressure, temperature, and frequency) as input. The maximum permissible pressure decreases with increasing time between hydro tests but is increased each time a test is conducted. The minimum values that occur just prior to a test either increase or decrease with time, depending on the vessel temperature. The minimum value of these minimums is presently specified as the maximum permissible pressure. For three vessel temperatures of particular interest (80, 88, and 110 F) and a nominal time of 3.0 EFPY(100 MVV)between hydro tests, these pressures are 677, 753, and 850 psi. For the lowest temperature of interest (40 F), the maximum permissible pressure is 295 psi.
On the maximum value of the cosmic abundance of oxygen and the oxygen yield
L. S. Pilyugin; T. X. Thuan; J. M. Vilchez
2007-01-11T23:59:59.000Z
We search for the maximum oxygen abundance in spiral galaxies. Because this maximum value is expected to occur in the centers of the most luminous galaxies, we have constructed the luminosity - central metallicity diagram for spiral galaxies, based on a large compilation of existing data on oxygen abundances of HII regions in spiral galaxies. We found that this diagram shows a plateau at high luminosities (-22.3 oxygen abundance 12+log(O/H) ~ 8.87. This provides strong evidence that the oxygen abundance in the centers of the most luminous metal-rich galaxies reaches the maximum attainable value of oxygen abundance. Since some fraction of the oxygen (about 0.08 dex) is expected to be locked into dust grains, the maximum value of the true gas+dust oxygen abundance in spiral galaxies is 12+log(O/H) ~ 8.95. This value is a factor of ~ 2 higher than the recently estimated solar value. Based on the derived maximum oxygen abundance in galaxies, we found the oxygen yield to be about 0.0035, depending on the fraction of oxygen incorporated into dust grains.
Upper Great Plains Rates information
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Ancillary Services Rate Data (2.4mb pdf) Transmission and Ancillary Services 2011 Rate True-up Calculation (3.4mb pdf) Power Reporting Miscellaneous Information If you have any...
Mahmood, S.M.; Olsen, D.K.; Ramzel, E.B.
1991-12-01T23:59:59.000Z
A series of experiments was performed to evaluate the effectiveness of commercially available surfactants for steam-foam EOR applications in light oil reservoirs. The experiments were performed in a 3-ft long, 1-1/2 in.-diameter cylindrical sandpack of about 1 darcy permeability. The sandpack and injected fluids were preheated to 430{degree}F at 155 psi. The main objective of these tests was to investigate the effectiveness of several surfactants in providing mobility control under a variety of conditions expected in light-oil steamfloods. Thus, maximum pressure-rise and foam-bank buildup/decay were noted as operating conditions were changed in a test or in various tests. Tests were performed with various oil types, sacrificial salts, injection rates, injection strategies, vapor-to-liquid fractions (VLF), and steam/N{sub 2} ratios (SNR).
2007 Wholesale Power Rate Schedules : 2007 General Rate Schedule Provisions.
United States. Bonneville Power Administration.
2006-11-01T23:59:59.000Z
This schedule is available for the contract purchase of Firm Power to be used within the Pacific Northwest (PNW). Priority Firm (PF) Power may be purchased by public bodies, cooperatives, and Federal agencies for resale to ultimate consumers, for direct consumption, and for Construction, Test and Start-Up, and Station Service. Rates in this schedule are in effect beginning October 1, 2006, and apply to purchases under requirements Firm Power sales contracts for a three-year period. The Slice Product is only available for public bodies and cooperatives who have signed Slice contracts for the FY 2002-2011 period. Utilities participating in the Residential Exchange Program (REP) under Section 5(c) of the Northwest Power Act may purchase Priority Firm Power pursuant to the Residential Exchange Program. Rates under contracts that contain charges that escalate based on BPA's Priority Firm Power rates shall be based on the three-year rates listed in this rate schedule in addition to applicable transmission charges. This rate schedule supersedes the PF-02 rate schedule, which went into effect October 1, 2001. Sales under the PF-07 rate schedule are subject to BPA's 2007 General Rate Schedule Provisions (2007 GRSPs). Products available under this rate schedule are defined in the 2007 GRSPs. For sales under this rate schedule, bills shall be rendered and payments due pursuant to BPA's 2007 GRSPs and billing process.
Rate constants for charge transfer across semiconductor-liquid interfaces
Fajardo, A.M.; Lewis, N.S. [California Institute of Technology, Pasadena, CA (United States)
1996-11-08T23:59:59.000Z
Interfacial charge-transfer rate constants have been measured for n-type Si electrodes in contact with a series of viologen-based redox couples in methanol through analyses of the behavior of these junctions with respect to their current density versus potential and differential capacitance versus potential properties. The data allow evaluation of the maximum rate constant (and therefore the electronic coupling) for majority carriers in the solid as well as of the dependence of the rate constant on the driving force for transfer of delocalized electrons from the n-Si semiconducting electrode into the localized molecular redox species in the solution phase. The data are in good agreement with existing models of this interfacial electron transfer process and provide insight into the fundamental kinetic events underlying the use of semiconducting photoelectrodes in applications such as solar energy conversion. 23 refs., 3 figs.
Spectral Modeling of SNe Ia Near Maximum Light: Probing the Characteristics of Hydro Models
E. Baron; S. Bongard; David Branch; Peter H. Hauschildt
2006-03-03T23:59:59.000Z
We have performed detailed NLTE spectral synthesis modeling of 2 types of 1-D hydro models: the very highly parameterized deflagration model W7, and two delayed detonation models. We find that overall both models do about equally well at fitting well observed SNe Ia near to maximum light. However, the Si II 6150 feature of W7 is systematically too fast, whereas for the delayed detonation models it is also somewhat too fast, but significantly better than that of W7. We find that a parameterized mixed model does the best job of reproducing the Si II 6150 line near maximum light and we study the differences in the models that lead to better fits to normal SNe Ia. We discuss what is required of a hydro model to fit the spectra of observed SNe Ia near maximum light.
Fast singular value decomposition combined maximum entropy method for plasma tomography
Kim, Junghee; Choe, W. [Department of Physics, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701(Korea, Republic of)
2006-02-15T23:59:59.000Z
The maximum entropy method (MEM) is a widely used reconstruction algorithm in plasma physics. Drawbacks of the conventional MEM are its heavy time-consuming process and possible generation of noisy reconstruction results. In this article, a modified maximum entropy algorithm is described which speeds up the calculation and shows better noise handling capability. Similar to the rapid minimum Fisher information method, the modified maximum entropy algorithm uses simple matrix operations instead of treating a fully nonlinear problem. The preprocess for rapid tomographic calculation is based on the vector operations and the singular value decomposition (SVD). The initial guess of the sought-for emissivity is calculated by SVD and this helped reconstruction about ten times faster than the conventional MEM. Therefore, the developed fast MEM can be used for intershot tomographic analyses of fusion plasmas.
Electrochemical Corrosion Rate Sensors for Waste Incineration Applications
Covino, B.S., Jr.; Bullard, S.J.; Matthes, S.A.; Holcomb, G.R.; Ziomek-Moroz, M.; Eden, D.A. (Honeywell Intercorr)
2007-03-01T23:59:59.000Z
Electrochemical corrosion rate sensors work in high temperature waste incineration applications where ash is deposited. The ash serves as the electrolyte for electrochemical measurements, such as liner polarization resistance, electrochemical noise, and harmonic distortion analyses. Results to date have shown that these types of sensors respond qualitatively to changes in temperature, gas composition, alloy composition, and type of ash. Several years of research have shown that high temperature corrosion rate probes need to be better understood before corrosion rate can be used as a process variable by power plant operators. More recent research has shown that electrochemical corrosion probes typically measure lower corrosion rates than those measured by standard mass loss techniques. While still useful for monitoring changes in corrosion rates, absolute probe corrosion rates will need a calibration factor to be useful. Ideas for research that may help resolve these issues are presented.
Quantum computing with nearest neighbor interactions and error rates over 1%
David S. Wang; Austin G. Fowler; Lloyd C. L. Hollenberg
2010-09-20T23:59:59.000Z
Large-scale quantum computation will only be achieved if experimentally implementable quantum error correction procedures are devised that can tolerate experimentally achievable error rates. We describe a quantum error correction procedure that requires only a 2-D square lattice of qubits that can interact with their nearest neighbors, yet can tolerate quantum gate error rates over 1%. The precise maximum tolerable error rate depends on the error model, and we calculate values in the range 1.1--1.4% for various physically reasonable models. Even the lowest value represents the highest threshold error rate calculated to date in a geometrically constrained setting, and a 50% improvement over the previous record.
Hydrodynamic Relaxation of an Electron Plasma to a Near-Maximum Entropy State
Rodgers, D. J.; Servidio, S.; Matthaeus, W. H.; Mitchell, T. B.; Aziz, T. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Montgomery, D. C. [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)
2009-06-19T23:59:59.000Z
Dynamical relaxation of a pure electron plasma in a Malmberg-Penning trap is studied, comparing experiments, numerical simulations and statistical theories of weakly dissipative two-dimensional (2D) turbulence. Simulations confirm that the dynamics are approximated well by a 2D hydrodynamic model. Statistical analysis favors a theoretical picture of relaxation to a near-maximum entropy state with constrained energy, circulation, and angular momentum. This provides evidence that 2D electron fluid relaxation in a turbulent regime is governed by principles of maximum entropy.
Maximum-Entropy Closures for Kinetic Theories of Neuronal Network Dynamics
Rangan, Aaditya V.; Cai, David [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)
2006-05-05T23:59:59.000Z
We analyze (1+1)D kinetic equations for neuronal network dynamics, which are derived via an intuitive closure from a Boltzmann-like equation governing the evolution of a one-particle (i.e., one-neuron) probability density function. We demonstrate that this intuitive closure is a generalization of moment closures based on the maximum-entropy principle. By invoking maximum-entropy closures, we show how to systematically extend this kinetic theory to obtain higher-order (1+1)D kinetic equations and to include coupled networks of both excitatory and inhibitory neurons.
Maximum Entropy Models of Shortest Path and Outbreak Distributions in Networks
Bauckhage, Christian; Hadiji, Fabian
2015-01-01T23:59:59.000Z
Properties of networks are often characterized in terms of features such as node degree distributions, average path lengths, diameters, or clustering coefficients. Here, we study shortest path length distributions. On the one hand, average as well as maximum distances can be determined therefrom; on the other hand, they are closely related to the dynamics of network spreading processes. Because of the combinatorial nature of networks, we apply maximum entropy arguments to derive a general, physically plausible model. In particular, we establish the generalized Gamma distribution as a continuous characterization of shortest path length histograms of networks or arbitrary topology. Experimental evaluations corroborate our theoretical results.
M. Danilov; Yu. Gilitsky; T. Kvaratschellia; L. Laptin; I. Tichomirov; M. Titov; Yu. Zaitsev
2001-11-23T23:59:59.000Z
Experimental conditions at the HERA-B experiment impose very strong requirements for gaseous detectors. The charged particle fluxes through the HERA-B tracking system, varying with the radial distance $R$ from the beam line, are about $2 \\times 10^{7}/R^{2}$ particles per second, and comparable to those that will be encountered by LHC experiments. The severe radiation environment of the HERA-B experiment leads to a maximum charge deposit on a wire, within the muon detector, of 200 mC/cm per year. We report recent results of aging studies performed by irradiating proportional wire chambers filled with $Ar/CF_4/CH_4$ (74:20:6), $Ar/CF_4/CH_4$ (67:30:3), $Ar/CF_4/CO_2$ (65:30:5), $Ar/CF_4$ (70:30), $CF_4/CH_4$ (90:10), $CF_4/CH_4$ (80:20) mixtures in a three different experimental setups. The size of the irradiation zone varied in the tests from 1 cm up to 500 cm. Our experience shows that the aging rate depends not only on the total collected charge, but, in addition, on the mode of operation and area of irradiation. The possible application of these results to the construction of a large area gaseous detectors for operation in high rate environments is presented.
M. Danilov; Yu. Gilitsky; T. Kvaratschellia; L. Laptin; I. Tichomirov; M. Titov; Yu. Zaitsev
2001-11-23T23:59:59.000Z
Experimental conditions at the HERA-B experiment impose very strong requirements for gaseous detectors. The charged particle fluxes through the HERA-B tracking system, varying with the radial distance R from the beam line, are about $2 \\times 10^{7}/R^{2}$ particles per second, and comparable to those that will be encountered by LHC experiments. The severe radiation environment of the HERA-B experiment leads to a maximum charge deposit on a wire, within the muon detector, of 200 mC/cm per year. We report recent results of aging studies performed by irradiating proportional wire chambers filled with $Ar/CF_4/CH_4$ (74:20:6), $Ar/CF_4/CH_4$ (67:30:3), $Ar/CF_4/CO_2$ (65:30:5), $Ar/CF_4$ (70:30), $CF_4/CH_4$ (90:10), $CF_4/CH_4$ (80:20) mixtures in a three different experimental setups. The size of the irradiation zone varied in the tests from 1 cm up to 500 cm. Our experience shows that the aging rate depends not only on the total collected charge, but, in addition, on the mode of operation and area of irradiation. The possible application of these results to the construction of a large area gaseous detectors for operation in high rate environments is presented.
Severe plastic deformation of difficult-to-work alloys
Yapici, Guney Guven
2004-09-30T23:59:59.000Z
The present work aims to reveal the microstructural evolution and post-processing mechanical behavior of difficult-to-work alloys upon severe plastic deformation. Severe plastic deformation is applied using equal channel angular extrusion (ECAE...
Intelligent weather agent for aircraft severe weather avoidance
Bokadia, Sangeeta
2002-01-01T23:59:59.000Z
Severe weather conditions pose a large threat to the safety of aircraft, since they are responsible for a large percentage of aviation related accidents. With the advent of the free flight environment, the exigency for an autonomous severe weather...
Continuous Severe Plastic Deformation Processing of Aluminum Alloys
Raghavan Srinivasan (PI); Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros
2006-06-30T23:59:59.000Z
Metals with grain sizes smaller than 1-micrometer have received much attention in the past decade. These materials have been classified as ultra fine grain (UFG) materials (grain sizes in the range of 100 to 1000-nm) and nano-materials (grain size <100-nm) depending on the grain size. This report addresses the production of bulk UFG metals through the use of severe plastic deformation processing, and their subsequent use as stock material for further thermomechanical processing, such as forging. A number of severe plastic deformation (SPD) methods for producing bulk UFG metals have been developed since the early 1990s. The most promising of these processes for producing large size stock that is suitable for forging is the equal channel angular extrusion or pressing (ECAE/P) process. This process involves introducing large shear strain in the work-piece by pushing it through a die that consists of two channels with the same cross-sectional shape that meet at an angle to each other. Since the cross-sections of the two channels are the same, the extruded product can be re-inserted into the entrance channel and pushed again through the die. Repeated extrusion through the ECAE/P die accumulates sufficient strain to breakdown the microstructure and produce ultra fine grain size. It is well known that metals with very fine grain sizes (< 10-micrometer) have higher strain rate sensitivity and greater elongation to failure at elevated temperature, exhibiting superplastic behavior. However, this superplastic behavior is usually manifest at high temperature (> half the melting temperature on the absolute scale) and very low strain rates (< 0.0001/s). UFG metals have been shown to exhibit superplastic characteristics at lower temperature and higher strain rates, making this phenomenon more practical for manufacturing. This enables part unitization and forging more complex and net shape parts. Laboratory studies have shown that this is particularly true for UFG metals produced by SPD techniques. This combination of properties makes UFG metals produced by SPD very attractive as machining, forging or extrusion stock, both from the point of view of formability as well as energy and cost saving. However, prior to this work there had been no attempt to transfer these potential benefits observed in the laboratory scale to industrial shop floor. The primary reason for this was that the laboratory scale studies had been conducted to develop a scientific understanding of the processes that result in grain refinement during SPD. Samples that had been prepared in the laboratory scale were typically only about 10-mm diameter and 50-mm long (about 0.5-inch diameter and 2-inches long). The thrust of this project was three-fold: (i) to show that the ECAE/P process can be scaled up to produce long samples, i.e., a continuous severe plastic deformation (CSPD) process, (ii) show the process can be scaled up to produce large cross section samples that could be used as forging stock, and (iii) use the large cross-section samples to produce industrial size forgings and demonstrate the potential energy and cost savings that can be realized if SPD processed stock is adopted by the forging industry. Aluminum alloy AA-6061 was chosen to demonstrate the feasibility of the approach used. The CSPD process developed using the principles of chamber-less extrusion and drawing, and was demonstrated using rolling and wire drawing equipment that was available at Oak Ridge National Laboratory. In a parallel effort, ECAE/P dies were developed for producing 100-mm square cross section SPD billets for subsequent forging. This work was carried out at Intercontinental Manufacturing Co. (IMCO), Garland TX. Forging studies conducted with the ECAE/P billets showed that many of the potential benefits of using UFG material can be realized. In particular, the material yield can be increased, and the amount of material that is lost as scrap can be reduced by as much as 50%. Forging temperatures can also be reduced by over 150ºC, resulting in energy savings in the ope
Acceleration Rates and Injection Efficiencies in Oblique Shocks
D. C. Ellison; M. G. Baring; F. C. Jones
1995-06-12T23:59:59.000Z
The rate at which particles are accelerated by the first-order Fermi mechanism in shocks depends on the angle, \\teq{\\Tbone}, that the upstream magnetic field makes with the shock normal. The greater the obliquity the greater the rate, and in quasi-perpendicular shocks rates can be hundreds of times higher than those seen in parallel shocks. In many circumstances pertaining to evolving shocks (\\eg, supernova blast waves and interplanetary traveling shocks), high acceleration rates imply high maximum particle energies and obliquity effects may have important astrophysical consequences. However, as is demonstrated here, the efficiency for injecting thermal particles into the acceleration mechanism also depends strongly on obliquity and, in general, varies inversely with \\teq{\\Tbone}. The degree of turbulence and the resulting cross-field diffusion strongly influences both injection efficiency and acceleration rates. The test particle \\mc simulation of shock acceleration used here assumes large-angle scattering, computes particle orbits exactly in shocked, laminar, non-relativistic flows, and calculates the injection efficiency as a function of obliquity, Mach number, and degree of turbulence. We find that turbulence must be quite strong for high Mach number, highly oblique shocks to inject significant numbers of thermal particles and that only modest gains in acceleration rates can be expected for strong oblique shocks over parallel ones if the only source of seed particles is the thermal background.
