Powered by Deep Web Technologies
Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Blind Joint Maximum Likelihood Channel Estimation and Data Detection for Single-Input Multiple-Output Systems  

E-Print Network [OSTI]

Blind Joint Maximum Likelihood Channel Estimation and Data Detection for Single-Input Multiple of Southampton, Southampton SO17 1BJ, U.K. Abstract--A blind adaptive scheme is proposed for joint maximum. A simulation example is used to demon- strate the effectiveness of this joint ML optimization scheme for blind

Chen, Sheng

2

Abstract-This paper proposes a neural network based approach to estimating the maximum possible output power of a solar photovoltaic  

E-Print Network [OSTI]

on a shaded solar panel at different hours of a day for several days. After training the neural network, its, building-integrated photovoltaic panels, and portable solar tents, it is common for a solar PV to become output power of a solar photovoltaic array under the non-uniform shadow conditions at a given geographic

Lehman, Brad

3

Maximum output at minimum cost  

E-Print Network [OSTI]

University) + FFA-W3 Material Preimpregnated epoxy glass fiber + carbon fiber Total blade weight 5,800 kg.0 MW wind turbine generator uses the "total lightning protection" system, in accordance with standard working life of the turbine. Gamesa WindNet® The new generation SCADA System (a wind farm control system

Firestone, Jeremy

4

Enhanced performance CCD output amplifier  

DOE Patents [OSTI]

A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

Dunham, Mark E. (Los Alamos, NM); Morley, David W. (Santa Fe, NM)

1996-01-01T23:59:59.000Z

5

aid maximum output: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at a given geographic location. Taking the solar irradiation levels, the ambient temperature, and the Sun's position angles as inputs, a multilayer feed-forward neural network...

6

Combining frequency and time domain approaches to systems with multiple spike train input and output  

E-Print Network [OSTI]

between neuronal spike trains. Prog Biophys Mol Biol Vapnikto systems with multiple spike train input and output D. R.Keywords Multiple spike trains · Neural coding · Maximum

Brillinger, D. R.; Lindsay, K. A.; Rosenberg, J. R.

2009-01-01T23:59:59.000Z

7

Most efficient quantum thermoelectric at finite power output  

E-Print Network [OSTI]

Machines are only Carnot efficient if they are reversible, but then their power output is vanishingly small. Here we ask, what is the maximum efficiency of an irreversible device with finite power output? We use a nonlinear scattering theory to answer this question for thermoelectric quantum systems; heat engines or refrigerators consisting of nanostructures or molecules that exhibit a Peltier effect. We find that quantum mechanics places an upper bound on both power output, and on the efficiency at any finite power. The upper bound on efficiency equals Carnot efficiency at zero power output, but decays with increasing power output. It is intrinsically quantum (wavelength dependent), unlike Carnot efficiency. This maximum efficiency occurs when the system lets through all particles in a certain energy window, but none at other energies. A physical implementation of this is discussed, as is the suppression of efficiency by a phonon heat flow.

Robert S. Whitney

2014-03-13T23:59:59.000Z

8

Facets for the Maximum Common Induced Subgraph Problem ...  

E-Print Network [OSTI]

Springer-Verlag, 2003. [3] B. Falkenhainer, K. Forbus, and D. Gentner. The structure-mapping engine: algorithms and examples. Artificial Intelligence, 34:1–

2011-09-02T23:59:59.000Z

9

MELE: Maximum Entropy Leuven Estimators  

E-Print Network [OSTI]

of the Generalized Maximum Entropy Estimator of the Generaland Douglas Miller, Maximum Entropy Econometrics, Wiley andCalifornia Davis MELE: Maximum Entropy Leuven Estimators by

Paris, Quirino

2001-01-01T23:59:59.000Z

10

Maximum Entropy Correlated Equilibria  

E-Print Network [OSTI]

We study maximum entropy correlated equilibria in (multi-player)games and provide two gradient-based algorithms that are guaranteedto converge to such equilibria. Although we do not provideconvergence rates for these ...

Ortiz, Luis E.

2006-03-20T23:59:59.000Z

11

Maximum-Power-Point Tracking Method of Photovoltaic Using Only Single Current Sensor  

E-Print Network [OSTI]

» «Solar cell systems» Abstract This paper describes a novel strategy of maximum-power-point tracking point using only a single current sensor, i.e., a Hall-effect CT. Output power of the photovoltaic can-climbing method is employed to seek the maximum power point, using the output power obtained from only the current

Fujimoto, Hiroshi

12

Microwave generated electrodeless lamp for producing bright output  

SciTech Connect (OSTI)

A microwave generated electrodeless light source for producing a bright output comprising a lamp structure including a microwave chamber and a plasma medium-containing lamp envelope having a maximum dimension which is substantially less than a wavelength disposed therein. To provide the desired radiation output the interior of the chamber is coated with a UV-reflective material and the chamber has an opening for allowing UV radiation to exit, which is covered with a metallic mesh. The chamber is arranged to be near-resonant at a single wavelength, and the lamp envelope has a fill including mercury at an operating pressure of 1-2 atmospheres, while a power density of at least 250-300 (watts/cm/sup 3/) is coupled to the envelope to result in a relatively high deep UV output at a relatively high brightness.

Wood, Ch. H.; Ury, M. G.

1985-03-26T23:59:59.000Z

13

Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output  

E-Print Network [OSTI]

We investigate the nonlinear scattering theory for quantum systems with strong Seebeck and Peltier effects, and consider their use as heat-engines and refrigerators with finite power outputs. This article gives detailed derivations of the results summarized in Phys. Rev. Lett. 112, 130601 (2014). It shows how to use the scattering theory to find (i) the quantum thermoelectric with maximum possible power output, and (ii) the quantum thermoelectric with maximum efficiency at given power output. The latter corresponds to a minimal entropy production at that power output. These quantities are of quantum origin since they depend on system size over electronic wavelength, and so have no analogue in classical thermodynamics. The maximal efficiency coincides with Carnot efficiency at zero power output, but decreases with increasing power output. This gives a fundamental lower bound on entropy production, which means that reversibility (in the thermodynamic sense) is impossible for finite power output. The suppression of efficiency by (nonlinear) phonon and photon effects is addressed in detail; when these effects are strong, maximum efficiency coincides with maximum power. Finally, we show in particular limits (typically without magnetic fields) that relaxation within the quantum system does not allow the system to exceed the bounds derived for relaxation-free systems, however a general proof of this remains elusive.

Robert S. Whitney

2015-01-28T23:59:59.000Z

14

Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output  

E-Print Network [OSTI]

We investigate the nonlinear scattering theory for quantum systems with strong Seebeck and Peltier effects, and consider their use as heat-engines and refrigerators with finite power outputs. This article gives detailed derivations of the results summarized in Phys. Rev. Lett. 112, 130601 (2014). It shows how to use the scattering theory to find (i) the quantum thermoelectric with maximum possible power output, and (ii) the quantum thermoelectric with maximum efficiency at given power output. The latter corresponds to a minimal entropy production at that power output. These quantities are of quantum origin since they depend on system size over electronic wavelength, and so have no analogue in classical thermodynamics. The maximal efficiency coincides with Carnot efficiency at zero power output, but decreases with increasing power output. This gives a fundamental lower bound on entropy production, which means that reversibility (in the thermodynamic sense) is impossible for finite power output. The suppression of efficiency by (nonlinear) phonon and photon effects is addressed in detail; when these effects are strong, maximum efficiency coincides with maximum power. Finally, we show in particular limits (typically without magnetic fields) that relaxation within the quantum system does not allow the system to exceed the bounds derived for relaxation-free systems, however, a general proof of this remains elusive.

Robert S. Whitney

2015-03-16T23:59:59.000Z

15

Maximum of oil output of a treadle-powered peanut oil press  

E-Print Network [OSTI]

The manual processing of food products has become a substantial part of the daily routine of a typical household in the developing world. Consumption of oil is an essential part of an individual's diet and thus, the ...

Patel, Ravi M. (Ravi Mahendra)

2007-01-01T23:59:59.000Z

16

DUAL-OUTPUT HOLA FIRMWARE AND TESTS  

E-Print Network [OSTI]

another channel (thus, "dual-output" HOLA) · Another LDC+ROMB block was added to receive data from side S32PCI64 "SOLAR" mezzanine card: Provides access to S-LINK via PCI bus The first prototype of dual-outputDUAL-OUTPUT HOLA FIRMWARE AND TESTS Anton Kapliy Mel Shochet Fukun Tang Daping Weng #12;Summary

17

Single ion heat engine with maximum efficiency at maximum power  

E-Print Network [OSTI]

We propose an experimental scheme to realize a nano heat engine with a single ion. An Otto cycle may be implemented by confining the ion in a linear Paul trap with tapered geometry and coupling it to engineered laser reservoirs. The quantum efficiency at maximum power is analytically determined in various regimes. Moreover, Monte Carlo simulations of the engine are performed that demonstrate its feasibility and its ability to operate at maximum efficiency of 30% under realistic conditions.

Obinna Abah; Johannes Rossnagel; Georg Jacob; Sebastian Deffner; Ferdinand Schmidt-Kaler; Kilian Singer; Eric Lutz

2012-05-07T23:59:59.000Z

18

Bayesian Learning of unobservable output 1 Bayesian Learning of unobservable output  

E-Print Network [OSTI]

Bayesian Learning of unobservable output 1 Bayesian Learning of unobservable output aggregating the consistency of our method and illustrate its efficiency using simulations. Although up to our knowledge there are no similar algorithms for unobservable output, we compared in our simulations to supervised approaches

Provence Aix-Marseille I, Université de

19

A Basic Thermodynamic Derivation of the Maximum Overburden Pressure Generated in Frost Heave  

E-Print Network [OSTI]

can derive the maximum overburden pressure. A similar argument can also produce the maximum Heave Engine Frost heave is a common environmental process in which the freezing of water into ice can produce forces large enough to seriously damage roads and bridges [1]. Contrary to common belief, frost

Libbrecht, Kenneth G.

20

Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs  

E-Print Network [OSTI]

Anisotropic grid–adaptive strategies are presented for viscous flow simulations in which the accurate prediction of multiple aerodynamic outputs (such as the lift, drag, and moment coefficients) is required from a single ...

Venditti, David A.

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Estimating a mixed strategy employing maximum entropy  

E-Print Network [OSTI]

MIXED STRATEGY EMPLOYING MAXIMUM ENTROPY by Amos Golan LarryMixed Strategy Employing Maximum Entropy Amos Golan Larry S.Abstract Generalized maximum entropy may be used to estimate

Golan, Amos; Karp, Larry; Perloff, Jeffrey M.

1996-01-01T23:59:59.000Z

22

MaximumLetThrough.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImportsBG NorthMauro9 Maximum Let-Through

23

One of the most clearly established and widely known facts in locomotor physiology is that the maximum force exerted by  

E-Print Network [OSTI]

(musculoskeletal systems and man-made machines such as piston engines, jets, and electric motors that use rotary) that simulated in vivo maximum musculoskeletal performance was proportional to muscle mass0.83, a significant increase in the scaling exponent over that of maximum isometric force output. The dynamic performance

Marden, James

24

PV output smoothing with energy storage.  

SciTech Connect (OSTI)

This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

Ellis, Abraham; Schoenwald, David Alan

2012-03-01T23:59:59.000Z

25

Modeling Multi Output Filtering Effects in PCMOS  

E-Print Network [OSTI]

Modeling Multi Output Filtering Effects in PCMOS Anshul Singh*, Arindam Basu, Keck-Voon Ling, Nanyang Technological University (NTU), Singapore *NTU-Rice Institute of Sustainable and Applied Infodynamics (ISAID), NTU, Singapore $School of Computer Engineering, NTU, Singapore §School of ECE, Georgia

Mooney, Vincent

26

Bioenergy technology balancing energy output with environmental  

E-Print Network [OSTI]

E2.3 Bioenergy technology ­ balancing energy output with environmental benefitsbenefits John standards #12;Is it right to grow bioenergy? Or How much bioenergy production is right? #12;Historical bioenergy Farmers historically used 25% land for horse feed #12;Energy crops are `solar panels' Solar energy

Levi, Ran

27

Single Inductor Dual Output Buck Converter  

E-Print Network [OSTI]

of value 3V. The main focus areas are low cross regulation between the outputs and supply of completely independent load current levels while maintaining desired values (1.2V,1.5 V) within well controlled ripple levels. Dynamic hysteresis control is used...

Eachempatti, Haritha

2010-07-14T23:59:59.000Z

28

Porous radiant burners having increased radiant output  

DOE Patents [OSTI]

Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

Tong, Timothy W. (Tempe, AZ); Sathe, Sanjeev B. (Tempe, AZ); Peck, Robert E. (Tempe, AZ)

1990-01-01T23:59:59.000Z

29

Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs  

E-Print Network [OSTI]

Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs David A. Venditti and David L Anisotropic grid­adaptive strategies are presented for viscous flow simulations in which the accurate estimation and Hessian-based anisotropic grid adaptation. Airfoil test cases are presented to demonstrate

Peraire, Jaime

30

Blind Equalization via Approximate Maximum Likelihood Source Seungjin CHOI x1 and Andrzej CICHOCKI y  

E-Print Network [OSTI]

Blind Equalization via Approximate Maximum Likelihood Source Separation Seungjin CHOI x1, RIKEN 2-1 Hirosawa, Wako-shi Saitama 351-0198, JAPAN Abstract Blind equalization of single input multiple output (SIMO) FIR channels can be refor- mulated as the problem of blind source separation

Choi, Seungjin

31

Maximum entropy principal for transportation  

SciTech Connect (OSTI)

In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

Bilich, F. [University of Brasilia (Brazil); Da Silva, R. [National Research Council (Brazil)

2008-11-06T23:59:59.000Z

32

UFO - The Universal FeynRules Output  

E-Print Network [OSTI]

We present a new model format for automatized matrix-element generators, the so- called Universal FeynRules Output (UFO). The format is universal in the sense that it features compatibility with more than one single generator and is designed to be flexible, modular and agnostic of any assumption such as the number of particles or the color and Lorentz structures appearing in the interaction vertices. Unlike other model formats where text files need to be parsed, the information on the model is encoded into a Python module that can easily be linked to other computer codes. We then describe an interface for the Mathematica package FeynRules that allows for an automatic output of models in the UFO format.

Céline Degrande; Claude Duhr; Benjamin Fuks; David Grellscheid; Olivier Mattelaer; Thomas Reiter

2012-07-31T23:59:59.000Z

33

UFO - The Universal FeynRules Output  

E-Print Network [OSTI]

We present a new model format for automatized matrix-element generators, the so- called Universal FeynRules Output (UFO). The format is universal in the sense that it features compatibility with more than one single generator and is designed to be flexible, modular and agnostic of any assumption such as the number of particles or the color and Lorentz structures appearing in the interaction vertices. Unlike other model formats where text files need to be parsed, the information on the model is encoded into a Python module that can easily be linked to other computer codes. We then describe an interface for the Mathematica package FeynRules that allows for an automatic output of models in the UFO format.

Degrande, Céline; Fuks, Benjamin; Grellscheid, David; Mattelaer, Olivier; Reiter, Thomas

2011-01-01T23:59:59.000Z

34

Administrator Ready Reference Guide Customizing an Output Style  

E-Print Network [OSTI]

may be in various sections of the instructions. Some things to look for: - line spacing Preview Utility (Tools, Preview Output Styles) or by simply opening the Output Style Editor (Bibliography, Edit button -- to the right of the output style drop- down). The Output Style Preview Utility

University of Technology, Sydney

35

Kiowa County Commons Building  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

36

Comparison of CAISO-run Plexos output with LLNL-run Plexos output  

SciTech Connect (OSTI)

In this report we compare the output of the California Independent System Operator (CAISO) 33% RPS Plexos model when run on various computing systems. Specifically, we compare the output resulting from running the model on CAISO's computers (Windows) and LLNL's computers (both Windows and Linux). We conclude that the differences between the three results are negligible in the context of the entire system and likely attributed to minor differences in Plexos version numbers as well as the MIP solver used in each case.

Schmidt, A; Meyers, C; Smith, S

2011-12-20T23:59:59.000Z

37

The Principle of Maximum Conformality  

SciTech Connect (OSTI)

A key problem in making precise perturbative QCD predictions is the uncertainty in determining the renormalization scale of the running coupling {alpha}{sub s}({mu}{sup 2}). It is common practice to guess a physical scale {mu} = Q which is of order of a typical momentum transfer Q in the process, and then vary the scale over a range Q/2 and 2Q. This procedure is clearly problematic since the resulting fixed-order pQCD prediction will depend on the renormalization scheme, and it can even predict negative QCD cross sections at next-to-leading-order. Other heuristic methods to set the renormalization scale, such as the 'principle of minimal sensitivity', give unphysical results for jet physics, sum physics into the running coupling not associated with renormalization, and violate the transitivity property of the renormalization group. Such scale-setting methods also give incorrect results when applied to Abelian QED. Note that the factorization scale in QCD is introduced to match nonperturbative and perturbative aspects of the parton distributions in hadrons; it is present even in conformal theory and thus is a completely separate issue from renormalization scale setting. The PMC provides a consistent method for determining the renormalization scale in pQCD. The PMC scale-fixed prediction is independent of the choice of renormalization scheme, a key requirement of renormalization group invariance. The results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The PMC global scale can be derived efficiently at NLO from basic properties of the PQCD cross section. The elimination of the renormalization scheme ambiguity using the PMC will not only increases the precision of QCD tests, but it will also increase the sensitivity of colliders to new physics beyond the Standard Model.

Brodsky, Stanley J; /SLAC; Giustino, Di; /SLAC

2011-04-05T23:59:59.000Z

38

Using Weather Data and Climate Model Output in Economic Analyses of Climate Change  

SciTech Connect (OSTI)

Economists are increasingly using weather data and climate model output in analyses of the economic impacts of climate change. This article introduces a set of weather data sets and climate models that are frequently used, discusses the most common mistakes economists make in using these products, and identifies ways to avoid these pitfalls. We first provide an introduction to weather data, including a summary of the types of datasets available, and then discuss five common pitfalls that empirical researchers should be aware of when using historical weather data as explanatory variables in econometric applications. We then provide a brief overview of climate models and discuss two common and significant errors often made by economists when climate model output is used to simulate the future impacts of climate change on an economic outcome of interest.

Auffhammer, Maximilian [University of California at Berkeley; Hsiang, Solomon M. [Princeton University; Schlenker, Wolfram [Columbia University; Sobel, Adam H. [Columbia University

2013-06-28T23:59:59.000Z

39

Off-set stabilizer for comparator output  

DOE Patents [OSTI]

A stabilized off-set voltage is input as the reference voltage to a comparator. In application to a time-interval meter, the comparator output generates a timing interval which is independent of drift in the initial voltage across the timing capacitor. A precision resistor and operational amplifier charge a capacitor to a voltage which is precisely offset from the initial voltage. The capacitance of the reference capacitor is selected so that substantially no voltage drop is obtained in the reference voltage applied to the comparator during the interval to be measured.

Lunsford, James S. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

40

On Weyl channels being covariant with respect to the maximum commutative group of unitaries  

E-Print Network [OSTI]

We investigate the Weyl channels being covariant with respect to the maximum commutative group of unitary operators. This class includes the quantum depolarizing channel and the "two-Pauli" channel as well. Then, we show that our estimation of the output entropy for a tensor product of the phase damping channel and the identity channel based upon the decreasing property of the relative entropy allows to prove the additivity conjecture for the minimal output entropy for the quantum depolarizing channel in any prime dimesnsion and for the "two Pauli" channel in the qubit case.

