National Library of Energy BETA

Sample records for maximum contaminant levels

  1. Operating Experience Level 3: Radiologically Contaminated Respirators...

    Energy Savers [EERE]

    Experience Level 3 provides information on a safety concern related to radiological contamination of launderedreconditioned respirators and parts that have been certified as...

  2. Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint

    SciTech Connect (OSTI)

    Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.

    2012-07-01

    This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

  3. Treatment options for low-level radiologically contaminated ORNL filtercake

    SciTech Connect (OSTI)

    Lee, Hom-Ti; Bostick, W.D.

    1996-04-01

    Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithic waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.

  4. Residual radioactive contamination from decommissioning: Technical basis for translating contamination levels to annual dose

    SciTech Connect (OSTI)

    Kennedy, W.E. Jr.; Peloquin, R.A. )

    1990-01-01

    This document describes the generic modeling of the total effective dose equivalent (TEDE) to an individual in a population from a unit concentration of residual radioactive contamination. Radioactive contamination inside buildings and soil contamination are considered. Unit concentration TEDE factors by radionuclide, exposure pathway, and exposure scenario are calculated. Reference radiation exposure scenarios are used to derive unit concentration TEDE factors for about 200 individual radionuclides and parent-daughter mixtures. For buildings, these unit concentration factors list the annual TEDE for volume and surface contamination situations. For soil, annual TEDE factors are presented for unit concentrations of radionuclides in soil during residential use of contaminated land and the TEDE per unit total inventory for potential use of drinking water from a ground-water source. Because of the generic treatment of potentially complex ground-water systems, the annual TEDE factors for drinking water for a given inventory may only indicate when additional site data or modeling sophistication are warranted. Descriptions are provided of the models, exposure pathways, exposure scenarios, parameter values, and assumptions used. An analysis of the potential annual TEDE resulting from reference mixtures of residual radionuclides is provided to demonstrate application of the TEDE factors. 62 refs., 5 figs., 66 tabs.

  5. Development and Performance of Detectors for the Cryogenic Dark Matter Search Experiment with an Increased Sensitivity Based on a Maximum Likelihood Analysis of Beta Contamination

    SciTech Connect (OSTI)

    Driscoll, Donald D.; /Case Western Reserve U.

    2004-01-01

    The Cryogenic Dark Matter Search (CDMS) uses cryogenically-cooled detectors made of germanium and silicon in an attempt to detect dark matter in the form of Weakly-Interacting Massive Particles (WIMPs). The expected interaction rate of these particles is on the order of 1/kg/day, far below the 200/kg/day expected rate of background interactions after passive shielding and an active cosmic ray muon veto. Our detectors are instrumented to make a simultaneous measurement of both the ionization energy and thermal energy deposited by the interaction of a particle with the crystal substrate. A comparison of these two quantities allows for the rejection of a background of electromagnetically-interacting particles at a level of better than 99.9%. The dominant remaining background at a depth of {approx} 11 m below the surface comes from fast neutrons produced by cosmic ray muons interacting in the rock surrounding the experiment. Contamination of our detectors by a beta emitter can add an unknown source of unrejected background. In the energy range of interest for a WIMP study, electrons will have a short penetration depth and preferentially interact near the surface. Some of the ionization signal can be lost to the charge contacts there and a decreased ionization signal relative to the thermal signal will cause a background event which interacts at the surface to be misidentified as a signal event. We can use information about the shape of the thermal signal pulse to discriminate against these surface events. Using a subset of our calibration set which contains a large fraction of electron events, we can characterize the expected behavior of surface events and construct a cut to remove them from our candidate signal events. This thesis describes the development of the 6 detectors (4 x 250 g Ge and 2 x 100 g Si) used in the 2001-2002 CDMS data run at the Stanford Underground Facility with a total of 119 livedays of data. The preliminary results presented are based on the first use of a beta-eliminating cut based on a maximum-likelihood characterization described above.

  6. New Remote Method for Estimation of Contamination Levels of Reactor Equipment - 13175

    SciTech Connect (OSTI)

    Danilovich, Alexey; Ivanov, Oleg; Potapov, Victor; Semenov, Sergey; Semin, Ilya; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly

    2013-07-01

    Projects for decommissioning of shutdown reactors and reactor facilities carried out in several countries, including Russia. In the National Research Centre 'Kurchatov Institute' decontamination and decommissioning of the research reactor MR (Material Testing Reactor) has been initiated. The research reactor MR has a long history and consists of nine loop facilities for experiments with different kinds of fuel. During the operation of main and auxiliary equipment of reactors it was subjected to strong radioactive contamination. The character of this contamination requires individual strategies for the decontamination work. This requires information about the character of the distribution of radioactive contamination of equipment in the premises. A detailed radiation survey of these premises using standard dosimetric equipment is almost impossible because of high levels of radiation and high-density of the equipment that does not allow identifying the most active fragments using standard tools of measurement. The problem can be solved using the method of remote measurements of distribution of radioactivity with help of the collimated gamma-ray detectors. For radiation surveys of the premises of loop installations remotely operated spectrometric collimated system was used [1, 2, 3]. As a result of the work, maps of the distribution of activity and dose rate for surveyed premises were plotted and superimposed on its photo. The new results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. (authors)

  7. Evaluation of internal contamination levels after a radiological dispersal device incident using portal monitors

    SciTech Connect (OSTI)

    Palmer, R.C.; Hertel, Nolan; Ansari, A.; Manger, Ryan P; Freibert, E.J.

    2012-01-01

    Following a radioactive dispersal device (RDD) incident, it may be necessary to evaluate the internal contamination levels of a large number of potentially affected individuals to determine if immediate medical follow-up is necessary. Since the current laboratory capacity to screen for internal contamination is limited, rapid field screening methods can be useful in prioritizing individuals. This study evaluated the suitability of a radiation portal monitor for such screening. A model of the portal monitor was created for use with models of six anthropomorphic phantoms in Monte Carlo N-Particle Transport Code Version 5 (MCNP) X-5 Monte Carlo Team (MCNP A General Monte Carlo N-Particle Transport Code Version 5. LA-CP-03-0245. Vol. 2. Los Alamos National Laboratory, 2004.). The count rates of the portal monitor were simulated for inhalation and ingestion of likely radionuclides from an RDD for each of the phantoms. The time-dependant organ concentrations of the radionuclides were determined using Dose and Risk Calculation Software Eckerman, Leggett, Cristy, Nelson, Ryman, Sjoreen and Ward (Dose and Risk Calculation Software Ver. 8.4. ORNL/TM-2001/190. Oak Ridge National Laboratory, 2006.). Portal monitor count rates corresponding to a committed effective dose E(50) of 10 mSv are reported.

  8. Sensitive Multi-Species Emissions Monitoring: Infrared Laser-Based Detection of Trace-Level Contaminants.

    SciTech Connect (OSTI)

    Steill, Jeffrey D

    2015-01-01

    This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to these species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.

  9. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    SciTech Connect (OSTI)

    Peterson, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankat; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Camou, Alejandro; Aul, Christopher

    2013-09-30

    This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

  10. Geochemical information for sites contaminated with low-level radioactive wastes: II. St. Louis Airport Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1985-01-01

    The St. Louis Airport Storage Site (SLASS) became radioactively contaminated as a result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy is considering various remedial action options for the SLASS under the Formerly Utilized Site Remedial Action Program (FUSRAP). This report describes the results of geochemical investigations, carried out to support the FUSRAP activities and to aid in quantifying various remedial action options. Soil and groundwater samples from the site were characterized, and sorption ratios for uranium and radium and apparent concentration limit values for uranium were measured in soil/groundwater systems by batch contact methodology. The uranium and radium concentrations in soil samples were significantly above background near the old contaminated surface horizon (now at the 0.3/sup -/ to 0.9/sup -/m depth); the maximum values were 1566 ..mu..g/g and 101 pCi/g, respectively. Below about the 6/sup -/m depth, the concentrations appeared to be typical of those naturally present in soils of this area (3.8 +- 1.2 ..mu..g/g and 3.1 +- 0.6 pCi/g). Uranium sorption ratios showed stratigraphic trends but were generally moderate to high (100 to 1000 L/kg). The sorption isotherm suggested an apparent uranium concentration limit of about 200 mg/L. This relatively high solubility can probably be correlated with the carbonate content of the soil/groundwater systems. The lower sorption ratio values obtained from the sorption isotherm may have resulted from changes in the experimental procedure or the groundwater used. The SLASS appears to exhibit generally favorable behavior for the retardation of uranium solubilized from waste in the site. Parametric tests were conducted to estimate the sensitivity of uranium sorption and solubility to the pH and carbonate content of the system.

  11. Geochemical information for sites contaminated with low-level radioactive wastes: I. Niagara Falls Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1984-11-01

    The Niagara Falls Storage Site (NFSS) became radioactively contaminated as a result of wastes that were being stored from operations carried out to recover uranium from pitchblende ore in the 1940s and 1950s. The US Department of Energy (DOE) is considering various remedial action options for the NFSS. This report describes the results of geochemical investigations performed to help provide a quantitative evaluation of the effects of various options. NFSS soil and groundwater samples were characterized; and uranium and radium sorption ratios, as well as apparent concentration limit values, were measured in site soil/groundwater systems by employing batch contact methodology. The results suggest that any uranium which is in solution in the groundwater at the NFSS may be poorly retarded due to the low uranium sorption ratio values and high solubility measured. Further, appreciable concentrations of uranium in groundwater could be attained from soluble wastes. Release of uranium via groundwater migration could be a significant release pathway. Solubilized radium would be expected to be effectively retarded by soil at the NFSS as a result of the very high radium sorption ratios observed. The addition of iron oxyhydroxide to NFSS soils resulted in much higher uranium sorption ratios. Additional field testing of this potential remedial action additive could be desirable. 10 references.

  12. Maximum-likelihood

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maximum-likelihood fitting of data dominated by Poisson statistical uncertainties M. R. Stoneking and D. J. Den Hartog Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 ͑Presented on 15 May 1996͒ The fitting of data by ␹ 2 minimization is valid only when the uncertainties in the data are normally distributed. When analyzing spectroscopic or particle counting data at very low signal level ͑e.g., a Thomson scattering diagnostic͒, the uncertainties are

  13. Geochemical information for sites contaminated with low-level radioactive wastes. III. Weldon Spring Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1985-02-01

    The Weldon Spring Storage Site (WSSS), which includes both the chemical site and the quarry, became radioactively contaminated as the result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy (DOE) is considering various remedial action options for the WSSS. This report describes the results of geochemical investigations carried out at Oak Ridge National Laboratory (ORNL) to support these activities and to help quantify various remedial action options. Soil and groundwater samples were characterized, and uranium and radium sorption ratios were measured in site soil/groundwater systems by batch contact methodology. Soil samples from various locations around the raffinate pits were found to contain major amounts of silica, along with illite as the primary clay constituent. Particle sizes of the five soil samples were variable (50% distribution point ranging from 12 to 81 ..mu..m); the surface areas varied from 13 to 62 m/sup 2//g. Elemental analysis of the samples showed them to be typical of sandy clay and silty clay soils. Groundwater samples included solution from Pit 3 and well water from Well D. Anion analyses showed significant concentrations of sulfate and nitrate (>350 and >7000 mg/L, respectively) in the solution from Pit 3. These anions were also present in the well water, but in lower concentrations. Uranium sorption ratios for four of the soil samples contacted with the solution from Pit 3 were moderate to high (approx. 300 to approx. 1000 mL/g). The fifth sample had a ratio of only 12 mL/g. Radium sorption ratios for the five samples were moderate to high (approx. 600 to approx. 1000 mL/g). These values indicate that soil at the WSSS may show favorable retardation of uranium and radium in the groundwater. 13 references, 13 figures, 10 tables.

  14. Contaminant transport in unconfined aquifer, input to low-level tank waste interim performance assessment

    SciTech Connect (OSTI)

    Lu, A.H., Westinghouse Hanford

    1996-08-14

    This report describes briefly the Hanford sitewide groundwater model and its application to the Low-Level Tank Waste Disposal (LLTWD) interim Performance Assessment (PA). The Well Intercept Factor (WIF) or dilution factor from a given areal flux entering the aquifer released from the LLTWD site are calculated for base case and various sensitivity cases. In conjunction with the calculation for released fluxes through vadose zone transport,the dose at the compliance point can be obtained by a simple multiplication. The relative dose contribution from the upstream sources was also calculated and presented in the appendix for an equal areal flux at the LLTWD site. The results provide input for management decisions on remediation action needed for reduction of the released fluxes from the upstream facilities to the allowed level to meet the required dose criteria.

  15. Marine plankton as an indicator of low-level radionuclide contamination in the Southern Ocean

    SciTech Connect (OSTI)

    Marsh, K.V.; Buddemeier, R.W.

    1984-07-01

    We have initiated an investigation of the utility of marine plankton as bioconcentrating samplers of low-level marine radioactivity in the southern hemisphere. A literature review shows that both freshwater and marine plankton have trace element and radionuclide concentration factors (relative to water) of up to 10/sup 4/. In the years 1956-1958, considerable work was done on the accumulation and distribution of a variety of fission and activation products produced by the nuclear tests in the Marshall Islands. Since then, studies have largely been confined to a few selected radionuclides, and by far most of this work has been done in the northern hemisphere. We participated in Operation Deepfreeze 1981, collecting 32 plankton samples from the U.S. Coast Guard Cutter Glacier on its Antarctic cruise, while Battelle Pacific Northwest Laboratories concurrently sampled air, water, rain and fallout. We were able to measure concentrations of the naturally occurring radionuclides /sup 7/Be, /sup 40/K and the U and th series, and we believe that we have detected low levels of /sup 144/Ce and /sup 95/Nb in seven samples ranging as far south as 68/sup 0/. There is a definite association between the radionuclide content of plankton and air filters, suggesting that aerosol resuspension of marine radioactivity may be occurring. Biological identification of the plankton suggests a possible correlation between radionuclide concentration and foraminifera content of the samples. 38 references, 7 figures, 3 tables.

  16. Turbulent flame speeds and NOx kinetics of HHC fuels with contaminants and high dilution levels

    SciTech Connect (OSTI)

    Petersen, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankar; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Aul, Christopher; Petersen, Eric

    2012-09-30

    This progress report documents the second year of the project, from October 1, 2011 through September 30, 2012. Characterization of the new turbulent flame speed vessel design was completed. Turbulence statistics of three impellers with different geometric features were measured using particle image velocimetry inside a Plexiglas model (~1:1 scale) of a cylindrical flame speed vessel (30.5 cm ID 35.6 cm L). With four impellers arranged in a central-symmetric configuration, turbulence intensities between 1.2 and 1.7 m/s with negligible mean flow (0.1u) were attained at the lowest fan speeds. Acceptable ranges for homogeneity and isotropy ratios of the velocity fields were set within a narrow bandwidth near unity (0.9-1.1). Homogeneity ratios were unaffected by changes to the impeller geometry, and the prototype with the higher number of blades caused the flow to become anisotropic. The integral length scale of the flow fields varied between 27 and 20 mm, which correlates well with those typically observed inside a gas turbine combustor. The mechanism to independently vary the intensity level and the integral length scale was established, where turbulence intensity level was dependent on the rotational speed of the fan, and the integral length scale decreased with increasing blade pitch angle. Ignition delay times of H?/O? mixtures highly diluted with Ar and doped with various amounts of N?O (100, 400, 1600, 3200 ppm) were measured in a shock tube behind reflected shock waves over a wide range of temperatures (940-1675 K). The pressure range investigated during this work (around 1.6, 13, and 30 atm) allows studying the effect of N?O on hydrogen ignition at pressure conditions that have never been heretofore investigated. Ignition delay times were decreased when N?O was added to the mixture only for the higher nitrous oxide concentrations, and some changes in the activation energy were also observed at 1.5 and 30 atm. When it occurred, the decrease in the ignition delay time was proportional to the amount of N?O added and depended on pressure and temperature conditions. A detailed chemical kinetics model was developed using kinetic mechanisms from the literature. This model predicts well the experimental data obtained during this study and from the literature. The chemical analysis using this model showed that the decrease in the ignition delay time was mainly due to the reaction N?O +M ? N? + O +M which provides O atoms to strengthen the channel O + H? ? OH + H. Ignition delay times have been measured behind reflected shock waves at 1.5, 12 and 30 atm for a mixture representative of a syngas produced from biomass (0.29659% CO / 0.29659% H? / 0.15748% CO? / 0.08924% CH? / 0.20997% H?O / 0.95013% O? in 98% Ar (mol.%)) and for the same biomass-derived syngas mixture doped with 200 ppm of NH?. The importance of the various constituents on the ignition delay time was investigated by comparing the results with data from various baseline mixtures (H?/O?/Ar, H?/CO/O?/Ar and H?/CO/O?/Ar with one of the other constituent of the syngas (i.e. CO?, H?O, CH? or NH?)). The equivalence ratio was set to 0.5 during this study. Several recent detailed kinetics mechanisms from the literature were computed against these data, with fair agreement. Results showed that the mixture composition can have an important effect on the ignition delay time, with most of the effect being due to CH? addition through the reaction CH?+OH?CH?+H?O. The ammonia impurity had very little effect on the ignition delay time over the range of conditions studied.

  17. Electrosorption on carbon aerogel electrodes as a means of treating low-level radioactive wastes and remediating contaminated ground water

    SciTech Connect (OSTI)

    Tran, Tri Duc; Farmer, Joseph C.; DePruneda, Jean H.; Richardson, Jeffery H.

    1997-07-01

    A novel separation process based upon carbon aerogel electrodes has been recently developed for the efficient removal of ionic impurities from aqueous streams. This process can be used as an electrical y- regenerated alternative to ion exchange, thereby reducing-the need for large quantities of chemical regenerants. Once spent (contaminated), these regenerants contribute to the waste that must be disposed of in landfills. The elimination of such wastes is especially beneficial in situations involving radioactive contaminants, and pump and treat processing of massive volumes of ground water. A review and analysis of potential applications will be presented.

  18. Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional Study of Contaminant Levels, Source, Strengths, and Ventilation Rates in Retail Stores

    SciTech Connect (OSTI)

    Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William

    2014-02-01

    This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of California’s Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 μm. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were then used to determine the ventilation rates, filtration strategies, or source reductions needed to maintain indoor contaminant concentrations below reference levels. Several scenarios of potential concern were considered: (i) formaldehyde levels in furniture/hardware stores, (ii) contaminants associated with cooking (e.g., PM, acrolein, and acetaldehyde) in grocery stores, and (iii) outdoor contaminants (e.g., PM and O{sub 3}) impacting stores that use natural ventilation. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California’s stringent formaldehyde reference level. Given the high costs of providing ventilation but only modest chronic health benefit is expected, effective source control is an attractive alternative, as demonstrated by some retail stores in this study. Predictions showed that grocery stores need MERV 13 air filters, instead of MERV 8 filters that are more commonly used, to maintain indoor PM at levels that meet the chronic health standards for PM. Exposure to acrolein is a potential health concern in grocery stores, and should be addressed by increasing the use of kitchen range hoods or improving their contaminant removal efficiency. In stores that rely on natural ventilation, indoor PM can be a health concern if the stores are located in areas with high outdoor PM. This concern may be addressed by switching to mechanical ventilation when the outdoor air quality is poor, while continuing natural ventilation when outdoor air quality is good.

  19. Evaluation of Radiation Doses Due to Consumption of Contaminated Food Items and Calculation of Food Class-Specific Derived Intervention Levels

    SciTech Connect (OSTI)

    Heinzelman, K M; Mansfield, W G

    2010-04-27

    This document evaluates the expected radiation dose due to the consumption of several specific food classes (dairy, meat, produce, etc.) contaminated with specific radionuclides, and relates concentration levels in food to the detection abilities of typical aboratory analysis/measurement methods. The attached charts present the limiting organ dose as a function of the radionuclide concentration in a particular food class, and allow the user to compare these concentrations and doses to typical analytical detection apabilities. The expected radiation dose depends on several factors: the age of the individual; the radionuclide present in the food; the concentration of the radionuclide in the food; and the amount of food consumed. Food consumption rates for individuals of various ges were taken from the 1998 United States Food and Drug Administration (FDA) document, Accidental Radioactive Contamination of HUman Food and Animal Feeds: Recommendations for State and Local Agencies. In that document, the FDA defines the erived Intervention Level (DIL), which is the concentration of a particular radionuclide in food that if consumed could result in an individual receiving a radiation dose exceeding the Protection Action Guide (PAG) thresholds for intervention. This document also resents odified, food class specific DIL, which is calculated using a somewhat modified version of the FDA's procedure. This document begins with an overview of the FDA's DIL calculation, followed by a description of the food class specific DIL calculations, and finally charts of the radiation dose per radioactivity concentration for several food class/radionuclide combinations.

  20. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, Terry C. (Augusta, GA); Fliermans, Carl B. (Augusta, GA)

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  1. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1995-01-24

    An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

  2. ENVIRONMENTAL SCIENCES; ENVIRONMENTAL MATERIALS; CONTAMINATION...

    Office of Scientific and Technical Information (OSTI)

    audit of SRP radioactive waste Ashley, C. 05 NUCLEAR FUELS; 54 ENVIRONMENTAL SCIENCES; ENVIRONMENTAL MATERIALS; CONTAMINATION; RADIOACTIVE EFFLUENTS; EMISSION; HIGH-LEVEL...

  3. Removal to Maximum Extent Practical

    Broader source: Energy.gov [DOE]

    Summary Notes from 1 November 2007 Generic Technical Issue Discussion on Removal of Highly Radioactive Radionuclides/Key Radionuclides to the Maximum Extent Practical

  4. Evaluation of Maximum Radionuclide Groundwater Concentrations for Basement Fill Model. Zion Station Restoration Project

    SciTech Connect (OSTI)

    Sullivan, Terry

    2014-12-02

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant in order to establish a new water treatment plant. There is some residual radioactive particles from the plant which need to be brought down to levels so an individual who receives water from the new treatment plant does not receive a radioactive dose in excess of 25 mrem/y?. The objectives of this report are: (a) To present a simplified conceptual model for release from the buildings with residual subsurface structures that can be used to provide an upper bound on contaminant concentrations in the fill material; (b) Provide maximum water concentrations and the corresponding amount of mass sorbed to the solid fill material that could occur in each building for use in dose assessment calculations; (c) Estimate the maximum concentration in a well located outside of the fill material; and (d) Perform a sensitivity analysis of key parameters.

  5. Contaminant Sources are Known

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources are Known Historical contaminant sources from liquid discharges and solid waste management units are known. August 1, 2013 Contaminant source map LANL contaminant...

  6. Process for treating waste water having low concentrations of metallic contaminants

    DOE Patents [OSTI]

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  7. Maximum Performance Group MPG | Open Energy Information

    Open Energy Info (EERE)

    Maximum Performance Group MPG Jump to: navigation, search Name: Maximum Performance Group (MPG) Place: College Point, New York Zip: 11356 Product: Technology based energy and asset...

  8. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted...

    Office of Environmental Management (EM)

    PRIME Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by...

  9. Google Earth Tour: Contaminants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google Earth Tour: Contaminants Google Earth Tour: Contaminants Historical operations used the best available waste handling methods for that time.

  10. Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL

    SciTech Connect (OSTI)

    Spalding, B.P.; Jacobs, G.K.; Naney, M.T. ); Dunbar, N.W. ); Tixier, J.S.; Powell, T.D. )

    1992-11-01

    A field demonstration of in situ vitrification (ISV) was completed in May 1991, and produced approximately 12 Mg of melted earthen materials containing 12.7 mCi of radioactivity within 500 g of sludge in amodel of an old seepage trench waste disposal unit. Past waste disposal operations at Oak Ridge National Laboratory have left several contaminated seepage sites. In planning for remediation of such sites, ISV technology has been identified as a leading candidate because of the high risks associated with any retrieval option and because of the usual high quality of vitreous waste form. Major isotopes placed in the test trench were [sup 137]Cs and [sup 90]Sr, with lesser amounts of [sup 6O]Co, [sup 241]Am, and [sup 239,240]Pu. A total of 29 MWh of electrical power was delivered to the ground over a 5-day period producing a melt depth of 8.5 ft. During melting, 2.4% of the [sup 137]Cs volatilized from the melt into an off-gas containment hood and was captured quantitatively on a high efficiency particulate air filter. No volatilization of [sup 90]Sr, [sup 241]Am, or [sup 239,240]Pu was detected and > 99.993% retention of these isotopes in the melt was estimated. The use of added rare earth tracers (Ce, La, and Nd), as surrogates for transuranic isotopes, led to estimated melt retentions of >99.9995% during the test. The molten material, composed of the native soil and dolomitic limestone used for filling the test trench, reached a processing temperature of 1500[degrees]C. Standardized leaching procedures using Product Consistency Testing indicated that the ISV product has excellent characteristics relative to other vitreous nuclear waste forms.

  11. Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL

    SciTech Connect (OSTI)

    Spalding, B.P.; Jacobs, G.K.; Naney, M.T.; Dunbar, N.W.; Tixier, J.S.; Powell, T.D.

    1992-11-01

    A field demonstration of in situ vitrification (ISV) was completed in May 1991, and produced approximately 12 Mg of melted earthen materials containing 12.7 mCi of radioactivity within 500 g of sludge in amodel of an old seepage trench waste disposal unit. Past waste disposal operations at Oak Ridge National Laboratory have left several contaminated seepage sites. In planning for remediation of such sites, ISV technology has been identified as a leading candidate because of the high risks associated with any retrieval option and because of the usual high quality of vitreous waste form. Major isotopes placed in the test trench were {sup 137}Cs and {sup 90}Sr, with lesser amounts of {sup 6O}Co, {sup 241}Am, and {sup 239,240}Pu. A total of 29 MWh of electrical power was delivered to the ground over a 5-day period producing a melt depth of 8.5 ft. During melting, 2.4% of the {sup 137}Cs volatilized from the melt into an off-gas containment hood and was captured quantitatively on a high efficiency particulate air filter. No volatilization of {sup 90}Sr, {sup 241}Am, or {sup 239,240}Pu was detected and > 99.993% retention of these isotopes in the melt was estimated. The use of added rare earth tracers (Ce, La, and Nd), as surrogates for transuranic isotopes, led to estimated melt retentions of >99.9995% during the test. The molten material, composed of the native soil and dolomitic limestone used for filling the test trench, reached a processing temperature of 1500{degrees}C. Standardized leaching procedures using Product Consistency Testing indicated that the ISV product has excellent characteristics relative to other vitreous nuclear waste forms.

  12. Contaminant treatment method

    DOE Patents [OSTI]

    Shapiro, Andrew Philip (Schenectady, NY); Thornton, Roy Fred (Schenectady, NY); Salvo, Joseph James (Schenectady, NY)

    2003-01-01

    The present invention provides a method for treating contaminated media. The method comprises introducing remediating ions consisting essentially of ferrous ions, and being peroxide-free, in the contaminated media; applying a potential difference across the contaminated media to cause the remediating ions to migrate into contact with contaminants in the contaminated media; chemically degrading contaminants in the contaminated media by contact with the remediating ions; monitoring the contaminated media for degradation products of the contaminants; and controlling the step of applying the potential difference across the contaminated media in response to the step of monitoring.

  13. Subsurface Contamination Control

    SciTech Connect (OSTI)

    Y. Yuan

    2001-12-12

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

  14. Contaminant Sources are Known

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contaminant Sources are Known Contaminant Sources are Known Historical contaminant sources from liquid discharges and solid waste management units are known. August 1, 2013 Contaminant source map LANL contaminant source map RELATED IMAGES http://farm4.staticflickr.com/3789/9631743884_4caeb970f9_t.jpg Enlarge

  15. Table 10.1 Nonswitchable Minimum and Maximum Consumption, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonswitchable Minimum and Maximum Consumption, 2002; " " Level: National and Regional Data;" " Row: Energy Sources;" " Column: Consumption Potential;" " Unit: Physical Units." ,,,,"RSE" ,"Actual","Minimum","Maximum","Row" "Energy Sources","Consumption","Consumption(a)","Consumption(b)","Factors" ,"Total United States" "RSE Column

  16. Multi Layer Contaminant Migration Model

    Energy Science and Technology Software Center (OSTI)

    1999-07-28

    This computer software augments and enhances certain calculation included in the previously copyrighted Vadose Zone Contaminant Migration Model. The computational method used in this model recognizes the heterogenous nature of the soils and attempts to account for the variability by using four separate layers to simulate the flow of water through the vadose zone. Therefore, the pore-water velocity calculated by the code will be different than the previous model because it accounts for a widermore » variety of soil properties encountered in the vadose zone. This model also performs an additional screening step than in the previous model. In this model the higher value of two different types of Soil Screening Levels are compared to soil concentrations of contaminants. If the contaminant concentration exceeds the highest of two SSLs, then that contaminant is listed. This is consistent with USEPA's Soil Screening Guidance.« less

  17. Google Earth Tour: Contaminants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google Earth Tour: Contaminants Google Earth Tour: Contaminants Historical operations used the best available waste handling methods for that time. Open full screen to view more...

  18. Proposed method to calculate FRMAC intervention levels for the assessment of radiologically contaminated food and comparison of the proposed method to the U.S. FDA's method to calculate derived intervention levels

    SciTech Connect (OSTI)

    Kraus, Terrence D.; Hunt, Brian D.

    2014-02-01

    This report reviews the method recommended by the U.S. Food and Drug Administration for calculating Derived Intervention Levels (DILs) and identifies potential improvements to the DIL calculation method to support more accurate ingestion pathway analyses and protective action decisions. Further, this report proposes an alternate method for use by the Federal Emergency Radiological Assessment Center (FRMAC) to calculate FRMAC Intervention Levels (FILs). The default approach of the FRMAC during an emergency response is to use the FDA recommended methods. However, FRMAC recommends implementing the FIL method because we believe it to be more technically accurate. FRMAC will only implement the FIL method when approved by the FDA representative on the Federal Advisory Team for Environment, Food, and Health.

  19. Probe for contamination detection in recyclable materials

    DOE Patents [OSTI]

    Taleyarkhan, Rusi

    2003-08-05

    A neutron detection system for detection of contaminants contained within a bulk material during recycling includes at least one neutron generator for neutron bombardment of the bulk material, and at least one gamma ray detector for detection of gamma rays emitted by contaminants within the bulk material. A structure for analyzing gamma ray data is communicably connected to the gamma ray detector, the structure for analyzing gamma ray data adapted. The identity and concentration of contaminants in a bulk material can also be determined. By scanning the neutron beam, discrete locations within the bulk material having contaminants can be identified. A method for recycling bulk material having unknown levels of contaminants includes the steps of providing at least one neutron generator, at least one gamma ray detector, and structure for analyzing gamma ray data, irradiating the bulk material with neutrons, and then determining the presence of at least one contaminant in the bulk material from gamma rays emitted from the bulk material.

  20. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 1, 2 SO2 Case Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 5, 1, 2 SO2 Case Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia:...

  1. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted...

    Broader source: Energy.gov (indexed) [DOE]

    Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 3, 1, 2 SO2 Case. Compliance based on highest, second-highest, short-term, and highest annual...

  2. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted...

    Office of Environmental Management (EM)

    4, 1, 2 SO2 Case Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 4, 1, 2 SO2 Case Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia:...

  3. White Oak Creek Embayment site characterization and contaminant screening analysis

    SciTech Connect (OSTI)

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed [sup 137]Cs concentrations [> 10[sup 6] Bq/kg dry wt (> 10[sup 4] pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of [sup 137]Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h[sup 1] 1 m above the soil surface.

  4. Contamination analysis unit

    DOE Patents [OSTI]

    Gregg, Hugh R. (Livermore, CA); Meltzer, Michael P. (Livermore, CA)

    1996-01-01

    The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.

  5. Contamination analysis unit

    DOE Patents [OSTI]

    Gregg, H.R.; Meltzer, M.P.

    1996-05-28

    The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.

  6. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, Peter (Los Alamos, NM); Hemberger, Barbara J. (Los Alamos, NM)

    1991-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a polyolefin tube having an internal diameter of from about 0.01 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the tube, (b) passing a solvent through the tube, said solvent capable of separating the adhered organic contaminant from the tube. Further, a chromatographic apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a polyolefin tube having an internal diameter of from about 0.01 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the tube is disclosed.

  7. Treatment of radionuclide contaminated soils

    SciTech Connect (OSTI)

    Pettis, S.A.; Kallas, A.J.; Kochen, R.L.; McGlochlin, S.C.

    1988-06-01

    Rockwell, International, Rocky Flats Plants, is committed to remediating within the scope of RCRA/CERCLA, Solid Waste Managements Units (SWMUs) at Rocky Flats found to be contaminated with hazardous substances. SWMUs fund to have radionuclide (uranium, plutonium, and/or americium) concentrations in the soils and/or groundwater that exceed background levels or regulatory limits will also be included in this remediation effort. This paper briefly summarizes past and present efforts by Rockwell International, Rocky Flats Plant, to identify treatment technologies appropriate for remediating actinide contaminated soils. Many of the promising soil treatments evaluated in Rocky Flats' laboratories during the late 1970's and early 1980's are currently being revisited. These technologies are generally directed toward substantially reducing the volume of contaminated soils, with the subsequent intention of disposing of a small remaining concentrated fraction of contaminated soil in a facility approved to receive radioactive wastes. Treatment processes currently will be treated to remove actinides, and recycled back to the process. Past investigations have included evaluations of dry screening, wet screening, scrubbing, ultrasonics, chemical oxidation, calcination, desliming, flotation, and heavy-liquid density separation. 8 refs., 2 figs.

  8. A Lesson Learned on Determination of Radionuclides on Metal Surface Fixed Contamination

    SciTech Connect (OSTI)

    MEZNARICH, H.K.

    2000-02-01

    A Measurement of fixed surface contamination required to determine classification as low-level or as transuranic waste.

  9. Contamination Control Techniques

    SciTech Connect (OSTI)

    EBY, J.L.

    2000-05-16

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  10. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

  11. Addendum to the East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    SAIC

    2011-04-01

    The East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan (DOE 2004) describes the planned fieldwork to support the remedial investigation (RI) for residual contamination at the East Tennessee Technology Park (ETTP) not addressed in previous Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) decisions. This Addendum describes activities that will be conducted to gather additional information in Zone 1 of the ETTP for groundwater, surface water, and sediments. This Addendum has been developed from agreements reached in meetings held on June 23, 2010, August 25, 2010, October 13, 2010, November 13, 2010, December 1, 2010, and January 13, 2011, with representatives of the U. S. Department of Energy (DOE), U. S. Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC). Based on historical to recent groundwater data for ETTP and the previously completed Sitewide Remedial Investigation for the ETTP (DOE 2007a), the following six areas of concern have been identified that exhibit groundwater contamination downgradient of these areas above state of Tennessee and EPA drinking water maximum contaminant levels (MCLs): (1) K-720 Fly Ash Pile, (2) K-770 Scrap Yard, (3) Duct Island, (4) K-1085 Firehouse Burn/J.A. Jones Maintenance Area, (5) Contractor's Spoil Area (CSA), and (6) Former K-1070-A Burial Ground. The paper presents a brief summary of the history of the areas, the general conceptual models for the observed groundwater contamination, and the data gaps identified.

  12. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  13. Hydrogen Contamination Detector Workshop

    Broader source: Energy.gov [DOE]

    Workshop report, agenda, and presentations from the Hydrogen Contamination Detector Workshop hosted by SAE International on June 12, 2014, in Troy, Michigan. Sponsored by the U.S. Department of Energy (DOE) Fuel Cell Technologies Office, the workshop was held to gather individual input from key stakeholders about suitable technologies and research and development (R&D) gaps and needs for hydrogen contamination detectors at hydrogen refueling stations.

  14. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, Peter (Los Alamos, NM)

    1993-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  15. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, Peter (Los Alamos, NM)

    1995-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  16. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, P.

    1993-12-28

    A process is presented of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube. The solvent is capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus is presented for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium. The apparatus includes a composite tube comprised of a blend of a polyolefin and a polyester. The composite tube has an internal diameter of from about 0.1 to about 2.0 millimeters and has sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube. 2 figures.

  17. Organic contaminant separator

    DOE Patents [OSTI]

    Mar, Peter D. (Los Alamos, NM)

    1994-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  18. Oxidation State Optimization for Maximum Efficiency of NOx Adsorber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Oxidation State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Presentation given at the 16th...

  19. Engineer End Uses for Maximum Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineer End Uses for Maximum Efficiency Engineer End Uses for Maximum Efficiency This tip sheet outlines steps to ensure the efficiency of compressed air end-use applications....

  20. Electron energy spectrum and maximum disruption angle under multi...

    Office of Scientific and Technical Information (OSTI)

    Conference: Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung Citation Details In-Document Search Title: Electron energy spectrum and maximum ...

  1. Theoretical Estimate of Maximum Possible Nuclear Explosion

    DOE R&D Accomplishments [OSTI]

    Bethe, H. A.

    1950-01-31

    The maximum nuclear accident which could occur in a Na-cooled, Be moderated, Pu and power producing reactor is estimated theoretically. (T.R.H.) 2O82 Results of nuclear calculations for a variety of compositions of fast, heterogeneous, sodium-cooled, U-235-fueled, plutonium- and power-producing reactors are reported. Core compositions typical of plate-, pin-, or wire-type fuel elements and with uranium as metal, alloy, and oxide were considered. These compositions included atom ratios in the following range: U-23B to U-235 from 2 to 8; sodium to U-235 from 1.5 to 12; iron to U-235 from 5 to 18; and vanadium to U-235 from 11 to 33. Calculations were performed to determine the effect of lead and iron reflectors between the core and blanket. Both natural and depleted uranium were evaluated as the blanket fertile material. Reactors were compared on a basis of conversion ratio, specific power, and the product of both. The calculated results are in general agreement with the experimental results from fast reactor assemblies. An analysis of the effect of new cross-section values as they became available is included. (auth)

  2. EFFECTIVE DOSIMETRIC HALF LIFE OF CESIUM 137 SOIL CONTAMINATION

    SciTech Connect (OSTI)

    Jannik, T; P Fledderman, P; Michael Paller, M

    2008-01-09

    In the early 1960s, an area of privately-owned swamp adjacent to the US Department of Energy's Savannah River Site (SRS), known as Creek Plantation, was contaminated by site operations. Studies conducted in 1974 estimated that approximately 925 GBq of {sup 137}Cs was deposited in the swamp. Subsequently, a series of surveys--composed of 52 monitoring locations--was initiated to characterize and trend the contaminated environment. The annual, potential, maximum doses to a hypothetical hunter were estimated by conservatively using the maximum {sup 137}Cs concentrations measured in the soil. The purpose of this report is to calculate an 'effective dosimetric' half-life for {sup 137}Cs in soil (based on the maximum concentrations) and compare it to the effective environmental half-life (based on the geometric mean concentrations).

  3. Mercury contamination extraction

    DOE Patents [OSTI]

    Fuhrmann, Mark (Silver Spring, MD); Heiser, John (Bayport, NY); Kalb, Paul (Wading River, NY)

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  4. Portable Aerosol Contaminant Extractor

    DOE Patents [OSTI]

    Carlson, Duane C. (N. Augusta, SC); DeGange, John J. (Aiken, SC); Cable-Dunlap, Paula (Waynesville, NC)

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  5. Property:Maximum Velocity(m/s) | Open Energy Information

    Open Energy Info (EERE)

    Velocity(ms) Jump to: navigation, search Property Name Maximum Velocity(ms) Property Type String Pages using the property "Maximum Velocity(ms)" Showing 25 pages using this...

  6. Property:Maximum Wave Length(m) | Open Energy Information

    Open Energy Info (EERE)

    Length(m) Jump to: navigation, search Property Name Maximum Wave Length(m) Property Type String Pages using the property "Maximum Wave Length(m)" Showing 18 pages using this...

  7. Property:Maximum Wave Height(m) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Property Name Maximum Wave Height(m) Property Type String Pages using the property "Maximum Wave Height(m)" Showing 25 pages using this property....

  8. Low contaminant formic acid fuel for direct liquid fuel cell

    DOE Patents [OSTI]

    Masel, Richard I. (Champaign, IL); Zhu, Yimin (Urbana, IL); Kahn, Zakia (Palatine, IL); Man, Malcolm (Vancouver, CA)

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  9. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AERMOD-PRIME | Department of Energy PRIME Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Compliance based on highest, second-highest, short-term, and highest annual concentrations. PDF icon Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME

  10. Management of Transuranic Contaminated Material

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-09-30

    To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

  11. Containment of subsurface contaminants

    DOE Patents [OSTI]

    Corey, J.C.

    1994-09-06

    A barrier is disclosed for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates. 5 figs.

  12. Containment of subsurface contaminants

    DOE Patents [OSTI]

    Corey, John C. (Aiken, SC)

    1994-01-01

    A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.

  13. Purifying contaminated water

    DOE Patents [OSTI]

    Daughton, Christian G. (San Pablo, CA)

    1983-01-01

    Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  14. Understanding Contamination; Twenty Years of Simulating Radiological Contamination

    SciTech Connect (OSTI)

    Emily Snyder; John Drake; Ryan James

    2012-02-01

    A wide variety of simulated contamination methods have been developed by researchers to reproducibly test radiological decontamination methods. Some twenty years ago a method of non-radioactive contamination simulation was proposed at the Idaho National Laboratory (INL) that mimicked the character of radioactive cesium and zirconium contamination on stainless steel. It involved baking the contamination into the surface of the stainless steel in order to 'fix' it into a tenacious, tightly bound oxide layer. This type of contamination was particularly applicable to nuclear processing facilities (and nuclear reactors) where oxide growth and exchange of radioactive materials within the oxide layer became the predominant model for material/contaminant interaction. Additional simulation methods and their empirically derived basis (from a nuclear fuel reprocessing facility) are discussed. In the last ten years the INL, working with the Defense Advanced Research Projects Agency (DARPA) and the National Homeland Security Research Center (NHSRC), has continued to develop contamination simulation methodologies. The most notable of these newer methodologies was developed to compare the efficacy of different decontamination technologies against radiological dispersal device (RDD, 'dirty bomb') type of contamination. There are many different scenarios for how RDD contamination may be spread, but the most commonly used one at the INL involves the dispersal of an aqueous solution containing radioactive Cs-137. This method was chosen during the DARPA projects and has continued through the NHSRC series of decontamination trials and also gives a tenacious 'fixed' contamination. Much has been learned about the interaction of cesium contamination with building materials, particularly concrete, throughout these tests. The effects of porosity, cation-exchange capacity of the material and the amount of dirt and debris on the surface are very important factors. The interaction of the contaminant/substrate with the particular decontamination technology is also very important. Results of decontamination testing from hundreds of contaminated coupons have lead to certain conclusions about the contamination and the type of decontamination methods being deployed. A recent addition to the DARPA initiated methodology simulates the deposition of nuclear fallout. This contamination differs from previous tests in that it has been developed and validated purely to simulate a 'loose' type of contamination. This may represent the first time that a radiologically contaminated 'fallout' stimulant has been developed to reproducibly test decontamination methods. While no contaminant/methodology may serve as a complete example of all aspects that could be seen in the field, the study of this family of simulation methods provides insight into the nature of radiological contamination.

  15. Active airborne contamination control using electrophoresis

    SciTech Connect (OSTI)

    Veatch, B.D.

    1994-06-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ``cold,`` or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications.

  16. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein

    2001-02-01

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  17. Understanding Mechanisms of Radiological Contamination

    SciTech Connect (OSTI)

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible loose contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  18. White Oak Creek Embayment site characterization and contaminant screening analysis. Environmental Restoration Program

    SciTech Connect (OSTI)

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed {sup 137}Cs concentrations [> 10{sup 6} Bq/kg dry wt (> 10{sup 4} pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of {sup 137}Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h{sup 1} 1 m above the soil surface.

  19. Stack Characterization System for Inspection of Contaminated Off-Gas Stacks

    Energy Savers [EERE]

    | Department of Energy Stack Characterization System for Inspection of Contaminated Off-Gas Stacks Stack Characterization System for Inspection of Contaminated Off-Gas Stacks The stack characterization system (SCS) is a tele-operated remote system that collects samples and data to characterize the quantitative and qualitative levels of contamination inside off-gas stacks protecting workers from the physical, radiological and chemical hazards of deteriorating contaminated stacks. PDF icon

  20. Boiler Maximum Achievable Control Technology (MACT) Technical Assistance -

    Office of Environmental Management (EM)

    Fact Sheet, April 2015 | Department of Energy Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact Sheet, April 2015 Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact Sheet, April 2015 This fact sheet about AMO's Boiler Maximum Achievable Control Technology (Boiler MACT) Technical Assistance Program was last updated in April 2015. PDF icon Boiler_MACT_factsheet.pdf More Documents & Publications CHP: A Technical & Economic

  1. In vitro gastrointestinal mimetic protocol for measuring bioavailable contaminants

    DOE Patents [OSTI]

    Holman, Hoi-Ying N. (Berkeley, CA)

    2000-01-01

    The present invention relates to measurements of contaminants in the soil and other organic or environmental materials, using a biologically relevant chemical analysis that will measure the amount of contaminants in a given sample that may be expected to be absorbed by a human being ingesting the contaminated soil. According to the present invention, environmental samples to be tested are added to a pre-prepared physiological composition of bile salts and lipids. They are thoroughly mixed and then the resulting mixture is separated e.g. by centrifugation. The supernatant is then analyzed for the presence of contaminants and these concentrations are compared to the level of contaminants in the untreated samples. It is important that the bile salts and lipids be thoroughly pre-mixed to form micelles.

