Sample records for maximum kw demand

  1. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter.

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Heavener, Paul (Princeton Power Systems, Inc., Princeton, NJ); Sena-Henderson, Lisa; Hammell, Darren (Princeton Power Systems, Inc., Princeton, NJ); Holveck, Mark (Princeton Power Systems, Inc., Princeton, NJ); David, Carolyn; Akhil, Abbas Ali; Gonzalez, Sigifredo

    2012-01-01T23:59:59.000Z

    Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizes the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.

  2. 50 KW Stirling engine

    SciTech Connect (OSTI)

    Ishizaki, Y.; Haramura; Kondoh, T.; Yamaguchi, K.; Yamaguchi, S.

    1982-08-01T23:59:59.000Z

    This paper presents an outline of the 50KW Stirling engine (4-189D.A.), called ''MT79'', as well as of its performance which was built by AISIN in 1980. The engine features a newly developed swash plate mechanism with floating plates. The engine, which uses Helium, has been successfully tested for over 1,000 hours, demonstrating a maximum horsepower of 52KW (71PS) /2,500rpm, maximum efficiency of 31% /700rpm, and maximum torque of 30kgf-m /500rpm. The performance of the engine is presented with these experimental results: Engine power, Torque, and Efficiency vs. Revolution; Heat balance; P-V diagram of expansion space and compression space; Noise level. The engine demonstrates the characteristics of a higher torque and a higher efficiency at lower speeds, and with low noise. Therefore, it was found that in a specific area, the engine shows characteristics surpassing those found in internal combustion engines.

  3. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power...

  4. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC)...

  5. Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling Applications Manufacturing Cost Analysis of 10 kW and 25 kW...

  6. SOFCSOFC (10kW(10kW )) Stack Stack ( )

    E-Print Network [OSTI]

    Hong, Deog Ki

    & Mitsubishi (band ) 150 kW module Rolls-Royce () 100kW SOFC TOTO, Kyushu () 20kW stack wet process #12;2 SOFC () Mitsubishi Heavy Ind. § SIS § 250kW § 55% Rolls-Royce § SIS § 250kW (micro GT-SOFC) § 53% (125 kW ) Tokyo Gas § SIS § kW (5kW ) / #12

  7. The Kauffman Constraint Coefficients Kw

    E-Print Network [OSTI]

    Kenneth A. Griggs

    2011-10-27T23:59:59.000Z

    The Kauffman Constraint Coefficients Kw and their corresponding Elementals Ew are presented as solutions to the construction of the (beta)-derivative of Kauffman's Theta-function. Additionally, a new recursion relation is provided to construct the (beta)-derivative of Theta that requires only operational substitutions and summations; this algorithmically simplifies Kauffman's original technique. To demonstrate Kw, we generate the 30 Kw Coefficients from the corresponding Elementals Ew for the (9)-derivative of Theta and find that our results are in complete agreement with Kauffman's Mathematica\\texttrademark solutions. We further present a calculation of two coefficients for the (12)-derivative of Theta and invite readers to use Mathematica\\texttrademark or any other means to calculate and verify our results. Finally, we present a challenging calculation for a coefficient of the (40)-derivative of Theta; owing to the vast numbers of permutations involved, a Mathematica\\texttrademark approach may require substantial computer resources to obtain the solution in a reasonable time.

  8. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MANUFACTURING COST ANALYSIS OF 1 KW AND 5 KW SOLID OXIDE FUEL CELL (SOFC) FOR AUXILLIARY POWER APPLICATIONS Prepared by: BATTELLE Battelle Memorial Institute 505 King Avenue...

  9. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    demand response programs identifies three clusters of industries as the key participants: • petroleum, plastic,Demand Response Potential from Audit Database Top 25 Industries by Average kW Table 1 3344 Semiconductors & Electronics 3261 Plastic

  10. Automated Price and Demand Response Demonstration for Large Customers in New York City using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2014-01-01T23:59:59.000Z

    Dynamic controls for energy efficiency and demand response:to evaluate continuous energy management and demand responseBldg Energy (kWh) Energy (kWh) Demand (kW) Office Bldg Of f

  11. 10 kW SOFC POWER SYSTEM COMMERCIALIZATION

    SciTech Connect (OSTI)

    Dan Norrick; Brad Palmer; Todd Romine; Charles Vesely; Eric Barringer; Cris DeBellis; Rich Goettler; Kurt Kneidel; Milind Kantak; Steve Kung; Greg Rush

    2003-08-01T23:59:59.000Z

    The program is organized into three developmental periods. In Phase 1 the team will develop and demonstrate a proof-of-concept prototype design and develop a manufacturing plan to substantiate potential producibility at a target cost level of $800/kW factory manufacturing cost. Phase 2 will further develop the design and reduce the manufacturing cost to a level of $600 kW. Depending on an assessment of the maturity of the technology at the end of Phase 1, Phase 2 may be structured and supplemented to provide a limited production capability. Finally, in Phase 3, a full Value Package Introduction (VPI) Program will be integrated into the SECA program to develop a mass-producible design at a factory cost of $400/kW with full cross-functional support for unrestricted commercial sales. The path to market for new technology products in the Cummins system involves two processes. The first is called Product Preceding Technology, or PPT. The PPT process provides a methodology for exploring potentially attractive technologies and developing them to the point that they can be reliably scheduled into a new product development program with a manageable risk to the product introduction schedule or product quality. Once a technology has passed the PPT gate, it is available to be incorporated into a Value Package Introduction (VPI) Program. VPI is the process that coordinates the cross-functional development of a fully supported product. The VPI Program is designed to synchronize efforts in engineering, supply, manufacturing, marketing, finance, and product support areas in such a way that the product, when introduced to the market, represents the maximum value to the customer.

  12. 10 kW SOFC POWER SYSTEM COMMERCIALIZATION

    SciTech Connect (OSTI)

    Dan Norrick; Brad Palmer; Charles Vesely; Eric Barringer; Cris DeBellis; Rich Goettler; Kurt Kneidel; Milind Kantak; Steve Kung; Tom Morris; Greg Rush

    2004-02-01T23:59:59.000Z

    The program is organized into three developmental periods. In Phase 1 the team will develop and demonstrate a proof-of-concept prototype design and develop a manufacturing plan to substantiate potential producibility at a target cost level of $800/kW factory manufacturing cost. Phase 2 will further develop the design and reduce the manufacturing cost to a level of $600 kW. Depending on an assessment of the maturity of the technology at the end of Phase 1, Phase 2 may be structured and supplemented to provide a limited production capability. Finally, in Phase 3, a full Value Package Introduction (VPI) Program will be integrated into the SECA program to develop a mass-producible design at a factory cost of $400/kW with full cross-functional support for unrestricted commercial sales. The path to market for new technology products in the Cummins system involves two processes. The first is called Product Preceding Technology, or PPT. The PPT process provides a methodology for exploring potentially attractive technologies and developing them to the point that they can be reliably scheduled into a new product development program with a manageable risk to the product introduction schedule or product quality. Once a technology has passed the PPT gate, it is available to be incorporated into a Value Package Introduction (VPI) Program. VPI is the process that coordinates the cross-functional development of a fully supported product. The VPI Program is designed to synchronize efforts in engineering, supply, manufacturing, marketing, finance, and product support areas in such a way that the product, when introduced to the market, represents the maximum value to the customer.

  13. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  14. Data:Ad350dce-67b2-4521-8b05-e1e1c4584201 | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  15. Data:9a70ff2c-58e7-4f5c-99b6-e2824dfce758 | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  16. Data:046a9213-4a6e-43e1-94ac-20a0c118b388 | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  17. Data:1d0987e7-fa06-4d14-83d5-9b29bec4d26e | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  18. Data:35304023-af4d-4256-97e9-4d5bb83aab01 | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  19. Data:6021499a-4a78-47bf-87d9-a916c498b73a | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  20. Data:220b0330-77ee-40c0-a0f1-73f2a9a2ff4e | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  1. Data:93045b29-de4e-4c89-8cf8-edd68cdee98c | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  2. Data:538e793a-2ebd-4aa7-8a56-f177243a5586 | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  3. Data:B8a7f039-d881-4033-9f94-ac3d7fb04bbd | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  4. Data:01e42b5e-dbc9-49e0-b7f8-3bbb627ac287 | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  5. Data:F0fa5450-6dff-4e27-af89-4a9aa964001e | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  6. Data:90d50353-93d6-4eed-b520-8b450e69abe4 | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  7. Data:91841fdf-2e2f-4aaf-9c48-376e212f1e4b | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  8. Data:Edad1fff-07ba-49cd-9054-e492ad88936d | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  9. Data:4e77738f-e5b5-4bdd-b392-0f8227db6034 | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  10. Data:464a9d9d-b930-426b-b728-f4bc67c17c9e | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  11. Data:9454ced5-db2c-483f-9bf4-f4cd8a968214 | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  12. Data:A6b52d87-2294-4cb8-9006-ac9ed1a6f38c | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  13. Data:A260b3c0-edce-46a2-b389-6b58b801529e | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  14. Data:Bb11cbbd-6f75-449d-90e4-28949b56f042 | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  15. Data:4a88561f-b1cf-4dc7-baec-9272b2d731c8 | Open Energy Information

    Open Energy Info (EERE)

    http:rollinghills.coopwebbuilder.comsitesrollinghills.coopwebbuilder.comfilesratetariffs.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  16. Data:Df04ce57-290e-4eab-ba8a-435f1d06488c | Open Energy Information

    Open Energy Info (EERE)

    measurement. Source or reference: http:www.sterlingcodifiers.comcodebookindex.php?bookid832 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  17. Data:76a5ec04-984f-474e-94fa-f7aad3b134d6 | Open Energy Information

    Open Energy Info (EERE)

    Source Parent: http:schuylerdevelopment.netschuylerdeptofutilitieselectricity Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History...

  18. Data:8560fdba-1510-4a14-b437-39460194c156 | Open Energy Information

    Open Energy Info (EERE)

    Source Parent: http:schuylerdevelopment.netschuylerdeptofutilitieselectricity Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History...

  19. Data:11882c23-a423-4a3a-8cf0-0fa56b34c939 | Open Energy Information

    Open Energy Info (EERE)

    Comments ***Adjustments are in addition to the current rate schedule prices. Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy...

  20. Data:7b20c14c-e6dd-4d39-a15e-e22863f3a759 | Open Energy Information

    Open Energy Info (EERE)

    Comments ***Adjustments are in addition to the current rate schedule prices. Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy...

  1. Data:E5d353e1-c73e-4312-90a8-a3bbf50a46d7 | Open Energy Information

    Open Energy Info (EERE)

    Comments ***Adjustments are in addition to the current rate schedule prices. Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy...

  2. Data:Bc3d50ea-f3b1-47d8-90b1-3f3e9e00da9b | Open Energy Information

    Open Energy Info (EERE)

    name: Residential- Rural Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  3. Data:13883c7f-cca1-4962-aa83-7c247553aaaf | Open Energy Information

    Open Energy Info (EERE)

    Single Phase Inside City Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  4. Data:0c225056-d1a0-4cf5-a9ba-9fce60cea45d | Open Energy Information

    Open Energy Info (EERE)

    name: Three Phase Service Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  5. Data:02aca4f4-7d5b-4014-90b7-063e709bc613 | Open Energy Information

    Open Energy Info (EERE)

    Factor Large Power Rate Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  6. Data:B9059af3-9f98-43d1-a844-bc870704d1a6 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Shared Lighting Sector: Lighting Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  7. Data:42a4fa92-23e4-4662-815a-9fc79061049e | Open Energy Information

    Open Energy Info (EERE)

    Street Lighting- 70 Watt Sector: Lighting Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  8. Data:447c862a-a9b4-4c4c-b6b1-833c63e4c70e | Open Energy Information

    Open Energy Info (EERE)

    Residential- Inside City Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  9. Data:8c9be902-3a9b-40ac-83d4-cec8f4fbcce9 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Outdoor Lighting Sector: Lighting Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  10. Data:1c0f495d-a569-458c-ae34-04e1ce904207 | Open Energy Information

    Open Energy Info (EERE)

    Security Lighting- Unmetered Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  11. Data:4ac4719c-52f7-4dda-add9-46e6d8ce71e2 | Open Energy Information

    Open Energy Info (EERE)

    name: Lyon-Governmental Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  12. Data:453b725b-0159-4500-860b-e8850b7a1d5b | Open Energy Information

    Open Energy Info (EERE)

    Street Lighting- 150 Watt Sector: Lighting Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  13. Data:F2f67a58-da52-46c5-baff-e2d7cf6bac4a | Open Energy Information

    Open Energy Info (EERE)

    Electric Service Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  14. Data:B5a63ea6-4d49-4dfa-8c8f-f744dbe76df2 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Residential Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  15. Data:Fa9e42b2-43b0-4e44-a087-a336c5ee5ef9 | Open Energy Information

    Open Energy Info (EERE)

    Sector: Commercial Description: Irrigation Rates Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  16. Data:0d42b7af-6fa9-47a9-a039-40d1f3129151 | Open Energy Information

    Open Energy Info (EERE)

    Residential- Outside City Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  17. Data:F2c53306-4d25-425e-b959-db4dd73414a6 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Residential Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  18. Data:49fd8376-ed8a-44bf-9548-4122bf170b95 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Electric - City Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  19. Data:63042773-7213-40e2-895a-db868e8293b9 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Residential Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  20. Data:097cf580-e55a-45cf-9ba2-072dd748b145 | Open Energy Information

    Open Energy Info (EERE)

    Single Phase- Outside City Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  1. Data:061ad0bd-c955-4d3a-8bc1-7c4c1e855291 | Open Energy Information

    Open Energy Info (EERE)

    name: Electric - Schools Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  2. Data:492a862d-2587-468b-987a-a206f13aabb7 | Open Energy Information

    Open Energy Info (EERE)

    name: Church and Fraternal Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  3. Data:38ab02a6-53a8-4f49-9f55-9ae494e1fdeb | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Residential Sector: Residential Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  4. Data:33b20a2d-e457-4613-a39c-a48386b08d41 | Open Energy Information

    Open Energy Info (EERE)

    name: Irrigation (Rate 4) Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  5. Data:931282d0-01f7-4495-9872-40d3d9474159 | Open Energy Information

    Open Energy Info (EERE)

    Plant (Interdepartmental) Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  6. Data:Ac2ca488-dc0a-455a-a6e8-9020f1503c2c | Open Energy Information

    Open Energy Info (EERE)

    Street Lighting- 250 Watt Sector: Lighting Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  7. Data:E1893b3c-247a-4e20-b22b-af34a3146b3f | Open Energy Information

    Open Energy Info (EERE)

    City Limits- Residential Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  8. Data:7720700d-783d-4c93-b509-fb3110ecea58 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Residential Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  9. Data:88ff2992-8ba7-4a06-866e-fc9a203d8edf | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Residential Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  10. Data:9ad750e9-171b-460f-ba4c-5589f00ab6f2 | Open Energy Information

    Open Energy Info (EERE)

    Irrigation - Three Phase Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  11. Data:08b76cd3-a1c9-4427-a9bc-462d341169e4 | Open Energy Information

    Open Energy Info (EERE)

    name: Residential Service Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  12. Data:883ce97d-1579-47b3-b9cc-8a63ceb42c11 | Open Energy Information

    Open Energy Info (EERE)

    name: Housing Authority Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  13. Data:7c0ddb1d-c256-4d7a-9985-8cc1e8c1443c | Open Energy Information

    Open Energy Info (EERE)

    known: Rate name: Cabin Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  14. Data:035076d8-1c5e-47c1-abd9-4a927a13d51a | Open Energy Information

    Open Energy Info (EERE)

    Government and School Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  15. Data:B676dbee-0314-4845-8ae0-bdd0934120b9 | Open Energy Information

    Open Energy Info (EERE)

    Street Lighting- 250 LED Sector: Lighting Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  16. Data:D4d84505-1278-4ccb-b9a1-d4ce195ed85c | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Large Power Sector: Industrial Description: Source or reference: ISU documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  17. Data:53cfa2c8-9d75-460a-a760-64b2d0ef54d3 | Open Energy Information

    Open Energy Info (EERE)

    Street Lighting 175 watt Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  18. Data:C936c73d-9070-4f94-bbef-d3c17d593059 | Open Energy Information

    Open Energy Info (EERE)

    Large General Service Sector: Commercial Description: Source or reference: Isu Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  19. Data:28430969-c005-40ae-b536-3803ebcf4fb0 | Open Energy Information

    Open Energy Info (EERE)

    Industrial Sector: Industrial Description: Industrial Source or reference: isu documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  20. Data:71b2fe84-e386-4851-84cf-9f55018816f7 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Electric Heat Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  1. Data:50b392ec-4f2b-4e74-bb44-9c6228e9aca4 | Open Energy Information

    Open Energy Info (EERE)

    Irrigation - Single Phase Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  2. Data:Cd76e47a-80a9-40b5-8f11-3ce900a69292 | Open Energy Information

    Open Energy Info (EERE)

    Street Lighting- 70 LED Sector: Lighting Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  3. Data:385d29a4-53bb-4113-8607-f55f88d7765d | Open Energy Information

    Open Energy Info (EERE)

    name: Seasonal Power Rate Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  4. Data:09ddb1c8-9a7d-462d-be17-0bb03852a18b | Open Energy Information

    Open Energy Info (EERE)

    Outdoor Lighting Service Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  5. Data:807a1d61-cc80-4762-aedc-900bef9f0abf | Open Energy Information

    Open Energy Info (EERE)

    Ag-Residential Service Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  6. Data:B59dfb6e-b3b5-4fbd-9a80-e551c3a1ed13 | Open Energy Information

    Open Energy Info (EERE)