G. G. Amosov

2006-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

On Weyl channels being covariant with respect to the maximum commutative group of unitaries  

SciTech Connect (OSTI)

We investigate the Weyl channels being covariant with respect to the maximum commutative group of unitary operators. This class includes the quantum depolarizing channel and the 'two-Pauli' channel as well. Then, we show that our estimation of the output entropy for a tensor product of the phase damping channel and the identity channel based upon the decreasing property of the relative entropy allows to prove the additivity conjecture for the minimal output entropy for the quantum depolarizing channel in any prime dimension and for the two-Pauli channel in the qubit case.

Amosov, Grigori G. [Department of Higher Mathematics, Moscow Institute of Physics and Technology, Dolgoprudny 141700 (Russian Federation)

2007-01-15T23:59:59.000Z

42

Common Help Room Hours  

E-Print Network [OSTI]

Common Help Room Hours for Spring 2015. Monday, Tuesday, Wednesday, Thursday, Friday. 10:30 am. 11:30 am. MA 16200 - MATH 205 - Nathanael Cox ...

43

Common Help Room Hours  

E-Print Network [OSTI]

Common Help Room Hours for Spring 2015. Monday, Tuesday, Wednesday, Thursday, Friday. 10:30 am. 11:30 am. MA 16010 - MATH 205 - Alessandra ...

44

World crude output overcomes Persian Gulf disruption  

SciTech Connect (OSTI)

Several OPEC producers made good on their promises to replace 2.7 MMbpd of oil exports that vanished from the world market after Iraq took over Kuwait. Even more incredibly, they accomplished this while a breathtaking 1.2- MMbopd reduction in Soviet output took place during the course of 1991. After Abu Dhabi, Indonesia, Iran, Libya, Nigeria, Saudi Arabia and Venezuela turned the taps wide open, their combined output rose 2.95 MMbopd. Put together with a 282,000-bopd increase by Norway and contributions from smaller producers, this enabled world oil production to remain within 400,000 bopd of its 1990 level. The 60.5-MMbopd average was off by just 0.7%. This paper reports that improvement took place in five of eight regions. Largest increases were in Western Europe and Africa. Greatest reductions occurred in Eastern Europe and the Middle East. Fifteen nations produced 1 MMbopd or more last year, compared with 17 during 1990.

Not Available

1992-02-01T23:59:59.000Z

45

Note: Synchronous energy extraction through four output ports of microwave compressor  

SciTech Connect (OSTI)

The energy stored in a resonant cavity was extracted through four output ports and added in phase in a common line. Operation of a single switch provided synchronism and the power portions transmitted through the ports were combined in a waveguide turnstile junction. Estimation shows that the compressor peak power can reach a value eight times as much as the switched wave power, provided the output pulsewidth is shortened by the same factor with reference to the cavity double transit time. The performance of the X-band compressor prototype was investigated. Signals radiated through each of four output ports had identical envelope shapes and equal peak power values. The reflected wave did not accompany the power combining. The pulses of 1.2 MW peak power and 1.6 ns pulse width were obtained when the compressor was driven by the 50 kW pulse power magnetron generator.

Avgustinovich, V. A.; Artemenko, S. N.; Novikov, S. A.; Yushkov, Yu. G. [Tomsk Polytechnic University, 2-a Lenina, Tomsk 634050 (Russian Federation)

2013-06-15T23:59:59.000Z

46

Application of computer voice input/output  

SciTech Connect (OSTI)

The advent of microprocessors and other large-scale integration (LSI) circuits is making voice input and output for computers and instruments practical; specialized LSI chips for speech processing are appearing on the market. Voice can be used to input data or to issue instrument commands; this allows the operator to engage in other tasks, move about, and to use standard data entry systems. Voice synthesizers can generate audible, easily understood instructions. Using voice characteristics, a control system can verify speaker identity for security purposes. Two simple voice-controlled systems have been designed at Los Alamos for nuclear safeguards applicaations. Each can easily be expanded as time allows. The first system is for instrument control that accepts voice commands and issues audible operator prompts. The second system is for access control. The speaker's voice is used to verify his identity and to actuate external devices.

Ford, W.; Shirk, D.G.

1981-01-01T23:59:59.000Z

47

Coordinated Output Regulation of Multiple Heterogeneous Linear Systems  

E-Print Network [OSTI]

, the generalizations of coordination of multiple linear dynamic systems to the cooperative output regulation problemCoordinated Output Regulation of Multiple Heterogeneous Linear Systems Ziyang Meng, Tao Yang, Dimos V. Dimarogonas, and Karl H. Johansson Abstract-- The coordinated output regulation problem

Dimarogonas, Dimos

48

Commissioning of output factors for uniform scanning proton beams  

SciTech Connect (OSTI)

Purpose: Current commercial treatment planning systems are not able to accurately predict output factors and calculate monitor units for proton fields. Patient-specific field output factors are thus determined by either measurements or empirical modeling based on commissioning data. The objective of this study is to commission output factors for uniform scanning beams utilized at the ProCure proton therapy centers. Methods: Using water phantoms and a plane parallel ionization chamber, the authors first measured output factors with a fixed 10 cm diameter aperture as a function of proton range and modulation width for clinically available proton beams with ranges between 4 and 31.5 cm and modulation widths between 2 and 15 cm. The authors then measured the output factor as a function of collimated field size at various calibration depths for proton beams of various ranges and modulation widths. The authors further examined the dependence of the output factor on the scanning area (i.e., uncollimated proton field), snout position, and phantom material. An empirical model was developed to calculate the output factor for patient-specific fields and the model-predicted output factors were compared to measurements. Results: The output factor increased with proton range and field size, and decreased with modulation width. The scanning area and snout position have a small but non-negligible effect on the output factors. The predicted output factors based on the empirical modeling agreed within 2% of measurements for all prostate treatment fields and within 3% for 98.5% of all treatment fields. Conclusions: Comprehensive measurements at a large subset of available beam conditions are needed to commission output factors for proton therapy beams. The empirical modeling agrees well with the measured output factor data. This investigation indicates that it is possible to accurately predict output factors and thus eliminate or reduce time-consuming patient-specific output measurements for proton treatments.

Zheng Yuanshui; Ramirez, Eric; Mascia, Anthony; Ding Xiaoning; Okoth, Benny; Zeidan, Omar; Hsi Wen; Harris, Ben; Schreuder, Andries N.; Keole, Sameer [ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States); ProCure Treatment Centers, 420 North Walnut Street, Bloomington, Indiana 47404 (United States); ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States)

2011-04-15T23:59:59.000Z

49

An Introduction Common Criteria  

E-Print Network [OSTI]

(Germany), NLNCSA (Netherlands), CESG (UK), NIST (USA) and NSA (USA). Contents 2 This document provides... Page 3 Page 4 Page 6 Page 8 Page 10 Page 12 Page 14 Page 16 Page 17 Page 18 #12;Common Criteria

Sandhu, Ravi

50

Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites  

SciTech Connect (OSTI)

By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4??VK{sup ?1}, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50?K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.

Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.; Carlson, Rowland D.; Carroll, David L., E-mail: carroldl@wfu.edu [Center for Nanotechnology and Molecular Materials, Wake Forest University, 501 Deacon Blvd., Winston Salem, North Carolina 27105 (United States)

2014-05-14T23:59:59.000Z

51

MAXIMUM ADDITIONAL SCORE: 2 points Description  

E-Print Network [OSTI]

; Many-Core Accelerator Architectures 1. A Performance and Energy Comparison of Convolution on GPUs in Production Processors via Software-Guided Thread Scheduling 7. Power Gating Strategies on GPUs #12; Network. #12;1. For a given simulator record its input parameters and its output metrics. 2. Experiment

Silvano, Cristina

52

Maximum entropy segmentation of broadcast news   

E-Print Network [OSTI]

speech recognizer and subsequently segmenting the text into utterances and topics. A maximum entropy approach is used to build statistical models for both utterance and topic segmentation. The experimental work addresses the effect on performance...

Christensen, Heidi; Kolluru, BalaKrishna; Gotoh, Yoshihiko; Renals, Steve

2005-01-01T23:59:59.000Z

53

Fail safe controllable output improved version of the electromechanical battery  

DOE Patents [OSTI]

Mechanical means are provided to control the voltages induced in the windings of a generator/motor. In one embodiment, a lever is used to withdraw or insert the entire stator windings from the cavity where the rotating field exists. In another embodiment, voltage control and/or switching off of the output is achievable with a variable-coupling generator/motor. A stator is made up of two concentric layers of windings, with a larger number of turns on the inner layer of windings than the outer layer of windings. The windings are to be connected in series electrically, that is, their voltages add vectorially. The mechanical arrangement is such that one or both of the windings can be rotated with respect to the other winding about their common central axis. Another improved design for the stator assembly of electromechanical batteries provides knife switch contacts that are in electrical contact with the stator windings. The operation of this embodiment depends on the fact that an abnormally large torque will be exerted on the stator structure during any short-circuit condition. 4 figs.

Post, R.F.

1999-01-19T23:59:59.000Z

54

Cell development obeys maximum Fisher information  

E-Print Network [OSTI]

Eukaryotic cell development has been optimized by natural selection to obey maximal intracellular flux of messenger proteins. This, in turn, implies maximum Fisher information on angular position about a target nuclear pore complex (NPR). The cell is simply modeled as spherical, with cell membrane (CM) diameter 10 micron and concentric nuclear membrane (NM) diameter 6 micron. The NM contains about 3000 nuclear pore complexes (NPCs). Development requires messenger ligands to travel from the CM-NPC-DNA target binding sites. Ligands acquire negative charge by phosphorylation, passing through the cytoplasm over Newtonian trajectories toward positively charged NPCs (utilizing positive nuclear localization sequences). The CM-NPC channel obeys maximized mean protein flux F and Fisher information I at the NPC, with first-order delta I = 0 and approximate 2nd-order delta I = 0 stability to environmental perturbations. Many of its predictions are confirmed, including the dominance of protein pathways of from 1-4 proteins, a 4nm size for the EGFR protein and the approximate flux value F =10^16 proteins/m2-s. After entering the nucleus, each protein ultimately delivers its ligand information to a DNA target site with maximum probability, i.e. maximum Kullback-Liebler entropy HKL. In a smoothness limit HKL approaches IDNA/2, so that the total CM-NPC-DNA channel obeys maximum Fisher I. Thus maximum information approaches non-equilibrium, one condition for life.

B. R. Frieden; R. A. Gatenby

2014-04-29T23:59:59.000Z

55

action potential output: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HF efficiency, but does not necessarily yield a higher measurable power (power in the bucket). For low Carroll, David L. 376 A Spatial Analysis of Multivariate Output from...

56

advisory capability output: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HF efficiency, but does not necessarily yield a higher measurable power (power in the bucket). For low Carroll, David L. 453 A Spatial Analysis of Multivariate Output from...

57

NREL: Wind Research - Boosting Wind Plant Power Output by 4%...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boosting Wind Plant Power Output by 4%-5% through Coordinated Turbine Controls July 30, 2014 Wind plant underperformance has plagued wind plant developers for years. To address...

58

Single-photon quantum router with multiple output ports  

E-Print Network [OSTI]

We study the multi-channel quantum routing of the single photons in a waveguide-emitter system. The channels are composed by the waveguides and are connected by intermediate two-level emitters. By adjusting the intermediate emitters, the output channels of the input single photons can be controlled. This is demonstrated for the cases of one output channel, two output channels and the generic N output channels. The results show that the multi-channel quantum routing of single photons can be well achieved in present system. This sheds light on the experimental realization of quantum routing of single photons.

Wei-Bin Yan; Heng Fan

2013-11-26T23:59:59.000Z

59

Evaluation of a photovoltaic energy mechatronics system with a built-in quadratic maximum power point tracking algorithm  

SciTech Connect (OSTI)

The historically high cost of crude oil price is stimulating research into solar (green) energy as an alternative energy source. In general, applications with large solar energy output require a maximum power point tracking (MPPT) algorithm to optimize the power generated by the photovoltaic effect. This work aims to provide a stand-alone solution for solar energy applications by integrating a DC/DC buck converter to a newly developed quadratic MPPT algorithm along with its appropriate software and hardware. The quadratic MPPT method utilizes three previously used duty cycles with their corresponding power outputs. It approaches the maximum value by using a second order polynomial formula, which converges faster than the existing MPPT algorithm. The hardware implementation takes advantage of the real-time controller system from National Instruments, USA. Experimental results have shown that the proposed solar mechatronics system can correctly and effectively track the maximum power point without any difficulties. (author)

Chao, R.M.; Ko, S.H.; Lin, I.H. [Department of Systems and Naval Mechatronics Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China); Pai, F.S. [Department of Electronic Engineering, National University of Tainan (China); Chang, C.C. [Department of Environment and Energy, National University of Tainan (China)

2009-12-15T23:59:59.000Z

60

Common tester platform concept.  

SciTech Connect (OSTI)

This report summarizes the results of a case study on the doctrine of a common tester platform, a concept of a standardized platform that can be applicable across the broad spectrum of testing requirements throughout the various stages of a weapons program, as well as across the various weapons programs. The common tester concept strives to define an affordable, next-generation design that will meet testing requirements with the flexibility to grow and expand; supporting the initial development stages of a weapons program through to the final production and surveillance stages. This report discusses a concept investing key leveraging technologies and operational concepts combined with prototype tester-development experiences and practical lessons learned gleaned from past weapons programs.

Hurst, Michael James

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

GAMS program used to estimate capacity output using a distance function with both good and bad output, variable returns to scale and weak disposability of the bad outputs.  

E-Print Network [OSTI]

." VIMS Marine resource Report N. 2007-6. August 2007. Author: John B. Walden NMFS/NEFSC 166 Water St(obs) weights ; POSITIVE Variable weight, lambda; EQUATIONS CONSTR1(GOUTPUT, OBS) DEA constraint for each output

62

Unification of Field Theory and Maximum Entropy Methods for Learning Probability Densities  

E-Print Network [OSTI]

Bayesian field theory and maximum entropy are two methods for learning smooth probability distributions (a.k.a. probability densities) from finite sampled data. Both methods were inspired by statistical physics, but the relationship between them has remained unclear. Here I show that Bayesian field theory subsumes maximum entropy density estimation. In particular, the most common maximum entropy methods are shown to be limiting cases of Bayesian inference using field theory priors that impose no boundary conditions on candidate densities. This unification provides a natural way to test the validity of the maximum entropy assumption on one's data. It also provides a better-fitting nonparametric density estimate when the maximum entropy assumption is rejected.

Kinney, Justin B

2014-01-01T23:59:59.000Z

63

Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power  

SciTech Connect (OSTI)

An index-depressed active core, single-mode phosphate all-solid large-mode-area photonic crystal fiber (PCF) is theoretically investigated using full-vectorial finite difference approach and experimentally realized. The PCF has a maximum output power of 5.4?W and 31% slope efficiency. Single-mode operation is realized through PCFs with core diameters of 30, 35, and 40??m, respectively. The beam quality is not degraded even at maximum output power. Our simulations and experiments reveal that the laser performance is significantly affected by the center-to-center distance between the two nearest rods ?, the rod diameter d, and their ratio d/?, implying that much attention should be given in employing optimal parameters to achieve excellent laser performance.

Wang, Longfei; He, Dongbing; Yu, Chunlei; Hu, Lili; Chen, Danping, E-mail: dpchen2008@aliyun.com [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Hui [Navigation Staff Room, Anhui Bengbu Petty Officer Academy of Navy, Bengbu 233000 (China); Qiu, Jianrong [Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510641 (China)

2014-03-31T23:59:59.000Z

64

Verification of hourly forecasts of wind turbine power output  

SciTech Connect (OSTI)

A verification of hourly average wind speed forecasts in terms of hourly average power output of a MOD-2 was performed for four sites. Site-specific probabilistic transformation models were developed to transform the forecast and observed hourly average speeds to the percent probability of exceedance of an hourly average power output. (This transformation model also appears to have value in predicting annual energy production for use in wind energy feasibility studies.) The transformed forecasts were verified in a deterministic sense (i.e., as continuous values) and in a probabilistic sense (based upon the probability of power output falling in a specified category). Since the smoothing effects of time averaging are very pronounced, the 90% probability of exceedance was built into the transformation models. Semiobjective and objective (model output statistics) forecasts were made compared for the four sites. The verification results indicate that the correct category can be forecast an average of 75% of the time over a 24-hour period. Accuracy generally decreases with projection time out to approx. 18 hours and then may increase due to the fairly regular diurnal wind patterns that occur at many sites. The ability to forecast the correct power output category increases with increasing power output because occurrences of high hourly average power output (near rated) are relatively rare and are generally not forecast. The semiobjective forecasts proved superior to model output statistics in forecasting high values of power output and in the shorter time frames (1 to 6 hours). However, model output statistics were slightly more accurate at other power output levels and times. Noticeable differences were observed between deterministic and probabilistic (categorical) forecast verification results.

Wegley, H.L.

1984-08-01T23:59:59.000Z

65

Weak Scale From the Maximum Entropy Principle  

E-Print Network [OSTI]

The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\

Yuta Hamada; Hikaru Kawai; Kiyoharu Kawana

2014-09-23T23:59:59.000Z

66

Weak Scale From the Maximum Entropy Principle  

E-Print Network [OSTI]

The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\

Hamada, Yuta; Kawana, Kiyoharu

2014-01-01T23:59:59.000Z

67

Integrating Correlated Bayesian Networks Using Maximum Entropy  

SciTech Connect (OSTI)

We consider the problem of generating a joint distribution for a pair of Bayesian networks that preserves the multivariate marginal distribution of each network and satisfies prescribed correlation between pairs of nodes taken from both networks. We derive the maximum entropy distribution for any pair of multivariate random vectors and prescribed correlations and demonstrate numerical results for an example integration of Bayesian networks.

Jarman, Kenneth D.; Whitney, Paul D.

2011-08-30T23:59:59.000Z

68

Challenges in Predicting Power Output from Offshore Wind Farms  

E-Print Network [OSTI]

Challenges in Predicting Power Output from Offshore Wind Farms R. J. Barthelmie1 and S. C. Pryor2 Abstract: Offshore wind energy is developing rapidly in Europe and the trend is towards large wind farms an offshore wind farm, accurate assessment of the wind resource/power output from the wind farm is a necessity

Pryor, Sara C.

69

ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE CO  

E-Print Network [OSTI]

ADIOS ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE CO NATIONAL RADIO ASTRONOMY OBSERVATORY TABLES ADIOS - ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE COMPUTER TABLE FOR CONTENTS Page I Module and Apple Card (Photograph) Figure 3 Complete Apple/ADIOS System (Photograph) Figure 4 Analog

Groppi, Christopher

70

Addressing Common Subsurface Challenges  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 2014 | Department of LowerCommon

71

QCD Level Density from Maximum Entropy Method  

E-Print Network [OSTI]

We propose a method to calculate the QCD level density directly from the thermodynamic quantities obtained by lattice QCD simulations with the use of the maximum entropy method (MEM). Understanding QCD thermodynamics from QCD spectral properties has its own importance. Also it has a close connection to phenomenological analyses of the lattice data as well as experimental data on the basis of hadronic resonances. Our feasibility study shows that the MEM can provide a useful tool to study QCD level density.

Shinji Ejiri; Tetsuo Hatsuda

2005-09-24T23:59:59.000Z

72

Tissue Radiation Response with Maximum Tsallis Entropy  

SciTech Connect (OSTI)

The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.

Sotolongo-Grau, O.; Rodriguez-Perez, D.; Antoranz, J. C.; Sotolongo-Costa, Oscar [UNED, Departamento de Fisica Matematica y de Fluidos, 28040 Madrid (Spain); UNED, Departamento de Fisica Matematica y de Fluidos, 28040 Madrid (Spain) and University of Havana, Catedra de Sistemas Complejos Henri Poincare, Havana 10400 (Cuba); University of Havana, Catedra de Sistemas Complejos Henri Poincare, Havana 10400 (Cuba)

2010-10-08T23:59:59.000Z

73

Fracture Toughness and Maximum Stress in a Disordered Lattice System  

E-Print Network [OSTI]

Fracture in a disordered lattice system is studied. In our system, particles are initially arranged on the triangular lattice and each nearest-neighbor pair is connected with a randomly chosen soft or hard Hookean spring. Every spring has the common threshold of stress at which it is cut. We make an initial crack and expand the system perpendicularly to the crack. We find that the maximum stress in the stress-strain curve is larger than those in the systems with soft or hard springs only (uniform systems). Energy required to advance fracture is also larger in some disordered systems, which indicates that the fracture toughness improves. The increase of the energy is caused by the following two factors. One is that the soft spring is able to hold larger energy than the hard one. The other is that the number of cut springs increases as the fracture surface becomes tortuous in disordered systems.

Chiyori Urabe; Shinji Takesue

2008-12-29T23:59:59.000Z

74

Relationship Among Efficiency and Output Power of Heat Energy Converters  

E-Print Network [OSTI]

Relationship among efficiency and output power of heat-electric energy converters as well as of any converters for transforming of heat energy into any other kind of energy is considered. It is shown, that the parameter efficiency does not determine univocally the output power of a converter. It is proposed to use another parameter for determination of working ability of heat energy converters. It is shown, that high output power can not be achieved by any kind of Stirling-type converters in spite of their high efficiency.

Alexander Luchinskiy

2004-09-02T23:59:59.000Z

75

Common Control System Vulnerability  

SciTech Connect (OSTI)

The Control Systems Security Program and other programs within the Idaho National Laboratory have discovered a vulnerability common to control systems in all sectors that allows an attacker to penetrate most control systems, spoof the operator, and gain full control of targeted system elements. This vulnerability has been identified on several systems that have been evaluated at INL, and in each case a 100% success rate of completing the attack paths that lead to full system compromise was observed. Since these systems are employed in multiple critical infrastructure sectors, this vulnerability is deemed common to control systems in all sectors. Modern control systems architectures can be considered analogous to today's information networks, and as such are usually approached by attackers using a common attack methodology to penetrate deeper and deeper into the network. This approach often is composed of several phases, including gaining access to the control network, reconnaissance, profiling of vulnerabilities, launching attacks, escalating privilege, maintaining access, and obscuring or removing information that indicates that an intruder was on the system. With irrefutable proof that an external attack can lead to a compromise of a computing resource on the organization's business local area network (LAN), access to the control network is usually considered the first phase in the attack plan. Once the attacker gains access to the control network through direct connections and/or the business LAN, the second phase of reconnaissance begins with traffic analysis within the control domain. Thus, the communications between the workstations and the field device controllers can be monitored and evaluated, allowing an attacker to capture, analyze, and evaluate the commands sent among the control equipment. Through manipulation of the communication protocols of control systems (a process generally referred to as ''reverse engineering''), an attacker can then map out the control system processes and functions. With the detailed knowledge of how the control data functions, as well as what computers and devices communicate using this data, the attacker can use a well known Man-in-the-Middle attack to perform malicious operations virtually undetected. The control systems assessment teams have used this method to gather enough information about the system to craft an attack that intercepts and changes the information flow between the end devices (controllers) and the human machine interface (HMI and/or workstation). Using this attack, the cyber assessment team has been able to demonstrate complete manipulation of devices in control systems while simultaneously modifying the data flowing back to the operator's console to give false information of the state of the system (known as ''spoofing''). This is a very effective technique for a control system attack because it allows the attacker to manipulate the system and the operator's situational awareness of the perceived system status. The three main elements of this attack technique are: (1) network reconnaissance and data gathering, (2) reverse engineering, and (3) the Man-in-the-Middle attack. The details of this attack technique and the mitigation techniques are discussed.

Trent Nelson

2005-12-01T23:59:59.000Z

76

A global maximum power point tracking DC-DC converter  

E-Print Network [OSTI]

This thesis describes the design, and validation of a maximum power point tracking DC-DC converter capable of following the true global maximum power point in the presence of other local maximum. It does this without the ...

Duncan, Joseph, 1981-

2005-01-01T23:59:59.000Z

77

Introduction Nested common intervals on permutations Nested common intervals on sequences Conclusion Finding Nested Common Intervals  

E-Print Network [OSTI]

Introduction Nested common intervals on permutations Nested common intervals on sequences Conclusion Finding Nested Common Intervals Efficiently Guillaume Blin1 Jens Stoye2 1Université Paris. stoye@techfak.uni-bielefeld.de G. Blin - gblin@univ-mlv.fr Finding Nested Common Intervals Efficiently

Blin, Guillaume

78

Computability in Anonymous Networks: Revocable vs. Irrecovable Outputs  

E-Print Network [OSTI]

Computability in Anonymous Networks: Revocable vs. Irrecovable Outputs Yuval Emek1 , Jochen Seidel2, and leader election. 1 Introduction We study computability in networks, referred to hereafter as distributed

79

Development of Regional Wind Resource and Wind Plant Output Datasets...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

50-47676 March 2010 Development of Regional Wind Resource and Wind Plant Output Datasets Final Subcontract Report 15 October 2007 - 15 March 2009 3TIER Seattle, Washington National...

80

Sparse Convolved Gaussian Processes for Multi-output Regression  

E-Print Network [OSTI]

the concentration of different heavy metal pollutants [5]. Modelling multiple output variables is a challenge as we methodology for synthetic data and real world applications on pollution prediction and a sensor network. 1

Rattray, Magnus

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Effect of Signal Quality on Six Cardiac Output Estimators  

E-Print Network [OSTI]

The effect of signal quality on the accuracy of cardiac output (CO) estimation from arterial blood pressure (ABP) was evaluated using data from the MIMIC II database. Thermodilution CO (TCO) was the gold standard. A total ...

Mark, Roger Greenwood

82

Community Climate System Model (CCSM) Experiments and Output Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

83

Corticospinal Output to Hindlimb Muscles in the Primate  

E-Print Network [OSTI]

The overall goal of this study was to investigate the properties of corticospinal output to a wide range of hindlimb muscles in the primate and to map the representation of individual muscles in hindlimb motor cortex. ...

Hudson, Heather M

2011-05-31T23:59:59.000Z

84

Grid adaptation for functional outputs of compressible flow simulations  

E-Print Network [OSTI]

An error correction and grid adaptive method is presented for improving the accuracy of functional outputs of compressible flow simulations. The procedure is based on an adjoint formulation in which the estimated error in ...

Venditti, David Anthony, 1973-

2002-01-01T23:59:59.000Z

85

Accelerated maximum likelihood parameter estimation for stochastic biochemical systems  

E-Print Network [OSTI]

as: Daigle et al. : Accelerated maximum likelihood parame-Gillespie DT: Approximate accelerated stochastic simulationARTICLE Open Access Accelerated maximum likelihood parameter

Daigle, Bernie J; Roh, Min K; Petzold, Linda R; Niemi, Jarad

2012-01-01T23:59:59.000Z

86

articulatorily constrained maximum: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

weight spanning forests. Amitabha Bagchi; Ankur Bhargava; Torsten Suel 2005-01-01 27 Maximum Entropy Correlated Equilibria MIT - DSpace Summary: We study maximum entropy...

87

Maximum and minimum sensitizable timing analysis using data dependent delays  

E-Print Network [OSTI]

NAND gate that cause its output to switch Rising Transition # ab ! ab Delay(ps) 1 11 ! 00 30.5 2 11 ! 01 50.5 3 11 ! 10 53.0 Falling Transition # ab ! ab Delay(ps) 1 00 ! 11 55.3 2 01 ! 11 46.5 3 10 ! 11 42.7 Output FallingOutput Rising 30.5 42.7 46... effectively goes through the tran- sition 11 ! 01 ! 00 rather than 11 ! 00 directly. Note that the output of the NAND2 gate 13 10ps 35ps 60.5ps 30.5ps 50.5ps 55.3ps 42.7ps 10ps 35ps 77.7ps b) Rising Output a) Falling Output b a c b a c a b c Fig. II.3. Example...

Singh, Karandeep

2007-09-17T23:59:59.000Z

88

Maximum mass of magnetic white dwarfs  

E-Print Network [OSTI]

We revisit in this work the problem of the maximum masses of magnetized White Dwarfs (WD). The impact of a strong magnetic field onto the structure equations is addressed. The pressures become anisotropic due to the presence of the magnetic field and split into a parallel and perpendicular components. We first construct stable solutions of TOV equations for the parallel pressures, and found that physical solutions vanish for the perpendicular pressure when $B \\gtrsim 10^{13}$ G. This fact establishes an upper bound for a magnetic field and the stability of the configurations in the (quasi) spherical approximation. Our findings also indicate that it is not possible to obtain stable magnetized WD with super Chandrasekhar masses because the values of the magnetic field needed for them are higher than this bound. To proceed into the anisotropic regime, we derived structure equations appropriated for a cylindrical metric with anisotropic pressures. From the solutions of the structure equations in cylindrical symme...

Paret, D Manreza; Horvath, J E

2015-01-01T23:59:59.000Z

89

Maximum screening fields of superconducting multilayer structures  

E-Print Network [OSTI]

It is shown that a multilayer comprised of alternating thin superconducting and insulating layers on a thick substrate can fully screen the applied magnetic field exceeding the superheating fields $H_s$ of both the superconducting layers and the substrate, the maximum Meissner field is achieved at an optimum multilayer thickness. For instance, a dirty layer of thickness $\\sim 0.1\\; \\mu$m at the Nb surface could increase $H_s\\simeq 240$ mT of a clean Nb up to $H_s\\simeq 290$ mT. Optimized multilayers of Nb$_3$Sn, NbN, some of the iron pnictides, or alloyed Nb deposited onto the surface of the Nb resonator cavities could potentially double the rf breakdown field, pushing the peak accelerating electric fields above 100 MV/m while protecting the cavity from dendritic thermomagnetic avalanches caused by local penetration of vortices.

Gurevich, Alex

2015-01-01T23:59:59.000Z

90

The world of quantum noise and the fundamental output process  

E-Print Network [OSTI]

A stationary theory of quantum stochastic processes of second order is outlined. It includes KMS processes in wide sense like the equilibrium finite temperature quantum noise given by the Planck's spectral formula. It is shown that for each stationary noise there exists a natural output process output process which is identical to the noise in the infinite temperature limit, and flipping with the noise if the time is reversed at finite temperature. A canonical Hilbert space representation of the quantum noise and the fundamental output process is established and a decomposition of their spectra is found. A brief explanation of quantum stochastic integration with respect to the input-output processes is given using only correlation functions. This provides a mathematical foundation for linear stationary filtering transformations of quantum stochastic processes. It is proved that the colored quantum stationary noise and its time-reversed version can be obtained in the second order theory by a linear nonadapted filtering of the standard vacuum noise uniquely defined by the canonical creation and annihilation operators on the spectrum of the input-output pair.

V. P. Belavkin; O. Hirota; R. Hudson

2005-10-04T23:59:59.000Z

91

Self-consistent input-output formulation of quantum feedback  

SciTech Connect (OSTI)

A simple method of analyzing quantum feedback circuits is presented. The classical analysis of feedback circuits can be generalized to apply to quantum systems by mapping the field operators of various outputs to other inputs via the standard input-output formalism. Unfortunately, this has led to unphysical results such as the violation of the Heisenberg uncertainty principle for in-loop fields. This paper shows that this general approach can be redeemed by ensuring a self-consistently Hermitian Hamiltonian. The calculations are based on a noncommutative calculus of operator derivatives. A full description of several examples of quantum linear and nonlinear feedback for optical systems is presented.

Yanagisawa, M. [Department of Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Hope, J. J. [Department of Quantum Science, The Australian National University, Canberra, ACT 0200 (Australia)

2010-12-15T23:59:59.000Z

92

Heterogeneity-corrected vs -uncorrected critical structure maximum point doses in breast balloon brachytherapy  

SciTech Connect (OSTI)

Recent studies have reported potentially clinically meaningful dose differences when heterogeneity correction is used in breast balloon brachytherapy. In this study, we report on the relationship between heterogeneity-corrected and -uncorrected doses for 2 commonly used plan evaluation metrics: maximum point dose to skin surface and maximum point dose to ribs. Maximum point doses to skin surface and ribs were calculated using TG-43 and Varian Acuros for 20 patients treated with breast balloon brachytherapy. The results were plotted against each other and fit with a zero-intercept line. Max skin dose (Acuros) = max skin dose (TG-43) ? 0.930 (R{sup 2} = 0.995). The average magnitude of difference from this relationship was 1.1% (max 2.8%). Max rib dose (Acuros) = max rib dose (TG-43) ? 0.955 (R{sup 2} = 0.9995). The average magnitude of difference from this relationship was 0.7% (max 1.6%). Heterogeneity-corrected maximum point doses to the skin surface and ribs were proportional to TG-43-calculated doses. The average deviation from proportionality was 1%. The proportional relationship suggests that a different metric other than maximum point dose may be needed to obtain a clinical advantage from heterogeneity correction. Alternatively, if maximum point dose continues to be used in recommended limits while incorporating heterogeneity correction, institutions without this capability may be able to accurately estimate these doses by use of a scaling factor.

Kim, Leonard, E-mail: kimlh@umdnj.edu [Department of Radiation Oncology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ (United States); Narra, Venkat; Yue, Ning [Department of Radiation Oncology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ (United States)

2013-07-01T23:59:59.000Z

93

Maximum Entropy Method Approach to $?$ Term  

E-Print Network [OSTI]

In Monte Carlo simulations of lattice field theory with a $\\theta$ term, one confronts the complex weight problem, or the sign problem. This is circumvented by performing the Fourier transform of the topological charge distribution $P(Q)$. This procedure, however, causes flattening phenomenon of the free energy $f(\\theta)$, which makes study of the phase structure unfeasible. In order to treat this problem, we apply the maximum entropy method (MEM) to a Gaussian form of $P(Q)$, which serves as a good example to test whether the MEM can be applied effectively to the $\\theta$ term. We study the case with flattening as well as that without flattening. In the latter case, the results of the MEM agree with those obtained from the direct application of the Fourier transform. For the former, the MEM gives a smoother $f(\\theta)$ than that of the Fourier transform. Among various default models investigated, the images which yield the least error do not show flattening, although some others cannot be excluded given the uncertainty related to statistical error.

Masahiro Imachi; Yasuhiko Shinno; Hiroshi Yoneyama

2004-06-09T23:59:59.000Z

94

MODELING MULTI-OUTPUT FILTERING EFFECTS IN PCMOS Anshul Singh*  

E-Print Network [OSTI]

MODELING MULTI-OUTPUT FILTERING EFFECTS IN PCMOS Anshul Singh* , Arindam Basu , Keck-Voon Ling* and Vincent J. Mooney III*$§ Email: anshul.singh@research.iiit.ac.in, {arindam.basu, ekvling}@ntu, Nanyang Technological University (NTU), Singapore * NTU-Rice Institute of Sustainable and Applied

Mooney, Vincent

95

Control of fuel cell power output Federico Zenith, Sigurd Skogestad *  

E-Print Network [OSTI]

Control of fuel cell power output Federico Zenith, Sigurd Skogestad * Department of Chemical A simplified dynamic model for fuel cells is developed, based on the concept of instantaneous characteristic, which is the set of values of current and voltage that a fuel cell can reach instantaneously

Skogestad, Sigurd

96

Convergent relaxations of polynomial matrix inequalities and static output feedback  

E-Print Network [OSTI]

(LMI) relaxations to solve non-convex polynomial matrix in- equality (PMI) optimization problems minimizers that satisfy the PMI. The approach is successfully applied to PMIs arising from static output- mulated as polynomial matrix inequality (PMI) optimization problems in the controller parameters

Henrion, Didier

97

Output-Sensitive Algorithms for Tukey Depth and Related Problems  

E-Print Network [OSTI]

Output-Sensitive Algorithms for Tukey Depth and Related Problems David Bremner University of New de Bruxelles Pat Morin Carleton University Abstract The Tukey depth (Tukey 1975) of a point p halfspace that contains p. Algorithms for computing the Tukey depth of a point in various dimensions

Morin, Pat

98

TRICOLOR LIGHT EMITTING DIODE DOT MATRIX DISPLAY SYSTEM WITHAUDIO OUTPUT  

E-Print Network [OSTI]

1 TRICOLOR LIGHT EMITTING DIODE DOT MATRIX DISPLAY SYSTEM WITHAUDIO OUTPUT Grantham Pang, Chi emitting diodes; tricolor display; audio communication. I. Introduction This paper relates to a tricolor broadcasting through the visible light rays transmitted by the display panel or assembly. Keywords: light

Pang, Grantham

99

Soft-Input Soft-Output Sphere Decoding Christoph Studer  

E-Print Network [OSTI]

Soft-Input Soft-Output Sphere Decoding Christoph Studer Integrated Systems Laboratory ETH Zurich Laboratory ETH Zurich, 8092 Zurich, Switzerland Email: boelcskei@nari.ee.ethz.ch Abstract--Soft-input soft, 8092 Zurich, Switzerland Email: studer@iis.ee.ethz.ch Helmut Bölcskei Communication Technology

100

The effects of output transformers on distortion in audio amplifiers  

E-Print Network [OSTI]

Introduction ~. . . . . . . . , . . . . . . ~. . . . . 7 Frequency Discrimination. . . . . . . . . . . . . . . . 9 Harmonic Distortion. ~ ~. . . . ~ 21 Distortion by the Intermodulationmethod. . . . . . . . 47 Comparison of Harmonic and Intermodulation... current in the primary as a function of frequency . 19 Output voltage of transformer 3 without direct current in the primary as a function of frequency 20 Block diagram for measuring distortion by the harmonic method 26 Per cent harmonic distortion...

Lanier, Ross Edwin

1949-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The continuity of the output entropy of positive maps  

SciTech Connect (OSTI)

Global and local continuity conditions for the output von Neumann entropy for positive maps between Banach spaces of trace-class operators in separable Hilbert spaces are obtained. Special attention is paid to completely positive maps: infinite dimensional quantum channels and operations. It is shown that as a result of some specific properties of the von Neumann entropy (as a function on the set of density operators) several results on the output entropy of positive maps can be obtained, which cannot be derived from the general properties of entropy type functions. In particular, it is proved that global continuity of the output entropy of a positive map follows from its finiteness. A characterization of positive linear maps preserving continuity of the entropy (in the following sense: continuity of the entropy on an arbitrary subset of input operators implies continuity of the output entropy on this subset) is obtained. A connection between the local continuity properties of two completely positive complementary maps is considered. Bibliography: 21 titles.