  2. Montana Total Maximum Daily Load Development Projects Wiki |...

    Open Energy Info (EERE)

    Wiki Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Total Maximum Daily Load Development Projects Wiki Abstract Provides information on...

  3. Bioremediation of contaminated groundwater: A turnkey approach

    SciTech Connect (OSTI)

    Shivjiani, D.M.; Rudy, R.J.; Burns, B.; Heuler, G.

    1994-12-31

    The Silvex Corporation Site is a Florida state funded remedial action site in St. Augustine, Florida, that, prior to 1980, was a silver smelting facility that accepted waste materials from the Naval Air Station-Jacksonville. Fuels, reportedly consisting of waste paint, cold carbon removers, and solvent degreasers that were stored in a 25,000-gallon tank, spilled onto the property. The assessment concluded that the surficial aquifer in the spill area and the area hydrologically down-gradient of the spill were contaminated by elevated levels of ketones (acetone, methyl-ethyl ketone, and methyl-isobutyl ketone), phenols, and toluene. Subsequently, a risk assessment/feasibility study and groundwater bench-scale and pilot-scale studies were performed to determine the technical feasibility/cost-effectiveness of the recommended alternative, submerged fixed-film bioremediation. The on-site pilot study, which was conducted at three flow rates (0.5, 1, and 2 gallons per minute [gpm]), demonstrated a greater than 99% contaminant removal efficiency from the three-stage bioreactor. Due to the impact of site contamination on a nearby creek that flows into the St. Johns River, an interim remedial deign was developed and implemented to reduce the potential for migration of contaminated groundwater into the creek.

  4. Protections: Sediment Control = Contaminant Retention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediment Control Protections: Sediment Control Contaminant Retention LANL maintains hundreds of wells, stream sampling stations and stormwater control structures to protect...

  5. Hedgehog(tm) Water Contaminant Removal System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Startup America Startup America Industrial Technologies Industrial Technologies Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Hedgehog(tm) Water Contaminant Removal System Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (776 KB) Technology Marketing SummaryThe in-tank recirculating treatment system reduces the levels of contaminants in water storage tanks. A recirculation pump

  6. Surface Contamination Guidelines/Radiological Clearance of Property |

    Energy Savers [EERE]

    Department of Energy Surface Contamination Guidelines/Radiological Clearance of Property Surface Contamination Guidelines/Radiological Clearance of Property Authorized limits govern the control and clearance of personal and real property. They are radionuclide concentrations or activity levels approved by DOE to permit the clearance of property from DOE radiological control for either restricted or unrestricted use, consistent with DOE's radiation protection framework and standards for the

  7. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  8. Integrating Individual-Based Indices of Contaminant Effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rowe, Christopher L.; Hopkins, William A.; Congdon, Justin D.

    2001-01-01

    Habitat contamination can alter numerous biological processes in individual organisms. Examining multiple individual-level responses in an integrative fashion is necessary to understand how individual health or fitness reflects environmental contamination. Here we provide an example of such an integrated perspective based upon recent studies of an amphibian (the bullfrog, Rana catesbeiana) that experiences several, disparate changes when larval development occurs in a trace element�contaminated habitat. First, we present an overview of studies focused on specific responses of individuals collected from, or transplanted into, a habitat contaminated by coal combustion residues (CCR). These studies have reported morphological, behavioral, and physiological modificationsmore » to individuals chronically interacting with sediments in the CCR-contaminated site. Morphological abnormalities in the oral and tail regions in contaminant-exposed individuals influenced other properties such as grazing, growth, and swimming performance. Behavioral changes in swimming activities and responses to stimuli appear to influence predation risk in the contaminant-exposed population. Significant changes in bioenergetics in the contaminated habitat, evident as abnormally high energetic expenditures for survival (maintenance) costs, may ultimately influence production pathways (growth, energy storage) in individuals. We then present a conceptual model to examine how interactions among the affected systems (morphological, behavioral, physiological) may ultimately bring about more severe effects than would be predicted if the responses were considered in isolation. A complex interplay among simultaneously occurring biological changes emerges in which multiple, sublethal effects ultimately can translate into reductions in larval or juvenile survival, and thus reduced recruitment of juveniles into the population. In systems where individuals are exposed to low concentrations of contaminants for long periods of time, research focused on one or few sublethal responses could substantially underestimate overall effects on individuals. We suggest that investigators adopt a more integrated perspective on contaminant-induced biological changes so that studies of individual-based effects can be better integrated into analyses of mechanisms of population change.« less

  9. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AERMOD-PRIME, Units 3, 1, 2 SO2 Case | Department of Energy PRIME, Units 3, 1, 2 SO2 Case Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 3, 1, 2 SO2 Case Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 3, 1, 2 SO2 Case. Compliance based on highest, second-highest, short-term, and highest annual concentrations. PDF icon Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by

  10. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AERMOD-PRIME, Units 4, 1, 2 SO2 Case | Department of Energy 4, 1, 2 SO2 Case Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 4, 1, 2 SO2 Case Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 4, 1, 2 SO2 Case. Compliance based on highest, second-highest, short-term, and highest annual concentrations. PDF icon Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units

  11. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AERMOD-PRIME, Units 5, 1, 2 SO2 Case | Department of Energy 5, 1, 2 SO2 Case Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 5, 1, 2 SO2 Case Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 5, 1, 2 SO2 Case. Compliance based on highest, second-highest, short-term, and highest annual concentrations. PDF icon Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units

  12. Characterization of Contaminant Levels in the P-Area Wetland...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the time and funding constraints, we were not able to conduct extensive population demography studies or experimentally assess chronic sub-lethal effects at the observed trace...

  13. Apparatus for removing oil and other floating contaminants from a moving body of water

    DOE Patents [OSTI]

    Strohecker, J.W.

    1973-12-18

    The patent describes a process in which floating contaminants such as oil and solid debris are removed from a moving body of water by employing a skimming system which uses the natural gravitational flow of the water. A boom diagonally positioned across the body of water diverts the floating contaminants over a floating weir and into a retention pond where an underflow weir is used to return contaminant-free water to the moving body of water. The floating weir is ballasted to maintain the contaminant-receiving opening therein slightly below the surface of the water during fluctuations in the water level for skimming the contaminants with minimal water removal.

  14. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

  15. Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Annette Schafer, Arthur S. Rood, A. Jeffrey Sondrup

    2011-12-23

    Groundwater impacts have been analyzed for the proposed remote-handled low-level waste disposal facility. The analysis was prepared to support the National Environmental Policy Act environmental assessment for the top two ranked sites for the proposed disposal facility. A four-phase screening and analysis approach was documented and applied. Phase I screening was site independent and applied a radionuclide half-life cut-off of 1 year. Phase II screening applied the National Council on Radiation Protection analysis approach and was site independent. Phase III screening used a simplified transport model and site-specific geologic and hydrologic parameters. Phase III neglected the infiltration-reducing engineered cover, the sorption influence of the vault system, dispersion in the vadose zone, vertical dispersion in the aquifer, and the release of radionuclides from specific waste forms. These conservatisms were relaxed in the Phase IV analysis which used a different model with more realistic parameters and assumptions. Phase I screening eliminated 143 of the 246 radionuclides in the inventory from further consideration because each had a half-life less than 1 year. An additional 13 were removed because there was no ingestion dose coefficient available. Of the 90 radionuclides carried forward from Phase I, 57 radionuclides had simulated Phase II screening doses exceeding 0.4 mrem/year. Phase III and IV screening compared the maximum predicted radionuclide concentration in the aquifer to maximum contaminant levels. Of the 57 radionuclides carried forward from Phase II, six radionuclides were identified in Phase III as having simulated future aquifer concentrations exceeding maximum contaminant limits. An additional seven radionuclides had simulated Phase III groundwater concentrations exceeding 1/100th of their respective maximum contaminant levels and were also retained for Phase IV analysis. The Phase IV analysis predicted that none of the thirteen remaining radionuclides would exceed the maximum contaminant levels for either site location. The predicted cumulative effective dose equivalent from all 13 radionuclides also was less than the dose criteria set forth in Department of Energy Order 435.1 for each site location. An evaluation of composite impacts showed one site is preferable over the other based on the potential for commingling of groundwater contamination with other facilities.

  16. Oxidation State Optimization for Maximum Efficiency of NOx Adsorber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts | Department of Energy State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Oxidation State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon deer10_li.pdf More Documents & Publications Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities and Differences Between H2, CO and C3H6 Reductants

  17. CABLE TECHNOLOGY LABORATORIES, INC. DETERMINATION OF THRESHOLD AND MAXIMUM

    Office of Scientific and Technical Information (OSTI)

    CABLE TECHNOLOGY LABORATORIES, INC. DETERMINATION OF THRESHOLD AND MAXIMUM OPERATING ELECTRIC STRESSES FOR SELECTED HIGH VOLTAGE INSULATIONS Investigation of Aged Polymeric Dielectric Cable DOE CONTRACT DE-AC 02-80RA 50156 Final Report Prepared by : Approved by: G.S. Eager, Jr. G.W. Seman B. Fryszczyn C. Katz November 1995 690 Jersey Avenue - RO. Box 707 - Fax: (908) 846-5531 New Brunswick, N.J. 08903 Tel: (908) 8463133 DETERMINATION OF THRESHOLD AND MAXIMUM OPERATING ELECTRIC STRESSES FOR

  18. Are There Practical Approaches for Achieving the Theoretical Maximum Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency? | Department of Energy Are There Practical Approaches for Achieving the Theoretical Maximum Engine Efficiency? Are There Practical Approaches for Achieving the Theoretical Maximum Engine Efficiency? 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: University of Wisconsin, Madison PDF icon 2004_deer_foster.pdf More Documents & Publications Fuel Modification t Facilitate Future Combustion Regimes? The Next ICE Age The Next ICE Age

  19. Radiological Survey of Contaminated Installations of Research Reactor before Dismantling in High Dose Conditions with Complex for Remote Measurements of Radioactivity - 12069

    SciTech Connect (OSTI)

    Danilovich, Alexey; Ivanov, Oleg; Lemus, Alexey; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly

    2012-07-01

    Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. These research reactors have a long history and many installations - nine loop facilities for experiments with different kinds of fuel. When decommissioning nuclear facilities it is necessary to measure the distribution of radioactive contamination in the rooms and at the equipment at high levels of background radiation. At 'Kurchatov Institute' some special remote control measuring systems were developed and they are applied during dismantling of the reactors MR and RFT. For a survey of high-level objects a radiometric system mounted on the robotic Brokk vehicle is used. This system has two (4? and collimated) dose meters and a high resolution video camera. Maximum measured dose rate for this system is ?8.5 Sv/h. To determine the composition of contaminants, a portable spectrometric system is used. It is a remotely controlled, collimated detector for scanning the distribution of radioactive contamination. To obtain a detailed distribution of contamination a remote-controlled gamma camera is applied. For work at highly contaminated premises with non-uniform background radiation, another camera is equipped with rotating coded mask (coded aperture imaging). As a result, a new system of instruments for remote radioactivity measurements with wide range of sensitivity and angular resolution was developed. The experience and results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. These activities are conducted under the Federal Program for Nuclear and Radiation Safety of Russia. Adaptation of complex remote measurements of radioactivity and survey of contaminated installations of research reactor before dismantling in high dose conditions has proven successful. The radioactivity measuring devices for operation at high, non-uniform dose background were tested in the field and a new data of measurement of contamination distribution in the premises and installations were obtained. (authors)

  20. Handling and Packaging a Potentially Radiologically Contaminated...

    Office of Environmental Management (EM)

    Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is...

  1. Contaminant Mass Balance for Sinclair and Dyes Inlets, Puget Sound, WA

    SciTech Connect (OSTI)

    Crecelius, Eric A.; Johnston, Robert K.; Leather, Jim; Guerrero, Joel; Miller, Martin C.; Brandenberger, Jill M.

    2003-04-03

    Sinclair Inlet and Dyes Inlets have historically received contaminates from military installations, industrial activities, municipal outfalls, and other nonpoint sources. For the purpose of determining a ?total maximum daily load? (TMDL) of contaminants for the Inlets, a contaminant mass balance for the sediments is being developed. Sediment cores and traps were collected from depositional areas of the Inlets and surface sediment grabs were collected from fluvial deposits associated with major drainage areas into the Inlets. All sediment samples were screened using X-Ray fluorescence (XRF) for metals, UV fluorescence for organics (PAHs), and immunoassay for PCBs. A subset of split-samples was analyzed using ICP/MS for metals and GC/MS for phthalates, PAHs, and PCBs. Sediment cores were age-dated using radionuclides to determine the sedimentation rate and the history of sediment contamination. Streams and storm water outfalls were sampled in both the wet and dry seasons to assess loading from the watershed. Seawater samples collected from the marine waters of the Inlets and boundary passages to central Puget Sound were used to estimate the exchange of contaminates with central Puget Sound. The historical trends from the cores indicate that contamination was at a maximum in the middle of the 1900s and decreased significantly by the late 1900s. The thickness of the contaminated sediment is in the range of 30 to 50 cm.

  2. Fire in a contaminated area

    SciTech Connect (OSTI)

    Ryan, G.W., Westinghouse Hanford

    1996-08-28

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: Fire in Contaminated Area. The calculations needed to quantify the risk associated with this accident scenario are included within.

  3. Hydrogen Contamination Detector Workshop Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contamination Detector Workshop Workshop held June 12, 2014 SAE International, Troy, Michigan (This page intentionally left blank) i Hydrogen Contamination Detector Workshop Workshop held June 12, 2014 SAE International, Troy, Michigan Sponsored by: U.S. Department of Energy (DOE) Energy Effciency and Renewable Energy (EERE) Fuel Cell Technologies Offce (FCTO) Hosted by: SAE International Lead Organizer Will James, Fuel Cell Technologies Offce, DOE Organizing Committee Will James, Fuel Cell

  4. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    SciTech Connect (OSTI)

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  5. Potential Risks of Freshwater Aquifer Contamination with Geosequestration

    SciTech Connect (OSTI)

    Jackson, Robert

    2013-09-30

    Substantial leakage of CO{sub 2} from deep geological strata to shallow potable aquifers is likely to be rare, but chemical detection of potential leakage nonetheless remains an integral component of any safe carbon capture and storage system. CO{sub 2} that infiltrates an unconfined freshwater aquifer will have an immediate impact on water chemistry by lowering pH in most cases and by altering the concentration of total dissolved solids. Chemical signatures in affected waters provide an important opportunity for early detection of leaks. In the presence of CO{sub 2}, trace elements such as Mn, Fe, and Ca can increase by an order of magnitude or more above control concentrations within 100 days. Therefore, these and other elements should be monitored along with pH as geochemical markers of potential CO{sub 2} leaks. Dissolved inorganic carbon and alkalinity can also be rapidly responsive to CO{sub 2} and are stable indicators of a leak. Importantly, such changes may be detectable long before direct changes in CO{sub 2} are observed. The experimental results also suggest that the relative severity of the impact of leaks on overlying drinking-water aquifers should be considered in the selection of CO{sub 2} sequestration sites. One primary selection criteria should be metal and metalloid availability, such as uranium and arsenic abundance, to carefully monitor chemical species that could trigger changes above maximum contaminant levels (MCLs). Overall, the risks of leakage from underground CO{sub 2} storage are real but appear to be manageable if systems are closely monitored.

  6. Direct tests of micro channel plates as the active element of a new shower maximum detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ronzhin, A.; Los, S.; Ramberg, E.; Apresyan, A.; Xie, S.; Spiropulu, M.; Kim, H.

    2015-05-22

    We continue the study of micro channel plates (MCP) as the active element of a shower maximum (SM) detector. We present below test beam results obtained with MCPs detecting directly secondary particles of an electromagnetic shower. The MCP efficiency to shower particles is close to 100%. In conclusion, the time resolution obtained for this new type of the SM detector is at the level of 40 ps.

  7. Direct tests of micro channel plates as the active element of a new shower maximum detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ronzhin, A.; Los, S.; Ramberg, E.; Apresyan, A.; Xie, S.; Spiropulu, M.; Kim, H.

    2015-05-22

    We continue the study of micro channel plates (MCP) as the active element of a shower maximum (SM) detector. We present below test beam results obtained with MCPs detecting directly secondary particles of an electromagnetic shower. The MCP efficiency to shower particles is close to 100%. Furthermore, the time resolution obtained for this new type of the SM detector is at the level of 40 ps.

  8. Method for testing earth samples for contamination by organic contaminants

    DOE Patents [OSTI]

    Schabron, J.F.

    1996-10-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants. 2 figs.

  9. Method for testing earth samples for contamination by organic contaminants

    DOE Patents [OSTI]

    Schabron, John F. (Laramie, WY)

    1996-01-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants.

  10. NREL: Hydrogen and Fuel Cells Research - Contaminants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contaminants Image of a generic bar graph. Material Screening Data Tool Explore the results of fuel cell system contaminants studies. As fuel cell systems become more commercially competitive, and as automotive fuel cell research and development trends toward decreased catalyst loadings and thinner membranes, fuel cell operation becomes even more susceptible to contaminants. At NREL, we are researching system-derived contaminants and hydrogen fuel quality. Air contaminants are of interest as

  11. Surface and Volume Contamination | Department of Energy

    Energy Savers [EERE]

    Surface and Volume Contamination Surface and Volume Contamination (Questions Posted to ERAD in May 2012) Will there be volume contamination/activation guides as well as updated contamination guides? The only guidance being developed for volumetric contamination is a Technical Standard for accelerator facilities. However, a revised version of ANSI N13.12-1999 is expected in the future and it will be assessed to determine its acceptability for use as a pre-approved authorized limit. It is noted

  12. Cleaning Contaminated Water at Fukushima

    SciTech Connect (OSTI)

    Rende, Dean; Nenoff, Tina

    2013-11-21

    Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

  13. Cleaning Contaminated Water at Fukushima

    ScienceCinema (OSTI)

    Rende, Dean; Nenoff, Tina

    2014-02-26

    Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

  14. How did contaminants get there?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How did contaminants get there? How did contaminants get there? During the Manhattan Project, Los Alamos hosted thousands of employees, including many Nobel Prize-winning scientists. Historical operations used the best available waste handling methods for that time. August 1, 2013 A comparison of Ashley Pond in the 1940s and 60 years later. Ashley Pond was named after Detroit businessman Ashley Pond who started the Los Alamos Ranch School in 1917. A comparison of Ashley Pond in the 1940s and 60

  15. Maximum entanglement in squeezed boson and fermion states

    SciTech Connect (OSTI)

    Khanna, F. C.; Malbouisson, J. M. C.; Santana, A. E.; Santos, E. S.

    2007-08-15

    A class of squeezed boson and fermion states is studied with particular emphasis on the nature of entanglement. We first investigate the case of bosons, considering two-mode squeezed states. Then we construct the fermion version to show that such states are maximum entangled, for both bosons and fermions. To achieve these results, we demonstrate some relations involving squeezed boson states. The generalization to the case of fermions is made by using Grassmann variables.

  16. Maximum patch method for directional dark matter detection

    SciTech Connect (OSTI)

    Henderson, Shawn; Monroe, Jocelyn; Fisher, Peter [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Laboratory for Nuclear Science, MIT Kavli Institute for Astrophysics and Space Research, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2008-07-01

    Present and planned dark matter detection experiments search for WIMP-induced nuclear recoils in poorly known background conditions. In this environment, the maximum gap statistical method provides a way of setting more sensitive cross section upper limits by incorporating known signal information. We give a recipe for the numerical calculation of upper limits for planned directional dark matter detection experiments, that will measure both recoil energy and angle, based on the gaps between events in two-dimensional phase space.

  17. Maximum Entry and Mandatory Separation Ages for Certain Security Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-10-11

    The policy establishes the DOE policy on maximum entry and mandatory separation ages for primary or secondary positions covered under special statutory retirement provisions and for those employees whose primary duties are the protection of officials of the United States against threats to personal safety or the investigation, apprehension, and detention of individuals suspected or convicted of offenses against the criminal laws of the United States. Admin Chg 1, dated 12-1-11, supersedes DOE P 310.1.

  18. Extraction of contaminants from a gas

    DOE Patents [OSTI]

    Babko-Malyi, Sergei (Butte, MT)

    2000-01-01

    A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.

  19. Method for refining contaminated iridium

    DOE Patents [OSTI]

    Heshmatpour, B.; Heestand, R.L.

    1982-08-31

    Contaminated iridium is refined by alloying it with an alloying agent selected from the group consisting of manganese and an alloy of manganese and copper, and then dissolving the alloying agent from the formed alloy to provide a purified iridium powder.

  20. ESTIMATE OF SOLAR MAXIMUM USING THE 1-8 GEOSTATIONARY OPERATIONAL ENVIRONMENTAL SATELLITES X-RAY MEASUREMENTS

    SciTech Connect (OSTI)

    Winter, L. M.; Balasubramaniam, K. S.

    2014-10-01

    We present an alternate method of determining the progression of the solar cycle through an analysis of the solar X-ray background. Our results are based on the NOAA Geostationary Operational Environmental Satellites (GOES) X-ray data in the 1-8 band from 1986 to the present, covering solar cycles 22, 23, and 24. The X-ray background level tracks the progression of the solar cycle through its maximum and minimum. Using the X-ray data, we can therefore make estimates of the solar cycle progression and the date of solar maximum. Based upon our analysis, we conclude that the Sun reached its hemisphere-averaged maximum in solar cycle 24 in late 2013. This is within six months of the NOAA prediction of a maximum in spring 2013.

  1. Method for removal of beryllium contamination from an article

    DOE Patents [OSTI]

    Simandl, Ronald F.; Hollenbeck, Scott M.

    2012-12-25

    A method of removal of beryllium contamination from an article is disclosed. The method typically involves dissolving polyisobutylene in a solvent such as hexane to form a tackifier solution, soaking the substrate in the tackifier to produce a preform, and then drying the preform to produce the cleaning medium. The cleaning media are typically used dry, without any liquid cleaning agent to rub the surface of the article and remove the beryllium contamination below a non-detect level. In some embodiments no detectible residue is transferred from the cleaning wipe to the article as a result of the cleaning process.

  2. Method for remote detection of trace contaminants

    DOE Patents [OSTI]

    Simonson, Robert J.; Hance, Bradley G.

    2003-09-09

    A method for remote detection of trace contaminants in a target area comprises applying sensor particles that preconcentrate the trace contaminant to the target area and detecting the contaminant-sensitive fluorescence from the sensor particles. The sensor particles can have contaminant-sensitive and contaminant-insensitive fluorescent compounds to enable the determination of the amount of trace contaminant present in the target are by relative comparison of the emission of the fluorescent compounds by a local or remote fluorescence detector. The method can be used to remotely detect buried minefields.

  3. UNDERWATER COATINGS FOR CONTAMINATION CONTROL

    SciTech Connect (OSTI)

    Julia L. Tripp; Kip Archibald; Ann Marie Phillips; Joseph Campbell

    2004-02-01

    The Idaho National Laboratory (INL) deactivated several aging nuclear fuel storage basins. Planners for this effort were greatly concerned that radioactive contamination present on the basin walls could become airborne as the sides of the basins became exposed during deactivation and allowed to dry after water removal. One way to control this airborne contamination was to fix the contamination in place while the pool walls were still submerged. There are many underwater coatings available on the market for marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives were easily applied and adhered well to the substrates (pool wall materials) found in INL fuel pools. Lab-scale experiments were conducted by applying fourteen different commercial underwater coatings to four substrate materials representative of the storage basin construction materials, and evaluating their performance. The coupons included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The evaluation criteria included ease of application, adherence to the four surfaces of interest, no change on water clarity or chemistry, non-hazardous in final applied form and be proven in underwater applications. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected from the underwater coatings tested for application to all four pools. Divers scrubbed loose contamination off the basin walls and floors using a ship hull scrubber and vacuumed up the sludge. The divers then applied the coating using a special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pools with no detectable airborne contamination releases.

  4. Maximum U.S. Active Seismic Crew Counts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jurisdiction waters of the Gulf of Mexico. Alaska is all onshore. Total crews includes crews with unknown survey dimension. Data are reported on the first and fifteenth of each month, except January when they are reported only on the fifteenth. When semi-monthly values differ for the month, the larger of the two values is shown here. Consequently, this table reflects the maximum number of crews at work at any time during the month. See Definitions, Sources, and Notes link above for more

  5. Ecotoxicity literature review of selected Hanford Site contaminants

    SciTech Connect (OSTI)

    Driver, C.J.

    1994-03-01

    Available information on the toxicity, food chain transport, and bioconcentration of several Hanford Site contaminants were reviewed. The contaminants included cesium-137, cobalt-60, europium, nitrate, plutonium, strontium-90, technetium, tritium, uranium, and chromium (III and VI). Toxicity and mobility in both aquatic and terrestrial systems were considered. For aquatic systems, considerable information was available on the chemical and/or radiological toxicity of most of the contaminants in invertebrate animals and fish. Little information was available on aquatic macrophyte response to the contaminants. Terrestrial animals such as waterfowl and amphibians that have high exposure potential in aquatic systems were also largely unrepresented in the toxicity literature. The preponderance of toxicity data for terrestrial biota was for laboratory mammals. Bioconcentration factors and transfer coefficients were obtained for primary producers and consumers in representative aquatic and terrestrial systems; however, little data were available for upper trophic level transfer, particularly for terrestrial predators. Food chain transport and toxicity information for the contaminants were generally lacking for desert or sage brush-steppe organisms, particularly plants and reptiles

  6. Atmosphere contamination following repainting of a human hyperbaric chamber complex

    SciTech Connect (OSTI)

    Lillo, R.S.; Morris, J.W.; Caldwell, J.M.; Balk, D.M.; Flynn, E.T. )

    1990-09-01

    The Naval Medical Research Institute currently conducts hyperbaric research in a Man-Rated Chamber Complex (MRCC) originally installed in 1977. Significant engineering alterations to the MRCC and rusting of some of its interior sections necessitated repainting, which was completed in 1988. Great care was taken in selecting an appropriate paint (polyamide epoxy) and in ensuring correct application and curing procedures. Only very low levels of hydrocarbons were found in the MRCC atmosphere before initial pressurization after painting and curing. After pressurization, however, significant chemical contamination was found. The primary contaminants were aromatic hydrocarbons: xylenes (which were a major component of both the primer and topcoat paint) and ethyl benzene. The role that pressure played in stimulating off-gassing from the paint is not clear; the off-gassing rate was observed to be similar over a large range in chamber pressures from 1.6 to 31.0 atm abs. Scrubbing the chamber atmosphere with the chemical absorbent Purafil was effective in removing the contaminants. Contamination has been observed to slowly decline with chamber use and is expected to continue to improve with time. However, this contamination experience emphasizes the need for a high precision gas analysis program at any diving facility to ensure the safety of the breathing gas and chamber atmosphere.

  7. Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Williams, K.H.; N'Guessan, A.L.; Druhan, J.; Long, P.E.; Hubbard, S.S.; Lovley, D.R.; Banfield, J.F.

    2009-11-15

    The inability to track the products of subsurface microbial activity during stimulated bioremediation has limited its implementation. We used spatiotemporal changes in electrodic potentials (EP) to track the onset and persistence of stimulated sulfate-reducing bacteria in a uranium-contaminated aquifer undergoing acetate amendment. Following acetate injection, anomalous voltages approaching -900 mV were measured between copper electrodes within the aquifer sediments and a single reference electrode at the ground surface. Onset of EP anomalies correlated in time with both the accumulation of dissolved sulfide and the removal of uranium from groundwater. The anomalies persisted for 45 days after halting acetate injection. Current-voltage and current-power relationships between measurement and reference electrodes exhibited a galvanic response, with a maximum power density of 10 mW/m{sup 2} during sulfate reduction. We infer that the EP anomalies resulted from electrochemical differences between geochemically reduced regions and areas having higher oxidation potential. Following the period of sulfate reduction, EP values ranged from -500 to -600 mV and were associated with elevated concentrations of ferrous iron. Within 10 days of the voltage decrease, uranium concentrations rebounded from 0.2 to 0.8 {mu}M, a level still below the background value of 1.5 {mu}M. These findings demonstrate that EP measurements provide an inexpensive and minimally invasive means for monitoring the products of stimulated microbial activity within aquifer sediments and are capable of verifying maintenance of redox conditions favorable for the stability of bioreduced contaminants, such as uranium.

  8. Mechanical properties and tribological behavior of contaminate...

    Office of Scientific and Technical Information (OSTI)

    behavior of contaminate nanoparticles on micromachined surfaces. Citation Details In-Document Search Title: Mechanical properties and tribological behavior of ...

  9. Possible dynamical explanations for Paltridge's principle of maximum entropy production

    SciTech Connect (OSTI)

    Virgo, Nathaniel Ikegami, Takashi

    2014-12-05

    Throughout the history of non-equilibrium thermodynamics a number of theories have been proposed in which complex, far from equilibrium flow systems are hypothesised to reach a steady state that maximises some quantity. Perhaps the most celebrated is Paltridge's principle of maximum entropy production for the horizontal heat flux in Earth's atmosphere, for which there is some empirical support. There have been a number of attempts to derive such a principle from maximum entropy considerations. However, we currently lack a more mechanistic explanation of how any particular system might self-organise into a state that maximises some quantity. This is in contrast to equilibrium thermodynamics, in which models such as the Ising model have been a great help in understanding the relationship between the predictions of MaxEnt and the dynamics of physical systems. In this paper we show that, unlike in the equilibrium case, Paltridge-type maximisation in non-equilibrium systems cannot be achieved by a simple dynamical feedback mechanism. Nevertheless, we propose several possible mechanisms by which maximisation could occur. Showing that these occur in any real system is a task for future work. The possibilities presented here may not be the only ones. We hope that by presenting them we can provoke further discussion about the possible dynamical mechanisms behind extremum principles for non-equilibrium systems, and their relationship to predictions obtained through MaxEnt.

  10. Protections: Sediment Control = Contaminant Retention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediment Control Protections: Sediment Control = Contaminant Retention LANL maintains hundreds of wells, stream sampling stations and stormwater control structures to protect waters. August 1, 2013 Los Alamos Canyon weir Los Alamos Canyon weir thumbnail of Protection #2: Trap and Remove Sediment Sediment behind LA Canyon weir is sampled and excavated regularly. As of 2012, no sediment required disposal as hazardous or radioactive waste. RELATED IMAGES

  11. Evidence That Certain Waste Tank Headspace Vapor Samples Were Contaminated by Semivolatile Polymer Additives

    SciTech Connect (OSTI)

    Huckaby, James L.

    2006-02-09

    Vapor samples collected from the headspaces of the Hanford Site high-level radioactive waste tanks in 1994 and 1995 using the Vapor Sampling System (VSS) were reported to contain trace levels of phthalates, antioxidants, and certain other industrial chemicals that did not have a logical origin in the waste. This report examines the evidence these chemicals were sampling artifacts (contamination) and identifies the chemicals reported as headspace constituents that may instead have been contaminants. Specific recommendations are given regarding the marking of certain chemicals as suspect on the basis they were sampling manifold contaminants.

  12. Underwater Coatings for Contamination Control

    SciTech Connect (OSTI)

    Julia L. Tripp; Kip Archibald; Ann-Marie Phillips; Joseph Campbell

    2004-02-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included 1) Test Area North (TAN-607) with epoxy painted concrete walls; 2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; 3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and 4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55oF to 80oF dependent on the pool and the season. These tests were done at room temperature. The following criteria were used during this evaluation. The underwater coating must: Be easy to apply Adhere well to the four surfaces of interest Not change or have a negative impact on water chemistry or clarity Not be hazardous in final applied form Be proven in other underwater applications. In addition, it is desirable for the coating to have a high pigment or high cross-link density to prevent radiation from penetrating. This paper will detail the testing completed and the test results. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected to be applied by divers after scrubbing loose contamination off the basin walls and floors using a ship hull scrubber and vacuuming up the sludge. A special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pool with no airborne contamination problems.

  13. Performance assessment for the disposal of low-level waste in the 200 east area burial grounds

    SciTech Connect (OSTI)

    Wood, M.I., Westinghouse Hanford

    1996-08-15

    A performance assessment analysis was completed for the 200 East Area Low-Level Burial Grounds (LLBG) to satisfy compliance requirements in DOE Order 5820.2A. In the analysis, scenarios of radionuclide release from the 200 East Area Low-Level waste facility was evaluated. The analysis focused on two primary scenarios leading to exposure. The first was inadvertent intrusion. In this scenario, it was assumed that institutional control of the site and knowledge of the disposal facility has been lost. Waste is subsequently exhumed and dose from exposure is received. The second scenario was groundwater contamination.In this scenario, radionuclides are leached from the waste by infiltrating precipitation and transported through the soil column to the underlying unconfined aquifer. The contaminated water is pumped from a well 100 m downstream and consumed,causing dose. Estimates of potential contamination of the surrounding environment were developed and the associated doses to the maximum exposed individual were calculated. The doses were compared with performance objective dose limits, found primarily in the DOE order 5850.2A. In the 200 East Area LLBG,it was shown that projected doses are estimated to be well below the limits because of the combination of environmental, waste inventory, and disposal facility characteristics of the 200 East Area LLBG. Waste acceptance criteria were also derived to ensure that disposal of future waste inventories in the 200 East Area LLBG will not cause an unacceptable increase in estimated dose.

  14. Speech processing using conditional observable maximum likelihood continuity mapping

    DOE Patents [OSTI]

    Hogden, John; Nix, David

    2004-01-13

    A computer implemented method enables the recognition of speech and speech characteristics. Parameters are initialized of first probability density functions that map between the symbols in the vocabulary of one or more sequences of speech codes that represent speech sounds and a continuity map. Parameters are also initialized of second probability density functions that map between the elements in the vocabulary of one or more desired sequences of speech transcription symbols and the continuity map. The parameters of the probability density functions are then trained to maximize the probabilities of the desired sequences of speech-transcription symbols. A new sequence of speech codes is then input to the continuity map having the trained first and second probability function parameters. A smooth path is identified on the continuity map that has the maximum probability for the new sequence of speech codes. The probability of each speech transcription symbol for each input speech code can then be output.

  15. Reduction in maximum time uncertainty of paired time signals

    DOE Patents [OSTI]

    Theodosiou, G.E.; Dawson, J.W.

    1981-02-11

    Reduction in the maximum time uncertainty (t/sub max/ - t/sub min/) of a series of paired time signals t/sub 1/ and t/sub 2/ varying between two input terminals and representative of a series of single events where t/sub 1/ less than or equal to t/sub 2/ and t/sub 1/ + t/sub 2/ equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t/sub min/) of the first signal t/sub 1/ closer to t/sub max/ and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20 to 800.

  16. Total Estimated Contract Cost: Contract Option Period: Maximum Fee

    Office of Environmental Management (EM)

    Maximum Fee Performance Period Fee Earned FY2011/2012 $4,059,840 FY2013 $2,928,000 FY2014 $3,022,789 FY2015 FY2016 Cumulative Fee $10,010,629 $19,878,019 $3,214,544 $5,254,840 $5,662,028 $1,421,695 Fee Available $4,324,912 $417,833,183 Contract Base Period: January 3, 2011 - September 2, 2016 (Extended) Fee Information Minimum Fee $0 N/A $19,878,019 Contractor: Babcock & Wilcox Conversion Services, LLC Contract Number: DE-AC30-11CC40015 Contract Type: Cost Plus Award Fee EM Contractor Fee

  17. Reduction in maximum time uncertainty of paired time signals

    DOE Patents [OSTI]

    Theodosiou, G.E.; Dawson, J.W.

    1983-10-04

    Reduction in the maximum time uncertainty (t[sub max]--t[sub min]) of a series of paired time signals t[sub 1] and t[sub 2] varying between two input terminals and representative of a series of single events where t[sub 1][<=]t[sub 2] and t[sub 1]+t[sub 2] equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t[sub min]) of the first signal t[sub 1] closer to t[sub max] and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20--800. 6 figs.

  18. Reduction in maximum time uncertainty of paired time signals

    DOE Patents [OSTI]

    Theodosiou, George E. (West Chicago, IL); Dawson, John W. (Clarendon Hills, IL)

    1983-01-01

    Reduction in the maximum time uncertainty (t.sub.max -t.sub.min) of a series of paired time signals t.sub.1 and t.sub.2 varying between two input terminals and representative of a series of single events where t.sub.1 .ltoreq.t.sub.2 and t.sub.1 +t.sub.2 equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t.sub.min) of the first signal t.sub.1 closer to t.sub.max and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20-800.

  19. Property:Maximum Velocity with Constriction(m/s) | Open Energy...

    Open Energy Info (EERE)

    Velocity with Constriction(ms) Jump to: navigation, search Property Name Maximum Velocity with Constriction(ms) Property Type String Pages using the property "Maximum Velocity...

  20. In situ removal of contamination from soil

    DOE Patents [OSTI]

    Lindgren, Eric R. (Albuquerque, NM); Brady, Patrick V. (Albuquerque, NM)

    1997-01-01

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination, and further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed.

  1. In situ removal of contamination from soil

    DOE Patents [OSTI]

    Lindgren, E.R.; Brady, P.V.

    1997-10-14

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination. The process also uses further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed. 5 figs.

  2. Final work plan : investigation of potential contamination at the former CCC/USDA grain storage facility in Hanover, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2008-11-19

    The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), operated a grain storage facility at the northeastern edge of the city of Hanover, Kansas, from 1950 until the early 1970s. During this time, commercial grain fumigants containing carbon tetrachloride were in common use by the grain storage industry to preserve grain in their facilities. In February 1998, trace to low levels of carbon tetrachloride (below the maximum contaminant level [MCL] of 5.0 {micro}g/L) were detected in two private wells near the former grain storage facility at Hanover, as part of a statewide USDA private well sampling program that was implemented by the Kansas Department of Health and Environment (KDHE) near former CCC/USDA facilities. In April 2007, the CCC/USDA collected near-surface soil samples at 1.8-2 ft BGL (below ground level) at 61 locations across the former CCC/USDA facility. All soil samples were analyzed by the rigorous gas chromatograph-mass spectrometer analytical method (purge-and-trap method). No contamination was found in soil samples above the reporting limit of 10 {micro}g/kg. In July 2007, the CCC/USDA sampled indoor air at nine residences on or adjacent to its former facility to address the residents concerns regarding vapor intrusion. Low levels of carbon tetrachloride were detected at four of the nine homes. Because carbon tetrachloride found in private wells and indoor air at the site might be linked to historical use of fumigants containing carbon tetrachloride at its former grain storage facility, the CCC/USDA is proposing to conduct an investigation to determine the source and extent of the carbon tetrachloride contamination associated with the former facility. This investigation will be conducted in accordance with the intergovernmental agreement between the KDHE and the Farm Service Agency (FSA) of the USDA. The investigation at Hanover will be performed, on behalf of the CCC/USDA, by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by UChicago Argonne, LLC, for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. Seven technical objectives have been proposed for the Hanover investigation. They are as follows: (1) Identify the sources and extent of soil contamination beneath the former CCC/USDA facility; (2) Characterize groundwater contamination beneath the former CCC/USDA facility; (3) Determine groundwater flow patterns; (4) Define the vertical and lateral extent of the groundwater plume outside the former CCC/USDA facility; (5) Evaluate the aquifer and monitor the groundwater system; (6) Identify any other potential sources of contamination that are not related to activities of the CCC/USDA; and (7) Determine whether there is a vapor intrusion problem at the site attributable to the former CCC/USDA facility. The technical objectives will be accomplished in a phased approached. Data collected during each phase will be evaluated to determine whether the subsequent phase is necessary. The KDHE project manager and the CCC/USDA will be contacted during each phase and kept apprised of the results. Whether implementation of each phase of work is necessary will be discussed and mutually agreed upon by the CCC/USDA and KDHE project managers.

  3. Maximum Achievable Control Technology for New Industrial Boilers (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    As part of Clean Air Act 90 (CAAA90, the EPA on February 26, 2004, issued a final rulethe National Emission Standards for Hazardous Air Pollutants (NESHAP) to reduce emissions of hazardous air pollutants (HAPs) from industrial, commercial, and institutional boilers and process heaters. The rule requires industrial boilers and process heaters to meet limits on HAP emissions to comply with a Maximum Achievable Control Technology (MACT) floor level of control that is the minimum level such sources must meet to comply with the rule. The major HAPs to be reduced are hydrochloric acid, hydrofluoric acid, arsenic, beryllium, cadmium, and nickel. The EPA predicts that the boiler MACT rule will reduce those HAP emissions from existing sources by about 59,000 tons per year in 2005.

  4. Desiccant contamination research: Report on the desiccant contamination test facility

    SciTech Connect (OSTI)

    Pesaran, A.A.; Bingham, C.E.

    1991-07-01

    The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

  5. Data Center Economizer Contamination and Humidity Study

    SciTech Connect (OSTI)

    Shehabi, Arman; Tschudi, William; Gadgil, Ashok

    2007-03-06

    Data centers require continuous air conditioning to address high internal heat loads (heat release from equipment) and maintain indoor temperatures within recommended operating levels for computers. Air economizer cycles, which bring in large amounts of outside air to cool internal loads when weather conditions are favorable, could save cooling energy. There is reluctance from many data center owners to use this common cooling technique, however, due to fear of introducing pollutants and potential loss of humidity control. Concerns about equipment failure from airborne pollutants lead to specifying as little outside air as permissible for human occupants. To investigate contamination levels, particle monitoring was conducted at 8 data centers in Northern California. Particle counters were placed at 3 to 4 different locations within and outside of each data center evaluated in this study. Humidity was also monitored at many of the sites to determine how economizers affect humidity control. Results from this study indicate that economizers do increase the outdoor concentration in data centers, but this concentration, when averaged annually, is still below current particle concentration limits. Study results are summarized below: (1) The average particle concentrations measured at each location, both outside and at the servers, are shown in Table 1. Measurements show low particle concentrations at all data centers without economizers, regardless of outdoor particle concentrations. Particle concentrations were typically an order of magnitude below both outside particle concentrations and recently published ASHRAE standards. (2) Economizer use caused sharp increases in particle concentrations when the economizer vents were open. The particle concentration in the data centers, however, quickly dropped back to pre-economizer levels when the vents closed. Since economizers only allow outside air part of the time, the annual average concentrations still met the ASHRAE standards. However, concentration were still above the levels measured in data centers that do not use economizers (3) Current filtration in data centers is minimal (ASHRAE 40%) since most air is typically recycled. When using economizers, modest improvements in filtration (ASHRAE 85%) can reduce particle concentrations to nearly match the level found in data centers that do not use economizers. The extra cost associated with improve filters was not determined in this study. (4) Humidity was consistent and within the ASHRAE recommended levels for all data centers without economizers. Results show that, while slightly less steady, humidity in data centers with economizers can also be controlled within the ASHRAE recommended levels. However, this control of humidity reduces energy savings by limiting the hours the economizer vents are open. (5) The potential energy savings from economizer use has been measured in one data center. When economizers were active, mechanical cooling power dropped by approximately 30%. Annual savings at this center is estimated within the range of 60-80 MWh/year, representing approximately a 5% savings off the mechanical energy load of the data center. Incoming temperatures and humidity at this data center were conservative relative to the ASHRAE acceptable temperature and humidity ranges. Greater savings may be available if higher temperature humidity levels in the data center area were permitted. The average particle concentrations measured at each of the eight data center locations are shown in Table 1. The data centers ranged in size from approximately 5,000 ft{sup 2} to 20,000 ft{sup 2}. The indoor concentrations and humidity in Table 1 represents measurements taken at the server rack. Temperature measurements at the server rack consistently fell between 65-70 F. The Findings section contains a discussion of the individual findings from each center. Data centers currently operate under very low contamination levels. Economizers can be expected to increase the particle concentration in data centers, but the increase appears to still be

  6. Estimate of Maximum Underground Working Gas Storage Capacity in the United States

    Reports and Publications (EIA)

    2006-01-01

    This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacity seems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. The report presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.

  7. Maximum Likelihood Analysis of Low Energy CDMS II Germanium Data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agnese, R.