NOAA Technical Memorandum NWS HYDRO 39 PROBABLE MAXIMUM PRECIPITATION FOR THE UPPER
NOAA Technical Memorandum NWS HYDRO 39 PROBABLE MAXIMUM PRECIPITATION FOR THE UPPER DEERFIELD RIVER The Office of Hydrology (HYDRO) of the National Weather Service (NWS) develops procedures for making river agencies, and conducts pertinent research and development. NOAA Technical Memorandums in the NWS HYDRO
Analysis and Optimization of Maximum Power Point Tracking Algorithms in the Presence of
Odam, Kofi
, Charles R. Sullivan, Senior Member, IEEE Abstract--This paper analyzes the effect of noise on sev- eral maximum power point tracking (MPPT) algorithms for photovoltaic systems. Noise is an essential of the signals, mitigating the noise. The effect of noise and other parameters on tracking performance
Maximum Output Amplitude of Linear Systems for certain Input Constraints1
Sontag, Eduardo
of this input and calculates the maximum amplitude of the output. The solution of this problem is a necessary, Linear Sys- tems. 1 Introduction and Motivation Most practical control problems are dominated by hard bounds. Valves can only be operated between fully open and fully closed, pumps and compressors have
Blind Equalization via Approximate Maximum Likelihood Source Seungjin CHOI x1 and Andrzej CICHOCKI y
Choi, Seungjin
Blind Equalization via Approximate Maximum Likelihood Source Separation Seungjin CHOI x1, RIKEN 2-1 Hirosawa, Wako-shi Saitama 351-0198, JAPAN Abstract Blind equalization of single input multiple output (SIMO) FIR channels can be refor- mulated as the problem of blind source separation
Mandelis, Andreas
Photothermoacoustic imaging of biological tissues: maximum depth characterization comparison for Advanced Diffusion-Wave Technologies Department of Mechanical and Industrial Engineering 5 King's College induced in light-absorbing materials can be observed either as a transient signal in time domain
Harrington, Jerry Y.
Radiative Impacts on the Growth of Drops within Simulated Marine Stratocumulus. Part I: Maximum Solar Heating CHRISTOPHER M. HARTMAN AND JERRY Y. HARRINGTON Department of Meteorology, The Pennsylvania November 2004) ABSTRACT The effects of solar heating and infrared cooling on the vapor depositional growth
Maximum principle and bang-bang property of time optimal controls for Schrodinger type systems
Paris-Sud XI, Université de
Maximum principle and bang-bang property of time optimal controls for Schr¨odinger type systems J conditions for the bang- bang property of optimal controls. The results are then applied to some systems-Bang property, Schr¨odinger equation 1 Introduction Time optimal control is a classical problem for linear
Paris-Sud XI, Université de
Recursive maximum likelihood estimation for structural health monitoring: Kalman and particle by a likelihood approach. In a first part the structural health monitoring problem is written in term of recursive al [6] in a more simple framework. Particle approximation for health monitoring was already proposed
Maximum-Power-Point Tracking Method of Photovoltaic Power System Using Single Transducer
Fujimoto, Hiroshi
Maximum-Power-Point Tracking Method of Photovoltaic Power System Using Single Transducer Toshihiko) method of a photovoltaic power system with less transducer count. A unique feature of this method concern on an environmental issue since 1990's. Above all, a photovoltaic power generation system is one
Design of wind farm layout for maximum wind energy capture Andrew Kusiak*, Zhe Song
Kusiak, Andrew
Design of wind farm layout for maximum wind energy capture Andrew Kusiak*, Zhe Song Intelligent Accepted 24 August 2009 Available online 22 September 2009 Keywords: Wind farm Wind turbine Layout design Optimization Evolutionary algorithms Operations research a b s t r a c t Wind is one of the most promising
Electrical Estimation of Conditional Probability for Maximum-likelihood Based PMD Mitigation
Zweck, John
Xi, T¨ulay Adali, and John Zweck Department of Computer Science and Electrical Engineering UniversityElectrical Estimation of Conditional Probability for Maximum-likelihood Based PMD Mitigation Wenze probability density functions in the presence of both all-order PMD and ASE noise are estimated electronically
Brayton Cycles: From the ...rst law, the maximum transfers for component SSSF control volumes are
. For the simple reversible Brayton cycle of given pressure ratio rp $ (p2=p1) = (p3=p4) [compare Example 9.4, pp is higher than 1 r (2=7) . For the ideal regenerator, the thermal e¢ ciency approaches the Carnot-cycle eBrayton Cycles: From the ...rst law, the maximum transfers for component SSSF control volumes are w
Maximum Likelihood Estimation of Mixture Densities for Binned and Truncated Multivariate
Smyth, Padhraic
Maximum Likelihood Estimation of Mixture Densities for Binned and Truncated Multivariate Data in data analysis and machine learning. This paper addresses the problem of fitting mixture densities to multivariate binned and truncated data. The EM approach proposed by McLachlan and Jones (1988
EXTENSION OF THE MAXIMUM POWER REGION OF DOUBLY-SALIENT VARIABLE RELUCTANCE MOTORS
Paris-Sud XI, UniversitÃ© de
-Salient Variable Reluctance Motors (DSVRM) has been investigated and developed for variable-speed drives during, variable-frequency generators, wind wheels, machine tools, etc.). In these applications, it is generally necessary to operate in a regime of a high speed ux-weakening (zone of maximum constant power), for a better
Turro, Nicholas J.
Hydrogen Molecules inside Fullerene C70: Quantum Dynamics, Energetics, Maximum Occupancy of Chemistry, New York UniVersity, New York, New York 10003, Department of Chemistry, Brown UniVersity, ProVidence, Rhode Island 02912, and Department of Chemistry, Columbia UniVersity, New York, New York 10027 Received
Vision Research 40 (2000) 11571165 Local luminance factors that determine the maximum disparity for
Kingdom, Frederick A. A.
2000-01-01T23:59:59.000Z
Vision Research 40 (2000) 11571165 Local luminance factors that determine the maximum disparity dense arrays of micropatterns, whose luminance characteristics were manipulated. In Experiment 1, we with luminance spatial frequency and with Gabor size, but was constant for a constant bandwidth (frequency times
Exact Maximum Likelihood estimator for the BL-GARCH model under elliptical distributed
Paris-Sud XI, Université de
Exact Maximum Likelihood estimator for the BL-GARCH model under elliptical distributed innovations, Brisbane QLD 4001, Australia Abstract We are interested in the parametric class of Bilinear GARCH (BL-GARCH examine, in this paper, the BL-GARCH model in a general setting under some non-normal distributions. We
Learning with MaximumEntropy Distributions \\Lambda Yishay Mansour Mariano Schain
Mansour, Yishay
Learning with MaximumEntropy Distributions \\Lambda Yishay Mansour Mariano Schain Computer Science Dept. TelAviv University fmansour,marianog@math.tau.ac.il Abstract We are interested in distributions which are de rived as a maximumentropy distribution given a set of constraints. More specifically, we
A Global Maximum Power Point Tracking Method for PV Module Integrated Converters
Liberzon, Daniel
with large arrays of series-connected PV mod- ules connected to a central inverter. Figure 1(a) depicts, it is conceivable that these systems do not extract the maximum possible power from the PV array when individual PV to partial shading. In such systems, power electronics circuits are integrated directly with PV modules
Demirel, Melik C.
Degradation Overview Westinghouse applies a conservative approach when evaluating degradation on a gasket evaluation. The team was tasked with collecting this data to determine when degradation endangers the pressure seal. Objectives The team's objectives were to determine the maximum degradation which the gasket
Stone, G. A.; DeVito, E. M.; Nease, N. H.
2002-01-01T23:59:59.000Z
Texas adopted in its residential building energy code a maximum 0.40 solar heat gain coefficient (SHGC) for fenestration (e.g., windows, glazed doors and skylights)-a critical driver of cooling energy use, comfort and peak demand. An analysis...
Jagannatham, Aditya K.
in wireless sensor networks (WSN). The proposed algo- rithm employs the temporal correlation of the narrowband Wireless Sensor Network (WSN), Likelihood, Sphere De- coder 1. INTRODUCTION Wireless Sensor Networks (WSNBayesian Data and Channel Joint Maximum-Likelihood Based Error Correction in Wireless Sensor
Maximum-Lifetime Multi-Channel Routing in Wireless Sensor Networks
Nasipuri, Asis
Maximum-Lifetime Multi-Channel Routing in Wireless Sensor Networks Amitangshu Pal and Asis Nasipuri and routing problem in multi-channel wireless sensor networks for maximizing the worst case network lifetime solution for the problem. Keywords: Wireless sensor networks, multi-channel rout- ing, distributed
The chronology of the Last Glacial Maximum and deglacial events in central Argentine Patagonia
The chronology of the Last Glacial Maximum and deglacial events in central Argentine Patagonia and deglaciation in the Lago PueyrredoÂ´n valley of central Patagonia, 47.5 S, Argentina. The valley was a major and the onset of deglaciation occurred broadly synchronously throughout Patagonia. Deglaciation resulted
Paris-Sud XI, UniversitÃ© de
periods often appear in industry due to a machine breakdown (stochastic) or preventive maintenance of machine unavailability. However, in some cases (e.g. preventive maintenance), the maintenance of a machineSingle-machine scheduling with periodic and exible periodic maintenance to minimize maximum
THE SECOND LAW OF THERMODYNAMICS AND THE GLOBAL CLIMATE SYSTEM: A REVIEW OF THE MAXIMUM
Lorenz, Ralph D.
to absorption of solar radiation in the climate system is found to be irrelevant to the maximized prop- erties from hot to cold places, thereby producing the kinetic energy of the fluid itself. His generalTHE SECOND LAW OF THERMODYNAMICS AND THE GLOBAL CLIMATE SYSTEM: A REVIEW OF THE MAXIMUM ENTROPY
Hydraulic limits on maximum plant transpiration and the emergence of the safetyefficiency trade-off
Jackson, Robert B.
Hydraulic limits on maximum plant transpiration and the emergence of the safetyefficiency trade.12126 Key words: hydraulic limitation, safety efficiency trade-off, soilplantatmosphere model, trait hydraulics constrain ecosystem productivity by setting physical limits to water transport and hence carbon
Performance of Photovoltaic Maximum Power Point Tracking Algorithms in the Presence of Noise
Odam, Kofi
Performance of Photovoltaic Maximum Power Point Tracking Algorithms in the Presence of Noise tracking (MPPT) algorithms for photovoltaic systems, including how noise affects both tracking speed-performance photovoltaic sys- tems. An intelligent controller adjusts the voltage, current, or impedance seen by a solar
PHYSICAL REVIEW E 86, 041144 (2012) Efficiency at maximum power for classical particle transport
Lindenberg, Katja
2012-01-01T23:59:59.000Z
PHYSICAL REVIEW E 86, 041144 (2012) Efficiency at maximum power for classical particle transport transport. DOI: 10.1103/PhysRevE.86.041144 PACS number(s): 05.70.Ln, 05.40.-a, 05.20.-y I. INTRODUCTION Over, operating between a hot and cold bath at temperatures T (1) and T (2) , respectively, possesses universal
Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture
Katul, Gabriel
Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture Stefano Accepted 26 September 2013 Available online 9 October 2013 Keywords: Optimization Photosynthesis Soil moisture Stomatal conductance Transpiration a b s t r a c t Optimization theories explain a variety
An Analysis of the Maximum Drawdown Risk Malik Magdon-Ismail
Magdon-Ismail, Malik
Engineering Cairo University Giza, Egypt. amir@alumni.caltech.edu Introduction. The maximum cumulative loss to the Calmar ratio is the Sterling ratio, Sterling(T) = Return over [0,T ] MDD over [0,T ]-10% , and our discussion applies equally well to the Sterling ratio. 1 #12;primarily due to a lack of an analytical
An Analysis of the Maximum Drawdown Risk Malik MagdonIsmail
Magdon-Ismail, Malik
Engineering Cairo University Giza, Egypt. amir@alumni.caltech.edu Introduction. The maximum cumulative loss is not prevalent 1 Similar to the Calmar ratio is the Sterling ratio, Sterling(T ) = Return over [0,T ] MDD over [0,T ]-10% , and our discussion applies equally well to the Sterling ratio. 1 #12; primarily due
Extraction of Spectral Functions from Dyson-Schwinger Studies via the Maximum Entropy Method
Dominik Nickel
2006-07-20T23:59:59.000Z
It is shown how to apply the Maximum Entropy Method (MEM) to numerical Dyson-Schwinger studies for the extraction of spectral functions of correlators from their corresponding Euclidean propagators. Differences to the application in lattice QCD are emphasized and, as an example, the spectral functions of massless quarks in cold and dense matter are presented.
Nasser, Hassan
2014-01-01T23:59:59.000Z
We propose a numerical method to learn Maximum Entropy (MaxEnt) distributions with spatio-temporal constraints from experimental spike trains. This is an extension of two papers [10] and [4] who proposed the estimation of parameters where only spatial constraints were taken into account. The extension we propose allows to properly handle memory effects in spike statistics, for large sized neural networks.
Beyond Boltzmann-Gibbs statistics: Maximum entropy hyperensembles out of equilibrium Gavin E at equilibrium? Here, we argue the most appropriate additional parameter is the nonequilibrium entropy of ways that the same system can be out of equilibrium. That the equilibrium entropy is maximized given
Extraction of spectral functions from Dyson-Schwinger studies via the maximum entropy method
Nickel, Dominik [Institut fuer Kernphysik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)]. E-mail: dominik.nickel@physik.tu-darmstadt.de
2007-08-15T23:59:59.000Z
It is shown how to apply the Maximum Entropy Method (MEM) to numerical Dyson-Schwinger studies for the extraction of spectral functions of correlators from their corresponding Euclidean propagators. Differences to the application in lattice QCD are emphasized and, as an example, the spectral functions of massless quarks in cold and dense matter are presented.
Lattice Field Theory with the Sign Problem and the Maximum Entropy Method
Masahiro Imachi; Yasuhiko Shinno; Hiroshi Yoneyama
2007-02-09T23:59:59.000Z
Although numerical simulation in lattice field theory is one of the most effective tools to study non-perturbative properties of field theories, it faces serious obstacles coming from the sign problem in some theories such as finite density QCD and lattice field theory with the $\\theta$ term. We reconsider this problem from the point of view of the maximum entropy method.
Relating maximum airway dilation and subsequent reconstriction to reactivity in human lungs
Lutchen, Kenneth
Relating maximum airway dilation and subsequent reconstriction to reactivity in human lungs Lauren in human lungs. J Appl Physiol 96: 18081814, 2004. First published February 6, 2004; 10.1152/japplphysiol reactivity in healthy lungs by prohibiting DI for an extended period. The present study had two goals. First
Air pollution and asthma severity in adults Rage Estelle 1 *
Paris-Sud XI, UniversitÃ© de
Air pollution and asthma severity in adults Rage Estelle 1 * , Siroux Val rieÃ© 2 , K nzliÃ¼ Nino 3 4 that exposure to air pollution affects asthma, but the effect of air pollution on asthma severity has not been outdoor concentrations of air pollution. Methods Asthma severity over the last 12 months was assessed
EuroComb 2005 DMTCS proc. AE, 2005, 389396 Acyclic Coloring of Graphs of Maximum
Fertin, Guillaume
for several families F of graphs such as planar graphs [Bor79], planar graphs with "large" girth [BKW99], 1
Dispersion relation and growth rate in a Cherenkov free electron laser: Finite axial magnetic field
Kheiri, Golshad; Esmaeilzadeh, Mahdi [Department of Physics, Iran University of Science and Technology, Tehran 16844 (Iran, Islamic Republic of)] [Department of Physics, Iran University of Science and Technology, Tehran 16844 (Iran, Islamic Republic of)
2013-12-15T23:59:59.000Z
A theoretical analysis is presented for dispersion relation and growth rate in a Cherenkov free electron laser with finite axial magnetic field. It is shown that the growth rate and the resonance frequency of Cherenkov free electron laser increase with increasing axial magnetic field for low axial magnetic fields, while for high axial magnetic fields, they go to a saturation value. The growth rate and resonance frequency saturation values are exactly the same as those for infinite axial magnetic field approximation. The effects of electron beam self-fields on growth rate are investigated, and it is shown that the growth rate decreases in the presence of self-fields. It is found that there is an optimum value for electron beam density and Lorentz relativistic factor at which the maximum growth rate can take place. Also, the effects of velocity spread of electron beam are studied and it is found that the growth rate decreases due to the electron velocity spread.
SALTSTONE DISPOSAL FACILITY: DETERMINATION OF THE PROBABLE MAXIMUM WATER TABLE ELEVATION
Hiergesell, R
2005-04-01T23:59:59.000Z
A coverage depicting the configuration of the probable maximum water table elevation in the vicinity of the Saltstone Disposal Facility (SDF) was developed to support the Saltstone program. This coverage is needed to support the construction of saltstone vaults to assure that they remain above the maximum elevation of the water table during the Performance Assessment (PA) period of compliance. A previous investigation to calculate the historical high water table beneath the SDF (Cook, 1983) was built upon to incorporate new data that has since become available to refine that estimate and develop a coverage that could be extended to the perennial streams adjacent to the SDF. This investigation incorporated the method used in the Cook, 1983 report to develop an estimate of the probable maximum water table for a group of wells that either existed at one time at or near the SDF or which currently exist. Estimates of the probable maximum water table at these wells were used to construct 2D contour lines depicting this surface beneath the SDF and extend them to the nearby hydrologic boundaries at the perennial streams adjacent to the SDF. Although certain measures were implemented to assure that the contour lines depict a surface above which the water table will not rise, the exact elevation of this surface cannot be known with complete certainty. It is therefore recommended that the construction of saltstone vaults incorporate a vertical buffer of at least 5-feet between the base of the vaults and the depicted probable maximum water table elevation. This should provide assurance that the water table under the wet extreme climatic condition will never rise to intercept the base of a vault.
Baird, Mark
Droop (Droop, 2002) points out that equation (3) of Baird et al. (Baird et al., 2001) contains. (Baird et al., 2001) is no longer Droop's original Cell Quota model, and should not have been referred COMMENT Reply to `In defence of the Cell Quota model of micro-algal growth' by M. R. Droop MARK BAIRD
Kumar, Anand T.N.
, Massachusetts 02115 ReceiVed: December 31, 2000; In Final Form: April 27, 2001 We discuss the application distributions of protein conformational substates. As an experimental example, we present an MEM analysis
Broader source: Energy.gov [DOE]
The U.S. Department of Energy prepared this statement to evaluate the environmental impacts of increasing petroleum production, and of additional or expanded operational facilities, at Elk Hills from 160,000 barrels per day up to 240,000 barrels per day.
Rate Adjustments and Public Involvement
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
CRSP Transmission 9162013 WAPA-161 FRN, CRSP transmission and ancillary services rates extension Letter announcing two-year extension to CRSP transmission and ancillary...
Sustainable Building Rating Systems Summary
Fowler, Kimberly M.; Rauch, Emily M.
2006-07-01T23:59:59.000Z
The purpose of this document is to offer information that could be used to compare and contrast sustainable building rating systems.
Strain rate sensitive constitutive equations
Nelson, Charles Edward
1971-01-01T23:59:59.000Z
1 Computed Constants For Far'ous . Baterials 47 LIST OF FIGURFS Pace Figure I Comparison of Rate Data For Commercially Pure Aluminum Figure 2 Dynamic Loading Regimes 17 Figure 3 Yield Criteria 32 Figure 4 Uni-axial Stress-Strain Rate...
RECYCLING RATE STUDY Prepared by
Laughlin, Robert B.