    400 Watt Metal Halide Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  7. Data:C783e037-892a-49f1-bd78-494c10f00535 | Open Energy Information

    Open Energy Info (EERE)

    Farm Electric Service Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  8. Data:61524363-ccb5-4f66-a238-bd43fc989e84 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Commercial AE Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  9. Data:07514b67-8e01-4e88-b4e0-9425dec89ae3 | Open Energy Information

    Open Energy Info (EERE)

    Single Phase Outside City Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  10. Data:Ca926bf6-4288-48ba-b84f-d90e5107dabc | Open Energy Information

    Open Energy Info (EERE)

    Street Lighting- 175 Watt Sector: Lighting Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  11. Data:D327ffd8-d849-4231-8c99-918ad5dab128 | Open Energy Information

    Open Energy Info (EERE)

    Sector: Residential Description: Residential Rates Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  12. Data:0467b63b-0dfb-4f48-8e70-6d60a3f9cba6 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Dual Fuel Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  13. Data:E7db5131-d774-457b-9dcd-9eeb13e21625 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Residential Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  14. Data:0193ff86-4a6c-403f-8d65-ac3a04897b32 | Open Energy Information

    Open Energy Info (EERE)

    Current for Irrigation Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  15. Data:26327c57-27c6-4c12-8434-d2594eff4a74 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Large Power Sector: Industrial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  16. Data:Ab7c8ae5-48f1-44ee-833f-a751a6f9c845 | Open Energy Information

    Open Energy Info (EERE)

    name: Residential Rate Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  17. Data:Eb4b9d16-09c6-4245-a92e-82239fe67e8d | Open Energy Information

    Open Energy Info (EERE)

    name: General Service Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  18. Data:A6bcb0e9-ae15-4959-9f49-40d4978c2e39 | Open Energy Information

    Open Energy Info (EERE)

    Small Commercial Service Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  19. Data:B9fe80b7-b201-4810-aeea-5d5fc04abc10 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Public Schools Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  20. Data:80b8a51a-0c9b-46ef-99c6-1ac68529592f | Open Energy Information

    Open Energy Info (EERE)

    name: Residential Service Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  1. Data:4329de8f-344f-4ca6-a6f1-4386af8b9515 | Open Energy Information

    Open Energy Info (EERE)

    Street Lighting- 100 Watt Sector: Lighting Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  2. Data:3b60c8f8-b4ba-40bd-944c-29974a5bc69d | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Outdoor Lighting Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  3. Data:7da9fb6d-395e-466f-8865-016e956e7d1e | Open Energy Information

    Open Energy Info (EERE)

    Street Lighting- 400 Watt Sector: Lighting Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  4. Data:03a5a8f6-9922-4d50-a925-52216f595986 | Open Energy Information

    Open Energy Info (EERE)

    Security Light - 100 HPS Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  5. Data:Eb67a71d-31e9-4ef4-af40-4e21f748f831 | Open Energy Information

    Open Energy Info (EERE)

    name: Residential- Urban Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  6. Data:C0f53282-f84d-4414-9d75-3ea2a946f802 | Open Energy Information

    Open Energy Info (EERE)

    Electric Heat Residential Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  7. Data:Dd5a5cb0-c416-4d2c-8361-0fe1ba286aa7 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Residential Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  8. Data:8533d8f6-4ed4-4fa9-954b-739cdafc3966 | Open Energy Information

    Open Energy Info (EERE)

    Sector: Commercial Description: *Demand resale 10.55kw Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  9. Load sharing operation of a 14kW photovoltaic/wind hybrid power system

    SciTech Connect (OSTI)

    Kim, S.; Kim, C. [Kongju National Univ., Chungnam (Korea, Republic of). Dept. of Electrical Engineering; Song, J.; Yu, G.; Jung, Y. [Korea Inst. of Energy Research, Taejon (Korea, Republic of). Photovoltaic Research Team

    1997-12-31T23:59:59.000Z

    In this paper, a design procedure for photovoltaic/wind hybrid power generation system is presented. The hybrid system is composed of a DC/DC converter for a photovoltaic energy conversion, a DC/DC converter for a wind energy conversion, a four switch IGBT inverter converting the combined DC power to the AC power and a backup power battery. Here, it is very important to select the desired battery size to meet the stable output and economic cost aspect since this system utilizes fluctuating and finite energy resource. The purpose of this paper is to develop a sizing method for the PV/Wind energy hybrid system with load sharing operation. The method demonstrates a simple tool to determine the desired battery size that satisfies the energy demand from the user with the photovoltaic and wind natural source. The proposed method is verified on a 14kW hybrid power system including a 10kW PV generator and a 4kW wind generator established in Cheju island, Korea.

  10. A study of industrial equipment energy use and demand control

    E-Print Network [OSTI]

    Dooley, Edward Scott

    2001-01-01T23:59:59.000Z

    Technologies. A battery storage system, capable of providing up to 5, 000 kW was installed (Hunt 1999). The batterics allow the plant's demand peaks to be lowcrcd by using energy stored in the batteries during off-peak periods to provide a portion...

  11. Study of Energy and Demand Savings on a High Efficiency Hydraulic Pump System with Infinite Turn Down Technology (ITDT)

    E-Print Network [OSTI]

    Sfeir, R. A.; Kanungo, A.; Liou, S.

    2005-01-01T23:59:59.000Z

    Detailed field measurement and verification of electrical energy (kWh) and demand (kW) savings is conducted on an injection molding machine used in typical plastic manufacturing facility retrofitted with a high efficiency hydraulic pump system...

  12. Data:4513176c-0d08-4d0f-8493-fedb3c8d0965 | Open Energy Information

    Open Energy Info (EERE)

    Description: Less than 40 KW Source or reference: Rate Binder Kelly 3 ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  13. Data:0063ee6c-c36a-4703-a637-16dc188288c3 | Open Energy Information

    Open Energy Info (EERE)

    Industrial Description: Less than 40KW Source or reference: Rate Binder Kelly 3 ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  14. Demand Response and Open Automated Demand Response

    E-Print Network [OSTI]

    LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

  15. 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project

    SciTech Connect (OSTI)

    S. Merrill Skeist; Richard H. (Dick) Baker; Anthony G.P. Marini; DOE Project Officer - Keith Bennett

    2006-03-21T23:59:59.000Z

    Project Final Report for "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project" prepared under DOE grant number DE-FG36-03GO13138. This project relates to the further development and prototype construction/evaluation for the Energy Transfer Multiplexer (ETM) power converter topology concept. The ETM uses a series resonant link to transfer energy from any phase of a multiphase input to any phase of a multiphase output, converting any input voltage and frequency to any output voltage and frequency. The basic form of the ETM converter consists of an eight (8)-switch matrix (six phase power switches and two ground power switches) and a series L-C resonant circuit. Electronic control of the switches allows energy to be transferred in the proper amount from any phase to any other phase. Depending upon the final circuit application, the switches may be either SCRs or IGBTs. The inherent characteristics of the ETM converter include the following: Power processing in either direction (bidirectional); Large voltage gain without the need of low frequency magnetics; High efficiency independent of output load and frequency; Wide bandwidth with fast transient response and; Operation as a current source. The ETM is able to synthesize true sinusoidal waveforms with low harmonic distortions. For a low power PM wind generation system, the ETM has the following characteristics and advantages: It provides voltage gain without the need of low frequency magnetics (DC inductors) and; It has constant high efficiency independent of the load. The ETM converter can be implemented into a PM wind power system with smaller size, reduced weight and lower cost. As a result of our analyses, the ETM offers wind power generation technology for the reduction of the cost and size as well as the increase in performance of low power, low wind speed power generation. This project is the further theoretical/analytical exploration of the ETM converter concept in relationship to PM wind power generator applications in the 100kW and under power range. The theoretical/analytical and bench scale work focuses on simplifying the basic ETM converter topology (in terms of parts count and complexity) for the specific application of the low power PM system. The project goals and objectives were for Spellman HV will develop a 100kW prototype ETM power converter based on paralleled lower ratings converters. The proposed configuration of this prototype is a 100kW rated converter comprised of four (4) 34kW rated modules connected in parallel (the fourth converter is included to demonstrate N+1 fault tolerance). This approach is more viable as there is lower technological risk involved in developing a 34kW-rated converter than a single 100kW unit. The modular system approach should have a lower deployment and service cost over a single unit system, because of the economics of scale (smaller units at a higher volume means lower manufacturing cost) and because of improved serviceability (a non-redundant power system with one failed module will still operate at a lower power level). There is also the added benefit that greater commercial application and acceptance should be achieved by having a modular system available in which fault tolerance (N+1 or 2N) is a feature. This modular approach would allow the output power to be increased by adding more paralleled converters. Thus, the maximum output power of the overall power system is a function of the interconnection medium (the hot swap connection subsystem), rather than the ratings of a single module. The project was implemented with Spellman HV acting as the program management and production assembly and test facility; The Baker Company acting as a technical consultant and resource when required; and dtm Associates acting as the design/development resource for the hardware development of the 100kW ETM converter prototype.

  16. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  17. Data:604c58ea-529c-435b-aa28-09ddabfa18e9 | Open Energy Information

    Open Energy Info (EERE)

    Sector: Commercial Description: *Demand resale 10.04 Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  18. Data:9732dc89-863b-4129-8d3a-975c501f5041 | Open Energy Information

    Open Energy Info (EERE)

    Sector: Commercial Description: *Demand resale 13.50 Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  19. Maximum-Demand Rectangular Location Problem 1. Introduction

    E-Print Network [OSTI]

    2014-10-01T23:59:59.000Z

    Sep 29, 2014 ... ... randomly generated instances using our exact algorithm, we benchmark the performance ...... The definition and usage of these indicators.

  20. Data:40886b73-f968-4dbf-b0e4-d54df03630a8 | Open Energy Information

    Open Energy Info (EERE)

    Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V):...

  1. Data:Fb6bfa25-64ae-4c87-b424-90fc4e710d89 | Open Energy Information

    Open Energy Info (EERE)

    Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V):...

  2. Data:Af44dc0c-12b1-434b-8a26-dbc88de4ec13 | Open Energy Information

    Open Energy Info (EERE)

    Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V):...

  3. Data:E9ea84c4-7ab3-49d4-93b8-bd9e6bce6fea | Open Energy Information

    Open Energy Info (EERE)

    Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V):...

  4. Data:8d3ee145-f490-4a13-bf22-f70de8958abc | Open Energy Information

    Open Energy Info (EERE)

    www.stcharlesil.govcodebooktitle-13 Comments Applicability Demand (kW) Minimum (kW): 450 Maximum (kW): History (months): 1 Energy (kWh) Minimum (kWh): Maximum (kWh): History...

  5. Development of an Underamor 1-kW Thermoelectric Generator Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for Military Vehicles Development of an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for...

  6. 1-10 kW Stationary Combined Heat and Power Systems Status and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review 1-10 kW Stationary Combined Heat and Power Systems Status and Technical...

  7. Data:Fed40cee-9774-4932-9a0b-d6de2b40a278 | Open Energy Information

    Open Energy Info (EERE)

    purposes. Source or reference: http:www.cheyennelight.comsitesdefaultfilesclfpelectricity.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum...

  8. Data:88c0010b-492a-492c-b653-0335cae19a72 | Open Energy Information

    Open Energy Info (EERE)

    resale service Source or reference: http:www.cheyennelight.comsitesdefaultfilesclfpelectricity.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): 0 Maximum...

  9. Data:07daffe9-e56d-459c-8045-e92f8ca7fe2f | Open Energy Information

    Open Energy Info (EERE)

    service. Source or reference: http:www.cheyennelight.comsitesdefaultfilesclfpelectricity.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum...

  10. Data:A1681015-c549-4a18-94f4-2332a20e0b51 | Open Energy Information

    Open Energy Info (EERE)

    and regulations of the Cooperative. Source or reference: http:www.dce.coopcontentelectricity-rates Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum...

  11. Data:627a1e70-3c8a-40d5-ad9f-61a12ad9374c | Open Energy Information

    Open Energy Info (EERE)

    only shall be granted for customer ownerhips, installation and maintenance of transformers and low voltage services entrance. Applicability Demand (kW) Minimum (kW): Maximum...

  12. Data:40519767-a6ba-4ac4-b266-b8d527f70297 | Open Energy Information

    Open Energy Info (EERE)

    444 Street lights. Source or reference: http:www.pioneerelectric.coopdocumentstariff-schedules.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum...

  13. Data:4f49df25-7a2a-45b7-a370-80e67f71e382 | Open Energy Information

    Open Energy Info (EERE)

    444 Street lights. Source or reference: http:www.pioneerelectric.coopdocumentstariff-schedules.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum...

  14. Data:F4be6666-f245-48c1-b5a5-88c79d2a1476 | Open Energy Information

    Open Energy Info (EERE)

    444 Street lights. Source or reference: http:www.pioneerelectric.coopdocumentstariff-schedules.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum...

  15. Data:Fe99215f-f77b-4cf8-bfb9-6a328a729950 | Open Energy Information

    Open Energy Info (EERE)

    Commercial Description: Source or reference: http:www.pioneerelectric.coopdocumentstariff-schedules.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum...

  16. Data:E91e4129-ff68-4098-854b-46b777bdc22f | Open Energy Information

    Open Energy Info (EERE)

    444 Street lights. Source or reference: http:www.pioneerelectric.coopdocumentstariff-schedules.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum...

  17. Data:05bb19d0-ec86-4b6b-8861-de6804030c57 | Open Energy Information

    Open Energy Info (EERE)

    source for more information. Source or reference: http:www.linncountyrec.comfilestariffSheet100.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum...

  18. Data:F6fb5948-6080-45da-b55e-73808fcbb36d | Open Energy Information

    Open Energy Info (EERE)

    Commercial Description: Source or reference: http:www.pioneerelectric.coopdocumentstariff-schedules.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum...

  19. Data:C217e9ec-60fc-4aaf-9707-800f330074a4 | Open Energy Information

    Open Energy Info (EERE)

    Industrial- SGSD Sector: Industrial Description: (>25 MW) Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): 25000 Maximum...

  20. Data:E2066785-53a7-47a3-a5c1-7c5e2eb194ca | Open Energy Information

    Open Energy Info (EERE)

    Industrial- SMSD Sector: Industrial Description: (>25 MW) Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): 25000 Maximum...

  1. Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2012-12-20T23:59:59.000Z

    This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities The average baseline demand at the Southeast facility was approximately 4 MW. During the rainy season (October-March) the facility treated 40% more wastewater than the dry season, but demand only increased by 4%. Submetering of the facility's lift pumps and centrifuges predicted load shifts capabilities of 154 kW and 86 kW, respectively, with large lift pump shifts in the rainy season. Analysis of demand data during maintenance events confirmed the magnitude of these possible load shifts, and indicated other areas of the facility with demand response potential. Load sheds were seen to be possible by shutting down a portion of the facility's aeration trains (average shed of 132 kW). Load shifts were seen to be possible by shifting operation of centrifuges, the gravity belt thickener, lift pumps, and external pump stations These load shifts were made possible by the storage capabilities of the facility and of the city's sewer system. Large load reductions (an average of 2,065 kW) were seen from operating the cogeneration unit, but normal practice is continuous operation, precluding its use for demand response. The study also identified potential demand response opportunities that warrant further study: modulating variable-demand aeration loads, shifting operation of sludge-processing equipment besides centrifuges, and utilizing schedulable self-generation.

  2. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CA Control Areas CO 2 Carbon Dioxide CHP Combined Heat and Power CPP Critical Peak Pricing DG Distributed Generation DOE Department of Energy DR Demand Response DRCC Demand...

  3. A DISTRIBUTED INTELLIGENT AUTOMATED DEMAND RESPONSE BUILDING MANAGEMENT SYSTEM

    SciTech Connect (OSTI)

    Auslander, David; Culler, David; Wright, Paul; Lu, Yan; Piette, Mary

    2013-12-30T23:59:59.000Z

    The goal of the 2.5 year Distributed Intelligent Automated Demand Response (DIADR) project was to reduce peak electricity load of Sutardja Dai Hall at UC Berkeley by 30% while maintaining a healthy, comfortable, and productive environment for the occupants. We sought to bring together both central and distributed control to provide “deep” demand response1 at the appliance level of the building as well as typical lighting and HVAC applications. This project brought together Siemens Corporate Research and Siemens Building Technology (the building has a Siemens Apogee Building Automation System (BAS)), Lawrence Berkeley National Laboratory (leveraging their Open Automated Demand Response (openADR), Auto-­Demand Response, and building modeling expertise), and UC Berkeley (related demand response research including distributed wireless control, and grid-­to-­building gateway development). Sutardja Dai Hall houses the Center for Information Technology Research in the Interest of Society (CITRIS), which fosters collaboration among industry and faculty and students of four UC campuses (Berkeley, Davis, Merced, and Santa Cruz). The 141,000 square foot building, occupied in 2009, includes typical office spaces and a nanofabrication laboratory. Heating is provided by a district heating system (steam from campus as a byproduct of the campus cogeneration plant); cooling is provided by one of two chillers: a more typical electric centrifugal compressor chiller designed for the cool months (Nov-­ March) and a steam absorption chiller for use in the warm months (April-­October). Lighting in the open office areas is provided by direct-­indirect luminaries with Building Management System-­based scheduling for open areas, and occupancy sensors for private office areas. For the purposes of this project, we focused on the office portion of the building. Annual energy consumption is approximately 8053 MWh; the office portion is estimated as 1924 MWh. The maximum peak load during the study period was 1175 kW. Several new tools facilitated this work, such as the Smart Energy Box, the distributed load controller or Energy Information Gateway, the web-­based DR controller (dubbed the Central Load-­Shed Coordinator or CLSC), and the Demand Response Capacity Assessment & Operation Assistance Tool (DRCAOT). In addition, an innovative data aggregator called sMAP (simple Measurement and Actuation Profile) allowed data from different sources collected in a compact form and facilitated detailed analysis of the building systems operation. A smart phone application (RAP or Rapid Audit Protocol) facilitated an inventory of the building’s plug loads. Carbon dioxide sensors located in conference rooms and classrooms allowed demand controlled ventilation. The extensive submetering and nimble access to this data provided great insight into the details of the building operation as well as quick diagnostics and analyses of tests. For example, students discovered a short-­cycling chiller, a stuck damper, and a leaking cooling coil in the first field tests. For our final field tests, we were able to see how each zone was affected by the DR strategies (e.g., the offices on the 7th floor grew very warm quickly) and fine-­tune the strategies accordingly.