    2015-03-30

    We report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search experiment using a maximum likelihood analysis. A background model is constructed using GEANT4 to simulate the surface-event background from Pb210decay-chain events, while using independent calibration data to model the gamma background. Fitting this background model to the data results in no statistically significant WIMP component. In addition, we also perform fits using an analytic ad hoc background model proposed by Collar and Fields, who claimed to find a large excess of signal-like events in ourmore » data. Finally, we confirm the strong preference for a signal hypothesis in their analysis under these assumptions, but excesses are observed in both single- and multiple-scatter events, which implies the signal is not caused by WIMPs, but rather reflects the inadequacy of their background model.« less

  8. Situ treatment of contaminated groundwater

    DOE Patents [OSTI]

    McNab, Jr., Walt W.; Ruiz, Roberto; Pico, Tristan M.

    2001-01-01

    A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

  9. JV Task 99-Integrated Risk Analysis and Contaminant Reduction, Watford City, North Dakota

    SciTech Connect (OSTI)

    Jaroslav Solc; Barry W. Botnen

    2007-05-31

    The Energy & Environmental Research Center (EERC) conducted a limited site investigation and risk analyses for hydrocarbon-contaminated soils and groundwater at a Construction Services, Inc., site in Watford City, North Dakota. Site investigation confirmed the presence of free product and high concentrations of residual gasoline-based contaminants in several wells, the presence of 1,2-dichloroethane, and extremely high levels of electrical conductivity indicative of brine residuals in the tank area south of the facility. The risk analysis was based on compilation of information from the site-specific geotechnical investigation, including multiphase extraction pilot test, laser induced fluorescence probing, evaluation of contaminant properties, receptor survey, capture zone analysis and evaluation of well head protection area for municipal well field. The project results indicate that the risks associated with contaminant occurrence at the Construction Services, Inc. site are low and, under current conditions, there is no direct or indirect exposure pathway between the contaminated groundwater and soils and potential receptors.

  10. Closure End States for Facilities, Waste Sites, and Subsurface Contamination

    SciTech Connect (OSTI)

    Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

    2012-11-21

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOEs Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

  11. Subsurface Contaminants Focus Area annual report 1997

    SciTech Connect (OSTI)

    1997-12-31

    In support of its vision for technological excellence, the Subsurface Contaminants Focus Area (SCFA) has identified three strategic goals. The three goals of the SCFA are: Contain and/or stabilize contamination sources that pose an imminent threat to surface and ground waters; Delineate DNAPL contamination in the subsurface and remediate DNAPL-contaminated soils and ground water; and Remove a full range of metal and radionuclide contamination in soils and ground water. To meet the challenges of remediating subsurface contaminants in soils and ground water, SCFA funded more than 40 technologies in fiscal year 1997. These technologies are grouped according to the following product lines: Dense Nonaqueous-Phase Liquids; Metals and Radionuclides; Source Term Containment; and Source Term Remediation. This report briefly describes the SCFA 1997 technologies and showcases a few key technologies in each product line.

  12. Carbon contamination topography analysis of EUV masks

    SciTech Connect (OSTI)

    Fan, Y.-J.; Yankulin, L.; Thomas, P.; Mbanaso, C.; Antohe, A.; Garg, R.; Wang, Y.; Murray, T.; Wuest, A.; Goodwin, F.; Huh, S.; Cordes, A.; Naulleau, P.; Goldberg, K. A.; Mochi, I.; Gullikson, E.; Denbeaux, G.

    2010-03-12

    The impact of carbon contamination on extreme ultraviolet (EUV) masks is significant due to throughput loss and potential effects on imaging performance. Current carbon contamination research primarily focuses on the lifetime of the multilayer surfaces, determined by reflectivity loss and reduced throughput in EUV exposure tools. However, contamination on patterned EUV masks can cause additional effects on absorbing features and the printed images, as well as impacting the efficiency of cleaning process. In this work, several different techniques were used to determine possible contamination topography. Lithographic simulations were also performed and the results compared with the experimental data.

  13. Progress Continues on Mitigation of Radiological Contamination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 13, 2015 Progress Continues on Mitigation of Radiological Contamination This week, WIPP personnel will complete the installation of the brattice cloth and salt barrier on a...

  14. The Source of Airborne Lead: Recycling Pb-Contaminated Soils

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Source of Airborne Lead: Recycling Pb-Contaminated Soils Starting in the 1970s, federal regulatory control and eventual elimination of lead-based "anti-knock" additives in gasoline decreased the level of airborne Pb in the USA by two orders-of-magnitude [1]. Blood lead levels of the USA figure 1 Figure 1. The good, the bad, and the ugly. Ambient airborne particulate matter captured on filters of woven silica fiber (large strips) and TeflonTM (round). Clean fiber filter at bottom

  15. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    SciTech Connect (OSTI)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP.

  16. OPEC's maximum oil revenue will be $80 billion per year

    SciTech Connect (OSTI)

    Steffes, D.W.

    1986-01-01

    OPEC's income from oil is less than $80 billion this year, only one fourth its 1981 revenue. The optimum revenue OPEC can expect is 15 MBB/D at $15/barrel. Energy conservation will continue despite falling prices because consumers no longer feel secure that OPEC can deliver needed supplies. Eleven concepts which affect the future world economic outlook include dependence upon petroleum and petroleum products, the condition of capital markets, low energy and commodity prices, the growth in money supply without a corresponding growth in investment, and the high debt level of the US and the developing countries.

  17. Method of removing contaminants from plastic resins

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  18. Method of removing contaminants from plastic resins

    DOE Patents [OSTI]

    Bohnert,George W. (Harrisonville, MO); Hand,Thomas E. (Lee's Summit, MO); Delaurentiis,Gary M. (Jamestown, CA)

    2007-08-07

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  19. Method for removing contaminants from plastic resin

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  20. Minimizing electrode contamination in an electrochemical cell

    DOE Patents [OSTI]

    Kim, Yu Seung; Zelenay, Piotr; Johnston, Christina

    2014-12-09

    An electrochemical cell assembly that is expected to prevent or at least minimize electrode contamination includes one or more getters that trap a component or components leached from a first electrode and prevents or at least minimizes them from contaminating a second electrode.

  1. Method of removing oxidized contaminants from water

    DOE Patents [OSTI]

    Amonette, J.E.; Fruchter, J.S.; Gorby, Y.A.; Cole, C.R.; Cantrell, K.J.; Kaplan, D.I.

    1998-07-21

    The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II). 8 figs.

  2. Method of removing oxidized contaminants from water

    DOE Patents [OSTI]

    Amonette, James E.; Fruchter, Jonathan S.; Gorby, Yuri A.; Cole, Charles R.; Cantrell, Kirk J.; Kaplan, Daniel I.

    1998-01-01

    The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II).

  3. A methodology for estimating the residual contamination contribution to the source term in a spent-fuel transport cask

    SciTech Connect (OSTI)

    Sanders, T.L. ); Jordan, H. . Rocky Flats Plant); Pasupathi, V. ); Mings, W.J. ); Reardon, P.C. )

    1991-09-01

    This report describes the ranges of the residual contamination that may build up in spent-fuel transport casks. These contamination ranges are calculated based on data taken from published reports and from previously unpublished data supplied by cask transporters. The data involve dose rate measurements, interior smear surveys, and analyses of water flushed out of cask cavities during decontamination operations. A methodology has been developed to estimate the effect of residual contamination on spent-fuel cask containment requirements. Factors in estimating the maximum permissible leak rates include the form of the residual contamination; possible release modes; internal gas-borne depletion; and the temperature, pressure, and vibration characteristics of the cask during transport under normal and accident conditions. 12 refs., 9 figs., 4 tabs.

  4. A Model for Measurements of Lognormally Distributed Environmental Contaminants

    SciTech Connect (OSTI)

    Charles B. Davis, Danny Field, Thomas E. Gran

    2009-05-21

    This paper proposes a more nearly reasonable model for the actual measurement distribution, called here the Davis Mixed Model (DMM). The DMM is derived by multiplying the probability density function of unobservable actual concentrations (assumed LN) by the conditional density of measurements given the concentrations (assumed heteroscedastic normal), and then integrating to obtain the marginal distribution of the observable measurements. The DMM is complicated and analytically intractable; its probability density function (PDF) is itself an integral, for example, and closed-form expressions for percentiles, let alone estimators, do not exist. The DMM can be fit to data via Maximum Likelihood Estimation (MLE), however, and a fitted model can be used to generate data for evaluating the actual performance of candidate UTL or other estimation procedures. The Industrial Hygiene application motivating this work involves surface sampling surveys for removable beryllium (Be) contamination, with data from Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) analyses. Similar issues will arise quite generally with censored environmental data for other contaminants and analytical methods. The conclusions presented in this paper focus on the regions of the DMM parameter space arising in surveying numerous Department of Energy (DOE) facilities associated with the Nevada Test Site (NTS).

  5. Separation of Nickel from Technetium-Contaminated Scrap

    SciTech Connect (OSTI)

    El-Azzami, Louei; Zhai, Tony; Grulke, Eric W

    2004-10-01

    The recovery of nickel (Ni) from Department of Energy (DOE) gaseous diffusion plant barriers contaminated with radionuclides and specifically the separation of from Ni from technetium-99, has proven to be difficult. Manufacturing Science Corporation (MSC) could not remove Tc99 from volumetrically contaminated Ni utilizing electro-refining approaches to levels that would allow the free release of Ni for commercial and industrial uses. The various methods applied by Manufacturing Sciences Corporation (MSC) are reported in the attached appendices. The electro-refining methods employed by MSC resulted in Ni containing residual Tc99. Residual Tc99 in Ni purified by MSC's electro-refining methods resulted in a moratorium being issued by the Secretary of the DOE and congressional opposition to the release of Ni from the K-25 plant at Oak Ridge.

  6. Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy...

    Open Energy Info (EERE)

    at Wave Period(s) Jump to: navigation, search Property Name Maximum Wave Height(m) at Wave Period(s) Property Type String Pages using the property "Maximum Wave Height(m) at Wave...

  7. U.S. Lower 48 States Onshore Maximum Number of Active Crews Engaged...

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Lower 48 States Onshore Maximum Number of Active Crews Engaged in Seismic Surveying...

  8. U.S. Maximum Number of Active Crews Engaged in Seismic Surveying...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb...

  9. U.S. Lower 48 States Offshore Maximum Number of Active Crews...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Offshore Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Lower 48 States Offshore Maximum Number of Active Crews Engaged in Seismic Surveying...

  10. Complexity of Groundwater Contaminants at DOE Sites

    SciTech Connect (OSTI)

    Hazen, T.C.; Faybishenko, B.; Jordan, P.

    2010-12-03

    The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base (GWD) presents data as of 2003 for 221 groundwater plumes at 60 DOE sites and facilities. Note that Riley and Zachara analyzed the data from only 18 sites/facilities including 91 plumes. In this paper, we present the results of statistical analyses of the data in the GWD as guidance for planning future basic and applied research of groundwater contaminants within the DOE complex. Our analyses include the evaluation of a frequency and ranking of specific contaminants and contaminant groups, contaminant concentrations/activities and total contaminant masses and activities. We also compared the results from analyses of the GWD with those from the 1992 report by Riley and Zachara. The difference between our results and those summarized in the 1992 report by Riley and Zachara could be caused by not only additional releases, but also by the use of modern site characterization methods, which more accurately reveal the extent of groundwater contamination. Contaminated sites within the DOE complex are located in all major geographic regions of the United States, with highly variable geologic, hydrogeologic, soil, and climatic conditions. We assume that the information from the 60 DOE sites included in the GWD are representative for the whole DOE complex. These 60 sites include the major DOE sites and facilities, such as Rocky Flats Environmental Technology Site, Colorado; Idaho National Laboratory, Idaho; Savannah River Site, South Carolina; Oak Ridge Reservation, Tennessee; and Hanford Reservation, Washington. These five sites alone ccount for 71% of the value of the remediation work.

  11. Natural Contamination from the Mancos Shale | Department of Energy

    Office of Environmental Management (EM)

    Natural Contamination from the Mancos Shale Natural Contamination from the Mancos Shale Natural Contamination from the Mancos Shale PDF icon Natural Contamination from the Mancos Shale More Documents & Publications Application of Environmental Isotopes to the Evaluation of the Origin of Contamination in a Desert Arroyo: Many Devils Wash, Shiprock, New Mexico Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils Wash, Shiprock, New

  12. Thirty-Year Solid Waste Generation Maximum and Minimum Forecast for SRS

    SciTech Connect (OSTI)

    Thomas, L.C.

    1994-10-01

    This report is the third phase (Phase III) of the Thirty-Year Solid Waste Generation Forecast for Facilities at the Savannah River Site (SRS). Phase I of the forecast, Thirty-Year Solid Waste Generation Forecast for Facilities at SRS, forecasts the yearly quantities of low-level waste (LLW), hazardous waste, mixed waste, and transuranic (TRU) wastes generated over the next 30 years by operations, decontamination and decommissioning and environmental restoration (ER) activities at the Savannah River Site. The Phase II report, Thirty-Year Solid Waste Generation Forecast by Treatability Group (U), provides a 30-year forecast by waste treatability group for operations, decontamination and decommissioning, and ER activities. In addition, a 30-year forecast by waste stream has been provided for operations in Appendix A of the Phase II report. The solid wastes stored or generated at SRS must be treated and disposed of in accordance with federal, state, and local laws and regulations. To evaluate, select, and justify the use of promising treatment technologies and to evaluate the potential impact to the environment, the generic waste categories described in the Phase I report were divided into smaller classifications with similar physical, chemical, and radiological characteristics. These smaller classifications, defined within the Phase II report as treatability groups, can then be used in the Waste Management Environmental Impact Statement process to evaluate treatment options. The waste generation forecasts in the Phase II report includes existing waste inventories. Existing waste inventories, which include waste streams from continuing operations and stored wastes from discontinued operations, were not included in the Phase I report. Maximum and minimum forecasts serve as upper and lower boundaries for waste generation. This report provides the maximum and minimum forecast by waste treatability group for operation, decontamination and decommissioning, and ER activities.

  13. Surface plasmon sensing of gas phase contaminants using optical...

    Office of Scientific and Technical Information (OSTI)

    plasmon sensing of gas phase contaminants using optical fiber. Citation Details In-Document Search Title: Surface plasmon sensing of gas phase contaminants using optical fiber. ...

  14. The Effect of Airborne Contaminants on Fuel Cell Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Effect of Airborne Contaminants on Fuel Cell Performance & Durability The Effect of Airborne Contaminants on Fuel Cell Performance & Durability Presented at the Department of...

  15. Effect of System and Air Contaminants on PEMFC Performance and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effect of System and Air Contaminants on PEMFC Performance and Durability Effect of System and Air Contaminants on PEMFC Performance and Durability Presented at the Department of...

  16. Impacts of contaminant storage on indoor air quality: Model developmen...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Impacts of contaminant storage on indoor air quality: Model development Citation Details In-Document Search Title: Impacts of contaminant storage on indoor air...

  17. Surface plasmon sensing of gas phase contaminants using optical...

    Office of Scientific and Technical Information (OSTI)

    Surface plasmon sensing of gas phase contaminants using optical fiber. Citation Details In-Document Search Title: Surface plasmon sensing of gas phase contaminants using optical...

  18. Analysis of Contaminant Rebound in Ground Water in Extraction...

    Energy Savers [EERE]

    Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City,...

  19. OAR 340-216 - Air Contaminant Discharge Permits | Open Energy...

    Open Energy Info (EERE)

    OAR 340-216 - Air Contaminant Discharge PermitsLegal Abstract Regulations for air contaminant discharge permits issued by the Department of Environmental Quality....

  20. Oregon Air Contaminant Discharge Permits Webpage | Open Energy...

    Open Energy Info (EERE)

    Air Contaminant Discharge Permits Webpage Citation Oregon Department of Environmental Quality. Oregon Air Contaminant Discharge Permits Webpage Internet. State of Oregon....

  1. ECOLOGICAL EFFECTS OF CONTAMINANTS IN THE UPPER THREE RUNS INTEGRATOR...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: ECOLOGICAL EFFECTS OF CONTAMINANTS IN THE UPPER THREE RUNS INTEGRATOR OPERABLE UNIT Citation Details In-Document Search Title: ECOLOGICAL EFFECTS OF CONTAMINANTS...

  2. Overview of Contaminant Removal From Coal-Derived Syngas

    SciTech Connect (OSTI)

    Layne, A.W.; Alvin, M.A.; Granite, E.; Pennline, H.W.; Siriwardane, R.V.; Keairns, D.; Newby, R.A.

    2007-11-01

    Gasification is an important strategy for increasing the utilization of abundant domestic coal reserves. DOE envisions increased use of gasification in the United States during the next 20 years. As such, the DOE Gasification Technologies Program, including the FutureGen initiative, will strive to approach a near-zero emissions goal, with respect to multiple pollutants, such as sulfur, mercury, and nitrogen oxides. Since nearly one-third of anthropogenic carbon dioxide emissions are produced by coal-powered generation facilities, conventional coal-burning power plants, and advanced power generation plants, such as IGCC, present opportunities in which carbon can be removed and then permanently stored.
    Gas cleaning systems for IGCC power generation facilities have been effectively demonstrated and used in commercial operations for many years. These systems can reduce sulfur, mercury, and other contaminants in synthesis gas produced by gasifiers to the lowest level achievable in coal-based energy systems. Currently, DOE Fossil Energy's goals set for 2010 direct completion of R&D for advanced gasification combined cycle technology to produce electricity from coal at 4550% plant efficiency. By 2012, completion of R&D to integrate this technology with carbon dioxide separation, capture, and sequestration into a zero-emissions configuration is targeted with a goal to provide electricity with less than a 10% increase in cost of electricity. By 2020, goals are set to develop zero-emissions plants that are fuel-flexible and capable of multi-product output and thermal efficiencies of over 60% with coal. These objectives dictate that it is essential to not only reduce contaminant emissions into the generated synthesis gas, but also to increase the process or system operating temperature to that of humid gas cleaning criteria conditions (150 to 370 C), thus reducing the energy penalties that currently exist as a result of lowering process temperatures (?40 to 38 C) with subsequent reheat to the required higher temperatures.
    From a historical perspective, the evolution of advanced syngas cleaning systems applied in IGCC and chemical and fuel synthesis plants has followed a path of configuring a series of individual cleaning steps, one for each syngas contaminant, each step controlled to its individual temperature and sorbent and catalyst needs. As the number of syngas contaminants of interest has increased (particulates, hydrogen sulfide, carbonyl sulfide, halides such as hydrogen chloride, ammonia, hydrogen cyanide, alkali metals, metal carbonyls, mercury, arsenic, selenium, and cadmium) and the degree of syngas cleaning has become more severe, the potential feasibility of advanced humid gas cleaning has diminished. A focus on multi-contaminant syngas cleaning is needed to enhance the potential cost savings, and performance of humid gas cleaning will focus on multi-contaminant syngas cleaning. Groups of several syngas contaminants to be removed simultaneously need to be considered, resulting in significant gas cleaning system intensification. Intensified, multi-contaminant cleaning processes need to be devised and their potential performance characteristics understood through small-scale testing, conceptual design evaluation, and scale-up assessment with integration into the power generation system. Results of a 1-year study undertaken by DOE/NETL are presented to define improved power plant configurations and technology for advanced multi-contaminant cleanup options.

  3. Computer Model Buildings Contaminated with Radioactive Material

    Energy Science and Technology Software Center (OSTI)

    1998-05-19

    The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material.

  4. Estimating exposure of terrestrial wildlife to contaminants

    SciTech Connect (OSTI)

    Sample, B.E.; Suter, G.W. II

    1994-09-01

    This report describes generalized models for the estimation of contaminant exposure experienced by wildlife on the Oak Ridge Reservation. The primary exposure pathway considered is oral ingestion, e.g. the consumption of contaminated food, water, or soil. Exposure through dermal absorption and inhalation are special cases and are not considered hereIN. Because wildlife mobile and generally consume diverse diets and because environmental contamination is not spatial homogeneous, factors to account for variation in diet, movement, and contaminant distribution have been incorporated into the models. To facilitate the use and application of the models, life history parameters necessary to estimate exposure are summarized for 15 common wildlife species. Finally, to display the application of the models, exposure estimates were calculated for four species using data from a source operable unit on the Oak Ridge Reservation.

  5. Mitigation of radiation induced surface contamination

    DOE Patents [OSTI]

    Klebanoff, Leonard E. (Dublin, CA); Stulen, Richard H. (Livermore, CA)

    2003-01-01

    A process for mitigating or eliminating contamination and/or degradation of surfaces having common, adventitious atmospheric contaminants adsorbed thereon and exposed to radiation. A gas or a mixture of gases is introduced into the environment of a surface(s) to be protected. The choice of the gaseous species to be introduced (typically a hydrocarbon gas, water vapor, or oxygen or mixtures thereof) is dependent upon the contaminant as well as the ability of the gaseous species to bind to the surface to be protected. When the surface and associated bound species are exposed to radiation reactive species are formed that react with surface contaminants such as carbon or oxide films to form volatile products (e.g., CO, CO.sub.2) which desorb from the surface.

  6. Mechanical properties and tribological behavior of contaminate

    Office of Scientific and Technical Information (OSTI)

    nanoparticles on micromachined surfaces. (Conference) | SciTech Connect Mechanical properties and tribological behavior of contaminate nanoparticles on micromachined surfaces. Citation Details In-Document Search Title: Mechanical properties and tribological behavior of contaminate nanoparticles on micromachined surfaces. No abstract prepared. Authors: DelRio, Frank W. [1] ; Dunn, Martin L. [1] ; de Boer, Maarten Pieter ; Boyce, Brad Lee + Show Author Affiliations (University of Colorado,

  7. Adhesion Impact of Silicone Contamination during Encapsulation.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Adhesion Impact of Silicone Contamination during Encapsulation. Citation Details In-Document Search Title: Adhesion Impact of Silicone Contamination during Encapsulation. Abstract not provided. Authors: Grillet, Anne Mary ; Barringer, David Alan ; Ohlhausen, James Anthony ; Brumbach, Michael Todd ; Brooks, Carlton F. ; Tandon, Rajan ; Roach, Robert Allen Publication Date: 2014-06-01 OSTI Identifier: 1146813 Report Number(s): SAND2014-4736C 520488 DOE Contract

  8. Method for removing contaminants from plastic resin

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  9. Electron energy spectrum and maximum disruption angle under multi-photon

    Office of Scientific and Technical Information (OSTI)

    beamstrahlung (Conference) | SciTech Connect Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung Citation Details In-Document Search Title: Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung The final electron energy spectrum under multi-photon beamstrahlung process is derived analytically in the classical and the intermediate regimes. The maximum disruption angle from the low energy tail of the spectrum is also

  10. EERE Takes Important Steps to Ensure Maximum Impact of Technology Program

    Office of Environmental Management (EM)

    Investments | Department of Energy Takes Important Steps to Ensure Maximum Impact of Technology Program Investments EERE Takes Important Steps to Ensure Maximum Impact of Technology Program Investments November 20, 2014 - 6:06pm Addthis Tracking impact of EERE’s investments in wind, solar and other programs is essential to achieve maximum return for taxpayer investment. | Photos courtesy of the National Renewable Energy Laboratory Tracking impact of EERE's investments in wind, solar and

  11. Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2015 Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015 This paper presents average values of levelized costs for generating technologies that are brought online in 2020 1 as represented in the National Energy Modeling System (NEMS) for the Annual Energy Outlook 2015 (AEO2015) Reference case. 2 Both national values and the minimum and maximum values across the 22 U.S. regions of the NEMS electricity market module are presented. Levelized

  12. Maximum allowable hydraulic ram force for heel jet removal Tank 241-C-106

    SciTech Connect (OSTI)

    PAULSEN, S.S.

    2003-01-10

    This document contains an evaluation of the maximum force that can be used to actuate the hydraulic ram assembly without causing permanent damage to the riser or pit.

  13. Fate of Contaminants in Contact with West Valley Grouts

    SciTech Connect (OSTI)

    Fuhrmann,M.; Gillow, J.

    2009-07-01

    The objective of the work described here is to determine to what extent a variety of contaminants, including fission products, actinides, and RCRA elements are sequestered by the two grout formulations. The conceptual model for this study is as follows: a large mass of grout having been poured into a high-level waste tank is in the process of aging and weathering for thousands of years. The waste remaining in the tank will contain radionuclides and other contaminants, much of which will adhere to tank walls and internal structures. The grout will encapsulate the contaminants. Initially the grout will be well sequestered, but over time rainwater and groundwater will gain access to it. Ultimately, the grout/waste environment will be an open system. In this condition water will move through the grout, exposing it to O{sub 2} and CO{sub 2} from the air and HCO{sub 3}{sup -} from the groundwater. Thus we are considering an oxic environment containing HCO{sub 3}{sup -}. Initially the solubility of many contaminants, but not all, will be constrained by chemistry dominated by the grout, primarily by the high pH, around 11.8. This is controlled and buffered by the portland cement and blast furnace slag components of the grout, which by themselves maintain a solution pH of about 12.5. Slowly the pH will diminish as Ca(OH){sub 2} and KOH dissolve, are carried away by water, and CaCO{sub 3} forms. As these conditions develop, the behavior of these elements comes into question. In our conceptual model, although the grout is formulated to provide some reducing capacity, in order to be conservative this mechanism is not considered. In addition to solubility constraints imposed by pH, the various contaminants may be incorporated into a variety of solid phases. Some may be incorporated into newly forming compounds as the grout sets and cures. Others (like soddyite, (UO{sub 2}){sub 2}SiO{sub 4}(H{sub 2}O){sub 2}) are the result of slower reactions but may become important over time as contaminants are exposed to evolving chemistry in the grout. Still other solid phases may form from reactions between the waste and grout components, not only the cementitious materials, but also the additives used in the grout. Another process that may exert some control on contaminant concentrations is adsorption onto solids within the grout. These may be additives such as the fluorapatite or zeolite that are substantial percentages of the grouts or they may be minerals, typically Ca-Al-Si materials, that form in the grout system as cement sets. In addition, as the grout weathers over time, CaCO{sub 3} minerals, such as calcite and aragonite, will form as a rind on the grout and as a fracture filling mineral. Some contaminants are likely to be incorporated into these minerals, to a greater or lesser extent, as they precipitate. For some elements, such as U, there is a significant literature exploring the incorporation into CaCO{sub 3}, but for others there is essentially no information. This is also the case for much of the chemical regime of the grouts. Initial conditions are at pH values around 12 and information is often sparse.

  14. Method of producing hydrogen, and rendering a contaminated biomass inert

    DOE Patents [OSTI]

    Bingham, Dennis N. [Idaho Falls, ID; Klingler, Kerry M. [Idaho Falls, ID; Wilding, Bruce M. [Idaho Falls, ID

    2010-02-23

    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  15. RESRAD Computer Code - Evaluation of Radioactively Contaminated Sites |

    Energy Savers [EERE]

    Department of Energy RESRAD Computer Code - Evaluation of Radioactively Contaminated Sites RESRAD Computer Code - Evaluation of Radioactively Contaminated Sites The evaluation of sites with radioactive contamination was a problem until the RESidual RADioactivity (RESRAD) Computer Code was first released in 1989. PDF icon RESRAD Computer Code - Evaluation of Radioactively Contaminated Sites More Documents & Publications 2012 Environmental/Radiological Assistance Directory (ERAD)

  16. PIA - Radioactive Airborne Contamination Survey | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radioactive Airborne Contamination Survey PIA - Radioactive Airborne Contamination Survey PIA - Radioactive Airborne Contamination Survey PDF icon PIA - Radioactive Airborne Contamination Survey More Documents & Publications Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PIA - Bonneville Power Adminstration Ethics Helpline PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009

  17. NOVEL TECHNOLOGIES FOR GASEOUS CONTAMINANTS CONTROL

    SciTech Connect (OSTI)

    B.S. Turk; T. Merkel; A. Lopez-Ortiz; R.P. Gupta; J.W. Portzer; G.N. Krishnan; B.D. Freeman; G.K. Fleming

    2001-09-30

    The overall objective of this project is to develop technologies for cleaning/conditioning the syngas from an integrated gasification combined cycle (IGCC) system to meet the tolerance limits for contaminants such as H{sub 2}S, COS, NH{sub 3}, HCN, HCl, and alkali for fuel cell and chemical production applications. RTI's approach is to develop a modular system that (1) removes reduced sulfur species to sub-ppm levels using a hybrid process consisting of a polymer membrane and a regenerable ZnO-coated monolith or a mixed metal oxide sorbent; (2) removes hydrogen chloride vapors to sub-ppm levels using an inexpensive, high-surface area material; and (3) removes NH{sub 3} with acidic adsorbents. RTI is working with MEDAL, Inc., and North Carolina State University (NCSU) to develop polymer membrane technology for bulk removal of H{sub 2}S from syngas. These membranes are being engineered to remove the acid gas components (H{sub 2}S, CO{sub 2}, NH{sub 3}, and H{sub 2}O) from syngas by focusing on the ''solubility selectivity'' of the novel polymer compositions. The desirable components of the syngas (H{sub 2} and CO) are maintained at high-pressure conditions as a non-permeate stream while the impurities are transported across the membrane to the low pressure side. RTI tested commercially available and novel materials from MEDAL using a high-temperature, high-pressure (HTHP) permeation apparatus. H{sub 2}S/H{sub 2} selectivities >30 were achieved, although there was a strong negative dependence with temperature. MEDAL believes that all the polymer compositions tested so far can be prepared as hollow fiber membrane modules using the existing manufacturing technology. For fuel cell and chemical applications, additional sulfur removal (beyond that achievable with the membranes) is required. To overcome limitations of conventional ZnO pellets, RTI is testing a monolith with a thin coating of high surface area zinc-oxide based materials. Alternatively, a regenerable sorbent developed by DOE/NETL (RVS-1) is being evaluated for this application. A multi-cycle test of 2-in. (5-cm) diameter monolith samples demonstrated that <0.5 ppm sulfur can be achieved. Removal of HCl vapors is being accomplished by low-cost materials that combine the known effectiveness of sodium carbonate as an active matrix used with enhanced surface area supports for greater reactivity and capacity at the required operating temperatures. RTI is working with SRI International on this task. Sorbents prepared using diatomaceous earth and sepiolite, impregnated with sodium carbonate achieved steady-state HCl level <100 ppb (target is 10 ppb). Research is continuing to optimize the impregnation and calcination procedures to provide an optimum pore size distribution and other properties. RTI and SRI International have established the feasibility of a process to selectively chemisorb NH3 from syngas on high surface area molecular sieve adsorbents at high temperatures by conducting a series of temperature-programmed reactions at 225 C (437 F). Significant levels of NH{sub 3} were adsorbed on highly acidic adsorbents; the adsorbed NH{sub 3} was subsequently recovered by heating the adsorbent and the regenerated adsorbent was reused. A comprehensive technical and economic evaluation of this modular gas cleaning process was conducted by Nexant to compare capital and operating cost with existing amine based processes. Nexant estimated a total installed cost of $42 million for the RTI process for a 500 MWe IGCC plant based on its current state of development. By comparison, Nexant estimated the installed cost for an equivalent sized plant based on the Rectisol process (which would achieve the same sulfur removal specification) to be $75 million. Thus the RTI process is economically competitive with a state-of-the-art process for syngas cleanup.

  18. PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT

    Office of Environmental Management (EM)

    Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do

  19. Remediation of Mercury and Industrial Contaminants | Department of Energy

    Energy Savers [EERE]

    Remediation of Mercury and Industrial Contaminants Remediation of Mercury and Industrial Contaminants The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of protecting surface water, groundwater, and ecological receptors. PDF icon Remediation of Mercury and Industrial Contaminants More Documents & Publications Mitigation and Remediation of Mercury

  20. Residual foreground contamination in the WMAP data and bias in non-Gaussianity estimation

    SciTech Connect (OSTI)

    Chingangbam, Pravabati; Park, Changbom E-mail: cbp@kias.re.kr

    2013-02-01

    We analyze whether there is any residual foreground contamination in the cleaned WMAP 7 years data for the differential assemblies, Q, V and W. We calculate the correlation between the foreground map, from which long wavelength correlations have been subtracted, and the foreground reduced map for each differential assembly after applying the Galaxy and point sources masks. We find positive correlations for all the differential assemblies, with high statistical significance. For Q and V, we find that a large fraction of the contamination comes from pixels where the foreground maps have positive values larger than three times the rms values. These findings imply the presence of residual contamination from Galactic emissions and unresolved point sources. We redo the analysis after masking the extended point sources cataloque of Scodeller et al. [7] and find a drop in the correlation and corresponding significance values. To quantify the effect of the residual contamination on the search for primordial non-Gaussianity in the CMB we add estimated contaminant fraction to simulated Gaussian CMB maps and calculate the characteristic non-Gaussian deviation shapes of Minkowski Functionals that arise due to the contamination. We find remarkable agreement of these deviation shapes with those measured from WMAP data, which imply that a major fraction of the observed non-Gaussian deviation comes from residual foreground contamination. We also compute non-Gaussian deviations of Minkowski Functionals after applying the point sources mask of Scodeller et al. and find a decrease in the overall amplitudes of the deviations which is consistent with a decrease in the level of contamination.

  1. ESTIMATING FATE AND TRANSPORT OF MULTIPLE CONTAMINANTS IN THE VADOSE ZONE USING A MULTI-LAYERED SOIL COLUMN AND THREE-PHASE EQUILIBRIUM PARTITIONING MODEL

    SciTech Connect (OSTI)

    Rucker, G

    2007-05-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and contaminate drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminates. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: contaminant decay, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use.

  2. Catalyst regeneration process including metal contaminants removal

    DOE Patents [OSTI]

    Ganguli, Partha S. (Lawrenceville, NJ)

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  3. Historic contamination along Oakland Inner Harbor

    SciTech Connect (OSTI)

    Bird, J.C.; Shafer, D.L.

    1995-09-01

    As part of the ongoing remedial investigations (RI) at the Navy`s fleet and Industrial Supply Center, Oakland (FISCO)-Alameda Facility/Alameda Annex (the facility), FISC Oakland, and NAS Alameda, the presence of widespread historic chemical contaminants along the interface between the fill material and the former marshland deposits has been discovered. The historic contaminants are believed to have accumulated within the marshland areas prior to the filling activities along the Oakland Inner Harbor. The historic contaminants consist of heavy petroleum hydrocarbons, aromatic hydrocarbons, and polynuclear aromatic hydrocarbons (PAH), apparently generated by the former industries in the area. Three solid waste management units (SWMUs) and eight areas of concern ( AOCs) were identified at the facility. Three SWMUs and 1 AOC were recommended for site investigations as high-priority.

  4. Apparatus for measuring surface particulate contamination

    DOE Patents [OSTI]

    Woodmansee, Donald E. (Simpsonville, SC)

    2002-01-01

    An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.

  5. Contaminant trap for gas-insulated apparatus

    DOE Patents [OSTI]

    Adcock, James L. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Christophorou, Loucas G. (Oak Ridge, TN)

    1984-01-01

    A contaminant trap for a gas-insulated electrical conductor is provided. A resinous dielectric body such as Kel-F wax, grease or other sticky polymeric or oligomeric compound is disposed on the inside wall of the outer housing for the conductor. The resinous body is sufficiently sticky at ambient temperatures to immobilize contaminant particles in the insulating gas on the exposed surfaces thereof. An electric resistance heating element is disposed in the resinous body to selectively raise the temperature of the resinous body to a molten state so that the contaminant particles collected on the surface of the body sink into the body so that the surface of the resinous body is renewed to a particle-less condition and, when cooled, returns to a sticky collecting surface.

  6. Apparatus for passive removal of subsurface contaminants

    DOE Patents [OSTI]

    Pemberton, B.E.; May, C.P.; Rossabi, J.

    1997-06-24

    An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere. 7 figs.

  7. Apparatus for passive removal of subsurface contaminants

    DOE Patents [OSTI]

    Pemberton, Bradley E. (Aiken, SC); May, Christopher P. (Fairfax, VA); Rossabi, Joseph (Aiken, SC)

    1997-01-01

    An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere.

  8. System for removing contaminants from plastic resin

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  9. Apparatus for extraction of contaminants from a gas

    DOE Patents [OSTI]

    Babko-Malyi, Sergei (Butte, MT)

    2001-01-01

    A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.

  10. Passive treatment of wastewater and contaminated groundwater

    DOE Patents [OSTI]

    Phifer, Mark A.; Sappington, Frank C.; Millings, Margaret R.; Turick, Charles E.; McKinsey, Pamela C.

    2006-12-12

    A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

  11. Passive treatment of wastewater and contaminated groundwater

    DOE Patents [OSTI]

    Phifer, Mark A. (N. Augusta, SC); Sappington, Frank C. (Dahlonega, GA); Millings, Margaret R. (N. Augusta, SC); Turick, Charles E. (Aiken, SC); McKinsey, Pamela C. (Aiken, SC)

    2007-11-06

    A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

  12. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    SciTech Connect (OSTI)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    Groundwater flow and radionuclide transport at the Shoal underground nuclear test are characterized using three-dimensional numerical models, based on site-specific hydrologic data. The objective of this modeling is to provide the flow and transport models needed to develop a contaminant boundary defining the extent of radionuclide-contaminated groundwater at the site throughout 1,000 years at a prescribed level of confidence. This boundary will then be used to manage the Project Shoal Area for the protection of the public and the environment.

  13. INEEL Subregional Conceptual Model Report; Volume 1 - Summary of Existing Knowledge of Natural and Anthropogenic Influences Governing Subsurface Contaminant Transport in the INEEL Subregion of the Eastern Snake River Plain

    SciTech Connect (OSTI)

    Wichlacz, Paul Louis; Orr, Brennan

    2002-08-01

    The National Research Council has defined a conceptual model as ''an evolving hypothesis identifying the important features, processes, and events controlling fluid flow and contaminant transport of consequence at a specific field site in the context of a recognized problem''. Presently, several subregional conceptual models are under development at the Idaho National Engineering and Environmental Laboratory (INEEL). Additionally, facility-specific conceptual models have been described as part of INEEL environmental restoration activities. Compilation of these models is required to develop a comprehensive conceptual model that can be used to strategically plan for future groundwater research activities at the INEEL. Conceptual models of groundwater flow and contaminant transport at the INEEL include the description of the geologic framework, matrix hydraulic properties, and inflows and outflows. They also include definitions of the contaminant source term and contaminant transport mechanisms. The geologic framework of the INEEL subregion is described by the geometry of the system, stratigraphic units within the system, and structural features that affect groundwater flow and contaminant transport. These elements define geohydrologic units that make up the Snake River Plain Aquifer (SRPA). The United States Geological Survey (USGS) conceptual model encompasses approximately 1,920 mi2 of the eastern Snake River Plain. The Waste Area Group (WAG)-10 model includes the USGS area and additional areas to the northeast and southeast. Both conceptual models are bounded to the northwest by the Pioneer Mountains, Lost River Range, and Lemhi Mountains. They are bounded to the southeast by groundwater flow paths determined from aquifer water-level contours. The upgradient extent of the USGS model is a water-level contour that includes the northeastern boundary of the INEEL. The WAG-10 model includes more of the Mud Lake area to utilize previous estimates of underflow into the subregion. Both conceptual models extend approximately 25 miles to the southwest of the INEEL, a distance sufficient to include known concentrations of contaminant tracers. Several hypotheses have been developed concerning the effective thickness of the SRPA at the INEEL. The USGS model has defined the effective thickness from electrical resistivity and borehole data to be as much as 2,500 ft in the eastern part of the subregion and as much as 4,000 ft in the southwestern part. The WAG-10 model has developed two alternatives using aquifer-temperature and electrical resistivity data. The ''thick'' aquifer interpretation utilizes colder temperature data and includes a northtrending zone in which the thickness exceeds 1,300 ft and with a maximum thickness of 1,700 ft. The ''thin'' aquifer interpretation minimizes aquifer thickness, with thickness ranging from 328 to 1,300 ft. Facility-specific models generally have focused efforts on the upper 250 ft of saturation. Conceptual models have utilized a stratigraphic data set to define geohydrologic units within the INEEL subregion. This data set, compiled from geophysical logs and cores from boreholes, correlates the thick, complex stack of basalt flows across the subregion. Conceptual models generally concur that the upper geohydrologic unit consists of a section of highly fractured, multiple, thin basalt flows and sedimentary interbeds. Beneath this unit is an areally extensive, thick, unfractured basalt flow that rises above the water table southwest of the INEEL. The bottom unit consists of a thick section of slightly- to moderately-altered basalt. A key objective of the DOE water-integration project at the INEEL is to coordinate development of a subregional conceptual model of groundwater flow and contaminant transport that is based on the best available understanding of geologic and hydrologic features. The first step in this process is to compile and summarize the current conceptual models of groundwater flow and contaminant transport at the INEEL that have been developed from extensive geohydrologic studies con

  14. Title 43 CFR 3206.12 What are the Minimum and Maximum Lease Sizes...

    Open Energy Info (EERE)

    .12 What are the Minimum and Maximum Lease Sizes? Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 43...

  15. U.S. Lower 48 States Offshore Maximum Number of Active Crews...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Offshore Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 167...

  16. U.S. Lower 48 States Onshore Maximum Number of Active Crews Engaged...

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 435 512...

  17. U.S. Maximum Number of Active Crews Engaged in Seismic Surveying...

    Gasoline and Diesel Fuel Update (EIA)

    Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 615 717 624 481...

  18. A Requirement for Significant Reduction in the Maximum BTU Input Rate of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers | Department of Energy A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers Comment that a requirement to reduce the BTU input rate of existing decorative

  19. A source of PCB contamination in modified high-volume air samplers

    SciTech Connect (OSTI)

    Basu, I.; O'Dell, J.M.; Arnold, K.; Hites, R.A.

    2000-02-01

    Modified Anderson High Volume (Hi-Vol) air samplers are widely used for the collection of semi-volatile organic compounds (such as PCBs) from air. The foam gasket near the main air flow path in these samplers can become contaminated with PCBs if the sampler or the gasket is stored at a location with high indoor air PCB levels. Once the gasket is contaminated, it releases PCBs back into the air stream during sampling, and as a result, incorrectly high air PCB concentrations are measured. This paper presents data demonstrating this contamination problem using measurements from two Integrated Atmospheric Deposition Network sites: one at Sleeping Bear Dunes on Lake Michigan and the other at Point Petre on Lake Ontario. The authors recommend that these gaskets be replaced by Teflon tape and that the storage history of each sampler be carefully tracked.

  20. Heterogeneity-corrected vs -uncorrected critical structure maximum point doses in breast balloon brachytherapy

    SciTech Connect (OSTI)

    Kim, Leonard; Narra, Venkat; Yue, Ning

    2013-07-01

    Recent studies have reported potentially clinically meaningful dose differences when heterogeneity correction is used in breast balloon brachytherapy. In this study, we report on the relationship between heterogeneity-corrected and -uncorrected doses for 2 commonly used plan evaluation metrics: maximum point dose to skin surface and maximum point dose to ribs. Maximum point doses to skin surface and ribs were calculated using TG-43 and Varian Acuros for 20 patients treated with breast balloon brachytherapy. The results were plotted against each other and fit with a zero-intercept line. Max skin dose (Acuros) = max skin dose (TG-43) ? 0.930 (R{sup 2} = 0.995). The average magnitude of difference from this relationship was 1.1% (max 2.8%). Max rib dose (Acuros) = max rib dose (TG-43) ? 0.955 (R{sup 2} = 0.9995). The average magnitude of difference from this relationship was 0.7% (max 1.6%). Heterogeneity-corrected maximum point doses to the skin surface and ribs were proportional to TG-43-calculated doses. The average deviation from proportionality was 1%. The proportional relationship suggests that a different metric other than maximum point dose may be needed to obtain a clinical advantage from heterogeneity correction. Alternatively, if maximum point dose continues to be used in recommended limits while incorporating heterogeneity correction, institutions without this capability may be able to accurately estimate these doses by use of a scaling factor.

  1. Method to Remove Uranium/Vanadium Contamination from Groundwater

    DOE Patents [OSTI]

    Metzler, Donald R.; Morrison Stanley

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  2. Method to remove uranium/vanadium contamination from groundwater

    DOE Patents [OSTI]

    Metzler, Donald R. (DeBeque, CO); Morrison, Stanley (Grand Junction, CO)

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  3. Soil washing as a potential remediation technology for contaminated DOE sites

    SciTech Connect (OSTI)

    Devgun, J.S.; Beskid, N.J. ); Natsis, M.E. ); Walker, J.S. )

    1993-01-01

    Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

  4. Soil washing as a potential remediation technology for contaminated DOE sites

    SciTech Connect (OSTI)

    Devgun, J.S.; Beskid, N.J.; Natsis, M.E.; Walker, J.S.

    1993-03-01

    Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

  5. H2FIRST Hydrogen Contaminant Detector Task: Requirements Document and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Survey | Department of Energy Hydrogen Contaminant Detector Task: Requirements Document and Market Survey H2FIRST Hydrogen Contaminant Detector Task: Requirements Document and Market Survey This H2FIRST project report, published in April 2015, describes the current commercial state of the art in contamination detection and identifies the technical requirements for implementing a hydrogen contaminant detector (HCD) at a station. The rollout of hydrogen fueling stations, and the fuel

  6. Groundwater Contamination and Treatment at Department of Energy Sites |

    Energy Savers [EERE]

    Department of Energy Groundwater Contamination and Treatment at Department of Energy Sites Groundwater Contamination and Treatment at Department of Energy Sites The purpose of this document is to provide DOE Program/Project Managers, upper management, and other interested parties with a snapshot in time of the status of major groundwater contamination and remedial approaches across the DOE Complex. PDF icon Groundwater Contamination and Treatment at Department of Energy Sites More Documents

  7. Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Rifle Processing Site, Colorado | Department of Energy and Geochemical Modeling of Vanadium Contamination in Groundwater New Rifle Processing Site, Colorado Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater New Rifle Processing Site, Colorado Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater New Rifle Processing Site, Colorado PDF icon Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater New Rifle Processing Site,

  8. Surface plasmon sensing of gas phase contaminants using optical fiber.

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Surface plasmon sensing of gas phase contaminants using optical fiber. Citation Details In-Document Search Title: Surface plasmon sensing of gas phase contaminants using optical fiber. Fiber-optic gas phase surface plasmon resonance (SPR) detection of several contaminant gases of interest to state-of-health monitoring in high-consequence sealed systems has been demonstrated. These contaminant gases include H{sub 2}, H{sub 2}S, and moisture using a

  9. Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds

    Broader source: Energy.gov [DOE]

    The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

  10. Groundwater Contamination and Treatment at Department of Energy Sites -

    Energy Savers [EERE]

    2008 | Department of Energy 8 Groundwater Contamination and Treatment at Department of Energy Sites - 2008 The purpose of this document is to provide DOE Program/Project Managers, upper management, and other interested parties with a snapshot in time of the status of major groundwater contamination and remedial approaches across the DOE Complex. PDF icon Groundwater Contamination and Treatment at Department of Energy Sites - 2008 More Documents & Publications Groundwater Contamination

  11. Groundwater Contamination and Treatment at Department of Energy Sites -

    Energy Savers [EERE]

    2009 | Department of Energy 9 Groundwater Contamination and Treatment at Department of Energy Sites - 2009 This document provides DOE Program/Project Managers, senior management, and other interested parties with a snapshot in time of the status of major groundwater contamination and remedial approaches across the DOE Complex. PDF icon Groundwater Contamination and Treatment at Department of Energy Sites - 2009 More Documents & Publications Groundwater Contamination and Treatment at

  12. Hanford Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals

    Office of Environmental Management (EM)

    | Department of Energy Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals Hanford Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals June 26, 2013 - 12:00pm Addthis The 200 West Pump and Treat System is Hanford’s largest facility for treating contaminated groundwater. The 200 West Pump and Treat System is Hanford's largest facility for treating contaminated groundwater. A graphic showing the 200 West Pump and Treat plumes and well network. A graphic

  13. Contaminant signature at Los Alamos firing sites

    SciTech Connect (OSTI)

    Becker, N.; Irvine, J.

    1996-01-01

    During a dynamic weapons test, a weapons component is either explosively detonated or impacted against a target in the open air environment. This results in both the production of a wide size range of depleted uranium particles as well as particle scattering over a considerable distance away from the firing pad. The explosive detonation process which creates aerial distribution over a watershed distinguishes this contaminant transport problem from others where the source term is spatially discrete. Investigations of this contamination began in 1983 with collection of onsite soils, sediments, and rock samples to establish uranium concentrations. The samples were analyzed for total uranium to evaluate the magnitude of transport of uranium away from firing sites by airborne and surface water runoff mechanisms. This data was then used to define a firing site.

  14. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    SciTech Connect (OSTI)

    Aponte, C.I.

    2000-02-17

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Even after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events.

  15. Bench-scale studies with mercury contaminated SRS soil

    SciTech Connect (OSTI)

    Cicero, C.A.

    1996-05-08

    The Savannah River Technology Center (SRTC) has been charactered by the Department of Enregy (DOE) - Office of Technology Development (OTD) to investigate vitrification technology for the treatment of Low Level Mixed Wastes (LLMW). In fiscal year 1995, LLW streams containing mercury and organics were targeted. This report will present the results of studies with mercury contaminated waste. In order to successfully apply vitrification technology to LLMW, the types and quantities of glass forming additives necessary for producing homogeneous glasses from the wastes had to be determined, and the treatment for the mercury portion had to also be determined. The selected additives had to ensure that a durable and leach resistant waste form was produced, while the mercury treatment had to ensure that hazardous amounts of mercury were not released into the environment.

  16. Purifying contaminated water. [DOE patent application

    DOE Patents [OSTI]

    Daughton, C.G.

    1981-10-27

    Process is presented for removing biorefactory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  17. Radiological Contamination Control Training for Laboratory Research

    Energy Savers [EERE]

    Reaffirmation August 2002 Change Notice 1 December 2004 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy,

  18. Radiological Contamination Control Training for Laboratory Research

    Energy Savers [EERE]

    Change Notice 2 with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800)

  19. Fixation of Radiological Contamination; International Collaborative Development

    SciTech Connect (OSTI)

    Rick Demmer

    2013-03-01

    A cooperative international project was conducted by the Idaho National Laboratory (INL) and the United Kingdoms National Nuclear Laboratory (NNL) to integrate a capture coating with a high performance atomizing process. The initial results were promising, and lead to further trials. The somewhat longer testing and optimization process has resulted in a product that could be demonstrated in the field to reduce airborne radiological dust and contamination.

  20. Recommended tritium surface contamination release guides

    SciTech Connect (OSTI)

    Johnson, J.R.; Draper, D.G.; Foulke, J.D.; Hafner, R.S.; Jalbert, R.A.; Kennedy, W.E.; Myers, D.S.; Strain, C.D. )

    1991-03-01

    This document was prepared to provide scientific basis for recommended changes in specific limits for tritium surface contamination in DOE Order 5480.11. A summary of the physical and biological characteristics of tritium has been provided that illustrate the unique nature of this radionuclide when compared to other pure beta emitters or to beta-gamma emitting radionuclides. This document is divided into nine sections. The introduction and the purpose and scope are addressed in Section 1.0 and Section 2.0, respectively. Section 3.0 contains recommended interpretation of terms used in this document. Section 4.0 addresses recommended methods for evaluating surface contamination. Biological and physical characteristics of tritium compounds are discussed in Section 5.0, as they relate to tritium radiotoxicity. Scenarios and dose calculations for selected, conservatively limiting cases of tritium intake are given and discussed in Section 6.0 and Section 7.0. Section 8.0 provides conclusions on the information given and recommendations for changes in the surface contamination limits for total tritium to 1 {times} 10{sup 6} dpm per 100 cm{sup 2}. 30 refs., 2 tabs.

  1. Quantifying Contaminant Mass for the Feasibility Study of the DuPont Chambers Works FUSRAP Site - 13510

    SciTech Connect (OSTI)

    Young, Carl; Rahman, Mahmudur; Johnson, Ann; Owe, Stephan

    2013-07-01

    The U.S. Army Corps of Engineers (USACE) - Philadelphia District is conducting an environmental restoration at the DuPont Chambers Works in Deepwater, New Jersey under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Discrete locations are contaminated with natural uranium, thorium-230 and radium-226. The USACE is proposing a preferred remedial alternative consisting of excavation and offsite disposal to address soil contamination followed by monitored natural attenuation to address residual groundwater contamination. Methods were developed to quantify the error associated with contaminant volume estimates and use mass balance calculations of the uranium plume to estimate the removal efficiency of the proposed alternative. During the remedial investigation, the USACE collected approximately 500 soil samples at various depths. As the first step of contaminant mass estimation, soil analytical data was segmented into several depth intervals. Second, using contouring software, analytical data for each depth interval was contoured to determine lateral extent of contamination. Six different contouring algorithms were used to generate alternative interpretations of the lateral extent of the soil contamination. Finally, geographical information system software was used to produce a three dimensional model in order to present both lateral and vertical extent of the soil contamination and to estimate the volume of impacted soil for each depth interval. The average soil volume from all six contouring methods was used to determine the estimated volume of impacted soil. This method also allowed an estimate of a standard deviation of the waste volume estimate. It was determined that the margin of error for the method was plus or minus 17% of the waste volume, which is within the acceptable construction contingency for cost estimation. USACE collected approximately 190 groundwater samples from 40 monitor wells. It is expected that excavation and disposal of contaminated soil will remove the contaminant source zone and significantly reduce contaminant concentrations in groundwater. To test this assumption, a mass balance evaluation was performed to estimate the amount of dissolved uranium that would remain in the groundwater after completion of soil excavation. As part of this evaluation, average groundwater concentrations for the pre-excavation and post-excavation aquifer plume area were calculated to determine the percentage of plume removed during excavation activities. In addition, the volume of the plume removed during excavation dewatering was estimated. The results of the evaluation show that approximately 98% of the aqueous uranium would be removed during the excavation phase. The USACE expects that residual levels of contamination will remain in groundwater after excavation of soil but at levels well suited for the selection of excavation combined with monitored natural attenuation as a preferred alternative. (authors)

  2. EM Corporate Performance Measures - Site Office Level | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Site Office Level EM Corporate Performance Measures - Site Office Level The Office of Environmental Management assigns specific measures to each site that is tailored to the unique nature and scope of each area's contamination and cleanup work. PDF icon EM Corporate Performance Measures - Site Office Level More Documents & Publications EM Corporate Performance Measures - Complex Wide EMAB Meeting - May 2012 Assistant Secretary Triay's FY 2012 EM Budget Rollout Presentation

  3. Diamond Shaving of Contaminated Concrete Surfaces

    SciTech Connect (OSTI)

    Mullen, Lisa K.

    2008-01-15

    Decommissioning and decontamination of existing facilities presents technological challenges. One major challenge is the removal of surface contamination from concrete floors and walls while eliminating the spread of contamination and volumetric reduction of the waste stream. Numerous methods have been tried with a varying degree of success. Recent technology has made this goal achievable and has been used successfully. This new technology is the Diamond Floor Shaver and Diamond Wall shaver. The Diamond Floor Shaver is a self-propelled, walk behind machine that literally shaves the contaminated concrete surface to specified depths. This is accomplished by using a patented system of 100 dry cutting diamond blades with offset diamond segments that interlock to provide complete shaving of the concrete surface. Grooves are eliminated which allows for a direct frisk reading to analyze results. When attached to an appropriate size vacuum, the dust produced is 100% contained. Dust is collected in drums ready for disposition and disposal. The waste produced in shaving 7,500 square feet at 1/8 inch thickness would fill a single 55 gallon drum. Production is dependent on depth of shaving but averages 100 square feet per hour. The wall shaver uses the same patented diamond drum and blades but is hydraulically driven and is deployed using a robotic arm allowing its operation to be to totally remote. It can reach ceilings as high as 20 feet. Numerous small projects were successfully completed using this technology. Large scale deployment came in 2003. Bluegrass, in conjunction with Bartlett Services, deployed this technology to support decontamination activities for closing of the Rocky Flats nuclear weapons site. Up to six floor shavers and one wall shaver were deployed in buildings B371 and B374. These buildings had up to one half-inch, fixed plutonium and beryllium contamination. Hundred-thousands of square feet of floors and walls were shaved successfully to depths of up to one half inch. Decontamination efforts were so successful the balance of the buildings could be demolished using conventional methods. The shavers helped keep the project on schedule while the vacuum system eliminated the potential for contaminants becoming airborne.

  4. Final Project Report: Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    SciTech Connect (OSTI)

    Jon Chorover, University of Arizona; Peggy O'????Day, University of California, Merced; Karl Mueller, Penn State University; Wooyong Um, Pacific Northwest National Laboratory; Carl Steefel, Lawrence Berkeley National Laboratory

    2012-10-01

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.

  5. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    SciTech Connect (OSTI)

    Riley, R.G.; Zachara, J.M. )

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE's Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  6. Basement Fill Model Evaluation of Maximum Radionuclide Concentrations for Initial Suite of Radionuclides. Zion Station Restoration Project

    SciTech Connect (OSTI)

    Sullivan, Terry

    2014-12-10

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant in order to establish a new water treatment plant. There is some residual radioactive particles from the plant which need to be brought down to levels so an individual who receives water from the new treatment plant does not receive a radioactive dose in excess of 25 mrem/y? as specified in 10 CFR 20 Subpart E. The objectives of this report are: (a) To present a simplified conceptual model for release from the buildings with residual subsurface structures that can be used to provide an upper bound on radionuclide concentrations in the fill material and the water in the interstitial spaces of the fill. (b) Provide maximum water concentrations and the corresponding amount of mass sorbed to the solid fill material that could occur in each building for use by ZSRP in selecting ROCs for detailed dose assessment calculations.

  7. Estimating the maximum potential revenue for grid connected electricity storage : arbitrage and regulation.

    SciTech Connect (OSTI)

    Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

    2012-12-01

    The valuation of an electricity storage device is based on the expected future cash ow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the maximum potential revenue benchmark. We conclude with a sensitivity analysis with respect to key parameters.

  8. Deployment of Smart 3D Subsurface Contaminant Characterization at the Brookhaven Graphite Research Reactor

    SciTech Connect (OSTI)

    Sullivan, T.; Heiser, J.; Kalb, P.; Milian, L.; Newson, C.; Lilimpakas, M.; Daniels, T.

    2002-02-26

    The Brookhaven Graphite Research Reactor (BGRR) Historical Site Assessment (BNL 1999) identified contamination inside the Below Grade Ducts (BGD) resulting from the deposition of fission and activation products from the pile on the inner carbon steel liner during reactor operations. Due to partial flooding of the BGD since shutdown, some of this contamination may have leaked out of the ducts into the surrounding soils. The baseline remediation plan for cleanup of contaminated soils beneath the BGD involves complete removal of the ducts, followed by surveying the underlying and surrounding soils, then removing soil that has been contaminated above cleanup goals. Alternatively, if soil contamination around and beneath the BGD is either non-existent/minimal (below cleanup goals) or is very localized and can be ''surgically removed'' at a reasonable cost, the BGD can be decontaminated and left in place. The focus of this Department of Energy Accelerated Site Technology Deployment (DOE ASTD) project was to determine the extent (location, type, and level) of soil contamination surrounding the BGD and to present this data to the stakeholders as part of the Engineering Evaluation/Cost Analysis (EE/CA) process. A suite of innovative characterization tools was used to complete the characterization of the soil surrounding the BGD in a cost-effective and timely fashion and in a manner acceptable to the stakeholders. The tools consisted of a tracer gas leak detection system that was used to define the gaseous leak paths out of the BGD and guide soil characterization studies, a small-footprint Geoprobe to reach areas surrounding the BGD that were difficult to access, two novel, field-deployed, radiological analysis systems (ISOCS and BetaScint) and a three-dimensional (3D) visualization system to facilitate data analysis/interpretation. All of the technologies performed as well or better than expected and the characterization could not have been completed in the same time or at the same cost without implementing this approach.

  9. Sulfur Polymer Stabilization/Solidification Treatability Study of Mercury Contaminated Soil from the Y-12 Site

    SciTech Connect (OSTI)

    Kalb P.; Milian, L.; Yim, S. P.

    2012-11-30

    As a result of past operations, the Department of Energys (DOE) Oak Ridge Y-12 National Security Complex (Y-12 Plant) has extensive mercury-contamination in building structures, soils, storm sewer sediments, and stream sediments, which are a source of pollution to the local ecosystem. Because of mercurys toxicity and potential impacts on human health and the environment, DOE continues to investigate and implement projects to support the remediation of the Y-12 site.URS and #9122;CH2M Oak Ridge LLC (UCOR) under its prime contract with DOE has cleanup responsibilities on the DOE Oak Ridge Reservation and is investigating potential mercury-contaminated soil treatment technologies through an agreement with Babcock and Wilcox (B and W) Y-12, the Y-12 operating contractor to DOE. As part of its investigations, UCOR has subcontracted with Brookhaven National Laboratory (BNL) to conduct laboratory-scale studies evaluating the applicability of the Sulfur Polymer Stabilization/Solidification (SPSS) process using surrogate and actual mixed waste Y-12 soils containing mercury (Hg) at 135, 2,000, and 10,000 ppm.SPSS uses a thermoplastic sulfur binder to convert Hg to stable mercury sulfide (HgS) and solidifies the chemically stable product in a monolithic solid final waste form to reduce dispersion and permeability. Formulations containing 40 60 dry wt% Y-12 soil were fabricated and samples were prepared in triplicate for Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP) testing by an independent laboratory. Those containing 50 and 60 wt% soil easily met the study criteria for maximum allowable Hg concentrations (47 and 1 ppb, respectively compared with the TCLP limit of 200 ppb Hg). The lowest waste loading of 40 wt% yielded TCLP Hg concentrations slightly higher (240 ppb) than the allowable limit. Since the Y-12 soil tended to form clumps, the improved leaching at higher waste loadings was probably due to reduction in particle size from friction of the soil mixing, which creates more surface area for chemical conversion. This was corroborated by the fact that the same waste loading pre-treated by ball milling to reduce particle size prior to SPSS processing yielded TCLP concentrations almost 30 times lower, and at 8.5 ppb Hg was well below EPA limits. Pre-treatment by ball milling also allowed a reduction in the time required for stabilization, thus potentially reducing total process times by 30%.Additional performance testing was conducted including measurement of compressive strength to confirm mechanical integrity and immersion testing to determine the potential impacts of storage or disposal under saturated conditions. For both surrogate and actual Y-12 treated soils, waste form compressive strengths ranged between 2,300 and 6,500 psi, indicating very strong mechanical integrity (a minimum of greater than 40 times greater than the NRC guidance for low-level radioactive waste). In general, compressive strength increases with waste loading as the soil acts as an aggregate in the sulfur concrete waste forms. No statistically significant loss in strength was recorded for the 30 and 40 wt% surrogate waste samples and only a minor reduction in strength was measured for the 43 wt% waste forms. The 30 wt% Y-12 soil did not show a significant loss in strength but the 50 wt% samples were severely degraded in immersion due to swelling of the clay soil. The impact on Hg leaching, if any, was not determined.

  10. Application of the Principle of Maximum Conformality to Top-Pair Production

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; Wu, Xing-Gang; /SLAC /Chongqing U.

    2013-05-13

    A major contribution to the uncertainty of finite-order perturbative QCD predictions is the perceived ambiguity in setting the renormalization scale {mu}{sub r}. For example, by using the conventional way of setting {mu}{sub r} {element_of} [m{sub t}/2, 2m{sub t}], one obtains the total t{bar t} production cross-section {sigma}{sub t{bar t}} with the uncertainty {Delta}{sigma}{sub t{bar t}}/{sigma}{sub t{bar t}} {approx} (+3%/-4%) at the Tevatron and LHC even for the present NNLO level. The Principle of Maximum Conformality (PMC) eliminates the renormalization scale ambiguity in precision tests of Abelian QED and non-Abelian QCD theories. By using the PMC, all nonconformal {l_brace}{beta}{sub i}{r_brace}-terms in the perturbative expansion series are summed into the running coupling constant, and the resulting scale-fixed predictions are independent of the renormalization scheme. The correct scale-displacement between the arguments of different renormalization schemes is automatically set, and the number of active flavors n{sub f} in the {l_brace}{beta}{sub i}{r_brace}-function is correctly determined. The PMC is consistent with the renormalization group property that a physical result is independent of the renormalization scheme and the choice of the initial renormalization scale {mu}{sub r}{sup init}. The PMC scale {mu}{sub r}{sup PMC} is unambiguous at finite order. Any residual dependence on {mu}{sub r}{sup init} for a finite-order calculation will be highly suppressed since the unknown higher-order {l_brace}{beta}{sub i}{r_brace}-terms will be absorbed into the PMC scales higher-order perturbative terms. We find that such renormalization group invariance can be satisfied to high accuracy for {sigma}{sub t{bar t}} at the NNLO level. In this paper we apply PMC scale-setting to predict the t{bar t} cross-section {sigma}{sub t{bar t}} at the Tevatron and LHC colliders. It is found that {sigma}{sub t{bar t}} remains almost unchanged by varying {mu}{sub r}{sup init} within the region of [m{sub t}/4, 4m{sub t}]. The convergence of the expansion series is greatly improved. For the (q{bar q})-channel, which is dominant at the Tevatron, its NLO PMC scale is much smaller than the top-quark mass in the small x-region, and thus its NLO cross-section is increased by about a factor of two. In the case of the (gg)-channel, which is dominant at the LHC, its NLO PMC scale slightly increases with the subprocess collision energy {radical}s, but it is still smaller than m{sub t} for {radical} {approx}< 1 TeV, and the resulting NLO cross-section is increased by {approx}20%. As a result, a larger {sigma}{sub t{bar t}} is obtained in comparison to the conventional scale-setting method, which agrees well with the present Tevatron and LHC data. More explicitly, by setting m{sub t} = 172.9 {+-} 1.1 GeV, we predict {sigma}{sub Tevatron, 1.96 TeV} = 7.626{sub -0.257}{sup +0.265} pb, {sigma}{sub LHC, 7 TeV} = 171.8{sub -5.6}{sup +5.8} pb and {sigma}{sub LHC, 14 TeV} = 941.3{sub -26.5}{sup +28.4} pb.

  11. A technical approach to groundwater contamination problems

    SciTech Connect (OSTI)

    Burton, J.C.; Leser, C.; Rose, C.M.

    1993-06-01

    Argonne National Laboratory has been performing technical investigations at sites in Nebraska and Kansas that have identified groundwater contamination by carbon tetrachloride. This comprehensive program will ultimately provide the affected communities with safe drinking water. The first step in the program is to evaluate the available data and identify sites that will require an Alternate Water Supply Study (AWSS). The objective of the AWSS is to identify options for providing a safe drinking water supply to all users, in compliance with the Safe Drinking Water Act. The AWSS consists of an engineering and cost evaluation followed by implementation of the selected alternative. For sites with contamination less than a specific concentration, the AWSS is regarded as a satisfactory long term solution, and no further action is taken. For those sites with concentrations above that specific limit, the AWSS implementation is regarded as only a stopgap measure, and the site is selected for additional remedial action. The first step of the remedial action is an Expedited Site Characterization (ESC). The ESC was developed at Argonne to decrease the cost and time of the remedial investigation and feasibility study while producing a high-quality technical investigation. The ESC is designed to characterize the contaminant plume configuration and movement, which requires an understanding of the geological and hydrogeologic controls on groundwater movement as well as the nature and extent of any remaining carbon tetrachloride source in the soils. The ESC program uses a multidisciplinary technical approach that incorporates geology, geochemistry, geohydrology, and geophysics. Field activities include sampling, chemical analysis, and borehole and surface geophysical surveys.

  12. Portable spotter for fluorescent contaminants on surfaces

    DOE Patents [OSTI]

    Schuresko, Daniel D.

    1980-01-01

    A portable fluorescence-based spotter for polynuclear aromatic hydrocarbon contamination on personnel and work area surfaces under ambient lighting conditions is provided. This instrument employs beam modulation and phase sensitive detection for discriminating between fluorescence from organic materials from reflected background light and inorganic fluorescent material. The device uses excitation and emission filters to provide differentiation between classes of aromatic organic compounds. Certain inorganic fluorescent materials, including heavy metal compounds, may also be distinguished from the organic compounds, despite both having similar optical properties.

  13. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    SciTech Connect (OSTI)

    Petersen, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankar; Sikes, Travis; Levacque, Anthony; Aul, Christopher; Peterson, Eric

    2011-09-30

    This progress report documents the first year of the project, from October 1, 2010 through September 30, 2011. Laminar flame speeds and ignition delay times have been measured for hydrogen and various compositions of H2/CO (syngas) at elevated pressures and elevated temperatures. Two constant-volume cylindrical vessels were used to visualize the spherical growth of the flame through the use of a schlieren optical setup to measure the laminar flame speed of the mixture. Hydrogen experiments were performed at initial pressures up to 10 atm and initial temperatures up to 443 K. A syngas composition of 50/50 was chosen to demonstrate the effect of carbon monoxide on H2-O2 chemical kinetics at standard temperature and pressures up to 10 atm. All atmospheric mixtures were diluted with standard air, while all elevated-pressure experiments were diluted with a He:O2 of 7:1 to minimize hydrodynamic instabilities. The laminar flame speed measurements of hydrogen and syngas are compared to available literature data over a wide range of equivalence ratios where good agreement can be seen with several data sets. Additionally, an improved chemical kinetics model is shown for all conditions within the current study. The model and the data presented herein agree well, which demonstrates the continual, improved accuracy of the chemical kinetics model. A high-pressure shock tube was used to measure ignition delay times for several baseline compositions of syngas at three pressures across a wide range of temperatures. The compositions of syngas (H2/CO) presented in this study include 80/20, 50/50, 40/60, 20/80, and 10/90, all of which are compared to previously published ignition delay times from a hydrogen-oxygen mixture to demonstrate the effect of carbon monoxide addition. Generally, an increase in carbon monoxide increases the ignition delay time, but there does seem to be a pressure dependency. At low temperatures and pressures higher than about 12 atm, the ignition delay times appear to be indistinguishable with an increase in carbon monoxide. However, at high temperatures the composition of H2 and CO has a strong influence on ignition delay times. Model agreement is good across the range of the study, particularly at the elevated pressures. Also an increase in carbon monoxide causes the activation energy of the mixture to decrease.

  14. Analysis of sediments and soils for chemical contamination for the design of US Navy homeport facility at East Waterway of Everett Harbor, Washington. Final report. [Macoma inquinata; Mytilus edulis

    SciTech Connect (OSTI)

    Anderson, J.W.; Crecelius, E.A.

    1985-03-01

    Contaminated sediments in the East Waterway of Everett Harbor, Washington, are extremely localized; they consist of a layer of organically-rich, fine sediments overlying a relatively cleaner, more sandy native material. The contaminated layer varies in thickness throughout the waterway from as much as 2 meters to only a few centimeters. Generally, the layer is thicker and more contaminated at the head of the waterway (northern end) and becomes thinner and less contaminated as one proceeds southerly out of the waterway and into Port Gardner. These sediments contain elevated levels of heavy metals and polynuclear aromatic hydrocarbons (PAH) and scattered concentrations of polychlorinated biphenyls (PCB). Approximately 500,000 cubic yards of material exhibit elevated chemical contamination compared to Puget Sound background levels. The contaminated sediments in this waterway require biological testing before decisions can be made regarding the acceptability of unconfined disposal.

  15. Estimating fate and transport of multiple contaminants in the vadose zone using a multi-layered soil column and three-phase equilibrium partitioning model

    SciTech Connect (OSTI)

    Rucker, Gregory G.

    2007-07-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and pollute drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminants. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: decay processes, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use. (authors)

  16. On the Stochastic Maximum Principle in Optimal Control of Degenerate Diffusions with Lipschitz Coefficients

    SciTech Connect (OSTI)

    Bahlali, Khaled Djehiche, Boualem Mezerdi, Brahim

    2007-12-15

    We establish a stochastic maximum principle in optimal control of a general class of degenerate diffusion processes with global Lipschitz coefficients, generalizing the existing results on stochastic control of diffusion processes. We use distributional derivatives of the coefficients and the Bouleau Hirsh flow property, in order to define the adjoint process on an extension of the initial probability space.

  17. Process for measuring low cadmium levels in blood and other biological specimens

    DOE Patents [OSTI]

    Peterson, David P.; Huff, Edmund A.; Bhattacharyya, Maryka H.

    1994-05-03

    A process for measuring low levels of cadmium in blood and other biological specimens is provided without interference from high levels of alkali metal contaminants by forming an aqueous solution and without contamination by environmental cadmium absent the proteins from the specimen, selectively removing cadmium from the aqueous solution on an anion exchange resin, thereby removing the alkali metal contaminants, resolubilizing cadmium from the resin to form a second solution and analyzing the second solution for cadmium, the process being carried out in a cadmium-free environment.

  18. Process for measuring low cadmium levels in blood and other biological specimens

    DOE Patents [OSTI]

    Peterson, David P. (Orland Park, IL); Huff, Edmund A. (Lemont, IL); Bhattacharyya, Maryka H. (Naperville, IL)

    1994-01-01

    A process for measuring low levels of cadmium in blood and other biological specimens is provided without interference from high levels of alkali metal contaminants by forming an aqueous solution and without contamination by environmental cadmium absent the proteins from the specimen, selectively removing cadmium from the aqueous solution on an anion exchange resin, thereby removing the alkali metal contaminants, resolubilizing cadmium from the resin to form a second solution and analyzing the second solution for cadmium, the process being carried out in a cadmium-free environment.

  19. Final work plan : phase II investigation of potential contamination at the former CCC/USDA grain storage facility in Savannah, Missouri.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2010-08-16

    From approximately 1949 until 1970, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility on federally owned property approximately 0.25 mi northwest of Savannah, Missouri (Figure 1.1). During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities. In November 1998, carbon tetrachloride was detected in a private well (Morgan) roughly 50 ft south of the former CCC/USDA facility, as a result of statewide screening of private wells near former CCC/USDA facilities, conducted in Missouri by the U.S. Environmental Protection Agency (EPA 1999). The 1998 and subsequent investigations by the EPA and the Missouri Department of Natural Resources (MoDNR) confirmed the presence of carbon tetrachloride in the Morgan well, as well as in a second well (on property currently occupied by the Missouri Department of Transportation [MoDOT]) described as being approximately 400 ft east of the former CCC/USDA facility. The identified concentrations in these two wells were above the EPA maximum contaminant level (MCL) and the Missouri risk-based corrective action default target level (MRBCA DTL) values of 5.0 {micro}g/L for carbon tetrachloride in water used for domestic purposes (EPA 1999; MoDNR 2000a,b, 2006). Because the observed contamination in the Morgan and MoDOT wells might be linked to the past use of carbon tetrachloride-based fumigants at its former grain storage facility, the CCC/USDA is conducting an investigation to (1) characterize the source(s), extent, and factors controlling the subsurface distribution and movement of carbon tetrachloride at Savannah and (2) evaluate the potential risks to human health, public welfare, and the environment posed by the contamination. This work is being performed in accord with the Intergovernmental Agreement established between the Farm Service Agency of the USDA and the MoDNR, to address carbon tetrachloride contamination potentially associated with a number of former CCC/USDA grain storage facilities in Missouri. The site characterization at Savannah is being conducted on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. The investigation at Savannah is being conducted in phases. This approach is being used by the CCC/USDA and Argonne, with the approval of the MoDNR, so that information obtained and interpretations developed during each incremental stage of the investigation can be used most effectively to guide subsequent phases of the program. Phase I of the Savannah program was conducted in October-November 2007 and January 2008 (Argonne 2007a, 2008). This site-specific Work Plan provides a brief summary of the Phase I findings and the results of groundwater level monitoring that has been ongoing since completion of the Phase I study and also outlines technical objectives, investigation tasks, and investigation methods for Phase II of the site characterization at Savannah.

  20. Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543

    SciTech Connect (OSTI)

    Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin; Wellman, Dawn; Deeb, Rula; Hawley, Elisabeth

    2012-07-01

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites. (authors)

  1. A Review of Removable Surface Contamination on Radioactive Materials Transportation Containers

    SciTech Connect (OSTI)

    Kennedy, Jr, W. E.; Watson, E. C.; Murphy, D. W.; Harrer, B. J.; Harty, R.; Aldrich, J. M.

    1981-05-01

    This report contains the results of a study sponsored by the U.S. Nuclear Regulatory Commission (NRC) of removable surface contamination on radioactive materials transportation containers. The purpose of the study is to provide information to the NRC during their review of existing regulations. Data was obtained from both industry and literature on three major topics: 1) radiation doses, 2) economic costs, and 3) contamination frequencies. Containers for four categories of radioactive materials are considered including radiopharmaceuticals, industrial sources, nuclear fuel cycle materials, and low-level radioactive waste. Assumptions made in this study use current information to obtain realistic yet conservative estimates of radiation dose and economic costs. Collective and individual radiation doses are presented for each container category on a per container basis. Total doses, to workers and the public, are also presented for spent fuel cask and low-level waste drum decontamination. Estimates of the additional economic costs incurred by lowering current limits by factors of 10 and 100 are presented. Current contamination levels for each category of container are estimated from the data collected. The information contained in this report is designed to be useful to the NRC in preparing their recommendations for new regulations.

  2. In-situ remediation system and method for contaminated groundwater

    DOE Patents [OSTI]

    Corey, John C. (Aiken, SC); Looney, Brian B. (Aiken, SC); Kaback, Dawn S. (Aiken, SC)

    1989-01-01

    A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like.

  3. In-situ remediation system and method for contaminated groundwater

    DOE Patents [OSTI]

    Corey, J.C.; Looney, B.B.; Kaback, D.S.

    1989-05-23

    A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like. 3 figs.

  4. Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    SciTech Connect (OSTI)

    Chorover, Jon; Perdrial, Nico; Mueller, Karl; Strepka, Caleb; O???¢????????Day, Peggy; Rivera, Nelson; Um, Wooyong; Chang, Hyun-Shik; Steefel, Carl; Thompson, Aaron

    2012-11-05

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, partial pressure of carbon dioxide, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. In this final report, we provide detailed descriptions of our results from this three-year study, completed in 2012 following a one-year no cost extension.

  5. The Oak Ridge Field Research Center : Advancing Scientific Understanding of the Transportation, Fate, and Remediation of Subsurface Contamination Sources and Plumes

    SciTech Connect (OSTI)

    David Watson

    2005-04-18

    Historical research, development, and testing of nuclear materials across this country resulted in subsurface contamination that has been identified at over 7,000 discrete sites across the U.S. Department of Energy (DOE) complex. With the end of the Cold War threat, DOE has shifted its emphasis to remediation, decommissioning, and decontamination of the immense volumes of contaminated groundwater, sediments, and structures at its sites. DOE currently is responsible for remediating 1.7 trillion gallons of contaminated groundwater, an amount equal to approximately four times the daily U.S. water consumption, and 40 million cubic meters of contaminated soil, enough to fill approximately 17 professional sports stadiums.* DOE also sponsors research intended to improve or develop remediation technologies, especially for difficult, currently intractable contaminants or conditions. The Oak Ridge FRC is representative of some difficult sites, contaminants, and conditions. Buried wastes in contact with a shallow water table have created huge reservoirs of contamination. Rainfall patterns affect the water table level seasonally and over time. Further, the hydrogeology of the area, with its fractures and karst geology, affects the movement of contaminant plumes. Plumes have migrated long distances and to surface discharge points through ill-defined preferred flowpaths created by the fractures and karst conditions. From the standpoint of technical effectiveness, remediation options are limited, especially for contaminated groundwater. Moreover, current remediation practices for the source areas, such as capping, can affect coupled processes that, in turn, may affect the movement of subsurface contaminants in unknown ways. Research conducted at the FRC or with FRC samples therefore promotes understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of extant remediation options, and the development of improved remediation strategies.

  6. System for the removal of contaminant soil-gas vapors

    DOE Patents [OSTI]

    Weidner, Jerry R. (Iona, ID); Downs, Wayne C. (Sugar City, ID); Kaser, Timothy G. (Ammon, ID); Hall, H. James (Idaho Falls, ID)

    1997-01-01

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.

  7. System for the removal of contaminant soil-gas vapors

    DOE Patents [OSTI]

    Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

    1997-12-16

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

  8. DOE Issues Request for Information on Hydrogen Contamination Detectors |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen Contamination Detectors DOE Issues Request for Information on Hydrogen Contamination Detectors April 22, 2014 - 2:00pm Addthis The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office has issued a request for information (RFI) seeking feedback from interested stakeholders on existing and potential hydrogen contamination detectors (HCDs) and related factors such as performance characteristics, system integration requirements, costs, deployment

  9. Detection of contamination of municipal water distribution systems

    DOE Patents [OSTI]

    Cooper, John F.

    2012-01-17

    A system for the detection of contaminates of a fluid in a conduit. The conduit is part of a fluid distribution system. A chemical or biological sensor array is connected to the conduit. The sensor array produces an acoustic signal burst in the fluid upon detection of contaminates in the fluid. A supervisory control system connected to the fluid and operatively connected to the fluid distribution system signals the fluid distribution system upon detection of contaminates in the fluid.

  10. Disposal of low-level and low-level mixed waste: audit report

    SciTech Connect (OSTI)

    1998-09-03

    The Department of Energy (Department) is faced with the legacy of thousands of contaminated areas and buildings and large volumes of `backlog` waste requiring disposal. Waste management and environmental restoration activities have become central to the Department`s mission. One of the Department`s priorities is to clean up former nuclear weapons sites and find more effective and timely methods for disposing of nuclear waste. This audit focused on determining if the Department was disposing of low-level and low-level mixed waste in the most cost-effective manner.

  11. Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector

    SciTech Connect (OSTI)

    Letschert, Virginie; Desroches, Louis-Benoit; McNeil, Michael; Saheb, Yamina

    2010-05-03

    The US Department of Energy (US DOE) has placed lighting and appliance standards at a very high priority of the U.S. energy policy. However, the maximum energy savings and CO2 emissions reduction achievable via minimum efficiency performance standards (MEPS) has not yet been fully characterized. The Bottom Up Energy Analysis System (BUENAS), first developed in 2007, is a global, generic, and modular tool designed to provide policy makers with estimates of potential impacts resulting from MEPS for a variety of products, at the international and/or regional level. Using the BUENAS framework, we estimated potential national energy savings and CO2 emissions mitigation in the US residential sector that would result from the most aggressive policy foreseeable: standards effective in 2014 set at the current maximum technology (Max Tech) available on the market. This represents the most likely characterization of what can be maximally achieved through MEPS in the US. The authors rely on the latest Technical Support Documents and Analytical Tools published by the U.S. Department of Energy as a source to determine appliance stock turnover and projected efficiency scenarios of what would occur in the absence of policy. In our analysis, national impacts are determined for the following end uses: lighting, television, refrigerator-freezers, central air conditioning, room air conditioning, residential furnaces, and water heating. The analyzed end uses cover approximately 65percent of site energy consumption in the residential sector (50percent of the electricity consumption and 80percent of the natural gas and LPG consumption). This paper uses this BUENAS methodology to calculate that energy savings from Max Tech for the U.S. residential sector products covered in this paper will reach an 18percent reduction in electricity demand compared to the base case and 11percent in Natural Gas and LPG consumption by 2030 The methodology results in reductions in CO2 emissions of a similar magnitude.

  12. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOE Patents [OSTI]

    Donaldson, Terrence L. (Lenior City, TN); Wilson, James H. (Oak Ridge, TN)

    1993-01-01

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing.

  13. Feed gas contaminant removal in ion transport membrane systems

    DOE Patents [OSTI]

    Underwood, Richard Paul (Allentown, PA); Makitka, III, Alexander (Hatfield, PA); Carolan, Michael Francis (Allentown, PA)

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  14. Accident Investigation of the August 21, 2012, Contamination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security, LLC. The Operating Contractor quickly determined that the contamination had spread offsite, and response teams were immediately brought in. PDF icon Accident...

  15. H2FIRST Hydrogen Contaminant Detector Task: Requirements Document...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This H2FIRST project report, published in April 2015, describes the current commercial state of the art in contamination detection and identifies the technical requirements for ...

  16. Investigation of the November 8, 2011, Plutonium Contamination...

    Office of Environmental Management (EM)

    the Zero Power Physics Reactor Facility, at the Idaho National Laboratory Investigation of the November 8, 2011, Plutonium Contamination in the Zero Power Physics Reactor ...

  17. 01-07-1999 - Contamination Spread Outside of Radiation Control...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 - Contamination Spread Outside of Radiation Control Areas by Fruit Flies Document Number: NA Effective Date: 011999 File (public): PDF icon 01-07-1999red...

  18. Oregon Air Contaminant Discharge Webpage | Open Energy Information

    Open Energy Info (EERE)

    library Web Site: Oregon Air Contaminant Discharge Webpage Abstract Provides overview of air quality discharge permit process. Author State of Oregon Published State of Oregon,...

  19. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOE Patents [OSTI]

    Donaldson, T.L.; Wilson, J.H.

    1993-09-21

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing. 2 figures.

  20. Handling and Packaging a Potentially Radiologically Contaminated Patient

    Broader source: Energy.gov [DOE]

    The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients.

  1. Scale dependence of sorption coefficients for contaminant transport...

    Office of Scientific and Technical Information (OSTI)

    Scale dependence of sorption coefficients for contaminant transport in saturated fractured rock Citation Details In-Document Search Title: Scale dependence of sorption coefficients...

  2. Hanford Deep Dig Removes Contaminated Soil | Department of Energy

    Office of Environmental Management (EM)

    Deep Dig Removes Contaminated Soil Hanford Deep Dig Removes Contaminated Soil March 11, 2013 - 12:00pm Addthis An aerial view of Hanford’s D Area shows the D Reactor (lower left) and DR Reactor. Workers are digging 85 feet to groundwater at two sites there to remove chromium contamination. An aerial view of Hanford's D Area shows the D Reactor (lower left) and DR Reactor. Workers are digging 85 feet to groundwater at two sites there to remove chromium contamination. Workers remove soil

  3. Three dimensional winds: A maximum cross-correlation application to elastic lidar data

    SciTech Connect (OSTI)

    Buttler, W.T.

    1996-05-01

    Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic backscatter lidar (light detection and ranging) data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three-dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain-following winds in the Rio Grande valley.

  4. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    SciTech Connect (OSTI)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guiding structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.

  5. Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle

    SciTech Connect (OSTI)

    Barletti, Luigi

    2014-08-15

    The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.

  6. RESULTS FOR THE THIRD QUARTER 2007 TANK 50H WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    SciTech Connect (OSTI)

    Zeigler, K; Ned Bibler, N

    2008-07-11

    The Saltstone Facility is designed and permitted to immobilize and dispose of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site. Low activity wastewater streams from the Effluent Treatment Project (ETP), H-Canyon, and the high level waste (HLW) storage tanks, are stored as a mixture in Tank 50H until it can be pumped to the Saltstone Facility for treatment and disposal. Specific waste acceptance criteria (WAC) must be met for the transfer of low-level aqueous waste from Tank 50H to the Saltstone Facility. Low level waste which meets the WAC can be transferred, stored and treated in the Saltstone Production Facility (SPF) for subsequent disposal as saltstone in the Saltstone Disposal Facility (SDF). Waste Solidification Engineering (WSE) has requested through a Technical Task Request (TTR) that the Savannah River National Laboratory (SRNL) measure the concentrations of chemical and radionuclide contaminants listed in the currently approved Saltstone Waste Acceptance Criteria (WAC). A Task Technical and Quality Assurance Plan and Analytical Study Plan has been written for this request. WAC determinations are needed on a quarterly basis for chemical contaminants and every first and third quarter for radioactive contaminants. This memorandum presents the results for the chemical and radionuclide contaminants in the third quarter, from the samples taken from Tank 50 in September, 2007.

  7. Normalized Tritium Quantification Approach (NoTQA) a Method for Quantifying Tritium Contaminated Trash and Debris at LLNL

    SciTech Connect (OSTI)

    Dominick, J L; Rasmussen, C L

    2008-07-23

    Several facilities and many projects at LLNL work exclusively with tritium. These operations have the potential to generate large quantities of Low-Level Radioactive Waste (LLW) with the same or similar radiological characteristics. A standardized documented approach to characterizing these waste materials for disposal as radioactive waste will enhance the ability of the Laboratory to manage them in an efficient and timely manner while ensuring compliance with all applicable regulatory requirements. This standardized characterization approach couples documented process knowledge with analytical verification and is very conservative, overestimating the radioactivity concentration of the waste. The characterization approach documented here is the Normalized Tritium Quantification Approach (NoTQA). This document will serve as a Technical Basis Document which can be referenced in radioactive waste characterization documentation packages such as the Information Gathering Document. In general, radiological characterization of waste consists of both developing an isotopic breakdown (distribution) of radionuclides contaminating the waste and using an appropriate method to quantify the radionuclides in the waste. Characterization approaches require varying degrees of rigor depending upon the radionuclides contaminating the waste and the concentration of the radionuclide contaminants as related to regulatory thresholds. Generally, as activity levels in the waste approach a regulatory or disposal facility threshold the degree of required precision and accuracy, and therefore the level of rigor, increases. In the case of tritium, thresholds of concern for control, contamination, transportation, and waste acceptance are relatively high. Due to the benign nature of tritium and the resulting higher regulatory thresholds, this less rigorous yet conservative characterization approach is appropriate. The scope of this document is to define an appropriate and acceptable characterization method for quantification of tritium contaminated trash and debris. The characterization technique is applicable to surface and subsurface tritium contaminated materials with surfaces amenable to swiping. Some limitations of this characterization technique are identified.

  8. Summary - Mitigation and Remediation of Mercury Contamination...

    Office of Environmental Management (EM)

    and surface water Hg remediation strategy for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve cost and technical improvements andor to...

  9. Explosive Contamination from Substrate Surfaces: Differences and Similarities in Contamination Techniques using RDX and C-4

    SciTech Connect (OSTI)

    C.J. Miller; T.S. Yoder

    2010-06-01

    The amount of time that an explosive is present on the surface of a material is dependent upon the original amount of explosive on the surface, temperature, humidity, rain, etc. This laboratory study focused on looking at similarities and differences in three different surface contamination techniques that are used when performance testing explosive trace detection equipment in an attempt to determine how effective the techniques are at replicating actual field samples. The three techniques used were dry transfer deposition of solutions using the Transportation Security Laboratory (TSL) patented dry transfer techniques (US patent 6470730), direct deposition of explosive standards, and fingerprinting of actual explosives. Explosives were deposited on the surface of one of five substrates using one of the three different deposition techniques. The process was repeated for each surface type using each contamination technique. The surface types used were: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, and metal obtained from a car hood at a junk yard. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal, oil and dirt. The substrates were photographed using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera to determine the difference in the crystalline structure and surface contamination in an attempt to determine differences and similarities associated with current contamination techniques.

  10. Method of removing arsenic and other anionic contaminants from contaminated water using enhanced coagulation

    DOE Patents [OSTI]

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.; Khandaker, Nadim R.

    2006-11-21

    An improved water decontamination process comprising contacting water containing anionic contaminants with an enhanced coagulant to form an enhanced floc, which more efficiently binds anionic species (e.g., arsenate, arsenite, chromate, fluoride, selenate, and borate, and combinations thereof) predominantly through the formation of surface complexes. The enhanced coagulant comprises a trivalent metal cation coagulant (e.g., ferric chloride or aluminum sulfate) mixed with a divalent metal cation modifier (e.g., copper sulfate or zinc sulfate).

  11. RESULTS FOR THE THIRD QUARTER 2011 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    SciTech Connect (OSTI)

    Reigel, M.

    2011-10-20

    The Saltstone Facility is designed and permitted to immobilize and dispose of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site. Low-level waste (LLW) streams from the Effluent Treatment Project (ETP), H-Canyon, and the decontaminated salt solution product from the Actinide Removal Process/Modular Caustic Side Solvent Extraction (CSSX) Unit (ARP/MCU) process are stored in Tank 50 until the LLW can be transferred to the Saltstone Facility for treatment and disposal. The LLW must meet the specified waste acceptance criteria (WAC) before it is processed into saltstone. The specific chemical and radionuclide contaminants and their respective WAC limits are in the current Saltstone WAC. Waste Solidification Engineering (WSE) requested that Savannah River National Laboratory (SRNL) perform quarterly analysis on saltstone samples. The concentrations of chemical and radionuclide contaminants are measured to ensure the saltstone produced during each quarter is in compliance with the current WAC. This report documents the concentrations of chemical and radionuclide contaminants for the 2011 Third Quarter samples collected from Tank 50 on July 7, 2011 and discusses those results in further detail than the previously issued results report.

  12. RESULTS FOR THE FOURTH QUARTER 2011 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    SciTech Connect (OSTI)

    Bannochie, C.

    2012-01-31

    The Saltstone Facility is designed and permitted to immobilize and dispose of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site. Low-level waste (LLW) streams from the Effluent Treatment Project (ETP), H-Canyon, and the decontaminated salt solution product from the Actinide Removal Process/Modular Caustic Side Solvent Extraction (CSSX) Unit (ARP/MCU) process are stored in Tank 50 until the LLW can be transferred to the Saltstone Facility for treatment and disposal. The LLW must meet the specified waste acceptance criteria (WAC) before it is processed into saltstone. The specific chemical and radionuclide contaminants and their respective WAC limits are in the current Saltstone WAC. Waste Solidification Engineering (WSE) requested that Savannah River National Laboratory (SRNL) perform quarterly analysis on saltstone samples. The concentrations of chemical and radionuclide contaminants are measured to ensure the saltstone produced during each quarter is in compliance with the current WAC. This report documents the concentrations of chemical and radionuclide contaminants for the 2011 Fourth Quarter samples collected from Tank 50 on October 12, 2011 and discusses those results in further detail than the previously issued results report.

  13. Method for treatment of soils contaminated with organic pollutants

    DOE Patents [OSTI]

    Wickramanayake, Godage B. (Cranbury, NJ)

    1993-01-01

    A method for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil to decompose the organic compounds. The soil may be treated in situ or may be removed for treatment and refilled.

  14. Remediation of arsenic-contaminated soils and groundwaters

    DOE Patents [OSTI]

    Peters, R.W.; Frank, J.R.; Feng, X.

    1998-06-23

    An in situ method is described for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal. 8 figs.

  15. Contamination effects on fixed-bias Langmuir probes

    SciTech Connect (OSTI)

    Steigies, C. T.; Barjatya, A.

    2012-11-15

    Langmuir probes are standard instruments for plasma density measurements on many sounding rockets. These probes can be operated in swept-bias as well as in fixed-bias modes. In swept-bias Langmuir probes, contamination effects are frequently visible as a hysteresis between consecutive up and down voltage ramps. This hysteresis, if not corrected, leads to poorly determined plasma densities and temperatures. With a properly chosen sweep function, the contamination parameters can be determined from the measurements and correct plasma parameters can then be determined. In this paper, we study the contamination effects on fixed-bias Langmuir probes, where no hysteresis type effect is seen in the data. Even though the contamination is not evident from the measurements, it does affect the plasma density fluctuation spectrum as measured by the fixed-bias Langmuir probe. We model the contamination as a simple resistor-capacitor circuit between the probe surface and the plasma. We find that measurements of small scale plasma fluctuations (meter to sub-meter scale) along a rocket trajectory are not affected, but the measured amplitude of large scale plasma density variation (tens of meters or larger) is attenuated. From the model calculations, we determine amplitude and cross-over frequency of the contamination effect on fixed-bias probes for different contamination parameters. The model results also show that a fixed bias probe operating in the ion-saturation region is affected less by contamination as compared to a fixed bias probe operating in the electron saturation region.

  16. Remediation of arsenic-contaminated soils and groundwaters

    DOE Patents [OSTI]

    Peters, Robert W. (Naperville, IL); Frank, James R. (Glen Ellyn, IL); Feng, Xiandong (West Richland, WA)

    1998-01-01

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  17. Method and Compositions for Treatment of Subsurface Contaminants - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Industrial Technologies Industrial Technologies Find More Like This Return to Search Method and Compositions for Treatment of Subsurface Contaminants Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryThis invention describes compositions and methods for oxidizing subsurface contaminants. Compositions include compatible combinations of surfactants, cosolvents and chemical oxidants. DescriptionCompositions have been identified that

  18. Method for detecting organic contaminants in water supplies

    DOE Patents [OSTI]

    Dooley, Kirk J. (Shelley, ID); Barrie, Scott L. (Idaho Falls, ID); Buttner, William J. (White Bear Lake, MN)

    1999-01-01

    A system for detecting organic contaminants in water supplies. A sampling unit is employed which includes a housing having at least one opening therein and a tubular member positioned within the housing having a central passageway surrounded by a side wall. The side wall is made of a composition designed to absorb the contaminants. In use, the sampling unit is immersed in a water supply. The water supply contacts the tubular member through the opening in the housing, with any contaminants being absorbed into the side wall of the tubular member. A carrier gas is then passed through the central passageway of the tubular member. The contaminants will diffuse out of the side wall and into the central passageway where they will subsequently combine with the carrier gas, thereby yielding a gaseous product. The gaseous product is then analyzed to determine the amount and type of contaminants therein.

  19. Methods for removing contaminant matter from a porous material

    DOE Patents [OSTI]

    Fox, Robert V. (Idaho Falls, ID) [Idaho Falls, ID; Avci, Recep (Bozeman, MT) [Bozeman, MT; Groenewold, Gary S. (Idaho Falls, ID) [Idaho Falls, ID

    2010-11-16

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  20. Method for detecting organic contaminants in water supplies

    DOE Patents [OSTI]

    Dooley, K.J.; Barrie, S.L.; Buttner, W.J.

    1999-08-24

    A system is described for detecting organic contaminants in water supplies. A sampling unit is employed which includes a housing having at least one opening therein and a tubular member positioned within the housing having a central passageway surrounded by a side wall. The side wall is made of a composition designed to absorb the contaminants. In use, the sampling unit is immersed in a water supply. The water supply contacts the tubular member through the opening in the housing, with any contaminants being absorbed into the side wall of the tubular member. A carrier gas is then passed through the central passageway of the tubular member. The contaminants will diffuse out of the side wall and into the central passageway where they will subsequently combine with the carrier gas, thereby yielding a gaseous product. The gaseous product is then analyzed to determine the amount and type of contaminants therein. 5 figs.

  1. Strategy for Characterizing Transuranics and Technetium Contamination in Depleted UF{sub 6} Cylinders

    SciTech Connect (OSTI)

    Hightower, J.R.

    2000-10-26

    This report summarizes results of a study performed to develop a strategy for characterization of low levels of radioactive contaminants [plutonium (Pu), neptunium (Np), americium (Am), and technetium (Tc)] in depleted uranium hexafluoride (DUF{sub 6}) cylinders at the gaseous diffusion plants in Oak Ridge, Tennessee; Paducah, Kentucky; and Piketon, Ohio. In these gaseous diffusion plants, this radioactivity came from enriching recycled uranium (the so-called ''reactor returns'') from Savannah River, South Carolina, and Hanford, Washington, reactors. Results of this study will be used to support a request for proposals to design, build, and operate facilities to convert the DUF{sub 6} to more chemically stable forms. These facilities would need to be designed to handle any transuranic contaminants that might be present in order to (1) protect the workers' health and safety and (2) protect the public and the environment.

  2. Exposure assessment: Serum levels of TCDD in Seveso, Italy

    SciTech Connect (OSTI)

    Needham, L.L.; Patterson, D.G. Jr.; Smith, S.J.; Sampson, E.J.; Gerthoux, P.M.; Brambilla, P.; Mocarelli, P.

    1999-02-01

    Accurate exposure assessment is an important step in both risk assessment and epidemiologic studies involving potential human exposure to environmental toxicants. Various methods have been used to assess human exposure. These methods include models based on one`s temporal and spatial nearness to the source, environmental levels of toxicant, and biological measures. The authors believe that the latter measure is the ``gold standard.`` In this article they present the serum 2,3,7,8-tetrachlorodibenzo-p-dioxin levels in residents of the contaminated zones in Seveso, Italy, in 1976, and delineate these data by age and gender. Some of these serum levels are among the highest ever reported and thus this population serves as a benchmark for comparison of human exposure and potential adverse health effects. One such potential population is that population consuming potentially contaminated fish.

  3. Free kick instead of cross-validation in maximum-likelihood refinement of macromolecular crystal structures

    SciTech Connect (OSTI)

    Pranikar, Jure [Institute Joef Stefan, Jamova 39, 1000 Ljubljana (Slovenia); University of Primorska, (Slovenia); Turk, Duan, E-mail: dusan.turk@ijs.si [Institute Joef Stefan, Jamova 39, 1000 Ljubljana (Slovenia); Center of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, (Slovenia)

    2014-12-01

    The maximum-likelihood free-kick target, which calculates model error estimates from the work set and a randomly displaced model, proved superior in the accuracy and consistency of refinement of crystal structures compared with the maximum-likelihood cross-validation target, which calculates error estimates from the test set and the unperturbed model. The refinement of a molecular model is a computational procedure by which the atomic model is fitted to the diffraction data. The commonly used target in the refinement of macromolecular structures is the maximum-likelihood (ML) function, which relies on the assessment of model errors. The current ML functions rely on cross-validation. They utilize phase-error estimates that are calculated from a small fraction of diffraction data, called the test set, that are not used to fit the model. An approach has been developed that uses the work set to calculate the phase-error estimates in the ML refinement from simulating the model errors via the random displacement of atomic coordinates. It is called ML free-kick refinement as it uses the ML formulation of the target function and is based on the idea of freeing the model from the model bias imposed by the chemical energy restraints used in refinement. This approach for the calculation of error estimates is superior to the cross-validation approach: it reduces the phase error and increases the accuracy of molecular models, is more robust, provides clearer maps and may use a smaller portion of data for the test set for the calculation of R{sub free} or may leave it out completely.

  4. Bioventing approach to remediate a gasoline contaminated subsurface. Book chapter

    SciTech Connect (OSTI)

    Kampbell, D.H.; Wilson, J.T.; Griffin, C.J.

    1992-01-01

    Bioventing is a subsurface process using an air stream to enhance biodegradation of oily contaminants. Two pilot-scale bioventing systems were installed at a field site. Process operations began in October 1990. The field site is located at an air station. A spill in 1969 of about 100,000 kilograms aviation gasoline was caused by a broken underground transfer line. A major portion of the spilled product still persists as an oily-phase residue in a 80x360 meter plume. The subsurface is a uniform beach sand with the ground water level near five meters. Prior to startup of the venting systems, a grass cover was established and a nutrient solution was dispersed throughout the unsaturated subsurface. Subsurface air flow patterns are being determined with a tracer gas of sulfur hexafloride. Soil gas, core material, and underground water are being monitored to determine the extent of remediation. Objectives of the study are to demonstrate that surface emissions of gasoline are minimal, oily residue will be reduced to <100 mg fuel carbon/Kg core material, and the process will be applicable to full-scale remediation. Flow rate is based on a calculated residence time of 24 hours. Surface emission of fuel hydrocarbons have not exceeded 1 micrograms/liter soil gas.

  5. Alaska Maximum Number of Active Crews Engaged in Three-Dimensional Seismic

    Gasoline and Diesel Fuel Update (EIA)

    Surveying (Number of Elements) Three-Dimensional Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Three-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 1 2 2 2 1 1 0 0 0 0 2001 0 0 0 0 1 1 0 0 0 0 0 0 2002 1 1 1 1 1 1 1 1 1 1 1 0 2003 0 0 1 1 1 1 1 1

  6. A New Maximum-Likelihood Change Estimator for Two-Pass SAR Coherent Change Detection.

    SciTech Connect (OSTI)

    Wahl, Daniel E.; Yocky, David A.; Jakowatz, Charles V,

    2014-09-01

    In this paper, we derive a new optimal change metric to be used in synthetic aperture RADAR (SAR) coherent change detection (CCD). Previous CCD methods tend to produce false alarm states (showing change when there is none) in areas of the image that have a low clutter-to-noise power ratio (CNR). The new estimator does not suffer from this shortcoming. It is a surprisingly simple expression, easy to implement, and is optimal in the maximum-likelihood (ML) sense. The estimator produces very impressive results on the CCD collects that we have tested.

  7. An investigation of the effect of diffusivity on the transport and spread of contaminants in groundwater systems

    SciTech Connect (OSTI)

    Nutter, D.; Stewart, M.; Muyshondt, A.

    1997-07-01

    Contaminant transport in groundwater is modeled using an advection diffusion equation. The diffusion component of the model is due to molecular diffusion and advection through the flow passages in the soil matrix which are smaller than the resolvable length scales. In addition to the physical diffusion, the advection/diffusion equation requires a certain amount of diffusion for the governing equations to be stable. If there is insufficient physical diffusion the cell Peclet number is less than 2 and oscillations in the solution occur. Balance numerical diffusion must be supplied for a stable solution. Numerical simulations of contaminant transport in groundwater flows must therefore include accurate models of as many of three forms of diffusion. One represents the subscale fluid path diffusion (either tensor, vector, or scalar in form), another is the scalar molecular diffusion (scalar), and the numerical stabilizing diffusion (again either tensor, vector, or scalar in form). The final result must reasonably model contaminant spread and transport for the predictions to be useful. In the literature, measurements of contaminant diffusivity are usually made using one dimensional experiments. Because of the dependence on higher level models to capture all of the physics in contaminant transport, it is to validate these models using realistic multidimensional geometries with comparisons to experimental data. Here, the effects of different diffusion models are examined and compared for two important cases. The first is a contaminant plume originating at the surface and extracted at a drain. The second case is an isolated region of contamination which is advected and diffused towards the drain. In the second case, qualitative comparisons can be made with limited visualization data. These results will eventually be used with a comprehensive experimental program to validate models of diffusion transport.

  8. Enforcement Guidance Supplement 00-01: Enforcement Position Relative to the Discovery/Control of Legacy Contamination

    Broader source: Energy.gov [DOE]

    Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Enforcement and Investigation (EH-Enforcement) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. On November 24, 1999, I issued a memorandum providing interim clarification on the EH-Enforcement position on legacy radioactive contamination. That memorandum was issued in response to questions I had received regarding 10 CFR 835 (Occupational Radiation Protection) applicability and potential enforcement related to the discovery of legacy contamination in unposted and/or uncontrolled areas. This Enforcement Guidance Supplement (EGS) provides more detail related to specific 10 CFR 835 requirements and applicability of those requirements. This EGS also discusses EH-Enforcement’s planned level of enforcement discretion associated with legacy contamination incidents, as well as the limitations to the application of that discretion.

  9. Enforcement Guidance Supplement 00-01: Enforcement Position Relative to the Discovery/Control of Legacy Contamination

    Broader source: Energy.gov [DOE]

    Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Enforcement and Investigation (EH-Enforcement) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. On November 24, 1999, I issued a memorandum providing interim clarification on the EH-Enforcement position on legacy radioactive contamination. That memorandum was issued in response to questions I had received regarding 10 CFR 835 (Occupational Radiation Protection) applicability and potential enforcement related to the discovery of legacy contamination in unposted and/or uncontrolled areas. This Enforcement Guidance Supplement (EGS) provides more detail related to specific 10 CFR 835 requirements and applicability of those requirements. This EGS also discusses EH-Enforcement's planned level of enforcement discretion associated with legacy contamination incidents, as well as the limitations to the application of that discretion.

  10. Transuranic contaminated waste functional definition and implementation

    SciTech Connect (OSTI)

    Kniazewycz, B.G.

    1980-03-01

    The purpose of this report is to examine the problem(s) of TRU waste classification and to document the development of an easy-to-apply standard(s) to determine whether or not this waste package should be emplaced in a geologic repository for final disposition. Transuranic wastes are especially significant because they have long half-lives and some are rather radiotoxic. Transuranic radionuclides are primarily produced by single or multiple neutron capture by U-238 in fuel elements during the operation of a nuclear reactor. Reprocessing of spent fuel elements attempts to remove plutonium, but since the separation is not complete, the resulting high-activity liquids still contain some plutonium as well as other transuranics. Likewise, transuranic contamination of low-activity wastes also occurs when the transuranic materials are handled or processed, which is primarily at federal facilities involved in R and D and nuclear weapons production. Transuranics are persistent in the environment and, as a general rule, are strongly retained by soils. They are not easily transported through most food chains, although some reconcentration does take place in the aquatic food chain. They pose no special biological hazard to humans upon ingestion because they are weakly absorbed from the gastrointestional tract. A greater hazard results from inhalation since they behave like normal dust and fractionate accordingly.

  11. Potassium ferrate treatment of RFETS` contaminated groundwater

    SciTech Connect (OSTI)

    1995-01-01

    The potassium ferrate treatment study of Rocky Flats Environmental Technology Site (RFETS) groundwater was performed under the Sitewide Treatability Studies Program (STSP). This study was undertaken to determine the effectiveness of potassium ferrate in a water treatment system to remove the contaminants of concern (COCS) from groundwater at the RFETS. Potassium ferrate is a simple salt where the iron is in the plus six valence state. It is the iron at the plus six valence state (Fe {sup +6}) that makes it an unique water treatment chemical, especially in waters where the pH is greater than seven. In basic solutions where the solubility of the oxides/hydroxides of many of the COCs is low, solids are formed as the pH is raised. By using ferrate these solids are agglomerated so they can be effectively removed by sedimentation in conventional water treatment equipment. The objective of this study was to determine the quality of water after treatment with potassium ferrate and to determine if the Colorado Water Quality Control Commission (CWQCC) discharge limits for the COCs listed in Table 1.0-1 could be met. Radionuclides in the groundwater were of special concern.

  12. Radiation levels on empty cylinders containing heel material

    SciTech Connect (OSTI)

    Shockley, C.W.

    1991-12-31

    Empty UF{sub 6} cylinders containing heel material were found to emit radiation levels in excess of 200 mr/hr, the maximum amount stated in ORO-651. The radiation levels were as high as 335 mr/hr for thick wall (48X and 48Y) cylinders and 1050 mr/hr for thin wall (48G and 48H) cylinders. The high readings were found only on the bottom of the cylinders. These radiation levels exceeded the maximum levels established in DOT 49 CFR, Part 173.441 for shipment of cylinders. Holding periods of four weeks for thick-wall cylinders and ten weeks for thin-wall cylinders were established to allow the radiation levels to decay prior to shipment.

  13. Analysis to determine the maximum dimensions of flexible apertures in sensored security netting products.

    SciTech Connect (OSTI)

    Murton, Mark; Bouchier, Francis A.; vanDongen, Dale T.; Mack, Thomas Kimball; Cutler, Robert Paul; Ross, Michael P.

    2013-08-01

    Although technological advances provide new capabilities to increase the robustness of security systems, they also potentially introduce new vulnerabilities. New capability sometimes requires new performance requirements. This paper outlines an approach to establishing a key performance requirement for an emerging intrusion detection sensor: the sensored net. Throughout the security industry, the commonly adopted standard for maximum opening size through barriers is a requirement based on square inches-typically 96 square inches. Unlike standard rigid opening, the dimensions of a flexible aperture are not fixed, but variable and conformable. It is demonstrably simple for a human intruder to move through a 96-square-inch opening that is conformable to the human body. The longstanding 96-square-inch requirement itself, though firmly embedded in policy and best practice, lacks a documented empirical basis. This analysis concluded that the traditional 96-square-inch standard for openings is insufficient for flexible openings that are conformable to the human body. Instead, a circumference standard is recommended for these newer types of sensored barriers. The recommended maximum circumference for a flexible opening should be no more than 26 inches, as measured on the inside of the netting material.

  14. Estimates of maximum strains induced in buried pipelines by dynamic loading

    SciTech Connect (OSTI)

    Fernandez, G.; Al-Chaar, G.; Brady, P.

    1995-12-31

    An evaluation of pipe strains measured during full scale blast in-situ tests was carried out to assess the effects produced by a nearby quarry blast in a buried, steel pipeline carrying pressurized gas. The result of the blast tests indicated that the magnitude of the maximum circumferential strain is equal or larger than the magnitude of the maximum axial strain measured in the pipe. It was also observed that circumferential strains can develop simultaneously with the dynamic-induced axial strains, resulting in a more critical loading condition than the one contemplated by the ASCE (1983) design guidelines for seismic loading. This behavior can become critical in pressurized pipes where significant circumferential stresses are already present under normal operating conditions. Based on the results of these tests, recommendations for including circumferential strains are suggested to the ASCE (1983) Design Guidelines. Consideration should be given to a compressive wave traveling at a high angle which respect to the longitudinal axis of the pipe which can induce squeezing or ovaling of the pipe section, resulting in significant circumferential strains in the pipe.

  15. Load Leveling Battery System Costs

    Energy Science and Technology Software Center (OSTI)

    1994-10-12

    SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer's monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer's peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer's side of themore » meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer's load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.« less

  16. Interaction of planar and nonplanar organic contaminants with coal fly ash: Effects of polar and nonpolar solvent solutions

    SciTech Connect (OSTI)

    Burgess, R.M.; Ryba, S.A.; Cantwell, M.G.; Gundersen, J.L.; Tien, R.; Perron, M.M.

    2006-08-15

    Coal fly ash has a very high sorption capacity for a variety of anthropogenic contaminants and has been used to cleanse wastewater of pollutants for approximately 40 years. Like other black carbons, the planar structure of the residual carbon in fly ash results in elevated affinities for planar organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and some polychlorinated biphenyls (PCBs). The present study was performed to understand better the mechanisms affecting the strong interaction between planar contaminants and coal fly ash. The removal of 10 PCBs and 10 PAHs by several fly ashes and other sorbents was evaluated under different experimental conditions to highlight the intermolecular forces influencing adsorption. Varying fly ash concentration and solvent system composition indicated that dispersive interactions were most prevalent. For the PCBs, empirical results also were compared to molecular modeling estimates of the energy necessary for the PCB molecule to assume a planar conformation (PCe). The PCe levels ranged from 8 to 25 kcal/mol, depending on the degree of ortho-substituted chlorination of the PCB. A significant correlation between PCe and PCB removal from solution was observed for the fly ashes and activated carbon, whereas the nonplanar sorbent octadecyl (C{sub 18}) indicated no relationship. These findings demonstrate the strong interaction between black carbon fly ash and planar organic contaminants. Furthermore, as exemplified by the PCBs, these results show how this interaction is a function of a contaminant's ability to assume a planar conformation.

  17. Level III Mentoring Requirement

    Broader source: Energy.gov [DOE]

    Level III applicants must be mentored (minimum of six months) by a Level III or IV FPD or demonstrate equivalency (see below Competency 3.12.2 in the PMCDP's CEG). A formal mentoring agreement must...

  18. Company Level Imports Archives

    U.S. Energy Information Administration (EIA) Indexed Site

    Company Level Imports Company Level Imports Archives 2015 Imports by Month January XLS February XLS March XLS April XLS May XLS June XLS July XLS August XLS September XLS October...

  19. Tables of Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Levels The Image Map below will direct you to the table of energy levels PDF format only for that particular nuclide from the most recent publication found within...

  20. Bioavailability of sediment-bound contaminants to marine organisms

    SciTech Connect (OSTI)

    Brown, B.; Neff, J.

    1993-09-01

    The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.

  1. Evaluation of the Parameters of Radioactive Contamination of Soils

    SciTech Connect (OSTI)

    Panasyuk M.I.; Skorbun A.D.; Klyuchnikov O.O.

    2002-02-26

    After Chornobyl NPP (ChNPP) accident the territory near destroyed Unit 4 (that now with the special confinement has the name the ''Shelter'' object) is contaminated of fuel fallouts. During liquidation of the accident consequences this territory was covered with pure earth, concrete, etc. As a result a contaminated anthropogenic layer of the soil on the depth up to 10 m was formed. Now the problem of contamination estimation and the soils management arose. For this tasks a gamma logging method was modified conformably to ChNPP conditions. The methods for necessary coefficients receiving and log treatment have been suggested.

  2. Liquid level detector

    DOE Patents [OSTI]

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  3. Liquid level detector

    DOE Patents [OSTI]

    Grasso, Albert P.

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  4. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    SciTech Connect (OSTI)

    Li, Xinya; Deng, Z. Daniel; USA, Richland Washington; Sun, Yannan; USA, Richland Washington; Martinez, Jayson J.; USA, Richland Washington; Fu, Tao; USA, Richland Washington; McMichael, Geoffrey A.; USA, Richland Washington; Carlson, Thomas J.; USA, Richland Washington

    2014-11-27

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.

  5. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xinya; Deng, Z. Daniel; USA, Richland Washington; Sun, Yannan; USA, Richland Washington; Martinez, Jayson J.; USA, Richland Washington; Fu, Tao; USA, Richland Washington; McMichael, Geoffrey A.; et al

    2014-11-27

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developedmore » using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.« less

  6. Alaska Maximum Number of Active Crews Engaged in Two-Dimensional Seismic

    Gasoline and Diesel Fuel Update (EIA)

    Surveying (Number of Elements) Two-Dimensional Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Two-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 1 1 1 1 0 0 0 0 0 0 2001 0 0 0 0 1 1 0 0 0 0 0 0 2002 1 1 1 1 1 1 1 1 1 1 1 1 2003 0 0 1 1 1 1 1 1 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0

  7. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Four-Dimensional Seismic Surveying (Number of Elements) Four-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in Four-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 NA NA 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0

  8. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Three-Dimensional Seismic Surveying (Number of Elements) Three-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in Three-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 11 11 11 9 6 7 8 9 8 8 2001 7 7 9 9 8 7 8 8 9 10 10 9 2002 6 6 7 7 8 7 8 7 7 7 5 4 2003 4 4 4 4 4 4 4 4 2 3 3 5 2004 5 5 5 4 4 4 4 4 2 2 4 4 2005 4 4 6 6 6 5 5 5 5 5 5 5 2006 5 6 6 6 6 5 5 5 5

  9. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Two-Dimensional Seismic Surveying (Number of Elements) Two-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in Two-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 7 7 6 7 6 7 7 7 7 8 2001 9 8 9 9 9 9 8 7 6 9 7 8 2002 8 9 10 9 9 9 8 8 10 10 8 7 2003 8 8 7 7 8 8 7 7 7 5 4 5 2004 5 5 5 5 5 4 4 4 4 2 1 3 2005 5 5 6 6 7 7 6 6 6 6 6 6 2006 6 6 6 5 5 7 4 3 2 2 3 3

  10. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Four-Dimensional Seismic Surveying (Number of Elements) Four-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in Four-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 1 1 1 1 1 1 1 1 1 1 2001 1 1 1 1 1 1 1 1 1 1 1 1 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 1 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0

  11. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Three-Dimensional Seismic Surveying (Number of Elements) Three-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in Three-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 36 36 34 37 39 40 39 41 40 41 2001 38 38 38 39 37 35 35 32 30 33 34 33 2002 32 31 26 25 24 23 26 26 28 30 27 22 2003 19 20 20 20 17 18 21 22 22 24 24 25 2004 25 27 27 27 26 30 30 31 32 34 33 32

  12. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Two-Dimensional Seismic Surveying (Number of Elements) Two-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in Two-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 4 4 3 5 4 4 3 4 4 5 2001 5 6 6 7 7 6 6 8 8 5 7 7 2002 6 9 9 7 8 9 8 7 9 8 8 8 2003 8 9 8 7 7 7 7 8 8 7 7 7 2004 8 8 8 9 9 9 8 8 8 8 9 9 2005 8 8 6 8 8 9 8 8 7 6 5 6 2006 5 5 4 4 4 9 5 4 4 5 5 5 2007

  13. A new maximum-likelihood change estimator for two-pass SAR coherent change detection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wahl, Daniel E.; Yocky, David A.; Jakowatz, Jr., Charles V.; Simonson, Katherine Mary

    2016-01-11

    In past research, two-pass repeat-geometry synthetic aperture radar (SAR) coherent change detection (CCD) predominantly utilized the sample degree of coherence as a measure of the temporal change occurring between two complex-valued image collects. Previous coherence-based CCD approaches tend to show temporal change when there is none in areas of the image that have a low clutter-to-noise power ratio. Instead of employing the sample coherence magnitude as a change metric, in this paper, we derive a new maximum-likelihood (ML) temporal change estimate—the complex reflectance change detection (CRCD) metric to be used for SAR coherent temporal change detection. The new CRCD estimatormore » is a surprisingly simple expression, easy to implement, and optimal in the ML sense. As a result, this new estimate produces improved results in the coherent pair collects that we have tested.« less

  14. Weakest solar wind of the space age and the current 'MINI' solar maximum

    SciTech Connect (OSTI)

    McComas, D. J.; Angold, N.; Elliott, H. A.; Livadiotis, G.; Schwadron, N. A.; Smith, C. W.; Skoug, R. M.

    2013-12-10

    The last solar minimum, which extended into 2009, was especially deep and prolonged. Since then, sunspot activity has gone through a very small peak while the heliospheric current sheet achieved large tilt angles similar to prior solar maxima. The solar wind fluid properties and interplanetary magnetic field (IMF) have declined through the prolonged solar minimum and continued to be low through the current mini solar maximum. Compared to values typically observed from the mid-1970s through the mid-1990s, the following proton parameters are lower on average from 2009 through day 79 of 2013: solar wind speed and beta (?11%), temperature (?40%), thermal pressure (?55%), mass flux (?34%), momentum flux or dynamic pressure (?41%), energy flux (?48%), IMF magnitude (?31%), and radial component of the IMF (?38%). These results have important implications for the solar wind's interaction with planetary magnetospheres and the heliosphere's interaction with the local interstellar medium, with the proton dynamic pressure remaining near the lowest values observed in the space age: ?1.4 nPa, compared to ?2.4 nPa typically observed from the mid-1970s through the mid-1990s. The combination of lower magnetic flux emergence from the Sun (carried out in the solar wind as the IMF) and associated low power in the solar wind points to the causal relationship between them. Our results indicate that the low solar wind output is driven by an internal trend in the Sun that is longer than the ?11 yr solar cycle, and they suggest that this current weak solar maximum is driven by the same trend.

  15. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect (OSTI)

    Freedman, Vicky L.

    2007-03-09

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represent initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are current contaminants of concern (COCs) in the Central Plateau and include tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial conditions for steady-state flow runs, simulations were executed to investigate the relative effects on contaminant transport from the increased upland fluxes. Contaminant plumes were analyzed for 1) peak concentrations and arrival times at downstream points of compliance, 2) the area of the aquifer contaminated at or above the drinking water standard (DWS), and 3) the total activity remaining in the domain at the end of the simulation. In addition to this analysis, unit source release simulations from a hypothetical tracer were executed to determine relative travel times from the Central Plateau. The results of this study showed that increases in the upland boundary fluxes 1) had little impact on regional flow directions and 2) accelerated contaminant transport. Although contaminant concentrations have initially increased for the more mobile contaminants (tritium, technetium-99, and iodine-129), the accelerated transport caused dilution and a more rapid decline in concentrations relative to the Base Case (no additional flux). For the low-mobility uranium-238, higher upland fluxes caused increases in concentration, but these concentrations never exceeded the DWS. No significant effects on contaminant concentrations were identified at the Core Zone, Columbia River, or buffer zone area separating these two compliance boundaries. When lateral recharge at the upland boundaries was increased, more mass was transported out of the aquifer and discharged into the Columbia River. These concentrations, however, were diluted with respect to the Base Case, where no potential leakage from the proposed reservoir was considered.

  16. Measurement of Radioactive Contamination in the High-Resistivity Silicon CCDs of the DAMIC Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aguilar-Arevalo, A.

    2015-08-25

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify ? and ? particles. Uranium and thorium contamination in the CCD bulk was measured through ? spectroscopy, with an upper limit on the 238U (232Th) decay rate of 5 (15) kg-1 d-1 at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from 32Si 32P or 210Pbmore210Bi sequences of b decays. The decay rate of 32Si was found to be 80+110-65 (95% CI). An upper limit of ~35 kg -1 d-1 (95% CL) on the 210Pb decay rate was obtained independently by ? spectroscopy and the ? decay sequence search. Furthermore, these levels of radioactive contamination are sufficiently low for the successful operation of CCDs in the forthcoming 100 g DAMIC detector.less

  17. Measurement of Radioactive Contamination in the High-Resistivity Silicon CCDs of the DAMIC Experiment

    SciTech Connect (OSTI)

    Aguilar-Arevalo, A.

    2015-08-25

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify ? and ? particles. Uranium and thorium contamination in the CCD bulk was measured through ? spectroscopy, with an upper limit on the 238U (232Th) decay rate of 5 (15) kg-1 d-1 at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from 32Si 32P or 210Pb 210Bi sequences of b decays. The decay rate of 32Si was found to be 80+110-65 (95% CI). An upper limit of ~35 kg -1 d-1 (95% CL) on the 210Pb decay rate was obtained independently by ? spectroscopy and the ? decay sequence search. Furthermore, these levels of radioactive contamination are sufficiently low for the successful operation of CCDs in the forthcoming 100 g DAMIC detector.

  18. Chemical and toxicological characterization of slurry reactor biotreatment of explosives-contaminated soils

    SciTech Connect (OSTI)

    Griest, W.H.; Stewart, A.J.; Vass, A.A.; Ho, C.H.

    1998-08-01

    Treatment of 2,4,6-trinitrotoluene (TNT)-contaminated soil in the Joliet Army Ammunition Plant (JAAP) soil slurry bioreactor (SSBR) eliminated detectable TNT but left trace levels of residual monoamino and diamino metabolites under some reactor operating conditions. The reduction of solvent-extractable bacterial mutagenicity in the TNT-contaminated soil was substantial and was similar to that achieved by static pile composts at the Umatilla Army Depot Activity (UMDA) field demonstration. Aquatic toxicity to Ceriodaphnia dubia from TNT in the leachates of TNT-contaminated soil was eliminated in the leachates of JAAP SSBR product soil. The toxicity of soil product leachates to Ceriodaphnia dubia was reasonably predicted using the specific toxicities of the components detected, weighted by their leachate concentrations. In samples where TNT metabolites were observed in the soil product and its leachates, this method determined that the contribution to predicted toxicity values was dominated by trace amounts of the diamino-metabolites, which are very toxic to ceriodaphnia dubia. When the SSBR operating conditions reduced the concentrations of TNT metabolites in the product soils and their leachates to undetectable concentrations, the main contributors to predicted aquatic toxicity values appeared to be molasses residues, potassium, and bicarbonate. Potassium and bicarbonate are beneficial or benign to the environment, and molasses residues are substantially degraded in the environment. Exotoxins, pathogenic bacteria, inorganic particles, ammonia, and dissolved metals did not appear to be important to soil product toxicity.

  19. TWRS vadose zone contamination issue expert panel report

    SciTech Connect (OSTI)

    Shafer, D.S.

    1997-05-01

    When members were first canvassed for participation in the Vadose Zone Expert Panel the stated purpose for convening the Panel was to review a controversial draft report, the SX Tank Farm Report. This report was produced by a DOE Grand Junction Project Office (GJPO) contractor, RUST Geotech, now MACTEC-ERS, for the DOE Richland Office (DOERL). Three meetings were planned for June, July and August, 1995 to review the draft report and to complete a Panel report by mid-September. The Expert Panel has found its efforts confounded by various non-technical issues. The Expert Panel has chosen to address some of the non-technical issues in this Preface rather than to dilute the technical discussion that follows in the body of this independent expert panel status report (Panel Report). Rather than performing a straightforward manuscript review, the Panel was asked to resolve conflicting interpretations of gamma-ray logging measurements performed in vadose zone boreholes (drywells) surrounding the high-level radioactive wastes of the SX tank farm. There are numerous and complex technical issues that must be evaluated before the vertical and radial extent of contaminant migration at the SX tank farm can be accurately assessed. When the Panel first met in early June, 1996, it quickly became apparent that the scientific and technical issues were obscured by policy and institutional affairs which have polarized discussion among various segments of the Hanford organization. This situation reflects the kinds of institutional problems described separately in reports by the National Research Council of the National Academy of Sciences (NAS/NRC), The Hanford Tanks Environmental Impacts and Policy Choices and BmTiers to Science: Technical Management of the Department of Energy Environmental Remediation Program. The Vadose Zone Characterization Program, appears to be caught between conflicting pressures and organizational mandates, some imposed from outside DOE-RL and some self-imposed. The institutional problems they encountered include having both Tank Waste Remediation System (TWRS), the parent organization of the Vadose Zone Characterization Program and Environmental Restoration (ER), each under different regulatory controls and different organizational units, seeking to defend the status quo and discount many of the Panel`s conclusions and recommendations. The results presented in the SX Tank Farm Report, especially the visualizations, have created concern in the public sector, both on a local, personal level and on a national political level.

  20. RCUT: A Non-Invasive Method for Detection, Location, and Quantification of Radiological Contaminants in Pipes and Ducts - 12514

    SciTech Connect (OSTI)

    Bratton, Wesley L.; Maresca, Joseph W. Jr.; Beck, Deborah A.

    2012-07-01

    Radiological Characterization Using Tracers (RCUT) is a minimally invasive method for detection and location of residual radiological contamination in pipes and ducts. The RCUT technology utilizes reactive gaseous tracers that dissociate when exposed to gamma and/or beta radiation emitting from a radiological contaminant in a pipe or duct. Sulfur hexafluoride (SF{sub 6}) was selected as a tracer for this radiological application, because it is a chemically inert gas that is both nonflammable, nontoxic, and breaks down when exposed to gamma radiation. Laboratory tests demonstrated that the tracer pair of SF{sub 6} and O{sub 2} formed SO{sub 2}F{sub 2} when exposed to a gamma or beta radioactive field, which indicated the presence of radiological contamination. Field application of RCUT involves first injecting the reactive tracers into the pipe to fill the pipe being inspected and allowing sufficient time for the tracer to interact with any contaminants present. This is followed by the injection of an inert gas at one end of the pipe to push the reactive tracer at a known or constant flow velocity along the pipe and then out the exit and sampling port at the end of the pipeline where its concentration is measured by a gas chromatograph. If a radiological contaminant is present in the pipe being tested, the presence of SO{sub 2}F{sub 2} will be detected. The time of arrival of the SO{sub 2}F{sub 2} can be used to locate the contaminant. If the pipe is free of radiological contamination, no SO{sub 2}F{sub 2} will be detected. RCUT and PCUT are both effective technologies that can be used to detect contamination within pipelines without the need for mechanical or human inspection. These methods can be used to detect, locate, and/or estimate the volume of a variety of radioactive materials and hazardous chemicals such as chlorinated solvents, petroleum products, and heavy metals. While further optimization is needed for RCUT, the key first step of identification of a tracer compound appropriate for the application of detecting radioactive pipeline contamination through the detection of decomposition products of SF{sub 6} has been demonstrated. Other tracer gases that will also undergo radiolysis will be considered in the future. The next step for the RCUT development process is conducting laboratory scale tests using short pipelines to define analytical requirements, establish performance boundaries, and develop strategies for lower exposure levels. Studies to identify additional analytical techniques using equipment that is more field rugged than a GC/MS would also be beneficial. (authors)

  1. Hanford Groundwater Contamination Areas Shrink as EM Exceeds...

    Office of Environmental Management (EM)

    Areas Shrink as EM Exceeds Cleanup Goals June 26, 2013 - 12:00pm Addthis The 200 West Pump and Treat System is Hanfords largest facility for treating contaminated...

  2. T.G. Hinton: Remediation of Radioactively Contaminated Ecosystems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remediation of Radioactively Contaminated Ecosystems Thomas G. Hinton Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-7454 office (803) 725-3309 fax...

  3. Radon induced surface contaminations in low background experiments

    SciTech Connect (OSTI)

    Pattavina, L. [INFN - Laboratori Nazionali del Gran Sasso, I-67010 Assergi (AQ) (Italy)] [INFN - Laboratori Nazionali del Gran Sasso, I-67010 Assergi (AQ) (Italy)

    2013-08-08

    In neutrinoless double-beta decay and dark matter searches, one of the main issues is to increase the experimental sensitivity through careful material selection and production, minimizing the background contributions. In order to achieve the required, extremely low, counting rates, very stringent requirements must be fulfilled in terms of bulk material radiopurity. As the experimental sensitivity increases, the bulk impurities in the detector components decrease, and surface contaminations start to play an increasingly significant role In fully active detectors, like cryogenic particle detectors, surface contaminations are a critical issue (as shown by the CUORICINO experiment). {sup 222}Rn is by far the most intense source of airborne radioactivity, and if a radio-pure material is exposed to environment where the Radon concentration is not minimized, {sup 210}Pb and {sup 210}Po contaminations can occur. The mechanisms and the dynamics of Radon-induced surface contaminations are reviewed, and specific solutions to prevent and to reject the induced background are presented.

  4. Transuranic contaminated waste form characterization and data base

    SciTech Connect (OSTI)

    Kniazewycz, B.G.; McArthur, W.C.

    1980-07-01

    This volume contains 5 appendices. Title listing are: technologies for recovery of transuranics; nondestructive assay of TRU contaminated wastes; miscellaneous waste characteristics; acceptance criteria for TRU waste; and TRU waste treatment technologies.

  5. New EM Technology: Spray Lights up Contamination Hot Spots

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – Oak Ridge National Laboratory (ORNL) researchers have developed a new technology to determine the extent of contamination in Cold War facilities that could replace costly and time-consuming traditional survey methods used by EM.

  6. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOE Patents [OSTI]

    McNab, Jr., Walt W.; Reinhard, Martin

    2002-01-01

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  7. Climate Change Adaptation Technical Fact Sheet: Contaminated Sediment Remedies

    Broader source: Energy.gov [DOE]

    This fact sheet addresses remedies for contaminated sediment. It is intended to serve as an adaptation planning tool by (1) providing an overview of potential climate change vulnerabilities and (2)...

  8. RESRAD Computer Code - Evaluation of Radioactively Contaminated Sites

    Office of Environmental Management (EM)

    Deployed Widely Used and Maintained Argonne National Laboratory, Environmental Science Division - RESRAD Program RESRAD codes are used at more than 300 sites since its first release in 1989. Page 1 of 2 Argonne National Laboratory Multiple States & Sites Illinois RESRAD Computer Code - Evaluation of Radioactively Contaminated Sites Challenge The evaluation of sites with radioactive contamination was a problem until the RESidual RADioactivity (RESRAD) Computer Code was first released in 1989.

  9. System to control contamination during retrieval of buried TRU waste

    DOE Patents [OSTI]

    Menkhaus, Daniel E.; Loomis, Guy G.; Mullen, Carlan K.; Scott, Donald W.; Feldman, Edgar M.; Meyer, Leroy C.

    1993-01-01

    A system to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  10. Metagenomic Insights into Evolution of a Heavy Metal-Contaminated

    Office of Scientific and Technical Information (OSTI)

    Groundwater Microbial Community (Journal Article) | SciTech Connect Metagenomic Insights into Evolution of a Heavy Metal-Contaminated Groundwater Microbial Community Citation Details In-Document Search Title: Metagenomic Insights into Evolution of a Heavy Metal-Contaminated Groundwater Microbial Community Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community

  11. Zinc Speciation in Contaminated Sediments: Quantitative Determination of

    Office of Scientific and Technical Information (OSTI)

    Zinc Coordination by X-ray Absorption Spectroscopy (Journal Article) | SciTech Connect Zinc Speciation in Contaminated Sediments: Quantitative Determination of Zinc Coordination by X-ray Absorption Spectroscopy Citation Details In-Document Search Title: Zinc Speciation in Contaminated Sediments: Quantitative Determination of Zinc Coordination by X-ray Absorption Spectroscopy Authors: Webb, Samuel M. ; Gaillard, Jean-François [1] ; NWU) [2] + Show Author Affiliations (SSRL) ( Publication

  12. NREL: Hydrogen and Fuel Cells Research - Fuel Cell System Contaminants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Screening Data System Contaminants Material Screening Data NREL designed this interactive material selector tool to help fuel cell developers and material suppliers explore the results of fuel cell system contaminants studies, which were performed in collaboration with General Motors, the University of South Carolina, and the Colorado School of Mines. Select from the drop-down lists of materials to see the screening data collected from multiple methods. You can also view the data

  13. In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer Matthew Ginder-Vogel1, Wei-Min Wu1, Jack Carley2, Phillip Jardine2, Scott Fendorf1 and Craig Criddle1 1Stanford University, Stanford, CA 2Oak Ridge National Laboratory, Oak Ridge, TN Microbial Respiration Figure 1. Uranium(VI) reduction is driven by microbial respiration resulting in the precipitation of uraninite. Uranium contamination of ground and surface waters has been detected at numerous sites throughout the

  14. System to control contamination during retrieval of buried TRU waste

    DOE Patents [OSTI]

    Menkhaus, D.E.; Loomis, G.G.; Mullen, C.K.; Scott, D.W.; Feldman, E.M.; Meyer, L.C.

    1993-04-20

    A system is described to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  15. Uraniferous Phosphates: Resource, Security Risk, or Contaminant

    SciTech Connect (OSTI)

    LeMone, D.V.; Goodell, Ph.C.; Gibbs, S.G.; Winston, J.W.

    2008-07-01

    The escalation of the price of uranium (U) yellow cake (summer high = $130/0.454 kg (lb) has called into question the continuing availability of sufficient stockpiles and ores to process. As was developed during the years following World War II, the establishment and maintenance of a strategic inventory is a reasonable consideration for today. Therefore, it becomes critical to look at potential secondary resources beyond the classical ore suites now being utilized. The most economically viable future secondary source seems to be the byproducts of the beneficiation of phosphoric acids derived from phosphate ores. Phosphorous (P) is an essential nutrient for plants; its deficiency can result in highly restrictive limitations in crop productivity. Acidic soils in tropical and subtropical regions of the world are often P deficient with high P-sorption (fixation) capacities. To correct this deficiency, efficient water-soluble P fertilizers are required. The use of raw phosphate rocks not only adds phosphate but also its contained contaminants, including uranium to the treated land. Another immediate difficulty is phosphogypsum, the standard byproduct of simple extraction. It, for practical purposes, has been selectively classified as TENORM by regulators. The imposition of these standards presents major current and future disposal and re-utilization problems. Therefore, establishing an economically viable system that allows for uranium byproduct extraction from phosphoric acids is desirable. Such a system would be dependent on yellow cake base price stability, reserve estimates, political conditions, nation-state commitment, and dependence on nuclear energy. The accumulation of yellow cake from the additional extraction process provides a valuable commodity and allows the end acid to be a more environmentally acceptable product. The phosphogypsum already accumulated, as well as that which is in process, will not make a viable component for a radiation disposal devise (RDD). Concern for weapon proliferation by rogue nation states from the byproduct production of yellowcake is an unlikely scenario. To extract the fissile U-235 (0.07%) isotope from the yellowcake (99.3%) requires the erection of a costly major gaseous diffusion or a cascading centrifuge facility. Such a facility would be extremely difficult to mask. Therefore, from a diminished security risk and positive economic and environmental viewpoints, the utilization of a phosphoric acid beneficiation process extracting uranium is desirable. (authors)

  16. Results for the second quarter 2014 tank 50 WAC slurry sample chemical and radionuclide contaminants

    SciTech Connect (OSTI)

    Bannochie, C.

    2014-09-04

    This report details the chemical and radionuclide contaminant results for the characterization of the 2014 Second Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  17. Results For The Second Quarter 2013 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

    SciTech Connect (OSTI)

    Bannochie, Christopher J.

    2013-07-31

    This report details the chemical and radionuclide contaminant results for the characterization of the 2013 Second Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by Saltstone Facility Engineering (SFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  18. Results for the Third Quarter 2012 Tank 50 WAC Slurry Sample: Chemical and Radionuclide Contaminants

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2012-10-26

    This report details the chemical and radionuclide contaminant results for the characterization of the 2012 Third Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Waste Solidification Engineering (WSE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  19. Results For The Fourth Quarter 2014 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

    SciTech Connect (OSTI)

    Crawford, C.

    2015-09-30

    This report details the chemical and radionuclide contaminant results for the characterization of the Calendar Year (CY) 2014 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  20. Tiltmeter leveling mechanism

    DOE Patents [OSTI]

    Hunter, Steven L. (Livermore, CA); Boro, Carl O. (Milpitas, CA); Farris, Alvis (late of Byron, CA)

    2002-01-01

    A tiltmeter device having a pair of orthogonally disposed tilt sensors that are levelable within an inner housing containing the sensors. An outer housing can be rotated to level at least one of the sensor pair while the inner housing can be rotated to level the other sensor of the pair. The sensors are typically rotated up to about plus or minus 100 degrees. The device is effective for measuring tilts in a wide range of angles of inclination of wells and can be employed to level a platform containing a third sensor.

  1. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect (OSTI)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-12-01

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE`s inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results.

  2. MILLISECOND PULSAR AGES: IMPLICATIONS OF BINARY EVOLUTION AND A MAXIMUM SPIN LIMIT

    SciTech Connect (OSTI)

    Kiziltan, Buelent; Thorsett, Stephen E., E-mail: bulent@astro.ucsc.ed [Department of Astronomy and Astrophysics, University of California and UCO/Lick Observatory, Santa Cruz, CA 95064 (United States)

    2010-05-20

    In the absence of constraints from the binary companion or supernova remnant, the standard method for estimating pulsar ages is to infer an age from the rate of spin-down. While the generic spin-down age may give realistic estimates for normal pulsars, it can fail for pulsars with very short periods. Details of the spin-up process during the low-mass X-ray binary (LMXB) phase pose additional constraints on the period (P) and spin-down rates ( P-dot ) that may consequently affect the age estimate. Here, we propose a new recipe to estimate millisecond pulsar (MSP) ages that parametrically incorporates constraints arising from binary evolution and limiting physics. We show that the standard method can be improved by this approach to achieve age estimates closer to the true age while the standard spin-down age may overestimate or underestimate the age of the pulsar by more than a factor of {approx}10 in the millisecond regime. We use this approach to analyze the population on a broader scale. For instance, in order to understand the dominant energy loss mechanism after the onset of radio emission, we test for a range of plausible braking indices. We find that a braking index of n = 3 is consistent with the observed MSP population. We demonstrate the existence and quantify the potential contributions of two main sources of age corruption: the previously known 'age bias' due to secular acceleration and 'age contamination' driven by sub-Eddington progenitor accretion rates. We explicitly show that descendants of LMXBs that have accreted at very low rates ( m-dot << M-dot{sub Edd}) will exhibit ages that appear older than the age of the Galaxy. We further elaborate on this technique, the implications and potential solutions it offers regarding MSP evolution, the underlying age distribution, and the post-accretion energy loss mechanism.

  3. Precision liquid level sensor

    DOE Patents [OSTI]

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  4. Precision liquid level sensor

    DOE Patents [OSTI]

    Field, Michael E. (Albuquerque, NM); Sullivan, William H. (Albuquerque, NM)

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  5. Extended maximum likelihood halo-independent analysis of dark matter direct detection data

    SciTech Connect (OSTI)

    Gelmini, Graciela B.; Georgescu, Andreea; Gondolo, Paolo; Huh, Ji-Haeng

    2015-11-24

    We extend and correct a recently proposed maximum-likelihood halo-independent method to analyze unbinned direct dark matter detection data. Instead of the recoil energy as independent variable we use the minimum speed a dark matter particle must have to impart a given recoil energy to a nucleus. This has the advantage of allowing us to apply the method to any type of target composition and interaction, e.g. with general momentum and velocity dependence, and with elastic or inelastic scattering. We prove the method and provide a rigorous statistical interpretation of the results. As first applications, we find that for dark matter particles with elastic spin-independent interactions and neutron to proton coupling ratio f{sub n}/f{sub p}=−0.7, the WIMP interpretation of the signal observed by CDMS-II-Si is compatible with the constraints imposed by all other experiments with null results. We also find a similar compatibility for exothermic inelastic spin-independent interactions with f{sub n}/f{sub p}=−0.8.

  6. Robust Maximum Lifetime Routing and Energy Allocation in Wireless Sensor Networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Paschalidis, Ioannis Ch.; Wu, Ruomin

    2012-01-01

    We consider the maximum lifetime routing problem in wireless sensor networks in two settings: (a) when nodes’ initial energy is given and (b) when it is subject to optimization. The optimal solution and objective value provide optimal flows and the corresponding predicted lifetime, respectively. We stipulate that there is uncertainty in various network parameters (available energy and energy depletion rates). In setting (a) we show that for specific, yet typical, network topologies, the actual network lifetime will reach the predicted value with a probability that converges to zero as the number of nodes grows large. In setting (b) the samemore » result holds for all topologies. We develop a series of robust problem formulations, ranging from pessimistic to optimistic. A set of parameters enable the tuning of the conservatism of the formulation to obtain network flows with a desirably high probability that the corresponding lifetime prediction is achieved. We establish a number of properties for the robust network flows and energy allocations and provide numerical results to highlight the tradeoff between predicted lifetime and the probability achieved. Further, we analyze an interesting limiting regime of massively deployed sensor networks and essentially solve a continuous version of the problem.« less

  7. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect (OSTI)

    Freedman, Vicky L.

    2008-01-30

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represents initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial conditions for steady-state flow runs, simulations were executed to investigate the relative effects on contaminant transport from the increased upland fluxes. Contaminant plumes were analyzed for 1) peak concentrations and arrival times at downstream points of compliance, 2) the area of the aquifer contaminated at or above the drinking water standard (DWS), and 3) the total activity remaining in the domain at the end of the simulation. In addition to this analysis, unit source release simulations from a hypothetical tracer were executed to determine relative travel times from the Central Plateau. The results of this study showed that increases in the lateral recharge had limited impact on regional flow directions but accelerated contaminant transport. Although contaminant concentrations may have initially increased for the more mobile contaminants (tritium, technetium-99, and iodine-129), the accelerated transport caused dilution and a more rapid decline in concentrations relative to the Base Case (no additional flux). For the low-mobility uranium-238, higher lateral recharge caused increases in concentration, but these concentrations never approached the DWS. In this preliminary investigation, contaminant concentrations did not exceed the DWS study metric. With the increases in upland fluxes, more mass was transported out of the aquifer, and concentrations were diluted with respect to the base case where no additional flux was considered.

  8. Maximum Diameter Measurements of Aortic Aneurysms on Axial CT Images After Endovascular Aneurysm Repair: Sufficient for Follow-up?

    SciTech Connect (OSTI)

    Baumueller, Stephan Nguyen, Thi Dan Linh Goetti, Robert Paul; Lachat, Mario; Seifert, Burkhardt; Pfammatter, Thomas Frauenfelder, Thomas

    2011-12-15

    Purpose: To assess the accuracy of maximum diameter measurements of aortic aneurysms after endovascular aneurysm repair (EVAR) on axial computed tomographic (CT) images in comparison to maximum diameter measurements perpendicular to the intravascular centerline for follow-up by using three-dimensional (3D) volume measurements as the reference standard. Materials and Methods: Forty-nine consecutive patients (73 {+-} 7.5 years, range 51-88 years), who underwent EVAR of an infrarenal aortic aneurysm were retrospectively included. Two blinded readers twice independently measured the maximum aneurysm diameter on axial CT images performed at discharge, and at 1 and 2 years after intervention. The maximum diameter perpendicular to the centerline was automatically measured. Volumes of the aortic aneurysms were calculated by dedicated semiautomated 3D segmentation software (3surgery, 3mensio, the Netherlands). Changes in diameter of 0.5 cm and in volume of 10% were considered clinically significant. Intra- and interobserver agreements were calculated by intraclass correlations (ICC) in a random effects analysis of variance. The two unidimensional measurement methods were correlated to the reference standard. Results: Intra- and interobserver agreements for maximum aneurysm diameter measurements were excellent (ICC = 0.98 and ICC = 0.96, respectively). There was an excellent correlation between maximum aneurysm diameters measured on axial CT images and 3D volume measurements (r = 0.93, P < 0.001) as well as between maximum diameter measurements perpendicular to the centerline and 3D volume measurements (r = 0.93, P < 0.001). Conclusion: Measurements of maximum aneurysm diameters on axial CT images are an accurate, reliable, and robust method for follow-up after EVAR and can be used in daily routine.

  9. Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site

    SciTech Connect (OSTI)

    Cantrell, Kirk J.

    2009-08-20

    A review of transuranic radionuclide contamination in sediments and groundwater at the DOE’s Hanford Site was conducted. The review focused primarily on plutonium-239/240 and americium-241; however, other transuranic nuclides were discussed as well, including neptunium-237, plutonium-238, and plutonium-241. The scope of the review included liquid process wastes intentionally disposed to constructed waste disposal facilities such as trenches and cribs, burial grounds, and unplanned releases to the ground surface. The review did not include liquid wastes disposed to tanks or solid wastes disposed to burial grounds. It is estimated that over 11,800 Ci of plutonium-239, 28,700 Ci of americium-241, and 55 Ci of neptunium-237 have been disposed as liquid waste to the near surface environment at the Hanford Site. Despite the very large quantities of transuranic contaminants disposed to the vadose zone at Hanford, only minuscule amounts have entered the groundwater. Currently, no wells onsite exceed the DOE derived concentration guide for plutonium-239/240 (30 pCi/L) or any other transuranic contaminant in filtered samples. The DOE derived concentration guide was exceeded by a small fraction in unfiltered samples from one well (299-E28-23) in recent years (35.4 and 40.4 pCi/L in FY 2006). The primary reason that disposal of these large quantities of transuranic radionuclides directly to the vadose zone at the Hanford Site has not resulted in widespread groundwater contamination is that under the typical oxidizing and neutral to slightly alkaline pH conditions of the Hanford vadose zone, transuranic radionuclides (plutonium and americium in particular) have a very low solubility and high affinity for surface adsorption to mineral surfaces common within the Hanford vadose zone. Other important factors are the fact that the vadose zone is typically very thick (hundreds of feet) and the net infiltration rate is very low due to the desert climate. In some cases where transuranic radionuclides have been co-disposed with acidic liquid waste, transport through the vadose zone for considerable distances has occurred. For example, at the 216-Z-9 Crib, plutonium-239 and americium-241 have moved to depths in excess of 36 m (118 ft) bgs. Acidic conditions increase the solubility of these contaminants and reduce adsorption to mineral surfaces. Subsequent neutralization of the acidity by naturally occurring calcite in the vadose zone (particularly in the Cold Creek unit) appears to have effectively stopped further migration. The vast majority of transuranic contaminants disposed to the vadose zone on the Hanford Site (10,200 Ci [86%] of plutonium-239; 27,900 Ci [97%] of americium-241; and 41.8 Ci [78%] of neptunium-237) were disposed in sites within the PFP Closure Zone. This closure zone is located within the 200 West Area (see Figures 1.1 and 3.1). Other closure zones with notably high quantities of transuranic contaminant disposal include the T Farm Zone with 408 Ci (3.5%) plutonium-239, the PUREX Zone with 330 Ci (2.8%) plutonium-239, 200-W Ponds Zone with 324 Ci (2.8%) plutonium-239, B Farm Zone with 183 Ci (1.6%) plutonium-239, and the REDOX Zone with 164 Ci (1.4%) plutonium 239. Characterization studies for most of the sites reviewed in the document are generally limited. The most prevalent characterization methods used were geophysical logging methods. Characterization of a number of sites included laboratory analysis of borehole sediment samples specifically for radionuclides and other contaminants, and geologic and hydrologic properties. In some instances, more detailed research level studies were conducted. Results of these studies were summarized in the document.

  10. Effects of surfactants on the desorption of organic contaminants from aquifer materials. Doctoral thesis

    SciTech Connect (OSTI)

    Brickell, J.L.

    1989-08-01

    The efficiency of removing organic contaminants from groundwater aquifers by the pump and treat process is adversely affected by the retardation of the contaminant's mobility due to adsorption onto aquifer material. The use of surfactants in conjunction with the pump and treat process has the potential for improving contaminant mobility by solubilizing the adsorbed contaminant.

  11. Remediation of a large contaminated reactor cooling reservoir: Resolving and environmental/regulatory paradox

    SciTech Connect (OSTI)

    Bowers, J.A.: Gladden, J.B.; Hickey, H.M.; Jones, M.P.; Mackey, H.E.; Mayer, J.J.; Doswell, A.

    1994-05-01

    This paper presents a case study of a former reactor cooling water reservoir, PAR Pond, located Savannah River Site. PAR Pond, a 2640 acre, man-made reservoir was built in 1958 and until 1988, received cooling water from two DOE nuclear production reactors, P and R. The lake sediments were contaminated with low levels of radiocesium (CS-137) and transuranics in the late 1950s and early 1960s because of leaking fuel elements. Elevated levels of mercury accumulated in the sediments from pumping water from the Savannah River to maintain a full pool. PAR Ponds` stability, size, and nutrient content made a significant, unique, and highly studied ecological resource for fish and wildlife populations until it was partially drained in 1991 due to a depression in the downslope of the earthen dam. The drawdown, created 1340 acres of exposed, radioactively contaminated sediments along 33 miles of shoreline. This led US EPA to declare PAR Pond as a CERCLA operable unit subject to remediation. The drawdown also raised concerns for the populations of aquatic plants, fish, alligators, and endangered species and increased the potential for off-site migration of contaminated wildlife from contact with the exposed sediments. Applicable regulations, such as NEPA and CERCLA, require wetland loss evaluations, human health and ecological risk assessments, and remediation feasibility studies. DOE is committed to spending several million dollars to repair the dam for safety reasons, even though the lake will probably not be used for cooling purposes. At the same time, DOE must make decisions whether to refill and expend additional public funds to maintain a full pool to reduce the risks defined under CERCLA or spend hundreds of millions in remediation costs to reduce the risks of the exposed sediments.

  12. Study of Pyrex and quartz insulators contamination effect on the X-ray intensity in a 4-kJ plasma focus device

    SciTech Connect (OSTI)

    Habibi, M. Sharifi, R.; Amrollahi, R.

    2013-12-15

    The variation of the X-ray intensity has been investigated with the Pyrex and quartz insulators surface contamination in a 4-kJ plasma focus device with argon gas at 11.5-kV charging voltage. Elemental analysis (EDAX) showed that the Cu evaporated from the electrode material and was deposited on the sleeve surface improves the breakdown conditions. A small level of sleeve contamination by copper is found to be essential for good focusing action and high HXR intensity. The SEM imaging showed the grain-type structure of Cu formed on the surface and it changed the surface property. Resistance measurements of original and coated Pyrex surface proved that the copper deposition on the sleeve surface will reduce its resistance as compared to the almost infinitely large resistance of the uncontaminated sleeve. As the contamination is surpassed to some critical level, the HXR intensity from the device is deteriorated.

  13. Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; Di Giustino, Leonardo; /SLAC

    2011-08-19

    A key problem in making precise perturbative QCD predictions is the uncertainty in determining the renormalization scale {mu} of the running coupling {alpha}{sub s}({mu}{sup 2}): The purpose of the running coupling in any gauge theory is to sum all terms involving the {beta} function; in fact, when the renormalization scale is set properly, all non-conformal {beta} {ne} 0 terms in a perturbative expansion arising from renormalization are summed into the running coupling. The remaining terms in the perturbative series are then identical to that of a conformal theory; i.e., the corresponding theory with {beta} = 0. The resulting scale-fixed predictions using the 'principle of maximum conformality' (PMC) are independent of the choice of renormalization scheme - a key requirement of renormalization group invariance. The results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The PMC is also the theoretical principle underlying the BLM procedure, commensurate scale relations between observables, and the scale-setting method used in lattice gauge theory. The number of active flavors nf in the QCD {beta} function is also correctly determined. We discuss several methods for determining the PMC/BLM scale for QCD processes. We show that a single global PMC scale, valid at leading order, can be derived from basic properties of the perturbative QCD cross section. The elimination of the renormalization scheme ambiguity using the PMC will not only increase the precision of QCD tests, but it will also increase the sensitivity of collider experiments to new physics beyond the Standard Model.

  14. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Udell, Kent S. (Berkeley, CA); Bruton, Carol J. (Livermore, CA); Carrigan, Charles R. (Tracy, CA)

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  15. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE)

    SciTech Connect (OSTI)

    Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R.StJ.; Mller, Kenneth

    2013-04-15

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrilebutadienestyrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive.

  16. Final work plan : phase I investigation of potential contamination at the former CCC/USDA grain storage facility in Montgomery City, Missouri.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2010-08-16

    From September 1949 until September 1966, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) leased property at the southeastern end of Montgomery City, Missouri, for the operation of a grain storage facility. During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities. In January 2000, carbon tetrachloride was detected in a soil sample (220 {micro}g/kg) and two soil gas samples (58 {micro}g/m{sup 3} and 550 {micro}g/m{sup 3}) collected at the former CCC/USDA facility, as a result of a pre-CERCLIS site screening investigation (SSI) performed by TN & Associates, Inc., on behalf of the U.S. Environmental Protection Agency (EPA), Region VII (MoDNR 2001). In June 2001, the Missouri Department of Natural Resources (MoDNR) conducted further sampling of the soils and groundwater at the former CCC/USDA facility as part of a preliminary assessment/site inspection (PA/SI). The MoDNR confirmed the presence of carbon tetrachloride (at a maximum identified concentration of 2,810 {micro}g/kg) and chloroform (maximum 82 {micro}g/kg) in the soils and also detected carbon tetrachloride and chloroform (42.2 {micro}g/L and 58.4 {micro}g/L, respectively) in a groundwater sample collected at the former facility (MoDNR 2001). The carbon tetrachloride levels identified in the soils and groundwater are above the default target level (DTL) values established by the MoDNR for this contaminant in soils of all types (79.6 {micro}g/kg) and in groundwater (5.0 {micro}g/L), as outlined in Missouri Risk-Based Corrective Action (MRBCA): Departmental Technical Guidance (MoDNR 2006a). The corresponding MRBCA DTL values for chloroform are 76.6 {micro}g/kg in soils of all types and 80 {micro}g/L in groundwater. Because the observed contamination at Montgomery City might be linked to the past use of carbon tetrachloride-based fumigants at its former grain storage facility, the CCC/USDA will conduct investigations to (1) characterize the source(s), extent, and factors controlling the possible subsurface distribution and movement of carbon tetrachloride at the Montgomery City site and (2) evaluate the health and environmental threats potentially represented by the contamination. This work will be performed in accord with the Intergovernmental Agreement established between the Farm Service Agency of the USDA and the MoDNR, to address carbon tetrachloride contamination potentially associated with a number of former CCC/USDA grain storage facilities in Missouri. The investigations at Montgomery City will be conducted on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by UChicago Argonne, LLC, for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. The site characterization at Montgomery City will take place in phases. This approach is recommended by the CCC/USDA and Argonne, so that information obtained and interpretations developed during each incremental stage of the investigation can be used most effectively to guide subsequent phases of the program. This site-specific Work Plan outlines the specific technical objectives and scope of work proposed for Phase I of the Montgomery City investigation. This Work Plan also includes the community relations plan to be followed throughout the CCC/USDA program at the Montgomery City site. Argonne is developing a Master Work Plan specific to operations in the state of Missouri. In the meantime, Argonne has issued a Provisional Master Work Plan (PMWP; Argonne 2007) that has been reviewed and approved by the MoDNR for current use. The PMWP (Argonne 2007) provides detailed information and guidance on the investigative technologies, analytical methodologies, qua

  17. Apparatus for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, Gregory A. (Idaho Falls, ID); Thomas, Charles P. (Idaho Falls, ID)

    1996-01-01

    A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

  18. Method for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, Gregory A. (Idaho Falls, ID); Thomas, Charles P. (Idaho Falls, ID)

    1995-01-01

    A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

  19. In-Situ Containment and Extraction of Volatile Soil Contaminants

    DOE Patents [OSTI]

    Varvel, Mark Darrell

    2005-12-27

    The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.

  20. In-Situ Contained And Of Volatile Soil Contaminants

    DOE Patents [OSTI]

    Varvel, Mark Darrell

    2005-12-27

    The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.

  1. Evaluation of Recent Trailer Contamination and Supersack Integrity Issues

    SciTech Connect (OSTI)

    Gordon, S.

    2012-09-17

    During the period from fiscal year (FY) 2009 to FY 2011, there were a total of 21 incidents involving radioactively contaminated shipment trailers and 9 contaminated waste packages received at the Nevada National Security Site (NNSS) Area 5 Radioactive Waste Management Site (RWMS). During this time period, the EnergySolutions (ES) Clive, Utah, disposal facility had a total of 18 similar incidents involving trailer and package contamination issues. As a result of the increased occurrence of such incidents, DOE Environmental Management Headquarters (EM/HQ) Waste Management organization (EM-30) requested that the Energy Facility Contractors Group (EFCOG) Waste Management Working Group (WMWG) conduct a detailed review of these incidents and report back to EM-30 regarding the results of this review, including providing any recommendations formulated as a result of the evaluation of current site practices involving handling and management of radioactive material and waste shipments.

  2. Method for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, G.A.; Thomas, C.P.

    1995-10-03

    A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

  3. Apparatus for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, G.A.; Thomas, C.P.

    1996-02-13

    A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

  4. Contaminated concrete: Occurrence and emerging technologies for DOE decontamination

    SciTech Connect (OSTI)

    Dickerson, K.S.; Wilson-Nichols, M.J.; Morris, M.I.

    1995-08-01

    The goals of the Facility Deactivation, Decommissioning, and Material Disposition Focus Area, sponsored by the US Department of Energy (DOE) Office of Technology Development, are to select, demonstrate, test, and evaluate an integrated set of technologies tailored to provide a complete solution to specific problems posed by deactivation, decontamination, and decommissioning, (D&D). In response to these goals, technical task plan (TTP) OR152002, entitled Accelerated Testing of Concrete Decontamination Methods, was submitted by Oak Ridge National Laboratory. This report describes the results from the initial project tasks, which focused on the nature and extent of contaminated concrete, emerging candidate technologies, and matching of emerging technologies to concrete problems. Existing information was used to describe the nature and extent of contamination (technology logic diagrams, data bases, and the open literature). To supplement this information, personnel at various DOE sites were interviewed, providing a broad perspective of concrete contamination. Because characterization is in the initial stage at many sites, complete information is not available. Assimilation of available information into one location is helpful in identifying potential areas of concern in the future. The most frequently occurring radiological contaminants within the DOE complex are {sup 137}Cs, {sup 238}U (and it daughters), and {sup 60}Co, followed closely by {sup 90}Sr and tritium, which account for {minus}30% of the total occurrence. Twenty-four percent of the contaminants were listed as unknown, indicating a lack of characterization information, and 24% were listed as other contaminants (over 100 isotopes) with less than 1% occurrence per isotope.

  5. In situ destruction of contaminants via hydrous pyrolysis/

    SciTech Connect (OSTI)

    Aines, R D; Carrigan, C; Chiarappa, M; Eaker, C; Hudson, B; Knauss, K; Leif, R; Newmark, R L; Richards, J; Sciarotta, T; Tompson, A; Weidner, R.

    1998-12-01

    A field test of hydrous pyrolysis/oxidation (HPO) was conducted during the summer of 1997, during a commercial application of thermal remediation (Dynamic Underground Stripping (DUS)) at the Visalia Pole Yard (a super-fund site) in southern California. At Visalia, Southern California Edison Co. is applying the DUS thermal remediation method to clean up a large (4.3 acre) site contaminated with pole-treating compounds. This is a full-scale cleanup, during which initial extraction of contaminants is augmented by combined steam/air injection in order to enhance the destruction of residual contaminants by HPO. Laboratory results indicate that the contaminants at Visaha react at similar rates to TCE, which has been the focus of extensive laboratory work (Knauss et al., 1998a-c). Field experimental results from this application yield valuable information (1) confirming the destruction of contaminants in soil and groundwater by HPO, (2) validating the predictive models used to design HP0 steam injection systems, (3) demonstrating that accurate field measurements of the critical fluid parameters can be obtained using existing monitoring wells and (4) obtaining a reasonable prediction of the cost and effectiveness of HPO, working at a commercial scale and with commercial partners. The goal of our additional study and demonstration in conjunction with Edison has been to obtain early proof of hydrous pyrolysis/oxidation in the field, and validate our predictive models and monitoring strategies. This demonstration provides valuable economic and practicability data obtained on a commercial scale, with more detailed field validation than is commonly available on a commercially-conducted cleanup. The results of LLNL s field experiments constrain the destruction rates throughout the site, and enable site management to make accurate estimates of total in situ destruction based on the recovered carbon. As of October, 1998, over 900,000 lb of contaminant have been removed from the site; about 18% of this has been destroyed in situ.

  6. Method of treating contaminated HEPA filter media in pulp process

    DOE Patents [OSTI]

    Hu, Jian S.; Argyle, Mark D.; Demmer, Ricky L.; Mondok, Emilio P.

    2003-07-29

    A method for reducing contamination of HEPA filters with radioactive and/or hazardous materials is described. The method includes pre-processing of the filter for removing loose particles. Next, the filter medium is removed from the housing, and the housing is decontaminated. Finally, the filter medium is processed as pulp for removing contaminated particles by physical and/or chemical methods, including gravity, flotation, and dissolution of the particles. The decontaminated filter medium is then disposed of as non-RCRA waste; the particles are collected, stabilized, and disposed of according to well known methods of handling such materials; and the liquid medium in which the pulp was processed is recycled.

  7. Apparatus for treatment of soils contaminated with organic pollutants

    DOE Patents [OSTI]

    Wickramanayake, Godage B. (Columbus, OH)

    1993-01-01

    An apparatus for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil in a manner adapted to decompose the organic compounds; one embodiment of the apparatus comprises a means to supply ozone as a gas-ozone mixture, a stability means to treat ozone obtained from the supply and distribution means to apply the stabilized gas-ozone to soil. The soil may be treated in situ or may be removed for treatment and refilled.

  8. Analysis of Zinc 65 Contamination after Vacuum Thermal Process

    SciTech Connect (OSTI)

    Korinko, Paul S.; Tosten, Michael H.

    2013-01-01

    Radioactive contamination with a gamma energy emission consistent with {sup 65}Zn was detected in a glovebox following a vacuum thermal process. The contaminated components were removed from the glovebox and subjected to examination. Selected analytical techniques were used to determine the nature of the precursor material, i.e., oxide or metallic, the relative transferability of the deposit and its nature. The deposit was determined to be borne from natural zinc and was further determined to be deposited as a metallic material from vapor.

  9. ECOLOGICAL EFFECTS OF CONTAMINANTS IN THE UPPER THREE RUNS INTEGRATOR

    Office of Scientific and Technical Information (OSTI)

    OPERABLE UNIT (Technical Report) | SciTech Connect Technical Report: ECOLOGICAL EFFECTS OF CONTAMINANTS IN THE UPPER THREE RUNS INTEGRATOR OPERABLE UNIT Citation Details In-Document Search Title: ECOLOGICAL EFFECTS OF CONTAMINANTS IN THE UPPER THREE RUNS INTEGRATOR OPERABLE UNIT No abstract prepared. Authors: Paller, M. ; Dyer, S. ; Scott, S. Publication Date: 2011-07-18 OSTI Identifier: 1023278 Report Number(s): SRNL-TR-2011-00201 TRN: US201118%%1082 DOE Contract Number: DE-AC09-08SR22470

  10. Workers Successfully Excavate Mother Lode of Chromium Contamination at

    Office of Environmental Management (EM)

    Hanford Site | Department of Energy Successfully Excavate Mother Lode of Chromium Contamination at Hanford Site Workers Successfully Excavate Mother Lode of Chromium Contamination at Hanford Site June 30, 2014 - 12:00pm Addthis A hole near Hanford's D Reactor now 85 feet deep is shown when it was about 70 feet deep. A hole near Hanford's D Reactor now 85 feet deep is shown when it was about 70 feet deep. An aerial view of D and DR Reactor sites with the Columbia River. An aerial view of D

  11. Feed gas contaminant removal in ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

    2008-09-16

    Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.

  12. Emergency department management of patients internally contaminated with radioactive material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz; Christensen, Doran

    2014-11-15

    After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.

  13. Enhanced bioremediation of subsurface contamination: Enzyme recruitment and redesign

    SciTech Connect (OSTI)

    Brockman, F.J.; Ornstein, R.L.

    1991-12-01

    Subsurface systems containing radionuclide, heavy metal, and organic wastes must be carefully attended to avoid further impacts to the environment or exposures to human populations. It is appropriate, therefore, to invest in basic research to develop the requisite tools and methods for addressing complex cleanup problems. The rational modification of subsurface microoganisms by enzyme recruitment and enzyme design, in concert with engineered systems for delivery of microorganisms and nutrients to the contaminated zone, are potentially useful tools in the spectrum of approaches that will be required for successful remediation of deep subsurface contamination.

  14. RESULTS FOR THE SECOND QUARTER 2011 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    SciTech Connect (OSTI)

    Eibling, R.

    2011-08-25

    The Saltstone Facility is designed and permitted to immobilize and dispose of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site. Low-level waste (LLW) streams from the Effluent Treatment Project (ETP), H-Canyon, the DDA (Deliquification, Dissolution, and Adjustment) process, and the decontaminated salt solution product from the Actinide Removal Process/Modular Caustic Side Solvent Extraction (CSSX) Unit (ARP/MCU) process are stored in Tank 50 until the LLW can be transferred to the Saltstone Facility for treatment and disposal. The LLW must meet the specified waste acceptance criteria (WAC) before it is processed into saltstone. The specific chemical and radionuclide contaminants and their respective WAC limits are listed in the current Saltstone WAC. Waste Solidification Engineering (WSE) requested that Savannah River National Laboratory (SRNL) perform quarterly analysis on saltstone samples. The concentrations of chemical and radionuclide contaminants are measured to ensure the saltstone produced during each quarter is in compliance with the current WAC. This report documents the concentrations of chemical and radionuclide contaminants for the 2011 Second Quarter samples collected from Tank 50 on April 4, 2011 and discusses those results in further detail than the previously issued results report. The following conclusions are drawn from the analytical results provided in this report: (1) The concentrations of the reported chemical and radioactive contaminants were less than their respective WAC targets or limits unless noted in this section. (2) The reported detection limit for {sup 59}Ni is above the requested limit from Reference 2 but below the established limit in Reference 3. (3) The reported detection limit for {sup 94}Nb is above the requested limit from Reference 2; however, it is below the established limits in Reference 3. (4) The reported concentration of {sup 242m}Am is above the target in Listed in Attachment 8.4 of the Saltstone WAC. (5) {sup 247}Cm and {sup 249}Cf are above the requested limits from Reference 2. However, they are below the limits established in Reference 3. (6) The reported detection limit for Norpar 13{sup 5} is greater than the limit from Table 4 and Attachment 8.2 of the WAC. (7) The reported detection limit for Isopar L is greater than the limit from Table 3 of the WAC. (8) Isopar L and Norpar 13 have limited solubility in aqueous solutions making it difficult to obtain consistent and reliable sub-samples. The values reported in this memo are the concentrations in the sub-sample as detected by the instrument; however, the results may not accurately represent the concentrations of the analytes in Tank 50.

  15. Ultrasonic liquid level detector

    DOE Patents [OSTI]

    Kotz, Dennis M. (North Augusta, SC); Hinz, William R. (Augusta, GA)

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  16. Liquid-level detector

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    Aliquid level sensor is described which has a pair of upright conductors spaced by an insulator defining a first high resistance path between the conductors. An electrically conductive path is interposed between the upright conductors at a discrete location at which liquid level is to be measured. It includes a liquid accessible gap of a dimension such that the electrical resistance across the conductor when the gap is filled with the liquid is detectably less than when the gap is emptied. The conductor might also be physically altered by temperature changes to serve also as an indicator of elevated temperature.

  17. Application of decontamination and melting of low-level waste

    SciTech Connect (OSTI)

    Clements, D.W.; Hall, M.

    1996-12-31

    This paper describes the range of plant, equipment, and techniques developed by British Nuclear Fuels plc at their Capenhurst site to minimize land burial, environmental impact, and recycling of metals. This large nuclear processing facility in the United Kingdom yielded more than 160000 t of suspect surface contaminated material. By the time the project is finally completed at the end of 1996, {approx}99.5% of the contaminated material will have been safely and cost-effectively treated so that it can be recycled for use in a nonnuclear environment. The remaining material as well as minimal quantities of secondary wastes arising from decontamination activities will have been size reduced and/or encapsulated to maximize the cost-effective use of the U.K. low-level-waste burial facility.

  18. Evaluation of a photovoltaic energy mechatronics system with a built-in quadratic maximum power point tracking algorithm

    SciTech Connect (OSTI)

    Chao, R.M.; Ko, S.H.; Lin, I.H.; Pai, F.S.; Chang, C.C.

    2009-12-15

    The historically high cost of crude oil price is stimulating research into solar (green) energy as an alternative energy source. In general, applications with large solar energy output require a maximum power point tracking (MPPT) algorithm to optimize the power generated by the photovoltaic effect. This work aims to provide a stand-alone solution for solar energy applications by integrating a DC/DC buck converter to a newly developed quadratic MPPT algorithm along with its appropriate software and hardware. The quadratic MPPT method utilizes three previously used duty cycles with their corresponding power outputs. It approaches the maximum value by using a second order polynomial formula, which converges faster than the existing MPPT algorithm. The hardware implementation takes advantage of the real-time controller system from National Instruments, USA. Experimental results have shown that the proposed solar mechatronics system can correctly and effectively track the maximum power point without any difficulties. (author)

  19. Revealing the Role of Microbes in Controlling Contaminants

    SciTech Connect (OSTI)

    Williams, Kenneth Hurst

    2015-04-02

    In Rifle, Colorado, Berkeley Lab earth scientist, Kenneth Hurst Williams, highlights the role subsurface microbial communities can play in controlling the flow of contaminants in groundwater. The DOE Joint Genome Institute is a key collaborator in the research. Williams is Component Lead of Watershed Structure and Controls within Berkeley Lab's Genomes-to-Watershed Scientific Focus Area.

  20. Identification of 300 Area Contaminants of Potential Concern for Soil

    SciTech Connect (OSTI)

    R.W. Ovink

    2010-04-05

    This report documents the process used to identify source area contaminants of potential concern (COPCs) in support of the 300 Area remedial investigation/feasibility study (RI/FS) work plan. This report also establishes the exclusion criteria applicable for 300 Area use and the analytical methods needed to analyze the COPCs.

  1. Method for in-situ cleaning of carbon contaminated surfaces

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel

    2006-12-12

    Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled. A method of removing carbon contaminants from a substrate surface that is housed within a vacuum chamber is also disclosed. The method employs activated gaseous species that react with the carbon contaminants to form carbon containing gaseous byproducts.

  2. Hanford Site Treating Record Amount of Contaminated Groundwater

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. - U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company (CH2M HILL) has exceeded this year’s goal for treating 1.4 billion gallons of contaminated groundwater at the Hanford Site in Washington state.

  3. Particle contamination formation and detection in magnetron sputtering processes

    SciTech Connect (OSTI)

    Selwyn, G.S.; Weiss, C.A.; Sequeda, F.; Huang, C.

    1996-10-01

    Defects caused by particulate contamination are an important concern in the fabrication of thin film products. Often, magnetron sputtering processes are used for this purpose. Particle contamination can cause electrical shorting, pin holes, problems with photolithography, adhesion failure, as well as visual and cosmetic defects. Particle contamination generated during thin film processing can be detected using laser light scattering, a powerful diagnostic technique that provides real-time, {ital in-situ} imaging of particles > 0.3 {mu}m in diameter. Using this technique, the causes, sources and influences on particles in plasma and non-plasma and non-plasma processes may be independently evaluated and corrected. Several studies employing laser light scattering have demonstrated both homogeneous and heterogeneous causes of particle contamination. In this paper, we demonstrate that the mechanisms for particle generation, transport and trapping during magnetron sputter deposition are different from the mechanisms reported in previously studied plasma etch processes. During magnetron sputter deposition, one source of particle contamination is linked to portions of the sputtering target surface exposed to weaker plasma density. In this region, film redeposition is followed by filament or nodule growth and enhanced trapping which increases filament growth. Eventually the filaments effectively ``short circuit`` the sheath, causing high currents to flow through these features. This, in turn, causes heating failure of the filament fracturing and ejecting the filaments into the plasma and onto the substrate. Evidence of this effect has been observed in semiconductor (IC) fabrication and storage disk manufacturing. Discovery of this mechanism in both technologies suggests that this mechanism may be universal to many sputtering processes.

  4. Level: National Data;

    Gasoline and Diesel Fuel Update (EIA)

    .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National Data; Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources; Column: First Use per Energy Sources and Shipments; Unit: Trillion Btu. Total Energy Source First Use Total United States Coal 1,433 Natural Gas 5,911 Net Electricity 2,851 Purchases 2,894 Transfers In 20 Onsite Generation from Noncombustible Renewable Energy 4 Sales and Transfers Offsite 67 Coke and Breeze 272

  5. Company Level Imports

    Gasoline and Diesel Fuel Update (EIA)

    All Petroleum & Other Liquids Reports Company Level Imports With Data for December 2015 | Release Date: February 29, 2016 | Next Release Date: March 31, 2016 | XLS Previous Issues Month: December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 June 2015 May 2015 April 2015 March 2015 February 2015 January 2015 prior issues Go December 2015 Import Highlights Monthly data on the origins of crude oil imports in December 2015 show that two countries, Canada and Saudi Arabia,

  6. Final work plan : Phase I investigation of potential contamination at the former CCC/USDA grain storage facility in Savannah, Missouri.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2007-10-12

    From approximately 1949 until 1970, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility on federally owned property approximately 0.25 mi northwest of Savannah, Missouri. During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities. In November 1998, carbon tetrachloride was detected in a private well (Morgan) roughly 50 ft south of the former CCC/USDA facility, as a result of state-wide screening of private wells near former CCC/USDA facilities, conducted in Missouri by the U.S. Environmental Protection Agency (EPA 1999). The 1998 and subsequent investigations by the EPA and the Missouri Department of Natural Resources (MoDNR) confirmed the presence of carbon tetrachloride in the Morgan well, as well as in a second well (on property currently occupied by the Missouri Department of Transportation [MoDOT]), approximately 400 ft east of the former CCC/USDA facility. Carbon tetrachloride concentrations in the Morgan well have ranged from the initial value of 29 {micro}g/L in 1998, up to a maximum of 61 {micro}g/L in 1999, and back down to 22 {micro}g/L in 2005. The carbon tetrachloride concentration in the MoDOT well in 2000 (the only time it was sampled) was 321 {micro}g/L. The concentrations for the two wells are above the EPA maximum contaminant level (MCL) of 5 {micro}g/L for carbon tetrachloride (EPA 1999; MoDNR 2000a,b). Because the observed contamination in the Morgan and MoDOT wells might be linked to the past use of carbon tetrachloride-based grain fumigants at its former grain storage facility, the CCC/USDA will conduct investigations to (1) characterize the source(s), extent, and factors controlling the subsurface distribution and movement of carbon tetrachloride at Savannah and (2) evaluate the health and environmental threats potentially posed by the contamination. This work will be performed in accord with the Intergovernmental Agreement established between the Farm Service Agency of the USDA and MoDNR, to address carbon tetrachloride contamination potentially associated with a number of former CCC/USDA grain storage facilities in Missouri. The investigative activities at Savannah will be conducted on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by UChicago Argonne, LLC, for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an agreement with the DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. The site characterization at Savannah will take place in phases. This approach is recommended by the CCC/USDA and Argonne, so that information obtained and interpretations developed during each incremental stage of the investigation can be used most effectively to guide subsequent phases of the program. This site-specific Work Plan outlines the specific technical objectives and scope of work proposed for Phase I of the Savannah investigation. This Work Plan also includes the community relations plan to be followed throughout the CCC/USDA program at the Savannah site. Argonne is developing a Master Work Plan specific to operations in the state of Missouri. In the meantime, Argonne will issue a Provisional Master Work Plan (PMWP; Argonne 2007) that will be submitted to the MoDNR for review and approval. The agency has already reviewed and approved (with minor changes) the present Master Work Plan (Argonne 2002) under which Argonne currently operates in Kansas. The PMWP (Argonne 2007) will provide detailed information and guidance on the investigative technologies, analytical methodologies, quality assurance-quality control measures, and general health and safety policies to be employed by Argonne for all investigations at former CCC/USDA grain storage facilities in Missouri. Both the PMWP

  7. Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany

    SciTech Connect (OSTI)

    Zellmer, S.D.; Schneider, J.F.

    1993-05-01

    Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm and soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.

  8. Analysis of potential groundwater contamination in the vicinity of the Weldon Spring Raffinate Pits site, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Tsai, S.Y.; Peterson, J.M.; Winters, M.C.B.

    1984-08-01

    Results of the analysis of contaminant migration beneath the raffinate pits at the Weldon Spring Raffinate Pits site indicate that during a 10,000-year time period, the maximum concentrations in the water immediately beneath the pit bottoms would be about 4600 pCi/L of radium-226 (Pit 3) and about 12,000 pCi/L of uranium-238 (Pit 1); these concentrations would occur at the centers of the pit bottoms. Based on the assumptions used in this study, the radioactive contaminants in the pits would migrate no more than 2 m (7 ft) below the pit bottoms. Because 6 to 12 m (20 to 40 ft) of silty clays underlie the raffinate pits, the radioactive contaminants would take several tens of thousands of years to reach nearby groundwater supplies. Although the results of these analyses indicate that a high degree of confinement is provided by the four raffinate pits, it should be noted that the validity of such analyses rests on the quality of the parameter values utilized. Due to a lack of current site-specific data for some physical parameters, it has been necessary to use historical and regional data for these values. The values cited are at times inconsistent and contradictory, e.g., the wide range of values indicated for the permeability of clays underlying the pits. However, these were the only data available. The analysis reported herein indicates that within the limitations of the available data, use of the Raffinate Pits site for long-term management of radioactive materials such as those currently being stored in the four pits appears to be feasible. 24 references, 14 figures, 7 tables.

  9. RESULTS FOR THE FOURTH QUARTER TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    SciTech Connect (OSTI)

    Reigel, M.; Bibler, N.

    2010-01-27

    The Saltstone Facility is designed and permitted to immobilize and dispose of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site. Low-level waste (LLW) streams from the Effluent Treatment Project (ETP), H-Canyon, the DDA (Deliquification, Dissolution, and Adjustment) process, and the decontaminated salt solution product from the Actinide Removal Process/Modular Caustic Side Solvent Extraction (CSSX) Unit (ARP/MCU) process are stored in Tank 50 until the LLW can be transferred to the Saltstone Facility for treatment and disposal. The LLW must meet the specified waste acceptance criteria (WAC) before it is processed into saltstone. The specific chemical and radionuclide contaminants and their respective WAC limits are listed in the current Saltstone WAC. SRS Liquid Waste Operations (LWO) requested that Savannah River National Laboratory (SRNL) perform quarterly analysis on saltstone samples. The concentrations of chemical and radionuclide contaminants are measured to ensure the saltstone produced during each quarter is in compliance with the current WAC. This report documents the concentrations of chemical and radionuclide contaminants for the 2009 Fourth Quarter samples collected from Tank 50 on October 2, 2009 and discusses those results in further detail than the previously issued results report. This report details the chemical and radionuclide contaminant results for the characterization of the 2009 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Liquid Waste Operations (LWO) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: (1) The concentrations of the reported chemical and radioactive contaminants were less than their respective WAC targets or limits unless noted in this section. (2) The reported detection limit for Isopar L is greater than the limit from Table 3 of the WAC. (3) The reported detection limits for {sup 59}Ni and {sup 94}Nb are above the requested limits from Reference 4. However, they are each below the limits established in Reference 3. (4) The reported detection limit for isopropanol is greater than the requested limit from Table 4 of the WAC. (5) The reported detection limits for {sup 247}Cm and {sup 249}Cf are above the requested limits from Reference 4. However, they are below the limits established in Reference 3. (6) Isopar L and Norpar 13 have limited solubility in aqueous solutions making it difficult to obtain consistent and reliable sub-samples. The values reported in this memo are the concentrations in the sub-sample as detected by the GC/MS; however, the results may not accurately represent the concentrations of the analytes in Tank 50.

  10. PAMAM dendrimers and graphene: Materials for removing aromatic contaminants from water

    SciTech Connect (OSTI)

    DeFever, Ryan S.; Geitner, Nicholas K.; Bhattacharya, Priyanka; Ding, Feng; Ke, Pu Chun; Sarupria, Sapna

    2015-04-07

    We present results from experiments and atomistic molecular dynamics simulations on the association of naphthalene with polyamidoamine (PAMAM) dendrimers and graphene oxide (GrO). Specifically, we investigate 3rd-6th generation (G3-G6) PAMAM dendrimers and GrO with different levels of oxidation. The work is motivated by the potential applications of these materials in removing polycyclic aromatic hydrocarbon contaminants from water. Our experimental results indicate that graphene oxide outperforms dendrimers in removing naphthalene from water. Molecular dynamics simulations suggest that the prominent factors driving naphthalene association to these seemingly disparate materials are similar. Interestingly, we find that cooperative interactions between the naphthalene molecules play a significant role in enhancing their association to the dendrimers and graphene oxide. Our findings highlight that while selection of appropriate materials is important, the interactions between the contaminants themselves can also be important in governing the effectiveness of a given material. The combined use of experiments and molecular dynamics simulations allows us to comment on the possible factors resulting in better performance of graphene oxide in removing naphthalene from water.

  11. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    In April 1990 Wright-Patterson Air Force Base (WPAFB) initiated an investigation to evaluate a potential CERCLA removal action to prevent, to the extent practicable, the migration of ground-water contamination in the Mad River Valley Aquifer within and across WPAFB boundaries. The action will be based on a Focused Feasibility Study with an Action Memorandum serving as a decision document that is subject to approval by the Ohio Environmental Protection Agency. The first phase (Phase 1) of this effort involves an investigation of ground-water contamination migrating across the southwest boundary of Area C and across Springfield Pike adjacent to Area B. Task 4 of Phase 1 is a field investigation to collect sufficient additional information to evaluate removal alternatives. The field investigation will provide information in the following specific areas of study: water-level data which will be used to permit calibration of the ground-water flow model to a unique time in history; and ground-water quality data which will be used to characterize the current chemical conditions of ground water.

  12. Results For The First Quarter 2013 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2013-05-14

    This report details the chemical and radionuclide contaminant results for the characterization of the 2013 First Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Waste Solidification Engineering (WSE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: SRR WAC targets or limits were met for all analyzed chemical and radioactive contaminates unless noted in this section; {sup 59}Ni, {sup 94}Nb, {sup 247}Cm, {sup 249}Cf, and {sup 251}Cf are above the requested SRR target concentrations. However, they are below the detection limits established by SRNL; Norpar 13 and Isopar L have higher detection limits compared with the Saltstone WAC. The data provided in this report is based upon the concentrations in the sub-sample, and due to the limited solubility in aqueous solution, may not represent the concentrations of the analytes in Tank 50; and, The low insoluble solids content increases the measurement uncertainty for insoluble species.

  13. Results For The First Quarter 2012 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminant Results

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2012-07-16

    This report details the chemical and radionuclide contaminant results for the characterization of the 2012 First Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Waste Solidification Engineering (WSE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this memorandum: The concentrations of the reported chemical and radioactive contaminants were less than their respective WAC targets or limits unless noted; The reported detection limit for {sup 94}Nb is above the requested limit but below the estimated limit; {sup 247}Cm and {sup 249}Cf are above the requested limits. However, they are below the limits established; The reported detection limit for Norpar 13 is greater than the limit from the WAC; The reported detection limit for Isopar L is greater than the limit from WAC; Isopar L and Norpar 13 have limited solubility in aqueous solutions making it difficult to obtain consistent and reliable sub-samples; The values reported in this report are the concentrations in the sub-sample as detected by the instrument, however, the results may not accurately represent the concentrations of the analytes in Tank 50; The low insoluble solids content increases the measurement uncertainty for insoluble species.

  14. Monitoring Fish Contaminant Responses to Abatement Actions: Factors that Affect Recovery

    SciTech Connect (OSTI)

    Southworth, George R [ORNL; Peterson, Mark J [ORNL; Roy, W Kelly [ORNL; Mathews, Teresa J [ORNL

    2011-01-01

    Monitoring of contaminant accumulation in fish has been conducted in East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee since 1985. Bioaccumulation trends are examined over a twenty year period coinciding with major pollution abatement actions by a Department of Energy facility at the stream s headwaters. Although EFPC is enriched in many contaminants relative to other local streams, only polychlorinated biphenyls (PCBs) and mercury (Hg) were found to accumulate in the edible portions of fish to levels of human health concern. Mercury concentrations in redbreast sunfish were found to vary with season of collection, sex and size of individual fish. Over the course of the monitoring, waterborne Hg concentrations were reduced[80%; however, this did not translate into a comparable decrease in Hg bioaccumulation at most sites. Mercury bioaccumulation in fish did respond to decreased inputs in the industrialized headwater reach, but paradoxically increased in the lowermost reach of EFPC. As a result, the downstream pattern of Hg concentration in fish changed from one resembling dilution of a headwater point source in the 1980s to a uniform distribution in the 2000s. The reason for this remains unknown, but is hypothesized to involve changes in the chemical form and reactivity of waterborne Hg associated with the removal of residual chlorine and the addition of suspended particulates to the streamflow. PCB concentrations in fish varied greatly from year-to-year, but always exhibited a pronounced downstream decrease, and appeared to respond to management practices that limited episodic inputs from legacy sources within the facility.

  15. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    SciTech Connect (OSTI)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.

  16. Contaminant and heat removal effectiveness and air-to-air heat/energy recovery for a contaminated air space

    SciTech Connect (OSTI)

    Irwin, D.R.; Simonson, C.J.; Saw, K.Y.; Besant, R.W.

    1998-12-31

    Measured contaminant and heat removal effectiveness data are presented and compared for a 3:1 scale model room, which represents a smoking room, lounge, or bar with a two-dimensional airflow pattern. In the experiments, heat and tracer gases were introduced simultaneously from a source to simulate a prototype smoking room. High-side-wall and displacement ventilation schemes were investigated, and the latter employed two different types of ceiling diffuser,low-velocity slot and low-velocity grille. Results show that thermal energy removal effectiveness closely follows contaminant removal effectiveness for each of the ventilation schemes throughout a wide range of operating conditions. The average mean thermal and contaminant removal effectiveness agreed within {+-}20%. Local contaminant removal effectiveness ranged from a low of 80% for a high-wall slot diffuser to more than 200% for a low-velocity ceiling diffuser with displacement ventilation. Temperature differences between the supply and the indoor air were between 0.2 C (0.36 F) and 41.0 C (73.8 V) and ventilation airflow rates ranged from 9.2 to 36.8 air changes per hour at inlet conditions. For small temperature differences between supply and exhaust air, all three ventilation schemes showed increased contaminant removal effectiveness near the supply diffuser inlet with decreasing values toward the exhaust outlet. For the high-side-wall slot diffuser, effectiveness was up to 140% near the inlet and 100% near the exhaust, but for the second displacement scheme (low-velocity grille) the effectiveness was more than 200% near the inlet and 110% near the exhaust. This paper also shows a potential significant reduction in cooling load for a 50-person-capacity smoking lounge that utilizes an air-to-air heat/energy exchanger to recover heat/energy from the exhaust air.

  17. Evaluation of Reagent Emplacement Techniques for Phosphate-based Treatment of the Uranium Contamination Source in the 300 Area White Paper

    SciTech Connect (OSTI)

    Nimmons, Michael J.

    2010-06-04

    Persistent uranium contamination of groundwater under the 300 Area of the Hanford Site has been observed. The source of the uranium contamination resides in uranium deposits on sediments at the groundwater interface, and the contamination is mobilized when periodically wetted by fluctuations of Columbia River levels. Treatability work is ongoing to develop and apply phosphate-containing reagents to promote the formation of stable and insoluble uranium phosphate minerals (i.e., autunite) and other phosphate precipitates (di-calcium phosphate, apatite) to stabilize the uranium source. Technologies for applying phosphate-containing reagents by vertical percolation and lateral injection into sediments of the periodically wetted groundwater interface are being investigated. This report is a preliminary evaluation of technologies for lateral injection.

  18. Level: National and Regional Data; Row: Energy Sources; Column: Consumption Potential;

    Gasoline and Diesel Fuel Update (EIA)

    Nonswitchable Minimum and Maximum Consumption, 2010; Level: National and Regional Data; Row: Energy Sources; Column: Consumption Potential; Unit: Physical Units. Actual Minimum Maximum Energy Sources Consumption Consumption(a) Consumption(b) Total United States Electricity Receipts(c) (million kilowatthour 745,247 727,194 770,790 Natural Gas (billion cubic feet) 5,064 4,331 5,298 Distillate Fuel Oil (thousand barrels) 22 20 82 Residual Fuel Oil (thousand barrels) 13 9 46 Coal (thousand short

  19. Corrective Action Investigation Plan for Corrective Action Unit 550: Smoky Contamination Area Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2012-05-01

    Corrective Action Unit (CAU) 550 is located in Areas 7, 8, and 10 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 550, Smoky Contamination Area, comprises 19 corrective action sites (CASs). Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plumes, it was determined that some of the CAS releases are co-located and will be investigated as study groups. This document describes the planned investigation of the following CASs (by study group): (1) Study Group 1, Atmospheric Test - CAS 08-23-04, Atmospheric Test Site T-2C; (2) Study Group 2, Safety Experiments - CAS 08-23-03, Atmospheric Test Site T-8B - CAS 08-23-06, Atmospheric Test Site T-8A - CAS 08-23-07, Atmospheric Test Site T-8C; (3) Study Group 3, Washes - Potential stormwater migration of contaminants from CASs; (4) Study Group 4, Debris - CAS 08-01-01, Storage Tank - CAS 08-22-05, Drum - CAS 08-22-07, Drum - CAS 08-22-08, Drums (3) - CAS 08-22-09, Drum - CAS 08-24-03, Battery - CAS 08-24-04, Battery - CAS 08-24-07, Batteries (3) - CAS 08-24-08, Batteries (3) - CAS 08-26-01, Lead Bricks (200) - CAS 10-22-17, Buckets (3) - CAS 10-22-18, Gas Block/Drum - CAS 10-22-19, Drum; Stains - CAS 10-22-20, Drum - CAS 10-24-10, Battery. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 31, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 550. The potential contamination sources associated with the study groups are from nuclear testing activities conducted at CAU 550. The DQO process resulted in an assumption that the total effective dose (TED) within the default contamination boundary of CAU 550 exceeds the final action level and requires corrective action. The presence and nature of contamination outside the default contamination boundary at CAU 550 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the TED at sample locations to the dose-based final action level. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each group of CASs.

  20. INDEPENDENT TECHNICAL EVALUATION AND RECOMMENDATIONS FOR CONTAMINATED GROUNDWATER AT THE DEPARTMENT OF ENERGY OFFICE OF LEGACY MANAGEMENT RIVERTON PROCESSING SITE

    SciTech Connect (OSTI)

    Looney, B.; Denham, M.; Eddy-Dilek, C.

    2014-05-06

    The U.S. Department of Energy Office of Legacy Management (DOE-LM) manages the legacy contamination at the Riverton, WY, Processing Site a former uranium milling site that operated from 1958 to 1963. The tailings and associated materials were removed in 1988-1989 and contaminants are currently flushing from the groundwater. DOE-LM commissioned an independent technical team to assess the status of the contaminant flushing, identify any issues or opportunities for DOE-LM, and provide key recommendations. The team applied a range of technical frameworks spatial, temporal, hydrological and geochemical in performing the evaluation. In each topic area, an in depth evaluation was performed using DOE-LM site data (e.g., chemical measurements in groundwater, surface water and soil, water levels, and historical records) along with information collected during the December 2013 site visit (e.g., plant type survey, geomorphology, and minerals that were observed, collected and evaluated). A few of the key findings include: ? Physical removal of the tailings and associated materials reduced contaminant discharges to groundwater and reduced contaminant concentrations in the near-field plume. ? In the mid-field and far-field areas, residual contaminants are present in the vadose zone as a result of a variety of factors (e.g., evaporation/evapotranspiration from the capillary fringe and water table, higher water levels during tailings disposal, and geochemical processes). ? Vadose zone contaminants are widely distributed above the plume and are expected to be present as solid phase minerals that can serve as secondary sources to the underlying groundwater. The mineral sample collected at the site is consistent with thermodynamic predictions. ? Water table fluctuations, irrigation, infiltration and flooding will episodically solubilize some of the vadose zone secondary source materials and release contaminants to the groundwater for continued down gradient migration extending the overall timeframe for flushing. ? Vertical contaminant stratification in the vadose zone and surficial aquifer will vary from location to location. Soil and water sampling strategies and monitoring well construction details will influence characterization and monitoring data. ? Water flows from the Wind River, beneath the Riverton Processing Site and through the plume toward the Little Wind River. This base flow pattern is influenced by seasonal irrigation and other anthropogenic activities, and by natural perturbations (e.g., flooding). ? Erosion and reworking of the sediments adjacent to the Little Wind River results in high heterogeneity and complex flow and geochemistry. Water flowing into oxbow lakes (or through areas where oxbow lakes were present in the past) will be exposed to localized geochemical conditions that favor chemical reduction (i.e., naturally reduced zones) and other attenuation processes. This attenuation is not sufficient to fully stabilize the plume or to reduce contaminant concentrations in the groundwater to target levels. Consistent with these observations, the team recommended increased emphasis on collecting data in the zones where secondary source minerals are projected to accumulate (e.g., just above the water table) using low cost methods such as x-ray fluorescence. The team also suggested several low cost nontraditional sources of data that have the potential to provide supplemental data (e.g., multispectral satellite imagery) to inform and improve legacy management decisions. There are a range of strategies for management of the legacy contamination in the groundwater and vadose zone near the Riverton Processing Site. These range from the current strategy, natural flushing, to intrusive remedies such as plume scale excavation of the vadose zone and pump & treat. Each option relates to the site specific conditions, issues and opportunities in a unique way. Further, each option has advantages and disadvantages that need to be weighed. Scoping evaluation was performed for three major classes of technologies contaminant removal technologies, contaminant stabilization technologies, and natural flushing. The intent of the scoping evaluation is to provide an initial set of options for consideration by LM as they finalize plans to address the Riverton groundwater plume. Three technologies were conditionally recommended: 1) continued natural flushing, 2) groundwater pump and treat with plume scale irrigation to help flush out vadose zone contamination, or 3) in situ stabilization using structured geochemical zones to supplement the naturally reduced zones already present at the site.

  1. SMART 3D SUBSURFACE CONTAMINANT CHARACTERIZATION AT THE BGRR DEC OMMISSIONING PROJECT.

    SciTech Connect (OSTI)

    HEISER,J.; KALB,P.; SULLIVAN,T.; MILIAN,L.

    2002-08-04

    The Brookhaven Graphite Research Reactor is currently on an accelerated decommissioning schedule with a completion date projected for 2005. The accelerated schedule combines characterization with removal actions for the various systems and structures. A major project issue involves characterization of the soils beneath contaminated Below Grade Ducts (BGD), the main air ducts connecting the exhaust plenums with the Fan House. The air plenums experienced water intrusion during BGRR operations and after shutdown. The water intrusions were attributed to rainwater leaks into degraded parts of the system, and to internal cooling water system leaks. If the characterization could provide enough information to show that soil contamination surrounding the BGD is either below cleanup guidelines or is very localized and can be ''surgically removed'' at a reasonable cost, the ducts may be decontaminated and left in place. This will provide significant savings compared to breaking up the 170-ft. long concrete duct, shipping the projected 9,000 m{sup 3} of waste off-site and disposing of it in an approved site. The focus of this Department of Energy Accelerated Site Technology Deployment (DOE ASTD) project was to determine the extent (location, type, and level) of soil contamination surrounding the BGD. A suite of innovative characterization tools was used to complete the characterization of the soil surrounding the BGD in a cost-effective and timely fashion and in a manner acceptable to the stakeholders. A state-of-the-art perfluorocarbon tracer (PFT) technology was used to screen the BGD for existing leak pathways and thus focus the characterization on potential contamination ''hot spots.'' Once pathways were identified, the sampling and analysis plan was designed to emphasize the leaking areas of the duct and perform only confirmatory checks in areas shown to be leak-free. A small-footprint Geoprobe{reg_sign} was used obtain core samples and allowed sampling in areas surrounding the BGD that were difficult to access. Two novel, field-deployed, radiological analysis systems (ISOCS and BetaScint{trademark}) were used to analyze the core samples and a three-dimensional (3-D) visualization system facilitated data analysis/interpretation for the stakeholders. All of the technologies performed as well or better than expected and the characterization could not have been completed in the same time or at the same cost without using this approach. A total of 904 BGD soil samples were taken, evaluated, and modeled. Results indicated that contamination was primarily located in discrete areas near several expansion joints and underground structures (bustles), but that much of the soil beneath and surrounding the BGD was clean of any radiological contamination. One-year project cost savings are calculated to be $1,254K. Life cycle cost savings, resulting from reduction in the number of samples and the cost of sample analysis, are estimated to be $2,162K. When added to potential cost savings associated with decontaminating and leaving the BGD in place ($7.1 to 8.1M), far greater overall savings may be realized.

  2. Radiological benchmarks for screening contaminants of potential concern for effects on aquatic biota at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1998-07-01

    A hazardous waste site may contain hundreds of contaminants; therefore, it is important to screen contaminants of potential concern for the ecological risk assessment. Often this screening is done as part of a screening assessment, the purpose of which is to evaluate the available data, identify data gaps, and screen contaminants of potential concern. Screening may be accomplished by using a set of toxicological benchmarks. These benchmarks are helpful in determining whether contaminants warrant further assessment or are at a level that requires no further attention. Unlike exposures to chemicals, which are expressed as the concentration in water or sediment, exposures to radionuclides are expressed as the dose rate received by the organism. The recommended acceptable dose rate to natural populations of aquatic biota is 1 rad d{sup {minus}1}. Blaylock, Frank, and O`Neal provide formulas and exposure factors for estimating the dose rates to representative aquatic organisms. Those formulas were used herein to calculate the water and sediment concentrations that result in a total dose rate of 1 rad d{sup {minus}1} to fish for selected radionuclides. These radiological benchmarks are intended for use at the US Department of Energy`s (DOE`s) Oak Ridge Reservation and at the Portsmouth and Paducah gaseous diffusion plants as screening values only to show the nature and extent of contamination and identify the need for additional site-specific investigation.

  3. Method for selectively removing fluorine and fluorine-containing contaminants from gaseous UF.sub.6

    DOE Patents [OSTI]

    Jones, Robert L. (Paducah, KY); Otey, Milton G. (Melber, KY); Perkins, Roy W. (Mayfield, KY)

    1982-01-01

    This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF.sub.6. The contaminants include fluorine and fluorides which are more reactive with CaCO.sub.3 than is UF.sub.6. The method comprises contacting the contaminant-carrying UF.sub.6 with particulate CaCO.sub.3 at a temperature effecting reaction of the contaminant and the CaCO.sub.3.

  4. Vertical Distribution of Contamination in Ground Water at the Tuba City,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona, Site | Department of Energy Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site PDF icon Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site More Documents & Publications EA-1268: Final Environmental Assessment Diffusion Multilayer

  5. Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak

    Energy Savers [EERE]

    Ridge | Department of Energy Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and Summary Versions are available for download PDF icon Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge PDF icon Summary - Mitigation and Remediation of Mercury Contamination at the Y-12 Plant, Oak Ridge, TN More Documents & Publications Remediation of

  6. Superfund record of decision (EPA Region 9): Newmark Groundwater Contamination Site, San Bernardino, CA, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-04

    This decision document presents the selected remedial action for the Newmark Operable Unit, Newmark Groundwater Contamination Superfund site. EPA has selected an interim remedy for the Newmark plume of groundwater contamination in the Newmark Groundwater Contamination Superfund Site. This portion of the site cleanup is referred to as the Newmark Operable Unit (OU). The Newmark OU is an interim action focusing on contamination in the undergound water supply in the Bunker Hill Basin of San Bernardino, north and east of the Shandin Hills.

  7. Trace metal levels in sediments of Pearl Harbor (Hawaii)

    SciTech Connect (OSTI)

    Ashwood, T.L.; Olsen, C.R.; Larsen, I.L.; Tamura, T.

    1986-09-01

    This study was conducted to measure the distribution of lead and other trace metals in the sediments of Pearl Harbon (Hawaii) to determine whether paint chips from vessels of the US Navy's Inactive Fleet have affected the environmental quality of Middle Loch. Sediment cores (ranging from 0.5 to 3.0 m long) were collected from Middle Loch near the Naval Inactive Ships Maintenance Facility and in an area of West Loch that is relatively isolated and unaffected by naval operations. Concentrations of copper, lead, and zinc averaged 180 ..mu..g/g, 49 ..mu..g/g, and 272 ..mu..g/g, respectively, in recent Middle Loch sediments. These concentrations are significantly higher than those in either historical Middle Loch sediments or recent West Loch sediments. However, except for lead, the concentrations in recent Middle Loch sediments are similar to those of older Middle Loch sediments, which indicates that the increase in trace metal contamination began before the onset of Inactive Fleet operations (about 1946). Increased trace metal levels in recent Middle Loch sediments might be expected to result from two potential sources: (1) sewage discharges and (2) paint from inactive vessels. Since paint contains elevated levels of lead and zinc but little copper, the elevated copper levels in Middle Loch sediments tend to implicate sewage as the source of trace metal contamination. Moreover, the lead:zinc ratio of recent Middle Loch sediments (0.18:1) is a factor of 10 lower than that measured in paint (2.1:1), and the Middle Loch lead:zinc ratio is not significantly greater than that measured in recent West Loch sediments (0.21:1). Hence, we suggest that sewage rather than paint is the major source of trace metal contamination of Middle Loch. This is consistent with the findings of a previous study by US navy personnel.

  8. Preliminary Results of Cleaning Process for Lubricant Contamination

    SciTech Connect (OSTI)

    Eisenmann, D.; Brasche, L.; Lopez, R.

    2006-03-06

    Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented.

  9. Composition suitable for decontaminating a porous surface contaminated with cesium

    DOE Patents [OSTI]

    Kaminski, Michael D.; Finck, Martha R.; Mertz, Carol J.

    2010-06-15

    A method of decontaminating porous surfaces contaminated with water soluble radionuclides by contacting the contaminated porous surfaces with an ionic solution capable of solubilizing radionuclides present in the porous surfaces followed by contacting the solubilized radionuclides with a gel containing a radionuclide chelator to bind the radionuclides to the gel, and physically removing the gel from the porous surfaces. A dry mix is also disclosed of a cross-linked ionic polymer salt, a linear ionic polymer salt, a radionuclide chelator, and a gel formation controller present in the range of from 0% to about 40% by weight of the dry mix, wherein the ionic polymer salts are granular and the non cross-linked ionic polymer salt is present as a minor constituent.

  10. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    SciTech Connect (OSTI)

    Storey, John Morse; Theiss, Timothy J; Kass, Michael D; FINNEY, Charles E A; Lewis, Samuel; Kaul, Brian C; Besmann, Theodore M; Thomas, John F; Rogers, Hiram; Sepaniak, Michael

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  11. Apparatus for in situ cleaning of carbon contaminated surfaces

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel

    2004-08-10

    Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled.

  12. A comprehensive analysis of contaminant transport in the vadose zone beneath tank SX-109

    SciTech Connect (OSTI)

    Ward, A.L.; Gee, G.W.; White, M.D.

    1997-02-01

    The Vadose Zone Characterization Project is currently investigating the subsurface distribution of gamma-emitting radionuclides in S and SX Waste Management Area (WMA-S-SX) located in the 200 West Area of the US Department of Energy`s Hanford Site in southeastern Washington State. Spectral-gamma logging of boreholes has detected elevated {sup 137}Cs concentrations as deep as 38 m, a depth considered excessive based on the assumed geochemistry of {sup 137}Cs in Hanford sediments. Routine groundwater sampling under the Resource Conservation and Recovery Act (RCRA) have also detected elevated levels of site-specific contaminants downgradient of WMA-S-SX. The objective of this report is to explore the processes controlling the migration of {sup 137}Cs, {sup 99}Tc, and NO{sub 3} through the vadose zone of WMA-S-SX, particularly beneath tank SX-109.

  13. Liquid level detector

    DOE Patents [OSTI]

    Tshishiku, Eugene M. (Augusta, GA)

    2011-08-09

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  14. Switch wear leveling

    DOE Patents [OSTI]

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2015-09-01

    An apparatus for switch wear leveling includes a switching module that controls switching for two or more pairs of switches in a switching power converter. The switching module controls switches based on a duty cycle control technique and closes and opens each switch in a switching sequence. The pairs of switches connect to a positive and negative terminal of a DC voltage source. For a first switching sequence a first switch of a pair of switches has a higher switching power loss than a second switch of the pair of switches. The apparatus includes a switch rotation module that changes the switching sequence of the two or more pairs of switches from the first switching sequence to a second switching sequence. The second switch of a pair of switches has a higher switching power loss than the first switch of the pair of switches during the second switching sequence.

  15. Global samples from nuclear contamination sites reveal unpredicted uranium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and plutonium behavior Global samples reveal unpredicted uranium and plutonium behavior Global samples from nuclear contamination sites reveal unpredicted uranium and plutonium behavior Knowing how a chemical in soil reacts and transforms over time in response to neighboring elements, weather and heat is essential in determining whether that chemical is hazardous. June 15, 2015 Workers on a cleanup site at DOE's Hanford Site in southeastern Washington State, one of several sites sampled for

  16. Method for removing oxide contamination from titanium diboride powder

    DOE Patents [OSTI]

    Brynestad, Jorulf (Oak Ridge, TN); Bamberger, Carlos E. (Oak Ridge, TN)

    1984-01-01

    A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB.sub.2 powders with a gaseous boron halide, such as BCl.sub.3, at temperatures in the range of 500.degree.-800.degree. C. The BCl.sub.3 reacts with the oxides to form volatile species which are removed by the BCl.sub.3 exit stream.

  17. EPA, NREL Partner to Develop Renewable Energy on Potentially Contaminated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sites - News Releases | NREL EPA, NREL Partner to Develop Renewable Energy on Potentially Contaminated Sites Clean Energy Project Aims to Benefit Local Economies and Create Jobs February 23, 2010 The U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) are evaluating the feasibility of developing renewable energy production on Superfund, brownfields, and former landfill or mining sites. Superfund sites are the most

  18. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  19. Hanford's "Mother lode" of chromium contamination is cleaned up |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hanford's "Mother lode" of chromium contamination is cleaned up Hanford's "Mother lode" of chromium contamination is cleaned up Addthis Description Hanford's "Mother lode" of chromium contamination is cleaned up

  20. Final Report for DUSEL R&D: BetaCage: A Screener of Ultra-Low-Level Radioactive Surface Contamination

    SciTech Connect (OSTI)

    Golwala, Sunil R.

    2013-12-20

    The eventual full-size, radiopure BetaCage will be a low-background, atmospheric-pressure neon drift chamber with unprecedented sensitivity to emitters of low-energy electrons and alpha particles. We expect that the prototype BetaCage already developed will be an excellent screener of alpha particles. Both the prototype and final BetaCage will provide new infrastructure for rare-event science.

  1. Waste Contaminants at Military Bases Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-04

    The Waste Contaminants at Military Bases Working Group has screened six prospective demonstration projects for consideration by the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT). These projects include the Kirtland Air Force Base Demonstration Project, the March Air Force Base Demonstration Project, the McClellan Air Force Base Demonstration Project, the Williams Air Force Base Demonstration Project, and two demonstration projects under the Air Force Center for Environmental Excellence. A seventh project (Port Hueneme Naval Construction Battalion Center) was added to list of prospective demonstrations after the September 1993 Working Group Meeting. This demonstration project has not been screened by the working group. Two additional Air Force remediation programs are also under consideration and are described in Section 6 of this document. The following information on prospective demonstrations was collected by the Waste Contaminants at Military Bases Working Group to assist the DOIT Committee in making Phase 1 Demonstration Project recommendations. The remainder of this report is organized into seven sections: Work Group Charter`s mission and vision; contamination problems, current technology limitations, and institutional and regulatory barriers to technology development and commercialization, and work force issues; screening process for initial Phase 1 demonstration technologies and sites; demonstration descriptions -- good matches;demonstration descriptions -- close matches; additional candidate demonstration projects; and next steps.

  2. In situ recycling of contaminated soil uses bioremediation

    SciTech Connect (OSTI)

    Shevlin, P.J.; Reel, D.A.

    1996-04-01

    OxyChem Pipeline Operations, primarily an ethylene and propylene products mover, has determined that substantial savings can be realized by adopting a bioremediation maintenance and recycling approach to hydrocarbon-contaminated soil. By this method, the soil can be recycled in situ, or in containers. To implement the soil-recycling program, OxyChem elected to use a soil remediator and natural absorbent product, Oil Snapper. This field maintenance material, based on an Enhanced Urea Technology, provides a diet to stimulate the growth of hydrocarbon-eating microbes. It works well either with indigenous soil microbes or with commercial microbes. The product is carried in field vehicles, which makes it immediately available when leaks or spills are discovered. Procedure for clean-up is to apply product and mix it into affected soil. Thus the contaminant is contained, preventing further migration; the contaminant is dispersed throughout the product, making it more accessible to the microbes; nutrients are immediately available to the microbes; and the material contributes aeration and moisture-retention properties.

  3. Tritium contamination and decontamination of sealing oil for vacuum pump

    SciTech Connect (OSTI)

    Takeishi, T.; Kotoh, K.; Kawabata, Y.; Tanaka, J.I.; Kawamura, S.; Iwata, M.

    2015-03-15

    The existence of tritium-contaminated oils from vacuum pumps used in tritium facilities, is becoming an important issue since there is no disposal way for tritiated waste oils. On recovery of tritiated water vapor in gas streams, it is well-known that the isotope exchange reaction between the gas phase and the liquid phase occurs effectively at room temperature. We have carried out experiments using bubbles to examine the tritium contamination and decontamination of a volume of rotary-vacuum-pump oil. The contamination of the pump oil was made by bubbling tritiated water vapor and tritiated hydrogen gas into the oil. Subsequently the decontamination was processed by bubbling pure water vapor and dry argon gas into the tritiated oil. Results show that the water vapor bubbling was more effective than dry argon gas. The experiment also shows that the water vapor bubbling in an oil bottle can remove and transfer tritium efficiently from the tritiated oil into another water-bubbling bottle.

  4. Contaminant plumes containment and remediation focus area. Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs.

  5. Proceedings of the Radionuclide Contamination in Water Resources Workshop

    SciTech Connect (OSTI)

    Richardson, J H; Duisebayev, B; Janecky, D R; Knapp, R; Rosenburg, N D; Smith, D K; Tompson, A F B; Tyupkina, O; Veselov, V V

    2001-07-26

    A workshop entitled ''Radionuclide Contamination in Water Resources'' was held in Almaty, Kazakhstan from Tuesday 29 May through Friday 1 June. This workshop was co-sponsored by the U.S. Department of Energy, Lawrence Livermore National Laboratory, and three organizations from the Republic of Kazakhstan: the Institute of Nonproliferation, the Institute of Hydrogeology and Hydrophysics, and KazAtomProm. Representatives from the U.S. Department of Energy, three national laboratories, and 13 different organizations from the Republic of Kazakhstan attended the workshop. A complete list of attendees, the workshop program, and information on the background and motivation for this workshop are provided in this report. The objective of the workshop was to identify critical problems, discover what is known about the problems related to radionuclide contamination of groundwater resources, form collaborative teams, and produce a small number proposals that both address further characterization and assess risk via contaminant fate and transport modeling. We plan to present these proposals to U.S. government agencies and international sponsors for funding.

  6. Contamination and purification of alkaline gas treating solutions

    SciTech Connect (OSTI)

    McCullough, J.G. [Proton Technology Ltd., Hawthorne, NY (United States); Nielsen, R.B. [Fluor Daniel, Inc., Irvine, CA (United States)

    1996-08-01

    Alkanolamine and potassium carbonate solutions in gas treating units removing carbon dioxide, hydrogen sulfide, or both are contaminated by impurities in the feed gases and makeup water and by the products of the degradation and oxidation of amines occurring in the units themselves. Feed gas impurities include oxygen, carbonyl sulfide, carbon monoxide, hydrogen cyanide, ammonia, brine, solid particles, heavy hydrocarbons, sulfur dioxide, hydrochloric acid, organic acids, and pipeline corrosion inhibitors. Impure makeup water contains sulfate, chloride, alkali metal, and alkaline earth ions (hardness). Reactions causing contamination in the units include oxidation of hydrogen sulfide to sulfate and thiosulfate, oxidation of amines to formic acid and other products, and degradation of amines by carbon dioxide. The resulting heat-stable salts and polymers reduce the gas absorbing capacity of alkanolamine solutions and increase their corrosiveness. Similar problems occur in potassium carbonate solutions, except that degradation products of amine activators are too dilute to be harmful. Contaminants are removed by inlet gas separation, charcoal and mechanical filtration, neutralization of heat-stable salts, reclaiming at both atmospheric and reduced pressure, upstream washing of the feed gas, electrodialysis, use of antioxidants, ion exchange, and blowdown and dumping of the solution.

  7. Reactor surface contamination stabilization. Innovative technology summary report

    SciTech Connect (OSTI)

    1998-11-01

    Contaminated surfaces, such as the face of a nuclear reactor, need to be stabilized (fixed) to avoid airborne contamination during decontamination and decommissioning activities, and to prepare for interim safe storage. The traditional (baseline) method of fixing the contamination has been to spray a coating on the surfaces, but ensuring complete coverage over complex shapes, such as nozzles and hoses, is difficult. The Hanford Site C Reactor Technology Demonstration Group demonstrated innovative technologies to assess stabilization properties of various coatings and to achieve complete coverage of complex surfaces on the reactor face. This demonstration was conducted in two phases: the first phase consisted of a series of laboratory assessments of various stabilization coatings on metal coupons. For the second phase, coatings that passed the laboratory tests were applied to the front face of the C Reactor and evaluated. The baseline coating (Rust-Oleum No. 769) and one of the innovative technologies did not completely cover nozzle assemblies on the reactor face, the most critical of the second-phase evaluation criteria. However, one of the innovative coating systems, consisting of a base layer of foam covered by an outer layer of a polymeric film, was successful. The baseline technology would cost approximately 33% as much as the innovative technology cost of $64,000 to stabilize an entire reactor face (196 m{sup 2} or 2116 ft{sup 2}) with 2,004 nozzle assemblies, but the baseline system failed to provide complete surface coverage.

  8. Room at the Mountain: Estimated Maximum Amounts of Commercial Spent Nuclear Fuel Capable of Disposal in a Yucca Mountain Repository

    SciTech Connect (OSTI)

    Kessler, John H. [Electric Power Research Institute - EPRI, 3420 Hillview Avenue, Palo Alto, California 94304 (United States); Kemeny, John [University of Arizona, Tucson AZ 85721 (United States); King, Fraser [Integrity Corrosion Consulting, Ltd., 6732 Silverview Drive NW, Calgary, Alberta (Canada); Ross, Alan M. [Alan M. Ross and Associates, 1061 Gray Fox Circle Pleasanton, CA 94566 (Canada); Ross, Benjamen [Disposal Safety, Inc., Bethesda, MD 20814 (United States)

    2006-07-01

    The purpose of this paper is to present an initial analysis of the maximum amount of commercial spent nuclear fuel (CSNF) that could be emplaced into a geological repository at Yucca Mountain. This analysis identifies and uses programmatic, material, and geological constraints and factors that affect this estimation of maximum amount of CSNF for disposal. The conclusion of this initial analysis is that the current legislative limit on Yucca Mountain disposal capacity, 63,000 MTHM of CSNF, is a small fraction of the available physical capacity of the Yucca Mountain system assuming the current high-temperature operating mode (HTOM) design. EPRI is confident that at least four times the legislative limit for CSNF ({approx}260,000 MTHM) can be emplaced in the Yucca Mountain system. It is possible that with additional site characterization, upwards of nine times the legislative limit ({approx}570,000 MTHM) could be emplaced. (authors)

  9. Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    SciTech Connect (OSTI)

    Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; /Lisbon, IST /Boskovic Inst., Zagreb

    2010-02-01

    We describe the measurement of the depth of maximum, X{sub max}, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10{sup 18} eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106{sub -21}{sup +35}) g/cm{sup 2}/decade below 10{sup 18.24 {+-} 0.05}eV, and (24 {+-} 3) g/cm{sup 2}/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm{sup 2}. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

  10. Proposed sale of radioactively contaminated nickel ingots located at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1995-10-01

    The U.S. Department of Energy (DOE) proposes to sell 8,500 radioactively contaminated nickel ingots (9.350 short tons), currently in open storage at the Paducah Gaseous Diffusion Plant (PGDP), to Scientific Ecology Group, Inc. (SEG) for decontamination and resale on the international market. SEG would take ownership of the ingots when they are loaded for transport by truck to its facility in Oak Ridge, Tennessee. SEG would receive approximately 200 short tons per month over approximately 48 months (an average of 180 ingots per month). The nickel decontamination process specified in SEG`s technical proposal is considered the best available technology and has been demonstrated in prototype at SEG. The resultant metal for resale would have contamination levels between 0.3 and 20 becquerel per gram (Bq/g). The health hazards associated with release of the decontaminated nickel are minimal. The activity concentration of the end product would be further reduced when the nickel is combined with other metals to make stainless steel. Low-level radioactive waste from the SEG decontamination process, estimated to be approximately 382 m{sup 3} (12,730 ft), would be shipped to a licensed commercial or DOE disposal facility. If the waste were packaged in 0.23 m{sup 3}-(7.5 ft{sup 3}-) capacity drums, approximately 1,500 to 1,900 drums would be transported over the 48-month contract period. Impacts from the construction of decontamination facilities and the selected site are minimal.

  11. Test report on the Abacus 30 kW bimode{reg_sign} inverter and maximum power tracker (MPT)

    SciTech Connect (OSTI)

    Bonn, R.; Ginn, J.; Zirzow, J.

    1995-06-01

    Sandia National Laboratories conducts the photovoltaic balance of systems (BOS) program, which is sponsored by the US Department of Energy`s Office of Energy Management. Under this program, SNL lets commercialization contracts and conducts a laboratory program designed to advance BOS technology, improve BOS component reliability, and reduce the BOS life-cycle-cost. This report details the testing of the first large US manufactured hybrid inverter and its associated maximum power tracker.

  12. Frontiers in Assessing the Role of Chemical Speciation And Natural Attenuation on the Bioavailability of Contaminants in the Terrestrial Environment

    SciTech Connect (OSTI)

    Gerson, A.R.; Anastasio, C.; Crowe, S.; Fowle, D.; Guo, B.; Kennedy, I.; Lombi, E.; Nico, P.S.; Marcus, M.A.; Martin, R.R.; Naftel, S.J.; Nelson, A.J.; Paktunc, D.; Roberts, J.A.; Weisener, C.G.; Werner, M.L.

    2009-05-28

    It has long been recognized that contaminants interact with the solid soil phase via a series of sorption-desorption (all chemicals) and precipitation-dissolution (polar and ionic compounds) reactions including physical migration into micropores and diffusion into the solid phase (see Chapter 2). Until recently the extent of such interactions and the binding with different solid pools was established via a series of chemical extractions (see Chapter 20) and a combination of instrumental techniques. However, none of these techniques provide a true indication of the speciation of contaminants on or in solid minerals and organics. The last decade has witnessed the emergence of tools that provide an assessment of the speciation and attenuation of chemicals at molecular level. In this chapter we provide an overview of the current state-of-the-art for assessing speciation and attenuation of contaminants in the terrestrial environment. Given that speciation and attenuation influence chemical bioavailability, we devote part of this chapter to the application of isotopic dilution techniques to bioavailability assessment. We have not attempted to be exhaustive but rather to highlight a number of studies in sufficient detail so that the reader will be provided with an insight as to whether such approaches are applicable to their field of endeavor and what the realistic outcomes might be.

  13. Corrective Action Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    D. L. Gustafason

    2001-02-01

    This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order of 1996. This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 2000). The CAU includes two Corrective Action Sites (CASs): 25-23-09, Contaminated Waste Dump Number 1; and 25-23-03, Contaminated Waste Dump Number 2. Investigation of CAU 143 was conducted in 1999. Analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine constituents of concern for CAU 143. Radionuclide concentrations in disposal pit soil samples associated with the Reactor Maintenance, Assembly, and Disassembly Facility West Trenches, the Reactor Maintenance, Assembly, and Disassembly Facility East Trestle Pit, and the Engine Maintenance, Assembly, and Disassembly Facility Trench are greater than normal background concentrations. These constituents are identified as constituents of concern for their respective CASs. Closure-in-place with administrative controls involves use restrictions to minimize access and prevent unauthorized intrusive activities, earthwork to fill depressions to original grade, placing additional clean cover material over the previously filled portion of some of the trenches, and placing secondary or diversion berm around pertinent areas to divert storm water run-on potential.

  14. Fluorine contamination in yttrium-doped barium zirconate film deposited by atomic layer deposition

    SciTech Connect (OSTI)

    An Jihwan; Beom Kim, Young; Sun Park, Joong; Hyung Shim, Joon; Guer, Turgut M.; Prinz, Fritz B.

    2012-01-15

    The authors have investigated the change of chemical composition, crystallinity, and ionic conductivity in fluorine contaminated yttrium-doped barium zirconate (BYZ) fabricated by atomic layer deposition (ALD). It has been identified that fluorine contamination can significantly affect the conductivity of the ALD BYZ. The authors have also successfully established the relationship between process temperature and contamination and the source of fluorine contamination, which was the perfluoroelastomer O-ring used for vacuum sealing. The total removal of fluorine contamination was achieved by using all-metal sealed chamber instead of O-ring seals.

  15. Maximum mass of stable magnetized highly super-Chandrasekhar white dwarfs: stable solutions with varying magnetic fields

    SciTech Connect (OSTI)

    Das, Upasana; Mukhopadhyay, Banibrata E-mail: bm@physics.iisc.ernet.in

    2014-06-01

    We address the issue of stability of recently proposed significantly super-Chandrasekhar white dwarfs. We present stable solutions of magnetostatic equilibrium models for super-Chandrasekhar white dwarfs pertaining to various magnetic field profiles. This has been obtained by self-consistently including the effects of the magnetic pressure gradient and total magnetic density in a general relativistic framework. We estimate that the maximum stable mass of magnetized white dwarfs could be more than 3 solar mass. This is very useful to explain peculiar, overluminous type Ia supernovae which do not conform to the traditional Chandrasekhar mass-limit.

  16. Process for minimizing solids contamination of liquids from coal pyrolysis

    DOE Patents [OSTI]

    Wickstrom, Gary H. (Yorba Linda, CA); Knell, Everett W. (Los Alamitos, CA); Shaw, Benjamin W. (Costa Mesa, CA); Wang, Yue G. (West Covina, CA)

    1981-04-21

    In a continuous process for recovery of liquid hydrocarbons from a solid carbonaceous material by pyrolysis of the carbonaceous material in the presence of a particulate source of heat, particulate contamination of the liquid hydrocarbons is minimized. This is accomplished by removing fines from the solid carbonaceous material feed stream before pyrolysis, removing fines from the particulate source of heat before combining it with the carbonaceous material to effect pyrolysis of the carbonaceous material, and providing a coarse fraction of reduced fines content of the carbon containing solid residue resulting from the pyrolysis of the carbonaceous material before oxidizing carbon in the carbon containing solid residue to form the particulate source of heat.

  17. Metal resistant plants and phytoremediation of environmental contamination

    DOE Patents [OSTI]

    Meagher, Richard B.; Li, Yujing; Dhankher, Om P.

    2010-04-20

    The present disclosure provides a method of producing transgenic plants which are resistant to at least one metal ion by transforming the plant with a recombinant DNA comprising a nucleic acid encoding a bacterial arsenic reductase under the control of a plant expressible promoter, and a nucleic acid encoding a nucleotide sequence encoding a phytochelatin biosynthetic enzyme under the control of a plant expressible promoter. The invention also relates a method of phytoremediation of a contaminated site by growing in the site a transgenic plant expressing a nucleic acid encoding a bacterial arsenate reductase and a nucleic acid encoding a phytochelatin biosynthetic enzyme.

  18. Electrowinning process with electrode compartment to avoid contamination of electrolyte

    DOE Patents [OSTI]

    Poa, Davis S. (Naperville, IL); Pierce, R. Dean (Naperville, IL); Mulcahey, Thomas P. (Downers Grove, IL); Johnson, Gerald K. (Downers Grove, IL)

    1993-01-01

    An electrolytic process and apparatus for reducing calcium oxide in a molten electrolyte of CaCl.sub.2 -CaF.sub.2 with a graphite anode in which particles or other contamination from the anode is restricted by the use of a porous barrier in the form of a basket surrounding the anode which may be removed from the electrolyte to burn the graphite particles, and wherein the calcium oxide feed is introduced to the anode compartment to increase the oxygen ion concentration at the anode.

  19. Control contaminants in olefin feedstocks and products. Part 2

    SciTech Connect (OSTI)

    Reid, J.A.; McPhaul, D.R. [Stone and Webster Engineering Corp., Houston, TX (United States)

    1996-09-01

    Impurities in polymer feedstocks affect new, site-specific, third-generation catalysts. To increase productivity and to manufacture value-added resins, polymer operators are using newer polymerization processes and subsequently converting to site-specific catalysts. Consequently, olefin producers must offer feedstocks that are nearly contaminant-free. An overview of innovative removal systems shows how to cost-effectively clean up process streams. The paper describes impurity removal systems for acetylene, CO{sub 2}, CO, H{sub 2}, CH{sub 4}, ethane in ethylene, and ethylene in propylene. It also discusses specific poisons to catalysts: ammonia, arsine, phosphine, and carbonyl sulfide.

  20. Webinar: NREL's Fuel Cell Contaminant Database | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    NREL's Fuel Cell Contaminant Database," originally presented on May 27, 2014. In addition to this text version of the audio, you can access the presentation slides. Alli Aman: I'm just going to go through a few housekeeping items before I turn it over to today's speaker. Today's webinar is being recorded. So a recording along with slides will be posted to our website in about 10 days. I will send an email out once those have posted to our website but I definitely encourage you to check

  1. Bat groundwater monitoring system in contaminant studies. Doctoral thesis

    SciTech Connect (OSTI)

    Mines, B.S.

    1992-01-01

    The purpose of this study is to provide an in-depth, comprehensive study to compare results from the BAT probe and Teflon bailers from nearby monitoring wells. Volatile organic compounds are typically the most difficult contaminants to sample. The research was performed by taking samples within a small radius around monitoring wells at two leaking underground storage tank sites and taking bailer samples from the monitoring wells. BAT sampling will also be performed inside the monitoring wells to ensure basically the same water is being sampled.

  2. Method and apparatus for controlling cross contamination of microfluid channels

    DOE Patents [OSTI]

    Hasselbrink, Jr., Ernest F. (Walnut Creek, CA); Rehm, Jason E. (Alameda, CA); Paul, Phillip H. (Livermore, CA); Arnold, Don W. (Livermore, CA)

    2006-02-07

    A method for controlling fluid flow at junctions in microchannel systems. Control of fluid flow is accomplished generally by providing increased resistance to electric-field and pressure-driven flow in the form of regions of reduced effective cross-sectional area within the microchannels and proximate a channel junction. By controlling these flows in the region of a microchannel junction it is possible to eliminate sample dispersion and cross contamination and inject well-defined volumes of fluid from one channel to another.

  3. RESULTS FOR THE FIRST QUARTER 2012 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    SciTech Connect (OSTI)

    Bannochie, C.

    2012-06-06

    This report details the chemical and radionuclide contaminant results for the characterization of the 2012 First Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Waste Solidification Engineering (WSE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this memorandum: (1) The concentrations of the reported chemical and radioactive contaminants were less than their respective WAC targets or limits unless noted in this section; (2) The reported detection limit for {sup 94}Nb is above the requested limit from Reference 2 but below the estimated limit in Reference 3; (3) {sup 247}Cm and {sup 249}Cf are above the requested limits from Reference 2. however, they are below the limits established in Reference 3; (4) The reported detection limit for Norpar 13 is greater than the limit from Table 4 and Attachment 8.2 of the WAC; (5) The reported detection limit for Isopar L is greater than the limit from Table 3 of the WAC; (6) Isopar L and Norpar 13 have limited solubility in aqueous solutions making it difficult to obtain consistent and reliable sub-samples, the values reported in this report are the concentrations in the sub-sample as detected by the instrument; however, the results may not accurately represent the concentrations of the analytes in Tank 50; and (7) The low insoluble solids content increases the measurement uncertainty for insoluble species.

  4. RESULTS FOR THE THIRD QUARTER 2010 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    SciTech Connect (OSTI)

    Reigel, M.; Bibler, N.

    2010-12-09

    This report details the chemical and radionuclide contaminant results for the characterization of the 2010 Third Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Liquid Waste Operations (LWO) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: (i) The concentrations of the reported chemical and radioactive contaminants were less than their respective WAC targets or limits unless noted in this section. (ii) The reported detection limits for {sup 94}Nb, {sup 247}Cm and {sup 249}Cf are above the requested limits from Reference 4. However, they are below the limits established in Reference 3. (iii) The reported detection limit for {sup 242m}Am is greater than the requested limit from Attachment 8.4 of the WAC. (iv) The reported detection limit for Isopar L is greater than the limit from Table 3 of the WAC. (v) The reported concentration of Isopropanol is greater than the limit from Table 4 of the WAC. (vi) Isopar L and Norpar 13 have limited solubility in aqueous solutions making it difficult to obtain consistent and reliable sub-samples. The values reported in this memo are the concentrations in the sub-sample as detected by the GC/MS; however, the results may not accurately represent the concentrations of the analytes in Tank 50.

  5. RESULTS FOR THE SECOND QUARTER 2010 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    SciTech Connect (OSTI)

    Reigel, M.; Bibler, N.

    2010-08-04

    This report details the chemical and radionuclide contaminant results for the characterization of the 2010 Second Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC).1 Information from this characterization will be used by Liquid Waste Operations (LWO) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: (1) The concentrations of the reported chemical and radioactive contaminants were less than their respective WAC targets or limits unless noted in this section. (2) The reported detection limits for {sup 94}Nb and {sup 144}Ce are above both the established and requested limits from References 4 and 6. (3) The reported detection limits for {sup 247}Cm and {sup 249}Cf are above the requested limits from Reference 4. However, they are below the limits established in Reference 6. (4) The reported detection limit for Isopar L is greater than the limit from Table 3 of the WAC. (5) A measurable concentration of Norpar 13 is present in the sample. The reported concentration is greater than the requested limit from Table 4 and Attachment 8.2 of the WAC. (6) Isopar L and Norpar 13 have limited solubility in aqueous solutions making it difficult to obtain consistent and reliable sub-samples. The values reported in this memo are the concentrations in the sub-sample as detected by the GC/MS; however, the results may not accurately represent the concentrations of the analytes in Tank 50. (7) The detection limit for isopropanol has been lowered from 0.5 mg/L to 0.25 mg/L{sup 7}. This revised limit now satisfies the limit in Table 4 of the WAC.

  6. RESULTS FOR THE FIRST QUARTER 2010 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    SciTech Connect (OSTI)

    Reigel, M.; Bibler, N.

    2010-05-05

    This report details the chemical and radionuclide contaminant results for the characterization of the 2010 First Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Liquid Waste Operations (LWO) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: (1) The concentrations of the reported chemical and radioactive contaminants were less than their respective WAC targets or limits unless noted in this section. (2) The reported detection limit for Isopar L is greater than the limit from Table 3 of the WAC. (3) The reported detection limits for {sup 59}Ni and {sup 94}Nb are above the requested limits from Reference 4. However, they are each below the limits established in Reference 6. (4) The reported detection limit for isopropanol is greater than the requested limit from Table 4 of the WAC. (5) The reported detection limits for 247Cm and 249Cf are above the requested limits from Reference 4. However, they are below the limits established in Reference 6. (6) Isopar L and Norpar 13 have limited solubility in aqueous solutions making it difficult to obtain consistent and reliable sub-samples. The values reported in this memo are the concentrations in the sub-sample as detected by the GC/MS; however, the results may not accurately represent the concentrations of the analytes in Tank 50.

  7. RESULTS FOR THE FOURTH QUARTER 2010 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    SciTech Connect (OSTI)

    Reigel, M.

    2011-02-22

    This report details the chemical and radionuclide contaminant results for the characterization of the 2010 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Liquid Waste Operations (LWO) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: (1) The concentrations of the reported chemical and radioactive contaminants were less than their respective WAC targets or limits unless noted in this section. (2) The reported detection limits for {sup 94}Nb, {sup 247}Cm and {sup 249}Cf are above the requested limits from Reference 2. However, they are below the limits established in Reference 3. (3) There is an estimated concentration of trimethylbenzene (2.25 mg/L). This is not a WAC analyte, but it is the first time this organic compound has been detected in a quarterly WAC sample from Tank 50. (4) The reported detection limit for Norpar 13 is greater than the limit from Table 4 and Attachment 8.2 of the WAC. (5) The reported detection limit for Isopar L is greater than the limit from Table 3 of the WAC. (6) Isopar L and Norpar 13 have limited solubility in aqueous solutions making it difficult to obtain consistent and reliable sub-samples. The values reported in this memo are the concentrations in the sub-sample as detected by the GC/MS; however, the results may not accurately represent the concentrations of the analytes in Tank 50.

  8. RESULTS FOR THE FOURTH QUARTER 2013 TANK 50 WAC SLURRY SAMPLE CHEMICAL AND RADIONUCLIDE CONTAMINANTS

    SciTech Connect (OSTI)

    Bannochie, C.

    2014-04-01

    This report details the chemical and radionuclide contaminant results for the characterization of the 2013 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: ? SRR WAC targets or limits were met for all analyzed chemical and radioactive contaminants unless noted in this section. ? {sup 59}Ni, {sup 94}Nb, {sup 247}Cm, {sup 249}Cf, and {sup 251}Cf are above the requested SRR target concentrations. However, they are below the detection limits established by SRNL. ? Norpar 13 and Isopar L have higher detection limits compared with the Saltstone WAC. The data provided in this report is based upon the concentrations in the sub-sample, and due to the limited solubility of these materials in aqueous solution, may not represent the concentrations of the analytes in Tank 50. ? The low insoluble solids content increases the measurement uncertainty for insoluble species. The semivolatile organic analysis (SVOA) method employed in the measurement of Norpar 13 and tributyl phosphate (TBP) has resulted in the erroneous reporting of a variety of small chain alcohols, including 4-methyl-3-hexanol and 5-methyl-3-hexanol, in previous quarterly sample reports. It has now been determined that these alcohols are an artifact of the sample preparation. Further work is being conducted in SRNL to delineate the conditions that produce these alcohols, and these findings will be reported separately.

  9. Results For The Fourth Quarter 2012 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2013-02-05

    This report details the chemical and radionuclide contaminant results for the characterization of the 2012 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC).Information from this characterization will be used by Waste Solidification Engineering (WSE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: The concentration of the reported chemical and radioactive contaminants were less than their respective WAC Limits and Targets, unless noted in this section; Norpar 13 and Isopar L have higher detection limits compared with the Saltstone WAC. The data provided in this report is based upon the concentrations in the sub-sample, and due to the limited solubility in aqueous solution, may not represent the concentrations of the analytes in Tank 50; Diisooctyl adipate (or diisooctyl hexanedioate) and 5-methyl-3-hexanol, plasticizers, were measured at 1.30E+00 mg/L and 3.00E+00 mg/L, respectively, in one of two replicate measurements conducted on an at-depth sample. The organic analysis of the at-depth sample was conducted at the request of SRR. These analytes were below the detection limits for the surface sample; and, The low insoluble solids content increases the measurement uncertainty for insoluble species.

  10. Recycle of contaminated scrap metal, Volume 1. Semi-annual report, September 1993--January 1996

    SciTech Connect (OSTI)

    1996-07-01

    Catalytic Extraction Processing (CEP) has been demonstrated to be a robust, one-step process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. Catalytic Processing Unit (CPU) design models have been validated through experimentation to provide a high degree of confidence in our ability to design a bulk solids CPU for processing DOE wastes. Two commercial CEP facilities have been placed in commission and are currently processing mixed low level wastes. These facilities provide a compelling indication of the maturity, regulatory acceptance, and commercial viability of CEP. In concert with the DOE, Nolten Metal Technology designed a program which would challenge preconceptions of the limitations of waste processing technologies: demonstrate the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal could be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP would concentrate the radionuclides in a durable vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP would convert hazardous organics to valuable industrial gases, which could be used as an energy source; recover volatile heavy metals--that CEP`s off-gas treatment system would capture volatile heavy metals, such as mercury and lead; establish that CEP is economical for processing contaminated scrap metal in the DOE inventory. The execution of this program resulted in all objectives being met. Volume I covers: executive summary; task 1.1 design CEP system; Task 1.2 experimental test plan; Task 1.3 experimental testing.

  11. Recycle of contaminated scrap metal, Volume 2. Semi-annual report, September 1993--January 1996

    SciTech Connect (OSTI)

    1996-07-01

    Catalytic Extraction Processing (CEP) has been demonstrated to be a robust, one-step process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. Catalytic Processing Unit (CPU) design models have been validated through experimentation to provide a high degree of confidence in our ability to design a bulk solids CPU for processing DOE wastes. Two commercial CEP facilities have been placed in commission and are currently processing mixed low level wastes. These facilities provide a compelling indication of the maturity, regulatory acceptance, and commercial viability of CEP. In concert with the DOE, Nolten Metal Technology designed a program which would challenge preconceptions of the limitations of waste processing technologies: demonstrate the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal could be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP would concentrate the radionuclides in a durable vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP would convert hazardous organics to valuable industrial gases, which could be used as an energy source; recover volatile heavy metals--that CEP`s off-gas treatment system would capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory. The execution of this program resulted in all objectives being met. Volume II contains: Task 1.4, optimization of the vitreous phase for stabilization of radioactive species; Task 1.5, experimental testing of Resource Conservation and Recovery Act (RCRA) wastes; and Task 1.6, conceptual design of a CEP facility.

  12. Application of asymptotic expansions for maximum likelihood estimators errors to gravitational waves from binary mergers: The single interferometer case

    SciTech Connect (OSTI)

    Zanolin, M.; Vitale, S.; Makris, N.

    2010-06-15

    In this paper we apply to gravitational waves (GW) from the inspiral phase of binary systems a recently derived frequentist methodology to calculate analytically the error for a maximum likelihood estimate of physical parameters. We use expansions of the covariance and the bias of a maximum likelihood estimate in terms of inverse powers of the signal-to-noise ration (SNR)s where the square root of the first order in the covariance expansion is the Cramer Rao lower bound (CRLB). We evaluate the expansions, for the first time, for GW signals in noises of GW interferometers. The examples are limited to a single, optimally oriented, interferometer. We also compare the error estimates using the first two orders of the expansions with existing numerical Monte Carlo simulations. The first two orders of the covariance allow us to get error predictions closer to what is observed in numerical simulations than the CRLB. The methodology also predicts a necessary SNR to approximate the error with the CRLB and provides new insight on the relationship between waveform properties, SNR, dimension of the parameter space and estimation errors. For example the timing match filtering can achieve the CRLB only if the SNR is larger than the Kurtosis of the gravitational wave spectrum and the necessary SNR is much larger if other physical parameters are also unknown.

  13. Method for removing oxide contamination from silicon carbide powders

    DOE Patents [OSTI]

    Brynestad, J.; Bamberger, C.E.

    1984-08-01

    The described invention is directed to a method for removing oxide contamination in the form of oxygen-containing compounds such as SiO/sub 2/ and B/sub 2/O/sub 3/ from a charge of finely divided silicon carbide. The silicon carbide charge is contacted with a stream of hydrogen fluoride mixed with an inert gas carrier such as argon at a temperature in the range of about 200/sup 0/ to 650/sup 0/C. The oxides in the charge react with the heated hydrogen fluoride to form volatile gaseous fluorides such as SiF/sub 4/ and BF/sub 3/ which pass through the charge along with unreacted hydrogen fluoride and the carrier gas. Any residual gaseous reaction products and hydrogen fluoride remaining in the charge are removed by contacting the charge with the stream of inert gas which also cools the powder to room temperature. The removal of the oxygen contamination by practicing the present method provides silicon carbide powders with desirable pressing and sintering characteristics. 1 tab.

  14. Stabilization and solidification of chromium-contaminated soil

    SciTech Connect (OSTI)

    Cherne, C.A.; Thomson, B.M.; Conway, R.

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

  15. MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    2001-01-01

    Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

  16. Radiation Levels in Real Time?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Levels in Real Time? There's an App for That Gamma radiation levels in the southern Nevada area will soon be accessible around the world at the touch of a finger. Makers of the ...

  17. SCO shipments from Rocky Flats - Experience and current practice [Surface Contaminated Object

    SciTech Connect (OSTI)

    Bracken, Gary; Morris, Robert L.

    2001-01-10

    Decommissioning activities at Rocky Flats Environmental Technology Site (RFETS) are expected to generate approximately 251,000 cubic meters of low-level radioactive waste. Almost half of this will be characterized and shipped as the Department of Transportation ''Surface Contaminated Object'' (SCO) shipping class. In the 2 years since an SCO characterization method was implemented, almost 11,000 of the 18,000 cubic meters of low-level waste were SCO. RFETS experience to-date using an SCO waste characterization method has shown significant time and cost savings, reduced errors, and enhanced employee safety. SCO waste is characterized prior to packaging, near the point of generation, by any of the site's 300 Radiological Control Technicians using inexpensive radiological control survey instruments. This reduces on-site waste container moves and eliminates radiometric analysis at centrally located drum or crate counters. Containers too large for crate counters can also be characterized. Current instrumentation is not adequate to take full advantage of the SCO regulations. Future improvements in the SCO characterization and shipping process are focused on use of larger and/or reusable containers, extended-range instruments, and additional statistical methods, so that the full extent of the SCO regulations can be used.

  18. CHANGING THE LANDSCAPE--LOW-TECH SOLUTIONS TO THE PADUCAH SCRAP METAL REMOVAL PROJECT ARE PROVIDING SAFE, COST-EFFECTIVE REMEDIATION OF CONTAMINATED SCRAP YARDS

    SciTech Connect (OSTI)

    Watson, Dan; Eyman, Jeff

    2003-02-27

    Between 1974 and 1983, contaminated equipment was removed from the Paducah Gaseous Diffusion Plant (PGDP) process buildings as part of an enrichment process upgrade program. The upgrades consisted of the dismantlement, removal, and on-site storage of contaminated equipment, cell components, and scrap material (e.g., metal) from the cascade facilities. Scrap metal including other materials (e.g., drums, obsolete equipment) not related to this upgrade program have thus far accumulated in nine contiguous radiologically-contaminated and non-contaminated scrap yards covering 1.05E5 m2 (26 acres) located in the northwestern portion of the PGDP. This paper presents the sequencing of field operations and methods used to achieve the safe removal and disposition of over 47,000 tonnes (53,000 tons) of metal and miscellaneous items contained in these yards. The methods of accomplishment consist of mobilization, performing nuclear criticality safety evaluations, moving scrap metal to ground level, inspection and segregation, sampling and characterization, scrap metal sizing, packaging and disposal, and finally demobilization. Preventing the intermingling of characteristically hazardous and non-hazardous wastes promotes waste minimization, allowing for the metal and materials to be segregated into 13 separate waste streams. Low-tech solutions such as using heavy equipment to retrieve, size, and package scrap materials in conjunction with thorough planning that integrates safe work practices, commitment to teamwork, and incorporating lessons learned ensures that field operations will be conducted efficiently and safely.

  19. Specified assurance level sampling procedure

    SciTech Connect (OSTI)

    Willner, O.

    1980-11-01

    In the nuclear industry design specifications for certain quality characteristics require that the final product be inspected by a sampling plan which can demonstrate product conformance to stated assurance levels. The Specified Assurance Level (SAL) Sampling Procedure has been developed to permit the direct selection of attribute sampling plans which can meet commonly used assurance levels. The SAL procedure contains sampling plans which yield the minimum sample size at stated assurance levels. The SAL procedure also provides sampling plans with acceptance numbers ranging from 0 to 10, thus, making available to the user a wide choice of plans all designed to comply with a stated assurance level.

  20. Effect of System and Air Contaminants on PEMFC Performance and Durability |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Effect of System and Air Contaminants on PEMFC Performance and Durability Effect of System and Air Contaminants on PEMFC Performance and Durability Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 PDF icon dinh_nrel_kickoff.pdf More Documents & Publications Balance of Plant (BoP) Components Validation for Fuel Cells The Effect of Airborne Contaminants on Fuel Cell Performance & Durability An Overview of

  1. Taking It from Brown to Green: Renewable Energy on Contaminated Lands |

    Energy Savers [EERE]

    Department of Energy Taking It from Brown to Green: Renewable Energy on Contaminated Lands Taking It from Brown to Green: Renewable Energy on Contaminated Lands This presentation, presented April 22, 2009, covered renewable energy on contaminated sites. Presenters included Otto Van Geet from the National Renewable Energy Laboratory, Brian K. Johnson from the New Mexico Energy Minerals and Natural Resources Department, and Pam Swingle from the U.S. Environmental Protection Agency. PDF icon

  2. The Effect of Airborne Contaminants on Fuel Cell Performance & Durability |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Effect of Airborne Contaminants on Fuel Cell Performance & Durability The Effect of Airborne Contaminants on Fuel Cell Performance & Durability Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 PDF icon rocheleau_uhawaii_kickoff.pdf More Documents & Publications Supporting a Hawaii Hydrogen Economy Effects of Impurities of Fuel Cell Performance and Durability Effect of System and Air Contaminants on

  3. Composition and process for organic and metal contaminant fixation in soil

    DOE Patents [OSTI]

    Schwitzgebel, Klaus (7507 Chimney Corners, Austin, TX 78731)

    1994-02-08

    A method and compositions using a first ferrous iron containing solution with the iron concentration in excess of theoretical requirements to treat a contaminated site to reduce hexavalent chromium to trivalent chromium and coprecipitate trivalent chromium with other heavy metals and using a second solution of silicate containing a destabilizing salt to form a relatively impermeable gel in the contaminated site thereby fixing metals and organics to the extent that there should be no detectable ground water contamination.

  4. Phytoremediation of the Nitrogen-Contaminated Subpile Soil at the Former

    Energy Savers [EERE]

    Uranium Mill Tailings Site in Monument Valley, Arizona, 2004 Status Report | Department of Energy Phytoremediation of the Nitrogen-Contaminated Subpile Soil at the Former Uranium Mill Tailings Site in Monument Valley, Arizona, 2004 Status Report Phytoremediation of the Nitrogen-Contaminated Subpile Soil at the Former Uranium Mill Tailings Site in Monument Valley, Arizona, 2004 Status Report Phytoremediation of the Nitrogen-Contaminated Subpile Soil at the Former Uranium Mill Tailings Site in

  5. Hanford tank residual waste contaminant source terms and release models

    SciTech Connect (OSTI)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael J.; Serne, R. Jeffrey

    2011-08-23

    Residual waste is expected to be left in 177 underground storage tanks after closure at the U.S. Department of Energys Hanford Site in Washington State (USA). In the long term, the residual wastes represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt%, respectively. Aluminum concentrations are high (8.2 to 29.1 wt%) in some tanks (C-103, C-106, and S-112) and relatively low (<1.5 wt%) in other tanks (C-202 and C-203). Gibbsite is a common mineral in tanks with high Al concentrations, while non-crystalline U-Na-C-O-PH phases are common in the U-rich residual wastes from tanks C-202 and C-203. Iron oxides/hydroxides have been identified in all residual waste samples studied to date. Contaminant release from the residual wastes was studied by conducting batch leach tests using distilled deionized water, a Ca(OH)2-saturated solution, or a CaCO3-saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO3-saturated solution than with the Ca(OH)2-saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less leachable (<10 wt% of the available mass in the waste) than previously predicted. This may be due to the coprecipitation of trace concentrations of Tc in relatively insoluble phases such as Fe oxide/hydroxide solids.

  6. Method for minimizing contaminant particle effects in gas-insulated electrical apparatus

    DOE Patents [OSTI]

    Pace, M.O.; Adcock, J.L.; Christophorou, L.G.

    1984-01-01

    Electrical breakdown of a gas insulator in high voltage apparatus is prevented by placing an electrical insulative coating on contaminant particles in the gas insulator.

  7. Electrokinetic removal of charged contaminant species from soil and other media using moderately conductive adsorptive materials

    DOE Patents [OSTI]

    Lindgren, Eric R. (Albuquerque, NM); Mattson, Earl D. (Idaho Falls, ID)

    2001-01-01

    Method for collecting and concentrating charged species, specifically, contaminant species in a medium, preferably soil. The method utilizes electrokinesis to drive contaminant species into and through a bed adjacent to a drive electrode. The bed comprises a moderately electrically conductive adsorbent material which is porous and is infused with water or other solvent capable of conducting electrical current. The bed material, preferably activated carbon, is easily removed and disposed of. Preferably, where activated carbon is used, after contaminant species are collected and concentrated, the mixture of activated carbon and contaminant species is removed and burned to form a stable and easily disposable waste product.

  8. System and method for the identification of radiation in contaminated rooms

    DOE Patents [OSTI]

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2015-09-29

    Devices and methods for the characterization of areas of radiation in contaminated rooms are provided. One such device is a collimator with a collimator shield for reducing noise when measuring radiation. A position determination system is provided that may be used for obtaining position and orientation information of the detector in the contaminated room. A radiation analysis method is included that is capable of determining the amount of radiation intensity present at known locations within the contaminated room. Also, a visual illustration system is provided that may project images onto the physical objects, which may be walls, of the contaminated room in order to identify the location of radioactive materials for decontamination.

  9. Heavy metal movement in metal-contaminated soil profiles

    SciTech Connect (OSTI)

    Li, Zhenbin; Shuman, L.M.

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  10. Radiation Levels in Real Time?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Levels in Real Time? There's an App for That! Gamma radiation levels in the southern Nevada area will soon be accessible around the world at the touch of a finger. Makers of the cell phone application EcoData: Radiation are expanding their global network of radiation monitoring stations to include up-to-date readings from the Community Environmental Monitoring Program (CEMP) based out of southern Nevada. The CEMP was established in 1981 to monitor manmade and natural radiation levels surrounding

  11. Effect of Sea Level Rise

    Broader source: Energy.gov (indexed) [DOE]

    Effect of Sea Level Rise on Energy Infrastructure in Four Major Metropolitan Areas September 2014 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Pilot Study on the Effect of Sea Level Rise on Energy Infrastructure in Four Major Metropolitan Areas August 2014 Effect of Sea Level Rise on Energy Infrastructure in Four Major Metropolitan Areas Office of Electricity Delivery and Energy Reliability U.S. Department of Energy September 2014 i Table of Contents 1.

  12. Guidance Manual for Conducting Screening Level Ecological Risk Assessments at the INEL

    SciTech Connect (OSTI)

    R. L. VanHorn; N. L. Hampton; R. C. Morris

    1995-06-01

    This document presents reference material for conducting screening level ecological risk assessments (SLERAs)for the waste area groups (WAGs) at the Idaho National Engineering Laboratory. Included in this document are discussions of the objectives of and processes for conducting SLERAs. The Environmental Protection Agency ecological risk assessment framework is closely followed. Guidance for site characterization, stressor characterization, ecological effects, pathways of contaminant migration, the conceptual site model, assessment endpoints, measurement endpoints, analysis guidance, and risk characterization are included.

  13. Toxicity of contaminants in lagoons and pannes of the Indiana Dunes National Lakeshore

    SciTech Connect (OSTI)

    Gillespie, R.; Speelman, J. [Indiana Univ.-Purdue Univ., Fort Wayne, IN (United States); Stewart, P.M. [National Biological Service, Porter, IN (United States). Indiana Dunes National Lakeshore

    1995-12-31

    Contaminants in water and sediments of lagoons and pannes were 2--90 times greater at sites adjacent to slag and coal piles than those at reference sites. One site (Lagoon-US5) had sediments with very high concentrations of toxic organics (e.g. naphthalene, phenanthrene, dibenzofuran). Although analyses indicated a gradient of contaminant concentration with distance from their sources, toxicity assays were somewhat equivocal. With the exception of less reproduction in Ceriodaphnia at one lagoon site (US3 = 0.55 of reference), survival of fathead minnows and reproduction in Ceriodaphnia in lagoon and panne waters varied independently of the contaminant concentration. In fact, there was better Ceriodaphnia reproduction in water from two contaminated sites (Lagoon-US5, Panne-WP1) than in water from reference sites. Fathead minnow survival, Ceriodaphnia survival, Ceriodaphnia reproduction, amphipod survival, and amphipod growth varied among sites in toxicity assays with sediments, 100% mortality of fatheads at Lagoon-US5, 100% mortality of Ceriodaphnia at Lagoon-US3, and less survival of fathead minnows at Lagoon-US3 indicate possible toxicity from contaminants in sediments at these sites. Of all organisms and end-points tested, Ceriodaphnia survival seemed to be most closely associated with concentrations of contaminants in lagoon water and sediments. Amphipod survival also varied with contaminants in sediments, however, survival in sediments of contaminated sites ranged only from 0.90--0.93 of reference sites. Although the results are not consistent among organisms, toxicity assays indicate that sediments from the lagoon site with the highest contaminants (Lagoon-US5) and possibly those from another contaminated lagoon site (Lagoon-US3) could be toxic to aquatic organisms. Water and sediments from contaminated panne sites do not appear to be toxic to aquatic test organisms.

  14. Validation of a 4D-PET Maximum Intensity Projection for Delineation of an Internal Target Volume

    SciTech Connect (OSTI)

    Callahan, Jason; Kron, Tomas; Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne ; Schneider-Kolsky, Michal; Dunn, Leon; Thompson, Mick; Siva, Shankar; Aarons, Yolanda; Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne ; Binns, David; Hicks, Rodney J.; Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne

    2013-07-15

    Purpose: The delineation of internal target volumes (ITVs) in radiation therapy of lung tumors is currently performed by use of either free-breathing (FB) {sup 18}F-fluorodeoxyglucose-positron emission tomography-computed tomography (FDG-PET/CT) or 4-dimensional (4D)-CT maximum intensity projection (MIP). In this report we validate the use of 4D-PET-MIP for the delineation of target volumes in both a phantom and in patients. Methods and Materials: A phantom with 3 hollow spheres was prepared surrounded by air then water. The spheres and water background were filled with a mixture of {sup 18}F and radiographic contrast medium. A 4D-PET/CT scan was performed of the phantom while moving in 4 different breathing patterns using a programmable motion device. Nine patients with an FDG-avid lung tumor who underwent FB and 4D-PET/CT and >5 mm of tumor motion were included for analysis. The 3 spheres and patient lesions were contoured by 2 contouring methods (40% of maximum and PET edge) on the FB-PET, FB-CT, 4D-PET, 4D-PET-MIP, and 4D-CT-MIP. The concordance between the different contoured volumes was calculated using a Dice coefficient (DC). The difference in lung tumor volumes between FB-PET and 4D-PET volumes was also measured. Results: The average DC in the phantom using 40% and PET edge, respectively, was lowest for FB-PET/CT (DCAir = 0.72/0.67, DCBackground 0.63/0.62) and highest for 4D-PET/CT-MIP (DCAir = 0.84/0.83, DCBackground = 0.78/0.73). The average DC in the 9 patients using 40% and PET edge, respectively, was also lowest for FB-PET/CT (DC = 0.45/0.44) and highest for 4D-PET/CT-MIP (DC = 0.72/0.73). In the 9 lesions, the target volumes of the FB-PET using 40% and PET edge, respectively, were on average 40% and 45% smaller than the 4D-PET-MIP. Conclusion: A 4D-PET-MIP produces volumes with the highest concordance with 4D-CT-MIP across multiple breathing patterns and lesion sizes in both a phantom and among patients. Freebreathing PET/CT consistently underestimates ITV when compared with 4D PET/CT for a lesion affected by respiration.

  15. Optimizing Metalloporphyrin-Catalyzed Reduction Reactions for In Situ Remediation of DOE Contaminants

    SciTech Connect (OSTI)

    Schlautman, Mark A.

    2013-07-14

    Past activities have resulted in a legacy of contaminated soil and groundwater at Department of Energy facilities nationwide. Uranium and chromium are among the most frequently encountered and highest-priority metal and radionuclide contaminants at DOE installations. Abiotic chemical reduction of uranium and chromium at contaminated DOE sites can be beneficial because the reduced metal species are less soluble in water, less mobile in the environment, and less toxic to humans and ecosystems. Although direct biological reduction has been reported for U(VI) and Cr(VI) in laboratory studies and at some field sites, the reactions can sometimes be slow or even inhibited due to unfavorable environmental conditions. One promising approach for the in-situ remediation of DOE contaminants is to develop electron shuttle catalysts that can be delivered precisely to the specific subsurface locations where contaminants reside. Previous research has shown that reduction of oxidized organic and inorganic contaminants often can be catalyzed by electron shuttle systems. Metalloporphyrins and their derivatives are well known electron shuttles for many biogeochemical systems, and thus were selected to study their catalytic capabilities for the reduction of chromium and uranium in the presence of reducing agents. Zero valent iron (ZVI) was chosen as the primary electron donor in most experimental systems. Research proceeded in three phases and the key findings of each phase are reported here. Phase I examined Cr(VI) reduction and utilized micro- and nano-sized ZVI as the electron donors. Electron shuttle catalysts tested were cobalt- and iron-containing metalloporphyrins and Vitamin B12. To aid in the recycle and reuse of the nano-sized ZVI and soluble catalysts, sol-gels and calcium-alginate gel beads were tested as immobilization/support matrices. Although the nano-sized ZVI could be incorporated within the alginate gel beads, preliminary attempts to trap it in sol-gels were not successful. Conversely, the water-soluble catalysts could be trapped within sol-gel matrices but they tended to leach out of the alginate gel beads during use. In general, immobilization of the nano-sized ZVI in gel beads and of the catalysts in sol-gels tended to result in slower rates of Cr(VI) reduction, but these effects could be overcome to some extent by using higher reactant/catalyst concentrations. In addition, the lowering of their effectiveness would likely be offset by the benefits obtained when recycling and reusing the materials because they were immobilized. Addition of the catalytic electron shuttles will be most useful when the micro-sized or nano-sized ZVI becomes less reactive with reaction time. Continued work in Phase II in the area of nano-sized ZVI immobilization led to procedures that were successful in incorporating the iron particles in sol-gel matrices. The water-soluble reductants sodium dithionite and L-ascorbic acid were also tested, but their use appeared to lead to formation of complexes with the uranyl cation which limited their effectiveness. Also, although the sol-gel supported nano-sized ZVI showed some promise at reducing uranium, the fluoride used in the sol-gel synthesis protocol appeared to lead to formation of uranyl-fluoride complexes that were less reactive. Because hexavalent chromium is an anion which does not form complexes with fluoride, it was used to demonstrate the intrinsic reactivity of the sol-gel immobilized nano-sized ZVI. Consistent with our observations in Phase I, the sol-gel matrix once again slowed down the reduction reaction but the expected benefits of recycle/reuse should outweigh this adverse effect. The major emphasis in Phase III of this study was to simultaneously incorporate nano-sized ZVI and water-soluble catalysts in the same sol-gel matrix. The catalysts utilized were cobalt complexes of uroporphyrin and protoporphyrin and Cr(VI) reduction was used to test the efficacy of the combined "catalyst + reductant" sol-gel matrix. When enough catalyst was added to the sol-gels, enhancement of the Cr(VI) reduction reaction was observed. At the lowest levels of catalyst addition, however, the rates of Cr(VI) reduction were similar to those systems which only used sol-gel immobilized nano-sized ZVI without any catalyst present. These findings suggest future areas of research that should be pursued to further optimize abiotic reduction reactions of metals with combined "catalyst + reductant" matrices.

  16. Proceedings: In Situ Contaminated Sediment Capping Workshop: Cincinnati, Ohio, May 12-14, 2003

    SciTech Connect (OSTI)

    2004-03-01

    The In Situ Contaminated Sediment Capping Workshop was designed to provide the most current information and bring about consensus in understanding of a technology that offers one of the few options for remediation of contaminated sediments. These electronic proceedings document workshop sessions on various capping issues, such as site assessment; cap suitability, performance, and design; site monitoring; and research and development in capping.

  17. Emerging contaminants: Presentations at the 2009 Toxicology and Risk Assessment Conference

    SciTech Connect (OSTI)

    Murnyak, George; Vandenberg, John; Yaroschak, Paul J.; Williams, Larry; Prabhakaran, Krishnan; Hinz, John

    2011-07-15

    A session entitled 'Emerging Contaminants' was held in April 2009 in Cincinnati, OH at the 2009 Toxicology and Risk Assessment Conference. The purpose of the session was to share information on both programmatic and technical aspects associated with emerging contaminants. Emerging contaminants are chemicals or materials that are characterized by a perceived or real threat to human health or environment, a lack of published health standards or an evolving standard. A contaminant may also be 'emerging' because of the discovery of a new source, a new pathway to humans, or a new detection method or technology. The session included five speakers representing the Department of Defense (DoD), the Environmental Protection Agency (EPA), and each of the military services. The DoD created the Emerging Contaminant Directorate to proactively address environmental, health, and safety concerns associated with emerging contaminants. This session described the scan-watch-action list process, impact assessment methodology, and integrated risk management concept that DoD has implemented to manage emerging contaminants. EPA presented emerging trends in health risk assessment. Researchers made technical presentations on the status of some emerging contaminates in the assessment process (i.e. manganese, RDX, and naphthalene).

  18. Bioremediation in oil-contaminated sites: Bacteria and surfactant accelerated remediation

    SciTech Connect (OSTI)

    Strong-Gunderson, J.M.; Guzman, F.

    1996-12-31

    In Mexico, there are several environmental issues which are being addressed under the current governmental legislation. One of the important issues is restoring sites belonging to Petroleos Mexicanos (PEMEX). PEMEX is a large government owned oil company that regulates and manages the oil reserves. These sites are primarily contaminated with weathered hydrocarbons which are a consequence of extracting millions of barrels of oil. Within the southern regions of Mexico there are sites which were contaminated by activities and spills that have occurred during the past 30 years. PEMEX has taken the leadership in correcting environmental problems and is very concerned about cleaning up the contaminated sites as quickly as possible. The most significant contaminated sites are located to the north of Veracruz and south of Tabasco. These site areas are close to refineries or locations of oil exploration. The primary category of contaminants are hydrocarbons, among them asphaltenes, aromatic and other contaminants. The concentration of the contaminants varies depending on the location of the sites, but it can reach as high as 500,000 ppm. PEMEX has been searching for appropriate, and cost-effective technologies to clean up these sites. Biologically based remediation activities are of primary interest to PEMEX. However, other treatment technologies such as chemical-physical methods, encapsulation and incineration are also being considered. The present report summarizes preliminary experiments that measured the feasibility of bioremediation for a contaminated site in southern Mexico.

  19. Application of Maximum Likelihood Bayesian Model Averaging to Groundwater Flow and Transport at the Hanford Site 300 Area

    SciTech Connect (OSTI)

    Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.; Rockhold, Mark L.

    2008-06-01

    A methodology to systematically and quantitatively assess model predictive uncertainty was applied to saturated zone uranium transport at the 300 Area of the U.S. Department of Energy Hanford Site in Washington State, USA. The methodology extends Maximum Likelihood Bayesian Model Averaging (MLBMA) to account jointly for uncertainties due to the conceptual-mathematical basis of models, model parameters, and the scenarios to which the models are applied. Conceptual uncertainty was represented by postulating four alternative models of hydrogeology and uranium adsorption. Parameter uncertainties were represented by estimation covariances resulting from the joint calibration of each model to observed heads and uranium concentration. Posterior model probability was dominated by one model. Results demonstrated the role of model complexity and fidelity to observed system behavior in determining model probabilities, as well as the impact of prior information. Two scenarios representing alternative future behavior of the Columbia River adjacent to the site were considered. Predictive simulations carried out with the calibrated models illustrated the computation of model- and scenario-averaged predictions and how results can be displayed to clearly indicate the individual contributions to predictive uncertainty of the model, parameter, and scenario uncertainties. The application demonstrated the practicability of applying a comprehensive uncertainty assessment to large-scale, detailed groundwater flow and transport modelling.

  20. Influence of surface contamination on the wettability of heat transfer surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng; Dombrowski, David

    2015-08-08

    In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less