NATIONAL RECYCLING RATE STUDY Prepared by: Smith, Bucklin and Associates, Inc. Market Research and Statistics Division Chicago, Illinois July 2003 PRINTED ON RECYCLED PAPER #12;BCI RECYCLING RATE STUDY TABLE ....................................................................................................1 II. METHODOLOGY A. Total Pounds of Lead Recycled from Batteries
Rates and Progenitors of Type Ia Supernovae
William Michael Wood-Vasey
2005-05-30T23:59:59.000Z
The remarkable uniformity of Type Ia supernovae (SNe Ia) has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, SNe Ia exhibit intrinsic variation in both their spectra and observed brightness. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in SNe Ia. Toward this end, the Nearby Supernova Factory (SNfactory) has been designed to discover hundreds of SNe Ia in a systematic and automated fashion and study them in detail. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of SNe Ia. This dissertation presents a new method for analyzing the true sensitivity of a multi-epoch supernova search and finds a SN Ia rate from $z\\sim0.01$--0.1 of $r_V = 4.26 (+1.39 -1.93) (+0.10 - 0.10)$ SNe Ia/yr/Mpc$^3$ from a preliminary analysis of a subsample of the SNfactory prototype search. Several unusual supernovae were found in the course of the SNfactory prototype search. One in particular, SN 2002ic, was the first SN Ia to exhibit convincing evidence for a circumstellar medium and offers valuable insight into the progenitors of SNe Ia.
Innovative Rates Program. Final report
Not Available
1982-06-21T23:59:59.000Z
Title II of the Energy Conservation and Production Act (ECPA) as amended by the Public Utility Regulatory Policies Act (PURPA) provided financial assistance to state utility regulatory commissions, nonregulated electric utilities, and the Tennessee Valley Authority through the Innovative Rates Program. The financial assistance was to be used to plan or carry out electric utility regulatory rate reform initiatives relating to innovative rate structures that encourage conservation of energy, electric utility efficiency and reduced costs, and equitable rates to consumers. The Federal and local objectives of the project are described. Activities planned and accomplishments are summarized for the following: project management, data collection, utility bill evaluation, billing enclosure/mailing evaluation, media program evaluation, display evaluation, rate study sessions evaluation, speakers bureau evaluation, and individual customer contacts. A timetable/milestone chart and financial information are included. (MHR)
WP-07 Power Rate Case (rates/ratecases)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRates > Rate Cases > Rates
Resuspension rates from aged inert-tracer sources
Sehmel, G.A.
1982-11-01T23:59:59.000Z
Wind-caused particle resuspension rates were investigated with molybdenum tracers at two circular resuspension sites in the Hanford area. The tracer particles were calcium molybdate. The radii of each circular tracer-source area were 22.9 m and 29.9 m respectively for tracer deposited on 2 October 1973 and 29 May 1979. Resuspension rates were investigated by sampling resuspended tracer with air sampling equipment mounted as a function of height on a centrally located sampling tower at each site. Sampling equipment was operated as a function of wind speed increments in order to investigate resuspension rates, wind speed dependencies of resuspension rates, and for subsequent comparisons of resuspension rate changes as a function of time for constant wind speed ranges. Experimental results are reported for measurements over several years. Resuspension rates ranged from about 10/sup -13/ to 10/sup -6/ fraction of the tracer source resuspended per second. Resuspension rates tended to increase with increasing wind speed. At one investigation site, resuspension rates were nearly constant, except for seasonal variations, for a four-year time period. Resuspension rates appear higher in the autumn than in the spring and summer.
On the minimum and maximum mass of neutron stars and the delayed collapse
Strobel, K; Strobel, Klaus; Weigel, Manfred K.
2001-01-01T23:59:59.000Z
The minimum and maximum mass of protoneutron stars and neutron stars are investigated. The hot dense matter is described by relativistic (including hyperons) and non-relativistic equations of state. We show that the minimum mass ($\\sim$ 0.88 - 1.28 $M_{\\sun}$) of a neutron star is determined by the earliest stage of its evolution and is nearly unaffected by the presence of hyperons. The maximum mass of a neutron star is limited by the protoneutron star or hot neutron star stage. Further we find that the delayed collapse of a neutron star into a black hole during deleptonization is not only possible for equations of state with softening components, as for instance, hyperons, meson condensates etc., but also for neutron stars with a pure nucleonic-leptonic equation of state.
On the minimum and maximum mass of neutron stars and the delayed collapse
Klaus Strobel; Manfred K. Weigel
2000-12-14T23:59:59.000Z
The minimum and maximum mass of protoneutron stars and neutron stars are investigated. The hot dense matter is described by relativistic (including hyperons) and non-relativistic equations of state. We show that the minimum mass ($\\sim$ 0.88 - 1.28 $M_{\\sun}$) of a neutron star is determined by the earliest stage of its evolution and is nearly unaffected by the presence of hyperons. The maximum mass of a neutron star is limited by the protoneutron star or hot neutron star stage. Further we find that the delayed collapse of a neutron star into a black hole during deleptonization is not only possible for equations of state with softening components, as for instance, hyperons, meson condensates etc., but also for neutron stars with a pure nucleonic-leptonic equation of state.
Sullivan, Terry [Brookhaven National Lab. (BNL), Upton, NY (United States). Biological, Environmental, and Climate Sciences Dept.
2014-12-02T23:59:59.000Z
ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant in order to establish a new water treatment plant. There is some residual radioactive particles from the plant which need to be brought down to levels so an individual who receives water from the new treatment plant does not receive a radioactive dose in excess of 25 mrem/y?¹. The objectives of this report are: (a) To present a simplified conceptual model for release from the buildings with residual subsurface structures that can be used to provide an upper bound on contaminant concentrations in the fill material; (b) Provide maximum water concentrations and the corresponding amount of mass sorbed to the solid fill material that could occur in each building for use in dose assessment calculations; (c) Estimate the maximum concentration in a well located outside of the fill material; and (d) Perform a sensitivity analysis of key parameters.
Maximum-Entropy Meshfree Method for Compressible and Near-Incompressible Elasticity
Ortiz, A; Puso, M A; Sukumar, N
2009-09-04T23:59:59.000Z
Numerical integration errors and volumetric locking in the near-incompressible limit are two outstanding issues in Galerkin-based meshfree computations. In this paper, we present a modified Gaussian integration scheme on background cells for meshfree methods that alleviates errors in numerical integration and ensures patch test satisfaction to machine precision. Secondly, a locking-free small-strain elasticity formulation for meshfree methods is proposed, which draws on developments in assumed strain methods and nodal integration techniques. In this study, maximum-entropy basis functions are used; however, the generality of our approach permits the use of any meshfree approximation. Various benchmark problems in two-dimensional compressible and near-incompressible small strain elasticity are presented to demonstrate the accuracy and optimal convergence in the energy norm of the maximum-entropy meshfree formulation.
Exact computation of the Maximum Entropy Potential of spiking neural networks models
Cofre, Rodrigo
2014-01-01T23:59:59.000Z
Understanding how stimuli and synaptic connectivity in uence the statistics of spike patterns in neural networks is a central question in computational neuroscience. Maximum Entropy approach has been successfully used to characterize the statistical response of simultaneously recorded spiking neurons responding to stimuli. But, in spite of good performance in terms of prediction, the ?tting parameters do not explain the underlying mechanistic causes of the observed correlations. On the other hand, mathematical models of spiking neurons (neuro-mimetic models) provide a probabilistic mapping between stimulus, network architecture and spike patterns in terms of conditional proba- bilities. In this paper we build an exact analytical mapping between neuro-mimetic and Maximum Entropy models.
Maximum-entropy principle for static and dynamic high-field transport in semiconductors
Trovato, M. [Dipartimento di Matematica, Universita di Catania, Viale A. Doria, 95125 Catania (Italy); Reggiani, L. [Dipartimento di Ingegneria dell' Innovazione e Nanotechnology National Laboratory of CNR-INFM, Universita di Lecce, Via Arnesano s/n, 73100 Lecce (Italy)
2006-06-15T23:59:59.000Z
Within the maximum entropy principle we present a general theory able to provide, in a dynamical context, the macroscopic relevant variables for carrier transport under electric fields of arbitrary strength. For the macroscopic variables the linearized maximum entropy approach is developed including full-band effects within a total energy scheme. Under spatially homogeneous conditions, we construct a closed set of hydrodynamic equations for the small-signal (dynamic) response of the macroscopic variables. The coupling between the driving field and the energy dissipation is analyzed quantitatively by using an arbitrary number of moments of the distribution function. The theoretical approach is applied to n-Si at 300 K and is validated by comparing numerical calculations with ensemble Monte Carlo simulations and with experimental data.
Low severity coal liquefaction promoted by cyclic olefins
Curtis, C.W.
1991-01-01T23:59:59.000Z
The objective of this project is to evaluate the efficacy of low severity coal liquefaction in the presence of highly reactive hydrogen donors, cyclic olefins. The work that was performed this quarter involved performing a literature search in which different aspects of low severity coal liquefaction were examined. In addition, two new mater's graduate students learned the fundamental differences between high severity coal liquefaction and low severity coal liquefaction by examining the literature and reading texts on coal liquefaction. The literature review presented for the first quarter's work is a compilation of the material which we have found to data involving low severity coal liquefaction. Additional review of low severity liquefaction literature is being conducted this quarter and will be reported in the next quarterly report. In addition, a summary of the work involving the reactivity of cyclic olefins in the absence and presence of coal will be presented next quarter.
Simpler Achievable Rate Regions for Multiaccess with Finite Blocklength
Lemmon, Michael
with blocklengths as low as several hundred symbols, classical information theoretic setups consider block- lengths be encoded at a rate approaching a first order statistic (the channel average mutual information). Delay approaching infinity. Building upon information spectrum concepts and recent work on channel dispersion, we
Measuring Outdoor Air Intake Rates into Existing Building
Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik
2009-04-16T23:59:59.000Z
Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.
PRECEDENTS FOR AUTHORIZATION OF CONTENTS USING DOSE RATE MEASUREMENTS
Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.
2012-06-05T23:59:59.000Z
For the transportation of Radioactive Material (RAM) packages, the requirements for the maximum allowed dose rate at the package surface and in its vicinity are given in Title 10 of the Code of Federal Regulations, Section 71.47. The regulations are based on the acceptable dose rates to which the public, workers, and the environment may be exposed. As such, the regulations specify dose rates, rather than quantity of radioactive isotopes and require monitoring to confirm the requirements are met. 10CFR71.47 requires that each package of radioactive materials offered for transportation must be designed and prepared for shipment so that under conditions normally incident to transportation the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external Surface of the package, and the transport index does not exceed 10. Before shipment, the dose rate of the package is determined by measurement, ensuring that it conforms to the regulatory limits, regardless of any analyses. This is the requirement for all certified packagings. This paper discusses the requirements for establishing the dose rates when shipping RAM packages and the precedents for meeting these requirements by measurement.
Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle
Barletti, Luigi, E-mail: luigi.barletti@unifi.it [Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze (Italy)
2014-08-15T23:59:59.000Z
The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.
Towards the application of the Maximum Entropy Method to finite temperature Upsilon Spectroscopy
M. Oevers; C. Davies; J. Shigemitsu
2000-09-22T23:59:59.000Z
According to the Narnhofer Thirring Theorem interacting systems at finite temperature cannot be described by particles with a sharp dispersion law. It is therefore mandatory to develop new methods to extract particle masses at finite temperature. The Maximum Entropy method offers a path to obtain the spectral function of a particle correlation function directly. We have implemented the method and tested it with zero temperature Upsilon correlation functions obtained from an NRQCD simulation. Results for different smearing functions are discussed.
Identification of Severe Multiple Contingencies in Electric PowerSystems
Donde, Vaibhav; Lopez, Vanessa; Lesieutre, Bernard; Pinar, Ali; Yang, Chao; Meza, Juan
2006-06-14T23:59:59.000Z
In this work, we propose a computationally feasible approachtodetect severe multiple contingencies. We pose a contingency analysisproblem using a nonlinear optimization framework, which enables ustodetect the fewest possible transmission line outages resulting ina systemfailure of specified severity, and the most severe system failure causedby removing a specified number of transmission lines from service.Illustrations using a three bus system and the IEEE ~;30 bus system aimto exhibit the effectiveness of the proposed approach.
Holzer, Mark; Primeau, Francois W; Smethie, William M; Khatiwala, Samar
2010-01-01T23:59:59.000Z
Gull (1991), Bayesian maximum entropy image reconstruction,F. Primeau (2006), A maximum entropy approach to water massSouth- ern Ocean? A maximum entropy approach to global water
Response to several FOIA requests - Renewable Energy. | Department...
Broader source: Energy.gov (indexed) [DOE]
stated on the bill of such customer. The Tennessee Valley Authority shall not recover wholesale stranded costs from any customer through any other rate, charge, or mechanism. (d)...
Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.
2012-03-01T23:59:59.000Z
This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrally buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.
Response to several FOIA requests- Renewable Energy pages 4001- 4250
Broader source: Energy.gov [DOE]
Response to several FOIA requests - Renewable Energy. nepdg_4001_4250.pdf R.eport Statement/Recommendation Background Pros/Cons discussion
Supernova rates and stellar populations
F. Mannucci
2007-08-03T23:59:59.000Z
We discuss the results about the nature of type Ia Supernovae that can be derived by studying their rates in different stellar populations. While the evolution of SN photometry and spectra can constrain the explosion mechanism, the SN rate depends on the progenitor system. We review the current available data on rates as a function of parent galaxy color, morphology, star formation rate, radio luminosity and environment. By studying the variation of the rates with the color of the parent galaxy, a strong evidence was established that type Ia SNe come from both young and old stars. The dependence of the rates with the radio power of the parent galaxy is best reproduced by a bimodal distribution of delay time between the formation of the progenitor and its explosion as a SN. Cluster early-type galaxies show higher type Ia SN rate with respect to field galaxies, and this effect can be due either to traces of young stars or to differences in the delay time distribution.
The Maximum Stable Broadcast Throughput for Wireless Line Networks with Network Coding and
Kuzmanovic, Aleksandar
Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA Intelligent Automation Inc cluster size. We show that network coding improves the stable rate over plain retransmissions
Beamforming and Rate Allocation in MISO Cognitive Radio Networks
Tajer, Ali; Wang, Xiaodong
2009-01-01T23:59:59.000Z
We consider decentralized multi-antenna cognitive radio networks where secondary (cognitive) users are granted simultaneous spectrum access along with license-holding (primary) users. We treat the problem of distributed beamforming and rate allocation for the secondary users such that the minimum weighted secondary rate is maximized. Such an optimization is subject to (1) a limited weighted sum-power budget for the secondary users and (2) guaranteed protection for the primary users in the sense that the interference level imposed on each primary receiver does not exceed a specified level. Based on the decoding method deployed by the secondary receivers, we consider three scenarios for solving this problem. In the first scenario each secondary receiver decodes only its designated transmitter while suppressing the rest as Gaussian interferers (single-user decoding). In the second case each secondary receiver employs the maximum likelihood decoder (MLD) to jointly decode all secondary transmissions, and in the t...
Heterogeneity of cells may explain allometric scaling of metabolic rate
Takemoto, Kazuhiro
2015-01-01T23:59:59.000Z
The origin of allometric scaling of metabolic rate is a long-standing question in biology. Several models has been proposed for explaining the origin; however, they have advantages and disadvantages. In particular, previous models only demonstrate either two important observations for the allometric scaling: the variability of scaling exponents and predominance of 3/4-power law. Thus, these models have a dispute over their validity. In this study, we propose a simple geometry model, and show that a hypothesis that total surface area of cells determines metabolic rate can reproduce these two observations by combining two concepts: the impact of cell sizes on metabolic rate and fractal-like (hierarchical) organization. The proposed model both theoretically and numerically demonstrates the approximately 3/4-power law although several different biological strategies are considered. The model validity is confirmed using empirical data. Furthermore, the model suggests the importance of heterogeneity of cell size fo...
Asset Prices and Exchange Rates
Pavlova, Anna
2003-08-01T23:59:59.000Z
This paper develops a simple two-country, two-good model, in which the real exchange rate, stock and bond prices are jointly determined. The model predicts that ...
Asset Prices and Exchange Rates
Pavlova, Anna
2004-11-30T23:59:59.000Z
This paper develops a simple two-country, two-good model, in which the real exchange rate, stock and bond prices are jointly determined. The model predicts that stock market prices are correlated ...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
period FY2015 through 2028. Customers have a diversification right to limit the amount of power they purchase at the Load Growth rate in future years with notice provided by...
High repetition rate fiber lasers
Chen, Jian, Ph. D. Massachusetts Institute of Technology
2009-01-01T23:59:59.000Z
This thesis reports work in high repetition rate femtosecond fiber lasers. Driven by the applications including optical arbitrary waveform generation, high speed optical sampling, frequency metrology, and timing and frequency ...
Impacts of Severe Space Weather on the Electric Grid
Schrijver, Karel
Impacts of Severe Space Weather on the Electric Grid JASON The MITRE Corporation 7515 Colshire. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Impacts of Severe Space Weather on the Electric Grid 5b. GRANT on the impact of space weather on the electric grid, seeking to understand 1) the current status of solar
accident severity: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
accident severity First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Accidents on the campus Severe...
Electric Rate Alternatives to Cogeneration
Sandberg, K. R. Jr.
"ELECTRIC RATE ALTERNATIVES TO COGENERATION" K. R. SANDBERG, JR. INDUSTRIAL ACCOUNTS MANAGER - TEXAS GULF STATES UTILITIES COMPANY BEAUMONT, TEXAS ABSTRACT This paper discusses electric rate slternatives to cogeneration for the industrisl... PERSPECTIVE Gulf States Utilities was incorporated in 1925 and is primarily in the business of generating. transmitting and distributing electricity to 555.000 customers in southeast Texas and south Louisiana. The service area extends 350 miles westward...
A framework for the assessment of severe accident management strategies
Kastenberg, W.E. [ed.; Apostolakis, G.; Dhir, V.K. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering] [and others
1993-09-01T23:59:59.000Z
Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable of propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.
Weathering rates of marble in laboratory and outdoor conditions
Yerrapragada, S.S.; Chirra, S.R.; Jaynes, J.H.; Bandyopadhyay, J.K.; Gauri, K.L. [Univ of Louisville, KY (United States); Li, S. [Metro Services Lab., Louisville, KY (United States)
1996-09-01T23:59:59.000Z
In the modern urban atmosphere SO{sub 2} and NO{sub 2} attack calcite (CaCO{sub 3}) in marble exposed at rain-sheltered surfaces creating largely gypsum (CaSO{sub 4}{center_dot}2H{sub 2}O) crusts that eventually exfoliate. In combination with CO{sub 2} these gases erode the marble at unsheltered surfaces. the authors report the development of mathematical models to predict the rate of growth of crust and the rate of surface recession. To determine the rate of growth of crust the kinetic rate constant, diffusion rate, and the order of reaction were determined by the application of the shrinking-core model applied to data generated in laboratory experiments. Based on these parameters /and average ambient levels of 10 parts per billion (ppb) SO{sub 2} and 25 ppb NO{sub 2} in Louisville, Ky., the rate of crust formation for this metro area was calculated to be 1.8 {micro}m in the first year. However, the rate of recession was modeled from data obtained by exposing marble slabs to rainfalls. A surface recession of 15 {micro}m/yr was calculated. The models predicted well the rate of growth of crust observed at several sites in Louisville and the predicted surface recession compared well with values reported in the literature.
Axler, K.M.