  4. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

  5. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

  6. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  7. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01T23:59:59.000Z

    benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

  8. 500-kW DCHX pilot-plant evaluation testing

    SciTech Connect (OSTI)

    Hlinak, A.; Lee, T.; Loback, J.; Nichols, K.; Olander, R.; Oshmyansky, S.; Roberts, G.; Werner, D.

    1981-10-01T23:59:59.000Z

    Field tests with the 500 kW Direct Contact Pilot Plant were conducted utilizing brine from well Mesa 6-2. The tests were intended to develop comprehensive performance data, design criteria, and economic factors for the direct contact power plant. The tests were conducted in two phases. The first test phase was to determine specific component performance of the DCHX, turbine, condensers and pumps, and to evaluate chemical mass balances of non-condensible gases in the IC/sub 4/ loop and IC/sub 4/ in the brine stream. The second test phase was to provide a longer term run at nearly fixed operating conditions in order to evaluate plant performance and identify operating cost data for the pilot plant. During these tests the total accumulated run time on major system components exceeded 1180 hours with 777 hours on the turbine prime mover. Direct contact heat exchanger performance exceeded the design prediction.

  9. 10kW SOFC POWER SYSTEM COMMERCIALIZATION

    SciTech Connect (OSTI)

    Dan Norrick; Charles Vesely; Todd Romine; Brad Palmer; Greg Rush; Eric Barringer; Milind Kantak; Cris DeBellis

    2003-02-01T23:59:59.000Z

    Participants in the SECA 10 kW SOFC Power System Commercialization project include Cummins Power Generation (CPG), the power generation arm of Cummins, Inc., SOFCo-EFS Holdings, LLC (formerly McDermott Technology, Inc.), the fuel cell and fuel processing research and development arm of McDermott International Inc., M/A-COM, the Multi-Layer Ceramics (MLC) processing and manufacturing arm of Tyco Electronics, and Ceramatec, a materials technology development company. CPG functions in the role of prime contractor and system integrator. SOFCo-EFS is responsible for the design and development of the hot box assembly, including the SOFC stack(s), heat exchanger(s), manifolding, and fuel reformer. M/A-COM and SOFCo-EFS are jointly responsible for development of the MLC manufacturing processes, and Ceramatec provides technical support in materials development. In October 2002, McDermott announced its intention to cease operations at McDermott Technology, Inc. (MTI) as of December 31, 2002. This decision was precipitated by several factors, including the announced tentative settlement of the B&W Bankruptcy which would result in all of the equity of B&W being conveyed to a trust, thereby eliminating McDermott's interest in the company, and the desire to create a separate fuel cell entity to facilitate its commercial development. The new fuel cell entity is named SOFCo-EFS Holdings, LLC. All of McDermott's solid oxide fuel cell and fuel processing work will be conducted by SOFCo-EFS, using personnel previously engaged in that work. SOFCo-EFS will continue to be located in the Alliance, OH facility and use the existing infrastructure and test facilities for its activities. While the effort needed to accomplish this reorganization has detracted somewhat from SOFCo's efficiency during the fourth quarter, we believe the improved focus on the core fuel cell and fuel reformation resulting from the reorganization will have a positive impact on the SECA project in the long run. The program is organized into three developmental periods. In Phase 1 the team will develop and demonstrate a proof-of-concept prototype design and develop the manufacturing plan to substantiate potential producibility at a target cost level of $800/kW factory manufacturing cost. Phase 2 will further develop the design and reduce the projected manufacturing cost to $600 kW. Depending on an assessment of the maturity of the technology at the end of Phase 1, Phase 2 may be structured and supplemented to develop a limited production capability. Finally, in Phase 3, a full Value Package Introduction (VPI) Program will be integrated with the SECA program to develop a mass-producible design, with a factory manufacturing cost of $400/kW, and with full cross-functional support for unrestricted commercial sales.

  10. 225-kW Dynamometer for Testing Small Wind Turbine Components (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    This fact sheet describes the capabilities, operating envelope, loads and components of the 225-kW dynamometer at the NWTC.

  11. MELE: Maximum Entropy Leuven Estimators

    E-Print Network [OSTI]

    Paris, Quirino

    2001-01-01T23:59:59.000Z

    of the Generalized Maximum Entropy Estimator of the Generaland Douglas Miller, Maximum Entropy Econometrics, Wiley andCalifornia Davis MELE: Maximum Entropy Leuven Estimators by

  12. Maximum Parsimony and Maximum Likelihood Methods Comparisons and Bootstrap Tests

    E-Print Network [OSTI]

    Qiu, Weigang

    Maximum Parsimony and Maximum Likelihood Methods Comparisons and Bootstrap Tests Character Likelihood Methods Comparisons and Bootstrap Tests Character Reconstruction PHYLIP and T-REX Exercises Outline 1 Maximum Parsimony and Maximum Likelihood 2 Methods Comparisons and Bootstrap Tests 3 Character

  13. Maximum Power Point Tracking Control for Photovoltaic System Using Adaptive Neuro-Fuzzy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Maximum Power Point Tracking Control for Photovoltaic System Using Adaptive Neuro- Fuzzy "ANFIS energy demand. The mathematical modeling and simulation of the photovoltaic system is implemented) like ANFIS. This paper presents Maximum Power Point Tracking Control for Photovoltaic System Using

  14. Data:F8229eec-f0ec-483a-9091-dd160a194dfc | Open Energy Information

    Open Energy Info (EERE)

    www.uppco.comcompanytariffsUD2D8 Source Parent: http:www.uppco.comcompanymitariffs.aspx Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History...

  15. Data:Fc71194a-35b1-4faa-a5ef-d0e21646a459 | Open Energy Information

    Open Energy Info (EERE)

    mitariffsED4D38.pdf Source Parent: http:www.wisconsinpublicservice.comcompanymitariffs.aspx Comments Applicability Demand (kW) Minimum (kW): 10000 Maximum (kW): History...

  16. Data:B0a591b2-7084-43d6-b344-f79c6075831f | Open Energy Information

    Open Energy Info (EERE)

    htdocstariffswyhwe1hwe.pdf Source Parent: http:psc.state.wy.ushtdocsWyUtilityTariffsnew.htm Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History...

  17. Data:207ad16f-deec-4544-bfa7-c4b965693926 | Open Energy Information

    Open Energy Info (EERE)

    mitariffsED4D38.pdf Source Parent: http:www.wisconsinpublicservice.comcompanymitariffs.aspx Comments Applicability Demand (kW) Minimum (kW): 100 Maximum (kW): 10000...

  18. Data:9cbda9cf-ac90-450e-abb9-8de540098f12 | Open Energy Information

    Open Energy Info (EERE)

    Wattages & Types of Lights Source or reference: http:www.cl-p.comRatesRatesandTariffs Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  19. Data:89a2c007-4468-4e17-8696-47f16d4f36c9 | Open Energy Information

    Open Energy Info (EERE)

    htdocstariffswyhwe1hwe.pdf Source Parent: http:psc.state.wy.ushtdocsWyUtilityTariffsnew.htm Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History...

  20. Data:B03f35f5-3d19-42b6-94fb-ab65c5a6f1b4 | Open Energy Information

    Open Energy Info (EERE)

    htdocstariffswyhwe1hwe.pdf Source Parent: http:psc.state.wy.ushtdocsWyUtilityTariffsnew.htm Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History...

  1. Data:D22b9bfd-313b-4dcf-b900-0f75df32d792 | Open Energy Information

    Open Energy Info (EERE)

    jacksonremc.coopwebbuilder.comfilesr15ratep2010-10.pdf Source Parent: Comments Power Cost Adjustment 0.007575kWh Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  2. Data:Add21b94-abfe-4e73-90f6-bf0157c4bbc2 | Open Energy Information

    Open Energy Info (EERE)

    to the rates. Source or reference: http:www.sterlingcodifiers.comcodebookindex.php?bookid832 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  3. Data:74773c86-c567-41d6-b209-f485f52b948f | Open Energy Information

    Open Energy Info (EERE)

    Sector: Commercial Description: Source or reference: http:cnmec.orgindex.php?pageelectric-ratess Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  4. Data:9aa1b1a4-8b9e-4f99-8004-ceaa76f8108c | Open Energy Information

    Open Energy Info (EERE)

    for new or replacement lights. Source or reference: http:www.cityutilities.netpricingpricing.htm Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  5. Data:1a66038e-8f16-4019-89d1-c35850cc4b9b | Open Energy Information

    Open Energy Info (EERE)

    for new or replacement lights. Source or reference: http:www.cityutilities.netpricingpricing.htm Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  6. Data:6d66c817-2fce-4551-9b72-351e9bdcd63b | Open Energy Information

    Open Energy Info (EERE)

    for new or replacement lights. Source or reference: http:www.cityutilities.netpricingpricing.htm Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  7. Data:Ffd2e5d8-39ac-4196-87df-2e5011f37cd0 | Open Energy Information

    Open Energy Info (EERE)

    for new or replacement lights. Source or reference: http:www.cityutilities.netpricingpricing.htm Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  8. Data:0cfb90e3-87ea-4a70-898f-5be167744005 | Open Energy Information

    Open Energy Info (EERE)

    for new or replacement lights. Source or reference: http:www.cityutilities.netpricingpricing.htm Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  9. Data:D09d25ff-8cd8-4401-91fd-23ae0d5180fd | Open Energy Information

    Open Energy Info (EERE)

    for new or replacement lights. Source or reference: http:www.cityutilities.netpricingpricing.htm Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  10. Data:F13a77e9-cec6-4110-8b25-3a8a75dfa606 | Open Energy Information

    Open Energy Info (EERE)

    for new or replacement lights. Source or reference: http:www.cityutilities.netpricingpricing.htm Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  11. Data:7be77054-a962-44b5-be23-59be27af310d | Open Energy Information

    Open Energy Info (EERE)

    for new or replacement lights. Source or reference: http:www.cityutilities.netpricingpricing.htm Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  12. Data:9a5c561e-59ab-48c7-9512-8e922a258298 | Open Energy Information

    Open Energy Info (EERE)

    for new or replacement lights. Source or reference: http:www.cityutilities.netpricingpricing.htm Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  13. Data:B829faea-0f4c-40ae-b851-89eb1d46447c | Open Energy Information

    Open Energy Info (EERE)

    for new or replacement lights. Source or reference: http:www.cityutilities.netpricingpricing.htm Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  14. Data:Cce77243-dd33-4763-aeb7-be03857267a6 | Open Energy Information

    Open Energy Info (EERE)

    rates.html Comments *Rates also subject to Purchased Power Adjustment and Hydropower Credit Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months):...

  15. Data:485cf6ea-9484-4a00-96b9-06b900098d35 | Open Energy Information

    Open Energy Info (EERE)

    reference: http:psc.ky.govtariffsElectricSalt%20River%20Electric%20Coop.%20CorpTariff.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  16. Data:C9457845-142d-49ce-a419-e9567ce8b685 | Open Energy Information

    Open Energy Info (EERE)

    reference: http:psc.ky.govtariffsElectricSalt%20River%20Electric%20Coop.%20CorpTariff.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  17. Data:D4fd87b7-b602-4c23-942c-199581ee7a18 | Open Energy Information

    Open Energy Info (EERE)

    reference: http:psc.ky.govtariffsElectricSalt%20River%20Electric%20Coop.%20CorpTariff.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  18. Data:8ffc62a9-322b-4520-88c7-59f7a6309634 | Open Energy Information

    Open Energy Info (EERE)

    reference: http:psc.ky.govtariffsElectricSalt%20River%20Electric%20Coop.%20CorpTariff.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  19. Data:8fac01a0-76ee-48f3-8f3f-6cc62ec32199 | Open Energy Information

    Open Energy Info (EERE)

    reference: http:psc.ky.govtariffsElectricSalt%20River%20Electric%20Coop.%20CorpTariff.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  20. Data:047a4b12-0a4e-4f3d-af33-ba502a989927 | Open Energy Information

    Open Energy Info (EERE)

    reference: http:psc.ky.govtariffsElectricSalt%20River%20Electric%20Coop.%20CorpTariff.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  1. Data:E71d353e-a3d0-41b6-bd3f-a4af243d465c | Open Energy Information

    Open Energy Info (EERE)

    reference: http:psc.ky.govtariffsElectricSalt%20River%20Electric%20Coop.%20CorpTariff.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  2. Data:00b5d13d-dbfc-45ae-b7c5-f3051807f38f | Open Energy Information

    Open Energy Info (EERE)

    ontonagonmemberregcur.pdf Source Parent: Comments there is also a 140.03 energy optimization surcharge. Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months):...

  3. Data:De9c75a0-4cc8-4567-9801-b73c30d7ed85 | Open Energy Information

    Open Energy Info (EERE)

    ontonagonmemberregcur.pdf Source Parent: Comments there is also a 19.25 energy optimization surcharge Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months):...

  4. Data:E3d44d70-6a70-4307-b849-6517e3289756 | Open Energy Information

    Open Energy Info (EERE)

    Lighting- 400W Mercury Vapor Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  5. Data:38685f64-7610-4bcf-a3c7-8211d1c81b0b | Open Energy Information

    Open Energy Info (EERE)

    Lighting- 1000W Metal Halide Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  6. Data:8d9e38f5-6312-4ef0-a7ea-9f7c24286287 | Open Energy Information

    Open Energy Info (EERE)

    name: Three-Phase (Under 100 kva) Sector: Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  7. Data:76725435-78e8-48fa-8f6e-181c5bff4a47 | Open Energy Information

    Open Energy Info (EERE)

    Lighting- 400W Metal Halide Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  8. Data:D0b1be3f-6d90-470f-b82a-1fc113e7fa82 | Open Energy Information

    Open Energy Info (EERE)

    if known: Rate name: SMSC Sector: Industrial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  9. Data:83ca2721-b57a-43eb-891b-dd84c6a300c7 | Open Energy Information

    Open Energy Info (EERE)

    name: GSA 3 General Power Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  10. Data:745ef357-1c0a-42eb-9d2d-3d20418599bc | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Lighting- C4R4 Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  11. Data:852810d2-a8b1-4bd4-a558-101a3b9866a3 | Open Energy Information

    Open Energy Info (EERE)

    name: Street Lighting- D400 Sector: Lighting Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  12. Data:47b77158-2f20-4907-95c8-fa3d068c3333 | Open Energy Information

    Open Energy Info (EERE)

    Lighting- 175W Mercury Vapor Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  13. Data:8f232e3e-55e1-4ebc-98d8-af654c7bde08 | Open Energy Information

    Open Energy Info (EERE)

    Single-Phase Service (Under 100 kva) Sector: Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  14. Data:2c22ed20-81bd-48c1-84c3-86698a2ad3d0 | Open Energy Information

    Open Energy Info (EERE)

    name: Lighting- 400W HPS Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  15. Data:01016adc-651e-498c-aa04-a8b8ead3f012 | Open Energy Information

    Open Energy Info (EERE)

    Rate B Sector: Industrial Description: Source or reference: Rate Binder Kelly 3 ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  16. Data:02fa503a-5b82-44d0-bb7e-a9c5fa4d3c4c | Open Energy Information

    Open Energy Info (EERE)

    Power Obsolete-Commercial part 1 Sector: Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  17. Data:6c4ddf56-513c-40e6-930f-83c91503ba4e | Open Energy Information

    Open Energy Info (EERE)

    if known: Rate name: SMSD Sector: Industrial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  18. Data:Fc1fb8cb-2413-4f2a-bedf-27d0e7dd65b1 | Open Energy Information

    Open Energy Info (EERE)

    if known: Rate name: TDGSA Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  19. Data:A0b17f14-e3be-4c52-b9fa-6693d536a3b7 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Lighting- C1R1 Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  20. Data:38219556-da51-403f-ad02-c23bccfa3889 | Open Energy Information

    Open Energy Info (EERE)

    name: Yard Light Rate- 100W Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  1. Data:8149b1ca-a5b5-4cb1-9a9b-5ac773d9d89f | Open Energy Information

    Open Energy Info (EERE)

    known: Rate name: SDE SMSD Sector: Industrial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  2. Data:9b3885e1-f78e-48c9-827f-4eae397aa7b9 | Open Energy Information

    Open Energy Info (EERE)

    if known: Rate name: SMSB Sector: Industrial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  3. Data:B5b6c37f-2f88-4cf0-bb30-e1eee60320b2 | Open Energy Information

    Open Energy Info (EERE)

    if known: Rate name: MSB Sector: Commercial Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  4. Data:396db9c3-c19d-477b-a936-6a4ad94e66f7 | Open Energy Information

    Open Energy Info (EERE)

    known: Rate name: TOU MSB Sector: Industrial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  5. Data:F890887d-0589-432d-86fa-23f7cb15e6db | Open Energy Information

    Open Energy Info (EERE)

    known: Rate name: SDE SMSC Sector: Industrial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  6. Data:4b429ab1-dad7-4723-a59b-64ce33284c1c | Open Energy Information

    Open Energy Info (EERE)

    L2, Acorn, 1 Light Per 6 Sector: Lighting Description: Source or reference: isu documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  7. Data:E0c04e68-750a-430e-bd85-4e486944fd33 | Open Energy Information

    Open Energy Info (EERE)

    known: Rate name: SDE SGSC Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  8. Data:7d6a812f-2954-42fd-817b-9bbb107da2cf | Open Energy Information

    Open Energy Info (EERE)

    known: Rate name: TOU MSD Sector: Industrial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  9. Data:Ea6dcd69-f746-4637-a80a-c94e051e6ef8 | Open Energy Information

    Open Energy Info (EERE)

    if known: Rate name: GSD Sector: Commercial Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  10. Data:8f66d4c8-4781-4648-bcf0-58e4c67979bd | Open Energy Information

    Open Energy Info (EERE)

    known: Rate name: Rate 10 Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  11. Data:55194102-49ca-42cd-8c1c-0c853b7dc6ad | Open Energy Information

    Open Energy Info (EERE)

    and Fraternal-All Electric Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  12. Data:14c8bae1-646d-42ba-8236-a7dafc8f5d00 | Open Energy Information

    Open Energy Info (EERE)

    known: Rate name: WS-MTOU Wholesale Sector: Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  13. Data:Fed0deb6-83af-4309-b6a2-a7ae9eacd4be | Open Energy Information

    Open Energy Info (EERE)

    name: Street Lighting- D250 Sector: Lighting Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  14. Data:0133591f-42a3-40a2-bf96-af17cc68fd03 | Open Energy Information

    Open Energy Info (EERE)

    W HP Sodium without Pole) Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  15. Data:5963c1a9-f6d6-45f9-ad1b-bd2f0849f0e4 | Open Energy Information

    Open Energy Info (EERE)

    Lighting- 250W Metal Halide Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  16. Data:5ed4e0ab-6cb6-48a7-9f91-dbdb6b3d5e88 | Open Energy Information

    Open Energy Info (EERE)

    name: GSA 2 General Power Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  17. Data:2d506599-0310-46b2-bbe0-2fbbfb9ed5ac | Open Energy Information

    Open Energy Info (EERE)

    if known: Rate name: TDMSA Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  18. Data:09a920d7-7be4-42e5-984c-394e1423750e | Open Energy Information

    Open Energy Info (EERE)

    and villages in the Cooperative area for street lighting. Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  19. Data:14e97953-d52b-40bd-9d0b-75c94cb252ca | Open Energy Information

    Open Energy Info (EERE)

    if known: Rate name: GSC Sector: Commercial Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  20. Data:21466bc7-2c8e-4669-b20d-835b4a4c8d06 | Open Energy Information

    Open Energy Info (EERE)

    if known: Rate name: WS-DE Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  1. Data:858ac65b-7bbe-45ad-a0d0-6b40c42f39d6 | Open Energy Information

    Open Energy Info (EERE)

    if known: Rate name: MSD Sector: Commercial Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  2. Data:7eb30509-32e7-45d0-974d-8ee41c36ab42 | Open Energy Information

    Open Energy Info (EERE)

    name: Lighting- 1000W HPS Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  3. Data:A95f18cf-46cb-4651-b834-424b51aa6fde | Open Energy Information

    Open Energy Info (EERE)

    known: Rate name: TOU GSD Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  4. Data:73706e15-a11d-4298-926f-5fad0c2c56d8 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Lighting- C3R3 Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  5. Data:Bd8f2600-334f-4063-b6db-c0d4fa08116c | Open Energy Information

    Open Energy Info (EERE)

    Rate name: General Power 2 Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  6. Data:F94980e7-98df-4291-9afb-999d01780883 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Lighting- I3 Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  7. Data:478d5e4e-ad4d-4e22-b64e-ca788788d41d | Open Energy Information

    Open Energy Info (EERE)

    Rate name: Lighting- C2R2 Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  8. Data:03576abd-1005-489d-b400-9a241524db7b | Open Energy Information

    Open Energy Info (EERE)

    - 2.00 Fiberglass Pole - 10.00fixture for 60 months Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  9. Data:90eb1d4f-b204-4b5a-9d73-f04224bf00de | Open Energy Information

    Open Energy Info (EERE)

    name: Street Lighting- D150 Sector: Lighting Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  10. Data:B36f31f9-5ba6-40a3-9fe4-ad6c4dc663a2 | Open Energy Information

    Open Energy Info (EERE)

    fixture Sector: Lighting Description: Source or reference: Rate Binder Ted 1 ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  11. Data:E1d101a6-5a53-4a27-b895-389da54a496d | Open Energy Information

    Open Energy Info (EERE)

    name: GSA 1 General Power Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  12. Data:09a4e5cb-5dfc-4fba-9e50-20703dd1644c | Open Energy Information

    Open Energy Info (EERE)

    - 2.00 Fiberglass Pole - 10.00fixture for 60 months Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  13. Data:Fdd2d0f5-4736-45f8-b32e-89158106d400 | Open Energy Information

    Open Energy Info (EERE)

    name: Street Lighting- D70 Sector: Lighting Description: Source or reference: *ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  14. Data:A8235a0c-647d-4471-aa23-6fd11ed95753 | Open Energy Information

    Open Energy Info (EERE)

    if known: Rate name: Duel Fuel Rate Sector: Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  15. Data:B3fa0442-e2a0-4272-b37e-4f793a13f3e7 | Open Energy Information

    Open Energy Info (EERE)

    Rate name: General Power 3 Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  16. Data:1ef2f6f9-fc3d-4343-8a9c-46a36f108eda | Open Energy Information

    Open Energy Info (EERE)

    Day boost rate of .073kWh may apply Source or reference: Rate Binder Kelly 3 ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):...

  17. Open Automated Demand Response for Small Commerical Buildings

    SciTech Connect (OSTI)

    Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2009-05-01T23:59:59.000Z

    This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

  18. Maximum Entropy Correlated Equilibria

    E-Print Network [OSTI]

    Ortiz, Luis E.

    2006-03-20T23:59:59.000Z

    We study maximum entropy correlated equilibria in (multi-player)games and provide two gradient-based algorithms that are guaranteedto converge to such equilibria. Although we do not provideconvergence rates for these ...

  19. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    DECC aggregator managed portfolio automated demand responseaggregator designs their own programs, and offers demand responseaggregator is responsible for designing and implementing their own demand response

  20. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Data for Automated Demand Response in Commercial Buildings,Demand Response Infrastructure for Commercial Buildings",demand response and energy efficiency functions into the design of buildings,

  1. ACHIEVING 800 KW CW BEAM POWER AND CONTINUING ENERGY IMPROVEMENTS IN CEBAF*

    E-Print Network [OSTI]

    ACHIEVING 800 KW CW BEAM POWER AND CONTINUING ENERGY IMPROVEMENTS IN CEBAF* C. E. Reece Thomas, CEBAF at Jefferson Lab has demonstrated its full capacity of sustained 800 kW beam power. All systems the energy reach of CEBAF, we began a program of processing all installed cryomodules. This processing has

  2. WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    1 WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE J. F. Manwell, J. G. Mc turbine at Windmill Point in Hull, Massachusetts represents a high point in the long history of wind, through the installation of a 40 kW Enertech machine in the 1980's to the installation of the new turbine

  3. 10 kW SOFC Power System Commercialization

    SciTech Connect (OSTI)

    Dan Norrick; Brad Palmer; Charles Vesely; Eric Barringer; John Budge; Cris DeBellis; Rich Goettler; Milind Kantak; Steve Kung; Zhien Liu; Tom Morris; Keith Rackers; Gary Roman; Greg Rush; Liang Xue

    2006-02-01T23:59:59.000Z

    Cummins Power Generation (CPG) as the prime contractor and SOFCo-EFS Holdings LLC (SOFCo), as their subcontractor, teamed under the Solid-state Energy Conversion Alliance (SECA) program to develop 3-10kW solid oxide fuel cell systems for use in recreational vehicles, commercial work trucks and stand-by telecommunications applications. The program goal is demonstration of power systems that meet commercial performance requirements and can be produced in volume at a cost of $400/kW. This report summarizes the team's activities during the seventh six-month period (July-December 2005) of the four-year Phase I effort. While there has been significant progress in the development of the SOFC subsystems that can support meeting the program Phase 1 goals, the SOFCo ceramic stack technology has progressed significantly slower than plan and CPG consider it unlikely that the systemic problems encountered will be overcome in the near term. SOFCo has struggled with a series of problems associated with inconsistent manufacturing, inadequate cell performance, and the achievement of consistent, durable, low resistance inter-cell connections with reduced or no precious materials. A myriad of factors have contributed to these problems, but the fact remains that progress has not kept pace with the SECA program. A contributing factor in SOFCo's technical difficulties is attributed to their significantly below plan industry cost share spending over the last four years. This has resulted in a much smaller SOFC stack development program, has contributed to SOFCo not being able to aggressively resolve core issues, and clouds their ability to continue into a commercialization phase. In view of this situation, CPG has conducted an independent assessment of the state-of-the-art in planar SOFC's stacks and have concluded that alternative technology exists offering the specific performance, durability, and low cost needed to meet the SECA objectives. We have further concluded that there is insufficient evidence to reliably predict that SOFCo will be able to achieve the SECA performance and cost goals on a schedule consistent with SECA or CPG commercialization goals. CPG believes SOFCo have made a good faith effort consistent with the available resources, but have repeatedly fallen short of achieving the programs scheduled targets. CPG has therefore initiated a process of application for extension of Phase 1 of our SECA program with the intent of transitioning to an alternative stack supplier with more mature SOFC technology, and demonstrating a system meeting the SECA Phase 1 goals by the end of calendar 2006. We have identified an alternative supplier and will be reporting the progress on transition and program planning in monthly technical reports, reviews, and in the next semiannual report.

  4. Demand response enabling technology development

    E-Print Network [OSTI]

    Arens, Edward; Auslander, David; Huizenga, Charlie

    2008-01-01T23:59:59.000Z

    behavior in developing a demand response future. Phase_II_Demand Response Enabling Technology Development Phase IIYi Yuan The goal of the Demand Response Enabling Technology

  5. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

  6. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Demand Response Enabling Technology Development Phase IEfficiency and Demand Response Programs for 2005/2006,Application to Demand Response Energy Pricing” SenSys 2003,

  7. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings”, Lawrencesystems. Demand Response using HVAC in Commercial BuildingsDemand Response Test in Large Facilities13 National Conference on Building

  8. Energy Demand Staff Scientist

    E-Print Network [OSTI]

    Eisen, Michael

    Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused,000 2,000 3,000 4,000 5,000 6,000 7,000 2007 USChina #12;Overview:Overview: Key Energy Demand DriversKey Energy Demand Drivers · 290 million new urban residents 1990-2007 · 375 million new urban residents 2007

  9. Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

  10. Demand Response In California

    Broader source: Energy.gov [DOE]

    Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

  11. Estimating Demand Response Market Potential Among Large Commercialand Industrial Customers:A Scoping Study

    SciTech Connect (OSTI)

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    Demand response is increasingly recognized as an essentialingredient to well functioning electricity markets. This growingconsensus was formalized in the Energy Policy Act of 2005 (EPACT), whichestablished demand response as an official policy of the U.S. government,and directed states (and their electric utilities) to considerimplementing demand response, with a particular focus on "price-based"mechanisms. The resulting deliberations, along with a variety of stateand regional demand response initiatives, are raising important policyquestions: for example, How much demand response is enough? How much isavailable? From what sources? At what cost? The purpose of this scopingstudy is to examine analytical techniques and data sources to supportdemand response market assessments that can, in turn, answer the secondand third of these questions. We focus on demand response for large(>350 kW), commercial and industrial (C&I) customers, althoughmany of the concepts could equally be applied to similar programs andtariffs for small commercial and residential customers.

  12. ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System

    Broader source: Energy.gov [DOE]

    Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

  13. Controlling electric power demand

    SciTech Connect (OSTI)

    Eikenberry, J.

    1984-11-15T23:59:59.000Z

    Traditionally, demand control has not been viewed as an energy conservation measure, its intent being to reduce the demand peak to lower the electric bill demand charge by deferring the use of a block of power to another demand interval. Any energy savings were essentially incidental and unintentional, resulting from curtailment of loads that could not be assumed at another time. This article considers a microprocessor-based multiplexed system linked to a minicomputer to control electric power demand in a winery. In addition to delivering an annual return on investment of 55 percent in electric bill savings, the system provides a bonus in the form of alarm and monitoring capability for critical processes.

  14. Field Verification of Energy and Demand Savings of Two Injection Molding Machines Retrofitted with Variable Frequency Drives

    E-Print Network [OSTI]

    Liou, S. P.; Aguiar, D.

    Detailed field measurements of energy consumption (kWh) and demand (kW) are conducted on two injection molding machines (IMMs) used in a typical plastic manufacturing facility in the San Francisco Bay Area, with/without Variable Frequency Drives...

  15. Dynamic response analysis of a 900 kW wind turbine subject to ground excitation

    E-Print Network [OSTI]

    Caudillo, Adrian Felix

    2012-01-01T23:59:59.000Z

    geometry of the blades on a wind turbine has, in the past,of the tower and blades of a 900 kW wind turbine (source:per blade). For this portion of the study, the wind turbine

  16. 225-kW Dynamometer for Testing Small Wind Turbine Components: Preprint

    SciTech Connect (OSTI)

    Green, J.

    2006-06-01T23:59:59.000Z

    This paper describes NREL's new 225-kW dynamometer facility that is suitable for testing a variety of components and subsystems for small wind turbines and discusses opportunities for industry partnerships with NREL for use of the facility.

  17. Preferred citation style Axhausen, K.W. (2004) Personal biography, social networks and

    E-Print Network [OSTI]

    Nagurney, Anna

    2004-01-01T23:59:59.000Z

    1 1 Preferred citation style Axhausen, K.W. (2004) Personal biography, social networks and travel child 120 trips / 6 weeks 1201051 #12;6 11 Activity spaces: Commuters to Zürich (2000) 12 Position

  18. DRIVER ACCELERATOR DESIGN FOR THE 10 KW UPGRADE OF THE JEFFERSON LAB IR FEL

    E-Print Network [OSTI]

    DRIVER ACCELERATOR DESIGN FOR THE 10 KW UPGRADE OF THE JEFFERSON LAB IR FEL D. Douglas, S. V, Newport News, VA23606, USA Abstract An upgrade of the Jefferson Lab IR FEL [1] is now un- der construction. It will provide 10 kW output light power in a wavelength range of 2­10 µm. The FEL will be driven by a modest

  19. university-logo Maximum likelihood

    E-Print Network [OSTI]

    McCullagh, Peter

    university-logo Maximum likelihood Applications and examples REML and residual likelihood Peter McCullagh REML #12;university-logo Maximum likelihood Applications and examples JAN: Some personal remarks... IC #12;university-logo Maximum likelihood Applications and examples Outline 1 Maximum likelihood REML

  20. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  1. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  2. A maximum entropy-least squares estimator for elastic origin-destination trip matrix estimation

    E-Print Network [OSTI]

    Kockelman, Kara M.

    A maximum entropy-least squares estimator for elastic origin- destination trip matrix estimation propose a combined maximum entropy-least squares (ME-LS) estimator, by which O- D flows are distributed-destination trip table; elastic demand; maximum entropy; least squares; subnetwork analysis; convex combination

  3. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    An Exploration of Australian Petrol Demand: Unobserv- ableRelative Prices: Simulating Petrol Con- sumption Behavior.habit stock variable in a petrol demand regression, they

  4. The imperfect price-reversibility of world oil demand

    SciTech Connect (OSTI)

    Gately, D. [New York Univ., NY (United States)

    1993-12-31T23:59:59.000Z

    This paper examines the price-reversibility of world oil demand, using price-decomposition methods employed previously on other energy demand data. We conclude that the reductions in world oil demand following the oil price increases of the 1970s will not be completely reversed by the price cuts of the 1980s. The response to price cuts in the 1980s is perhaps only one-fifth that for price increases in the 1970s. This has dramatic implications for projections of oil demand, especially under low-price assumptions. We also consider the effect on demand of a price recovery (sub-maximum increase) in the 1990s - due either to OPEC or to a carbon tax-specifically whether the effects would be as large as for the price increases of the 1970s or only as large as the smaller demand reversals of the 1980s. On this the results are uncertain, but a tentative conclusion is that the response to a price recovery would lie midway between the small response to price cuts and the larger response to increases in the maximum historical price. Finally, we demonstrate two implications of wrongly assuming that demand is perfectly price-reversible. First, such an assumption will grossly overestimate the demand response to price declines of the 1980s. Secondly, and somewhat surprisingly, it causes an underestimate of the effect of income growth on future demand. 21 refs., 11 figs., 1 tab.

  5. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01T23:59:59.000Z

    No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

  6. Optimal Demand Response Libin Jiang

    E-Print Network [OSTI]

    Optimal Demand Response Libin Jiang Steven Low Computing + Math Sciences Electrical Engineering Caltech Oct 2011 #12;Outline Caltech smart grid research Optimal demand response #12;Global trends 1

  7. Travel Demand Modeling

    SciTech Connect (OSTI)

    Southworth, Frank [ORNL; Garrow, Dr. Laurie [Georgia Institute of Technology

    2011-01-01T23:59:59.000Z

    This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

  8. CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Manager Kae Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency Demand Forecast report is the product of the efforts of many current and former California Energy

  9. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting Executive

  10. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    electricity demand forecast means that the region's electricity needs would grow by 5,343 average megawattsDemand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required in electricity demand is, of course, crucial to determining the need for new electricity resources and helping

  11. Kaman 40-kW wind system. Phase II. Fabrication and tests. Volume II. Technical report

    SciTech Connect (OSTI)

    Howes, H; Perley, R

    1981-01-01T23:59:59.000Z

    A program is underway to design, fabricate and test a horizontal axis Wind Turbine Generator (WTG) capable of producing 40 kW electrical output power in a 20 mph wind. Results are presented of the program effort covering fabrication and testing of the Wing Turbine Generator designed earlier. A minimum of difficulties were experienced during fabrication and, after successful completion of Contractor tests through 20 mph winds, the WTG was shipped to Rocky Flats, assembled and operated there. The 40 kW WTG is presently undergoing extended tests at Rockwell's Rocky Flats test facility.

  12. Scoping Study for Demand Respose DFT II Project in Morgantown, WV

    SciTech Connect (OSTI)

    Lu, Shuai; Kintner-Meyer, Michael CW

    2008-06-06T23:59:59.000Z

    This scoping study describes the underlying data resources and an analysis tool for a demand response assessment specifically tailored toward the needs of the Modern Grid Initiatives Demonstration Field Test in Phase II in Morgantown, WV. To develop demand response strategies as part of more general distribution automation, automated islanding and feeder reconfiguration schemes, an assessment of the demand response resource potential is required. This report provides the data for the resource assessment for residential customers and describes a tool that allows the analyst to estimate demand response in kW for each hour of the day, by end-use, season, day type (weekday versus weekend) with specific saturation rates of residential appliances valid for the Morgantown, WV area.

  13. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortal DecisionRichlandDelegations,Demand

  14. Demonstration of a 140-GHz 1-kW Confocal Gyro-Traveling-Wave Amplifier

    E-Print Network [OSTI]

    Temkin, Richard J.

    The theory, design, and experimental results of a wideband 140-GHz 1-kW pulsed gyro-traveling-wave amplifier (gyro-TWA) are presented. The gyro-TWA operates in the HE [subscript 06] mode of an overmoded quasi-optical ...

  15. 3kW Stirling engine for power and heat production

    SciTech Connect (OSTI)

    Thorsen, J.E.; Bovin, J.; Carlsen, H. [Technical Univ. of Denmark, Lyngby (Denmark). Inst. of Energy Engineering

    1996-12-31T23:59:59.000Z

    A new 3 kW Beta type Stirling engine has been developed. The engine uses Natural gas as fuel, and it is designed for use as a small combined heat and power plant for single family houses. The electrical power is supplied to the grid. The engine is made as a hermetic device, where the crank mechanism and the alternator are built into a pressurized crank casing. The engine produce 3 kW of shaft power corresponding to 2.4 kW of electric power. The heat input is 10 kW corresponding to a shaft efficiency of 30%, and an electric efficiency of 24%. Helium at 8 MPa mean pressure is used as working gas. The crank mechanism is a combination of an upper- and lower yoke, each forming the half of a Ross mechanism. The upper yoke is linked to the displacer piston and the lower yoke is linked to the working piston. The design gives an approximately linear couple point curve, which eliminates guiding forces on the pistons and the need for X-heads. Grease lubricated needle and ball bearings are used in the kinematic crank mechanism. The burner includes an air preheater and a water jacket, which makes it possible to utilize nearly all of the heat from the combustion gases. The performance of the engine has been tested as a function of mean pressure and hot and cold temperature, and emissions and noise have been measured.

  16. Design considerations of a 15kW heat exchanger for the CSPonD Project

    E-Print Network [OSTI]

    Adames, Adrian A

    2010-01-01T23:59:59.000Z

    The objective of this work was to develop a 15 kW heat exchanger model for the CSPonD molten salt receiver that will shuttle the molten salt's thermal energy for conversion to electric power. A heat extraction system ...

  17. 100 kW CC-OTEC Plant and Deep Ocean water Applications

    E-Print Network [OSTI]

    the electric grid for the first time in 15 years in the world. #12;IOES (Institute of Ocean Energy, Saga Univ.) Experiments and Demonstration by IOES (Institute of Ocean Energy, Saga University) 30 kW Electricity Construction, Xenesys, Yokogawa Electric JV Institute of Ocean Energy, Saga University Commission Cooperation

  18. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    BEST PRACTICES AND RESULTS OF DR IMPLEMENTATION . 31 Encouraging End-User Participation: The Role of Incentives 16 Demand Response

  19. Achieve maximum application availability and

    E-Print Network [OSTI]

    Bernstein, Phil

    Highlights Achieve maximum application availability and data protection using SQL Server AlwaysOn and other high availability features Reduce planned downtime significantly with SQL Server on Windows and management of high availability and disaster recovery using integrated tools Achieve maximum application

  20. Radioactive air emissions notice of construction fuel removal for 105-KW Basin

    SciTech Connect (OSTI)

    Hays, C.B.

    1997-05-29T23:59:59.000Z

    This document serves as a Notice of Construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.96, for the modifications, installation of new equipment, and fuel removal and sludge relocation activities at 105-KW Basin. The purpose of the activities described in this NOC is to enable the eventual retrieval and transport of the fuel for processing. The fuel retrieval and transport will require an integrated water treatment system for which performance specifications have been developed. These specifications are currently in the procurement process. Following procurement (and before installation of this system and the handling of fuel) design details will be provided to Washington State Department of Health (WDOH). The 105-K West Reactor (105-KW) and its associated spent nuclear fuel (SNF) storage basin were constructed in the early 1950s and are located on the Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The 105-KW Basin contains 964 Metric Tons of SNF stored under water in approximately 3,800 closed canisters. This SNF has been stored for varying periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed of concrete with an epoxy coating and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. Although the 105-KW Basin has not been known to leak, the discharge chute and associated construction joint have been isolated from the rest of the basin by metal isolation barriers. This was a precautionary measure, to mitigate the consequences of a seismic event. The proposed modifications described are scheduled to begin in calendar year 1997.

  1. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 1: Statewide Electricity Demand, End-User Natural Gas Demand, and Energy Efficiency The California Energy Demand 2014-2024 Preliminary Forecast, Volume 1: Statewide Electricity Demand

  2. Electrical Demand Control

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1984-01-01T23:59:59.000Z

    to the reservoir. Util i ties have iiting for a number of years. d a rebate for reducing their When the utility needs to shed is sent to turn off one or mnre mer's electric water heater or equipment. wges have enticed more and more same strategies... an increased need for demand 1 imiting. As building zone size is reduced, total instal led tonnage increases due to inversfty. Each compressor is cycled by a space thermostat. There is no control system to limit the number of compressors running at any...

  3. Demand Response: Load Management Programs 

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01T23:59:59.000Z

    CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs...

  4. Demand Response: Load Management Programs

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01T23:59:59.000Z

    CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

  5. Assessment of Demand Response Resource

    E-Print Network [OSTI]

    Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

  6. Original article Restricted maximum likelihood

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Restricted maximum likelihood estimation of covariances in sparse linear models on the simplex algorithm of Nelder and Mead [40]. Kovac [29] made modifications that turned it into a stable

  7. Data:B3c0a5f9-a196-4fc8-a0f2-362287375b87 | Open Energy Information

    Open Energy Info (EERE)

    Heating Service - AH-1 Sector: Description: Source or reference: www.uppco.comcompanytariffsUD2D8 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum...

  8. Data:A4b87aa5-f097-42db-8249-8fae15aa02fe | Open Energy Information

    Open Energy Info (EERE)

    tariffPDF.cfm?id294 Source Parent: https:www.idahopower.comAboutUsRatesRegulatoryTariffsdefault.cfm?stateid Comments Applicability Demand (kW) Minimum (kW): Maximum...

  9. Data:8b31a736-c3be-4d6b-a04c-8533e93123f6 | Open Energy Information

    Open Energy Info (EERE)

    60 hertz, nominally at l20 volts. Source or reference: http:www.uppco.comcompanytariffsUD2D59.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum...

  10. Data:4b4653ce-b649-4c28-94f6-e55155eb5a93 | Open Energy Information

    Open Energy Info (EERE)

    Span of Conductor (200 feet) 2.74span Source or reference: http:www.uppco.comcompanytariffsUD2D57.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum...

  11. Testing and performance characteristics of a 1-kW free piston Stirling engine

    SciTech Connect (OSTI)

    Schreiber, J.

    1983-04-01T23:59:59.000Z

    A 1 kW single cylinder free piston Stirling engine, configured as a research engine, was tested with helium working gas. The engine features a posted displacer and dashpot load. The test results show the engine power output and efficiency to be lower than those observed during acceptance tests by the manufacturer. Engine tests results are presented for operation at the two heater head temperatures and with two regenerator porosities, along with flow test results for the heat exchangers.

  12. Enertech 15-kW wind-system development. Phase II. Fabrication and test

    SciTech Connect (OSTI)

    Zickefoose, C.R.

    1982-12-01T23:59:59.000Z

    This Phase II report presents a description of the Enertech 15 kW prototype wind system hardware fabrication; results of component tests; and results of preliminary testing conducted at Norwich, VT and the RF Wind Energy Research Center. In addition, the assembly sequence is documented. During testing, the unit experienced several operational problems, but testing proved the design concept and demonstrated the system's ability to meet the contract design specifications for power output.

  13. 110 kW Stationary Combined Heat and Power Systems Status and

    E-Print Network [OSTI]

    the status of 1­10 kW CHP stationary fuel cell systems and to comment on the achievability of cost-temperature proton exchange membrane (LT-PEM) fuel cell systems operating, for the most part, in a temperature range of 60°­90°C; high temperature PEM (HT-PEM) fuel cell systems operating in a temperature range of 130

  14. System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)

    SciTech Connect (OSTI)

    DERUSSEAU, R.R.

    2000-04-18T23:59:59.000Z

    This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

  15. Demand Response Programs, 6. edition

    SciTech Connect (OSTI)

    NONE

    2007-10-15T23:59:59.000Z

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  16. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

  17. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    gas demands are forecast for the four natural gas utilitythe 2006-2016 Forecast. Commercial natural gas demand isforecasts and demand scenarios. Electricity planning area Natural gas

  18. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

  19. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

  20. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

  1. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

  2. Home Network Technologies and Automating Demand Response

    E-Print Network [OSTI]

    McParland, Charles

    2010-01-01T23:59:59.000Z

    and Automating Demand Response Charles McParland, Lawrenceand Automating Demand Response Charles McParland, LBNLCommercial and Residential Demand Response Overview of the

  3. Barrier Immune Radio Communications for Demand Response

    E-Print Network [OSTI]

    Rubinstein, Francis

    2010-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities,”Fully Automated Demand Response Tests in Large Facilities.for Automated Demand Response. Technical Document to

  4. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    Strategies Linking Demand Response and Energy Efficiency,”Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

  5. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

  6. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

  7. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    of energy and environmental benefits of demand controlledindicate the energy and cost savings for demand controlled24) (California Energy Commission 2008), demand controlled

  8. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    of energy and environmental benefits of demand controlled indicate the energy and cost savings for  demand controlled 24) (California Energy  Commission 2008), demand controlled 

  9. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    integrating HECO and Hawaii Energy demand response relatedpotential. Energy efficiency and demand response efforts areBoth  energy  efficiency  and  demand  response  should  

  10. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

  11. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

  12. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    and best practices to guide HECO demand response developmentbest practices for DR renewable integration – Technically demand responseof best practices. This is partially because demand response

  13. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Strategies for Demand Response in Commercial Buildings DavidStrategies for Demand Response in Commercial Buildings Davidadjusted for demand response in commercial buildings. The

  14. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    Demand Response Systems National Conference on BuildingDemand Response Systems National Conference on BuildingDemand Response Systems National Conference on Building

  15. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    In terms of demand response capability, building operatorsautomated demand response and improve building energy andand demand response features directly into building design

  16. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    DEMAND RESPONSE .7 Wholesale Marketuse at times of high wholesale market prices or when systemenergy expenditure. In wholesale markets, spot energy prices

  17. Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5... for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 5 What is Demand Response? ?The temporary reduction of electricity demanded from the grid by an end-user in response to capacity shortages, system reliability events, or high wholesale...

  18. Demand Response Technology Roadmap A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    workshop agendas, presentation materials, and transcripts. For the background to the Demand Response Technology Roadmap and to make use of individual roadmaps, the reader is...

  19. ELECTRICITY DEMAND FORECAST COMPARISON REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005.................................................................................................................................3 PACIFIC GAS & ELECTRIC PLANNING AREA ........................................................................................9 Commercial Sector

  20. Driving Demand | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    strategies, results achieved to date, and advice for other programs. Driving Demand for Home Energy Improvements. This guide, developed by the Lawrence Berkeley National...

  1. Demand Response Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between May 2014 and February 2015. The Bonneville Power Administration (BPA) Demand Response Executive Sponsor Team decided upon the scope of the project in May. Two subsequent...

  2. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    Energy Commission's final forecasts for 2012­2022 electricity consumption, peak, and natural gas demand Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand

  3. Retail Demand Response in Southwest Power Pool

    SciTech Connect (OSTI)

    Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

    2009-01-30T23:59:59.000Z

    In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. LBNL conducted a detailed survey of existing DR programs and dynamic pricing tariffs administered by SPP's member utilities. Survey respondents were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g. seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. Nearly all of the 30 load-serving entities in SPP responded to the survey. Of this group, fourteen SPP member utilities administer 36 DR programs, five dynamic pricing tariffs, and six voluntary customer response initiatives. These existing DR programs and dynamic pricing tariffs have a peak demand reduction potential of 1,552 MW. Other major findings of this study are: o About 81percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;14percent. o Arkansas accounts for ~;;50percent of the DR resources in the SPP footprint; these DR resources are primarily managed by cooperatives. o Publicly-owned cooperatives accounted for 54percent of the existing DR resources among SPP members. For these entities, investment in DR is often driven by the need to reduce summer peak demand that is used to set demand charges for each distribution cooperative. o About 65-70percent of the interruptible/curtailable tariffs and DLC programs are routinely triggered based on market conditions, not just for system emergencies. Approximately, 53percent of the DR resources are available with less than two hours advance notice and 447 MW can be dispatched with less than thirty minutes notice. o Most legacy DR programs offered a reservation payment ($/kW) for participation; incentive payment levels ranged from $0.40 to $8.30/kW-month for interruptible rate tariffs and $0.30 to $4.60/kW-month for DLC programs. A few interruptible programs offered incentive payments which were explicitly linkedto actual load reductions during events; payments ranged from 2 to 40 cents/kWh for load curtailed.

  4. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

  5. Literature Cited and Selected Bibliography Able, K.W. 1999. Measures of juvenile fish habitat quality: examples from a

    E-Print Network [OSTI]

    Chen, Changsheng

    . Rutgers University Press. New Brunswick, NJ. 342 p. Able, K.W., J.P. Manderson, and A.L. Studholme. 1999 in Hydraulic Computations. 1988. Turbulence modeling of surface flow and transport. Journal of Hydraulic

  6. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.

    2011-11-01T23:59:59.000Z

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  7. UBC STUDENT HOUSING DEMAND STUDY

    E-Print Network [OSTI]

    Ollivier-Gooch, Carl

    UBC STUDENT HOUSING DEMAND STUDY Presented by Nancy Knight and Andrew Parr FEBRUARY 5, 2010 #12;PURPOSE · To determine the need/demand for future on- campus student housing · To address requests from · A survey of students, and analysis of housing markets, and preparation of a forecast · The timeline

  8. Harnessing the power of demand

    SciTech Connect (OSTI)

    Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

    2008-03-15T23:59:59.000Z

    Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

  9. ERCOT Demand Response Paul Wattles

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    changes or incentives.' (FERC) · `Changes in electric use by demand-side resources from their normalERCOT Demand Response Paul Wattles Senior Analyst, Market Design & Development, ERCOT Whitacre thermostats -- Other DLC Possible triggers: Real-time prices, congestion management, 4CP response paid

  10. Automated Demand Response and Commissioning

    SciTech Connect (OSTI)

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01T23:59:59.000Z

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  11. Demand Response for Ancillary Services

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

    2013-01-01T23:59:59.000Z

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  12. Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study

    SciTech Connect (OSTI)

    Thompson, Lisa; Lekov, Alex; McKane, Aimee; Piette, Mary Ann

    2010-08-20T23:59:59.000Z

    This case study enhances the understanding of open automated demand response opportunities in municipal wastewater treatment facilities. The report summarizes the findings of a 100 day submetering project at the San Luis Rey Wastewater Treatment Plant, a municipal wastewater treatment facility in Oceanside, California. The report reveals that key energy-intensive equipment such as pumps and centrifuges can be targeted for large load reductions. Demand response tests on the effluent pumps resulted a 300 kW load reduction and tests on centrifuges resulted in a 40 kW load reduction. Although tests on the facility?s blowers resulted in peak period load reductions of 78 kW sharp, short-lived increases in the turbidity of the wastewater effluent were experienced within 24 hours of the test. The results of these tests, which were conducted on blowers without variable speed drive capability, would not be acceptable and warrant further study. This study finds that wastewater treatment facilities have significant open automated demand response potential. However, limiting factors to implementing demand response are the reaction of effluent turbidity to reduced aeration load, along with the cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities.

  13. 4 kW Test of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    SciTech Connect (OSTI)

    J. E. O'Brien; X. Zhang; G. K. Housley; L. Moore-McAteer; G. Tao

    2012-06-01T23:59:59.000Z

    A new test stand has been developed at the Idaho National Laboratory for multi-kW testing of solid oxide electrolysis stacks. This test stand will initially be operated at the 4 KW scale. The 4 kW tests will include two 60-cell stacks operating in parallel in a single hot zone. The stacks are internally manifolded with an inverted-U flow pattern and an active area of 100 cm2 per cell. Process gases to and from the two stacks are distributed from common inlet/outlet tubing using a custom base manifold unit that also serves as the bottom current collector plate. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. Treated metallic interconnects with integral flow channels separate the cells and electrode gases. Sealing is accomplished with compliant mica-glass seals. A spring-loaded test fixture is used for mechanical stack compression. Due to the power level and the large number of cells in the hot zone, process gas flow rates are high and heat recuperation is required to preheat the cold inlet gases upstream of the furnace. Heat recuperation is achieved by means of two inconel tube-in-tube counter-flow heat exchangers. A current density of 0.3 A/cm2 will be used for these tests, resulting in a hydrogen production rate of 25 NL/min. Inlet steam flow rates will be set to achieve a steam utilization value of 50%. The 4 kW test will be performed for a minimum duration of 1000 hours in order to document the long-term durability of the stacks. Details of the test apparatus and initial results will be provided.

  14. Initial test results from a prototype, 20 kW helium charged Stirling engine

    SciTech Connect (OSTI)

    Clarke, M.A.; Taylor, D.R.

    1984-08-01T23:59:59.000Z

    An alpha-configuration, helium charged Stirling engine with a predicted output of 20 kW indicated power has been developed by a British consortium of universities and industrial companies. The work performed by the Royal Naval Engineering College has been in computer assisted design and component testing, with future plans for full engine trials during 1984/85. The scope of this paper is to outline the data obtained during motoring trials of the engine block and crankcase assembly, together with details of modifications incorporated in the various components.

  15. High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results

    SciTech Connect (OSTI)

    J.E. O'Brien; X. Zhang; K. DeWall; L. Moore-McAteer; G. Tao

    2012-09-01T23:59:59.000Z

    This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.

  16. 100-kW class applied-field MPD thruster component wear

    SciTech Connect (OSTI)

    Mantenieks, M.A.; Myers, R.M.

    1993-01-01T23:59:59.000Z

    Component erosion and material deposition sites were identified and analyzed during tests of various configurations of 100 kW class, applied-field, water-cooled magnetoplasmadynamic (MPD) thrusters. Severe erosion of the cathode and the boron nitride insulator was observed for the first series of tests, which was significantly decreased by reducing the levels of propellant contamination. Severe erosion of the copper anode resulting from sputtering by the propellant was also observed. This is the first observation of this phenomenon in MPD thrusters. The anode erosion indicates that development of long life MPD thrusters requires the use of light gas propellants such as hydrogen, deuterium, or lithium.

  17. 100-kW class applied-field thruster component wear

    SciTech Connect (OSTI)

    Mantenieks, M.A. (M.S. SPTD-1, NASA Lewis Research Center, Cleveland, Ohio 44135 (United States)); Myers, R.M. (M.S. SPTD-1, Sverdrup Technology Inc., NASA Lewis Research Center, Cleveland, Ohio 44135 (United States))

    1993-01-20T23:59:59.000Z

    Component erosion and material deposition sites were identified and analyzed during tests of various configurations of 100 kW class, applied-field, water-cooled magnetoplasmadynamic (MPD) thrusters. Severe erosion of the cathode and the boron nitride insulator was observed for the first series of tests, which was significantly decreased by reducing the levels of propellant contamination. Severe erosion of the copper anode resulting from sputtering by the propellant was also observed. This is the first observation of this phenomenon in MPD thrusters. The anode erosion indicates that development of long life MPD thrusters requires the use of light gas propellants such as hydrogen, deuterium, or lithium.

  18. A 3kW PV-thermal system for home use

    SciTech Connect (OSTI)

    Yang, M.J.; Sato, Mikihiko; Tsuzuki, Kouye; Amono, Takashi; Yamaguchi, Masafumi [Toyota Technical Inst., Tempaku, Nagoya (Japan); Izumi, Hisao [IDEX, Seto, Aichi (Japan); Takamoto, Tatsuya [Japan Energy Corp., Saitama (Japan); Matsunaga, Shigenobu

    1997-12-31T23:59:59.000Z

    A combined 3kW PV-thermal system has been proposed for home use. Combining PV and thermal conversion makes this system economically efficient and competitive with traditional power supplies. GaAs and Si concentrator solar cells have been measured under concentration as candidate for use in this system. InGaP/GaAs tandem solar cells designed for 1-sun operation have been examined under concentration. The potential use of GaInP/GaAs tandem solar cells has been analyzed for this application. The properties of the thermal transfer unit of this system has been evaluated including the cooling of the solar cell holder.

  19. MHK Projects/Evopod E35 35kW grid connected demonstrator | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMARECInformation kW grid connected

  20. Maximum likelihood estimation for cooperative sequential adsorption

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Maximum likelihood estimation for cooperative sequential adsorption Mathew D. Penrose and Vadim;Maximum likelihood estimation for cooperative sequential adsorption M.D. Penrose, Department of the region. Keywords: cooperative sequential adsorption, space-time point pro- cess, maximum likelihood

  1. Estimating a mixed strategy employing maximum entropy

    E-Print Network [OSTI]

    Golan, Amos; Karp, Larry; Perloff, Jeffrey M.

    1996-01-01T23:59:59.000Z

    MIXED STRATEGY EMPLOYING MAXIMUM ENTROPY by Amos Golan LarryMixed Strategy Employing Maximum Entropy Amos Golan Larry S.Abstract Generalized maximum entropy may be used to estimate

  2. Boiler Maximum Achievable Control Technology (MACT) Technical...

    Energy Savers [EERE]

    Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact Sheet, April 2015 Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact...

  3. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01T23:59:59.000Z

    Conference on Building Commissioning: May 4-6, 2005 Motegi,National Conference on Building Commissioning: May 4-6, 2005Demand Response and Commissioning Mary Ann Piette, David S.

  4. Marketing Demand-Side Management

    E-Print Network [OSTI]

    O'Neill, M. L.

    1988-01-01T23:59:59.000Z

    Demand-Side Management is an organizational tool that has proven successful in various realms of the ever changing business world in the past few years. It combines the multi-faceted desires of the customers with the increasingly important...

  5. Community Water Demand in Texas

    E-Print Network [OSTI]

    Griffin, Ronald C.; Chang, Chan

    Solutions to Texas water policy and planning problems will be easier to identify once the impact of price upon community water demand is better understood. Several important questions cannot be addressed in the absence of such information...

  6. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Monitoring in an Agent-Based Smart Home, Proceedings of theConference on Smart Homes and Health Telematics, September,Smart Meter Motion sensors Figure 1: Schematic of the Demand Response Electrical Appliance Manager in a Home.

  7. Overview of Demand Side Response

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses the utility PJM's demand side response (DSR) capabilities, including emergency and economic responses.

  8. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    exchangers, solar thermal collectors, absorption chillers,electricity displaced) solar thermal collector (kW) PV (kW)electricity displaced) solar thermal collector (kW) PV ( kW)

  9. Demand Response Spinning Reserve Demonstration

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01T23:59:59.000Z

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  10. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

  11. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    E-Print Network [OSTI]

    Mares, K.C.

    2010-01-01T23:59:59.000Z

    Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

  12. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency SEPTEMBER 2013 CEC2002013004SDV1REV CALIFORNIA The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 1: Statewide Electricity Demand and Methods

  13. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 2: Electricity Demand by Utility Planning Area Energy Policy Report. The forecast includes three full scenarios: a high energy demand case, a low

  14. Demand response-enabled residential thermostat controls.

    E-Print Network [OSTI]

    Chen, Xue; Jang, Jaehwi; Auslander, David M.; Peffer, Therese; Arens, Edward A

    2008-01-01T23:59:59.000Z

    human dimension of demand response technology from a caseArens, E. , et al. 2008. Demand Response Enabling TechnologyArens, E. , et al. 2006. Demand Response Enabling Technology

  15. Demand Response as a System Reliability Resource

    E-Print Network [OSTI]

    Joseph, Eto

    2014-01-01T23:59:59.000Z

    Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning ReserveFormat of 2009-2011 Demand Response Activity Applications.

  16. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    the California Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand

  17. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak, and natural Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility

  18. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

  19. National Action Plan on Demand Response

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses the National Assessment of Demand Response study, the National Action Plan for Demand Response, and demand response as related to the energy outlook.

  20. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

  1. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    demand response: ? Distribution utility ? ISO ? Aggregator (demand response less obstructive and inconvenient for the customer (particularly if DR resources are aggregated by a load aggregator).

  2. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    al: Installation and Commissioning Automated Demand ResponseConference on Building Commissioning: April 22 – 24, 2008al: Installation and Commissioning Automated Demand Response

  3. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

  4. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    use of demand control ventilation systems in general officedemand controlled  ventilation systems, Dennis DiBartolomeo the demand controlled ventilation system increased the rate 

  5. Supply chain planning decisions under demand uncertainty

    E-Print Network [OSTI]

    Huang, Yanfeng Anna

    2008-01-01T23:59:59.000Z

    Sales and operational planning that incorporates unconstrained demand forecasts has been expected to improve long term corporate profitability. Companies are considering such unconstrained demand forecasts in their decisions ...

  6. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    sector, the demand response potential of California buildinga demand response event prohibit a building’s participationdemand response strategies in California buildings are

  7. Sandia National Laboratories: demand response inverter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demand response inverter ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities,...

  8. Development of a 402.5 MHz 140 kW Inductive Output Tube

    SciTech Connect (OSTI)

    R. Lawrence Ives; Michael Read, Robert Jackson

    2012-05-09T23:59:59.000Z

    This report contains the results of Phase I of an SBIR to develop a Pulsed Inductive Output Tube (IOT) with 140 kW at 400 MHz for powering H-proton beams. A number of sources, including single beam and multiple beam klystrons, can provide this power, but the IOT provides higher efficiency. Efficiencies exceeding 70% are routinely achieved. The gain is typically limited to approximately 24 dB; however, the availability of highly efficient, solid state drivers reduces the significance of this limitation, particularly at lower frequencies. This program initially focused on developing a 402 MHz IOT; however, the DOE requirement for this device was terminated during the program. The SBIR effort was refocused on improving the IOT design codes to more accurately simulate the time dependent behavior of the input cavity, electron gun, output cavity, and collector. Significant improvement was achieved in modeling capability and simulation accuracy.

  9. Management Of Hanford KW Basin Knockout Pot Sludge As Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Raymond, R. E. [CH2M HIll Plateau Remediation Company, Richland, WA (United States); Evans, K. M. [AREVA, Avignon (France)

    2012-10-22T23:59:59.000Z

    CH2M HILL Plateau Remediation Company (CHPRC) and AREVA Federal Services, LLC (AFS) have been working collaboratively to develop and deploy technologies to remove, transport, and interim store remote-handled sludge from the 10S-K West Reactor Fuel Storage Basin on the U.S. Department of Energy (DOE) Hanford Site near Richland, WA, USA. Two disposal paths exist for the different types of sludge found in the K West (KW) Basin. One path is to be managed as Spent Nuclear Fuel (SNF) with eventual disposal at an SNF at a yet to be licensed repository. The second path will be disposed as remote-handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. This paper describes the systems developed and executed by the Knockout Pot (KOP) Disposition Subproject for processing and interim storage of the sludge managed as SNF, (i.e., KOP material).

  10. Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility

    SciTech Connect (OSTI)

    Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2009-07-01T23:59:59.000Z

    A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

  11. (Acceptance testing of the 150-kW electron-beam furnace)

    SciTech Connect (OSTI)

    Ohriner, E.K.; Howell, C.R.

    1990-09-18T23:59:59.000Z

    The travelers observed the acceptance testing of the 150-kW electron-beam (EB) furnace constructed by Leybold (Hanau) Technologies prior to disassembly and shipping. The testing included: (1) operation of the mold withdrawal system (2) vacuum pumping and vacuum chamber leak-up rates, (3) power stability at full power, (4) x-radiation monitoring at full power, and (5) demonstration of system interlocks for loss of water cooling, loss of vacuum, loss of power, and emergency shutdown. Preliminary training was obtained in furnace operation, EB gun maintenance, and use of the programmable logic controller for beam manipulation. Additional information was obtained on water-cooling requirements and furnace platform construction necessary for the installation. The information gained and training received will greatly assist in minimizing the installation and startup operation costs of the furnace.

  12. Sampling and Analysis Plan for canister liquid and gas sampling at 105-KW fuel storage basin

    SciTech Connect (OSTI)

    Harris, R.A.; Green, M.A.; Makenas, B.J.; Trimble, D.J.

    1995-03-01T23:59:59.000Z

    This Sampling and Analysis Plan (SAP) details the sampling and analyses to be performed on fuel canisters transferred to the Weasel Pit of the 105-KW fuel storage basin. The radionuclide content of the liquid and gas in the canisters must be evaluated to support the shipment of fuel elements to the 300 Area in support of the fuel characterization studies (Abrefah, et al. 1994, Trimble 1995). The following sections provide background information and a description of the facility under investigation, discuss the existing site conditions, present the constituents of concern, outline the purpose and scope of the investigation, outline the data quality objectives (DQO), provide analytical detection limit, precision, and accuracy requirements, and address other quality assurance (QA) issues.

  13. Enertech 2-kW high-reliability wind system. Phase II. Fabrication and testing

    SciTech Connect (OSTI)

    Cordes, J A; Johnson, B A

    1981-06-01T23:59:59.000Z

    A high-reliability wind machine rated for 2 kW in a 9 m/s wind has been developed. Activities are summarized that are centered on the fabrication and testing of prototypes of the wind machine. The test results verified that the wind machine met the power output specification and that the variable-pitch rotor effectively controlled the rotor speed for wind speeds up to 50 mph. Three prototypes of the wind machine were shipped to the Rocky Flats test center in September through November of 1979. Work was also performed to reduce the start-up wind speed. The start-up wind speed to the Enertech facility has been reduced to 4.5 m/s.

  14. A 350 MHz, 200 kW CW, Multiple Beam Inductive Output Tube - Final Report

    SciTech Connect (OSTI)

    R.Lawrece Ives; George Collins; David Marsden Michael Read; Edward Eisen; Takuchi Kamura, Philipp Borchard

    2012-11-28T23:59:59.000Z

    This program developed a 200 kW CW, 350 MHz, multiple beam inductive output tube (MBIOT) for driving accelerator cavities. The MBIOT operates at 30 kV with a gain of 23 dB. The estimated efficiency is 70%. The device uses seven electron beams, each transmitting 1.4 A of current. The tube is approximately six feet long and weighs approximately 400 lbs. The prototype device will be evaluated as a potential RF source for the Advanced Photon Source at Argonne National Laboratory (ANL). Because of issues related to delivery of the electron guns, it was not possible to complete assembly and test of the MBIOT during the Phase II program. The device is being completed with support from Calabazas Creek Research, Inc., Communications & Power Industries, LLC. and the Naval Surface Weapons Center (NSWC) in Dahlgren, VA. The MBIOT will be initially tested at NSWC before delivery to ANL. The testing at NSWC is scheduled for February 2013.

  15. Commercialization of a 2.5kW Utility Interactive Inverter for Distributed Generation

    SciTech Connect (OSTI)

    Torrey, David A.

    2006-05-26T23:59:59.000Z

    Through this project, Advanced Energy Conversion (AEC) has developed, tested, refined and is preparing to commercialize a 2.5kW utility-interactive inverter system for distributed generation. The inverter technology embodies zero-voltage switching technology that will ultimately yield a system that is smaller, less expensive and more efficient than existing commercial technologies. This program has focused on commercial success through careful synthesis of technology, market-focus and business development. AEC was the primary participant. AEC is utilizing contract manufacturers in the early stages of production, allowing its technical staff to focus on quality control issues and product enhancements. The objective of this project was to bring the AEC inverter technology from its current pre-production state to a commercial product. Federal funds have been used to build and test production-intent inverters, support the implementation of the commercialization plan and bring the product to the point of UL certification.

  16. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  17. Turkey's energy demand and supply

    SciTech Connect (OSTI)

    Balat, M. [Sila Science, Trabzon (Turkey)

    2009-07-01T23:59:59.000Z

    The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

  18. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  19. US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

    E-Print Network [OSTI]

    US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Page 1 of 25 US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

  20. Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System

    SciTech Connect (OSTI)

    Howell, Thomas Russell

    2013-04-30T23:59:59.000Z

    The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

  1. Design and test results of a 600-kW tetrode amplifier for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Rees, D.E.; Brittain, D.L. [Los Alamos National Lab., NM (United States); Grippe, J.M.; Marrufo, O. [Superconducting Super Collider Lab., Dallas, TX (United States)

    1993-05-01T23:59:59.000Z

    This paper describes the design and testing of a pulsed 600-kW tetrode amplifier that will be used to drive a radiofrequency quadrupole (RFQ) for the Superconducting Super Collider (SSC). Three stages of amplification provide a nominal gain of 77 dB and peak output power of 600 kW. The amplifier is operated at a pulse width of 100 {mu}s and a repetition frequency of 10 Hz. This paper presents the rf design and calculated operating conditions for the amplifier. Details of the electrical design are presented, along with test results.

  2. Design and test results of a 600-kW tetrode amplifier for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Rees, D.E.; Brittain, D.L. (Los Alamos National Lab., NM (United States)); Grippe, J.M.; Marrufo, O. (Superconducting Super Collider Lab., Dallas, TX (United States))

    1993-01-01T23:59:59.000Z

    This paper describes the design and testing of a pulsed 600-kW tetrode amplifier that will be used to drive a radiofrequency quadrupole (RFQ) for the Superconducting Super Collider (SSC). Three stages of amplification provide a nominal gain of 77 dB and peak output power of 600 kW. The amplifier is operated at a pulse width of 100 [mu]s and a repetition frequency of 10 Hz. This paper presents the rf design and calculated operating conditions for the amplifier. Details of the electrical design are presented, along with test results.

  3. Proposal to negotiate a contract, without competitive tendering, for the overhaul of screw compressors for the LHC 18 kW helium refrigeration plants

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal to negotiate a contract, without competitive tendering, for the overhaul of screw compressors for the LHC 18 kW helium refrigeration plants

  4. Proposal to negotiate two contracts, without competitive tendering, for the supply and the repair of compressors for the LHC 18 kW helium refrigeration plants

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Proposal to negotiate two contracts, without competitive tendering, for the supply and the repair of compressors for the LHC 18 kW helium refrigeration plants

  5. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01T23:59:59.000Z

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  6. Demand Response Programs for Oregon

    E-Print Network [OSTI]

    wholesale prices and looming shortages in Western power markets in 2000-01, Portland General Electric programs for large customers remain, though they are not active at current wholesale prices. Other programs demand response for the wholesale market -- by passing through real-time prices for usage above a set

  7. Revelation on Demand Nicolas Anciaux

    E-Print Network [OSTI]

    is willing to reveal the aggregate response (according to his company's policy) to the customer dataRevelation on Demand Nicolas Anciaux 1 · Mehdi Benzine1,2 · Luc Bouganim1 · Philippe Pucheral1 time to support epidemiological studies. In these and many other situations, aggregate data or partial

  8. Water demand management in Kuwait

    E-Print Network [OSTI]

    Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

  9. obesity demands more than just

    E-Print Network [OSTI]

    Qian, Ning

    #12;The World That Makes Us Fat ***** ***** ***** Overcoming obesity demands more than just. By Melinda Wenner Moyer Illustrations by A. Richard Allen 27 #12;ON ONE LEVEL, of course, obesity has a sim to pollutants. Their research suggests that to solve the problem of obesity--and, ultimately, to prevent it from

  10. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01T23:59:59.000Z

    DEMAND . . . .Demand for Electricity and Power PeakDemand . . • . . ELECTRICITY REQUIREMENTS FOR AGRICULTUREResults . . Coriclusions ELECTRICITY SUPPLY Hydroelectric

  11. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

  12. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    E-Print Network [OSTI]

    Thompson, Lisa

    2008-01-01T23:59:59.000Z

    Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

  13. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

  14. Benefits of the International Residential Code's Maximum Solar heat Gain Coefficient Requirement for Windows

    E-Print Network [OSTI]

    Stone, G. A.; DeVito, E. M.; Nease, N. H.

    2002-01-01T23:59:59.000Z

    Texas adopted in its residential building energy code a maximum 0.40 solar heat gain coefficient (SHGC) for fenestration (e.g., windows, glazed doors and skylights)-a critical driver of cooling energy use, comfort and peak demand. An analysis...

  15. Assessment of Demand Response and Advanced Metering

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    #12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

  16. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency DECEMBER 2013 CEC2002013004SFV1 CALIFORNIA and expertise of numerous California Energy Commission staff members in the Demand Analysis Office. In addition

  17. Demand Side Management in Rangan Banerjee

    E-Print Network [OSTI]

    Banerjee, Rangan

    Demand Side Management in Industry Rangan Banerjee Talk at Baroda in Birla Corporate Seminar August 31,2007 #12;Demand Side Management Indian utilities ­ energy shortage and peak power shortage. Supply for Options ­ Demand Side Management (DSM) & Load Management #12;DSM Concept Demand Side Management (DSM) - co

  18. Maximum entropy principal for transportation

    SciTech Connect (OSTI)

    Bilich, F. [University of Brasilia (Brazil); Da Silva, R. [National Research Council (Brazil)

    2008-11-06T23:59:59.000Z

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  19. Development and testing of 100-kW/ 1-minute Li-ion battery systems for energy storage applications.

    SciTech Connect (OSTI)

    Doughty, Daniel Harvey; Clark, Nancy H.

    2004-07-01T23:59:59.000Z

    Two 100 kW min{sup -1} (1.67 kW h{sup -1}) Li-ion battery energy storage systems (BESS) are described. The systems include a high-power Li-ion battery and a 100 kW power conditioning system (PCS). The battery consists of 12 modules of 12 series-connected Saft Li-ion VL30P cells. The stored energy of the battery ranges from 1.67 to 14 kW h{sup -1} and has an operating voltage window of 515-405 V (dc). Two complete systems were designed, built and successfully passed factory acceptance testing after which each was deployed in a field demonstration. The first demonstration used the system to supplement distributed microturbine generation and to provide load following capability. The system was run at its rated power level for 3 min, which exceeded the battery design goal by a factor of 3. The second demonstration used another system as a stand-alone uninterrupted power supply (UPS). The system was available (online) for 1146 h and ran for over 2 min.

  20. 1?10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review

    SciTech Connect (OSTI)

    Maru, H. C.; Singhal, S. C.; Stone, C.; Wheeler, D.

    2010-11-01T23:59:59.000Z

    This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

  1. STUDY OF THERMAL INTERACTION BETWEEN A 150 KW CW POWER COUPLER AND A SUPERCONDUCTING 704 MHZ ELLIPTICAL CAVITY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    us also to perform in-situ measurements of thermal parameters needed in the thermal model without degradation of its RF performance. · Determine, by in situ measurements, some unknown thermal) Specification Frequency (MHz) 704 RF power (kW) 150 - CW Impedance () 50 Outer Conductor (OC) material

  2. Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation

    E-Print Network [OSTI]

    Sanders, Seth

    Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design for experimentation. Stirling engines can have broad significance and technological advantages for distributed

  3. 220,000-r/min, 2-kW Permanent Magnet Motor Drive for Turbocharger Toshihiko Noguchi, Yosuke Takata *

    E-Print Network [OSTI]

    Fujimoto, Hiroshi

    motor (PMSM) drive, into the turbochargers, and describes computer simulation and experimental results such as 220,000 r/min at over 2-kW inverter output with the PMSM and how to raise power density of the motor

  4. Lessons learned in implementing a demand side management contract at the Presidio of San Francisco

    SciTech Connect (OSTI)

    Sartor, D.; Munn, M.

    1998-06-01T23:59:59.000Z

    The National Park Service (NSP) recently completed the implementation phase of its Power Saving Partners (PSP) Demand Side Management (DSM) contract with the local utility, Pacific Gas and Electric (PG&E). Through the DSM contract, NPS will receive approximately $4.1 million over eight years in payment for saving 61 kW of electrical demand, 179,000 km of electricity per year, and 1.1 million therms of natural gas per year. These payments are for two projects: the installation of high-efficiency lighting systems at the Thoreau Center for Sustainability and the replacement of an old central boiler plant with new, distributed boilers. Although these savings and payments are substantial, the electrical savings and contract payments fall well short of the projected 1,700 kW of electrical demand, 8 million kwh of annual electricity savings, and $11 million in payments, anticipated at the project's onset. Natural gas savings exceeded the initial forecast of 800,000 therms per year. The DSM contract payments did not meet expectations for a variety of reasons which fall into two broad categories: first, many anticipated projects were not constructed, and second, some of the projects that were constructed were not included in the program because the cost of implementing the DSM program's measurement and verification (M&V) requirements outweighed anticipated payments. This paper discusses the projects implemented, and examines the decisions made to withdraw some of them from the DSM contract. It also presents the savings that were realized and documented through M&V efforts. Finally, it makes suggestions relative to M&V protocols to encourage all efficiency measures, not just those that are easy to measure.

  5. Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing

    E-Print Network [OSTI]

    Boutaba, Raouf

    Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing Jin Xiao, Jae--In this paper, we present demand-side energy manage- ment under real-time demand-response pricing as a task, demand-response, energy management I. INTRODUCTION The growing awareness of global climate change has

  6. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

    2007-01-01T23:59:59.000Z

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

  7. Dynamic simulation of 10 kW Brayton cryocooler for HTS cable

    SciTech Connect (OSTI)

    Chang, Ho-Myung; Park, Chan Woo [Hong Ik University, Department of Mechanical Engineering, Seoul, 121-791 (Korea, Republic of); Yang, Hyung Suk; Hwang, Si Dole [KEPCO Research Institute, Daejeon, 305-760 (Korea, Republic of)

    2014-01-29T23:59:59.000Z

    Dynamic simulation of a Brayton cryocooler is presented as a partial effort of a Korean governmental project to develop 1?3 km HTS cable systems at transmission level in Jeju Island. Thermodynamic design of a 10 kW Brayton cryocooler was completed, and a prototype construction is underway with a basis of steady-state operation. This study is the next step to investigate the transient behavior of cryocooler for two purposes. The first is to simulate and design the cool-down process after scheduled or unscheduled stoppage. The second is to predict the transient behavior following the variation of external conditions such as cryogenic load or outdoor temperature. The detailed specifications of key components, including plate-fin heat exchangers and cryogenic turbo-expanders are incorporated into a commercial software (Aspen HYSYS) to estimate the temporal change of temperature and flow rate over the cryocooler. An initial cool-down scenario and some examples on daily variation of cryocooler are presented and discussed, aiming at stable control schemes of a long cable system.

  8. Optimization Online - Efficient Heuristic Algorithms for Maximum ...

    E-Print Network [OSTI]

    T. G. J. Myklebust

    2012-11-19T23:59:59.000Z

    Nov 19, 2012 ... Efficient Heuristic Algorithms for Maximum Utility Product Pricing Problems. T. G. J. Myklebust(tmyklebu ***at*** csclub.uwaterloo.ca)

  9. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    in Demand Response for Wholesale Ancillary Services Silain Demand Response for Wholesale Ancillary Services Silasuccessfully in the wholesale non- spinning ancillary

  10. Physically-based demand modeling 

    E-Print Network [OSTI]

    Calloway, Terry Marshall

    1980-01-01T23:59:59.000Z

    Transactions on Automatic Control, vol. AC-19, December 1974, pp. 887-893. L3] |4] LS] [6] [7] LB] C. W. Brice and S. K. Jones, MPhysically-Based Demand Modeling, d EC-77-5-01-5057, RF 3673, Electric Power Institute, Texas A&M University, October 1978.... C. W. Br ice and 5, K, Jones, MStochastically-Based Physical Load Models Topical Report, " EC-77-5-01-5057, RF 3673, Electric Power Institute, Texas A&M University, May 1979. S. K. Jones and C. W. Brice, "Point Process Models for Power System...

  11. Justice and the demands of realism

    E-Print Network [OSTI]

    Munro, Daniel K., 1972-

    2006-01-01T23:59:59.000Z

    The dissertation examines how concerns about the demands of realism should be addressed in political theories of justice. It asks whether the demands of realism should affect the construction of principles of justice and, ...

  12. Industrial Equipment Demand and Duty Factors

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

  13. Marketing & Driving Demand Collaborative - Social Media Tools...

    Energy Savers [EERE]

    drivingdemandsocialmedia010611.pdf More Documents & Publications Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 Social Media for Natural...

  14. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    renewable integration capability. Coordinating and integrating HECO and Hawaii Energy demand response related activities has the potential

  15. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    temperature-based demand response in buildings that havedemand response advantages of global zone temperature setup in buildings

  16. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    demand-side management (DSM) framework presented in Table x provides three major areas for changing electric loads in buildings:

  17. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response (DR) can.S. and internationally and lay out ideas that could help move California forward. KEY WORDS demand response, peak

  18. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response can help reduce the threat of planned rotational outages. Demand response is also widely regarded as having

  19. Demand Response Resources in Pacific Northwest

    E-Print Network [OSTI]

    Demand Response Resources in Pacific Northwest Chuck Goldman Lawrence Berkeley National Laboratory cagoldman@lbl.gov Pacific Northwest Demand Response Project Portland OR May 2, 2007 #12;Overview · Typology Annual Reports ­ Journal articles/Technical reports #12;Demand Response Resources · Incentive

  20. Barrier Immune Radio Communications for Demand Response

    E-Print Network [OSTI]

    LBNL-2294E Barrier Immune Radio Communications for Demand Response F. Rubinstein, G. Ghatikar, J Ann Piette of Lawrence Berkeley National Laboratory's (LBNL) Demand Response Research Center (DRRC and Environment's (CIEE) Demand Response Emerging Technologies Development (DRETD) Program, under Work for Others

  1. Demand Response and Ancillary Services September 2008

    E-Print Network [OSTI]

    Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

  2. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    LBNL-62226 Demand Responsive Lighting: A Scoping Study F. Rubinstein, S. Kiliccote Energy Environmental Technologies Division January 2007 #12;LBNL-62226 Demand Responsive Lighting: A Scoping Study in this report was coordinated by the Demand Response Research Center and funded by the California Energy

  3. Modeling Energy Demand Aggregators for Residential Consumers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators are new actors in the energy scenario: they gather a group of energy consumers and implement a demand

  4. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

  5. Wind Turbinie Generator System Power Performance Test Report for the Mariah Windspire 1-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2009-12-01T23:59:59.000Z

    This report summarizes the results of a power performance test that NREL conducted on the Mariah Windspire 1-kW wind turbine. During this test, two configurations were tested on the same turbine. In the first configuration, the turbine inverter was optimized for power production. In the second configuration, the turbine inverter was set for normal power production. In both configurations, the inverter experienced failures and the tests were not finished.

  6. Demand Side Bidding. Final Report

    SciTech Connect (OSTI)

    Spahn, Andrew

    2003-12-31T23:59:59.000Z

    This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

  7. Demand Response Valuation Frameworks Paper

    SciTech Connect (OSTI)

    Heffner, Grayson

    2009-02-01T23:59:59.000Z

    While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

  8. Design and RF measurements of a 5 GHz 500 kW window for the ITER LHCD system

    E-Print Network [OSTI]

    Hillairet, Julien; Dechambre, N; Delpech, L; Ekedahl, A; Faure, N; Goniche, M; Kim, J; Larroque, S; Magne, R; Marfisi, L; Namkung, W; Park, H; Park, S; Poli, S; Vulliez, K

    2015-01-01T23:59:59.000Z

    CEA/IRFM is conducting R\\&D efforts in order to validate the critical RF components of the 5 GHz ITER LHCD system, which is expected to transmit 20 MW of RF power to the plasma. Two 5 GHz 500 kW BeO pill-box type window prototypes have been manufactured in 2012 by the PMB Company, in close collaboration with CEA/IRFM. Both windows have been validated at low power, showing good agreement between measured and modeling, with a return loss better than 32 dB and an insertion loss below 0.05 dB. This paper reports on the window RF design and the low power measurements. The high power tests up to 500kW have been carried out in March 2013 in collaboration with NFRI. Results of these tests are also reported. In the current ITER LHCD design, 20 MW Continuous Wave (CW) of Radio-Frequency power at 5 GHz are expected to be generated and transmitted to the plasma. In order to separate the vacuum vessel pressure from the cryostat waveguide pressure, forty eight 5 GHz 500kW CW windows are to be assembled on the waveguide...

  9. Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

  10. Patterns of crude demand: Future patterns of demand for crude oil as a func-

    E-Print Network [OSTI]

    Langendoen, Koen

    #12;2 #12;Patterns of crude demand: Future patterns of demand for crude oil as a func- tion schemes, and/or change quality of the feedstock (crude). Demand for crude oil is growing, especially perspective. This thesis aims pre- cisely at understanding the quality of oil from a demand side perspective

  11. Advanced, High-Reliability, System-Integrated 500kW PV Inverter Development: Final Subcontract Report, 29 September 2005 - 31 May 2008

    SciTech Connect (OSTI)

    West, R.

    2008-08-01T23:59:59.000Z

    Xantrex Technology accomplished subcontract goals of reducing parts cost, weight, and size of its 500-kW inverter by 25% compared to state-of-the-art PV inverters, while extending reliability by 25%.

  12. Open Automated Demand Response Communications Specification (Version 1.0)

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    and Techniques for Demand Response. May 2007. LBNL-59975.to facilitate automating  demand response actions at the Interoperable Automated Demand Response Infrastructure,

  13. Role of Standard Demand Response Signals for Advanced Automated Aggregation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01T23:59:59.000Z

    for the Open Automated Demand Response (OpenADR) StandardsControl for Automated Demand Response, Grid Interop, 2009. [C. McParland, Open Automated Demand Response Communications

  14. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    reliability signals for demand response GTA HTTPS HVAC IT kWand Commissioning Automated Demand Response Systems. ”and Techniques for Demand Response. California Energy

  15. Scenarios for Consuming Standardized Automated Demand Response Signals

    E-Print Network [OSTI]

    Koch, Ed

    2009-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities.Fully Automated Demand Response Tests in Large Facilities.Interoperable Automated Demand Response Infrastructure.

  16. Demand Response in U.S. Electricity Markets: Empirical Evidence

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01T23:59:59.000Z

    Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

  17. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Goli, Sasank

    2012-01-01T23:59:59.000Z

    and Open Automated Demand Response. In Grid Interop Forum.work was sponsored by the Demand Response Research Center (load-management.php. Demand Response Research Center (2009).

  18. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    Goodin. 2009. “Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. ” InOpen Automated Demand Response Demonstration Project. LBNL-

  19. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    advanced metering and demand response in electricityGoldman, and D. Kathan. “Demand response in U.S. electricity29] DOE. Benefits of demand response in electricity markets

  20. Coordination of Retail Demand Response with Midwest ISO Markets

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2008-01-01T23:59:59.000Z

    Robinson, Michael, 2008, "Demand Response in Midwest ISOPresentation at MISO Demand Response Working Group Meeting,Coordination of Retail Demand Response with Midwest ISO

  1. Direct versus Facility Centric Load Control for Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

  2. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

  3. Open Automated Demand Response for Small Commerical Buildings

    E-Print Network [OSTI]

    Dudley, June Han

    2009-01-01T23:59:59.000Z

    of Fully Automated Demand  Response in Large Facilities.  Fully Automated Demand Response Tests in Large Facilities.  Open Automated  Demand Response Communication Standards: 

  4. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    description of six energy and demand management concepts.how quickly it can modify energy demand. This is not a newimprovements in both energy efficiency and demand response (

  5. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    Institute, “Curbing Global Energy Demand Growth: The Energyup Assessment of Energy Demand in India Transportationa profound effect on energy demand. Policy analysts wishing

  6. Sandia National Laboratories: How a Grid Manager Meets Demand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand (Load) How a Grid Manager Meets Demand (Load) In the "historical" electric grid, power-generating plants fell into three categories: No daily electrical demand data plot...

  7. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    13 Table 2. Demand Side Management Framework for IndustrialDR Strategies The demand-side management (DSM) frameworkpresented in Table 2. Demand Side Management Framework for

  8. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of...

    Energy Savers [EERE]

    SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY As a city that experiences seasonal...

  9. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Building Control Strategies and Techniques for Demand Response.Building Systems and DR Strategies 16 Demand ResponseDemand Response Systems. ” Proceedings, 16 th National Conference on Building

  10. LEED Demand Response Credit: A Plan for Research towards Implementation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2014-01-01T23:59:59.000Z

    in California. DEMAND RESPONSE AND COMMERCIAL BUILDINGSload and demand response against other buildings and alsoDemand Response and Energy Efficiency in Commercial Buildings",

  11. Open Automated Demand Response Communications Specification (Version 1.0)

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    Keywords: demand response, buildings, electricity use, Interface  Automated Demand Response  Building Automation of demand response in  commercial buildings.   One key 

  12. Results and commissioning issues from an automated demand response pilot

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

    2004-01-01T23:59:59.000Z

    Management and Demand Response in Commercial Buildings", L BAutomated Demand Response National Conference on BuildingAutomated Demand Response National Conference on Building

  13. Scenarios for Consuming Standardized Automated Demand Response Signals

    E-Print Network [OSTI]

    Koch, Ed

    2009-01-01T23:59:59.000Z

    Keywords: Demand response, automation, commercial buildings,Demand Response and Energy Efficiency in Commercial Buildings,Building Control Strategies and Techniques for Demand Response.

  14. Open Automated Demand Response for Small Commerical Buildings

    E-Print Network [OSTI]

    Dudley, June Han

    2009-01-01T23:59:59.000Z

    Demand  Response for Small Commercial Buildings.   CEC?500?automated demand response  For small commercial buildings, AUTOMATED DEMAND RESPONSE FOR SMALL COMMERCIAL BUILDINGS

  15. Automated Demand Response Strategies and Commissioning Commercial Building Controls

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-01-01T23:59:59.000Z

    for Demand Response in New and Existing Commercial BuildingsDemand Response Strategies and National Conference on BuildingDemand Response Strategies and Commissioning Commercial Building

  16. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    for Automated Demand Response in Commercial Buildings. Inbased demand response information to building controlDemand Response Standard for the Residential Sector. California Energy Commission, PIER Buildings

  17. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    is manual demand response where building staff receive acommercial buildings’ demand response technologies andBuilding Control Strategies and Techniques for Demand Response.

  18. Direct versus Facility Centric Load Control for Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    Keywords: Demand response, automation, commercial buildings,Demand Response and Energy Efficiency in Commercial Buildings,Building Control Strategies and Techniques for Demand Response.

  19. Presented at SRM Annual Conference, OKC, OK 2/5/2013 K.W. Tate, L.M. Roche, M.R. George, UC Davis 1

    E-Print Network [OSTI]

    Tate, Kenneth

    Presented at SRM Annual Conference, OKC, OK 2/5/2013 K.W. Tate, L.M. Roche, M.R. George, UC Davis 1, L.M. Roche, M.R. George, UC Davis 2 · Offstream attractants such as water tanks and supplement in runoff #12;Presented at SRM Annual Conference, OKC, OK 2/5/2013 K.W. Tate, L.M. Roche, M.R. George, UC

  20. Maximum entropy segmentation of broadcast news 

    E-Print Network [OSTI]

    Christensen, Heidi; Kolluru, BalaKrishna; Gotoh, Yoshihiko; Renals, Steve

    2005-01-01T23:59:59.000Z

    speech recognizer and subsequently segmenting the text into utterances and topics. A maximum entropy approach is used to build statistical models for both utterance and topic segmentation. The experimental work addresses the effect on performance...

  1. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01T23:59:59.000Z

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  2. Lead -- supply/demand outlook

    SciTech Connect (OSTI)

    Schnull, T. [Noranda, Inc., Toronto, Ontario (Canada)

    1999-03-01T23:59:59.000Z

    As Japan goes--so goes the world. That was the title of a recent lead article in The Economist that soberly discussed the potential of much more severe global economic problems occurring, if rapid and coordinated efforts were not made to stabilize the economic situation in Asia in general, and in Japan in particular. During the first 6 months of last year, commodity markets reacted violently to the spreading economic problems in Asia. More recent currency and financial problems in Russia have exacerbated an already unpleasant situation. One commodity after another--including oil, many of the agricultural commodities, and each of the base metals--have dropped sharply in price. Many are now trading at multiyear lows. Until there is an overall improvement in the outlook for these regions, sentiment will likely continue to be negative, and metals prices will remain under pressure. That being said, lead has maintained its value better than many other commodities during these difficult times, finding support in relatively strong fundamentals. The author takes a closer look at those supply and demand fundamentals, beginning with consumption.

  3. Industrial Demand-Side Management in Texas

    E-Print Network [OSTI]

    Jaussaud, D.

    of programs result in lower consumption and/or lower peak demand, and ultimately reduce the need to build new capacity. Hence demand-side management can be used as a resource option to be considered alongside more traditional supply-side resources in a...INDUSTRIAL DEMAND-SIDE MANAGEMENT IN TEXAS Danielle Jaussaud Economic Analysis Section Public Utility Commission of Texas Austin, Texas ABSTRACT The industrial sector in Texas is highly energy intensive and represents a large share...

  4. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    2 -based demand controlled ventilation using ASHRAE Standardoptimizing energy use and ventilation. ASHRAE TransactionsWJ, Grimsrud DT, et al. 2011. Ventilation rates and health:

  5. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    for demand controlled ventilation in commercial buildings.The energy costs of classroom ventilation and some financialEstimating potential benefits of increased ventilation

  6. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    Drivers of demand: urbanization, heavy industry, and risingdemand: urbanization, heavy industry, and rising income Theprocesses of urbanization, heavy industry growth, and rising

  7. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    Commission (FERC) 2008a. “Wholesale Competition in RegionsDemand Response into Wholesale Electricity Markets,” (URL:1 2. Wholesale and Retails Electricity Markets in

  8. Demand Response - Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    prices or when grid reliability is jeopardized. In regions with centrally organized wholesale electricity markets, demand response can help stabilize volatile electricity prices...

  9. Optimization of Demand Response Through Peak Shaving

    E-Print Network [OSTI]

    2013-06-19T23:59:59.000Z

    Jun 19, 2013 ... efficient linear programming formulation for the demand response of such a consumer who could be a price taker, industrial or commercial user ...

  10. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    peak demand management. Photo sensors for daylight drivenare done by local photo-sensors and control hardwaresensing device in a photo sensor is typically a photodiode,

  11. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    in peak demand. This definition of energy efficiency makesthe following definitions are used: Energy efficiency refersThis definition implicitly distinguishes energy efficiency

  12. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for...

  13. Geographically Based Hydrogen Demand and Infrastructure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles...

  14. Natural Gas Demand Markets in the Northeast

    Broader source: Energy.gov (indexed) [DOE]

    Providing a Significant Opportunity for New and Expanding Natural Gas Demand Markets in the Northeast Prepared for: America's Natural Gas Alliance (ANGA) Prepared by: Bentek...

  15. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    3 3.0 Previous Experience with Demand Responsive Lighting11 4.3. Prevalence of Lighting13 4.4. Impact of Title 24 on Lighting

  16. Wastewater plant takes plunge into demand response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commission and the Bonneville Power Administration, the Eugene-Springfield Water Pollution Control Facility in Eugene, Ore., was put through a series of demand response tests....

  17. Robust newsvendor problem with autoregressive demand

    E-Print Network [OSTI]

    2014-05-19T23:59:59.000Z

    May 19, 2014 ... business decision problems, in fields such as managing booking and ...... Q? having available the demand historical records for t = 1, ..., T. 2.

  18. Honeywell Demonstrates Automated Demand Response Benefits for...

    Broader source: Energy.gov (indexed) [DOE]

    Honeywell's Smart Grid Investment Grant (SGIG) project demonstrates utility-scale performance of a hardwaresoftware platform for automated demand response (ADR). This project...

  19. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    Response Controls for HVAC Systems Clifford Federspiel,tests. Figure 5: Specific HVAC electric power consumptioncontrol, demand response, HVAC, wireless Executive Summary

  20. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    the dispatch of flexible loads and generation resources bothof controllable generation and flexible demand. In the casecontrollable generation resources and flexible loads in the

  1. FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007

    E-Print Network [OSTI]

    ......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

  2. Performance of an efficient 6 kW helium refrigerator for the LEP 200 project at CERN

    SciTech Connect (OSTI)

    Erdt, W.K.; Frandsen, P.; Guesewell, D.; Solheim, N.O.; Winkler, G. [CERN, Geneva (Switzerland); Kurtcuoglu, K.; Loehlein, K.; Senn, A.E.; Wagner, U.; Ziegler, B. [LINDE KRYOTECHNIK, Pfungen (Switzerland)

    1994-12-31T23:59:59.000Z

    CERN has installed helium refrigeration plants for the LEP 200 project in 1991 with an equivalent refrigeration capacity of 6 kW at 4.5 K. The cold boxes of the plants were specified to be installed in the LEP tunnel and were therefore limited regarding their physical size. The LINDE helium refrigeration plant combines an extremely compact construction with a remarkably good cycle efficiency. It was in part achieved by arranging 3 expansion turbines in the temperature region below 20 K, one of which expands to roughly saturated liquid. The paper describes the system, the results of performance measurements, and the experience obtained during more than one year of operation.

  3. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    SciTech Connect (OSTI)

    Wu, Y. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China) [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Science and Technology on High Power Microwave Laboratory, Mianyang 621900 (China); Xie, H. Q. [College of Science, Southwestern University of Science and Technology, Mianyang 621010 (China)] [College of Science, Southwestern University of Science and Technology, Mianyang 621010 (China); Li, Z. H.; Zhang, Y. J.; Ma, Q. S. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)] [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2013-11-15T23:59:59.000Z

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  4. Cell development obeys maximum Fisher information

    E-Print Network [OSTI]

    B. R. Frieden; R. A. Gatenby

    2014-04-29T23:59:59.000Z

    Eukaryotic cell development has been optimized by natural selection to obey maximal intracellular flux of messenger proteins. This, in turn, implies maximum Fisher information on angular position about a target nuclear pore complex (NPR). The cell is simply modeled as spherical, with cell membrane (CM) diameter 10 micron and concentric nuclear membrane (NM) diameter 6 micron. The NM contains about 3000 nuclear pore complexes (NPCs). Development requires messenger ligands to travel from the CM-NPC-DNA target binding sites. Ligands acquire negative charge by phosphorylation, passing through the cytoplasm over Newtonian trajectories toward positively charged NPCs (utilizing positive nuclear localization sequences). The CM-NPC channel obeys maximized mean protein flux F and Fisher information I at the NPC, with first-order delta I = 0 and approximate 2nd-order delta I = 0 stability to environmental perturbations. Many of its predictions are confirmed, including the dominance of protein pathways of from 1-4 proteins, a 4nm size for the EGFR protein and the approximate flux value F =10^16 proteins/m2-s. After entering the nucleus, each protein ultimately delivers its ligand information to a DNA target site with maximum probability, i.e. maximum Kullback-Liebler entropy HKL. In a smoothness limit HKL approaches IDNA/2, so that the total CM-NPC-DNA channel obeys maximum Fisher I. Thus maximum information approaches non-equilibrium, one condition for life.

  5. Strategies for Aligning Program Demand with Contractor's Seasonal...

    Energy Savers [EERE]

    Aligning Program Demand with Contractor's Seasonal Fluctuations Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations Better Buildings Neighborhood Program...

  6. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    fuel electricity demands, and generation from these plantplants .. 47 Additional generation .. 48 Electricityelectricity demand increases generation from NGCC power plants.

  7. Demand Response and Electric Grid Reliability

    E-Print Network [OSTI]

    Wattles, P.

    2012-01-01T23:59:59.000Z

    Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

  8. SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK DRAFTSTAFFREPORT May ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B assessment of the capability of the physical electricity system to provide power to meet electricity demand

  9. Optimal Trading Strategy Supply/Demand Dynamics

    E-Print Network [OSTI]

    Gabrieli, John

    prices through the changes in their supply/demand.2 Thus, to study how market participants trade can have interesting implications on the observed behavior of intraday volume, volatility and prices: November 15, 2004. This Draft: April 8, 2006 Abstract The supply/demand of a security in the market

  10. INTEGRATION OF PV IN DEMAND RESPONSE

    E-Print Network [OSTI]

    Perez, Richard R.

    . It may also be implemented by means of customer-sited emergency power generation (e.g., diesel generators the case that distributed PV generation deserves a substantial portion of the credit allotted to demand response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing

  11. Demand Response Programs Oregon Public Utility Commission

    E-Print Network [OSTI]

    , Demand Side Management #12;Current Programs/Tariffs ­ Load Control Programs Cool Keeper, Utah (currentlyDemand Response Programs Oregon Public Utility Commission January 6, 2005 Mike Koszalka Director 33 MW, building to 90 MW) Irrigation load control, Idaho (35 MW summer, 2004) Lighting load control

  12. Uranium 2009 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01T23:59:59.000Z

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  13. Scaling and Optimization of Magnetic Refrigeration for Commercial Building HVAC Systems Greater than 175 kW in Capacity

    SciTech Connect (OSTI)

    Abdelaziz, Omar [ORNL] [ORNL; West, David L [ORNL] [ORNL; Mallow, Anne M [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Heating, ventilation, air-conditioning and refrigeration (HVACR) account for approximately one- third of building energy consumption. Magnetic refrigeration presents an opportunity for significant energy savings and emissions reduction for serving the building heating, cooling, and refrigeration loads. In this paper, we have examined the magnet and MCE material requirements for scaling magnetic refrigeration systems for commercial building cooling applications. Scaling relationships governing the resources required for magnetic refrigeration systems have been developed. As system refrigeration capacity increases, the use of superconducting magnet systems becomes more applicable, and a comparison is presented of system requirements for permanent and superconducting (SC) magnetization systems. Included in this analysis is an investigation of the ability of superconducting magnet based systems to overcome the parasitic power penalty of the cryocooler used to keep SC windings at cryogenic temperatures. Scaling relationships were used to develop the initial specification for a SC magnet-based active magnetic regeneration (AMR) system. An optimized superconducting magnet was designed to support this system. In this analysis, we show that the SC magnet system consisting of two 0.38 m3 regenerators is capable of producing 285 kW of cooling power with a T of 28 K. A system COP of 4.02 including cryocooler and fan losses which illustrates that an SC magnet-based system can operate with efficiency comparable to traditional systems and deliver large cooling powers of 285.4 kW (81.2 Tons).

  14. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29T23:59:59.000Z

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  15. Demand Response This is the first of the Council's power plans to treat demand response as a resource.1

    E-Print Network [OSTI]

    Demand Response This is the first of the Council's power plans to treat demand response the resource and describes some of the potential advantages and problems of the development of demand response. WHAT IS DEMAND RESPONSE? Demand response is a change in customers' demand for electricity corresponding

  16. Maximum Likelihood Haplotyping for General Pedigrees

    E-Print Network [OSTI]

    Friedman, Nir

    networks. The use of Bayesian networks enables efficient maximum likelihood haplotyping for more complex for the variables of the Bayesian network. The presented optimization algorithm also improves likelihood Analysis, Pedigree, superlink. Abstract Haplotype data is valuable in mapping disease-susceptibility genes

  17. Weak Scale From the Maximum Entropy Principle

    E-Print Network [OSTI]

    Yuta Hamada; Hikaru Kawai; Kiyoharu Kawana

    2014-09-23T23:59:59.000Z

    The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\

  18. Weak Scale From the Maximum Entropy Principle

    E-Print Network [OSTI]

    Hamada, Yuta; Kawana, Kiyoharu

    2014-01-01T23:59:59.000Z

    The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\

  19. Integrating Correlated Bayesian Networks Using Maximum Entropy

    SciTech Connect (OSTI)

    Jarman, Kenneth D.; Whitney, Paul D.

    2011-08-30T23:59:59.000Z

    We consider the problem of generating a joint distribution for a pair of Bayesian networks that preserves the multivariate marginal distribution of each network and satisfies prescribed correlation between pairs of nodes taken from both networks. We derive the maximum entropy distribution for any pair of multivariate random vectors and prescribed correlations and demonstrate numerical results for an example integration of Bayesian networks.

  20. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect (OSTI)

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28T23:59:59.000Z

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.