Shirokov, Maxim E [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2011-10-31T23:59:59.000Z

102

Maximizing output from oil reservoirs without water breakthrough  

E-Print Network [OSTI]

Maximizing output from oil reservoirs without water breakthrough S.K. Lucas School of Mathematics, revised May 2003, published 45(3), 2004, 401­422 Abstract Often in oil reservoirs a layer of water lies, for example, Muskat [8], Bear [1]). When oil is removed from the reservoir by an oil well, it will generate

Lucas, Stephen

103

LIGHTING 101 1. Common terminology  

E-Print Network [OSTI]

SECTION 3 LIGHTING 101 1. Common terminology 2. Sources & luminaires 3. Controls #12;SECTION 3SECTION 3 DISCUSSION: COMMON LIGHTING TERMINOLOGY 1. What are the definitions of the following lighting terms? 2. Do you use these terms in professional practice? 3. What other lighting terminology do you use

California at Davis, University of

104

LIGHTING 101 1. Common terminology  

E-Print Network [OSTI]

LIGHTING 101 1. Common terminology 2. Sources and luminaires 3. Controls #12;SECTION 2 DISCUSSION: COMMON LIGHTING TERMINOLOGY 1. What are the definitions of the following lighting terms? 2. Do you use these terms in professional practice? 3. What other lighting terminology do you use on the job? SLIDE 14

California at Davis, University of

105

GMM Estimation of a Maximum Entropy Distribution with Interval Data  

E-Print Network [OSTI]

GMM Estimation of a Maximum Entropy Distribution with Interval Data Ximing Wu* and Jeffrey M estimate it using a simple yet flexible maximum entropy density. Our Monte Carlo simulations show that the proposed maximum entropy density is able to approximate various distributions extremely well. The two

Perloff, Jeffrey M.

106

Optical Reflectance Measurements for Commonly Used Reflectors  

SciTech Connect (OSTI)

When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2 pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3o, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 105:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirror(R), Melinex(R) and Tyvek(R). Instead, a more complicated light distribution was measured for these three materials.

Janecek, Petr Martin; Moses, William

2008-06-11T23:59:59.000Z

107

Optical device with conical input and output prism faces  

DOE Patents [OSTI]

A device for radially translating radiation in which a right circular cylinder is provided at each end thereof with conical prism faces. The faces are oppositely extending and the device may be severed in the middle and separated to allow access to the central part of the beam. Radiation entering the input end of the device is radially translated such that radiation entering the input end at the perimeter is concentrated toward the output central axis and radiation at the input central axis is dispersed toward the output perimeter. Devices are disclosed for compressing beam energy to enhance drilling techniques, for beam manipulation of optical spatial frequencies in the Fourier plane and for simplification of dark field and color contrast microscopy. Both refracting and reflecting devices are disclosed.

Brunsden, Barry S. (Chicago, IL)

1981-01-01T23:59:59.000Z

108

Simple SPICE model for comparison of CMOS output driver circuits  

E-Print Network [OSTI]

to monitor the ground nodes of output driver circuits for noise. Both relative performance and noise levels are generated through the simulations. A test device was built to confirm that the model was effective in speed and noise comparisons. Values were... on CMOS technologies. Journal model is IEEE 'I?ansactions on Automatic Control. A. Literature Survey Research has been done in the past concerning noise generated by digital logic de- vices. In particular, Advanced CMOS Logic (ACL) integrated circuits...

Hermann, John Karl

1993-01-01T23:59:59.000Z

109

Reliable Gas Turbine Output: Attaining Temperature Independent Performance  

E-Print Network [OSTI]

RELIABLE GAS TURBINE OUTPUT; ATTAINING TEMPERATURE INDEPENDENT PERFORMANCE James E. Neeley, P.E. Power Plant Engineer Public Utility Commission of Texas Austin, Texas ABSTRACT Improvements in gas turbine efficiency, coupled... with dropping gas prices, has made gas turbines a popular choice of utilities to supply peaking as well as base load power in the form of combined cycle power plants. Today, because of the gas turbine's compactness, low maintenance, and high levels...

Neeley, J. E.; Patton, S.; Holder, F.

110

Inherited risk for common disease  

E-Print Network [OSTI]

Linkage disequilibrium studies have discovered few gene-disease associations for common diseases. The explanation has been offered that complex modes of inheritance govern risk for cancers, cardiovascular and cerebrovascular ...

Banava, Helen

2007-01-01T23:59:59.000Z

111

Development of output user interface software to support analysis  

SciTech Connect (OSTI)

Data processing software packages such as VSOP and MCNPX are softwares that has been scientifically proven and complete. The result of VSOP and MCNPX are huge and complex text files. In the analyze process, user need additional processing like Microsoft Excel to show informative result. This research develop an user interface software for output of VSOP and MCNPX. VSOP program output is used to support neutronic analysis and MCNPX program output is used to support burn-up analysis. Software development using iterative development methods which allow for revision and addition of features according to user needs. Processing time with this software 500 times faster than with conventional methods using Microsoft Excel. PYTHON is used as a programming language, because Python is available for all major operating systems: Windows, Linux/Unix, OS/2, Mac, Amiga, among others. Values that support neutronic analysis are k-eff, burn-up and mass Pu{sup 239} and Pu{sup 241}. Burn-up analysis used the mass inventory values of actinide (Thorium, Plutonium, Neptunium and Uranium). Values are visualized in graphical shape to support analysis.

Wahanani, Nursinta Adi, E-mail: sintaadi@batan.go.id; Natsir, Khairina, E-mail: sintaadi@batan.go.id; Hartini, Entin, E-mail: sintaadi@batan.go.id [Center for Development of Nuclear Informatics - National Nuclear Energy Agency, PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia)

2014-09-30T23:59:59.000Z

112

COMMONING AND COMMON INFORMATION SYSTEMS FOR SOCIAL EQUITY AND ECOLOGICAL  

E-Print Network [OSTI]

to industry and the IS community. IS play a central role in companies as they are cross-functional and have a human community, (2) the material and energy input into the IS are seen as common goods-00961288,version1-19Mar2014 #12;2 1 A human challenge Ecological sustainability and social equity are among

Boyer, Edmond

113

Overcoming Common Pitfalls: Energy Efficient Lighting Projects...  

Broader source: Energy.gov (indexed) [DOE]

Overcoming Common Pitfalls: Energy Efficient Lighting Projects Overcoming Common Pitfalls: Energy Efficient Lighting Projects Transcript Presentation More Documents & Publications...

114

A Near Maximum Likelihood Decoding Algorithm for MIMO Systems ...  

E-Print Network [OSTI]

Jul 30, 2005 ... the randomization procedure of [43], we bijectively map the .... ?1x are also in the integer grid. ... in a Maximum A Posteriori (MAP) decoder by.

2005-10-05T23:59:59.000Z

115

Solving Maximum-Entropy Sampling Problems Using Factored Masks  

E-Print Network [OSTI]

Mar 2, 2005 ... Abstract: We present a practical approach to Anstreicher and Lee's masked spectral bound for maximum-entropy sampling, and we describe ...

Samuel Burer

2005-03-02T23:59:59.000Z

116

A masked spectral bound for maximum-entropy sampling  

E-Print Network [OSTI]

Sep 16, 2003 ... Abstract: We introduce a new masked spectral bound for the maximum-entropy sampling problem. This bound is a continuous generalization of ...

Kurt Anstreicher

2003-09-16T23:59:59.000Z

117

Maximum entropy generation in open systems: the Fourth Law?  

E-Print Network [OSTI]

This paper develops an analytical and rigorous formulation of the maximum entropy generation principle. The result is suggested as the Fourth Law of Thermodynamics.

Umberto Lucia

2010-11-17T23:59:59.000Z

118

analog fixed maximum: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

state for given entanglement which can be viewed as an analogue of the Jaynes maximum entropy principle. Pawel Horodecki; Ryszard Horodecki; Michal Horodecki 1998-05-22...

119

IBM Research Report Solving Maximum-Entropy Sampling ...  

E-Print Network [OSTI]

Feb 28, 2005 ... Solving Maximum-Entropy Sampling Problems Using. Factored Masks. Samuel Burer. Department of Management Sciences. University of Iowa.

2005-02-28T23:59:59.000Z

120

A Requirement for Significant Reduction in the Maximum BTU Input...  

Energy Savers [EERE]

A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for...

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NCPART: management of ICEMDDN output for numerical control users  

SciTech Connect (OSTI)

NCPART is a procedure developed by the Numerical Control Department at Bendix Kansas City Division to handle the entry to and exit from ICEMDDN, and process all of the local files output by ICEMDDN. The NCPART procedure is menu driven, and provides automatic access to ICEMDDN and any files necessary to process information with ICEM for numerical Control users. Basically, the procedure handles all of the ICEMDDN operations that involve operating system commands, and frees the NC programmer to concentrate on his/her work as a programmer.

Rossini, B.F.

1986-04-01T23:59:59.000Z

122

Waveguide submillimetre laser with a uniform output beam  

SciTech Connect (OSTI)

A method for producing non-Gaussian light beams with a uniform intensity profile is described. The method is based on the use of a combined waveguide quasi-optical resonator containing a generalised confocal resonator with an inhomogeneous mirror with absorbing inhomogeneities discretely located on its surface and a hollow dielectric waveguide whose size satisfies the conditions of self-imaging of a uniform field in it. The existence of quasi-homogeneous beams at the output of an optically pumped 0.1188-mm waveguide CH{sub 3}OH laser with a amplitude-stepped mirror is confirmed theoretically and experimentally. (lasers)

Volodenko, A V; Gurin, O V; Degtyarev, A V; Maslov, Vyacheslav A; Svich, V A; Topkov, A N [V.N. Karazin Kharkiv National University, Kharkiv (Ukraine)

2007-01-31T23:59:59.000Z

123

Output-Based Error Estimation and Adaptation for Uncertainty Quantification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 1 54InOutput-Based

124

Chemflex Overview: Common Chemistry core  

E-Print Network [OSTI]

Advanced chemistry laboratory I CHM 335 3 Advanced chemistry laboratory II Mat 33 3 Engineering materialsChemflex Overview: Common Chemistry core CHM 40, 41 (or CHM 30, 31) 8 Introductory chemistry CHM 110,111,112,113 8 Organic chemistry CHM 332 3 Analytical chemistry CHM 201*** 2 Technical writing CHM

Napier, Terrence

125

Common Misconceptions about Software Architecture  

E-Print Network [OSTI]

Common Misconceptions about Software Architecture by Philippe Kruchten Rational Fellow Rational Software Canada References to architecture are everywhere: in every article, in every ad. And we take definition of software architecture. Are we all understanding the same thing? We gladly accept that software

van der Hoek, André

126

Method and system for managing an electrical output of a turbogenerator  

DOE Patents [OSTI]

The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

Stahlhut, Ronnie Dean (Bettendorf, IA); Vuk, Carl Thomas (Denver, IA)

2010-08-24T23:59:59.000Z

127

Maximum Constant Boost Control of the Z-Source Inverter  

E-Print Network [OSTI]

Maximum Constant Boost Control of the Z-Source Inverter Miaosen Shen1 , Jin Wang1 , Alan Joseph1 Laboratory Abstract: This paper proposes two maximum constant boost control methods for the Z-source inverter to modulation index is analyzed in detail and verified by simulation and experiment. Keywords- Z-source inverter

Tolbert, Leon M.

128

Appendix 22 Draft Nutrient Management Plan and Total Maximum Daily  

E-Print Network [OSTI]

Appendix 22 Draft Nutrient Management Plan and Total Maximum Daily Load for Flathead Lake, Montana. #12;11/01/01 DRAFT i October 30, 2001 Draft Nutrient Management Plan and Total Maximum Daily Load..............................................................................................................................2-11 SECTION 3.0 APPLICABLE WATER QUALITY STANDARDS

129

An Ad-Hoc Method for Obtaining chi**2 Values from Unbinned Maximum Likelihood Fits  

E-Print Network [OSTI]

A common goal in an experimental physics analysis is to extract information from a reaction with multi-dimensional kinematics. The preferred method for such a task is typically the unbinned maximum likelihood method. In fits using this method, the likelihood is a goodness-of-fit quantity in that it effectively discriminates between available hypotheses; however, it does not provide any information as to how well the best hypothesis describes the data. In this paper, we present an {\\em ad-hoc} procedure for obtaining chi**2/n.d.f. values from unbinned maximum likelihood fits. This method does not require binning the data, making it very applicable to multi-dimensional problems.

M. Williams; C. A. Meyer

2008-06-30T23:59:59.000Z

130

Design of a 3.3 V analog video line driver with controlled output impedance  

E-Print Network [OSTI]

impedance of the line. The main requirements for design are high output swing, high linearity, matched impedance to the line and power efficiency. These requirements are addressed by a class AB amplifier whose output impedance can be controlled through...

Ramachandran, Narayan Prasad

2004-09-30T23:59:59.000Z

131

Predicting the Power Output of Distributed Renewable Energy Resources within a Broad Geographical Region  

E-Print Network [OSTI]

Predicting the Power Output of Distributed Renewable Energy Resources within a Broad Geographical potentially dis- tributed renewable energy resources (su years, estimating the power output of in- herently intermittent and potentially distributed renewable

Chalkiadakis, Georgios

132

Spatial Interference Mitigation for Multiple Input Multiple Output Ad Hoc Networks: MISO Gains  

E-Print Network [OSTI]

Spatial Interference Mitigation for Multiple Input Multiple Output Ad Hoc Networks: MISO Gains beamforming for a multiple input single output (MISO) ad hoc network to increase the density of successful

Paris-Sud XI, Université de

133

Common Rail Injection System Development  

SciTech Connect (OSTI)

The collaborative research program between the Department of energy and Electro-Motive Diesels, Inc. on the development of common rail fuel injection system for locomotive diesel engines that can meet US EPA Tier 2 exhaust emissions has been completed. This final report summarizes the objectives of the program, work scope, key accomplishments and research findings. The major objectives of this project encompassed identification of appropriate injection strategies by using advanced analytical tools, development of required prototype hardware/controls, investigations of fuel spray characteristics including cavitation phenomena, and validation of hareware using a single-cylinder research locomotive diesel engine. Major milestones included: (1) a detailed modeling study using advanced mathematical models - several various injection profiles that show simultaneous reduction of NOx and particulates on a four stroke-cycle locomotive diesel engine were identified; (2) development of new common rail fuel injection hardware capable of providing these injection profiles while meeting EMD engine and injection performance specifications. This hardware was developed together with EMD's current fuel injection component supplier. (3) Analysis of fuel spray characteristics. Fuel spray numerical studies and high speed photographic imaging analyses were performed. (4) Validation of new hardware and fuel injection profiles. EMD's single-cylinder research diesel engine located at Argonne National Laboratory was used to confirm emissions and performacne predictions. These analytical ane experimental investigations resulted in optimized fuel injection profiles and engine operating conditions that yield reductions in NOx emissions from 7.8 g/bhp-hr to 5.0 g/bhp-hr at full (rated) load. Additionally, hydrocarbon and particulate emissions were reduced considerably when compared to baseline Tier I levels. The most significant finding from the injection optimization process was a 2% to 3% improvement in fuel economy over EMD's traditional Tier I engine hardware configuration. the common rail fuel injection system enabled this added benefit by virtue of an inherent capability to provide multiple injections per power stroke at high fuel rail pressures. On the basis of the findings in this study, EMD concludes that the new electronically-controlled high-pressure common rail injection system has the potential to meet locomotive Tier 2 NOx and particulates emission standards without sacrificing the fuel economy. A number of areas to further improve the injection hardware and engine operating characteristics to further exploit the benefits of common rail injection system have also been identified.

Electro-Motive,

2005-12-30T23:59:59.000Z

134

The electrical and lumen output characteristics of an RF lamp  

SciTech Connect (OSTI)

Low pressure rf discharges have been studied for over a century. Their first practical application for lighting was proposed by Tesla in 1891. Since then hundreds of patents have been published attempting to implement rf lighting. However, progress in understanding rf discharge phenomena (mostly driven by plasma processing needs) and dramatic improvement in the performance/cost ratio of rf power sources have recently opened the door for development of rf light sources. Today commercial inductively coupled electrodeless lamps are offered by Matsuhita, Philips and GE. In this work the authors present measurements of the electrical characteristics and lumen output from a 2.65 MHz driven inductively coupled light source. Measurements were made on a spherical lamp of 3.125 inch diameter with a re-entrant cavity that houses a cylindrical ferrite core around which is wrapped the primary coil.

Alexandrovich, B.M.; Godyak, V.A.; Piejak, R.B. [Osram Sylvania Inc., Beverly, MA (United States)

1996-12-31T23:59:59.000Z

135

Quantum teleportation scheme by selecting one of multiple output ports  

E-Print Network [OSTI]

The scheme of quantum teleportation, where Bob has multiple (N) output ports and obtains the teleported state by simply selecting one of the N ports, is thoroughly studied. We consider both deterministic version and probabilistic version of the teleportation scheme aiming to teleport an unknown state of a qubit. Moreover, we consider two cases for each version: (i) the state employed for the teleportation is fixed to a maximally entangled state, and (ii) the state is also optimized as well as Alice's measurement. We analytically determine the optimal protocols for all the four cases, and show the corresponding optimal fidelity or optimal success probability. All these protocols can achieve the perfect teleportation in the asymptotic limit of $N\\to\\infty$. The entanglement properties of the teleportation scheme are also discussed.

Satoshi Ishizaka; Tohya Hiroshima

2009-04-06T23:59:59.000Z

136

THE MAXIMUM ENERGY OF ACCELERATED PARTICLES IN RELATIVISTIC COLLISIONLESS SHOCKS  

SciTech Connect (OSTI)

The afterglow emission from gamma-ray bursts (GRBs) is usually interpreted as synchrotron radiation from electrons accelerated at the GRB external shock that propagates with relativistic velocities into the magnetized interstellar medium. By means of multi-dimensional particle-in-cell simulations, we investigate the acceleration performance of weakly magnetized relativistic shocks, in the magnetization range 0 {approx}< {sigma} {approx}< 10{sup -1}. The pre-shock magnetic field is orthogonal to the flow, as generically expected for relativistic shocks. We find that relativistic perpendicular shocks propagating in electron-positron plasmas are efficient particle accelerators if the magnetization is {sigma} {approx}< 10{sup -3}. For electron-ion plasmas, the transition to efficient acceleration occurs for {sigma} {approx}< 3 Multiplication-Sign 10{sup -5}. Here, the acceleration process proceeds similarly for the two species, since the electrons enter the shock nearly in equipartition with the ions, as a result of strong pre-heating in the self-generated upstream turbulence. In both electron-positron and electron-ion shocks, we find that the maximum energy of the accelerated particles scales in time as {epsilon}{sub max}{proportional_to}t {sup 1/2}. This scaling is shallower than the so-called (and commonly assumed) Bohm limit {epsilon}{sub max}{proportional_to}t, and it naturally results from the small-scale nature of the Weibel turbulence generated in the shock layer. In magnetized plasmas, the energy of the accelerated particles increases until it reaches a saturation value {epsilon}{sub sat}/{gamma}{sub 0} m{sub i}c {sup 2} {approx} {sigma}{sup -1/4}, where {gamma}{sub 0} m{sub i}c {sup 2} is the mean energy per particle in the upstream bulk flow. Further energization is prevented by the fact that the self-generated turbulence is confined within a finite region of thickness {proportional_to}{sigma}{sup -1/2} around the shock. Our results can provide physically grounded inputs for models of non-thermal emission from a variety of astrophysical sources, with particular relevance to GRB afterglows.

Sironi, Lorenzo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Spitkovsky, Anatoly [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States); Arons, Jonathan, E-mail: lsironi@cfa.harvard.edu [Department of Astronomy, Department of Physics, and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States)

2013-07-01T23:59:59.000Z

137

A Framework to Determine the Probability Density Function for the Output Power of Wind Farms  

E-Print Network [OSTI]

A Framework to Determine the Probability Density Function for the Output Power of Wind Farms Sairaj to the power output of a wind farm while factoring in the availability of the wind turbines in the farm availability model for the wind turbines, we propose a method to determine the wind-farm power output pdf

Liberzon, Daniel

138

Commons Capital | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)Columbus ElectricRefuse ToCommons Capital Jump

139

Linearized semiclassical initial value time correlation functions with maximum entropy analytic continuation  

E-Print Network [OSTI]

1992). J. Skilling, in Maximum entropy and Bayesian methods,1989). S. F. Gull, in Maximum entropy and Bayesian methods,with the classical maximum entropy (CME) technique (MEAC-

Liu, Jian

2008-01-01T23:59:59.000Z

140

Improved constraints on transit time distributions from argon 39: A maximum entropy approach  

E-Print Network [OSTI]

Gull (1991), Bayesian maximum entropy image reconstruction,Atlantic venti- lated? Maximum entropy inversions of bottlefrom argon 39: A maximum entropy approach Mark Holzer 1,2

Holzer, Mark; Primeau, Francois W

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Quantum Statistics Basis, Thermodynamic Analogies and the Degree of Confidence for Maximum Entropy Restoration and Estimation  

E-Print Network [OSTI]

of Confidence for Maximum Entropy Restoration and EstimationApril 3, 1992) The Maximum Entropy method, using physicalare discussed. Maximum Entropy (ME) estimation has been

Soffer, Bernard H; Kikuchi, Ryoichi

1994-01-01T23:59:59.000Z

142

On the maximum pressure rise rate in boosted HCCI operation  

E-Print Network [OSTI]

This paper explores the combined effects of boosting, intake air temperature, trapped residual gas fraction, and dilution on the Maximum Pressure Rise Rate (MPRR) in a boosted single cylinder gasoline HCCI engine with ...

Wildman, Craig B.

143

Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint  

SciTech Connect (OSTI)

This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.

2012-07-01T23:59:59.000Z

144

Maximum containment : the most controversial labs in the world  

E-Print Network [OSTI]

In 2002, following the September 11th attacks and the anthrax letters, the United States allocated money to build two maximum containment biology labs. Called Biosafety Level 4 (BSL-4) facilities, these labs were built to ...

Bruzek, Alison K. (Allison Kim)

2013-01-01T23:59:59.000Z

145

Multichannel Blind Identification: From Subspace to Maximum Likelihood Methods  

E-Print Network [OSTI]

Multichannel Blind Identification: From Subspace to Maximum Likelihood Methods LANG TONG, MEMBER, IEEE, AND SYLVIE PERREAU Invited Paper A review of recent blind channel estimation algorithms is pre-- Blind equalization, parameter estimation, system identification. I. INTRODUCTION A. What Is Blind

Tong, Lang

146

Multi-Class Classification with Maximum Margin Multiple Kernel  

E-Print Network [OSTI]

(named OBSCURE and UFO-MKL, respectively) are used to optimize primal versions of equivalent problems), the OBSCURE and UFO-MKL algorithms are compared against MCMKL #12;Multi-Class Classification with Maximum

Tomkins, Andrew

147

Maximum entropy method and oscillations in the diffraction cone  

E-Print Network [OSTI]

The maximum entropy method has been applied to investigate the oscillating structure in the pbarp- and pp-elastic scattering differential cross-section at high energy and small momentum transfer. Oscillations satisfying quite realistic reliability criteria have been found.

O. Dumbrajs; J. Kontros; A. Lengyel

2000-07-15T23:59:59.000Z

148

Efficiency at maximum power of interacting molecular machines  

E-Print Network [OSTI]

We investigate the efficiency of systems of molecular motors operating at maximum power. We consider two models of kinesin motors on a microtubule: for both the simplified and the detailed model, we find that the many-body exclusion effect enhances the efficiency at maximum power of the many-motor system, with respect to the single motor case. Remarkably, we find that this effect occurs in a limited region of the system parameters, compatible with the biologically relevant range.

N. Golubeva; A. Imparato

2012-10-22T23:59:59.000Z

149

Filtering Additive Measurement Noise with Maximum Entropy in the Mean  

E-Print Network [OSTI]

The purpose of this note is to show how the method of maximum entropy in the mean (MEM) may be used to improve parametric estimation when the measurements are corrupted by large level of noise. The method is developed in the context on a concrete example: that of estimation of the parameter in an exponential distribution. We compare the performance of our method with the bayesian and maximum likelihood approaches.

Henryk Gzyl; Enrique ter Horst

2007-09-04T23:59:59.000Z

150

The maximum entropy tecniques and the statistical description of systems  

E-Print Network [OSTI]

The maximum entropy technique (MENT) is used to determine the distribution functions of physical values. MENT naturally combines required maximum entropy, the properties of a system and connection conditions in the form of restrictions imposed on the system. It can, therefore, be employed to statistically describe closed and open systems. Examples in which MENT is used to describe equilibrium and non-equilibrium states, as well as steady states that are far from being in thermodynamic equilibrium, are discussed.

B. Z. Belashev; M. K. Suleymanov

2001-10-19T23:59:59.000Z

151

On the Common Envelope Efficiency  

E-Print Network [OSTI]

In this work, we try to use the apparent luminosity versus displacement (i.e., $L_{\\rm X}$ vs. $R$) correlation of high mass X-ray binaries (HMXBs) to constrain the common envelope (CE) efficiency $\\alpha_{\\rm CE}$, which is a key parameter affecting the evolution of the binary orbit during the CE phase. The major updates that crucial for the CE evolution include a variable $\\lambda$ parameter and a new CE criterion for Hertzsprung gap donor stars, both of which are recently developed. We find that, within the framework of the standard energy formula for CE and core definition at mass $X=10$\\%, a high value of $\\alpha_{\\rm CE}$, i.e., around 0.8-1.0, is more preferable, while $\\alpha_{\\rm CE}alpha_{\\rm CE}$. ...

Zuo, Zhao-Yu

2014-01-01T23:59:59.000Z

152

SARAH 3.2: Dirac Gauginos, UFO output, and more  

E-Print Network [OSTI]

SARAH is a Mathematica package optimized for the fast, efficient and precise study of supersymmetric models beyond the MSSM: a new model can be defined in a short form and all vertices are derived. This allows SARAH to create model files for FeynArts/FormCalc, CalcHep/CompHep and WHIZARD/OMEGA. The newest version of SARAH now provides the possibility to create model files in the UFO format which is supported by MadGraph 5, MadAnalysis, GoSam, and soon by Herwig++. Furthermore, SARAH also calculates the mass matrices, RGEs and one-loop corrections to the mass spectrum. This information is used to write source code for SPheno in order to create a precision spectrum generator for the given model. This spectrum-generator-generator functionality as well as the output of WHIZARD and CalcHep model files have seen further improvement in this version. Also models including Dirac Gauginos are supported with the new version of SARAH, and additional checks for the consistency of model implementations have been created.

Florian Staub

2013-02-12T23:59:59.000Z

153

NGC2613, 3198, 6503, 7184: Case studies against `maximum' disks  

E-Print Network [OSTI]

Decompositions of the rotation curves of NGC2613, 3198, 6505, and 7184 are analysed. For these galaxies the radial velocity dispersions of the stars have been measured and their morphology is clearly discernible. If the parameters of the decompositions are chosen according to the `maximum' disk hypothesis, the Toomre Q stability parameter is systematically less than one and the multiplicities of the spiral arms as expected from density wave theory are inconsitent with the observed morphologies of the galaxies. The apparent Q<1 instability, in particular, is a strong argument against the `maximum' disk hypothesis.

B. Fuchs

1998-12-02T23:59:59.000Z

154

Efficiency of autonomous soft nano-machines at maximum power  

E-Print Network [OSTI]

We consider nano-sized artificial or biological machines working in steady state enforced by imposing non-equilibrium concentrations of solutes or by applying external forces, torques or electric fields. For unicyclic and strongly coupled multicyclic machines, efficiency at maximum power is not bounded by the linear response value 1/2. For strong driving, it can even approach the thermodynamic limit 1. Quite generally, such machines fall in three different classes characterized, respectively, as "strong and efficient", "strong and inefficient", and "balanced". For weakly coupled multicyclic machines, efficiency at maximum power has lost any universality even in the linear response regime.

Udo Seifert

2010-11-11T23:59:59.000Z

155

When are microcircuits well-modeled by maximum entropy methods?  

E-Print Network [OSTI]

POSTER PRESENTATION Open Access When are microcircuits well-modeled by maximum entropy methods? Andrea K Barreiro1*, Eric T Shea-Brown1, Fred M Rieke2,3, Julijana Gjorgjieva4 From Nineteenth Annual Computational Neuroscience Meeting: CNS*2010 San... Antonio, TX, USA. 24-30 July 2010 Recent experiments in retina and cortex have demon- strated that pairwise maximum entropy (PME) methods can approximate observed spiking patterns to a high degree of accuracy [1,2]. In this paper we examine...

2010-07-20T23:59:59.000Z

156

Valence quark distributions of the proton from maximum entropy approach  

E-Print Network [OSTI]

We present an attempt of maximum entropy principle to determine valence quark distributions in the proton at very low resolution scale $Q_0^2$. The initial three valence quark distributions are obtained with limited dynamical information from quark model and QCD theory. Valence quark distributions from this method are compared to the lepton deep inelastic scattering data, and the widely used CT10 and MSTW08 data sets. The obtained valence quark distributions are consistent with experimental observations and the latest global fits of PDFs. Maximum entropy method is expected to be particularly useful in the case where relatively little information from QCD calculation is given.

Rong Wang; Xurong Chen

2014-10-14T23:59:59.000Z

157

Valence quark distributions of the proton from maximum entropy approach  

E-Print Network [OSTI]

We present an attempt of maximum entropy principle to determine valence quark distributions in the proton at very low resolution scale $Q_0^2$. The initial three valence quark distributions are obtained with limited dynamical information from quark model and QCD theory. Valence quark distributions from this method are compared to the lepton deep inelastic scattering data, and the widely used CT10 and MSTW08 data sets. The obtained valence quark distributions are consistent with experimental observations and the latest global fits of PDFs. Maximum entropy method is expected to be particularly useful in the case where relatively little information from QCD calculation is given.

Wang, Rong

2014-01-01T23:59:59.000Z

158

Assessing complexity by means of maximum entropy models  

E-Print Network [OSTI]

We discuss a characterization of complexity based on successive approximations of the probability density describing a system by means of maximum entropy methods, thereby quantifying the respective role played by different orders of interaction. This characterization is applied on simple cellular automata in order to put it in perspective with the usual notion of complexity for such systems based on Wolfram classes. The overlap is shown to be good, but not perfect. This suggests that complexity in the sense of Wolfram emerges as an intermediate regime of maximum entropy-based complexity, but also gives insights regarding the role of initial conditions in complexity-related issues.

Chliamovitch, Gregor; Velasquez, Lino

2014-01-01T23:59:59.000Z

159

Designing the Microbial Research Commons  

SciTech Connect (OSTI)

Recent decades have witnessed an ever-increasing range and volume of digital data. All elements of the pillars of science--whether observation, experiment, or theory and modeling--are being transformed by the continuous cycle of generation, dissemination, and use of factual information. This is even more so in terms of the re-using and re-purposing of digital scientific data beyond the original intent of the data collectors, often with dramatic results. We all know about the potential benefits and impacts of digital data, but we are also aware of the barriers, the challenges in maximizing the access, and use of such data. There is thus a need to think about how a data infrastructure can enhance capabilities for finding, using, and integrating information to accelerate discovery and innovation. How can we best implement an accessible, interoperable digital environment so that the data can be repeatedly used by a wide variety of users in different settings and with different applications? With this objective: to use the microbial communities and microbial data, literature, and the research materials themselves as a test case, the Board on Research Data and Information held an International Symposium on Designing the Microbial Research Commons at the National Academy of Sciences in Washington, DC on 8-9 October 2009. The symposium addressed topics such as models to lower the transaction costs and support access to and use of microbiological materials and digital resources from the perspective of publicly funded research, public-private interactions, and developing country concerns. The overall goal of the symposium was to stimulate more research and implementation of improved legal and institutional models for publicly funded research in microbiology.

Uhlir, Paul F

2011-10-01T23:59:59.000Z

160

INTRODUCTION The power output of insect flight muscles is proportional to muscle  

E-Print Network [OSTI]

#12;2239 INTRODUCTION The power output of insect flight muscles is proportional to muscle polaris) to forage in suboptimal thermal conditions (Heinrich, 1993). Recently, bumble bee (Bombus

Nieh, James

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Maximum power tracking control scheme for wind generator systems  

E-Print Network [OSTI]

The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

Mena Lopez, Hugo Eduardo

2008-10-10T23:59:59.000Z

162

Maximum power tracking control scheme for wind generator systems  

E-Print Network [OSTI]

The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

Mena, Hugo Eduardo

2009-05-15T23:59:59.000Z

163

Maximum-principle-satisfying and positivity-preserving high order ...  

E-Print Network [OSTI]

conservation laws: Survey and new developments ..... Notice that in (2.10) we need to evaluate the maximum/minimum of a ..... total energy, p is the pressure, e is the internal energy, and ? > 1 is a constant ... under a standard CFL condition.

2011-04-01T23:59:59.000Z

164

Maximum Entropy in Support of Semantically Annotated Datasets  

E-Print Network [OSTI]

Maximum Entropy in Support of Semantically Annotated Datasets Paulo Pinheiro da Silva, Vladik whether two datasets describe the same quantity. The existing solution to this problem is to use these datasets' ontologies to deduce that these datasets indeed represent the same quantity. However, even when

Kreinovich, Vladik

165

Performance of Civil Aviation Receivers during Maximum Solar Activity Events  

E-Print Network [OSTI]

Performance of Civil Aviation Receivers during Maximum Solar Activity Events Lina DEAMBROGIO on the fields of ionosphere scintillations, solar energetic particles and on the implementation of operational the upcoming period of high solar activity. Emilien ROBERT got his PhD in 2005 and started to work on behalf

Boyer, Edmond

166

Rapidly Solving an Online Sequence of Maximum Flow Problems  

E-Print Network [OSTI]

... an interdictor allocates a finite amount of resources to remove arcs from a net- ... is, the next maximum flow problem in the sequence differs from the previous one by ..... the appropriate reoptimization case and then taking the appropriate action to ..... Our first set of computational experiments tested the performance of our ...

2008-02-29T23:59:59.000Z

167

THE MAXIMUM CAPACITY OF A LINE PLAN IS INAPPROXIMABLE  

E-Print Network [OSTI]

THE MAXIMUM CAPACITY OF A LINE PLAN IS INAPPROXIMABLE CHRISTINA PUHL AND SEBASTIAN STILLER Abstract a network, upper arc-capacities and a line pool. E-mail: puhl@math.tu-berlin.de, stiller of the European Commission under contract no. FP6-021235-2. 1 #12;2 CHRISTINA PUHL AND SEBASTIAN STILLER We

Nabben, Reinhard

168

O(1)-Approximations for Maximum Movement Piotr Berman1  

E-Print Network [OSTI]

movement of the pebbles, motivated by minimizing either execution time or energy usage. Spe- cific problems the maximum movement made by pebbles on a graph to reach a configuration in which the pebbles form a connected. For example, in the connectivity goal, the proximity of the robots should form a connected graph. Two

Demaine, Erik

169

Maximization of Recursive Utilities: A Dynamic Maximum Principle Approach  

E-Print Network [OSTI]

Maximization of Recursive Utilities: A Dynamic Maximum Principle Approach Wahid FAIDI LAMSIN, ENIT for a class of robust utility function introduced in Bordigoni, Matoussi et Schweizer (2005). Our method-investment strategy which is characterized as the unique solution of a forward-backward system. Key words : Utility

Di Girolami, Cristina

170

Maximum stellar mass versus cluster membership number revisited  

E-Print Network [OSTI]

We have made a new compilation of observations of maximum stellar mass versus cluster membership number from the literature, which we analyse for consistency with the predictions of a simple random drawing hypothesis for stellar mass selection in clusters. Previously, Weidner and Kroupa have suggested that the maximum stellar mass is lower, in low mass clusters, than would be expected on the basis of random drawing, and have pointed out that this could have important implications for steepening the integrated initial mass function of the Galaxy (the IGIMF) at high masses. Our compilation demonstrates how the observed distribution in the plane of maximum stellar mass versus membership number is affected by the method of target selection; in particular, rather low n clusters with large maximum stellar masses are abundant in observational datasets that specifically seek clusters in the environs of high mass stars. Although we do not consider our compilation to be either complete or unbiased, we discuss the method by which such data should be statistically analysed. Our very provisional conclusion is that the data is not indicating any striking deviation from the expectations of random drawing.

Th. Maschberger; C. J. Clarke

2008-09-05T23:59:59.000Z

171

Maximum likelihood estimation of the equity Efstathios Avdis  

E-Print Network [OSTI]

premium is usually estimated by taking the sample mean of stock returns and subtracting a measure the expected return on the aggregate stock market less the government bill rate, is of central importance an alternative esti- mator, based on maximum likelihood, that takes into account informa- tion contained

Kahana, Michael J.

172

Renewable Energy Scheduling for Fading Channels with Maximum Power Constraint  

E-Print Network [OSTI]

Renewable Energy Scheduling for Fading Channels with Maximum Power Constraint Zhe Wang Electrical--In this paper, we develop efficient algorithm to obtain the optimal energy schedule for fading channel with energy harvesting. We assume that the side information of both the channel states and energy harvesting

Greenberg, Albert

173

Retrocommissioning Case Study - Applying Building Selection Criteria for Maximum Results  

E-Print Network [OSTI]

RETROCOMMISSIONING CASE STUDY ?Applying Building Selection Criteria for Maximum Results? Larry Luskay, Tudi Haasl, Linda Irvine Portland Energy Conservation, Inc. Portland, Oregon Donald Frey Architectural Energy Corporation Boulder.... The building was retrocommissioned by Portland Energy Conservation, Inc. (PECI), in conjunction with Architectural Energy Corporation (AEC). The building-specific goals were: 1) Obtain cost-effective energy savings from optimizing operation...

Luskay, L.; Haasl, T.; Irvine, L.; Frey, D.

2002-01-01T23:59:59.000Z

174

Commonality of ground systems in launch operations  

E-Print Network [OSTI]

NASA is examining the utility of requiring a certain degree of commonality in both flight and ground systems in the Constellation Program. While the benefits of commonality seem obvious in terms of minimizing upfront ...

Quinn, Shawn M

2008-01-01T23:59:59.000Z

175

STUDENT LEARNING COMMONS PLANNING 2007-2010  

E-Print Network [OSTI]

STUDENT LEARNING COMMONS PLANNING 2007-2010 Elaine Fairey, Director, Student Learning Commons Lynn delivery 4. Space 5. Internal relations 6. External relations Introduction The Student Learning Commons (SLC) was created in response to the report on Student Learning Support Services (October 2004

176

Student Learning Commons Questions & Answers for Faculty  

E-Print Network [OSTI]

Student Learning Commons Questions & Answers for Faculty What is the SFU Student Learning Commons? The Student Learning Commons (SLC), is an academic learning centre which provides peer-based assistance with library reference, computer assistance, and other student academic support services. SLC programs

177

ARM: ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

Coulter, Richard; Widener, Kevin; Bharadwaj, Nitin; Johnson, Karen; Martin, Timothy

178

PWM Inverter Output Filter Cost to Losses Trade Off and Optimal Design  

E-Print Network [OSTI]

PWM Inverter Output Filter Cost to Losses Trade Off and Optimal Design Robert J. Pasterczyk Jean--This paper describes how to design the output filter of a PWM inverter used in a Uninterruptible Power SupplyVA 3-ph. PWM inverter is taken as example. B. Design Constraints Uninterruptible Power Supply (UPS

Paris-Sud XI, Université de

179

Estimating Solar PV Output Using Modern Space/Time Geostatistics (Presentation)  

SciTech Connect (OSTI)

This presentation describes a project that uses mapping techniques to predict solar output at subhourly resolution at any spatial point, develop a methodology that is applicable to natural resources in general, and demonstrate capability of geostatistical techniques to predict the output of a potential solar plant.

Lee, S. J.; George, R.; Bush, B.

2009-04-29T23:59:59.000Z

180

Optimization on Solar Panels: Finding the Optimal Output Brian Y. Lu  

E-Print Network [OSTI]

Optimization on Solar Panels: Finding the Optimal Output Brian Y. Lu January 1, 2013 1 Introduction of solar panel: Routing the configuration between solar cells with a switch matrix. However, their result models and control policies for the optimal output of solar panels. The smallest unit on a solar panel

Lavaei, Javad

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Generating Isolated Outputs in a Multilevel Modular Capacitor Clamped DC-DC Converter  

E-Print Network [OSTI]

balance between the fuel cell and any energy storage inside the vehicle, and provides continuous power) for Hybrid Electric and Fuel Cell Vehicles Faisal H. Khan1 , Leon M. Tolbert2 1 Electric Power Research transformers to generate isolated ac outputs. These isolated outputs can be rectified and filtered to obtain

Tolbert, Leon M.

182

Experimental Results on Multiple-Input Single-Output (MISO) Time Reversal for UWB  

E-Print Network [OSTI]

Experimental Results on Multiple-Input Single-Output (MISO) Time Reversal for UWB Systems with multiple-input single- output (MISO) antennas over ultra-wideband (UWB) channels. In particular, temporal and spatial focusing as well as array gain are studied based on a (4 × 1) MISO scheme in an office environment

Qiu, Robert Caiming

183

Optimizing the Output of a Human-Powered Energy Harvesting System with Miniaturization and Integrated Control  

E-Print Network [OSTI]

1 Optimizing the Output of a Human-Powered Energy Harvesting System with Miniaturization mechanical energy from human foot-strikes and explore its configuration and control towards optimized energy output. Dielectric Elastomers (DEs) are high-energy density, soft, rubber-like material

Potkonjak, Miodrag

184

Fine-grained Photovoltaic Output Prediction using a Bayesian Ensemble Prithwish Chakraborty1,2  

E-Print Network [OSTI]

generation is increasingly reliant on renewable power sources, e.g., solar (pho- tovoltaic or PV) and wind Increasingly, local and distributed power generation e.g., through solar (photovoltaic or PV), wind, fuel cells and intermittent in their energy output, which makes integration with the power grid challenging. PV output

Ramakrishnan, Naren

185

Quality assurance of solar thermal systems with the ISFH-Input/Output-Procedure  

E-Print Network [OSTI]

Quality assurance of solar thermal systems with the ISFH- Input/Output-Procedure Peter Paerisch different solar systems. The simulation model was validated with measured data. The deviation between meas * Tel. +49 (0)5151-999503, Fax: +49 (0)5151-999500, Email: paerisch@isfh.de Abstract Input/Output

186

Maximum Entropy Principle and the Higgs Boson Mass  

E-Print Network [OSTI]

A successful connection between Higgs boson decays and the Maximum Entropy Principle is presented. Based on the information theory inference approach we determine the Higgs boson mass as $M_H= 125.04\\pm 0.25$ GeV, a value fully compatible to the LHC measurement. This is straightforwardly obtained by taking the Higgs boson branching ratios as the target probability distributions of the inference, without any extra assumptions beyond the Standard Model. Yet, the principle can be a powerful tool in the construction of any model affecting the Higgs sector. We give, as an example, the case where the Higgs boson has an extra invisible decay channel. Our findings suggest that a system of Higgs bosons undergoing a collective decay to Standard Model particles is among the most fundamental ones where the Maximum Entropy Principle applies.

Alves, Alexandre; da Silva, Roberto

2014-01-01T23:59:59.000Z

187

Maximum Entropy Principle and the Higgs Boson Mass  

E-Print Network [OSTI]

A successful connection between Higgs boson decays and the Maximum Entropy Principle is presented. Based on the information theory inference approach we determine the Higgs boson mass as $M_H= 125.04\\pm 0.25$ GeV, a value fully compatible to the LHC measurement. This is straightforwardly obtained by taking the Higgs boson branching ratios as the target probability distributions of the inference, without any extra assumptions beyond the Standard Model. Yet, the principle can be a powerful tool in the construction of any model affecting the Higgs sector. We give, as an example, the case where the Higgs boson has an extra invisible decay channel. Our findings suggest that a system of Higgs bosons undergoing a collective decay to Standard Model particles is among the most fundamental ones where the Maximum Entropy Principle applies.

Alexandre Alves; Alex G. Dias; Roberto da Silva

2014-11-18T23:59:59.000Z

188

Maximum entanglement in squeezed boson and fermion states  

SciTech Connect (OSTI)

A class of squeezed boson and fermion states is studied with particular emphasis on the nature of entanglement. We first investigate the case of bosons, considering two-mode squeezed states. Then we construct the fermion version to show that such states are maximum entangled, for both bosons and fermions. To achieve these results, we demonstrate some relations involving squeezed boson states. The generalization to the case of fermions is made by using Grassmann variables.

Khanna, F. C. [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Malbouisson, J. M. C. [Instituto de Fisica, Universidade Federal da Bahia, 40210-340, Salvador, BA (Brazil); Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Santana, A. E. [Instituto de Fisica, Universidade de Brasilia, 70910-900, Brasilia, DF (Brazil); Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Santos, E. S. [Centro Federal de Educacao Tecnologica da Bahia, 40030-010, Salvador, BA (Brazil)

2007-08-15T23:59:59.000Z

189

Maximum Entry and Mandatory Separation Ages for Certain Security Employees  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The policy establishes the DOE policy on maximum entry and mandatory separation ages for primary or secondary positions covered under special statutory retirement provisions and for those employees whose primary duties are the protection of officials of the United States against threats to personal safety or the investigation, apprehension, and detention of individuals suspected or convicted of offenses against the criminal laws of the United States. Admin Chg 1, dated 12-1-11, cancels DOE P 310.1.

2001-10-11T23:59:59.000Z

190

Maximum entropy method for reconstruction of the CMB images  

E-Print Network [OSTI]

We propose a new approach for the accurate reconstruction of cosmic microwave background distributions from observations containing in addition to the primary fluctuations the radiation from unresolved extragalactic point sources and pixel noise. The approach uses some effective realizations of the well-known maximum entropy method and principally takes into account {\\it a priori} information about finiteness and spherical symmetry of the power spectrum of the CMB satisfying the Gaussian statistics.

A. T. Bajkova

2002-05-21T23:59:59.000Z

191

Occam's Razor Cuts Away the Maximum Entropy Principle  

E-Print Network [OSTI]

I show that the maximum entropy principle can be replaced by a more natural assumption, that there exists a phenomenological function of entropy consistent with the microscopic model. The requirement of existence provides then a unique construction of the related probability density. I conclude the letter with an axiomatic formulation of the notion of entropy, which is suitable for exploration of the non-equilibrium phenomena.

Rudnicki, ?ukasz

2014-01-01T23:59:59.000Z

192

PNNL: A Supervised Maximum Entropy Approach to Word Sense Disambiguation  

SciTech Connect (OSTI)

In this paper, we described the PNNL Word Sense Disambiguation system as applied to the English All-Word task in Se-mEval 2007. We use a supervised learning approach, employing a large number of features and using Information Gain for dimension reduction. Our Maximum Entropy approach combined with a rich set of features produced results that are significantly better than baseline and are the highest F-score for the fined-grained English All-Words subtask.

Tratz, Stephen C.; Sanfilippo, Antonio P.; Gregory, Michelle L.; Chappell, Alan R.; Posse, Christian; Whitney, Paul D.

2007-06-23T23:59:59.000Z

193

Some interesting consequences of the maximum entropy production principle  

SciTech Connect (OSTI)

Two nonequilibrium phase transitions (morphological and hydrodynamic) are analyzed by applying the maximum entropy production principle. Quantitative analysis is for the first time compared with experiment. Nonequilibrium crystallization of ice and laminar-turbulent flow transition in a circular pipe are examined as examples of morphological and hydrodynamic transitions, respectively. For the latter transition, a minimum critical Reynolds number of 1200 is predicted. A discussion of this important and interesting result is presented.

Martyushev, L. M. [Russian Academy of Sciences, Institute of Industrial Ecology, Ural Division (Russian Federation)], E-mail: mlm@ecko.uran.ru

2007-04-15T23:59:59.000Z

194

High-Efficiency Multiple-Output DC-DC Conversion for Low-Voltage Systems  

E-Print Network [OSTI]

This versatile power converter controller provides dual outputs at a fixed switching frequency and can regulate either output voltage or target system delay (using an external -- filter). In the voltage regulation mode, the output voltage is monitored with an analog--digital (A/D) converter, and the feedback compensation network is implemented digitally. The generation of the pulsewidth modulation (PWM) signal is done with a hybrid delay line/counter approach, which saves power and area relative to previous implementations. Power devices are included on chip to create the two independently regulated output PWM signals. The key features of this design are its low-power dissipation, reconfigurability, use of either delay or voltage feedback, and multiple outputs.

Abram P. Dancy; Rajeevan Amirtharajah; Anantha P. Chandrakasan

2000-01-01T23:59:59.000Z

195

Method for leveling the power output of an electromechanical battery as a function of speed  

DOE Patents [OSTI]

The invention is a method of leveling the power output of an electromechanical battery during its discharge, while at the same time maximizing its power output into a given load. The method employs the concept of series resonance, employing a capacitor the parameters of which are chosen optimally to achieve the desired near-flatness of power output over any chosen charged-discharged speed ratio. Capacitors are inserted in series with each phase of the windings to introduce capacitative reactances that act to compensate the inductive reactance of these windings. This compensating effect both increases the power that can be drawn from the generator before inductive voltage drops in the windings become dominant and acts to flatten the power output over a chosen speed range. The values of the capacitors are chosen so as to optimally flatten the output of the generator over the chosen speed range. 3 figs.

Post, R.F.

1999-03-16T23:59:59.000Z

196

Predicting the Energy Output of Wind Farms Based on Weather Data: Important Variables and their Correlation  

E-Print Network [OSTI]

Wind energy plays an increasing role in the supply of energy world-wide. The energy output of a wind farm is highly dependent on the weather condition present at the wind farm. If the output can be predicted more accurately, energy suppliers can coordinate the collaborative production of different energy sources more efficiently to avoid costly overproductions. With this paper, we take a computer science perspective on energy prediction based on weather data and analyze the important parameters as well as their correlation on the energy output. To deal with the interaction of the different parameters we use symbolic regression based on the genetic programming tool DataModeler. Our studies are carried out on publicly available weather and energy data for a wind farm in Australia. We reveal the correlation of the different variables for the energy output. The model obtained for energy prediction gives a very reliable prediction of the energy output for newly given weather data.

Vladislavleva, Katya; Neumann, Frank; Wagner, Markus

2011-01-01T23:59:59.000Z

197

Analysis to determine the maximum dimensions of flexible apertures in sensored security netting products.  

SciTech Connect (OSTI)

Although technological advances provide new capabilities to increase the robustness of security systems, they also potentially introduce new vulnerabilities. New capability sometimes requires new performance requirements. This paper outlines an approach to establishing a key performance requirement for an emerging intrusion detection sensor: the sensored net. Throughout the security industry, the commonly adopted standard for maximum opening size through barriers is a requirement based on square inches-typically 96 square inches. Unlike standard rigid opening, the dimensions of a flexible aperture are not fixed, but variable and conformable. It is demonstrably simple for a human intruder to move through a 96-square-inch opening that is conformable to the human body. The longstanding 96-square-inch requirement itself, though firmly embedded in policy and best practice, lacks a documented empirical basis. This analysis concluded that the traditional 96-square-inch standard for openings is insufficient for flexible openings that are conformable to the human body. Instead, a circumference standard is recommended for these newer types of sensored barriers. The recommended maximum circumference for a flexible opening should be no more than 26 inches, as measured on the inside of the netting material.

Murton, Mark; Bouchier, Francis A.; vanDongen, Dale T.; Mack, Thomas Kimball; Cutler, Robert Paul; Ross, Michael P.

2013-08-01T23:59:59.000Z

198

Beyond Boltzmann-Gibbs statistics: Maximum entropy hyperensembles out-of-equilibrium  

E-Print Network [OSTI]

1957). J. Skilling, in Maximum Entropy and Bayesian Methods,45–52. J. Skilling, in Maximum Entropy and Bayesian Methods,e C. C. Rodriguez, in Maximum Entropy and Bayesian Methods,

Crooks, Gavin E.

2006-01-01T23:59:59.000Z

199

Deriving the continuity of maximum-entropy basis functions via variational analysis  

E-Print Network [OSTI]

and V. J. DellaPietra, A maximum entropy approach to naturalJ. and R. K. Bryan, Maximum entropy image reconstruction:Heidelberg, Continuity of maximum-entropy basis functions p

Sukumar, N.; Wets, R. J. -B.

2007-01-01T23:59:59.000Z

200

Maximum likelihood reconstruction for the Daya Bay Experiment  

E-Print Network [OSTI]

The Daya Bay Reactor Neutrino experiment is designed to precisely determine the neutrino mixing angle theta13. In this paper, we report a maximum likelihood (ML) method to reconstruct the vertex and energy of events in the anti-neutrino detector, based on a simplified optical model that describes light propagation. We calibrate the key paramters of the optical model with Co60 source, by comparing the predicted charges of the PMTs with the observed charges. With the optimized parameters, the resolution of the vertex reconstruction is about 25cm for Co60 gamma.

Xia Dongmei

2014-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Better Nonlinear Models from Noisy Data: Attractors with Maximum Likelihood  

E-Print Network [OSTI]

A new approach to nonlinear modelling is presented which, by incorporating the global behaviour of the model, lifts shortcomings of both least squares and total least squares parameter estimates. Although ubiquitous in practice, a least squares approach is fundamentally flawed in that it assumes independent, normally distributed (IND) forecast errors: nonlinear models will not yield IND errors even if the noise is IND. A new cost function is obtained via the maximum likelihood principle; superior results are illustrated both for small data sets and infinitely long data streams.

Patrick E. McSharry; Leonard A. Smith

1999-11-30T23:59:59.000Z

202

Application of Maximum Entropy Method to Dynamical Fermions  

E-Print Network [OSTI]

The Maximum Entropy Method is applied to dynamical fermion simulations of the (2+1)-dimensional Nambu-Jona-Lasinio model. This model is particularly interesting because at T=0 it has a broken phase with a rich spectrum of mesonic bound states and a symmetric phase where there are resonances, and hence the simple pole assumption of traditional fitting procedures breaks down. We present results extracted from simulations on large lattices for the spectral functions of the elementary fermion, the pion, the sigma, the massive pseudoscalar meson and the symmetric phase resonances.

Jonathan Clowser; Costas Strouthos

2001-10-16T23:59:59.000Z

203

Improving predictability of time series using maximum entropy methods  

E-Print Network [OSTI]

We discuss how maximum entropy methods may be applied to the reconstruction of Markov processes underlying empirical time series and compare this approach to usual frequency sampling. It is shown that, at least in low dimension, there exists a subset of the space of stochastic matrices for which the MaxEnt method is more efficient than sampling, in the sense that shorter historical samples have to be considered to reach the same accuracy. Considering short samples is of particular interest when modelling smoothly non-stationary processes, for then it provides, under some conditions, a powerful forecasting tool. The method is illustrated for a discretized empirical series of exchange rates.

Gregor Chliamovitch; Alexandre Dupuis; Bastien Chopard; Anton Golub

2014-11-28T23:59:59.000Z

204

Reducing Degeneracy in Maximum Entropy Models of Networks  

E-Print Network [OSTI]

Based on Jaynes's maximum entropy principle, exponential random graphs provide a family of principled models that allow the prediction of network properties as constrained by empirical data. However, their use is often hindered by the degeneracy problem characterized by spontaneous symmetry-breaking, where predictions simply fail. Here we show that degeneracy appears when the corresponding density of states function is not log-concave. We propose a solution to the degeneracy problem for a large class of models by exploiting the nonlinear relationships between the constrained measures to convexify the domain of the density of states. We demonstrate the effectiveness of the method on examples, including on Zachary's karate club network data.

Horvát, Szabolcs; Toroczkai, Zoltán

2014-01-01T23:59:59.000Z

205

Improving predictability of time series using maximum entropy methods  

E-Print Network [OSTI]

We discuss how maximum entropy methods may be applied to the reconstruction of Markov processes underlying empirical time series and compare this approach to usual frequency sampling. It is shown that, at least in low dimension, there exists a subset of the space of stochastic matrices for which the MaxEnt method is more efficient than sampling, in the sense that shorter historical samples have to be considered to reach the same accuracy. Considering short samples is of particular interest when modelling smoothly non-stationary processes, for then it provides, under some conditions, a powerful forecasting tool. The method is illustrated for a discretized empirical series of exchange rates.

Chliamovitch, Gregor; Chopard, Bastien; Golub, Anton

2014-01-01T23:59:59.000Z

206

Excited nucleon spectrum from lattice QCD with maximum entropy method  

E-Print Network [OSTI]

We study excited states of the nucleon in quenched lattice QCD with the spectral analysis using the maximum entropy method. Our simulations are performed on three lattice sizes $16^3\\times 32$, $24^3\\times 32$ and $32^3\\times 32$, at $\\beta=6.0$ to address the finite volume issue. We find a significant finite volume effect on the mass of the Roper resonance for light quark masses. After removing this systematic error, its mass becomes considerably reduced toward the direction to solve the level order puzzle between the Roper resonance $N'(1440)$ and the negative-parity nucleon $N^*(1535)$.

K. Sasaki; S. Sasaki; T. Hatsuda; M. Asakawa

2003-09-29T23:59:59.000Z

207

X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof  

DOE Patents [OSTI]

An x-ray source assembly and method of operation are provided having enhanced output stability. The assembly includes an anode having a source spot upon which electrons impinge and a control system for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

Radley, Ian (Glenmont, NY); Bievenue, Thomas J. (Delmar, NY); Burdett, John H. (Charlton, NY); Gallagher, Brian W. (Guilderland, NY); Shakshober, Stuart M. (Hudson, NY); Chen, Zewu (Schenectady, NY); Moore, Michael D. (Alplaus, NY)

2008-06-08T23:59:59.000Z

208

Ionization and maximum energy of nuclei in shock acceleration theory  

E-Print Network [OSTI]

We study the acceleration of heavy nuclei at SNR shocks when the process of ionization is taken into account. Heavy atoms ($Z_N >$ few) in the interstellar medium which start the diffusive shock acceleration (DSA) are never fully ionized at the moment of injection. The ionization occurs during the acceleration process, when atoms already move relativistically. For typical environment around SNRs the photo-ionization due to the background galactic radiation dominates over Coulomb collisions. The main consequence of ionization is the reduction of the maximum energy which ions can achieve with respect to the standard result of the DSA. In fact the photo-ionization has a timescale comparable to the beginning of the Sedov-Taylor phase, hence the maximum energy is no more proportional to the nuclear charge, as predicted by standard DSA, but rather to the effective ions' charge during the acceleration process, which is smaller than the total nuclear charge $Z_N$. This result can have a direct consequence in the pred...

Morlino, Giovanni

2011-01-01T23:59:59.000Z

209

Maximum surface level and temperature histories for Hanford waste tanks  

SciTech Connect (OSTI)

Radioactive defense waste resulting from the chemical processing of spent nuclear fuel has been accumulating at the Hanford Site since 1944. This waste is stored in underground waste-storage tanks. The Hanford Site Tank Farm Facilities Interim Safety Basis (ISB) provides a ready reference to the safety envelope for applicable tank farm facilities and installations. During preparation of the ISB, tank structural integrity concerns were identified as a key element in defining the safety envelope. These concerns, along with several deficiencies in the technical bases associated with the structural integrity issues and the corresponding operational limits/controls specified for conduct of normal tank farm operations are documented in the ISB. Consequently, a plan was initiated to upgrade the safety envelope technical bases by conducting Accelerated Safety Analyses-Phase 1 (ASA-Phase 1) sensitivity studies and additional structural evaluations. The purpose of this report is to facilitate the ASA-Phase 1 studies and future analyses of the single-shell tanks (SSTs) and double-shell tanks (DSTs) by compiling a quantitative summary of some of the past operating conditions the tanks have experienced during their existence. This report documents the available summaries of recorded maximum surface levels and maximum waste temperatures and references other sources for more specific data.

Flanagan, B.D.; Ha, N.D.; Huisingh, J.S.

1994-09-02T23:59:59.000Z

210

Hough Transform Common Names: Hough transform  

E-Print Network [OSTI]

Hough Transform Common Names: Hough transform Brief Description The Hough transform is a technique that the desired features be specified in some parametric form, the classical Hough transform is most commonly used for the detection of regular curves such as lines, circles, ellipses, etc. A generalized Hough transform can

Masci, Frank

211

Maximum possible fidelity in $1\\rightarrow 2$ qubits cloning is same for state independent and state dependent cloning  

E-Print Network [OSTI]

We re-analyse the Bu\\v{z}ek-Hillery state independent Universal Quantum Cloning machine protocol and show that it allows better values for fidelity and Hilbert-Schmidt norm than hitherto reported. This higher value for the fidelity is identical to the maximum fidelity of phase covariant quantum cloning (i.e. state dependent cloning) of Bru\\ss -Cinchetti-D'Ariano-Macchiavello. This value of fidelity has also been obtained by Niu and Griffiths in their work without machine states. This is the maximum possible fidelity obtainable in $1\\rightarrow 2$ qubits cloning. We then describe a different and new state dependent cloning protocol with four machine states where all non-exact copies of input states are taken into account in the output and we use the Hessian method of determining extrema of multivariate functions. The fidelity for the best overall quantum cloning in this protocol is $\\bar{F}=0.847$ with an associated von-Neumann entropy of $\\bar{S}=0.825$.

D. Gangopadhyay; A. Sinha Roy

2015-03-23T23:59:59.000Z

212

Cardiac output and stroke volume estimation using a hybrid of three models  

E-Print Network [OSTI]

Cardiac output (CO) and stroke volume (SV) are the key hemodynamic parameters to be monitored and assessed in ambulatory and critically ill patients. The purpose of this study was to introduce and validate a new algorithm ...

Arai, Tatsuya

213

Output dominance as a predictor of humor content in verbal productions  

E-Print Network [OSTI]

-dominance-ordered feature lists generated for each of the concepts. It was hypothesized that juxtapositions judged funny would rely more often on properties with significantly different output dominance scores per concept, while those judged not funny would involve fewer...

Hull, Rachel Gayle

2000-01-01T23:59:59.000Z

214

Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint  

SciTech Connect (OSTI)

This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

Hodge, B. M.; Shedd, S.; Florita, A.

2012-08-01T23:59:59.000Z

215

Augmentation of Power Output of Axisymmetric Ducted Wind Turbines by Porous Trailing Edge Disks  

E-Print Network [OSTI]

This paper presents analytical and experimental results that demonstrated that the power output from a ducted wind turbine can be dramatically increased by the addition of a trailing edge device such as a porous disk. In ...

widnall, sheila

2014-06-30T23:59:59.000Z

216

A Hardware Implementation of the Soft Output Viterbi Algorithm for Serially Concatenated Convolutional Codes  

E-Print Network [OSTI]

This thesis outlines the hardware design of a soft output Viterbi algorithm decoder for use in a serially concatenated convolutional code system. Convolutional codes and their related structures are described, as well as the algorithms used...

Werling, Brett William

2010-06-28T23:59:59.000Z

217

Primate Motor Cortex: Individual and Ensemble Neuron-Muscle Output Relationships  

E-Print Network [OSTI]

The specific aims of this study were to: 1) investigate the encoding of forelimb muscle activity timing and magnitude by corticomotoneuronal (CM) cells, 2) test the stability of primary motor cortex (M1) output to forelimb ...

Griffin, Darcy Michelle

2008-07-30T23:59:59.000Z

218

Multilevel Cascade H-bridge Inverter DC Voltage Estimation Through Output Voltage Sensing  

E-Print Network [OSTI]

system as the inverter power supply may vary. For example, interface of solar panels or fuel cell. The output voltage is then processed by a DSP unit that uses the signals that command the switches

Tolbert, Leon M.

219

Input-Output as a Method of Evaluahon of the Economic Impact of Water Resources Development  

E-Print Network [OSTI]

In this report the results of a study of the use of input-output analysis to evaluate the economic impact of water resources development are presented. Blackburn Crossing reservoir on the Upper Neches river was the subject development...

Canion, R. L.; Trock, W. L.

220

Code design for multiple-input multiple-output broadcast channels  

E-Print Network [OSTI]

Recent information theoretical results indicate that dirty-paper coding (DPC) achieves the entire capacity region of the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC). This thesis presents practical code designs for Gaussian...

Uppal, Momin Ayub

2009-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing  

SciTech Connect (OSTI)

Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratory’s Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

Mark D. McKay

2011-02-01T23:59:59.000Z

222

Exploring the circadian outputs and function of HPT-1 in Neurospora crassa  

E-Print Network [OSTI]

EXPLORING THE CIRCADIAN OUTPUTS AND FUNCTIONS OF HTP-1 IN NEUROSPORA CRASSA An Undergraduate Research Scholars Thesis by JUSTIN WAYDE VICKERY Submitted to Honors and Undergraduate Research Texas A&M University in partial fulfillment... ......................................................................................................................... 25 1 ABSTRACT Exploring the circadian outputs and functions of HPT-1 in N. crassa. (May 2014) Justin Wayde Vickery Department of Biology Texas A&M University Research Advisor: Dr. Deborah Bell-Pedersen Department of Biology...

Vickery, Justin Wayde

2013-09-28T23:59:59.000Z

223

Reduction in maximum time uncertainty of paired time signals  

DOE Patents [OSTI]

Reduction in the maximum time uncertainty (t/sub max/ - t/sub min/) of a series of paired time signals t/sub 1/ and t/sub 2/ varying between two input terminals and representative of a series of single events where t/sub 1/ less than or equal to t/sub 2/ and t/sub 1/ + t/sub 2/ equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t/sub min/) of the first signal t/sub 1/ closer to t/sub max/ and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20 to 800.

Theodosiou, G.E.; Dawson, J.W.

1981-02-11T23:59:59.000Z

224

Probable maximum flood control; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility.

DeGabriele, C.E.; Wu, C.L. [Bechtel National, Inc., San Francisco, CA (United States)

1991-11-01T23:59:59.000Z

225

Maximum Margin Clustering for State Decomposition of Metastable Systems  

E-Print Network [OSTI]

When studying a metastable dynamical system, a prime concern is how to decompose the phase space into a set of metastable states. Unfortunately, the metastable state decomposition based on simulation or experimental data is still a challenge. The most popular and simplest approach is geometric clustering which is developed based on the classical clustering technique. However, the prerequisites of this approach are: (1) data are obtained from simulations or experiments which are in global equilibrium and (2) the coordinate system is appropriately selected. Recently, the kinetic clustering approach based on phase space discretization and transition probability estimation has drawn much attention due to its applicability to more general cases, but the choice of discretization policy is a difficult task. In this paper, a new decomposition method designated as maximum margin metastable clustering is proposed, which converts the problem of metastable state decomposition to a semi-supervised learning problem so that...

Wu, Hao

2015-01-01T23:59:59.000Z

226

Improved Maximum Entropy Analysis with an Extended Search Space  

E-Print Network [OSTI]

The standard implementation of the Maximum Entropy Method (MEM) follows Bryan and deploys a Singular Value Decomposition (SVD) to limit the dimensionality of the underlying solution space apriori. Here we present arguments based on the shape of the SVD basis functions and numerical evidence from a mock data analysis, which show that the correct Bayesian solution is not in general recovered with this approach. As a remedy we propose to extend the search basis systematically, which will eventually recover the full solution space and the correct solution. In order to adequately approach problems where an exponentially damped kernel is used, we provide an open-source implementation, using the C/C++ language that utilizes high precision arithmetic adjustable at run-time. The LBFGS algorithm is included in the code in order to attack problems without the need to resort to a particular search space restriction.

Alexander Rothkopf

2013-01-07T23:59:59.000Z

227

Quantum maximum entropy principle for a system of identical particles  

SciTech Connect (OSTI)

By introducing a functional of the reduced density matrix, we generalize the definition of a quantum entropy which incorporates the indistinguishability principle of a system of identical particles. With the present definition, the principle of quantum maximum entropy permits us to solve the closure problem for a quantum hydrodynamic set of balance equations corresponding to an arbitrary number of moments in the framework of extended thermodynamics. The determination of the reduced Wigner function for equilibrium and nonequilibrium conditions is found to become possible only by assuming that the Lagrange multipliers can be expanded in powers of (Planck constant/2pi){sup 2}. Quantum contributions are expressed in powers of (Planck constant/2pi){sup 2} while classical results are recovered in the limit (Planck constant/2pi)->0.

Trovato, M. [Dipartimento di Matematica, Universita di Catania, Viale A. Doria, 95125 Catania (Italy); Reggiani, L. [Dipartimento di Ingegneria dell' Innovazione and CNISM, Universita del Salento, Via Arnesano s/n, 73100 Lecce (Italy)

2010-02-15T23:59:59.000Z

228

Commonality analysis for exploration life support systems  

E-Print Network [OSTI]

Commonality, defined practically as the use of similar technologies to deliver similar functions across a range of different complex systems, offers opportunities to improve the lifecycle costs of portfolios of complex ...

Cunio, Phillip M

2008-01-01T23:59:59.000Z

229

Facemail : preventing common errors when composing email  

E-Print Network [OSTI]

Facemail is a system designed to investigate and prevent common errors that users make while composing emails. Users often accidentally send email to incorrect recipients by mistyping an email address, accidentally clicking ...

Lieberman, Eric (Eric W.)

2006-01-01T23:59:59.000Z

230

Output Harmonic Termination Techniques for AlGaN/GaN HEMT Power Amplifiers Using Active Integrated Antenna Approach  

E-Print Network [OSTI]

Output Harmonic Termination Techniques for AlGaN/GaN HEMT Power Amplifiers Using Active Integrated 1200, Los Angeles, CA 90045 Abstract -- In this paper, effects of output harmonic terminations on PAE termination, we observe a substantial increase in PAE and output power. Further, we demonstrate the high

Itoh, Tatsuo

231

A common language for computer security incidents  

SciTech Connect (OSTI)

Much of the computer security information regularly gathered and disseminated by individuals and organizations cannot currently be combined or compared because a common language has yet to emerge in the field of computer security. A common language consists of terms and taxonomies (principles of classification) which enable the gathering, exchange and comparison of information. This paper presents the results of a project to develop such a common language for computer security incidents. This project results from cooperation between the Security and Networking Research Group at the Sandia National Laboratories, Livermore, CA, and the CERT{reg_sign} Coordination Center at Carnegie Mellon University, Pittsburgh, PA. This Common Language Project was not an effort to develop a comprehensive dictionary of terms used in the field of computer security. Instead, the authors developed a minimum set of high-level terms, along with a structure indicating their relationship (a taxonomy), which can be used to classify and understand computer security incident information. They hope these high-level terms and their structure will gain wide acceptance, be useful, and most importantly, enable the exchange and comparison of computer security incident information. They anticipate, however, that individuals and organizations will continue to use their own terms, which may be more specific both in meaning and use. They designed the common language to enable these lower-level terms to be classified within the common language structure.

John D. Howard; Thomas A Longstaff

1998-10-01T23:59:59.000Z

232

Modeling the Energy Output from an In-Stream Tidal Turbine Farm  

E-Print Network [OSTI]

Abstract—This paper is based on a recent paper presented in the 2007 IEEE SMC conference by the same authors [1], discussing an approach to predicting energy output from an instream tidal turbine farm. An in-stream tidal turbine is a device for harnessing energy from tidal currents in channels, and functions in a manner similar to a wind turbine. A group of such turbines distributed in a site is called an in-stream tidal turbine farm which is similar to a wind farm. Approaches to estimating energy output from wind farms cannot be fully transferred to study tidal farms, however, because of the complexities involved in modeling turbines underwater. In this paper, we intend to develop an approach for predicting energy output of an in-stream tidal turbine farm. The mathematical formulation and basic procedure for predicting power output of a stand-alone turbine 1 is presented, which includes several highly nonlinear terms. In order to facilitate the computation and utilize the formulation for predicting power output from a turbine farm, a simplified relationship between turbine distribution and turbine farm energy output is derived. A case study is then conducted by applying the numerical procedure to predict the energy output of the farms. Various scenarios are implemented according to the environmental conditions in Seymour Narrows, British Columbia, Canada. Additionally, energy cost results are presented as an extension. Index Terms—renewable energy, in-stream turbine, tidal current, tidal power, vertical axis turbine, farm system modeling, in-stream tidal turbine farm 1 A stand-alone turbine refers to a turbine around which there is no other turbine that might potentially affect the performance of this turbine.

Ye Li; Barbara J. Lence; Sander M. Calisal

233

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Summary Statistics for Coal Refining Plants, 2012 - 2014" "(thousand short tons)" "Year and","Coal Receipts","Average Price of Coal Receipts","Coal Used","Coal Stocks1"...

234

SAS Output  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

4. Nitrogen Oxides Control Technology Emissions Reduction Factors Nitrogen Oxides Control Technology EIA-Code(s) Reduction Factor Advanced Overfire Air AA 30% Alternate Burners BF...

235

SAS Output  

Gasoline and Diesel Fuel Update (EIA)

Boiler Spreader Stoker Boiler Tangential Boiler All Other Boiler Types Combustion Turbine Internal Combustion Engine Agricultural Byproducts AB Source: 1 Lbs per ton 0.08 0.01...

236

SAS Output  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

System Type Firing Configuration Tangential Boiler All Other Boiler Types Combustion Turbine Internal Combustion Engine Fuel EIA Fuel Code Source and Tables (As Appropriate)...

237

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

"(thousand short tons)" "Census Division","June 30 2014","March 31 2014","June 30 2013","Percent Change" "and State",,,,"(June 30)" ,,,,"2014 versus 2013" "Middle...

238

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

to Date" "Census Division","April - June","January - March","April - June",2014,2013,"Percent" "and State1",2014,2014,2013,,,"Change" "Middle Atlantic" "...

239

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

to Date" "Census Division","April - June","January - March","April - June",2014,2013,"Percent" ,2014,2014,2013,,,"Change" "Middle Atlantic",1222,1214,1247,2435,2460,-1...

240

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,"Year to Date" "Commodity","April - June","January - March","April - June",2014,2013,"Percent" ,2014,2014,2013,,,"Change" "Coke" " Sales",1969,1865,1969,3834,3905,-1.8 "...

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

to Date" "Census Division","April - June","January - March","April - June",2014,2013,"Percent" ,2014,2014,2013,,,"Change" "Middle Atlantic",1599,1503,1622,3102,3178,-2.4...

242

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

to Date" "Census Division","April - June","January - March","April - June",2014,2013,"Percent" "and State",2014,2014,2013,,,"Change" "Middle Atlantic",113.65,114.55,139.64,...

243

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,"Year to Date" "NAICS Code","April - June","January - March","April - June",2014,2013,"Percent" ,2014,2014,2013,,,"Change" "311 Food Manufacturing",2085,2575,2256,4660,4817,...

244

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Code" "(thousand short tons)" "NAICS Code","June 30 2014","March 31 2014","June 30 2013","Percent Change" ,,,,"(June 30)" ,,,,"2014 versus 2013" "311 Food...

245

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

to Date" "Census Division","April - June","January - March","April - June",2014,2013,"Percent" "and State",2014,2014,2013,,,"Change" "New England",20,30,21,51,48,5.5 "...

246

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

to Date" "Census Division","April - June","January - March","April - June",2014,2013,"Percent" "and State",2014,2014,2013,,,"Change" "Middle Atlantic",19,58,25,77,79,-2.7 "...

247

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

to Date" "Census Division","April - June","January - March","April - June",2014,2013,"Percent" "and State",2014,2014,2013,,,"Change" "New England","w","w","w","w","w","w" "...

248

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

"(thousand short tons)" "Census Division","June 30 2014","March 31 2014","June 30 2013","Percent Change" "and State",,,,"(June 30)" ,,,,"2014 versus 2013" "New...

249

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

to Date" "Census Division","April - June","January - March","April - June",2014,2013,"Percent" "and State1",2014,2014,2013,,,"Change" "New England" " Btu",13306,12964,13323...

250

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

,"Sector1",,,"Institutional Users",,"Distributors" 2008 " March 31",146497,1462,4818,448,153225,34876,188101 " June 30",152542,1756,4983,478,159760,32086,191846 "...

251

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,"Year to Date" "NAICS Code","April - June","January - March","April - June",2014,2013,"Percent" ,2014,2014,2013,,,"Change" "311 Food Manufacturing",2111,2386,2214,4497,4570,...

252

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

to Date" "Census Division","April - June","January - March","April - June",2014,2013,"Percent" "and State",2014,2014,2013,,,"Change" "Middle Atlantic",21,59,20,80,73,10.4 "...

253

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

to Date" "Census Division","April - June","January - March","April - June",2014,2013,"Percent" "and State",2014,2014,2013,,,"Change" "New England",21,29,22,50,48,3.1 "...

254

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A(SAPC) Working GroupB..3.3. Revenue

255

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A(SAPC) Working GroupB..3.3. Revenue4.

256

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A(SAPC) Working GroupB..3.3.

257

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A(SAPC) Working GroupB..3.3.A.

258

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A(SAPC) Working GroupB..3.3.A.B.

259

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A(SAPC) Working GroupB..3.3.A.B.A. Net

260

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A(SAPC) Working GroupB..3.3.A.B.A.

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A(SAPC) Working GroupB..3.3.A.B.A.A.

262

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A(SAPC) Working GroupB..3.3.A.B.A.A.B.

263

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A(SAPC) Working

264

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A(SAPC) WorkingB. Winter Net Internal

265

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A(SAPC) WorkingB. Winter Net

266

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A(SAPC) WorkingB. Winter NetB.

267

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A(SAPC) WorkingB. Winter NetB.4.5.

268

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional Gasoline Blend.1.

269

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional Gasoline Blend.1.2.

270

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional Gasoline

271

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional Gasoline. Number of

272

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional Gasoline. Number

273

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional Gasoline. Number3.

274

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional Gasoline. Number3.5.

275

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional Gasoline.

276

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional Gasoline.7. Average

277

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional Gasoline.7.

278

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional Gasoline.7.9.

279

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional Gasoline.7.9.0.

280

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional Gasoline.7.9.0.1.

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional Gasoline.7.9.0.1.2.

282

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional

283

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. Green Pricing

284

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. Green PricingA.

285

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. Green PricingA.B.

286

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. Green

287

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. GreenB. Net

288

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. GreenB. Net3.A.

289

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. GreenB. Net3.A.B.

290

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. GreenB.

291

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. GreenB.B. Net

292

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. GreenB.B. NetA.

293

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. GreenB.B. NetA.B.

294

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. GreenB.B.

295

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. GreenB.B.7. Net

296

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. GreenB.B.7. Net8.

297

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. GreenB.B.7.

298

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. GreenB.B.7.0. Net

299

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. GreenB.B.7.0.

300

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. GreenB.B.7.0.2.

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4. GreenB.B.7.0.2.3.

302

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.

303

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5. Net Generation

304

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5. Net Generation6.

305

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5. Net

306

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5. Net8. Net

307

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5. Net8. Net9. Net

308

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5. Net8. Net9.

309

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5. Net8. Net9.1.

310

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5. Net8. Net9.1.2.

311

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5. Net8.

312

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5. Net8.4. Useful

313

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5. Net8.4. Useful.

314

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5. Net8.4.

315

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5. Net8.4.B.

316

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5. Net8.4.B.3.

317

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5. Net8.4.B.3.4.

318

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5. Net8.4.B.3.4.5.

319

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.

320

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A. Net Summer

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A. Net SummerB.

322

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A. Net SummerB.C.

323

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A. Net

324

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A. Net0. Net

325

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A. Net0. Net1.

326

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A. Net0. Net1.2.

327

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A. Net0.

328

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A. Net0.4.

329

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A. Net0.4.A.

330

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A. Net0.4.A.B.

331

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A. Net0.4.A.B.C.

332

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A.

333

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A.E. Coal:

334

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A.E. Coal:F.

335

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A.E. Coal:F.A.

336

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A.E. Coal:F.A.B.

337

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A.E.

338

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A.E.D. Petroleum

339

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A.E.D.

340

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A.E.D.F.

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A.E.D.F.A.

342

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A.E.D.F.A.B.

343

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A.E.D.F.A.B.C.

344

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2.Conventional4.5.A.E.D.F.A.B.C.D.

345

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on

346

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: Consumption for

347

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: Consumption forA.

348

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: Consumption forA.B.

349

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: Consumption forA.B.C.

350

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: Consumption forA.B.C.D.

351

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: Consumption

352

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: ConsumptionF. Natural

353

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: ConsumptionF. NaturalD.

354

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: ConsumptionF.

355

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: ConsumptionF.F. Wood /

356

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: ConsumptionF.F. Wood /A.

357

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: ConsumptionF.F. Wood

358

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: ConsumptionF.F. WoodC.

359

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: ConsumptionF.F. WoodC.D.

360

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: ConsumptionF.F.

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: ConsumptionF.F.F.

362

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: ConsumptionF.F.F.A.

363

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: ConsumptionF.F.F.A.B.

364

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke: ConsumptionF.F.F.A.B.C.

365

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:

366

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. Biogenic Municipal

367

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. Biogenic MunicipalF.

368

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. Biogenic MunicipalF.D.

369

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. Biogenic

370

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. BiogenicF. Other Waste

371

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. BiogenicF. Other

372

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. BiogenicF. Other0.

373

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. BiogenicF. Other0.1.

374

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. BiogenicF. Other0.1.2.

375

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. BiogenicF.

376

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. BiogenicF.4.

377

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. BiogenicF.4.1. Stocks

378

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. BiogenicF.4.1. Stocks2

379

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. BiogenicF.4.1.

380

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. BiogenicF.4.1.4.

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. BiogenicF.4.1.4..

382

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. BiogenicF.4.1.4..3.

383

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E. BiogenicF.4.1.4..3.4.

384

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.

385

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6. Receipts, Average

386

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6. Receipts, Average7

387

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6. Receipts, Average78.

388

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6. Receipts,

389

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6. Receipts,0.

390

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6. Receipts,0.1.

391

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6. Receipts,0.1.2.

392

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6. Receipts,0.1.2.3.

393

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6. Receipts,0.1.2.3.4.

394

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.

395

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6. Receipts of

396

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6. Receipts of7.

397

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6. Receipts of7.8.

398

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6. Receipts of7.8.9.

399

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6. Receipts

400

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6. Receipts1.

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6. Receipts1.2.

402

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6. Receipts1.2.3.

403

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6. Receipts1.2.3.4.

404

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6. Receipts1.2.3.4.5.

405

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6.

406

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6.2. Average Tested

407

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6.2. Average Tested3.

408

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6.2. Average

409

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6.2. Average.

410

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6.2. Average.2.

411

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6.2. Average.2.3.

412

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6.2. Average.2.3.4.

413

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6.2. Average.2.3.4.5.

414

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6.2.

415

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6.2.7. Energy

416

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6.2.7. Energy8.

417

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6.2.7. Energy8.9.

418

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity onF. Petroleum Coke:E.6.6.2.7. Energy8.9.A.5.

419

SAS Output  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Bituminous Coal BIT Source: 1 205.30000 Distillate Fuel Oil DFO Source: 1 161.38600 Geothermal GEO Estimate from EIA, Office of Integrated Analysis and Forecasting 16.59983 Jet...

420

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. U.S. Coal Summary Statistics, 2008 - 2014" "(thousand short tons)" "Year and","Production1","Imports","Waste Coal","Producer and","Consumption","Exports","Consumer","Losses and"...

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA REPORT SAND 2011-39584. Average Retail Price

422

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA REPORT SAND 2011-39584. Average Retail

423

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA REPORT SAND 2011-39584. Average Retail1.

424

SAS Output  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA REPORT SAND 2011-39584. Average Retail1.2.

425

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)Percent of U.S.Percent of U.S.Coal

426

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)Percent of U.S.Percent of

427

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)Percent of U.S.Percent ofProductive

428

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)Percent of U.S.Percent

429

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)Percent of U.S.PercentProductive

430

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)Percent of

431

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)Percent ofRecoverable Coal Reserves

432

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)Percent ofRecoverable Coal

433

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)Percent ofRecoverable

434

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)Percent ofRecoverableAverage Number

435

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)Percent ofRecoverableAverage

436

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)Percent ofRecoverableAverageand

437

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)Percent

438

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal Productivity by State

439

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal Productivity by State2.

440

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal Productivity by

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal Productivity by4. Coal

442

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal Productivity by4.

443

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal Productivity by4.6.

444

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal Productivity by4.6.7.

445

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal Productivity by4.6.7.8.

446

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal Productivity

447

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal ProductivityUnderground

448

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal

449

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal1. Average Sales Price

450

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal1. Average Sales Price2.

451

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal1. Average Sales

452

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal1. Average Sales4.

453

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal1. Average Sales4.Coal

454

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal1. Average

455

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal1. AverageCoal

456

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal1. AverageCoalCoal

457

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal1. AverageCoalCoalCoal

458

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal1.

459

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal1.Report No.: DOE/EIA

460

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal1.Report No.: DOE/EIA0.

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price decreases The448

462

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price decreases The448U.S.

463

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price decreases The448U.S.Average

464

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price decreases

465

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price decreasesSteam Coal Exports by

466

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price decreasesSteam Coal Exports

467

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price decreasesSteam Coal

468

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price decreasesSteam CoalAverage

469

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price decreasesSteam CoalAverageU.S.

470

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price decreasesSteam

471

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price decreasesSteamCoal Production,

472

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price decreasesSteamCoal

473

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price decreasesSteamCoalU.S. Coke

474

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price decreasesSteamCoalU.S.

475

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price decreasesSteamCoalU.S.by

476

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price decreasesSteamCoalU.S.byU.S.

477

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price

478

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price Quantity and Average Price of

479

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price Quantity and Average Price

480

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price Quantity and Average

Note: This page contains sample records for the topic "maximum output commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 Residential propane price Quantity and Average U.S.

482

SAS Output  

Gasoline and Diesel Fuel Update (EIA)

B. U.S. Transformer Sustained Automatic Outage Counts and Hours by High-Voltage Size and NERC Region, 2012 Sustained Automatic Outage Counts High-Side Voltage (kV) Eastern...

483

SAS Output  

Gasoline and Diesel Fuel Update (EIA)

B. U.S. Transformer Outages by Type and NERC region, 2012 Outage Type Eastern Interconnection TRE WECC Contiguous U.S. Circuit Outage Counts Automatic Outages (Sustained) 16.00 --...

484

SAS Output  

Gasoline and Diesel Fuel Update (EIA)

B. U.S. Transformer Sustained Automatic Outage Counts and Hours by Cause Code and by NERC Region, 2012 Transformer Outage Counts Sustained Outage Causes FRCC MRO NPCC RFC SERC SPP...

485

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

,109.81,115.95,110.07,117.4,-6.2 "315 Apparel Manufacturing","w","w","w","w","w","w" "321 Wood Product Manufacturing","w","-","w","w","w","w" "322 Paper Manufacturing",87.55,88.68,...

486

Cinfony - combining Open Source cheminformatics toolkits behind a common interface  

E-Print Network [OSTI]

on molecules Atom Wraps an atom instance of the underlying toolkit MoleculeData Provides dictionary-like access to the information contained in the tag fields in SDF and MOL2 files Outputfile Handles multimolecule output file formats Smarts Wraps the SMARTS... .calcfp() output = cdk.Outputfile("sdf", "similar mols.sdf") for mol in cdk.readfile("sdf", "input file.sdf"): fp = mol.calcfp() if fp | targetfp >= 0.7: output.write(mol) output.close() Alternatively, we could just have made a single change to the original script...

O'Boyle, Noel M; Hutchison, Geoffrey R

2008-12-03T23:59:59.000Z

487

A combined compensation method for the output voltage of an insulated core transformer power supply  

SciTech Connect (OSTI)

An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from the primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.

Yang, L.; Yang, J., E-mail: jyang@mail.hust.edu.cn; Liu, K. F.; Qin, B.; Chen, D. Z. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

2014-06-15T23:59:59.000Z

488

System and method for cancelling the effects of stray magnetic fields from the output of a variable reluctance sensor  

DOE Patents [OSTI]

A sensor system for sensing a rotation of a sensing wheel is disclosed. The sensor system has a sensing coil in juxtaposition with the sensing wheel. Moreover, the sensing coil has a sensing coil output signal indicative of the rotational speed of the sensing wheel. Further, a cancellation coil is located remotely from the sensing coil and connected in series therewith. Additionally, the cancellation coil has a cancellation coil output signal indicative of an environmental disturbance which is effecting the sensing coil output signal. The cancellation coil output signal operates to cancel the effects of the environmental disturbance on the sensing coil output signal.

Chen, Chingchi (Ann Arbor, MI); Degner, Michael W. (Farmington Hills, MI)

2002-11-19T23:59:59.000Z

489

Savannah River Site radioiodine atmospheric releases and offsite maximum doses  

SciTech Connect (OSTI)

Radioisotopes of iodine have been released to the atmosphere from the Savannah River Site since 1955. The releases, mostly from the 200-F and 200-H Chemical Separations areas, consist of the isotopes, I-129 and 1-131. Small amounts of 1-131 and 1-133 have also been released from reactor facilities and the Savannah River Laboratory. This reference memorandum was issued to summarize our current knowledge of releases of radioiodines and resultant maximum offsite doses. This memorandum supplements the reference memorandum by providing more detailed supporting technical information. Doses reported in this memorandum from consumption of the milk containing the highest I-131 concentration following the 1961 1-131 release incident are about 1% higher than reported in the reference memorandum. This is the result of using unrounded 1-131 concentrations of I-131 in milk in this memo. It is emphasized here that this technical report does not constitute a dose reconstruction in the same sense as the dose reconstruction effort currently underway at Hanford. This report uses existing published data for radioiodine releases and existing transport and dosimetry models.

Marter, W.L.

1990-11-01T23:59:59.000Z

490

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein

2001-02-01T23:59:59.000Z

491

Maximum Entropy Analysis of the Spectral Functions in Lattice QCD  

E-Print Network [OSTI]

First principle calculation of the QCD spectral functions (SPFs) based on the lattice QCD simulations is reviewed. Special emphasis is placed on the Bayesian inference theory and the Maximum Entropy Method (MEM), which is a useful tool to extract SPFs from the imaginary-time correlation functions numerically obtained by the Monte Carlo method. Three important aspects of MEM are (i) it does not require a priori assumptions or parametrizations of SPFs, (ii) for given data, a unique solution is obtained if it exists, and (iii) the statistical significance of the solution can be quantitatively analyzed. The ability of MEM is explicitly demonstrated by using mock data as well as lattice QCD data. When applied to lattice data, MEM correctly reproduces the low-energy resonances and shows the existence of high-energy continuum in hadronic correlation functions. This opens up various possibilities for studying hadronic properties in QCD beyond the conventional way of analyzing the lattice data. Future problems to be studied by MEM in lattice QCD are also summarized.

M. Asakawa; T. Hatsuda; Y. Nakahara

2001-02-26T23:59:59.000Z

492

Improved Maximum Entropy Method with an Extended Search Space  

E-Print Network [OSTI]

We report on an improvement to the implementation of the Maximum Entropy Method (MEM). It amounts to departing from the search space obtained through a singular value decomposition (SVD) of the Kernel. Based on the shape of the SVD basis functions we argue that the MEM spectrum for given $N_\\tau$ data-points $D(\\tau)$ and prior information $m(\\omega)$ does not in general lie in this $N_\\tau$ dimensional singular subspace. Systematically extending the search basis will eventually recover the full search space and the correct extremum. We illustrate this idea through a mock data analysis inspired by actual lattice spectra, to show where our improvement becomes essential for the success of the MEM. To remedy the shortcomings of Bryan's SVD prescription we propose to use the real Fourier basis, which consists of trigonometric functions. Not only does our approach lead to more stable numerical behavior, as the SVD is not required for the determination of the basis functions, but also the resolution of the MEM becomes independent from the position of the reconstructed peaks.

Alexander Rothkopf

2012-08-25T23:59:59.000Z

493

Maximum entropy detection of planets around active stars  

E-Print Network [OSTI]

(shortened for arXiv) We aim to progress towards more efficient exoplanet detection around active stars by optimizing the use of Doppler Imaging in radial velocity measurements. We propose a simple method to simultaneously extract a brightness map and a set of orbital parameters through a tomographic inversion technique derived from classical Doppler mapping. Based on the maximum entropy principle, the underlying idea is to determine the set of orbital parameters that minimizes the information content of the resulting Doppler map. We carry out a set of numerical simulations to perform a preliminary assessment of the robustness of our method, using an actual Doppler map of the very active star HR 1099 to produce a realistic synthetic data set for various sets of orbital parameters of a single planet in a circular orbit. Using a simulated time-series of 50 line profiles affected by a peak-to-peak activity jitter of 2.5 km/s, we are able in most cases to recover the radial velocity amplitude, orbital phase and o...

Petit, P; Hébrard, E; Morin, J; Folsom, C P; Böhm, T; Boisse, I; Borgniet, S; Bouvier, J; Delfosse, X; Hussain, G; Jeffers, S V; Marsden, S C; Barnes, J R

2015-01-01T23:59:59.000Z

494

Maximum Power Transfer Tracking for a Photovoltaic-Supercapacitor Energy System  

E-Print Network [OSTI]

that efficiency of the charger varies depending on the power output level of the energy generation source charger efficiency. More precisely, previous MPPT methods only maximize the power output of the energy the power comes from a renewable source such a solar cell (photovoltaic, or PV for short) or a windmill

Pedram, Massoud

495

A maximum entropy framework for non-exponential distributions  

E-Print Network [OSTI]

Probability distributions having power-law tails are observed in a broad range of social, economic, and biological systems. We describe here a potentially useful common framework. We derive distribution functions $\\{p_k\\}$ for situations in which a `joiner particle' $k$ pays some form of price to enter a `community' of size $k-1$, where costs are subject to economies-of-scale (EOS). Maximizing the Boltzmann-Gibbs-Shannon entropy subject to this energy-like constraint predicts a distribution having a power-law tail; it reduces to the Boltzmann distribution in the absence of EOS. We show that the predicted function gives excellent fits to 13 different distribution functions, ranging from friendship links in social networks, to protein-protein interactions, to the severity of terrorist attacks. This approach may give useful insights into when to expect power-law distributions in the natural and social sciences.

Peterson, Jack; Dill, Ken A

2015-01-01T23:59:59.000Z

496

The Environmental Injector: Beyond Common Rail and Hydraulic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Environmental Injector: Beyond Common Rail and Hydraulic Intensificatiion The Environmental Injector: Beyond Common Rail and Hydraulic Intensificatiion The Environmental...

497

Common Questions Why should I soil test?  

E-Print Network [OSTI]

Common Questions Why should I soil test? Soil testing is an important diagnostic tool to evaluate nutrient imbalances and understand plant growth. The most important reason to soil test is to have a basis for intelligent application of fertilizer and lime. Testing also allows for growers and homeowners to maintain

Isaacs, Rufus

498

Study of Different Implementation Approaches for a Maximum Power Point Florent Boico Brad Lehman  

E-Print Network [OSTI]

will study the design of a maximum power point tracker for low power solar panels (10-50W). In the process weStudy of Different Implementation Approaches for a Maximum Power Point Tracker 1 Florent Boico Brad Lehman Northeastern University Abstract: This paper studies the design of a Maximum Power Point Tracker

Lehman, Brad

499

A Maximum Entropy Algorithm for Rhythmic Analysis of Genome-Wide Expression Patterns  

E-Print Network [OSTI]

A Maximum Entropy Algorithm for Rhythmic Analysis of Genome-Wide Expression Patterns Christopher James Langmead C. Robertson McClung Bruce Randall Donald ,,,§,¶ Abstract We introduce a maximum entropy-based spectral analysis, maximum entropy spectral reconstruction is well suited to signals of the type generated

Richardson, David

500

1 A MAXIMUM ENTROPY METHOD FOR SUBNETWORK ORIGIN-DESTINATION 2 TRIP MATRIX ESTIMATION  

E-Print Network [OSTI]

1 A MAXIMUM ENTROPY METHOD FOR SUBNETWORK ORIGIN-DESTINATION 2 TRIP MATRIX ESTIMATION 3 4 Chi Xie 5, maximum entropy, linearization 36 algorithm, column generation 37 #12;C. Xie, K.M. Kockelman and S is the trip matrix of the simplified network. This paper discusses a5 maximum entropy method

Kockelman, Kara M.