1995-02-01T23:59:59.000Z
A suite of investigations has been completed to develop and demonstrate a construction material for use in severely corrosive metallurgical processing environments. The material is a tantalum-base alloy with inclusions of Ta{sub 2}C. Alloy development work involved multi-step thermal processing to invoke specific microstructural features. The kinetics of carbide formation from supersaturated solid solutions of carbon in tantalum were established. Performance evaluation of the alloy was conducted and the alloy has been demonstrated to outperform any previously studied metallic construction material used in pyrometallurgical processing of plutonium. Specific microstructural features of the alloy have been identified which provide the extreme corrosion resistance. Grain boundary occupancy by the Ta{sub 2}C phase is associated with the corrosion resistance to liquid metal. Precipitation from the supersaturated condition invokes a microstructure with the most significant grain boundary delineation by carbide inclusions and hence provides the most corrosion resistant attributes. It has been experimentally proven that the precipitate growth rate is not dictated solely by the diffusion rate of the interstitial species and is more complex. The observed growth rate of carbide precipitates involves several competing effects.
Chen, Sheng
Blind Joint Maximum Likelihood Channel Estimation and Data Detection for Single-Input Multiple of Southampton, Southampton SO17 1BJ, U.K. Abstract--A blind adaptive scheme is proposed for joint maximum. A simulation example is used to demon- strate the effectiveness of this joint ML optimization scheme for blind
Mitchell, Richard
On Maximum Available Feedback and PID Control - 1 IEEE SMC UK&RI Applied Cybernetics Â© Dr Richard Mitchell 2005 ON MAXIMUM AVAILABLE FEEDBACK AND PID CONTROL Dr Richard Mitchell, Cybernetics, University frequencies A recent IEEE SMC Paper describes a robust PID controller whose phase is flat at key frequencies
Chapman, Patrick
Abstract--The many different techniques for maximum power point tracking of photovoltaic arrays on implementation. This manuscript should serve as a convenient reference for future work in photovoltaic power generation. Index Terms--maximum power point tracking, MPPT, photovoltaic, PV. I. INTRODUCTION RACKING
Pražnikar, Jure [Institute Jožef Stefan, Jamova 39, 1000 Ljubljana (Slovenia); University of Primorska, (Slovenia); Turk, Dušan, E-mail: dusan.turk@ijs.si [Institute Jožef Stefan, Jamova 39, 1000 Ljubljana (Slovenia); Center of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, (Slovenia)
2014-12-01T23:59:59.000Z
The maximum-likelihood free-kick target, which calculates model error estimates from the work set and a randomly displaced model, proved superior in the accuracy and consistency of refinement of crystal structures compared with the maximum-likelihood cross-validation target, which calculates error estimates from the test set and the unperturbed model. The refinement of a molecular model is a computational procedure by which the atomic model is fitted to the diffraction data. The commonly used target in the refinement of macromolecular structures is the maximum-likelihood (ML) function, which relies on the assessment of model errors. The current ML functions rely on cross-validation. They utilize phase-error estimates that are calculated from a small fraction of diffraction data, called the test set, that are not used to fit the model. An approach has been developed that uses the work set to calculate the phase-error estimates in the ML refinement from simulating the model errors via the random displacement of atomic coordinates. It is called ML free-kick refinement as it uses the ML formulation of the target function and is based on the idea of freeing the model from the model bias imposed by the chemical energy restraints used in refinement. This approach for the calculation of error estimates is superior to the cross-validation approach: it reduces the phase error and increases the accuracy of molecular models, is more robust, provides clearer maps and may use a smaller portion of data for the test set for the calculation of R{sub free} or may leave it out completely.
A New Maximum-Likelihood Change Estimator for Two-Pass SAR Coherent Change Detection.
Wahl, Daniel E.; Yocky, David A.; Jakowatz, Charles V,
2014-09-01T23:59:59.000Z
In this paper, we derive a new optimal change metric to be used in synthetic aperture RADAR (SAR) coherent change detection (CCD). Previous CCD methods tend to produce false alarm states (showing change when there is none) in areas of the image that have a low clutter-to-noise power ratio (CNR). The new estimator does not suffer from this shortcoming. It is a surprisingly simple expression, easy to implement, and is optimal in the maximum-likelihood (ML) sense. The estimator produces very impressive results on the CCD collects that we have tested.
On Weyl channels being covariant with respect to the maximum commutative group of unitaries
G. G. Amosov
2006-08-10T23:59:59.000Z
We investigate the Weyl channels being covariant with respect to the maximum commutative group of unitary operators. This class includes the quantum depolarizing channel and the "two-Pauli" channel as well. Then, we show that our estimation of the output entropy for a tensor product of the phase damping channel and the identity channel based upon the decreasing property of the relative entropy allows to prove the additivity conjecture for the minimal output entropy for the quantum depolarizing channel in any prime dimesnsion and for the "two Pauli" channel in the qubit case.
A reliable, fast and low cost maximum power point tracker for photovoltaic applications
Enrique, J.M.; Andujar, J.M.; Bohorquez, M.A. [Departamento de Ingenieria Electronica, de Sistemas Informaticos y Automatica, Universidad de Huelva (Spain)
2010-01-15T23:59:59.000Z
This work presents a new maximum power point tracker system for photovoltaic applications. The developed system is an analog version of the ''P and O-oriented'' algorithm. It maintains its main advantages: simplicity, reliability and easy practical implementation, and avoids its main disadvantages: inaccurateness and relatively slow response. Additionally, the developed system can be implemented in a practical way at a low cost, which means an added value. The system also shows an excellent behavior for very fast variables in incident radiation levels. (author)
Study on Two Optimization Problems: Line Cover and Maximum Genus Embedding
Cao, Cheng
2012-07-16T23:59:59.000Z
programming duality. We de ne a new problem called Non-collinear Packing Problem (NPP) as the following: De nition B.1. Non-collinear Packing Problem Given a set P of n points on the Euclidean plane R2, nd a maximum subset S P of non-collinear points, i....e. any three points are not collinear. Before proving the duality between NPP and LCP, we need to show how to formulate both problems to linear programming. To formulate the form of linear pro- gramming for instances of LCP and NNP, we use a few...
Application of Maximum Entropy Method to Lattice Field Theory with a Topological Term
M. Imachi; Y. Shinno; H. Yoneyama
2003-09-22T23:59:59.000Z
In Monte Carlo simulation, lattice field theory with a $\\theta$ term suffers from the sign problem. This problem can be circumvented by Fourier-transforming the topological charge distribution $P(Q)$. Although this strategy works well for small lattice volume, effect of errors of $P(Q)$ becomes serious with increasing volume and prevents one from studying the phase structure. This is called flattening. As an alternative approach, we apply the maximum entropy method (MEM) to the Gaussian $P(Q)$. It is found that the flattening could be much improved by use of the MEM.
Conditional maximum-entropy method for selecting prior distributions in Bayesian statistics
Abe, Sumiyoshi
2014-01-01T23:59:59.000Z
The conditional maximum-entropy method (abbreviated here as C-MaxEnt) is formulated for selecting prior probability distributions in Bayesian statistics for parameter estimation. This method is inspired by a statistical-mechanical approach to systems governed by dynamics with largely-separated time scales and is based on three key concepts: conjugate pairs of variables, dimensionless integration measures with coarse-graining factors and partial maximization of the joint entropy. The method enables one to calculate a prior purely from a likelihood in a simple way. It is shown in particular how it not only yields Jeffreys's rules but also reveals new structures hidden behind them.
Charmonium spectra at finite temperature from QCD sum rules with the maximum entropy method
Philipp Gubler; Kenji Morita; Makoto Oka
2011-08-30T23:59:59.000Z
Charmonia spectral functions at finite temperature are studied using QCD sum rules in combination with the maximum entropy method. This approach enables us to directly obtain the spectral function from the sum rules, without having to introduce any specific assumption about its functional form. As a result, it is found that while J/psi and eta_c manifest themselves as significant peaks in the spectral function below the deconfinement temperature T_c, they quickly dissolve into the continuum and almost completely disappear at temperatures between 1.0 T_c and 1.1 T_c.
H. Rudolf Fiebig
2002-10-31T23:59:59.000Z
We study various aspects of extracting spectral information from time correlation functions of lattice QCD by means of Bayesian inference with an entropic prior, the maximum entropy method (MEM). Correlator functions of a heavy-light meson-meson system serve as a repository for lattice data with diverse statistical quality. Attention is given to spectral mass density functions, inferred from the data, and their dependence on the parameters of the MEM. We propose to employ simulated annealing, or cooling, to solve the Bayesian inference problem, and discuss practical issues of the approach.
Maximum Entropy and the Stress Distribution in Soft Disk Packings Above Jamming
Yegang Wu; S. Teitel
2014-10-17T23:59:59.000Z
We show that the maximum entropy hypothesis can successfully explain the distribution of stresses on compact clusters of particles within disordered mechanically stable packings of soft, isotropically stressed, frictionless disks above the jamming transition. We show that, in our two dimensional case, it becomes necessary to consider not only the stress but also the Maxwell-Cremona force-tile area, as a constraining variable that determines the stress distribution. The importance of the force-tile area was suggested by earlier computations on an idealized force-network ensemble.
Spectral Functions, Maximum Entropy Method and Unconventional Methods in Lattice Field Theory
Chris Allton; Danielle Blythe; Jonathan Clowser
2002-04-26T23:59:59.000Z
We present two unconventional methods of extracting information from hadronic 2-point functions produced by Monte Carlo simulations. The first is an extension of earlier work by Leinweber which combines a QCD Sum Rule approach with lattice data. The second uses the Maximum Entropy Method to invert the 2-point data to obtain estimates of the spectral function. The first approach is applied to QCD data, and the second method is applied to the Nambu--Jona-Lasinio model in (2+1)D. Both methods promise to augment the current approach where physical quantities are extracted by fitting to pure exponentials.
On Weyl channels being covariant with respect to the maximum commutative group of unitaries
Amosov, Grigori G. [Department of Higher Mathematics, Moscow Institute of Physics and Technology, Dolgoprudny 141700 (Russian Federation)
2007-01-15T23:59:59.000Z
We investigate the Weyl channels being covariant with respect to the maximum commutative group of unitary operators. This class includes the quantum depolarizing channel and the 'two-Pauli' channel as well. Then, we show that our estimation of the output entropy for a tensor product of the phase damping channel and the identity channel based upon the decreasing property of the relative entropy allows to prove the additivity conjecture for the minimal output entropy for the quantum depolarizing channel in any prime dimension and for the two-Pauli channel in the qubit case.
Maximum entropy analysis of hadron spectral functions and excited states in quenched lattice QCD
CP-PACS Collaboration; :; S. Aoki; R. Burkhalter; M. Fukugita; S. Hashimoto; N. Ishizuka; Y. Iwasaki; K. Kanaya; T. Kaneko; Y. Kuramashi; M. Okawa; Y. Taniguchi; A. Ukawa; T. Yamazaki; T. Yoshié
2001-10-16T23:59:59.000Z
Employing the maximum entropy method we extract the spectral functions from meson correlators at four lattice spacings in quenched QCD with the Wilson quark action. We confirm that the masses and decay constants, obtained from the position and the area of peaks, agree well with the results from the conventional exponential fit. For the first excited state, we obtain $m_{\\pi_1} = 660(590)$ MeV, $m_{\\rho_1} = 1540(570)$ MeV, and $f_{\\rho_1} = 0.085(36)$ in the continuum limit.
Logical Error Rate Scaling of the Toric Code
Fern H. E. Watson; Sean D. Barrett
2014-09-26T23:59:59.000Z
To date, a great deal of attention has focused on characterizing the performance of quantum error correcting codes via their thresholds, the maximum correctable physical error rate for a given noise model and decoding strategy. Practical quantum computers will necessarily operate below these thresholds meaning that other performance indicators become important. In this work we consider the scaling of the logical error rate of the toric code and demonstrate how, in turn, this may be used to calculate a key performance indicator. We use a perfect matching decoding algorithm to find the scaling of the logical error rate and find two distinct operating regimes. The first regime admits a universal scaling analysis due to a mapping to a statistical physics model. The second regime characterizes the behavior in the limit of small physical error rate and can be understood by counting the error configurations leading to the failure of the decoder. We present a conjecture for the ranges of validity of these two regimes and use them to quantify the overhead -- the total number of physical qubits required to perform error correction.
Nathan, S.
2012-06-14T23:59:59.000Z
The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package in compliance with 10 CFR Part 71 external radiation level limits regulations. The neutron and photon sources were calculated using both ORIGEN-S and RASTA. The response from a unit source in each neutron and photon group was calculated using MCNP5 with each unshielded and shielded container configuration. Effects of self-shielding on both neutron and photon response were evaluated by including either plutonium oxide or iron in the source region for the case with no shielded container. For the cases of actinides mixed with light elements, beryllium is the bounding light element. The added beryllium (10 to 90 percent of the actinide mass) in the cases studied represents between 9 and 47 percent concentration of the total mixture mass. For beryllium concentrations larger than 50 percent, the increase in the neutron source term and dose rate tend to increase at a much lower rate than at concentrations lower than 50%. The intimately mixed actinide-beryllium form used in these models is very conservative and thus the limits presented in this report are practical bounds on the mass that can be safely shipped. The calculated dose rate from one gram of each isotope was then used to determin the maximum amount of a single isotope that could be shipped in the Model 9977 Package (or packagings having the same or larger external dimensions as well as similar structural materials) and have the external radiation level within the regulatory dose limits at the surface of the package. The estimates of the mass limits presented would also serve as conservative limits for both the Models 9975 and 9978 packages. If a package contains a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. It should be noted that the SGQ masses presented in this report represent limits that would comply with the external radiation limits under 10CFR Part 71. They do not necessarily bound lower limits that may be required to comply with other factors such as heat load of the package.
High-precision timeline for Earth's most severe extinction
Burgess, Seth D.
The end-Permian mass extinction was the most severe loss of marine and terrestrial biota in the last 542 My. Understanding its cause and the controls on extinction/recovery dynamics depends on an accurate and precise age ...
he 20022003 epidemic of SARS (severe acute respiratory syndrome)
Li, Fang
in several genes that allowed it to be transmitted from person to person and cause lethal disease. Corona that projects from a compact core within the receptor-binding domain. Of the 14 residues on the loop
CRAD, Review of Preparedness for Severe Natural Phenomena Events...
Office of Environmental Management (EM)
Review of Preparedness for Severe Natural Phenomena Events at the Savannah River Site Tritium Facility (HSS CRAD 45-54) This Criteria Review and Approach Document (HSS CRAD 45-54)...
The EIS process consists of several steps, each with
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
EIS process consists of several steps, each with opportunities for you to get involved. BPA follows these six steps for EISs on projects, plans and policies. 1. Notice of Intent...
Bao, Chen; Wu, Hongfei; Li, Li; Newcomer, Darrell R.; Long, Philip E.; Williams, Kenneth H.
2014-09-02T23:59:59.000Z
We aim to understand the scale-dependent evolution of uranium bioreduction during a field experiment at a former uranium mill site near Rifle, Colorado. Acetate was injected to stimulate Fe-reducing bacteria (FeRB) and to immobilize aqueous U(VI) to insoluble U(IV). Bicarbonate was coinjected in half of the domain to mobilize sorbed U(VI). We used reactive transport modeling to integrate hydraulic and geochemical data and to quantify rates at the grid block (0.25 m) and experimental field scale (tens of meters). Although local rates varied by orders of magnitude in conjunction with biostimulation fronts propagating downstream, field-scale rates were dominated by those orders of magnitude higher rates at a few selected hot spots where Fe(III), U(VI), and FeRB were at their maxima in the vicinity of the injection wells. At particular locations, the hot moments with maximum rates negatively corresponded to their distance from the injection wells. Although bicarbonate injection enhanced local rates near the injection wells by a maximum of 39.4%, its effect at the field scale was limited to a maximum of 10.0%. We propose a rate-versus-measurement-length relationship (log R' = -0.63
Scholtyssek, Werner; Heusener, Gerhard; Hofmann, Fritz; Plitz, Helmut [Forschungszentrum Karlsruhe GmbH (Germany)
2002-07-15T23:59:59.000Z
The research and development program at the Forschungszentrum Karlsruhe, performed within the Program Nuclear Safety Research, is centered around phenomena and processes that could possibly endanger the containment integrity of a large pressurized water reactor after a severe accident. The program includes three activities.The first activity is in-vessel steam explosion. Premixing phenomena are studied in the QUEOS and PREMIX test series. The efficiency of energy conversion is the subject of ECO tests. The BERDA experimental program investigates the load capacity of a reactor pressure vessel (RPV) in steam explosion events.The second activity is hydrogen behavior and mitigation. Advanced models and numerical tools are developed to describe hydrogen sources, distribution of gases in containment, the various modes of hydrogen combustion, and corresponding structural loads.The third activity is ex-vessel melt behavior. The release behavior of melt after RPV failure is studied in DISCO and KAJET tests. In support of core catcher development, interaction with sacrificial and refractory materials, further melt spreading and cooling phenomena are investigated in KAPOOL, KATS, and COMET tests.The goal is to describe and quantify the governing mechanisms and to develop verified models and numerical tools that are able to predict maximum possible loads for severe accident scenarios on full plant scale. The work supported the development and assessment of the safety design of the French-German European Pressurized Water Reactor (EPR). It led to a broader understanding of severe accident phenomena and of controlling and mitigating measures that can also be of benefit for existing plants.
Testing the Maximum Entropy Principle for Information Paul B. Kantor and Jung Jin Lee*
article, we examine these and Huizinga (1982). Several refinements of the MEP for questions using the TREC the possible term combinations in the most effective order Some time ago, Cooper and Huizinga (1982) and Coo
Direct estimation of decoherence rates
Vladimír Bužek; Peter Rapcan; Jochen Rau; Mario Ziman
2012-07-30T23:59:59.000Z
The decoherence rate is a nonlinear channel parameter that describes quantitatively the decay of the off-diagonal elements of a density operator in the decoherence basis. We address the question of how to experimentally access such a nonlinear parameter directly without the need of complete process tomography. In particular, we design a simple experiment working with two copies of the channel, in which the registered mean value of a two-valued measurement directly determines the value of the average decoherence rate. No prior knowledge of the decoherence basis is required.
Incentive Rates- At What Cost?
Schaeffer, S. C.
's impact. In fact, I doubt that one can truly know the exact impact of a rate even after its inclusion in a tariff, assuming of course, that someone uses it. My own judgment is that there are currently examples of both effective and not so effective... tem see a positive impact on their rates from any successes with this tariff, over the expected life of the new facility. We did not count societal benefits like high tax bases for local authorities when reviewing existing ratepayer benefit - only...
Rate Schedules | Department of Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCODepartmentEnergy April 20138Rate Schedules Rate Schedules
The ACT{sup 2} project: Demonstration of maximum energy efficiency in real buildings
Crawley, D.B. [Pacific Northwest Lab., Richland, WA (United States); Krieg, B.L. [Pacific Gas and Electric Co., San Ramon, CA (United States)
1991-11-01T23:59:59.000Z
A large US utility recently began a project to determine whether the use of new energy-efficient end-use technologies and systems would economically achieve substantial energy savings (perhaps as high as 75% over current practice). Using a field-based demonstration approach, the Advanced Customer Technology Test (ACT{sup 2}) for Maximum Energy Efficiency is providing information on the maximum energy savings possible when integrated packages of new high-efficiency end-use technologies are incorporated into commercial and residential buildings and industrial and agricultural processes. This paper details the underlying rationale, approach, results to date, and future plans for ACT{sup 2}. The ultimate goal is energy efficiency (doing more with less energy) rather than energy conservation (freezing in the dark). In this paper, we first explain why a major United States utility is committed to pursuing demand-side management so aggressively. Next, we discuss the approach the utility chose for conducting the ACT{sup 2} project. We then review results obtained to date from the project`s pilot demonstration site. Last, we describe other related demonstration projects being proposed by the utility.
The ACT sup 2 project: Demonstration of maximum energy efficiency in real buildings
Crawley, D.B. (Pacific Northwest Lab., Richland, WA (United States)); Krieg, B.L. (Pacific Gas and Electric Co., San Ramon, CA (United States))
1991-11-01T23:59:59.000Z
A large US utility recently began a project to determine whether the use of new energy-efficient end-use technologies and systems would economically achieve substantial energy savings (perhaps as high as 75% over current practice). Using a field-based demonstration approach, the Advanced Customer Technology Test (ACT{sup 2}) for Maximum Energy Efficiency is providing information on the maximum energy savings possible when integrated packages of new high-efficiency end-use technologies are incorporated into commercial and residential buildings and industrial and agricultural processes. This paper details the underlying rationale, approach, results to date, and future plans for ACT{sup 2}. The ultimate goal is energy efficiency (doing more with less energy) rather than energy conservation (freezing in the dark). In this paper, we first explain why a major United States utility is committed to pursuing demand-side management so aggressively. Next, we discuss the approach the utility chose for conducting the ACT{sup 2} project. We then review results obtained to date from the project's pilot demonstration site. Last, we describe other related demonstration projects being proposed by the utility.
Variable Selection for Modeling the Absolute Magnitude at Maximum of Type Ia Supernovae
Uemura, Makoto; Kawabata, S; Ikeda, Shiro; Maeda, Keiichi
2015-01-01T23:59:59.000Z
We discuss what is an appropriate set of explanatory variables in order to predict the absolute magnitude at the maximum of Type Ia supernovae. In order to have a good prediction, the error for future data, which is called the "generalization error," should be small. We use cross-validation in order to control the generalization error and LASSO-type estimator in order to choose the set of variables. This approach can be used even in the case that the number of samples is smaller than the number of candidate variables. We studied the Berkeley supernova database with our approach. Candidates of the explanatory variables include normalized spectral data, variables about lines, and previously proposed flux-ratios, as well as the color and light-curve widths. As a result, we confirmed the past understanding about Type Ia supernova: i) The absolute magnitude at maximum depends on the color and light-curve width. ii) The light-curve width depends on the strength of Si II. Recent studies have suggested to add more va...
Quantifying extrinsic noise in gene expression using the maximum entropy framework
Purushottam D. Dixit
2013-04-04T23:59:59.000Z
We present a maximum entropy framework to separate intrinsic and extrinsic contributions to noisy gene expression solely from the profile of expression. We express the experimentally accessible probability distribution of the copy number of the gene product (mRNA or protein) by accounting for possible variations in extrinsic factors. The distribution of extrinsic factors is estimated using the maximum entropy principle. Our results show that extrinsic factors qualitatively and quantitatively affect the probability distribution of the gene product. We work out, in detail, the transcription of mRNA from a constitutively expressed promoter in {\\it E. coli}. We suggest that the variation in extrinsic factors may account for the observed {\\it wider than Poisson} distribution of mRNA copy numbers. We successfully test our framework on a numerical simulation of a simple gene expression scheme that accounts for the variation in extrinsic factors. We also make falsifiable predictions, some of which are tested on previous experiments in {\\it E. coli} while others need verification. Application of the current framework to more complex situations is also discussed.
Trovato, M. [Dipartimento di Matematica, Universita di Catania, Viale A. Doria, I-95125 Catania (Italy); Reggiani, L. [Dipartimento di Ingegneria dell' Innovazione and CNISM, Universita del Salento, Via Arnesano s/n, I-73100 Lecce (Italy)
2011-12-15T23:59:59.000Z
By introducing a quantum entropy functional of the reduced density matrix, the principle of quantum maximum entropy is asserted as fundamental principle of quantum statistical mechanics. Accordingly, we develop a comprehensive theoretical formalism to construct rigorously a closed quantum hydrodynamic transport within a Wigner function approach. The theoretical formalism is formulated in both thermodynamic equilibrium and nonequilibrium conditions, and the quantum contributions are obtained by only assuming that the Lagrange multipliers can be expanded in powers of ({h_bar}/2{pi}){sup 2}. In particular, by using an arbitrary number of moments, we prove that (1) on a macroscopic scale all nonlocal effects, compatible with the uncertainty principle, are imputable to high-order spatial derivatives, both of the numerical density n and of the effective temperature T; (2) the results available from the literature in the framework of both a quantum Boltzmann gas and a degenerate quantum Fermi gas are recovered as a particular case; (3) the statistics for the quantum Fermi and Bose gases at different levels of degeneracy are explicitly incorporated; (4) a set of relevant applications admitting exact analytical equations are explicitly given and discussed; (5) the quantum maximum entropy principle keeps full validity in the classical limit, when ({h_bar}/2{pi}){yields}0.
Murton, Mark; Bouchier, Francis A.; vanDongen, Dale T.; Mack, Thomas Kimball; Cutler, Robert Paul; Ross, Michael P.
2013-08-01T23:59:59.000Z
Although technological advances provide new capabilities to increase the robustness of security systems, they also potentially introduce new vulnerabilities. New capability sometimes requires new performance requirements. This paper outlines an approach to establishing a key performance requirement for an emerging intrusion detection sensor: the sensored net. Throughout the security industry, the commonly adopted standard for maximum opening size through barriers is a requirement based on square inches-typically 96 square inches. Unlike standard rigid opening, the dimensions of a flexible aperture are not fixed, but variable and conformable. It is demonstrably simple for a human intruder to move through a 96-square-inch opening that is conformable to the human body. The longstanding 96-square-inch requirement itself, though firmly embedded in policy and best practice, lacks a documented empirical basis. This analysis concluded that the traditional 96-square-inch standard for openings is insufficient for flexible openings that are conformable to the human body. Instead, a circumference standard is recommended for these newer types of sensored barriers. The recommended maximum circumference for a flexible opening should be no more than 26 inches, as measured on the inside of the netting material.
Bounds and phase diagram of efficiency at maximum power for tight-coupling molecular motors
Z. C. Tu
2013-02-08T23:59:59.000Z
The efficiency at maximum power (EMP) for tight-coupling molecular motors is investigated within the framework of irreversible thermodynamics. It is found that the EMP depends merely on the constitutive relation between the thermodynamic current and force. The motors are classified into four generic types (linear, superlinear, sublinear, and mixed types) according to the characteristics of the constitutive relation, and then the corresponding ranges of the EMP for these four types of molecular motors are obtained. The exact bounds of the EMP are derived and expressed as the explicit functions of the free energy released by the fuel in each motor step. A phase diagram is constructed which clearly shows how the region where the parameters (the load distribution factor and the free energy released by the fuel in each motor step) are located can determine whether the value of the EMP is larger or smaller than 1/2. This phase diagram reveals that motors using ATP as fuel under physiological conditions can work at maximum power with higher efficiency ($>1/2$) for a small load distribution factor ($<0.1$).
Tidwell, Natasha Davis
2014-04-23T23:59:59.000Z
Previous research has explored several ways in which human fertility influences attraction in both men and women. One of the frequently replicated effects found in this literature is that men tend to rate vocal samples taken from women during highly...
Design Studies for a High-Repetition-Rate FEL Facility at LBNL.
CORLETT, J.
2009-01-01T23:59:59.000Z
Repetition-Rate FEL Facility at LBNL* A. B ELKACEM , J. M. BBerkeley National Laboratory (LBNL) is working to addressof several divisions at LBNL is working to define the
Guidotti, R. A.; Reinhardt, F. W.; Sandi, G.
2000-04-11T23:59:59.000Z
A templated carbon was prepared by the pyrolysis of pyrene impregnated into pillared clay (PILC). The electrochemical performance of this was evaluated with the goal of using this material as an anode in Li-ion cells. The reversible capacity was measured as a function of C rate and the cycling characteristics were determined for various intercalation protocols. The performance of this material was compared to that of several commercial graphites tested under the same conditions. The PILC carbon shows great promise as a Li-ion anode if the fade and first-cycle losses can be controlled.
GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; SANDI,GISELLE
2000-03-22T23:59:59.000Z
A templated carbon was prepared by the pyrolysis of pyrene impregnated into pillared clay (PILC). The electrochemical performance of this was evaluated with the goal of using this material as an anode in Li-ion cells. The reversible capacity was measured as a function of C rate and the cycling characteristics were determined for various intercalation protocols. The performance of this material was compared to that of several commercial graphites tested under the same conditions. The PILC carbon shows great promise as a Li-ion anode if the fade and first-cycle losses can be controlled.
Danilov, M; Kvaratskheliia, T; Laptin, L; Tichomirov, I; Titov, M L; Zaitsev, Yu; Gilitsky, Yu.; Zaitsev, Yu.
2001-01-01T23:59:59.000Z
Experimental conditions at the HERA-B experiment impose very strong requirements for gaseous detectors. The charged particle fluxes through the HERA-B tracking system, varying with the radial distance $R$ from the beam line, are about $2 \\times 10^{7}/R^{2}$ particles per second, and comparable to those that will be encountered by LHC experiments. The severe radiation environment of the HERA-B experiment leads to a maximum charge deposit on a wire, within the muon detector, of 200 mC/cm per year. We report recent results of aging studies performed by irradiating proportional wire chambers filled with $Ar/CF_4/CH_4$ (74:20:6), $Ar/CF_4/CH_4$ (67:30:3), $Ar/CF_4/CO_2$ (65:30:5), $Ar/CF_4$ (70:30), $CF_4/CH_4$ (90:10), $CF_4/CH_4$ (80:20) mixtures in a three different experimental setups. The size of the irradiation zone varied in the tests from 1 cm up to 500 cm. Our experience shows that the aging rate depends not only on the total collected charge, but, in addition, on the mode of operation and area of irradi...
Danilov, M; Kvaratskheliia, T; Laptin, L; Tichomirov, I; Titov, M L; Zaitsev, Yu; Gilitsky, Yu.; Zaitsev, Yu.
2001-01-01T23:59:59.000Z
Experimental conditions at the HERA-B experiment impose very strong requirements for gaseous detectors. The charged particle fluxes through the HERA-B tracking system, varying with the radial distance R from the beam line, are about $2 \\times 10^{7}/R^{2}$ particles per second, and comparable to those that will be encountered by LHC experiments. The severe radiation environment of the HERA-B experiment leads to a maximum charge deposit on a wire, within the muon detector, of 200 mC/cm per year. We report recent results of aging studies performed by irradiating proportional wire chambers filled with $Ar/CF_4/CH_4$ (74:20:6), $Ar/CF_4/CH_4$ (67:30:3), $Ar/CF_4/CO_2$ (65:30:5), $Ar/CF_4$ (70:30), $CF_4/CH_4$ (90:10), $CF_4/CH_4$ (80:20) mixtures in a three different experimental setups. The size of the irradiation zone varied in the tests from 1 cm up to 500 cm. Our experience shows that the aging rate depends not only on the total collected charge, but, in addition, on the mode of operation and area of irradiat...
Instability statistics and mixing rates
Roberto Artuso; Cesar Manchein
2009-10-20T23:59:59.000Z
We claim that looking at probability distributions of \\emph{finite time} largest Lyapunov exponents, and more precisely studying their large deviation properties, yields an extremely powerful technique to get quantitative estimates of polynomial decay rates of time correlations and Poincar\\'e recurrences in the -quite delicate- case of dynamical systems with weak chaotic properties.
Fast repetition rate (FRR) flasher
Kolber, Z.; Falkowski, P.
1997-02-11T23:59:59.000Z
A fast repetition rate (FRR) flasher is described suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz. 14 figs.
OSSA - An optimized approach to severe accident management: EPR application
Sauvage, E. C.; Prior, R.; Coffey, K. [AREVA, FRAMATOME-ANP SAS, Paris, 92084 La Defense (France); Mazurkiewicz, S. M. [AREVA, FRAMATOME-ANP Inc, Lynchburg, VA 24506-0935 (United States)
2006-07-01T23:59:59.000Z
There is a recognized need to provide nuclear power plant technical staff with structured guidance for response to a potential severe accident condition involving core damage and potential release of fission products to the environment. Over the past ten years, many plants worldwide have implemented such guidance for their emergency technical support center teams either by following one of the generic approaches, or by developing fully independent approaches. There are many lessons to be learned from the experience of the past decade, in developing, implementing, and validating severe accident management guidance. Also, though numerous basic approaches exist which share common principles, there are differences in the methodology and application of the guidelines. AREVA/Framatome-ANP is developing an optimized approach to severe accident management guidance in a project called OSSA ('Operating Strategies for Severe Accidents'). There are still numerous operating power plants which have yet to implement severe accident management programs. For these, the option to use an updated approach which makes full use of lessons learned and experience, is seen as a major advantage. Very few of the current approaches covers all operating plant states, including shutdown states with the primary system closed and open. Although it is not necessary to develop an entirely new approach in order to add this capability, the opportunity has been taken to develop revised full scope guidance covering all plant states in addition to the fuel in the fuel building. The EPR includes at the design phase systems and measures to minimize the risk of severe accident and to mitigate such potential scenarios. This presents a difference in comparison with existing plant, for which severe accidents where not considered in the design. Thought developed for all type of plants, OSSA will also be applied on the EPR, with adaptations designed to take into account its favourable situation in that field. This revised approach will incorporate a number of new features which will simplify and streamline the guidance material while ensuring comprehensive guidance for response to any severe accident. Examples of such features include : - Identification of severe accident challenges based on plant specific studies. - Revision of the split of responsibilities between operations and technical support center staff. - Fixed setpoint entry conditions, ensuring that the transition from emergency procedures takes place at a consistent core/fuel condition (regardless of scenario), and which fixes the time window available to attempt ultimate preventive measures. - A safety function concept for monitoring plant conditions (in the control room). - An integrated graphic-based diagnostic tool including entry condition, challenge prioritization, and exit condition monitoring to be used by the technical support team. This paper describes the basic features of OSSA, and project status. (authors)
G. Litak; T. Kaminski; J. Czarnigowski; A. K. Sen; M. Wendeker
2006-11-29T23:59:59.000Z
In this paper we analyze the cycle-to-cycle variations of maximum pressure $p_{max}$ and peak pressure angle $\\alpha_{pmax}$ in a four-cylinder spark ignition engine. We examine the experimental time series of $p_{max}$ and $\\alpha_{pmax}$ for three different spark advance angles. Using standard statistical techniques such as return maps and histograms we show that depending on the spark advance angle, there are significant differences in the fluctuations of $p_{max}$ and $\\alpha_{pmax}$. We also calculate the multiscale entropy of the various time series to estimate the effect of randomness in these fluctuations. Finally, we explain how the information on both $p_{max}$ and $\\alpha_{pmax}$ can be used to develop optimal strategies for controlling the combustion process and improving engine performance.
Kempes, Christopher P; Dooris, William; West, Geoffrey B
2015-01-01T23:59:59.000Z
In the face of uncertain biological response to climate change and the many critiques concerning model complexity it is increasingly important to develop predictive mechanistic frameworks that capture the dominant features of ecological communities and their dependencies on environmental factors. This is particularly important for critical global processes such as biomass changes, carbon export, and biogenic climate feedback. Past efforts have successfully understood a broad spectrum of plant and community traits across a range of biological diversity and body size, including tree size distributions and maximum tree height, from mechanical, hydrodynamic, and resource constraints. Recently it was shown that global scaling relationships for net primary productivity are correlated with local meteorology and the overall biomass density within a forest. Along with previous efforts, this highlights the connection between widely observed allometric relationships and predictive ecology. An emerging goal of ecological...
Role of ocean-atmosphere interactions in tropical cooling during the last glacial maximum
Bush, A.B.G. [Univ. of Alberta, Edmonton (Canada)] [Univ. of Alberta, Edmonton (Canada); Philander, S.G.H. [Princeton Univ., NJ (United States)] [Princeton Univ., NJ (United States)
1998-02-27T23:59:59.000Z
A simulation with a coupled atmosphere-ocean general circulation model configured for the Last Glacial Maximum delivered a tropical climate that is much cooler than that produced by atmosphere-only models. The main reason is a decrease in tropical sea surface temperatures, up to 6{degree}C in the western tropical Pacific, which occurs because of two processes. The trade winds induce equatorial upwelling and zonal advection of cold water that further intensify the trade winds, and an exchange of water occurs between the tropical and extratropical Pacific in which the poleward surface flow is balanced by equatorward flow of cold water in the thermocline. Simulated tropical temperature depressions are of the same magnitude as those that have been proposed from recent proxy data. 25 refs., 4 figs.
A. Vaudrey; P. Baucour; F. Lanzetta; R. Glises
2010-08-30T23:59:59.000Z
Producing useful electrical work in consuming chemical energy, the fuel cell have to reject heat to its surrounding. However, as it occurs for any other type of engine, this thermal energy cannot be exchanged in an isothermal way in finite time through finite areas. As it was already done for various types of systems, we study the fuel cell within the finite time thermodynamics framework and define an endoreversible fuel cell. Considering different types of heat transfer laws, we obtain an optimal value of the operating temperature, corresponding to a maximum produced power. This analysis is a first step of a thermodynamical approach of design of thermal management devices, taking into account performances of the whole system.
Vaudrey, A; Lanzetta, F; Glises, R
2009-01-01T23:59:59.000Z
Producing useful electrical work in consuming chemical energy, the fuel cell have to reject heat to its surrounding. However, as it occurs for any other type of engine, this thermal energy cannot be exchanged in an isothermal way in finite time through finite areas. As it was already done for various types of systems, we study the fuel cell within the finite time thermodynamics framework and define an endoreversible fuel cell. Considering different types of heat transfer laws, we obtain an optimal value of the operating temperature, corresponding to a maximum produced power. This analysis is a first step of a thermodynamical approach of design of thermal management devices, taking into account performances of the whole system.
From Physics to Economics: An Econometric Example Using Maximum Relative Entropy
Giffin, Adom
2009-01-01T23:59:59.000Z
Econophysics, is based on the premise that some ideas and methods from physics can be applied to economic situations. We intend to show in this paper how a physics concept such as entropy can be applied to an economic problem. In so doing, we demonstrate how information in the form of observable data and moment constraints are introduced into the method of Maximum relative Entropy (MrE). A general example of updating with data and moments is shown. Two specific econometric examples are solved in detail which can then be used as templates for real world problems. A numerical example is compared to a large deviation solution which illustrates some of the advantages of the MrE method.
Reginatto, Marcel; Zimbal, Andreas [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany)
2008-02-15T23:59:59.000Z
In applications of neutron spectrometry to fusion diagnostics, it is advantageous to use methods of data analysis which can extract information from the spectrum that is directly related to the parameters of interest that describe the plasma. We present here methods of data analysis which were developed with this goal in mind, and which were applied to spectrometric measurements made with an organic liquid scintillation detector (type NE213). In our approach, we combine Bayesian parameter estimation methods and unfolding methods based on the maximum entropy principle. This two-step method allows us to optimize the analysis of the data depending on the type of information that we want to extract from the measurements. To illustrate these methods, we analyze neutron measurements made at the PTB accelerator under controlled conditions, using accelerator-produced neutron beams. Although the methods have been chosen with a specific application in mind, they are general enough to be useful for many other types of measurements.
Maximum Achievable Control Technology for New Industrial Boilers (released in AEO2005)
Reports and Publications (EIA)
2005-01-01T23:59:59.000Z
As part of Clean Air Act 90 (CAAA90, the EPA on February 26, 2004, issued a final rulethe National Emission Standards for Hazardous Air Pollutants (NESHAP) to reduce emissions of hazardous air pollutants (HAPs) from industrial, commercial, and institutional boilers and process heaters. The rule requires industrial boilers and process heaters to meet limits on HAP emissions to comply with a Maximum Achievable Control Technology (MACT) floor level of control that is the minimum level such sources must meet to comply with the rule. The major HAPs to be reduced are hydrochloric acid, hydrofluoric acid, arsenic, beryllium, cadmium, and nickel. The EPA predicts that the boiler MACT rule will reduce those HAP emissions from existing sources by about 59,000 tons per year in 2005.
Urniezius, Renaldas [Kaunas University of Technology, Kaunas (Lithuania)
2011-03-14T23:59:59.000Z
The principle of Maximum relative Entropy optimization was analyzed for dead reckoning localization of a rigid body when observation data of two attached accelerometers was collected. Model constraints were derived from the relationships between the sensors. The experiment's results confirmed that accelerometers each axis' noise can be successfully filtered utilizing dependency between channels and the dependency between time series data. Dependency between channels was used for a priori calculation, and a posteriori distribution was derived utilizing dependency between time series data. There was revisited data of autocalibration experiment by removing the initial assumption that instantaneous rotation axis of a rigid body was known. Performance results confirmed that such an approach could be used for online dead reckoning localization.
Azimuthal Anisotropy in Heavy Ion Collisions from the Maximum Entropy Method
Pirner, Hans J
2014-01-01T23:59:59.000Z
We investigate the azimuthal anisotropy v2 of particle production in nucleus-nucleus collisions in the maximum entropy approach. This necessitates two new parameters delta and lambda2. The parameter delta describes the deformation of transverse configuration space and is related to the anisotropy of the overlap zone of the two nuclei. The parameter lambda2 defines the anisotropy of the particle distribution in momentum space. Assuming deformed flux tubes at the early stage of the collision we relate the momentum to the space asymmetry i.e. lambda2 to delta with the uncertainty relation. We compute the anisotropy v2 as a function of centrality, transverse momentum and rapidity using gluon-hadron duality. The general features of LHC data are reproduced.
Source Function Determined from HBT Correlations by the Maximum Entropy Principle
Wu Yuanfang; Ulrich Heinz
1996-07-18T23:59:59.000Z
We study the reconstruction of the source function in space-time directly from the measured HBT correlation function using the Maximum Entropy Principle. We find that the problem is ill-defined without at least one additional theoretical constraint as input. Using the requirement of a finite source lifetime for the latter we find a new Gaussian parametrization of the source function directly in terms of the measured HBT radius parameters and its lifetime, where the latter is a free parameter which is not directly measurable by HBT. We discuss the implications of our results for the remaining freedom in building source models consistent with a given set of measured HBT radius parameters.
Spectral Analysis of Excited Nucleons in Lattice QCD with Maximum Entropy Method
Kiyoshi Sasaki; Shoichi Sasaki; Tetsuo Hatsuda
2005-07-12T23:59:59.000Z
We study the mass spectra of excited baryons with the use of the lattice QCD simulations. We focus our attention on the problem of the level ordering between the positive-parity excited state N'(1440) (the Roper resonance) and the negative-parity excited state N^*(1535). Nearly perfect parity projection is accomplished by combining the quark propagators with periodic and anti-periodic boundary conditions in the temporal direction. Then we extract the spectral functions from the lattice data by utilizing the maximum entropy method. We observe that the masses of the N' and N^* states are close for wide range of the quark masses (M_pi=0.61-1.22 GeV), which is in contrast to the phenomenological prediction of the quark models. The role of the Wilson doublers in the baryonic spectral functions is also studied.
A maximum-entropy approach to the adiabatic freezing of a supercooled liquid
Santi Prestipino
2013-04-29T23:59:59.000Z
I employ the van der Waals theory of Baus and coworkers to analyze the fast, adiabatic decay of a supercooled liquid in a closed vessel with which the solidification process usually starts. By imposing a further constraint on either the system volume or pressure, I use the maximum-entropy method to quantify the fraction of liquid that is transformed into solid as a function of undercooling and of the amount of a foreign gas that could possibly be also present in the test tube. Upon looking at the implications of thermal and mechanical insulation for the energy cost of forming a solid droplet within the liquid, I identify one situation where the onset of solidification inevitably occurs near the wall in contact with the bath.
Parthapratim Biswas; H. Shimoyama; L. R. Mead
2009-10-23T23:59:59.000Z
We apply the maximum entropy principle to construct the natural invariant density and Lyapunov exponent of one-dimensional chaotic maps. Using a novel function reconstruction technique that is based on the solution of Hausdorff moment problem via maximizing Shannon entropy, we estimate the invariant density and the Lyapunov exponent of nonlinear maps in one-dimension from a knowledge of finite number of moments. The accuracy and the stability of the algorithm are illustrated by comparing our results to a number of nonlinear maps for which the exact analytical results are available. Furthermore, we also consider a very complex example for which no exact analytical result for invariant density is available. A comparison of our results to those available in the literature is also discussed.
Spectral function and excited states in lattice QCD with maximum entropy method
CP-PACS Collaboration; :; T. Yamazaki; S. Aoki; R. Burkhalter; M. Fukugita; S. Hashimoto; N. Ishizuka; Y. Iwasaki; K. Kanaya; T. Kaneko; Y. Kuramashi; M. Okawa; Y. Taniguchi; A. Ukawa; T. Yoshié
2001-05-29T23:59:59.000Z
We apply the maximum entropy method to extract the spectral functions for pseudoscalar and vector mesons from hadron correlators previously calculated at four different lattice spacings in quenched QCD with the Wilson quark action. We determine masses and decay constants for the ground and excited states of the pseudoscalar and vector channels from position and area of peaks in the spectral functions. We obtain the results, $m_{\\pi_1} = 660(590)$ MeV and $m_{\\rho_1} = 1540(570)$ MeV for the masses of the first excited state masses, in the continuum limit of quenched QCD. We also find unphysical states which have infinite mass in the continuum limit, and argue that they are bound states of two doublers of the Wilson quark action. If the interpretation is correct, this is the first time that the state of doublers is identified in lattice QCD numerical simulations.
Application of the Maximum Entropy Method to the (2+1)d Four-Fermion Model
C. R. Allton; J. E. Clowser; S. J. Hands; J. B. Kogut; C. G. Strouthos
2002-08-19T23:59:59.000Z
We investigate spectral functions extracted using the Maximum Entropy Method from correlators measured in lattice simulations of the (2+1)-dimensional four-fermion model. This model is particularly interesting because it has both a chirally broken phase with a rich spectrum of mesonic bound states and a symmetric phase where there are only resonances. In the broken phase we study the elementary fermion, pion, sigma and massive pseudoscalar meson; our results confirm the Goldstone nature of the pi and permit an estimate of the meson binding energy. We have, however, seen no signal of sigma -> pi pi decay as the chiral limit is approached. In the symmetric phase we observe a resonance of non-zero width in qualitative agreement with analytic expectations; in addition the ultra-violet behaviour of the spectral functions is consistent with the large non-perturbative anomalous dimension for fermion composite operators expected in this model.
Azimuthal Anisotropy in Heavy Ion Collisions from the Maximum Entropy Method
Hans J. Pirner
2014-05-09T23:59:59.000Z
We investigate the azimuthal anisotropy v2 of particle production in nucleus-nucleus collisions in the maximum entropy approach. This necessitates two new parameters delta and lambda2. The parameter delta describes the deformation of transverse configuration space and is related to the anisotropy of the overlap zone of the two nuclei. The parameter lambda2 defines the anisotropy of the particle distribution in momentum space. Assuming deformed flux tubes at the early stage of the collision we relate the momentum to the space asymmetry i.e. lambda2 to delta with the uncertainty relation. We compute the anisotropy v2 as a function of centrality, transverse momentum and rapidity using gluon-hadron duality. The general features of LHC data are reproduced.
CP$^{N-1}$ model with the theta term and maximum entropy method
Masahiro Imachi; Yasuhiko Shinno; Hiroshi Yoneyama
2004-09-25T23:59:59.000Z
A $\\theta$ term in lattice field theory causes the sign problem in Monte Carlo simulations. This problem can be circumvented by Fourier-transforming the topological charge distribution $P(Q)$. This strategy, however, has a limitation, because errors of $P(Q)$ prevent one from calculating the partition function ${\\cal Z}(\\theta)$ properly for large volumes. This is called flattening. As an alternative approach to the Fourier method, we utilize the maximum entropy method (MEM) to calculate ${\\cal Z}(\\theta)$. We apply the MEM to Monte Carlo data of the CP$^3$ model. It is found that in the non-flattening case, the result of the MEM agrees with that of the Fourier transform, while in the flattening case, the MEM gives smooth ${\\cal Z}(\\theta)$.
Is the friction angle the maximum slope of a free surface of a non cohesive material?
A. Modaressi; P. Evesque
2005-07-13T23:59:59.000Z
Starting from a symmetric triangular pile with a horizontal basis and rotating the basis in the vertical plane, we have determined the evolution of the stress distribution as a function of the basis inclination using Finite Elements method with an elastic-perfectly plastic constitutive model, defined by its friction angle, without cohesion. It is found that when the yield function is the Drucker-Prager one, stress distribution satisfying equilibrium can be found even when one of the free-surface slopes is larger than the friction angle. This means that piles with a slope larger than the friction angle can be (at least) marginally stable and that slope rotation is not always a destabilising perturbation direction. On the contrary, it is found that the slope cannot overpass the friction angle when a Mohr-Coulomb yield function is used. Theoretical explanation of these facts is given which enlightens the role plaid by the intermediate principal stress in both cases of the Mohr-Coulomb criterion and of the Drucker-Prager one. It is then argued that the Mohr-Coulomb criterion assumes a spontaneous symmetry breaking, as soon as the two smallest principal stresses are different ; this is not physical most likely; so this criterion shall be replaced by a Drucker-Prager criterion in the vicinity of the equality, which leads to the previous anomalous behaviour ; so these numerical computations enlighten the avalanche process: they show that no dynamical angle larger than the static one is needed to understand avalanching. It is in agreement with previous experimental results. Furthermore, these results show that the maximum angle of repose can be modified using cyclic rotations; we propose a procedure that allows to achieve a maximum angle of repose to be equal to the friction angle .
Thirty-Year Solid Waste Generation Maximum and Minimum Forecast for SRS
Thomas, L.C.
1994-10-01T23:59:59.000Z
This report is the third phase (Phase III) of the Thirty-Year Solid Waste Generation Forecast for Facilities at the Savannah River Site (SRS). Phase I of the forecast, Thirty-Year Solid Waste Generation Forecast for Facilities at SRS, forecasts the yearly quantities of low-level waste (LLW), hazardous waste, mixed waste, and transuranic (TRU) wastes generated over the next 30 years by operations, decontamination and decommissioning and environmental restoration (ER) activities at the Savannah River Site. The Phase II report, Thirty-Year Solid Waste Generation Forecast by Treatability Group (U), provides a 30-year forecast by waste treatability group for operations, decontamination and decommissioning, and ER activities. In addition, a 30-year forecast by waste stream has been provided for operations in Appendix A of the Phase II report. The solid wastes stored or generated at SRS must be treated and disposed of in accordance with federal, state, and local laws and regulations. To evaluate, select, and justify the use of promising treatment technologies and to evaluate the potential impact to the environment, the generic waste categories described in the Phase I report were divided into smaller classifications with similar physical, chemical, and radiological characteristics. These smaller classifications, defined within the Phase II report as treatability groups, can then be used in the Waste Management Environmental Impact Statement process to evaluate treatment options. The waste generation forecasts in the Phase II report includes existing waste inventories. Existing waste inventories, which include waste streams from continuing operations and stored wastes from discontinued operations, were not included in the Phase I report. Maximum and minimum forecasts serve as upper and lower boundaries for waste generation. This report provides the maximum and minimum forecast by waste treatability group for operation, decontamination and decommissioning, and ER activities.
On Maximum Norm of Exterior Product and A Conjecture of C.N. Yang
Zhilin Luo
2015-01-08T23:59:59.000Z
Let $V$ be a finite dimensional inner product space over $\\mathbb{R}$ with dimension $n$, where $n\\in \\mathbb{N}$, $\\wedge^{r}V$ be the exterior algebra of $V$, the problem is to find $\\max_{\\| \\xi \\| = 1, \\| \\eta \\| = 1}\\| \\xi \\wedge \\eta \\|$ where $k,l$ $\\in \\mathbb{N},$ $\\forall \\xi \\in \\wedge^{k}V, \\eta \\in \\wedge^{l}V.$ This is a problem suggested by the famous Nobel Prize Winner C.N. Yang. He solved this problem for $k\\leq 2$ in [1], and made the following \\textbf{conjecture} in [2] : If $n=2m$, $k=2r$, $l=2s$, then the maximum is achieved when $\\xi_{max} = \\frac{\\omega^{k}}{\\| \\omega^{k}\\|}, \\eta_{max} = \\frac{\\omega^{l}}{\\| \\omega^{l}\\|}$, where $ \\omega = \\Sigma_{i=1}^m e_{2i-1}\\wedge e_{2i}, $ and $\\{e_{k}\\}_{k=1}^{2m}$ is an orthonormal basis of V. From a physicist's point of view, this problem is just the dual version of the easier part of the well-known Beauzamy-Bombieri inequality for product of polynomials in many variables, which is discussed in [4]. Here the duality is referred as the well known Bose-Fermi correspondence, where we consider the skew-symmetric algebra(alternative forms) instead of the familiar symmetric algebra(polynomials in many variables) In this paper, for two cases we give estimations of the maximum of exterior products, and the Yang's conjecture is answered partially under some special cases.
MADmap: A Massively Parallel Maximum-Likelihood Cosmic Microwave Background Map-Maker
Cantalupo, Christopher; Borrill, Julian; Jaffe, Andrew; Kisner, Theodore; Stompor, Radoslaw
2009-06-09T23:59:59.000Z
MADmap is a software application used to produce maximum-likelihood images of the sky from time-ordered data which include correlated noise, such as those gathered by Cosmic Microwave Background (CMB) experiments. It works efficiently on platforms ranging from small workstations to the most massively parallel supercomputers. Map-making is a critical step in the analysis of all CMB data sets, and the maximum-likelihood approach is the most accurate and widely applicable algorithm; however, it is a computationally challenging task. This challenge will only increase with the next generation of ground-based, balloon-borne and satellite CMB polarization experiments. The faintness of the B-mode signal that these experiments seek to measure requires them to gather enormous data sets. MADmap is already being run on up to O(1011) time samples, O(108) pixels and O(104) cores, with ongoing work to scale to the next generation of data sets and supercomputers. We describe MADmap's algorithm based around a preconditioned conjugate gradient solver, fast Fourier transforms and sparse matrix operations. We highlight MADmap's ability to address problems typically encountered in the analysis of realistic CMB data sets and describe its application to simulations of the Planck and EBEX experiments. The massively parallel and distributed implementation is detailed and scaling complexities are given for the resources required. MADmap is capable of analysing the largest data sets now being collected on computing resources currently available, and we argue that, given Moore's Law, MADmap will be capable of reducing the most massive projected data sets.
Lau, K.Y.; Yariv, A.
1985-07-15T23:59:59.000Z
High-fidelity pseudorandom digital modulation at 8.2 Gbit/s of an ultrahigh speed semiconductor laser is demonstrated. Studies using simple but representative pulse patterns at 10 Gbit/s give insights into the maximum digital modulation rate attainable from a given laser, as well as relations between large-signal digital performance and small-signal analog response.
Can we estimate bacterial growth rates from ribosomal RNA content?
Kemp, P.F.
1995-12-31T23:59:59.000Z
Several studies have demonstrated a strong relationship between the quantity of RNA in bacterial cells and their growth rate under laboratory conditions. It may be possible to use this relationship to provide information on the activity of natural bacterial communities, and in particular on growth rate. However, if this approach is to provide reliably interpretable information, the relationship between RNA content and growth rate must be well-understood. In particular, a requisite of such applications is that the relationship must be universal among bacteria, or alternately that the relationship can be determined and measured for specific bacterial taxa. The RNA-growth rate relationship has not been used to evaluate bacterial growth in field studies, although RNA content has been measured in single cells and in bulk extracts of field samples taken from coastal environments. These measurements have been treated as probable indicators of bacterial activity, but have not yet been interpreted as estimators of growth rate. The primary obstacle to such interpretations is a lack of information on biological and environmental factors that affect the RNA-growth rate relationship. In this paper, the available data on the RNA-growth rate relationship in bacteria will be reviewed, including hypotheses regarding the regulation of RNA synthesis and degradation as a function of growth rate and environmental factors; i.e. the basic mechanisms for maintaining RNA content in proportion to growth rate. An assessment of the published laboratory and field data, the current status of this research area, and some of the remaining questions will be presented.
NAC-1 cask dose rate calculations for LWR spent fuel
CARLSON, A.B.
1999-02-24T23:59:59.000Z
A Nuclear Assurance Corporation nuclear fuel transport cask, NAC-1, is being considered as a transport and storage option for spent nuclear fuel located in the B-Cell of the 324 Building. The loaded casks will be shipped to the 200 East Area Interim Storage Area for dry interim storage. Several calculations were performed to assess the photon and neutron dose rates. This report describes the analytical methods, models, and results of this investigation.
Natural migration rates of trees: Global terrestrial carbon cycle implications. Book chapter
Solomon, A.M.
1996-06-01T23:59:59.000Z
The paper discusses the forest-ecological processes which constrain the rate of response by forests to rapid future environmental change. It establishes a minimum response time by natural tree populations which invade alien landscapes and reach the status of a mature, closed canopy forest when maximum carbon storage is realized. It considers rare long-distance and frequent short-distance seed transport, seedling and tree establishment, sequential tree and stand maturation, and spread between newly established colonies.
Charged-Particle Thermonuclear Reaction Rates: I. Monte Carlo Method and Statistical Distributions
Richard Longland; Christian Iliadis; Art Champagne; Joe Newton; Claudio Ugalde; Alain Coc; Ryan Fitzgerald
2010-04-23T23:59:59.000Z
A method based on Monte Carlo techniques is presented for evaluating thermonuclear reaction rates. We begin by reviewing commonly applied procedures and point out that reaction rates that have been reported up to now in the literature have no rigorous statistical meaning. Subsequently, we associate each nuclear physics quantity entering in the calculation of reaction rates with a specific probability density function, including Gaussian, lognormal and chi-squared distributions. Based on these probability density functions the total reaction rate is randomly sampled many times until the required statistical precision is achieved. This procedure results in a median (Monte Carlo) rate which agrees under certain conditions with the commonly reported recommended "classical" rate. In addition, we present at each temperature a low rate and a high rate, corresponding to the 0.16 and 0.84 quantiles of the cumulative reaction rate distribution. These quantities are in general different from the statistically meaningless "minimum" (or "lower limit") and "maximum" (or "upper limit") reaction rates which are commonly reported. Furthermore, we approximate the output reaction rate probability density function by a lognormal distribution and present, at each temperature, the lognormal parameters miu and sigma. The values of these quantities will be crucial for future Monte Carlo nucleosynthesis studies. Our new reaction rates, appropriate for bare nuclei in the laboratory, are tabulated in the second paper of this series (Paper II). The nuclear physics input used to derive our reaction rates is presented in the third paper of this series (Paper III). In the fourth paper of this series (Paper IV) we compare our new reaction rates to previous results.
Intraclass Price Elasticity & Electric Rate Design
Gresham, K. E.
1987-01-01T23:59:59.000Z
Electric rate design relies on cost incurrance for pricing and pricing structures. However, as utilities move into a marketing mode, rate design needs to respond more to customer reactions to pricing changes. Intraclass price elasticities aid rate...
October 1996 - September 2001 Wholesale Power Rates (rates/previous)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 - September 2001 The rates BPA charges
October 2001 - March 2002 Power Rates (rates/previous)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 - September 2001 The rates BPA charges1
October 2001 - September 2006 Wholesale Power Rates (rates/previous)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 - September 2001 The rates BPA charges11
October 2002 - March 2003 Power Rates (rates/previous)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 - September 2001 The rates BPA2 - March
October 2003 - March 2004 Power Rates (rates/previous)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 - September 2001 The rates BPA2 - March3
October 2004 - March 2005 Power Rates (rates/previous)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 - September 2001 The rates BPA2 -
October 2005 - March 2006 Power Rates (rates/previous)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 - September 2001 The rates BPA2 -5 -
EXECUTION COSTS IN FINANCIAL MARKETS WITH SEVERAL INSTITUTIONAL INVESTORS
Li, Yuying
strategies to execute a trade. For a given price-impact function, the execution cost problem dealsEXECUTION COSTS IN FINANCIAL MARKETS WITH SEVERAL INSTITUTIONAL INVESTORS Somayeh Moazeni, Yuying trade large volumes face a price impact that depends on their trading volumes simul- taneously
Number 345 September 2008 In 1993, following several publicized
reported to ASRS, several "dirty dozen" factors contributed to misplacement of a jack screw lockout tool's end, I was called to the supervisor's office. A tool (horizontal stabilizer lockout) I checked out had Pilots 941 Controllers 83 Cabin/Mechanics/Military/Other 400 TOTAL 4650 lockout tool was not installed
An Experimental Comparison of Several Clustering and Initialization Methods
Heckerman, David
) algorithm, a "winner take all" version of the EM algo- rithm reminiscent of the K-means algorithm, and model" ver- sion of the EM algorithm reminiscent of the K-means algorithm--and hierarchical agglomerativeAn Experimental Comparison of Several Clustering and Initialization Methods Marina Meila mmp
Computing several eigenpairs of Hermitian problems by conjugate gradient iterations
Ovtchinnikov, E.E. [Harrow School of Computer Science, University of Westminster, Watford Road, Northwick Park, London HA1 3TP (United Kingdom)], E-mail: e_ovtchinnikov@hotmail.com
2008-11-20T23:59:59.000Z
The paper is concerned with algorithms for computing several extreme eigenpairs of Hermitian problems based on the conjugate gradient method. We analyse computational strategies employed by various algorithms of this kind reported in the literature and identify their limitations. Our criticism is illustrated by numerical tests on a set of problems from electronic structure calculations and acoustics.
Original article Ruminal phosphorus availability from several feedstuffs
Paris-Sud XI, Université de
Original article Ruminal phosphorus availability from several feedstuffs measured by the nylon bag -- The present study was aimed at determining rumen phosphorus availability of some feed- stuffs assessed meals, rapeseed meals and sunflower meals). Rumen phosphorus avail- ability was not uniform amongst
Physics 137, Section 1, Fall Semester Severe and Hazardous Weather
Hart, Gus
Physics 137, Section 1, Fall Semester Severe and Hazardous Weather OBSERVATION PROJECTS During project or present one TV-type weather forecast. A list of a few possible observational projects is here of the project, information in the report might include times, dates and places of observations; weather
RESEARCH Open Access Are clinical trials dealing with severe infection
Paris-Sud XI, Université de
efforts have been pro- vided to improve treatment and global management of patients suffering from severe this conference, a number of major studies have been pub- lished that substantially modified the management Department of Emergency Medicine, Centre Hospitalier Princesse Grace, MC-98012, Principalty of Monaco Full
Revision to Physical Review B Maximum superheating and undercooling: systematics, molecular
Stewart, Sarah T.
superheating is particularly challenging due to a paucity in experimental data. Shock-state sound-speed an undercooled liquid) depends on a dimensionless nucle- ation barrier parameter and the heating (or cooling) rate Q. depends on the material: 163 sl/(3kTmH2 m) where sl is the solid-liquid interfacial energy
in experimental data. Shock-state sound-speed and temperature measurements on metals, alkali halides in a superheated solid or an undercooled liquid depends on a dimensionless nucleation barrier parameter and the heating or cooling rate Q. depends on the material: 16 sl 3 /(3kTm Hm 2 ) where sl is the solid-liquid
Upscaling Calcite Growth Rates From the Mesoscale to the Macroscale
Bracco, Jacquelyn N [ORNL; Stack, Andrew G [ORNL; Steefel, Carl I [Lawrence Berkeley National Laboratory (LBNL)
2013-01-01T23:59:59.000Z
Quantitative prediction of mineral reaction rates in the subsurface remains a daunting task partly because a key parameter for macroscopic models, the reactive site density, is poorly constrained. Here we report atomic force microscopy (AFM) measurements on the calcite surface of monomolecular step densities, treated as equivalent to the reactive site density, as a function of aqueous calcium-to-carbonate ratio and saturation index. Data for the obtuse step orientation are combined with existing step velocity measurements to generate a model that predicts overall macroscopic calcite growth rates. The model is quantitatively consistent with several published macroscopic rates under a range of alkaline solution conditions, particularly for two of the most comprehensive data sets without the need for additional fit parameters. The model reproduces peak growth rates and its functional form is simple enough to be incorporated into reactive transport or other macroscopic models designed for predictions in porous media. However, it currently cannot model equilibrium, pH effects, and may overestimate rates at high aqueous calcium-to-carbonate ratios. The discrepancies in rates at high calcium-to-carbonate ratios may be due to differences in pre-treatment, such as exposing the seed material to SI 1.0 to generate/develop growth hillocks, or other factors.
DIAGNOSIS OF CONDITIONAL MAXIMUM TORNADO DAMAGE PROBABILITIESP2.20 Bryan T. Smith1
. Thompson1 , Harold E. Brooks2 , Andrew R. Dean1 , and Kimberly L. Elmore2 1 NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma 2 NOAA/National Severe Storms Laboratory, Norman, Oklahoma 1. Introduction. Smith, NOAA/NWS/NCEP/Storm Prediction Center, 120 David L. Boren Blvd., Suite 2300, Norman, OK 73072
Numerical Estimation of Frictional Torques with Rate and State Friction
Arun K. Singh; T. N. Singh
2015-01-20T23:59:59.000Z
In this paper, numerical estimation of frictional torques is carried out of a rotary elastic disc on a hard and rough surface under different rotating conditions. A one dimensional spring- mass rotary system is numerically solved under the quasistatic condition with the rate and state dependent friction model. It is established that torque of frictional strength as well as torque of steady dynamic stress increases with radius and found to be maximum at the periphery of the disc. Torque corresponding to frictional strength estimated using the analytical solution matches closely with the simulation only in the case of high stiffness of the connecting spring. In steady relaxation simulation, a steadily rotating disc is suddenly stopped and relaxational angular velocity and corresponding frictional torque decreases with both steady angular velocity and stiffness of the connecting spring in the velocity strengthening regime. In velocity weakening regime, in contrast, torque of relaxation stress deceases but relaxation velocity increases. The reason for the contradiction is explained.
High resolution, high rate x-ray spectrometer
Goulding, F.S.; Landis, D.A.
1983-07-14T23:59:59.000Z
It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.
Explicit Solution of Worst-Case Secrecy Rate for MISO Wiretap Channels with Spherical Uncertainty
Li, Jiangyuan
2011-01-01T23:59:59.000Z
A multiple-input single-output (MISO) wiretap channel model is considered, that includes a multi-antenna transmitter, a single-antenna legitimate receiver and a single-antenna eavesdropper. For the scenario in which spherical uncertainty for both the legitimate and the eavesdropper channels is included, the problem of finding the optimal input covariance that maximizes the worst-case secrecy rate subject to a power constraint, is considered, and an explicit expression for the maximum worst-case secrecy rate is provided.
Siefken, Larry James
1999-02-01T23:59:59.000Z
Preliminary designs are described for models of hydrogen and oxygen uptake in fuel rod cladding during severe accidents. Calculation of the uptake involves the modeling of seven processes: (1) diffusion of oxygen from the bulk gas into the boundary layer at the external cladding surface, (2) diffusion from the boundary layer into the oxide layer, (3) diffusion from the inner surface of the oxide layer into the metallic part of the cladding, (4) uptake of hydrogen in the event that the clad-ding oxide layer is dissolved in a steam-starved region, (5) embrittlement of cladding due to hydrogen uptake, (6) cracking of cladding during quenching due to its embrittlement and (7) release of hydrogen from the cladding after cracking of the cladding. An integral diffusion method is described for calculating the diffusion processes in the cladding. Experimental results are presented that show a rapid uptake of hydrogen in the event of dissolution of the oxide layer and a rapid release of hydrogen in the event of cracking of the oxide layer. These experimental results are used as a basis for calculating the rate of hydrogen uptake and the rate of hydrogen release. The uptake of hydrogen is limited to the equilibrium solubility calculated by applying Sievert's law. The uptake of hydrogen is an exothermic reaction that accelerates the heatup of a fuel rod. An embrittlement criteria is described that accounts for hydrogen and oxygen concentration and the extent of oxidation. A design is described for implementing the models for hydrogen and oxygen uptake and cladding embrittlement into the programming framework of the SCDAP/RELAP5 code. A test matrix is described for assessing the impact of the proposed models on the calculated behavior of fuel rods in severe accident conditions. This report is a revision and reissue of the report entitled; "Preliminary Design Report for Modeling of Hydrogen Uptake in Fuel Rod Cladding During Severe Accidents."
ENHANCED SEVERE TRANSIENT ANALYSIS FOR PREVENTION TECHNICAL PROGRAM PLAN
Gougar, Hans [Idaho National Laboratory
2014-09-01T23:59:59.000Z
This document outlines the development of a high fidelity, best estimate nuclear power plant severe transient simulation capability that will complement or enhance the integral system codes historically used for licensing and analysis of severe accidents. As with other tools in the Risk Informed Safety Margin Characterization (RISMC) Toolkit, the ultimate user of Enhanced Severe Transient Analysis and Prevention (ESTAP) capability is the plant decision-maker; the deliverable to that customer is a modern, simulation-based safety analysis capability, applicable to a much broader class of safety issues than is traditional Light Water Reactor (LWR) licensing analysis. Currently, the RISMC pathway’s major emphasis is placed on developing RELAP-7, a next-generation safety analysis code, and on showing how to use RELAP-7 to analyze margin from a modern point of view: that is, by characterizing margin in terms of the probabilistic spectra of the “loads” applied to systems, structures, and components (SSCs), and the “capacity” of those SSCs to resist those loads without failing. The first objective of the ESTAP task, and the focus of one task of this effort, is to augment RELAP-7 analyses with user-selected multi-dimensional, multi-phase models of specific plant components to simulate complex phenomena that may lead to, or exacerbate, severe transients and core damage. Such phenomena include: coolant crossflow between PWR assemblies during a severe reactivity transient, stratified single or two-phase coolant flow in primary coolant piping, inhomogeneous mixing of emergency coolant water or boric acid with hot primary coolant, and water hammer. These are well-documented phenomena associated with plant transients but that are generally not captured in system codes. They are, however, generally limited to specific components, structures, and operating conditions. The second ESTAP task is to similarly augment a severe (post-core damage) accident integral analyses code with high fidelity simulations that would allow investigation of multi-dimensional, multi-phase containment phenomena that are only treated approximately in established codes.
Management of Severe Hemoptysis from Pulmonary Aspergilloma Using Endovascular Embolization
Corr, Peter [University of KwaZulu Natal, Nelson Mandela Medical School, Department of Radiology (South Africa)], E-mail: peter.corr@uaeu.ac.ae
2006-10-15T23:59:59.000Z
Purpose. To determine the effectiveness of endovascular embolization as a temporizing measure in the management of severe hemoptysis caused by intracavitary pulmonary aspergilloma. Methods. Patients presenting with hemoptysis, estimated to be more than 300 ml in the preceding 24 hr, in whom a radiological diagnosis of pulmonary aspergilloma was made on chest radiographs and/or computed tomography of the chest were subjected to bronchial and systemic arteriography and embolization using triacryl microspheres. Results. Twelve patients with upper lobe intracavitary aspergillomas were managed with embolization. In 11 patients hemoptysis stopped within 24 hr and with no recurrence over the next 4 weeks. In 1 patient hemoptysis persisted and an upper lobe lobectomy was performed. Conclusion. Embolization of bronchial and systemic arteries is an effective method for treating acute severe hemoptysis from intracavitary aspergillomas, allowing the patient time to recover for definitive surgical management.
Theoretical mass loss rates of cool main-sequence stars
V. Holzwarth; M. Jardine
2006-11-14T23:59:59.000Z
We develop a model for the wind properties of cool main-sequence stars, which comprises their wind ram pressures, mass fluxes, and terminal wind velocities. The wind properties are determined through a polytropic magnetised wind model, assuming power laws for the dependence of the thermal and magnetic wind parameters on the stellar rotation rate. We use empirical data to constrain theoretical wind scenarios, which are characterised by different rates of increase of the wind temperature, wind density, and magnetic field strength. Scenarios based on moderate rates of increase yield wind ram pressures in agreement with most empirical constraints, but cannot account for some moderately rotating targets, whose high apparent mass loss rates are inconsistent with observed coronal X-ray and magnetic properties. For fast magnetic rotators, the magneto-centrifugal driving of the outflow can produce terminal wind velocities far in excess of the surface escape velocity. Disregarding this aspect in the analyses of wind ram pressures leads to overestimations of stellar mass loss rates. The predicted mass loss rates of cool main-sequence stars do not exceed about ten times the solar value. Our results are in contrast with previous investigations, which found a strong increase of the stellar mass loss rates with the coronal X-ray flux. Owing to the weaker dependence, we expect the impact of stellar winds on planetary atmospheres to be less severe and the detectability of magnetospheric radio emission to be lower then previously suggested. Considering the rotational evolution of a one solar-mass star, the mass loss rates and the wind ram pressures are highest during the pre-main sequence phase.
Proceedings of the 1992 EPRI heat rate improvement conference
Henry, R.E. (Sargent and Lundy, Chicago, IL (United States))
1993-03-01T23:59:59.000Z
Diverse but compelling forces such as increasing fuel prices, greater power demands, growing competition, and ever more aggressive regulatory incentives are causing utilities to place additional focus on power plant heat rate. The 1992 heat rate improvement conference was a gathering of utility industry experts to share knowledge and concerns on such key issues as on-line measurement of stack gas mass flow rate-increasingly important because of the regulations of the Clean Air Act of 1990. These proceedings present the latest developments by EPRI and the utility industry to improve heat rate. Representatives of utilities, architect/engineering firms, research firms, and manufacturers presented 71 papers, and a panel discussion by the ASME performance test code committee on PTC 46 provided a forum on the overall plant performance test code. These proceedings report on a number of heat rate improvement programs, both in development and in place, including EPRI's Plant Monitoring Workstation (PMW), the State-of-the-Art Power Plant (SOAPP) conceptual design tool, and several developments in boiler performance monitoring, including an on-line system at PEPCO's Morgantown unit 2. Other conference papers describe advances in heat rate improvement through (1) computer software tools modeling boiler cleanliness, heat balance, duct system dynamics, heat rate root cause diagnosis, and conceptual plant design; (2) new instruments and testing systems in the areas of performance testing, heat rate monitoring, circulating water flow measurement, and low-pressure turbine efficiency measurement; and (3) auxiliary equipment improvements such as condensing heat exchangers, macrobiofouling control, condenser in-leakage and air binding control, air heater monitoring, and feedwater heater level control. Individual papers are indexed separately.
a poorer food conversion efficiency and survival rate. The lower survival rate (87~) of this
rate. 3. Survival and growth rates and food efficien- cies were excellent for trout reared in brackish
Estimation of Several Political Action Effects of Energy Prices
Whitford, Andrew B
2015-01-01T23:59:59.000Z
One important effect of price shocks in the United States has been increased political attention paid to the structure and performance of oil and natural gas markets, along with some governmental support for energy conservation. This paper describes how price changes helped lead the emergence of a political agenda accompanied by several interventions, as revealed through Granger causality tests on change in the legislative agenda.
Quantitative studies of severe fuel damage using delayed neutron data
Bauer, T.H.; Braid, T.H. (Argonne National Lab., IL (USA)); Schleisiek, K. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.))
1990-01-01T23:59:59.000Z
A technique to quantify fuel damage in an LMR through analysis of delayed neutron data is presented, which is suitable for analysis of both small-scale in-pile experiments and full-scale plants. Validating analyses are described for five in-pile severe accident simulations performed within the SLSF and Mol 7C test programs. Comparison is made of measured and calculated amounts of fuel damage. 8 refs., 5 figs., 2 tabs.
Quantitative studies of severe fuel damage using delayed neutron data
Bauer, T.H.; Braiel, T.H. (Argonne National Lab., IL (United States)); Schleisiek, K. (Kernforschungszentrum Karlsruhe GmbH (Germany))
1992-09-01T23:59:59.000Z
In this paper, a technique is presented to quantify fuel damage in a liquid-metal reactor through fast-running computer analysis of delayed neutron data, suitable for analysis of both small-scale in-pile experiments and full-scale plants. Validating analyses are described for five in-pile severe accident simulations performed within the Sodium Loop Safety Facility and Mol-7C test programs. Comparison is made of measured and calculated amounts of fuel damage.
Insecticidal studies on several predaceous insects associated with cotton
Burke, Horace Reagan
1959-01-01T23:59:59.000Z
Petri-dish technique....................................59 Tests on Adults of Collops balteatus........................ 59 Tests on adults of Scymnus cinctus.......................... 60 Tests on Larvae of Scymnus cinctus.......................... 6l... of several insecticides tested against Hippodamia convergens G.-M. adults by the petri-dish technique........................ 70 9* Summary of insecticide mixture toxicity tests conducted on Hippodflmia convergens G.-M. adults by the petri-dish technique...
Methyl viologen radical reactions with several oxidizing agents. [Gamma Radiation
Levey, G.; Ebbesen, T.W.
1983-01-01T23:59:59.000Z
The rates of oxidation of the methyl viologen radical by peroxodisulfate and hydrogen peroxide has been investigated. The methyl viologen free radical was produced by pulse radiolysis. The reaction of the peroxodisulfate radical with the methyl viologen radical was first order in both species, and the reaction rate constant is reported. A el-radiation study revealed a chain decomposition of the peroxodisulfate radical involving the methyl viologen radical when methanol, ethanol, or 2-propanol was present. Loss of the methyl viologen radical was then no longer observed to be a simple first-order reaction. The reaction of hydrogen peroxide with the methyl viologen radical was very slow in the presence of 1 M methanol. A much faster reaction in the absence of methanol was interpreted to be a reaction of the methyl viologen radical with the peroxy radicals. Hydrogen peroxide, in contrast to the chain decomposition of peroxodisulfate radicals, does not participate in a chain reaction involving the methyl viologen radical and methanol. Rate constants for the reaction of methyl viologen radical with dichromate radical, iodate radical, and ferricyanide radical are reported.
TD Rahmlaw, Jr; JE Lazo-Wasem; EJ Gratrix; JJ Azarkevich; EJ Brown; DM DePoy; DR Eno; PM Fourspring; JR Parrington; RG Mahorter; B Wernsman
2004-08-04T23:59:59.000Z
Energy conversion efficiencies of better than 23% have been demonstrated for small scale tests of a few thermophotovoltaic (TPV) cells using front surface, tandem filters [1,2]. The engineering challenge is to build this level of efficiency into arrays of cells that provide useful levels of energy. Variations in cell and filter performance will degrade TPV array performance. Repeated fabrication runs of several filters each provide an initial quantification of the fabrication variation for front surface, tandem filters for TPV spectral control. For three performance statistics, within-run variation was measured to be 0.7-1.4 percent, and run-to-run variation was measured to be 0.5-3.2 percent. Fabrication runs using a mask have been shown to reduce variation across interference filters from as high 8-10 percent to less than 1.5 percent. Finally, several system design and assembly approaches are described to further reduce variation.
T Rahmlow, Jr; J Lazo-Wasem, E Gratrix; J Azarkevich; E Brown; D DePoy; D Eno; P Fourspring; J Parrington; R Mahorter; B Wernsman
2004-10-14T23:59:59.000Z
Energy conversion efficiencies of better than 23% have been demonstrated for small scale tests of a few thermophotovoltaic (TPV) cells using front surface, tandem filters [1, 2]. The engineering challenge is to build this level of efficiency into arrays of cells that provide useful levels of energy. Variations in cell and filter performance will degrade TPV array performance. Repeated fabrication runs of several filters each provide an initial quantification of the fabrication variation for front surface, tandem filters for TPV spectral control. For three performance statistics, within-run variation was measured to be 0.7-1.4 percent, and run-to-run variation was measured to be 0.5-3.2 percent. Fabrication runs using a mask have been shown to reduce variation across interference filters from as high as 8-10 percent to less than 1.5 percent. Finally, several system design and assembly approaches are described to further reduce variation.
Structure of Turbulence in Katabatic Flows below and above the Wind-Speed Maximum
Grachev, Andrey A; Di Sabatino, Silvana; Fernando, Harindra J S; Pardyjak, Eric R; Fairall, Christopher W
2015-01-01T23:59:59.000Z
Measurements of small-scale turbulence made over the complex-terrain atmospheric boundary layer during the MATERHORN Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels at four towers deployed along the East lower slope (2-4 deg) of Granite Mountain. The multi-level observations made during a 30-day long MATERHORN-Fall field campaign in September-October 2012 allowed studying of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence and their variations in katabatic winds. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along the slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed...
Thermal modification of bottomonium spectra from QCD sum rules with the maximum entropy method
Kei Suzuki; Philipp Gubler; Kenji Morita; Makoto Oka
2012-12-03T23:59:59.000Z
The bottomonium spectral functions at finite temperature are analyzed by employing QCD sum rules with the maximum entropy method. This approach enables us to extract the spectral functions without any phenomenological parametrization, and thus to visualize deformation of the spectral functions due to temperature effects estimated from quenched lattice QCD data. As a result, it is found that \\Upsilon and \\eta_b survive in hot matter of temperature up to at least 2.3T_c and 2.1T_c, respectively, while \\chi_{b0} and \\chi_{b1} will disappear at T<2.5T_c. Furthermore, a detailed analysis of the vector channel shows that the spectral function in the region of the lowest peak at T=0 contains contributions from the excited states, \\Upsilon(2S) and \\Upsilon(3S), as well as the ground states \\Upsilon (1S). Our results at finite T are consistent with the picture that the excited states of bottomonia dissociate at lower temperature than that of the ground state. Assuming this picture, we find that \\Upsilon(2S) and \\Upsilon(3S) disappear at T=1.5-2.0T_c.
Maximum-entropy calculation of end-to-end distance distribution of force stretching chains
Luru Dai; Fei Liu; Zhong-can Ou-Yang
2002-12-12T23:59:59.000Z
Using the maximum-entropy method, we calculate the end-to-end distance distribution of the force stretched chain from the moments of the distribution, which can be obtained from the extension-force curves recorded in single-molecule experiments. If one knows force expansion of the extension through the $(n-1)$th power of force, it is enough information to calculate the $n$ moments of the distribution. We examine the method with three force stretching chain models, Gaussian chain, free-joined chain and excluded-volume chain on two-dimension lattice. The method reconstructs all distributions precisely. We also apply the method to force stretching complex chain molecules: the hairpin and secondary structure conformations. We find that the distributions of homogeneous chains of two conformations are very different: there are two independent peaks in hairpin distribution; while only one peak is observed in the distribution of secondary structure conformations. Our discussion also shows that the end-to-end distance distribution may discover more critical physical information than the simpler extension-force curves can give.
Liu, Jian; Miller, William H.
2008-08-01T23:59:59.000Z
The maximum entropy analytic continuation (MEAC) method is used to extend the range of accuracy of the linearized semiclassical initial value representation (LSC-IVR)/classical Wigner approximation for real time correlation functions. The LSC-IVR provides a very effective 'prior' for the MEAC procedure since it is very good for short times, exact for all time and temperature for harmonic potentials (even for correlation functions of nonlinear operators), and becomes exact in the classical high temperature limit. This combined MEAC+LSC/IVR approach is applied here to two highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid para-hydrogen at two thermal state points (25K and 14K under nearly zero external pressure). The former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR, for correlation functions of both linear and nonlinear operators, and especially at low temperature where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is seen already to be excellent at T = 25K, but the MEAC procedure produces a significant correction at the lower temperature (T = 14K). Comparisons are also made to how the MEAC procedure is able to provide corrections for other trajectory-based dynamical approximations when used as priors.
Combined Retrieval, Microphysical Retrievals and Heating Rates
Feng, Zhe
2013-02-22T23:59:59.000Z
Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.
An analysis of international grain freight rates
Jonnala, Sneha Latha
1999-01-01T23:59:59.000Z
of the dependent variable was included in the model as an explanatory variable. The estimated econometric model was designed to explain ocean freight rates for grain. Results indicate rates increase at a decreasing rate with distance and rates decrease at a...
7, 29612989, 2007 Predicting arene rate
Boyer, Edmond
software or computing power. Measured gas-phase rate coefficients for the reaction of aromatic hydrocarbons
Composite Fringe Benefit Rates Nancy R. Lewis
Wood, Marcelo A.
January 1, 2015 Retirement Eligible FY 2014-15 Rate FY 2015-16 Rate FY 2016-17 Rate B Healthcomp Faculty of Research #12;New Rates Â· Provided by the Budget Office for use when planning proposal budgets for contract and grants Â· Effective for use in proposals submitted to sponsors January 1, 2015 and thereafter Â· Title
Combined Retrieval, Microphysical Retrievals and Heating Rates
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Feng, Zhe
Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.
Property:OpenEI/UtilityRate/EnergyRateStructure/Tier6Rate | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation Rate Jump to: navigation,
Minimax Rates for Homology Inference
Balakrishnan, Sivaraman; Sheehy, Don; Singh, Aarti; Wasserman, Larry
2011-01-01T23:59:59.000Z
Often, high dimensional data lie close to a low-dimensional submanifold and it is of interest to understand the geometry of these submanifolds. The homology groups of a manifold are important topological invariants that provide an algebraic summary of the manifold. These groups contain rich topological information, for instance, about the connected components, holes, tunnels and sometimes the dimension of the manifold. In this paper, we consider the statistical problem of estimating the homology of a manifold from noisy samples under several different noise models. We derive upper and lower bounds on the minimax risk for this problem. Our upper bounds are based on estimators which are constructed from a union of balls of appropriate radius around carefully selected points. In each case we establish complementary lower bounds using Le Cam's lemma.
Spin Exchange Rates in Electron-Hydrogen Collisions
Steven Furlanetto; Michael Furlanetto
2006-08-02T23:59:59.000Z
The spin temperature of neutral hydrogen, which determines the 21 cm optical depth and brightness temperature, is set by the competition between radiative and collisional processes. In the high-redshift intergalactic medium, the dominant collisions are typically those between hydrogen atoms. However, collisions with electrons couple much more efficiently to the spin state of hydrogen than do collisions with other hydrogen atoms and thus become important once the ionized fraction exceeds ~1%. Here we compute the rate at which electron-hydrogen collisions change the hydrogen spin. Previous calculations included only S-wave scattering and ignored resonances near the n=2 threshold. We provide accurate results, including all partial wave terms through the F-wave, for the de-excitation rate at temperatures T_K =2 hydrogen levels becomes significant. Accurate electron-hydrogen collision rates at higher temperatures are not necessary, because collisional excitation in this regime inevitably produces Lyman-alpha photons, which in turn dominate spin exchange when T_K > 6200 K even in the absence of radiative sources. Our rates differ from previous calculations by several percent over the temperature range of interest. We also consider some simple astrophysical examples where our spin de-excitation rates are useful.
High frame rate CCD camera with fast optical shutter
Yates, G.J.; McDonald, T.E. Jr. [Los Alamos National Lab., NM (United States); Turko, B.T. [Lawrence Berkeley National Lab., CA (United States)
1998-09-01T23:59:59.000Z
A high frame rate CCD camera coupled with a fast optical shutter has been designed for high repetition rate imaging applications. The design uses state-of-the-art microchannel plate image intensifier (MCPII) technology fostered/developed by Los Alamos National Laboratory to support nuclear, military, and medical research requiring high-speed imagery. Key design features include asynchronous resetting of the camera to acquire random transient images, patented real-time analog signal processing with 10-bit digitization at 40--75 MHz pixel rates, synchronized shutter exposures as short as 200pS, sustained continuous readout of 512 x 512 pixels per frame at 1--5Hz rates via parallel multiport (16-port CCD) data transfer. Salient characterization/performance test data for the prototype camera are presented, temporally and spatially resolved images obtained from range-gated LADAR field testing are included, an alternative system configuration using several cameras sequenced to deliver discrete numbers of consecutive frames at effective burst rates up to 5GHz (accomplished by time-phasing of consecutive MCPII shutter gates without overlap) is discussed. Potential applications including dynamic radiography and optical correlation will be presented.
The Wisconsin Home Energy Rating System: Final report
Ebisch, L.
1986-09-30T23:59:59.000Z
The Wisconsin Home Energy Rating System (HERS) has been developed by the Department of Industry, Labor, and Human Relations under contract to the Department of Administration, Division of State Energy. The contract is funded by the US Department of Energy. The contract calls for development of a home energy rating system for 1- and 2-family dwellings, or adaptation of an already existing one, for one by the State of Wisconsin. The rating system was to be developed in the form of a simple rating tool which could be distributed for testing through municipal building inspectors. At the time it was distributed, results were to be returned and analyzed for accuracy and ease of use. Computer modeling was to be used to verify accuracy. An Ad Hoc Committee of people involved in the home market, in utilities, and in state government energy conservation agencies was established to advise DILHR and DSE staff on development of the rating system. (See Appendix G for a list of the Ad Hoc Committee members). The Ad Hoc Committee had a number of concerns about how the HERS might affect the real estate market, and whether it was worth doing. Their input helped set the direction the HERS was to aim at, and their advice, from several different angles of the home market, was very helpful to staff. This report will give some background on the process of development of the HERS and the Ad Hoc Committee, and then will give details of the technical development.
Human factors review for Severe Accident Sequence Analysis (SASA)
Krois, P.A.; Haas, P.M.; Manning, J.J.; Bovell, C.R.
1984-01-01T23:59:59.000Z
The paper will discuss work being conducted during this human factors review including: (1) support of the Severe Accident Sequence Analysis (SASA) Program based on an assessment of operator actions, and (2) development of a descriptive model of operator severe accident management. Research by SASA analysts on the Browns Ferry Unit One (BF1) anticipated transient without scram (ATWS) was supported through a concurrent assessment of operator performance to demonstrate contributions to SASA analyses from human factors data and methods. A descriptive model was developed called the Function Oriented Accident Management (FOAM) model, which serves as a structure for bridging human factors, operations, and engineering expertise and which is useful for identifying needs/deficiencies in the area of accident management. The assessment of human factors issues related to ATWS required extensive coordination with SASA analysts. The analysis was consolidated primarily to six operator actions identified in the Emergency Procedure Guidelines (EPGs) as being the most critical to the accident sequence. These actions were assessed through simulator exercises, qualitative reviews, and quantitative human reliability analyses. The FOAM descriptive model assumes as a starting point that multiple operator/system failures exceed the scope of procedures and necessitates a knowledge-based emergency response by the operators. The FOAM model provides a functionally-oriented structure for assembling human factors, operations, and engineering data and expertise into operator guidance for unconventional emergency responses to mitigate severe accident progression and avoid/minimize core degradation. Operators must also respond to potential radiological release beyond plant protective barriers. Research needs in accident management and potential uses of the FOAM model are described. 11 references, 1 figure.
Identification of Severe Multiple Contingencies in Electric PowerNetworks
Donde, Vaibhav; Lopez, Vanessa; Lesieutre, Bernard; Pinar, Ali; Yang,Chao; Meza, Juan
2005-07-01T23:59:59.000Z
In this paper we propose a two-stage screening and analysis process for identifying multiple contingencies that may result in very severe disturbances and blackouts. In a screening stage we form an optimization problem to find the minimum change in the network to move the power flow feasibility boundary to the present operating point and that will cause the system to separate with a user-specified power imbalance. The lines identified by the optimization program are used in a subsequent analysis stage to find combinations that may lead to a blackout. This approach is applied to a 30-bus system with encouraging results.
Mitigation of Severe Accident Consequences Using Inherent Safety Principles
R. A. Wigeland; J. E. Cahalan
2009-12-01T23:59:59.000Z
Sodium-cooled fast reactors are designed to have a high level of safety. Events of high probability of occurrence are typically handled without consequence through reliable engineering systems and good design practices. For accidents of lower probability, the initiating events are characterized by larger and more numerous challenges to the reactor system, such as failure of one or more major engineered systems and can also include a failure to scram the reactor in response. As the initiating conditions become more severe, they have the potential for creating serious consequences of potential safety significance, including fuel melting, fuel pin disruption and recriticality. If the progression of such accidents is not mitigated by design features of the reactor, energetic events and dispersal of radioactive materials may result. For severe accidents, there are several approaches that can be used to mitigate the consequences of such severe accident initiators, which typically include fuel pin failures and core disruption. One approach is to increase the reliability of the reactor protection system so that the probability of an ATWS event is reduced to less than 1 x 10-6 per reactor year, where larger accident consequences are allowed, meeting the U.S. NRC goal of relegating such accident consequences as core disruption to these extremely low probabilities. The main difficulty with this approach is to convincingly test and guarantee such increased reliability. Another approach is to increase the redundancy of the reactor scram system, which can also reduce the probability of an ATWS event to a frequency of less than 1 x 10-6 per reactor year or lower. The issues with this approach are more related to reactor core design, with the need for a greater number of control rod positions in the reactor core and the associated increase in complexity of the reactor protection system. A third approach is to use the inherent reactivity feedback that occurs in a fast reactor to automatically respond to the change in reactor conditions and to result in a benign response to these events. This approach has the advantage of being relatively simple to implement, and does not face the issue of reliability since only fundamental physical phenomena are used in a passive manner, not active engineered systems. However, the challenge is to present a convincing case that such passive means can be implemented and used. The purpose of this paper is to describe this third approach in detail, the technical basis and experimental validation for the approach, and the resulting reactor performance that can be achieved for ATWS events.
Using the Comoving Maximum of the Galaxy Power Spectrum to Measure Cosmological Curvature
Tom Broadhurst; Andrew H. Jaffe
1999-04-26T23:59:59.000Z
The large-scale maximum at k~0.05 identified in the power-spectrum of galaxy fluctuations provides a co-moving scale for measuring cosmological curvature. In shallow 3D surveys the peak is broad, but appears to be well resolved in 1D, at ~130 Mpc (k=0.048), comprising evenly spaced peaks and troughs. Surprisingly similar behaviour is evident at z=3 in the distribution of Lyman-break galaxies, for which we find a 5 sigma excess of pairs separated by Delta z=0.22pm0.02, equivalent to 85Mpc for Omega=1, increasing to 170 Mpc for Omega=0, with a number density contrast of 30% averaged over 5 independent fields. The combination, 3.2\\Omega_m -\\Omega_{\\Lambda}=0.7, matches the local scale of 130 Mpc, i.e. Omega=0.2\\pm0.1 or Omega_{m}=0.4\\pm0.1 for the matter-dominated and flat models respectively, with an uncertainty given by the width of the excess correlation. The consistency here of the flat model with SNIa based claims is encouraging, but overshadowed by the high degree of coherence observed in 1D compared with conventional Gaussian models of structure formation. The appearance of this scale at high redshift and its local prominence in the distribution of Abell clusters lends support to claims that the high-z `spikes' represent young clusters. Finally we show that a spike in the primordial power spectrum of delta\\rho/\\rho=0.3 at k=0.05 has little effect on the CMB, except to exaggerate the first Doppler peak in flat matter-dominated models, consistent with recent observations. \\\\effect on the CMB, except to exaggerate the first Doppler peak in flat matter-dominated models, consistent with recent observations.
Chao, R.M.; Ko, S.H.; Lin, I.H. [Department of Systems and Naval Mechatronics Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China); Pai, F.S. [Department of Electronic Engineering, National University of Tainan (China); Chang, C.C. [Department of Environment and Energy, National University of Tainan (China)
2009-12-15T23:59:59.000Z
The historically high cost of crude oil price is stimulating research into solar (green) energy as an alternative energy source. In general, applications with large solar energy output require a maximum power point tracking (MPPT) algorithm to optimize the power generated by the photovoltaic effect. This work aims to provide a stand-alone solution for solar energy applications by integrating a DC/DC buck converter to a newly developed quadratic MPPT algorithm along with its appropriate software and hardware. The quadratic MPPT method utilizes three previously used duty cycles with their corresponding power outputs. It approaches the maximum value by using a second order polynomial formula, which converges faster than the existing MPPT algorithm. The hardware implementation takes advantage of the real-time controller system from National Instruments, USA. Experimental results have shown that the proposed solar mechatronics system can correctly and effectively track the maximum power point without any difficulties. (author)
Lombardo, N.J.; Marseille, T.J.; White, M.D.; Lowery, P.S.
1990-06-01T23:59:59.000Z
TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic in form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000{degree}F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion ( bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled.