Powered by Deep Web Technologies
Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

"Table A52. Nonswitchable Minimum Requirements and Maximum Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonswitchable Minimum Requirements and Maximum Consumption" 2. Nonswitchable Minimum Requirements and Maximum Consumption" " Potential by Census Region, 1991" " (Estimates in Physical Units)" ,,,,"RSE" ,"Actual","Minimum","Maximum","Row" "Type of Energy","Consumption","Consumption(a)","Consumption(b)","Factors" "RSE Column Factors:",1,1.2,0.8 ," Total United States" ,"-","-","-" "Electricity Receipts(c) (million kilowatthours)",718480,701478,766887,2 "Natural Gas (billion cubic feet)",5345,3485,5887,2 "Distillate Fuel Oil (thousand barrels)",23885,19113,201081,3.7 "Residual Fuel Oil (thousand barrels)",65837,36488,201921,2.6

2

Hydraulic HEV Fuel Consumption Potential | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Consumption Potential Hydraulic HEV Fuel Consumption Potential 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

3

Standby electricity consumption and saving potentials of Turkish households  

Science Journals Connector (OSTI)

Abstract The share of the residential sector currently accounts for about 25% of the national electricity consumption in Turkey. Due to increase in household income levels and decrease in the costs of appliances; significant increases in appliance ownerships and residential electricity consumption levels have been observed in recent years. Most domestic appliances continue consuming electricity when they are not performing their primary functions, i.e. at standby mode, which can constitute up 15% of the total household electricity consumption in some countries. Although the demand in Turkish residential electricity consumption is increasing, there are limited studies on the components of the residential electricity consumption and no studies specifically examining the extent and effects of standby electricity consumption using a surveying/measurement methodology. Thus, determining the share of standby electricity consumption in total home electricity use and the ways of reducing it are important issues in residential energy conservation strategies. In this study, surveys and standby power measurements are conducted at 260 households in Ankara, Turkey, to determine the amount, share, and saving potentials of the standby electricity consumption of Turkish homes. The survey is designed to gather information on the appliance properties, lights, electricity consumption behavior, economic and demographics of the occupants, and electricity bills. A total of 1746 appliances with standby power are measured in the surveyed homes. Using the survey and standby power measurements data, the standby, active, and lighting end-use electricity consumptions of the surveyed homes are determined. The average Turkish household standby power and standby electricity consumption are estimated as 22 W and 95 kW h/yr, respectively. It was also found that the standby electricity consumption constitutes 4% of the total electricity consumption in Turkish homes. Two scenarios are then applied to the surveyed homes to determine the potentials in reducing standby electricity consumption of the households.

Mustafa Cagri Sahin; Merih Aydinalp Koksal

2014-01-01T23:59:59.000Z

4

Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector  

SciTech Connect (OSTI)

The US Department of Energy (US DOE) has placed lighting and appliance standards at a very high priority of the U.S. energy policy. However, the maximum energy savings and CO2 emissions reduction achievable via minimum efficiency performance standards (MEPS) has not yet been fully characterized. The Bottom Up Energy Analysis System (BUENAS), first developed in 2007, is a global, generic, and modular tool designed to provide policy makers with estimates of potential impacts resulting from MEPS for a variety of products, at the international and/or regional level. Using the BUENAS framework, we estimated potential national energy savings and CO2 emissions mitigation in the US residential sector that would result from the most aggressive policy foreseeable: standards effective in 2014 set at the current maximum technology (Max Tech) available on the market. This represents the most likely characterization of what can be maximally achieved through MEPS in the US. The authors rely on the latest Technical Support Documents and Analytical Tools published by the U.S. Department of Energy as a source to determine appliance stock turnover and projected efficiency scenarios of what would occur in the absence of policy. In our analysis, national impacts are determined for the following end uses: lighting, television, refrigerator-freezers, central air conditioning, room air conditioning, residential furnaces, and water heating. The analyzed end uses cover approximately 65percent of site energy consumption in the residential sector (50percent of the electricity consumption and 80percent of the natural gas and LPG consumption). This paper uses this BUENAS methodology to calculate that energy savings from Max Tech for the U.S. residential sector products covered in this paper will reach an 18percent reduction in electricity demand compared to the base case and 11percent in Natural Gas and LPG consumption by 2030 The methodology results in reductions in CO2 emissions of a similar magnitude.

Letschert, Virginie; Desroches, Louis-Benoit; McNeil, Michael; Saheb, Yamina

2010-05-03T23:59:59.000Z

5

Estimating the maximum potential revenue for grid connected electricity storage : arbitrage and regulation.  

SciTech Connect (OSTI)

The valuation of an electricity storage device is based on the expected future cash ow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the maximum potential revenue benchmark. We conclude with a sensitivity analysis with respect to key parameters.

Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

2012-12-01T23:59:59.000Z

6

The wind potential impact on the maximum wind energy penetration in autonomous electrical grids  

Science Journals Connector (OSTI)

According to long-term wind speed measurements the Aegean Archipelago possesses excellent wind potential, hence properly designed wind energy applications can substantially contribute to fulfill the energy requirements of the island societies. On top of this, in most islands the electricity production cost is extremely high, while significant insufficient power supply problems are often encountered, especially during the summer. Unfortunately, the stochastic behaviour of the wind and the important fluctuations of daily and seasonal electricity load pose a strict penetration limit for the contribution of wind energy in the corresponding load demand. The application of this limit is necessary in order to avoid hazardous electricity grid fluctuations and to protect the existing thermal power units from operating near or below their technical minima. In this context, the main target of the proposed study is to present an integrated methodology able to estimate the maximum wind energy penetration in autonomous electrical grids on the basis of the available wind potential existing in the Aegean Archipelago area. For this purpose a large number of representative wind potential types have been investigated and interesting conclusions have been derived.

J.K. Kaldellis

2008-01-01T23:59:59.000Z

7

Estimating Water Consumption of Potential Natural Vegetation on Global Dry Lands: Building an LCA Framework for Green Water Flows  

Science Journals Connector (OSTI)

Estimating Water Consumption of Potential Natural Vegetation on Global Dry Lands: Building an LCA Framework for Green Water Flows ... This study aimed to provide a framework for assessing direct soil-water consumption, also termed green water in the literature, in life cycle assessment (LCA). ... This was an issue that LCA had not tackled before. ...

Montserrat Núñez; Stephan Pfister; Philippe Roux; Assumpció Antón

2013-10-04T23:59:59.000Z

8

Integrating ecophysiology and plankton dynamics into projected changes in maximum fisheries catch potential under climate  

E-Print Network [OSTI]

). In addition, average surface water pH of the ocean has dropped by 0.1 units since pre- industrial timesIntegrating ecophysiology and plankton dynamics into projected changes in maximum fisheries catch 7TJ, UK 2 Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft

Pauly, Daniel

9

Energy-efficiency standards for homes have the potential to reduce energy consumption and peak electrical demand.  

E-Print Network [OSTI]

The Issue Energy-efficiency standards for homes have the potential to reduce energy consumption HVAC system efficiency, including problems with airflows, refrigerant system components, and ductwork standards, but little data is available on the actu- al energy performance of new homes. The Solution

10

Energy Consumption and Potential for Energy Conservation in the Steel Industry  

E-Print Network [OSTI]

The domestic steel industry, being energy-use intensive, requires between 4 and 5 percent of total annual domestic energy consumption. More than two-thirds of total steel industry energy, however, is derived from coal. During the post-World War II...

Hughes, M. L.

1979-01-01T23:59:59.000Z

11

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

E-Print Network [OSTI]

engine performance and fault detection that can be remotely monitored. 48 Navy vessels have reported fuel consumptionengines, transmissions and drive trains for the Army’s truck fleet potentially could save significant costs from increased overall performance, reduced fuel consumption

Williams, Charles

2014-01-01T23:59:59.000Z

12

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

E-Print Network [OSTI]

Consumption and Provide Energy and Cost Savings in Non-applications to save energy and costs. This potential couldof ESPCs to provide energy and cost savings in non-building

Williams, Charles

2014-01-01T23:59:59.000Z

13

A community-based assessment of seafood consumption along the lower James River, Virginia, USA: Potential sources of dietary  

E-Print Network [OSTI]

A community-based assessment of seafood consumption along the lower James River, Virginia, USA 2010 Keywords: Community-based Exposure assessment Seafood consumption Mercury African­American women environmental exposure assessments provides valuable insight about disparities in seafood consumption

Newman, Michael C.

14

Reduces electric energy consumption  

E-Print Network [OSTI]

consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings, and recycling. Alcoa provides the packaging, automotive, aerospace, and construction markets with a variety

15

Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector  

E-Print Network [OSTI]

2004) Survey on Electricity Consumption Characteristics ofof residential electricity consumption in rapidly developingbusiness as usual’ electricity consumption by country/region

McNeil, Michael A.; Letschert, Virginie E.

2008-01-01T23:59:59.000Z

16

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

E-Print Network [OSTI]

Existing Vessels, Reducing Shipboard Fuel Consumption and48 Navy vessels have reported fuel consumption into the Navy

Williams, Charles

2014-01-01T23:59:59.000Z

17

The federal energy policy: An example of its potential impact on energy consumption and expenditures in minority and poor households  

SciTech Connect (OSTI)

This report presents an analysis of the relative impacts of the National Energy Strategy on majority and minority households and on nonpoor and poor households. (Minority households are defined as those headed by black or Hispanic persons; poor households are defined as those having combined household income less than or equal to 125% of the Office of Management and Budget`s poverty-income threshold.) Energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1987 to 2009 are reported. Projected consumptions of electricity and nonelectric energy over this period are also reported for each group. An analysis of how these projected values are affected under different housing growth scenarios is performed. The analysis in this report presents a preliminary set of projections generated under a set of simplifying assumptions. Future analysis will rigorously assess the sensitivity of the projected values to various changes in a number of these assumptions.

Poyer, D.A.

1991-09-01T23:59:59.000Z

18

Energy Consumption  

Science Journals Connector (OSTI)

We investigated the relationship between electrical power consumption per capita and GDP per capita in 130 countries using the data reported by World Bank. We found that an electrical power consumption per capita...

Aki-Hiro Sato

2014-01-01T23:59:59.000Z

19

Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption  

Broader source: Energy.gov [DOE]

This case study describes a plant-wide energy assessment conducted at the Solutia Inc. chemical production facility in Springfield, Massachusetts. The assessment focused on finding ways to reduce the plant's use of steam, electricity, compressed air, and water. Assessment recommendations had a potential total annual energy savings of about 9.6 million kWh for electricity and more than 338,000 MBtu for natural gas, with potential annual cost savings amounting to nearly $3.3 million.

20

Survey Consumption  

Gasoline and Diesel Fuel Update (EIA)

fsidentoi fsidentoi Survey Consumption and 'Expenditures, April 1981 March 1982 Energy Information Administration Wasningtoa D '" N """"*"""*"Nlwr. . *'.;***** -. Mik>. I This publication is available from ihe your COr : 20585 Residential Energy Consumption Survey: Consum ption and Expendi tures, April 1981 Through March 1982 Part 2: Regional Data Prepared by: Bruce Egan This report was prepared by the Energy Information Administra tion, the independent statistical

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Tobacco Consumption  

Science Journals Connector (OSTI)

Tobacco consumption is the use of tobacco products in different forms such as , , , water-pipes or tobacco products. Cigarettes and tobacco products containing tobacco are highly engineered so as to creat...

Martina Pötschke-Langer

2008-01-01T23:59:59.000Z

22

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

Broader source: Energy.gov [DOE]

Document provides information about using energy savings performance contracts (ESPCs) to reduce energy consumption and provide energy and cost savings in non-building applications.

23

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

E-Print Network [OSTI]

of DOD’s consumption. Marine diesel fuel accounts for 13%. ”fuel savings over currently used simple cycle gas turbine marine

Williams, Charles

2014-01-01T23:59:59.000Z

24

Consumption Behavior in Investment/Consumption Problems  

Science Journals Connector (OSTI)

In this chapter we study the consumption behavior of an agent in the dynamic framework of consumption/investment decision making that allows the presence of a subsistence consumption level and the possibility of ...

E. L. Presman

1997-01-01T23:59:59.000Z

25

Externality of Consumption  

Science Journals Connector (OSTI)

Externalities of consumption exist if one individual's consumption of a good or service has positive... utility of another person. A positive externality increases ...

2008-01-01T23:59:59.000Z

26

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

27

Electricity Consumption Electricity Consumption EIA Electricity Consumption Estimates  

Broader source: Energy.gov (indexed) [DOE]

Consumption Consumption Electricity Consumption EIA Electricity Consumption Estimates (million kWh) National Petroleum Council Assumption: The definition of electricity con- sumption and sales used in the NPC 1999 study is the equivalent ofwhat EIA calls "sales by utilities" plus "retail wheeling by power marketers." This A nn u al Gro wth total could also be called "sales through the distribution grid," 2o 99 99 to Sales by Utilities -012% #N/A Two other categories of electricity consumption tracked by EIA cover on site Retail Wheeling Sales by generation for host use. The first, "nonutility onsite direct use," covers the Power Marketen 212.25% #N/A traditional generation/cogeneration facilities owned by industrial or large All Sales Through Distribution

28

Population, Consumption & the Environment  

E-Print Network [OSTI]

12/11/2009 1 Population, Consumption & the Environment Alex de Sherbinin Center for International of carbon in 2001 · The ecological footprint, a composite measure of consumption measured in hectares kind of consumption is bad for the environment? 2. How are population dynamics and consumption linked

Columbia University

29

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

E-Print Network [OSTI]

Ship High Efficiency Gas Turbines $7.3 – 9.9B PotentialHigher Efficiency Gas Turbines Navy / USCG - Variable - Re-diesel fuel per year for gas turbines that are very similar

Williams, Charles

2014-01-01T23:59:59.000Z

30

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

SciTech Connect (OSTI)

The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

2013-08-01T23:59:59.000Z

31

Potential  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and and Frictional Drag on a Floating Sphere in a Flowing Plasma I. H. Hutchinson Plasma Science and Fusion Center Massachusetts Institute of Technology, Cambridge, MA, USA The interaction of an ion-collecting sphere at floating potential with a flowing colli- sionless plasma is investigated using the "Specialized Coordinate Electrostatic Particle and Thermals In Cell" particle-in-cell code SCEPTIC[1, 2]. Code calculations are given of potential and the total force exerted on the sphere by the flowing plasma. This force is of crucial importance to the problem of dusty plasmas, and the present results are the first for a collisionless plasma to take account of the full self-consistent potential. They reveal discrepancies amounting to as large as 20% with the standard analytic expressions, in parameter regimes where the analytic approximations might have been expected

32

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

" Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per...

33

CSV File Documentation: Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption The State Energy Data System (SEDS) comma-separated value (CSV) files contain consumption estimates shown in the tables located on the SEDS website. There are four files that contain estimates for all states and years. Consumption in Physical Units contains the consumption estimates in physical units for all states; Consumption in Btu contains the consumption estimates in billion British thermal units (Btu) for all states. There are two data files for thermal conversion factors: the CSV file contains all of the conversion factors used to convert data between physical units and Btu for all states and the United States, and the Excel file shows the state-level conversion factors for coal and natural gas in six Excel spreadsheets. Zip files are also available for the large data files. In addition, there is a CSV file for each state, named

34

Groundwater Consumption by Phreatophytes in Mid-Continent  

E-Print Network [OSTI]

Groundwater Consumption by Phreatophytes in Mid-Continent Stream-Aquifer Systems Gerard Kluitenberg. · Consumption of ground water by phreatophytes also a factor of potential importance. · Extensive control-water consumption by phreatophytes needed to: Introduction/Background · Clarify factors contributing to low

Hernes, Peter J.

35

Past, Place & People: An Ethnography of Museum Consumption  

E-Print Network [OSTI]

Past, Place & People: An Ethnography of Museum Consumption Anat Hecht Department of Social the potential of ethnography as an approach to the study of museum consumption and its role within contemporary of the perception, discourse and practice of museum consumption, from the varied viewpoints of the producers and

Guillas, Serge

36

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network [OSTI]

ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . .28 ENERGY CONSUMPTION

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

37

consumption | OpenEI  

Open Energy Info (EERE)

consumption consumption Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 32.3 KiB)

38

Transportation Energy Consumption Surveys  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption (RTECS) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses...

39

Eutrophication Potential of Food Consumption Patterns  

Science Journals Connector (OSTI)

The hypoxic zone in Gulf of Mexico (GOM) mainly caused by excess nutrients exported from agriculture production in Mississippi River Basin (MRB) resulted in reduced commercial and recreational fisheries (12). ... LCA results have been used in the development of eco-labeling criteria with the aim of informing consumers of the environmental characteristics of products. ... Bio-based product life cycle assessments (LCA) have largely focused on energy (fossil fuel) use and greenhouse gas emissions during agriculture and prodn. ...

Xiaobo Xue; Amy E. Landis

2010-07-22T23:59:59.000Z

40

OpenEI - consumption  

Open Energy Info (EERE)

91/0 en Operational water 91/0 en Operational water consumption and withdrawal factors for electricity generating technologies http://en.openei.org/datasets/node/969 This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions.

License

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Reduction of Water Consumption  

E-Print Network [OSTI]

Cooling systems using water evaporation to dissipate waste heat, will require one pound of water per 1,000 Btu. To reduce water consumption, a combination of "DRY" and "WET" cooling elements is the only practical answer. This paper reviews...

Adler, J.

42

Fuel Consumption and Emissions  

Science Journals Connector (OSTI)

Calculating fuel consumption and emissions is a typical offline analysis ... simulations or real trajectory data) and the engine speed (as obtained from gear-shift schemes ... as input and is parameterized by veh...

Martin Treiber; Arne Kesting

2013-01-01T23:59:59.000Z

43

Spermatophore consumption in a cephalopod  

Science Journals Connector (OSTI)

...Animal behaviour 1001 14 70 Spermatophore consumption in a cephalopod Benjamin J. Wegener...provide evidence of ejaculate and sperm consumption in a cephalopod. Through labelling...combination of female spermatophore consumption and short-term external sperm storage...

2013-01-01T23:59:59.000Z

44

Food consumption trends and drivers  

Science Journals Connector (OSTI)

...original work is properly cited. Food consumption trends and drivers John Kearney...Government policy. A picture of food consumption (availability) trends and projections...largely responsible for these observed consumption trends are the subject of this review...

2010-01-01T23:59:59.000Z

45

Rice consumption in China  

E-Print Network [OSTI]

RICE CONSUMPTION IN CHINA A Thesis by JIN LAN Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989 Major Subject: Agricultural... Economics RICE CONSUMPTION IN CHINA A Thesis by JIN LAN Approved as to style and content by: E, We ey F. Peterson (Chair of Committee) James E. Christiansen (Member) Carl Shaf (Member) Daniel I. Padberg (Head of Department) August 1989...

Lan, Jin

2012-06-07T23:59:59.000Z

46

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

methodology used to estimate these statistics relied on data from the 1990 Residential Energy Consumption Survey (RECS), the 1991 Residential Transportation Energy Consumption...

47

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

48

Nonlinear optics at maximum coherence  

Science Journals Connector (OSTI)

...D. Walls Nonlinear optics at maximum coherence S. E. Harris G. Y. Yin M. Jain H...optical processes which utilize maximum coherence of a non-allowed transition. The nonlinear...frequency. Nonlinear optics at maximum coherence B y S. E. Harris, G. Y. Yin, M...

1997-01-01T23:59:59.000Z

49

Natural Gas Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Fuel Consumption Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential Volumes Delivered to Commercial Consumers Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Lease Fuel Consumption Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential Volumes Delivered to Commercial Consumers Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 23,103,793 23,277,008 22,910,078 24,086,797 24,477,425 25,533,448 1949-2012 Alabama 418,512 404,157 454,456 534,779 598,514 666,738 1997-2012 Alaska 369,967 341,888 342,261 333,312 335,458 343,110 1997-2012

50

Bounds on the Energy Consumption of Computational Andrew Gearhart  

E-Print Network [OSTI]

Bounds on the Energy Consumption of Computational Kernels Andrew Gearhart Electrical Engineering Fall 2014 #12;Bounds on the Energy Consumption of Computational Kernels Copyright 2014 by Andrew Scott, little consideration was given to the potential energy efficiency of algorithms them- selves. A dominant

California at Berkeley, University of

51

MaximumLetThrough.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 Maximum Let-Through Currents in the APS Storage Ring Quadrupole, Sextupole, and Corrector Magnets J. Carwardine, D. McGhee, G. Markovich May 18, 1999 Abstract Limits are described for the maximum magnet currents, under specified fault conditions, for the storage ring quadrupole, sextupole, and corrector magnets. Introduction In computing the maximum let-through current for the magnets for the storage ring, several factors must be considered. In general, the maximum current likely to occur even under fault conditions is less than the maximum theoretical DC current given the magnet resistance and the maximum available DC voltage. The first level of protection against magnet current overloads is the over-current interlock that is built into the converter electronics package. The threshold is set to approximately 110% of

52

Nevada Test Site probable maximum flood study, part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for US Department of Energy, Office of Civilian Radioactive Waste Management  

SciTech Connect (OSTI)

The US Geological Survey (USGS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. In particular, the project is designed to acquire information necessary for the Department of Energy (DOE) to demonstrate in its environmental impact statement (EIS) and license application whether the MGDS will meet the requirements of federal regulations 10 CFR Part 60, 10 CFR Part 960, and 40 CFR Part 191. Complete study plans for this part of the project were prepared by the USGS and approved by the DOE in August and September of 1990. The US Bureau of Reclamation (Reclamation) was selected by the USGS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates are necessary for successful waste repository design and construction. The PMF technique was chosen for two reasons: (1) this technique complies with ANSI requirements that PMF technology be used in the design of nuclear related facilities (ANSI/ANS, 1981), and (2) the PMF analysis has become a commonly used technology to predict a ``worst possible case`` flood scenario. For this PMF study, probable maximum precipitation (PMP) values were obtained for a local storm (thunderstorm) PMP event. These values were determined from the National Weather Services`s Hydrometeorological Report No. 49 (HMR 49).

Bullard, K.L.

1994-08-01T23:59:59.000Z

53

Data Center Power Consumption  

Broader source: Energy.gov (indexed) [DOE]

Center Power Consumption Center Power Consumption A new look at a growing problem Fact - Data center power density up 10x in the last 10 years 2.1 kW/rack (1992); 14 kW/rack (2007) Racks are not fully populated due to power/cooling constraints Fact - Increasing processor power Moore's law Fact - Energy cost going up 3 yr. energy cost equivalent to acquisition cost Fact - Iterative power life cycle Takes as much energy to cool computers as it takes to power them. Fact - Over-provisioning Most data centers are over-provisioned with cooling and still have hot spots November 2007 SubZero Engineering An Industry at the Crossroads Conflict between scaling IT demands and energy efficiency Server Efficiency is improving year after year Performance/Watt doubles every 2 years Power Density is Going Up

54

101. Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

1. Natural Gas Consumption 1. Natural Gas Consumption in the United States, 1930-1996 (Million Cubic Feet) Table Year Lease and Plant Fuel Pipeline Fuel Delivered to Consumers Total Consumption Residential Commercial Industrial Vehicle Fuel Electric Utilities Total 1930 ....................... 648,025 NA 295,700 80,707 721,782 NA 120,290 1,218,479 1,866,504 1931 ....................... 509,077 NA 294,406 86,491 593,644 NA 138,343 1,112,884 1,621,961 1932 ....................... 477,562 NA 298,520 87,367 531,831 NA 107,239 1,024,957 1,502,519 1933 ....................... 442,879 NA 283,197 85,577 590,865 NA 102,601 1,062,240 1,505,119 1934 ....................... 502,352 NA 288,236 91,261 703,053 NA 127,896 1,210,446 1,712,798 1935 ....................... 524,926 NA 313,498 100,187 790,563 NA 125,239 1,329,487 1,854,413 1936 ....................... 557,404 NA 343,346

55

Residential Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

E/EIA-0262/2 E/EIA-0262/2 Residential Energy Consumption Survey: 1978-1980 Consumption and Expenditures Part II: Regional Data May 1981 U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Residential and Commercial Data Systems Division -T8-aa * N uojssaooy 'SOS^-m (£03) ao£ 5925 'uofSfAfQ s^onpojj aa^ndmoo - aojAaag T BU T3gN am rcoj? aig^IT^^ '(adBx Q-naugBH) TOO/T8-JQ/30Q 30^703 OQ ' d jo :moaj ajqBfT^A^ 3J^ sjaodaa aAoqe aqa jo 's-TZTOO-eoo-Tgo 'ON ^ois odo 'g^zo-via/aoQ 'TBST Sujpjjng rXaAang uojidmnsuoo XSaaug sSu-ppjprig ON ^oo^s OdO '^/ZOZO-Via/aOQ *086T aunr '6L6I ?sn§ny og aunf ' jo suja^Bd uoj^dmnsuoo :XaAjng uo^^dmnsuoQ XSaaug OS '9$ '6-ieTOO- 00-T90 OdD 'S/ZOZO-Via/aOa C

56

Fuel consumption and emissions of hybrid diesel applications  

Science Journals Connector (OSTI)

GM Powertrain Europe and the Politecnico di Torino have experimentally assessed the potentialities in terms of fuel consumption reduction and the challenges in terms of ... 1.9 l four-cylinder in-line diesel engine

Prof.-Dr. Andrea Emilio Catania; Prof.-Dr. Ezio Spessa…

2008-12-01T23:59:59.000Z

57

Food production and consumption near the Savannah River Site  

SciTech Connect (OSTI)

Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study's scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

Hamby, D.M.

1991-01-01T23:59:59.000Z

58

Food production and consumption near the Savannah River Site  

SciTech Connect (OSTI)

Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study`s scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

Hamby, D.M.

1991-12-31T23:59:59.000Z

59

Single ion heat engine with maximum efficiency at maximum power  

E-Print Network [OSTI]

We propose an experimental scheme to realize a nano heat engine with a single ion. An Otto cycle may be implemented by confining the ion in a linear Paul trap with tapered geometry and coupling it to engineered laser reservoirs. The quantum efficiency at maximum power is analytically determined in various regimes. Moreover, Monte Carlo simulations of the engine are performed that demonstrate its feasibility and its ability to operate at maximum efficiency of 30% under realistic conditions.

Obinna Abah; Johannes Rossnagel; Georg Jacob; Sebastian Deffner; Ferdinand Schmidt-Kaler; Kilian Singer; Eric Lutz

2012-05-07T23:59:59.000Z

60

ENERGY CONSUMPTION SURVEY  

U.S. Energy Information Administration (EIA) Indexed Site

5 RESIDENTIAL TRANSPORTATION 5 RESIDENTIAL TRANSPORTATION ENERGY CONSUMPTION SURVEY Prepared for: UNITED STATES DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION OFFICE OF ENERGY MARKETS AND END USE ENERGY END USE DIVISION RESIDENTIAL AND COMMERCIAL BRANCH WASHINGTON, DC 20585 Prepared by: THE ORKAND CORPORATION 8484 GEORGIA AVENUE SILVER SPRING, MD 20910 October 1986 Contract Number DE-AC01-84EI19658 TABLE OF CONTENTS FRONT MATTER Index to Program Descriptions........................................... vi List of Exhibits ....................................................... viii Acronyms and Abbreviations ............................................. ix SECTION 1: GENERAL INFORMATION ........................................ 1-1 1.1. Summary ....................................................... 1-1

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Indexes of Consumption and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Figure on manufacturing production indexes and purchased energy consumption Figure on manufacturing production indexes and purchased energy consumption Source: Energy Information Administration and Federal Reserve Board. History of Shipments This chart presents indices of 14 years (1980-1994) of historical data of manufacturing production indexes and Purchased (Offsite-Produced) Energy consumption, using 1992 as the base year (1992 = 100). Indexing both energy consumption and production best illustrates the trends in output and consumption. Taken separately, these two indices track the relative growth rates within the specified industry. Taken together, they reveal trends in energy efficiency. For example, a steady increase in output, coupled with a decline in energy consumption, represents energy efficiency gains. Likewise, steadily rising energy consumption with a corresponding decline in output illustrates energy efficiency losses.

62

Heavy Oil Consumption Reduction Program (Quebec, Canada) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Heavy Oil Consumption Reduction Program (Quebec, Canada) Heavy Oil Consumption Reduction Program (Quebec, Canada) Heavy Oil Consumption Reduction Program (Quebec, Canada) < Back Eligibility Commercial Agricultural Industrial Construction Savings Category Solar Buying & Making Electricity Maximum Rebate $5 million per site Program Info Funding Source Government of Quebec State Quebec Program Type Rebate Program Provider Agence de l'efficacité énergétique This program helps heavy oil consumers move toward sustainable development while improving their competitive position by reducing their consumption. Financial assistance is offered to carry out various analyses as well as implement energy efficient measures relating to heavy fuel oil or to switch to other forms of energy containing fewer pollutants, such as natural gas,

63

Manufacturing Consumption of Energy 1991--Combined Consumption and Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

< < Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of Energy 1991 (Combined Consumption and Fuel Switching) Overview Full Report Tables & Spreadsheets This report presents national-level estimates about energy use and consumption in the manufacturing sector as well as manufacturers' fuel-switching capability. Contact: Stephanie.battle@eia.doe.gov Stephanie Battle Director, Energy Consumption Division Phone: (202) 586-7237 Fax: (202) 586-0018 URL: http://www.eia.gov/emeu/mecs/mecs91/consumption/mecs1a.html File Last Modified: May 25, 1996

64

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

65

Organotin intake through fish consumption in Finland  

SciTech Connect (OSTI)

Background: Organotin compounds (OTCs) are a large class of synthetic chemicals with widely varying properties. Due to their potential adverse health effects, their use has been restricted in many countries. Humans are exposed to OTCs mostly through fish consumption. Objectives: The aim of this study was to describe OTC exposure through fish consumption and to assess the associated potential health risks in a Finnish population. Methods: An extensive sampling of Finnish domestic fish was carried out in the Baltic Sea and freshwater areas in 2005-2007. In addition, samples of imported seafood were collected in 2008. The chemical analysis was performed in an accredited testing laboratory during 2005-2008. Average daily intake of the sum of dibutyltin (DBT), tributyltin (TBT), triphenyltin (TPhT) and dioctyltin (DOT) ({Sigma}OTCs) for the Finnish population was calculated on the basis of the measured concentrations and fish consumption rates. Results: The average daily intake of {Sigma}OTCs through fish consumption was 3.2 ng/kg bw day{sup -1}, which is 1.3% from the Tolerable Daily Intake (TDI) of 250 ng/kg bw day{sup -1} set by the European Food Safety Authority. In total, domestic wild fish accounted for 61% of the {Sigma}OTC intake, while the intake through domestic farmed fish was 4.0% and the intake through imported fish was 35%. The most important species were domestic perch and imported salmon and rainbow trout. Conclusions: The Finnish consumers are not likely to exceed the threshold level for adverse health effects due to OTC intake through fish consumption.

Airaksinen, Riikka, E-mail: Riikka.Airaksinen@thl.fi [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland)] [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland); Rantakokko, Panu; Turunen, Anu W.; Vartiainen, Terttu [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland)] [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland); Vuorinen, Pekka J.; Lappalainen, Antti; Vihervuori, Aune [Finnish Game and Fisheries Research Institute, Helsinki (Finland)] [Finnish Game and Fisheries Research Institute, Helsinki (Finland); Mannio, Jaakko [Finnish Environment Institute, Helsinki (Finland)] [Finnish Environment Institute, Helsinki (Finland); Hallikainen, Anja [Finnish Food Safety Authority Evira, Helsinki (Finland)] [Finnish Food Safety Authority Evira, Helsinki (Finland)

2010-08-15T23:59:59.000Z

66

Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

67

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

68

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

1 Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

69

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

vehicle aging have an additional but unknown effect on the MPG of individual vehicles. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 27 Of the...

70

World energy consumption  

SciTech Connect (OSTI)

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

71

Electricity Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual electricity consumption by country, 1980 to 2009 (billion kilowatthours). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA Electricity Electricity Consumption world Data text/csv icon total_electricity_net_consumption_1980_2009billion_kwh.csv (csv, 50.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

72

Biofuels Consumption | OpenEI  

Open Energy Info (EERE)

Biofuels Consumption Biofuels Consumption Dataset Summary Description Total annual biofuels consumption and production data by country was compiled by the Energy Information Administration (EIA). Data is presented as thousand barrels per day. Source EIA Date Released Unknown Date Updated Unknown Keywords Biofuels Biofuels Consumption EIA world Data text/csv icon total_biofuels_production_2000_2010thousand_barrels_per_day.csv (csv, 9.3 KiB) text/csv icon total_biofuels_consumption_2000_2010thousand_barrels_per_day.csv (csv, 9.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2000 - 2010 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote

73

Coal consumption | OpenEI  

Open Energy Info (EERE)

consumption consumption Dataset Summary Description Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords coal Coal consumption EIA world Data text/csv icon total_coal_consumption_1980_2009quadrillion_btu.csv (csv, 38.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

74

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

(MECS) > MECS 1994 Combined Consumption and Fuel Switching (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption Logo Full Report - (file size 5.4 MB) pages:531 Selected Sections (PDF format) Contents (file size 56 kilobytes, 10 pages). Overview (file size 597 kilobytes, 11 pages). Chapters 1-3 (file size 265 kilobytes, 9 pages). Chapter 4 (file size 1,070 kilobytes, 15 pages). Appendix A - Detailed Tables Tables A1 - A8 (file size 1,031 kilobytes, 139 pages). Tables A9 - A23 (file size 746 kilobytes, 119 pages). Tables A24 - A29 (file size 485 kilobytes, 84 pages). Tables A30 - A44 (file size 338 kilobytes, 39 pages). Appendix B (file size 194 kilobytes, 24 pages). Appendix C (file size 116 kilobytes, 16 pages).

75

DOETEIAO32l/2 Residential Energy Consumption Survey; Consumption  

Gasoline and Diesel Fuel Update (EIA)

General information about EIA data on energy consumption may be obtained from Wray Smith, Director, Office of Energy Markets and End Use (202- 252-1617); Lynda T. Carlson,...

76

Laws regulating the emission of pollutants and maximum fuel consumption of combustion engines (as of 1992)  

Science Journals Connector (OSTI)

The increased air pollution that is a major source of concern in virtually all highly industrialized nations with a high car/population ratio has led to the introduction of measures to limit pollutant emission...

Univ.-Prof. Dr. Ing. Fred Schäfer…

1995-01-01T23:59:59.000Z

77

US ENC IL Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

IL IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Illinois households spending 2% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

78

Fuel Consumption | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Consumption, CO2 Emissions, And A Simple Connection To the Vehicle Fuel Consumption, CO2 Emissions, And A Simple Connection To the Vehicle Road Load Equation Jan 15 2014 11:30 AM - 12:30 PM Glen E. Johnson Tennessee Tech University, Cookeville Energy and Transportation Science Division Seminar National Transportation Research Center, Room C-04 CONTACT : Email: Andreas Malikopoulos Phone:865.382.7827 Add to Calendar SHARE Ambitious goals have been set to reduce fuel consumption and CO2 emissions over the next generation. Starting from first principles, we will derive relations to connect fuel consumption and carbon dioxide emissions to a vehicle's road load equation. The model suggests approaches to facilitate achievement of future fuel and emissions targets. About the speaker: Dr. Johnson is a 1973 Mechanical Engineering graduate of Worcester

79

US ENC IL Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

IL IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Illinois households spending 2% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

80

US ENC MI Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

MI MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Michigan households spending 6% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

US ENC MI Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

MI MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Michigan households spending 6% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

82

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified in Standard Industrial Classification 20 through 39 of the U.S. economy as defined 2 by the Office of Management and Budget. The manufacturing sector is a part of the industrial sector, which also includes mining; construction; and agriculture, forestry, and fishing. The EIA also conducts energy consumption surveys in the residential, commercial buildings, and residential transportation sectors: the Residential Energy 3 Consumption Survey (RECS); the Commercial Buildings Energy Consumption Survey (CBECS); and, until recently, the Residential Transportation Energy Consumption Survey (RTECS).

83

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

17 17 Table C12. Total Energy Consumption, Gross Domestic Product (GDP), Energy Consumption per Real Dollar of GDP, Ranked by State, 2011 Rank Total Energy Consumption Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP State Trillion Btu State Billion Chained (2005) Dollars State Thousand Btu per Chained (2005) Dollar 1 Texas 12,206.6 California 1,735.4 Louisiana 19.7 2 California 7,858.4 Texas 1,149.9 Wyoming 17.5 3 Florida 4,217.1 New York 1,016.4 North Dakota 15.4 4 Louisiana 4,055.3 Florida 661.1 Alaska 14.3 5 Illinois 3,977.8 Illinois 582.1 Mississippi 13.8 6 Ohio 3,827.6 Pennsylvania 500.4 Kentucky 13.5

84

Energy Consumption in Access Networks  

Science Journals Connector (OSTI)

We present a comparison of energy consumption of access networks. We consider passive optical networks, fiber to the node, point-to-point optical systems and WiMAX. Optical access...

Baliga, Jayant; Ayre, Robert; Sorin, Wayne V; Hinton, Kerry; Tucker, Rodney S

85

The Wealth-Consumption Ratio  

E-Print Network [OSTI]

We derive new estimates of total wealth, the returns on total wealth, and the wealth effect on consumption. We estimate the prices of aggregate risk from bond yields and stock returns using a no-arbitrage model. Using these ...

Verdelhan, Adrien Frederic

86

Progressive consumption : strategic sustainable excess  

E-Print Network [OSTI]

Trends in the marketplace show that urban dwellers are increasingly supporting locally produced foods. This thesis argues for an architecture that responds to our cultures consumptive behaviors. Addressing the effects of ...

Bonham, Daniel J. (Daniel Joseph MacLeod)

2007-01-01T23:59:59.000Z

87

Energy consumption of building 39  

E-Print Network [OSTI]

The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

Hopeman, Lisa Maria

2007-01-01T23:59:59.000Z

88

Energy Consumption Profile for Energy  

E-Print Network [OSTI]

317 Chapter 12 Energy Consumption Profile for Energy Harvested WSNs T. V. Prabhakar, R Venkatesha.............................................................................................318 12.2 Energy Harvesting ...................................................................................318 12.2.1 Motivations for Energy Harvesting...............................................319 12

Langendoen, Koen

89

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

90

Asset Pricing with Countercyclical Household Consumption Risk  

E-Print Network [OSTI]

1 Asset Pricing with Countercyclical Household Consumption Risk George M. Constantinides that shocks to household consumption growth are negatively skewed, persistent, and countercyclical and play that drives the conditional cross-sectional moments of household consumption growth. The estimated model

Sadeh, Norman M.

91

Optimal consumption strategies under model uncertainty  

E-Print Network [OSTI]

Optimal consumption strategies under model uncertainty Christian Burgert, Ludger R of finding optimal consumption strategies in an incomplete semimartingale market model under model uncertainty. The quality of a consumption strategy is measured by not only one probability measure

Rüschendorf, Ludger

92

EVSE Features Power Button for Zero Consumption Auto-restart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Button for Zero Consumption Auto-restart Button for Zero Consumption Auto-restart Multi Colored Charge Indicator Led Power Indicator EVSE Specifications Grid connection Plug and cord NEMA 6-50 Connector type J1772 Test lab certifications ETL Listed Approximate size (H x W x D inches) 16 x 24 x 6 Charge level AC Level 2 Input voltage 208-240 VAC Maximum input current 30 Amp Circuit breaker rating 40 Amp Test Conditions 1 Test date 10/29/2012 Nominal supply voltage (Vrms) 208.38 Supply frequency (Hz) 59.99 Initial ambient temperature (°F) 64 Test Vehicle 1,3 Make and model 2012 Chevrolet Volt Battery type Li-ion Steady state charge power (AC kW) 3.07 Maximum charge power (AC kW) 3.32 EVSE Test Results

93

Boiler Maximum Achievable Control Technology (MACT) Technical...  

Broader source: Energy.gov (indexed) [DOE]

Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact Sheet, May 2014 Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact...

94

OpenEI - Electricity Consumption  

Open Energy Info (EERE)

Annual Electricity Annual Electricity Consumption (1980 - 2009) http://en.openei.org/datasets/node/877 Total annual electricity consumption by country, 1980 to 2009 (billion kilowatthours). Compiled by Energy Information Administration (EIA). License

Type of License:  Other (please specify below)
Source of data

95

Manufacturing consumption of energy 1991  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

Not Available

1994-12-01T23:59:59.000Z

96

Commercial Buildings Energy Consumption and Expenditures 1992...  

U.S. Energy Information Administration (EIA) Indexed Site

1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

97

Demonstrating Fuel Consumption and Emissions Reductions with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

98

New York: Weatherizing Westbeth Reduces Energy Consumption |...  

Energy Savers [EERE]

York: Weatherizing Westbeth Reduces Energy Consumption New York: Weatherizing Westbeth Reduces Energy Consumption August 21, 2013 - 12:00am Addthis The New York State Homes and...

99

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

100

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

102

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

103

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace...

104

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

105

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

106

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

107

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

108

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

109

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

110

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

111

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square...

112

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

113

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

114

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

115

Energy Information Administration - Transportation Energy Consumption...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the...

116

The Impact of Using Derived Fuel Consumption Maps to Predict...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Impact of Using Derived Fuel Consumption Maps to Predict Fuel Consumption The Impact of Using Derived Fuel Consumption Maps to Predict Fuel Consumption Poster presented at the...

117

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

SciTech Connect (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

118

Today in Energy - commercial consumption & efficiency  

Reports and Publications (EIA)

Short, timely articles with graphs about recent commercial consumption and efficiency issues and trends.

2028-01-01T23:59:59.000Z

119

US ENC WI Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

120 120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to states with a similar climate, such as New York, result in households spending 5% less for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S.

120

US ENC WI Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

120 120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to states with a similar climate, such as New York, result in households spending 5% less for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S.

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

US WSC TX Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

122

US WSC TX Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

123

US ESC TN Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

ESC TN ESC TN Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ESC TN Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US ESC TN Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US ESC TN Expenditures dollars ELECTRICITY ONLY average per household * Tennessee households consume an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33% higher than the national average and among the highest in the nation, but spending for electricity is closer to average due to relatively low electricity prices. * Tennessee homes are typically newer, yet smaller in size, than homes in other parts of the country.

124

OpenEI - Energy Consumption  

Open Energy Info (EERE)

Commercial and Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States http://en.openei.org/datasets/node/961 This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols).  This dataset also includes the consumption/residential/">Residential Energy Consumption Survey (RECS) for statistical references of building types

125

Fuel consumption model for FREFLO  

E-Print Network [OSTI]

above, Biggs and Akcelik (1985) proposed a model of the following form: f = fsito + &Pr + z[apr)o o (5) where, Po = total drag power P, = inertia power a = instantaneous acceleration 8, = fuel consumption per unit power 8, = fuel consumption per... that is additional to S, P, . This component is expressed as SzaP, , where &z is considered to be a secondary efficiency parameter that relates fuel to the product of inertia power and acceleration rate, for positive accelerations. This term allows for the effects...

Rao, Kethireddipalli Srinivas

1992-01-01T23:59:59.000Z

126

FISH CONSUMPTION, METHYLMERCURY, AND HUMAN HEART DISEASE.  

SciTech Connect (OSTI)

Environmental mercury continues to be of concern to public health advocates, both in the U.S. and abroad, and new research continues to be published. A recent analysis of potential health benefits of reduced mercury emissions has opened a new area of public health concern: adverse effects on the cardiovascular system, which could account for the bulk of the potential economic benefits. The authors were careful to include caveats about the uncertainties of such impacts, but they cited only a fraction of the applicable health effects literature. That literature includes studies of the potentially harmful ingredient (methylmercury, MeHg) in fish, as well as of a beneficial ingredient, omega-3 fatty acids or ''fish oils''. The U.S. Food and Drug Administration (FDA) recently certified that some of these fat compounds that are primarily found in fish ''may be beneficial in reducing coronary heart disease''. This paper briefly summarizes and categorizes the extensive literature on both adverse and beneficial links between fish consumption and cardiovascular health, which are typically based on studies of selected groups of individuals (cohorts). Such studies tend to comprise the ''gold standard'' of epidemiology, but cohorts tend to exhibit a great deal of variability, in part because of the limited numbers of individuals involved and in part because of interactions with other dietary and lifestyle considerations. Note that eating fish will involve exposure to both the beneficial effects of fatty acids and the potentially harmful effects of contaminants like Hg or PCBs, all of which depend on the type of fish but tend to be correlated within a population. As a group, the cohort studies show that eating fish tends to reduce mortality, especially due to heart disease, for consumption rates up to about twice weekly, above which the benefits tend to level off. A Finnish cohort study showed increased mortality risks in the highest fish-consuming group ({approx}3 times/wk), which had mercury exposures (mean hair content of 3.9 ppm) much higher than those seen in the United States. As an adjunct to this cursory review, we also present some new ''ecological'' analyses based on international statistics on hair Hg, fish consumption, other dietary and lifestyle factors, and selected cardiovascular health endpoints. We searched for consistent differences between primarily fish-consuming nations, like Japan or the Seychelles, and others who traditionally eat much less fish , such as in central Europe, for example. We use data on cigarette sales, smoking prevalence surveys, and national lung cancer mortality rates to control for the effects of smoking on heart disease. These ecological analyses do not find significant adverse associations of either fish consumption or hair Hg with cardiovascular health; instead, there is a consistent trend towards beneficial effects, some of which are statistically significant. However, such ecological studies cannot distinguish differences due to variations in individual rates of fish consumption. We conclude that the extant epidemiological evidence does not support the existence of significant heart disease risks associated with mercury in fish, for the United States. The most prudent advice would continue to be that of maintaining a well-balanced diet, including fish or shellfish at least once per week. There may be additional benefits from fatty fish.

LIPFERT, F.W.; SULLIVAN, T.M.

2005-09-21T23:59:59.000Z

127

US NE MA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

NE MA NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption results in households spending 22% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S. However, spending on electricity is closer to the national average due to higher

128

Rail Transit and Energy Consumption  

Science Journals Connector (OSTI)

...Transit and Energy Consumption In a recent issue...D.C. 20418 The Diesel's Advantages It...p. 517). The diesel car, while it has...Other types of engine can be made to meet...catalysts by using leaded fuel because it is 3 to...politically unpopular. The diesel car requires no add-on...

CHARLES A. LAVE

1977-09-02T23:59:59.000Z

129

US NE MA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

NE MA NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption results in households spending 22% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S. However, spending on electricity is closer to the national average due to higher

130

Chapter 14 - Ship Trials: Endurance and fuel consumption  

Science Journals Connector (OSTI)

Publisher Summary This chapter is designed to discuss endurance and fuel consumption. In endurance and fuel consumption trials, the vessel is run at Maximum Continuous Rating (MCR) power for a fixed duration, say 6-24 hours. During this period of time, the following information is measured and recorded: fuel consumption in kg/kW hour, propeller and engine rpm, indicated power (Pi) within the engine room, feed water used, and engine oil pressures and temperatures. There are certain factors that the engine room staff need to take care of. On making a group of runs at a given speed, the original engine settings used when first approaching the measured distance should be rigorously maintained throughout the group. When a controllable-pitch propeller is fitted, the pitch settings used when first approaching the measured mile should be left unaltered throughout the group of runs. By fitting diesel machinery in a ship of similar power, displacement, and speed, a saving of about 10% in the daily fuel consumption can be achieved. The differences in the cost of fuel/tonne must be taken into account plus the size of the machinery arrangement installed in the ship.

C.B. Barrass

2004-01-01T23:59:59.000Z

131

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration/Manufacturing Consumption of Energy 1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline. More recently, the electricity markets have been undergoing change. When Congress passed the Energy Policy Act of 1992, requirements were included not only to open access to the ownership of electricity generation, but also to open access to the transmission lines so that wholesale trade in electricity would be possible. Now several States, including California and

132

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

133

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 State Energy Data 2011: Consumption Table C11. Energy Consumption by Source, Ranked by State, 2011 Rank Coal Natural Gas a Petroleum b Retail Electricity Sales State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu 1 Texas 1,695.2 Texas 3,756.9 Texas 5,934.3 Texas 1,283.1 2 Indiana 1,333.4 California 2,196.6 California 3,511.4 California 893.7 3 Ohio 1,222.6 Louisiana 1,502.9 Louisiana 1,925.7 Florida 768.0 4 Pennsylvania 1,213.0 New York 1,246.9 Florida 1,680.3 Ohio 528.0 5 Illinois 1,052.2 Florida 1,236.6 New York 1,304.0 Pennsylvania 507.6 6 Kentucky 1,010.6 Pennsylvania 998.6 Pennsylvania 1,255.6 New York 491.5

134

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Energy Consumption Survey Forms Form EIA-846A (4-6-95) U.S. Department of Commerce Bureau of the Census Acting as Collecting and Compiling Agent For 1994 MANUFACTURING ENERGY CONSUMPTION SURVEY Public reporting burden for this collection of information is estimated to average 9 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Energy Information Administration, Office of Statistical Standards, EI-73, 1707 H-Street, NW, Washington, DC 20585; and to the Office of Information and Regulatory Affairs, Office of

135

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

136

US WNC MO Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

WNC MO WNC MO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WNC MO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US WNC MO Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US WNC MO Expenditures dollars ELECTRICITY ONLY average per household * Missouri households consume an average of 100 million Btu per year, 12% more than the U.S. average. * Average household energy costs in Missouri are slightly less than the national average, primarily due to historically lower residential electricity prices in the state. * Missouri homes are typically larger than homes in other states and are more likely to be attached or detached single-family housing units.

137

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

2(94) 2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. ii Energy Information Administration/Manufacturing Consumption of Energy 1994 Contacts This publication was prepared by the Energy Information Administration (EIA) under the general direction of W. Calvin

138

Manufacturing consumption of energy 1994  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

NONE

1997-12-01T23:59:59.000Z

139

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

E E U.S. Census Regions and Divisions 489 Energy Information Administration/Manufacturing Consumption of Energy 1994 Source: U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States,1996 (Washington, DC, October 1996), Figure 1. Appendix E U.S. Census Regions and Divisions Appendix F Descriptions of Major Industrial Groups and Selected Industries Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, pp. 67-263. 54 493 Energy Information Administration/Manufacturing Consumption of Energy 1994 Appendix F Descriptions of Major Industrial Groups and Selected Industries This appendix contains descriptions of industrial groups and selected industries taken from the Standard Industrial

140

The Potential of Turboprops to Reduce Aviation Fuel Consumption  

E-Print Network [OSTI]

and adoption, is challenged by fuel price uncertainty.Fuel price uncertainty is due fuel and energy priceplanning under such fuel price uncertainty and environmental

Smirti, Megan; Hansen, Mark

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

4) 4) June 2007 State Energy Consumption Estimates 1960 Through 2004 2004 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2004 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Coal Natural Gas c Petroleum Nuclear Electric Power Hydro- electric Power d Biomass e Other f Net Interstate Flow of Electricity/Losses g Residential Commercial Industrial b Transportation Alabama 2,159.7 853.9 404.0 638.5 329.9 106.5 185.0 0.1 -358.2 393.7 270.2 1,001.1 494.7 Alaska 779.1 14.1 411.8 334.8 0.0 15.0 3.3 0.1 0.0 56.4 63.4 393.4 266.0 Arizona 1,436.6 425.4 354.9 562.8 293.1 69.9 8.7 3.6 -281.7 368.5 326.0 231.2 511.0 Arkansas 1,135.9 270.2 228.9 388.3 161.1 36.5 76.0 0.6 -25.7 218.3 154.7 473.9 288.9 California 8,364.6 68.9 2,474.2 3,787.8 315.6 342.2

142

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9) 9) June 2011 State Energy Consumption Estimates 1960 Through 2009 2009 Consumption Summary Tables Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity/ Losses f Net Electricity Imports Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,906.8 631.0 473.9 583.9 1,688.8 415.4 272.9 -470.3 0.0 383.2 266.0 788.5 469.2 Alaska 630.4 14.5 344.0 255.7 614.1 0.0 16.3 0.0 (s) 53.4 61.0 325.4 190.6 Arizona 1,454.3 413.3 376.7 520.8 1,310.8 320.7 103.5 -279.9 -0.8 400.8 352.1 207.8 493.6 Arkansas 1,054.8 264.1 248.1 343.1 855.3 158.7 126.5 -85.7 0.0 226.3 167.0 372.5

143

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

3. Energy Consumption per Capita by End-Use Sector, Ranked by State, 2011 3. Energy Consumption per Capita by End-Use Sector, Ranked by State, 2011 Rank Residential Sector Commercial Sector Industrial Sector Transportation Sector Total Consumption State Million Btu State Million Btu State Million Btu State Million Btu State Million Btu 1 North Dakota 99.8 District of Columbia 193.1 Louisiana 585.8 Alaska 277.3 Wyoming 974.7 2 West Virginia 90.9 Wyoming 119.2 Wyoming 568.2 Wyoming 200.7 Louisiana 886.5 3 Missouri 89.4 North Dakota 106.9 Alaska 435.7 North Dakota 172.8 Alaska 881.3 4 Tennessee 87.8 Alaska 94.1 North Dakota 388.9 Louisiana 158.0 North Dakota 768.4 5 Kentucky 87.4 Montana 78.4 Iowa 243.4 Oklahoma 122.3 Iowa 493.6

144

Household vehicles energy consumption 1994  

SciTech Connect (OSTI)

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

145

Optimal investment, consumption and proportional reinsurance under model uncertainty  

Science Journals Connector (OSTI)

Abstract This paper considers the optimal investment, consumption and proportional reinsurance strategies for an insurer under model uncertainty. The surplus process of the insurer before investment and consumption is assumed to be a general jump–diffusion process. The financial market consists of one risk-free asset and one risky asset whose price process is also a general jump–diffusion process. We transform the problem equivalently into a two-person zero-sum forward–backward stochastic differential game driven by two-dimensional Lévy noises. The maximum principles for a general form of this game are established to solve our problem. Some special interesting cases are studied by using Malliavin calculus so as to give explicit expressions of the optimal strategies.

Xingchun Peng; Fenge Chen; Yijun Hu

2014-01-01T23:59:59.000Z

146

Essays on aggregate and individual consumption fluctuations  

E-Print Network [OSTI]

This thesis consists of three essays on aggregate and individual consumption fluctuations. Chapter 1 develops a quantitative model to explore aggregate and individual consumption dynamics when the income process exhibits ...

Hwang, Youngjin

2006-01-01T23:59:59.000Z

147

Reduced Energy Consumption for Melting in Foundries  

E-Print Network [OSTI]

Reduced Energy Consumption for Melting in Foundries Ph.D. Thesis by Søren Skov-Hansen Supervisor-melted, and hence reduce the energy consumption for melting in foundries. Traditional gating systems are known

148

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

149

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand)...

150

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace...

151

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

152

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

153

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

154

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace...

155

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total...

156

Maximum likelihood continuity mapping for fraud detection  

SciTech Connect (OSTI)

The author describes a novel time-series analysis technique called maximum likelihood continuity mapping (MALCOM), and focuses on one application of MALCOM: detecting fraud in medical insurance claims. Given a training data set composed of typical sequences, MALCOM creates a stochastic model of sequence generation, called a continuity map (CM). A CM maximizes the probability of sequences in the training set given the model constraints, CMs can be used to estimate the likelihood of sequences not found in the training set, enabling anomaly detection and sequence prediction--important aspects of data mining. Since MALCOM can be used on sequences of categorical data (e.g., sequences of words) as well as real valued data, MALCOM is also a potential replacement for database search tools such as N-gram analysis. In a recent experiment, MALCOM was used to evaluate the likelihood of patient medical histories, where ``medical history`` is used to mean the sequence of medical procedures performed on a patient. Physicians whose patients had anomalous medical histories (according to MALCOM) were evaluated for fraud by an independent agency. Of the small sample (12 physicians) that has been evaluated, 92% have been determined fraudulent or abusive. Despite the small sample, these results are encouraging.

Hogden, J.

1997-05-01T23:59:59.000Z

157

EIA - Analysis of Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption 2010 Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format) Trends in U.S. Residential Natural Gas Consumption This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census Division (1998 through 2009). It examines a long-term downward per-customer consumption trend and analyzes whether this trend persists across Census Divisions. The report also examines some of the factors that have contributed to the decline in per-customer consumption. To provide a more meaningful measure of per-customer consumption, EIA adjusted consumption data presented in the report for weather. Categories: Consumption (Released, 6/23/2010, pdf format)

158

Ethanol Consumption by Rat Dams During Gestation,  

E-Print Network [OSTI]

Ethanol Consumption by Rat Dams During Gestation, Lactation and Weaning Increases Ethanol examined effects of ethanol consumption in rat dams during gestation, lactation, and weaning on voluntary ethanol consumption by their adolescent young. We found that exposure to an ethanol-ingesting dam

Galef Jr., Bennett G.

159

Mathematical models of natural gas consumption  

E-Print Network [OSTI]

Mathematical models of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan Vazler , Marijana Zeki-Susac ksabo of natural gas consumption hourly fore- cast on the basis of hourly movement of temperature and natural gas

Scitovski, Rudolf

160

Public perceptions of energy consumption and savings  

E-Print Network [OSTI]

Public perceptions of energy consumption and savings Shahzeen Z. Attaria,1 , Michael L. De consumption and savings for a variety of household, transportation, and recycling activities. When asked, with 98% of US emissions attributed to energy consumption (2). According to Pacala and Socolow (3

Kammen, Daniel M.

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Consumption Oriented Free Capitalism Qiudong Wang  

E-Print Network [OSTI]

Consumption Oriented Free Capitalism Qiudong Wang An economic system is a framework, under which people are organized to produce consumption-goods and to consume the produced. Concerning economic of consumption, which in turn not only hindered further improvement of overall productivity, but also threatened

Wang, Quidong

162

STATE OF CALIFORNIA FAN POWER CONSUMPTION  

E-Print Network [OSTI]

STATE OF CALIFORNIA FAN POWER CONSUMPTION CEC-MECH-4C (Revised 08/09) CALIFORNIA ENERGY COMMISSION FAN POWER CONSUMPTION MECH-4C PROJECT NAME: DATE: NOTE: Provide one copy of this worksheet for each Systems or Variable Air Volume (VAV) Systems when using the Prescriptive Approach. See Power Consumption

163

Energy Consumption of Personal Computing Including Portable  

E-Print Network [OSTI]

Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

Namboodiri, Vinod

164

Hard Drive Power Consumption Uncovered Computer Laboratory  

E-Print Network [OSTI]

Hard Drive Power Consumption Uncovered Computer Laboratory Digital Technology Group Anthony Hylick, Andrew Rice, Brian Jones, Ripduman Sohan Motivation Attempts to reduce power consumption have mainly of power consumption and identify the need for a more expressive API between the OS and hardware devices

Cambridge, University of

165

The food consumption of the world's seabirds  

Science Journals Connector (OSTI)

...May 2004 research-article The food consumption of the world's seabirds M. de L...provisional estimate of their annual food consumption. Knowing the body mass and energy density...equations to estimate daily and hence annual consumption of a seabird. Using this approach...

2004-01-01T23:59:59.000Z

166

The service economy: ‘wealth without resource consumption’?  

Science Journals Connector (OSTI)

...service economy: wealth without resource consumption? W. R. Stahel The Product-Life...with regard to its per capita material consumption in the industrialized countries. A...economy: `wealth without resource consumption'? B y W. R. Stahel The Product-Life...

1997-01-01T23:59:59.000Z

167

EXPONENTIAL UTILITY WITH NON-NEGATIVE CONSUMPTION  

E-Print Network [OSTI]

EXPONENTIAL UTILITY WITH NON-NEGATIVE CONSUMPTION ROMAN MURAVIEV AND MARIO V. W¨UTHRICH DEPARTMENT- ponential utility maximization problem, where feasible consumption policies are not permitted to be negative- come reduces the current consumption level, thus confirming the presence of the precautionary savings

Wüthrich, Mario

168

Optimal Consumption Choice with Intertemporal Substitution y  

E-Print Network [OSTI]

Optimal Consumption Choice with Intertemporal Substitution y By Peter Bank and Frank Riedel z consumption plans are established under arbitrary convex portfolio constraints, including both complete of the underlying stochastics, optimal consumption occurs at rates, in gulps, or in a singular way. y Support

Bank, Peter

169

Monitoring Energy Consumption In Wireless Sensor Networks  

E-Print Network [OSTI]

Monitoring Energy Consumption In Wireless Sensor Networks Matthias Witt, Christoph Weyer, it may impair the ability of the sensor network to function. Therefore, minimizing energy consumption energy consumption in both standby and active modes is the basis of wireless networks. Energy preserving

Turau, Volker

170

DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption  

Gasoline and Diesel Fuel Update (EIA)

/HRIf /HRIf Residential Energy Consumption Survey. Consumption and Expenditures, April 1981 Through March 1982 an Part I: National Data Energy Information Administration Washington, D.C. (202) 20fr02 'O'Q 'uoifkjjUSBM ujiuud juaoiujeAog 'S'n siuawnooQ jo luapuaiuuadns - 0088-292 (202) 98S02 '0'Q 8f 0-d I 6ujp|ing uoiieflSjUjiup v UOIIBUJJOJU | ABjau 3 02-13 'jaiuao UOIJBUJJOJUI XBjaug IBUO!;BN noA pasopua s; uujoi japjo uy 'MO|aq jeadde sjaqoinu auoydajaj PUB sassajppv 'OI3N 9>4i oi papajip aq pinoqs X6jaue uo suotjsenQ '(OIBN) J9»ueo aqjeiMJO^ui ASjaug (BUOIJEN s,vi3 QMi JO OdO 941 UUGJJ peuiBiqo eq ABOI suoijBonqnd (vi3) UO!JBJ;S!UILUPV UOIIBUUJO|U| XBjeug jaiflo PUB SJMJ p ssBiiojnd PUB UOIIBLUJO^JI 6uuepjQ (Od9) 90IWO Bujjuud luetuujaAOQ -g'n 'sjuaiunooa p juapuaiuuedng aqt LUOJI aiqB||BAB si uoHBOjiqnd sjt|i

171

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.5 pounds

172

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.0 pounds

173

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources a significant effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 15

174

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.3 pounds

175

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 84 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.3 pounds

176

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network [OSTI]

and Low Power Mode Energy Consumption”, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

Park, Won Young

2011-01-01T23:59:59.000Z

177

Modelling the impact of user behaviour on heat energy consumption  

E-Print Network [OSTI]

strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

2011-01-01T23:59:59.000Z

178

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network [OSTI]

a forecast for total energy consumption in network standbyconsiderable impact on total energy consumption from TVs.factors affecting total energy consumption. Although further

Park, Won Young

2011-01-01T23:59:59.000Z

179

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

E. Kahn (2011). Electricity Consumption and Durable Housing:49 3.3.3. Pre-installation electricity consumption of CSIon Electricity Consumption .

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

180

Canada's Fuel Consumption Guide | Open Energy Information  

Open Energy Info (EERE)

Canada's Fuel Consumption Guide Canada's Fuel Consumption Guide Jump to: navigation, search Tool Summary Name: Canada's Fuel Consumption Guide Agency/Company /Organization: Natural Resources Canada Focus Area: Fuels & Efficiency Topics: Analysis Tools Website: oee.nrcan.gc.ca/transportation/tools/fuel-consumption-guide/fuel-consu Natural Resources Canada has compiled fuel consumption ratings for passenger cars and light-duty pickup trucks, vans, and special purpose vehicles sold in Canada. The website links to the Fuel Consumption Guide and allows users to search for vehicles from current and past model years. It also provides information about vehicle maintenance and other practices to reduce fuel consumption. How to Use This Tool This tool is most helpful when using these strategies:

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

C3. Primary Energy Consumption Estimates, 2011 C3. Primary Energy Consumption Estimates, 2011 (Trillion Btu) State Fossil Fuels Fossil Fuels (as commingled) Coal Natural Gas excluding Supplemental Gaseous Fuels a Petroleum Total Natural Gas including Supplemental Gaseous Fuels a Motor Gasoline including Fuel Ethanol a Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline excluding Fuel Ethanol a Residual Fuel Oil Other d Total Alabama ........... 651.0 614.8 156.5 13.4 12.8 304.5 13.4 49.1 549.5 1,815.4 614.8 319.8 Alaska ............... 15.5 337.0 85.1 118.2 1.3 31.9 1.9 28.6 267.1 619.6 337.0 34.6 Arizona ............. 459.9 293.7 151.8 21.5 9.1 297.3 (s) 21.1 500.9 1,254.5 293.7 323.4 Arkansas ........... 306.1 288.6 134.9 5.9 9.4 165.4 0.2 19.8 335.7 930.5 288.6 175.6 California .......... 55.3 2,196.6 567.0 549.7 67.2 1,695.4 186.9 339.6 3,405.8 5,657.6 2,196.6

182

Consumption & Efficiency - Data - U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Find statistics on energy consumption and efficiency across all fuel sources. + EXPAND ALL Residential Energy Consumption Survey Data Household characteristics Release Date: March 28, 2011 Survey data for occupied primary housing units. Residential Energy Consumption Survey (RECS)

183

Flow shop scheduling with peak power consumption constraints  

E-Print Network [OSTI]

Mar 29, 2012 ... Flow shop scheduling with peak power consumption constraints ... Keywords: scheduling, flow shop, energy, peak power consumption, integer ...

K. Fang

2012-03-29T23:59:59.000Z

184

Environmental degradation, economic growth and energy consumption: Evidence of the environmental Kuznets curve in Malaysia  

Science Journals Connector (OSTI)

Abstract This paper tests for the short and long-run relationship between economic growth, carbon dioxide (CO2) emissions and energy consumption, using the Environmental Kuznets Curve (EKC) by employing both the aggregated and disaggregated energy consumption data in Malaysia for the period 1980–2009. The Autoregressive Distributed Lag (ARDL) methodology and Johansen–Juselius maximum likelihood approach were used to test the cointegration relationship; and the Granger causality test, based on the vector error correction model (VECM), to test for causality. The study does not support an inverted U-shaped relationship (EKC) when aggregated energy consumption data was used. When data was disaggregated based on different energy sources such as oil, coal, gas and electricity, the study does show evidences of the EKC hypothesis. The long-run Granger causality test shows that there is bi-directional causality between economic growth and CO2 emissions, with coal, gas, electricity and oil consumption. This suggests that decreasing energy consumption such as coal, gas, electricity and oil appears to be an effective way to control CO2 emissions but simultaneously will hinder economic growth. Thus suitable policies related to the efficient consumption of energy resources and consumption of renewable sources are required.

Behnaz Saboori; Jamalludin Sulaiman

2013-01-01T23:59:59.000Z

185

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

C C Quality of the Data Appendix C Quality of the Data Introduction This appendix discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on these data. The first section discusses under- coverage of the vehicle stock in the residential sector. The second section discusses the effects of using July 1991 as a time reference for the survey. The remainder of this appendix discusses the treatment of sampling and nonsampling errors in the RTECS, the quality of specific data items such as the Vehicle Identification Number (VIN) and fuel prices, and poststratification procedures used in the 1991 RTECS. The quality of the data collection and the processing of the data affects the accuracy of estimates based on survey data. All the statistics published in this report such as total

186

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

187

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

188

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Energy Information Administration/Manufacturing Consumption of Energy 1994 Glossary Anthracite: A hard, black, lustrous coal containing a high percentage of fixed carbon and a low percentage of volatile matter. Often referred to as hard coal. Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Bituminous Coal: A dense, black coal, often with well-defined bands of bright and dull material, with a moisture content usually less than 20 percent. Often referred to as soft coal. It is the most common coal. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to

189

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

190

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

191

Household vehicles energy consumption 1991  

SciTech Connect (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

192

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

193

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

194

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 State Energy Data 2011: Consumption Table C9. Electric Power Sector Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Nuclear Electric Power Hydroelectric Power b Biomass Geothermal Solar/PV d Wind Net Electricity Imports e Total f Distillate Fuel Oil Petroleum Coke Residual Fuel Oil Total Wood and Waste c Alabama ............. 586.1 349.4 1.1 0.0 0.0 1.1 411.8 86.3 4.6 0.0 0.0 0.0 0.0 1,439.3 Alaska ................. 6.0 42.3 3.3 0.0 1.5 4.8 0.0 13.1 0.0 0.0 0.0 0.1 (s) 66.3 Arizona ............... 449.9 183.9 0.6 0.0 0.0 0.6 327.3 89.1 2.4 0.0 0.8 2.5 1.5 1,057.9 Arkansas ............. 300.5 109.2 0.5 0.0 0.1 0.6 148.5 28.7 1.3 0.0 0.0 0.0 0.0 588.9 California ............ 19.7 630.1 0.4 11.1 (s) 11.5 383.6 413.4 69.0 122.0 8.4 75.3 20.1 1,753.1 Colorado ............. 362.4 88.1 0.3 0.0 0.0 0.3 0.0 20.2 0.9

195

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2011 . Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2011 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity f Net Electricity Imports g Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,931.3 651.0 614.8 549.5 1,815.4 411.8 260.6 -556.6 0.0 376.9 257.2 810.0 487.2 Alaska 637.9 15.5 337.0 267.1 619.6 0.0 18.4 0.0 (s) 53.7 68.2 315.4 200.7 Arizona 1,431.5 459.9 293.7 500.9 1,254.5 327.3 136.6 -288.4 1.5 394.7 345.5 221.2 470.1 Arkansas 1,117.1 306.1 288.6 335.7 930.5 148.5 123.7 -85.6 0.0 246.3 174.7 405.0 291.2 California 7,858.4 55.3 2,196.6 3,405.8 5,657.6 383.6 928.5 868.6 20.1 1,516.1 1,556.1 1,785.7 3,000.5 Colorado 1,480.8 368.9 476.5 472.9 1,318.3

196

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

C4. Total End-Use Energy Consumption Estimates, 2011 C4. Total End-Use Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric power f Biomass Geo- thermal Solar/PV i Retail Electricity Sales Net Energy j,k Electrical System Energy Losses l Total j,k Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste g Losses and Co- products h Alabama ........... 65.0 265.4 155.4 13.4 12.8 319.8 13.4 49.1 563.8 0.0 154.1 0.0 0.1 0.2 303.7 1,352.2 579.1 1,931.3 Alaska ............... 9.5 294.7 81.8 118.2 1.3 34.6 0.4 28.6 265.0 0.0 2.3 0.0 0.2 (s) 21.6 593.2 44.7 637.9 Arizona ............. 10.0 109.8 151.3 21.5 9.1 323.4 (s) 21.1 526.5 0.0 4.4 3.1 0.3 7.9 255.7 917.8 513.7 1,431.5 Arkansas ........... 5.6 179.4 134.5 5.9 9.4 175.6 0.1 19.8 345.4 0.0 82.6 0.0 0.7 0.2 163.5 777.4 339.8 1,117.1 California ..........

197

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

State State Energy Data 2011: Consumption 11 Table C8. Transportation Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Retail Electricity Sales Net Energy Electrical System Energy Losses e Total Aviation Gasoline Distillate Fuel Oil Jet Fuel b LPG c Lubricants Motor Gasoline d Residual Fuel Oil Total Alabama ............. 0.0 23.5 0.4 124.4 13.4 0.3 2.3 316.3 6.7 463.7 0.0 487.2 0.0 487.2 Alaska ................. 0.0 3.5 0.8 44.4 118.2 (s) 0.4 32.9 0.4 197.2 0.0 200.7 0.0 200.7 Arizona ............... 0.0 15.6 1.0 111.3 21.5 0.8 1.6 318.2 0.0 454.5 0.0 470.1 0.0 470.1 Arkansas ............. 0.0 11.5 0.4 99.7 5.9 0.4 2.0 171.3 0.0 279.8 (s) 291.2 (s) 291.2 California ............ 0.0 25.7 1.9 440.9 549.7 3.8 13.3 1,770.1 186.9 2,966.5 2.8 2,995.1 5.5 3,000.5 Colorado ............. 0.0 14.7 0.6 83.2 58.3 0.3

198

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

0 0 State Energy Data 2011: Consumption Table C7. Industrial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric power e Biomass Geo- thermal Retail Electricity Sales Net Energy h,i Electrical System Energy Losses j Total h,i Distillate Fuel Oil LPG b Motor Gasoline c Residual Fuel Oil Other d Total Wood and Waste f Losses and Co- products g Alabama ............. 65.0 179.1 23.9 3.7 3.3 6.7 46.3 83.9 0.0 147.2 0.0 (s) 115.1 590.4 219.5 810.0 Alaska ................. 0.1 253.8 19.2 0.1 1.0 0.0 27.1 47.4 0.0 0.1 0.0 0.0 4.5 306.0 9.4 315.4 Arizona ............... 10.0 22.0 33.2 1.4 4.6 (s) 18.4 57.6 0.0 1.4 3.1 0.2 42.1 136.5 84.7 221.2 Arkansas ............. 5.6 93.1 31.1 2.6 4.0 0.1 17.4 55.1 0.0 72.7 0.0 (s) 58.0 284.5 120.5 405.0 California ............ 35.6 767.4 77.2 23.9 29.6 (s) 312.5

199

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

8 8 State Energy Data 2011: Consumption Table C5. Residential Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal a Natural Gas b Petroleum Biomass Geothermal Solar/PV e Retail Electricity Sales Net Energy f Electrical System Energy Losses g Total f Distillate Fuel Oil Kerosene LPG c Total Wood d Alabama ............. 0.0 37.2 0.1 0.1 6.0 6.2 6.0 0.1 0.2 112.6 162.2 214.7 376.9 Alaska ................. 0.0 20.5 8.1 0.1 0.5 8.8 1.9 0.1 (s) 7.3 38.6 15.1 53.7 Arizona ............... 0.0 39.1 (s) (s) 5.5 5.5 2.6 (s) 7.9 112.9 168.0 226.8 394.7 Arkansas ............. 0.0 34.2 0.1 (s) 5.2 5.3 8.6 0.7 0.2 64.1 113.1 133.2 246.3 California ............ 0.0 522.4 0.6 0.6 30.9 32.2 33.3 0.2 43.2 301.6 932.9 583.1 1,516.1 Colorado ............. 0.0 134.2 0.1 (s) 12.3 12.4 8.3 0.2 0.7 62.4 216.5 136.5 353.0 Connecticut ......... 0.0 46.0 59.6

200

EIA - Natural Gas Consumption Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Consumption by End Use U.S. and State consumption by lease and plant, pipeline, and delivered to consumers by sector (monthly, annual). Number of Consumers Number of sales and transported consumers for residential, commercial, and industrial sectors by State (monthly, annual). State Shares of U.S. Deliveries By sector and total consumption (annual). Delivered for the Account of Others Commercial, industrial and electric utility deliveries; percentage of total deliveries by State (annual). Heat Content of Natural Gas Consumed Btu per cubic foot of natural gas delivered to consumers by State (annual) and other components of consumption for U.S. (annual). Natural Gas Weekly Update Analysis of current price, supply, and storage data; and a weather snapshot.

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Renewable Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

202

annual energy consumption | OpenEI  

Open Energy Info (EERE)

energy consumption energy consumption Dataset Summary Description Provides annual renewable energy consumption by source and end use between 1989 and 2008. This data was published and compiled by the Energy Information Administration. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords annual energy consumption consumption EIA renewable energy Data application/vnd.ms-excel icon historical_renewable_energy_consumption_by_sector_and_energy_source_1989-2008.xls (xls, 41 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 1989-2008 License License Creative Commons CCZero Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset

203

Household energy consumption and expenditures 1993  

SciTech Connect (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

204

Trends in Renewable Energy Consumption and Electricity  

Reports and Publications (EIA)

Presents a summary of the nation’s renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and state. The report covers the period from 2006 through 2010.

2012-01-01T23:59:59.000Z

205

Electricity consumption of telecommunication equipment to achieve a telemeeting  

Science Journals Connector (OSTI)

Abstract The article assesses the electricity consumption in use of telecommunication equipment to achieve one remote multi-user work meeting, an existing service proposed by Orange group. It also examines the electric gains of substitution for a meeting requiring physical transport. Equipment comprises participant computers PC and phones, access to core networks and servers to permit audio link and the share of documents on PC display between users. Each device requires power to perform hours of activity or transfer nominal bit/s of throughput. A generic and modular method is suggested to determine from this information, which is not directly related to services processed by the devices, the consumption of the service under study. The method thus provides a quantitative relation of service consumption to its characteristics – duration, number of users and access throughput – but also to device consumption efficiency and utilization rate. The relation of dependance permits to assess potential energy saving by substituting devices for more efficiency ones and/or by increasing their utilization rate at same provided service. With some utilization rates at around 10%, as observed for the servers, a telemeeting between three users and lasting 2.3 h requires 9 MJ of electricity. Using better equipment and higher rates it can be decreased to 1.5 MJ. By comparison transport of two of the users by train over a total distance of 2500 km requires 500 MJ. The method can be applied to any service provided its characteristics are known.

X. Chavanne; S. Schinella; D. Marquet; J.P. Frangi; S. Le Masson

2015-01-01T23:59:59.000Z

206

,"Colorado Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Consumption by End Use",6,"Monthly","112014","1151989" ,"Release...

207

Fuel Consumption per Vehicle.xls  

U.S. Energy Information Administration (EIA) Indexed Site

... 729 NA 618 628 652 681 Table 9. Fuel Consumption per Vehicle, Selected Survey Years (Gallons) Survey Years Page A-1 of A-5 1983 1985...

208

Power Consumption of Hybrid Optical Switches  

Science Journals Connector (OSTI)

Two realization options of hybrid optical switches are evaluated with regard to power consumption. Both switches show improved energy efficiency in comparison to a pure packet...

Aleksic, Slavi?a

209

Issues in International Energy Consumption Analysis: Electricity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Usage in India's Housing Sector SERIES: Issues in International Energy Consumption Analysis Electricity Usage in India's Housing Sector Release date: November 7, 2014...

210

Displacing Natural Gas Consumption and Lowering Emissions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels and thereby reduce their natural gas consumption. Opportunity gas fuels include biogas from animal and agri- cultural wastes, wastewater plants, and landfills, as well as...

211

Resource Consumption of Additive Manufacturing Technology.  

E-Print Network [OSTI]

??The degradation of natural resources as a result of consumption to support the economic growth of humans society represents one of the greatest sustainability challenges.… (more)

Nopparat, Nanond

2012-01-01T23:59:59.000Z

212

,"New York Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","12312014"...

213

,"California Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Consumption by End Use",11,"Annual",2013,"6301967" ,"Release...

214

Advertising in Markets with Consumption Externalities.  

E-Print Network [OSTI]

??This paper extends the entry deterrence literature by examining coordinating advertising in markets with consumption externalities using a stochastic success function. Optimal advertising and pricing… (more)

Whelan, Adele

2014-01-01T23:59:59.000Z

215

Pricing Conspicuous Consumption Products in Recession Periods ...  

E-Print Network [OSTI]

Conspicuous consumptions products as luxury cars, designer brands, and fancy hotel rooms .... mand D is driven by the brand image and the pricing strategy p.

2012-09-26T23:59:59.000Z

216

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

or fewer than 20 buildings were sampled. NNo responding cases in sample. Notes: Statistics for the "Energy End Uses" category represent total consumption in buildings that...

217

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

218

Conservation Potential of Compact Fluorescent Lamps in India and Brazil  

E-Print Network [OSTI]

1988. The private sector in Brazil owned (in 1986) 40% ofElectricity Conservation in Brazil: Potential and Pro-electricity consumption in Brazil's residential sector was

Gadgil, A.J.

2008-01-01T23:59:59.000Z

219

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports An Assessment of EIA's Building Consumption Data Background image of CNSTAT logo The U.S. Energy Information Administration (EIA) routinely uses feedback from customers and outside experts to help improve its programs and products. As part of an assessment of its consumption

220

On an optimal consumption problem for p-integrable consumption plans  

Science Journals Connector (OSTI)

...A generalization is presented of the existence results for an optimal consumption problem of Aumann and Perles [4]...

Erik J. Balder; Martijn R. Pistorius

2001-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cell development obeys maximum Fisher information  

E-Print Network [OSTI]

Eukaryotic cell development has been optimized by natural selection to obey maximal intracellular flux of messenger proteins. This, in turn, implies maximum Fisher information on angular position about a target nuclear pore complex (NPR). The cell is simply modeled as spherical, with cell membrane (CM) diameter 10 micron and concentric nuclear membrane (NM) diameter 6 micron. The NM contains about 3000 nuclear pore complexes (NPCs). Development requires messenger ligands to travel from the CM-NPC-DNA target binding sites. Ligands acquire negative charge by phosphorylation, passing through the cytoplasm over Newtonian trajectories toward positively charged NPCs (utilizing positive nuclear localization sequences). The CM-NPC channel obeys maximized mean protein flux F and Fisher information I at the NPC, with first-order delta I = 0 and approximate 2nd-order delta I = 0 stability to environmental perturbations. Many of its predictions are confirmed, including the dominance of protein pathways of from 1-4 proteins, a 4nm size for the EGFR protein and the approximate flux value F =10^16 proteins/m2-s. After entering the nucleus, each protein ultimately delivers its ligand information to a DNA target site with maximum probability, i.e. maximum Kullback-Liebler entropy HKL. In a smoothness limit HKL approaches IDNA/2, so that the total CM-NPC-DNA channel obeys maximum Fisher I. Thus maximum information approaches non-equilibrium, one condition for life.

B. R. Frieden; R. A. Gatenby

2014-04-29T23:59:59.000Z

222

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

223

DYNAMIC MANAGEMENT OF POWER CONSUMPTION Tajana Simunic  

E-Print Network [OSTI]

of the system and decides when and how to force power state transitions. The power manager makes state transition decisions according to the power management policy. The choice of the policy that minimizes powerChapter 1 DYNAMIC MANAGEMENT OF POWER CONSUMPTION Tajana Simunic HP Labs Abstract Power consumption

Simunic, Tajana

224

Energy Consumption Issues on Mobile Network Systems  

Science Journals Connector (OSTI)

This paper describes energy consumption demographic data in operating real mobile networks. We examine published data from NTT DoCoMo, which is the largest mobile telecommunication operator in Japan and operating nation-wide 3G networks, and identify ... Keywords: Moble Network, Power Consumption, Battery, CO2, Green Network

Minoru Etoh; Tomoyuki Ohya; Yuji Nakayama

2008-07-01T23:59:59.000Z

225

Energy Consumption of Minimum Energy Coding in  

E-Print Network [OSTI]

Energy Consumption of Minimum Energy Coding in CDMA Wireless Sensor Networks Benigno Zurita Ares://www.ee.kth.se/control Abstract. A theoretical framework is proposed for accurate perfor- mance analysis of minimum energy coding energy consumption is analyzed for two coding schemes proposed in the literature: Minimum Energy coding

Johansson, Karl Henrik

226

NOAAlNMFS Developments Seafood Consumption and  

E-Print Network [OSTI]

NOAAlNMFS Developments Seafood Consumption and Exports Are Up in Hawaii Seafood consumption amount to $28.7 million, of which $2.4 million is fresh fish and $21.2 million is frozen seafood (lobster and the inter- national market; 5) seafood consump- tion in Hawaii is estimated to be 24 pounds per person

227

Alcohol consumption, Lewis phenotypes, and risk of ischemic heart disease  

SciTech Connect (OSTI)

The authors have previously found an increased risk of ischemic heart disease (IHD) in men with the Lewis phenotype Le(a[minus]b[minus]) and suggested that the Lewis blood group has a close genetic relation with insulin resistance. The authors have investigated whether any conventional risk factors explain the increased risk in Le(a[minus]b[minus]) men. 3,383 men aged 53-75 years were examined in 1985-86, and morbidity and mortality during the next 4 years were recorded. At baseline, the authors excluded 343 men with a history of myocardial infarction, angina pectoris, intermittent claudication, or stroke. The potential risk factors examined were alcohol consumption, physical activity, tobacco smoking, serum cotinine, serum lipids, body-mass index, blood pressure, prevalence of hypertension and non-insulin-dependent diabetes mellitus, and social class. In 280 (9.6%) men with Le(a[minus]b[minus]), alcohol was the only risk factor significantly associated with risk of IHD. There was a significant inverse dose-effect relation between alcohol consumption and risk; trend tests, with adjustment for age, were significant for fatal IHD (p=0.02), all IHD (p=0.03), and all causes of death (p=0.02). In 2649 (90.4%) men with other phenotypes, there was a limited negative association with alcohol consumption. In Le(a[minus]b[minus]) men, a group genetically at high risk of IHD, alcohol consumption seems to be especially protective. The authors suggest that alcohol consumption may modify insulin resistance in Le(a[minus]b[minus]) men.

Hein, H.O.; Suadicani, P.; Gyntelberg, F. (Rigshospitalet State Univ. Hospital, Copenhagen (Denmark). Epidemiological Research Unit); Sorenson, H. (Rigshospitalet State Univ. Hospital, Copenhagen (Denmark). Dept. of Chemical Immunology); Hein, H.O. (Univ. of Copenhagen (Denmark). Dept. of Internal Medicine)

1993-02-13T23:59:59.000Z

228

US SoAtl GA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

GA GA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl GA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl GA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl GA Expenditures dollars ELECTRICITY ONLY average per household * Site energy consumption (89.5 million Btu) and energy expenditures per household ($2,067) in Georgia are similar to the U.S. household averages. * Per household electricity consumption in Georgia is among the highest in the country, but similar to other states in the South. * Forty-five percent of homes in Georgia were built since 1990, a characteristic typically associated with lower per household consumption. Georgia homes,

229

US SoAtl GA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

GA GA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl GA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl GA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl GA Expenditures dollars ELECTRICITY ONLY average per household * Site energy consumption (89.5 million Btu) and energy expenditures per household ($2,067) in Georgia are similar to the U.S. household averages. * Per household electricity consumption in Georgia is among the highest in the country, but similar to other states in the South. * Forty-five percent of homes in Georgia were built since 1990, a characteristic typically associated with lower per household consumption. Georgia homes,

230

Chapter 4. Fuel Economy, Consumption and Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel Economy, Consumption, and Expenditures 4. Fuel Economy, Consumption, and Expenditures Chapter 4. Fuel Economy, Consumption, and Expenditures This chapter analyzes trends in fuel economy, fuel consumption, and fuel expenditures, using data unique to the Residential Transportation Energy Consumption Survey, as well as selected data from other sources. Analysis topics include the following: Following the oil supply and price disruptions caused by the Arab oil embargo of 1973-1974, motor gasoline price increases, the introduction of corporate average fuel economy standards, and environmental quality initiatives helped to spur major changes in vehicle technology. But have the many advances in vehicle technology resulted in measurable gains in the fuel economy of the residential vehicle fleet?

231

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table C6. Commercial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric Power e Biomass Geothermal Retail Electricity Sales Net Energy g Electrical System Energy Losses h Total g Distillate Fuel Oil Kerosene LPG b Motor Gasoline c Residual Fuel Oil Total d Wood and Waste f Alabama ............. 0.0 25.5 7.0 (s) 2.7 0.2 0.0 10.0 0.0 0.9 0.0 75.9 112.4 144.8 257.2 Alaska ................. 9.4 16.9 10.1 0.1 0.6 0.7 0.0 11.5 0.0 0.3 0.1 9.7 48.0 20.2 68.2 Arizona ............... 0.0 33.1 6.8 (s) 1.5 0.7 0.0 8.9 0.0 0.5 (s) 100.7 143.2 202.3 345.5 Arkansas ............. 0.0 40.6 3.6 (s) 1.2 0.4 0.0 5.2 0.0 1.3 0.0 41.4 88.6 86.1 174.7 California ............ 0.0 250.9 47.9 0.1 8.7 1.4 0.0 58.1 (s) 17.4 0.7 418.9 746.2 809.9 1,556.1 Colorado ............. 3.2 57.6 5.9 (s) 2.9 0.2 0.0 9.1 0.0 1.2 0.2

232

Notes on Frequentist, Maximum Likelihood & Bayesian Statistics  

E-Print Network [OSTI]

, theory, "gut feeling," etc. · Changes the probability distribution #12;Bayesian Statistics · ProbabilityNotes on Frequentist, Maximum Likelihood & Bayesian Statistics #12;Statistical Methods · Probability is a long-term frequency statement about the data ­ if repeated, what proportion of the time would

Ernest, Holly

233

PublicationsmailagreementNo.40014024 maximum depth  

E-Print Network [OSTI]

and a video camera to complete installation of the world's first regional cabled ocean observatory. NEPTUNE- tion systems that--using power and the internet--provide continuous, long-term monitoring of oceanPublicationsmailagreementNo.40014024 THE 2.7km maximum depth beneath the ocean surface of neptune

Pedersen, Tom

234

Energy Information Administration - Transportation Energy Consumption by  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply surveys, directed to the suppliers and marketers of specific energy sources, that measure the quantities of specific fuels produced for and/or supplied to the market; and consumption surveys, which gather information on the types of energy used by consumer groups along with the consumer characteristics that are associated with energy use. In the transportation sector, EIA's core consumption survey was the Residential Transportation Energy Consumption Survey. RTECS belongs to the consumption group because it collects information directly from the consumer, the household. For roughly a decade, EIA fielded the RTECS--data were first collected in 1983. This survey, fielded for the last time in 1994, was a triennial survey of energy use and expenditures, vehicle miles-traveled (VMT), and vehicle characteristics for household vehicles. For the 1994 survey, a national sample of more than 3,000 households that own or use some 5,500 vehicles provided data.

235

Residential Energy Consumption Survey (RECS) - Energy Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Consumption Survey (RECS) - U.S. Energy Information Consumption Survey (RECS) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels

236

Multiple Injection and Boosting Benefits for Improved Fuel Consumption on a Spray Guided Direct Injection Gasoline Engine  

Science Journals Connector (OSTI)

The combination of turbocharging and direct injection offers a significant potential for SI engines to improve fuel consumption, specific power output, raw emissions and ... shows the latest results of the T-SGDI...

Jason King; Oliver Böcker

2013-01-01T23:59:59.000Z

237

US SoAtl VA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

SoAtl VA SoAtl VA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl VA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl VA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl VA Expenditures dollars ELECTRICITY ONLY average per household * Virginia households consume an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are higher for Virginia households than the national average, but similar to those in neighboring states where electricity is the most common heating fuel. * Virginia homes are typically newer and larger than homes in other parts of the country. CONSUMPTION BY END USE

238

US Mnt(S) AZ Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

Mnt(S) AZ Mnt(S) AZ Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(S) AZ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US Mnt(S) AZ Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US Mnt(S) AZ Expenditures dollars ELECTRICITY ONLY average per household * Arizona households use 66 million Btu of energy per home, 26% less than the U.S. average. * The combination of lower than average site consumption of all energy, but above average electricity which is relatively expensive, results in Arizona households spending 3% less for energy than the U.S. average. * More reliance on air conditioning keeps average site electricity consumption in the state high relative to other parts of the U.S.

239

US SoAtl VA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

SoAtl VA SoAtl VA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl VA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl VA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl VA Expenditures dollars ELECTRICITY ONLY average per household * Virginia households consume an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are higher for Virginia households than the national average, but similar to those in neighboring states where electricity is the most common heating fuel. * Virginia homes are typically newer and larger than homes in other parts of the country. CONSUMPTION BY END USE

240

Natural gas consumption | OpenEI  

Open Energy Info (EERE)

gas consumption gas consumption Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 136, and contains only the reference case. This dataset is in trillion cubic feet. The data is broken down into residential, commercial, industrial, electric power and transportation. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Natural gas consumption Data application/vnd.ms-excel icon AEO2011: Natural Gas Consumption by End-Use Sector and Census Division- Reference Case (xls, 138.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Power Consumption Analysis of Architecture on Demand  

Science Journals Connector (OSTI)

Abstract (40-Word Limit): Recently proposed Architecture on Demand (AoD) node shows considerable flexibility benefits against traditional ROADMs. We study the power consumption of AoD...

Garrich, Miquel; Amaya, Norberto; Zervas, Georgios; Giaccone, Paolo; Simeonidou, Dimitra

242

State energy data report 1996: Consumption estimates  

SciTech Connect (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

NONE

1999-02-01T23:59:59.000Z

243

,"New York Natural Gas Residential Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:45:53 PM" "Back to Contents","Data 1: New York Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NY2" "Date","New...

244

,"New York Natural Gas Industrial Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:47:17 PM" "Back to Contents","Data 1: New York Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NY2" "Date","New York...

245

Current Demands on Fuel Consumption Measurement  

Science Journals Connector (OSTI)

The general focus on the reduction of greenhouse gases, specifically of CO2..., is also increasingly drawing the attention of engine developers back to the priority of lowering fuel consumption. Fundamental to th...

Karl Köck; Romain Lardet; Rainer Schantl

2011-09-01T23:59:59.000Z

246

Fuel Consumption Monitoring and Diesel Engines  

Science Journals Connector (OSTI)

In a perspective to explore how fuel monitoring and diesel engine life are interconnected, it’s necessary to ... touch several issues such as specifics of diesel engines in fuel consumption, the effects of precis...

Anna Antimiichuk

2014-09-01T23:59:59.000Z

247

Analyzing electricity consumption via data mining  

Science Journals Connector (OSTI)

This paper proposes a model to analyze the massive data of electricity. Feature subset is determined by the correlation ... be determined further. The effects on analyzing electricity consumption of the other thr...

Jinshuo Liu; Huiying Lan; Yizhen Fu; Hui Wu…

2012-04-01T23:59:59.000Z

248

Energy consumption metrics of MIT buildings  

E-Print Network [OSTI]

With world energy demand on the rise and greenhouse gas levels breaking new records each year, lowering energy consumption and improving energy efficiency has become vital. MIT, in a mission to help improve the global ...

Schmidt, Justin David

2010-01-01T23:59:59.000Z

249

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

sum to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

250

Residential Energy Consumption Survey (RECS) - Energy Information...  

U.S. Energy Information Administration (EIA) Indexed Site

Heating and cooling no longer majority of U.S. home energy use Pie chart of energy consumption in homes by end uses Source: U.S. Energy Information Administration, Residential...

251

US Mnt(S) AZ Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Mnt(S) AZ Mnt(S) AZ Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(S) AZ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US Mnt(S) AZ Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US Mnt(S) AZ Expenditures dollars ELECTRICITY ONLY average per household * Arizona households use 66 million Btu of energy per home, 26% less than the U.S. average. * The combination of lower than average site consumption of all energy, but above average electricity which is relatively expensive, results in Arizona households spending 3% less for energy than the U.S. average. * More reliance on air conditioning keeps average site electricity consumption in the state high relative to other parts of the U.S.

252

Energy consumption and environmental pollution: a stochastic model  

Science Journals Connector (OSTI)

......indicated that total energy consumption in sugar beet production...pollution. Although energy consumption increased sugar beet yield...and found that hybrid and electric car technologies exhibit (efficiency...ergy efficiency, affects consumption choice by Swedish households......

Charles S. Tapiero

2009-07-01T23:59:59.000Z

253

Optimal consumption and investment for markets with random coefficients.  

E-Print Network [OSTI]

Optimal consumption and investment for markets with random coefficients. Belkacem Berdjane and Serguei Pergamenshchikov December 9, 2011 Abstract We consider an optimal investment and consumption. We assume that an agent makes consumption and investment decisions based on CRRA utility functions

Paris-Sud XI, Université de

254

Sequential #optimal consumption and investment for stochastic volatility markets  

E-Print Network [OSTI]

Sequential #­optimal consumption and investment for stochastic volatility markets with unknown investment and consumption problem for a Black­Scholes financial market with stochastic volatility sequential estimation. We show that the consumption and investment strategy calculated through

255

Intertemporal Consumption and Savings Behavior: Neoclassical, Behavioral, and Neuroeconomic Approaches  

E-Print Network [OSTI]

Intertemporal Consumption and Savings Behavior: Neoclassical, Behavioral, and Neuroeconomic models of intertemporal consumption and savings behavior. I summarize the construction and implications of Modigliani & Brumberg's Life-Cycle Hypothesis [4] and Laibson's quasi-hyperbolic consumption function [8

Morrow, James A.

256

On an Investment-Consumption model with transaction costs  

E-Print Network [OSTI]

On an Investment-Consumption model with transaction* Abstract This paper considers the optimal consumption and investment policy for* * an investor of consumption. Dynamic Programming leads to a Variational* * Inequality for the value function

Menaldi, Jose-Luis

257

Consumption of Imipenem Correlates with ?-Lactam Resistance in Pseudomonas aeruginosa  

Science Journals Connector (OSTI)

...Microbiology ARTICLE CLINICAL THERAPEUTICS Consumption of Imipenem Correlates with b-Lactam...from 1997 to 2000, we monitored the consumption of b-lactam and other antibiotics...Partial correlation coefficients between consumption and resistance rates were determined...

Philipp M. Lepper; Eberhard Grusa; Helga Reichl; Josef Högel; Matthias Trautmann

2002-09-01T23:59:59.000Z

258

Consumption patterns, complexity and enrichment in aquatic food chains  

Science Journals Connector (OSTI)

...22 May 1998 research-article Consumption patterns, complexity and enrichment...patterns resembling ratio-dependent consumption. However, whereas the prey-dependent...prey-dependent|enrichment|omnivory| Consumption patterns, complexity and enrichment...

1998-01-01T23:59:59.000Z

259

Uncertainties in Energy Consumption Introduced by Building Operations and  

E-Print Network [OSTI]

Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium between predicted and actual building energy consumption can be attributed to uncertainties introduced in energy consumption due to actual weather and building operational practices, using a simulation

260

National Seafood Consumption Survey: Overview of Survey Methodology & Implementation Strategy  

E-Print Network [OSTI]

National Seafood Consumption Survey: Overview of Survey Methodology & Implementation Strategy Methodology The primary objective of NOAA Fisheries National Seafood Consumption Survey was to gather information about people's purchase and consumption behaviors of various seafood products. These behavioral

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Using occupancy to reduce energy consumption of buildings  

E-Print Network [OSTI]

Meter allows us to study the energy consumption patterns onThis allows us to study the energy consumption of individualgives us a good framework to study the energy consumption

Balaji, Bharathan

2011-01-01T23:59:59.000Z

262

Residential Lighting End-Use Consumption  

Broader source: Energy.gov [DOE]

The U.S. DOE Residential Lighting End-Use Consumption Study aims to improve the understanding of lighting energy usage in U.S. residential dwellings using a regional estimation framework. The framework allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications.

263

State energy data report 1994: Consumption estimates  

SciTech Connect (OSTI)

This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

NONE

1996-10-01T23:59:59.000Z

264

China's Present Situation of Coal Consumption and Future Coal Demand Forecast  

Science Journals Connector (OSTI)

This article analyzes China's coal consumption changes since 1991 and proportion change of coal consumption to total energy consumption. It is argued that power, iron and steel, construction material, and chemical industries are the four major coal consumption industries, which account for 85% of total coal consumption in 2005. Considering energy consumption composition characteristics of these four industries, major coal demand determinants, potentials of future energy efficiency improvement, and structural changes, etc., this article makes a forecast of 2010s and 2020s domestic coal demand in these four industries. In addition, considering such relevant factors as our country's future economic growth rate and energy saving target, it forecasts future energy demands, using per unit GDP energy consumption method and energy elasticity coefficient method as well. Then it uses other institution's results about future primary energy demand, excluding primary coal demand, for reference, and forecasts coal demands in 2010 and 2020 indirectly. After results comparison between these two methods, it is believed that coal demands in 2010 might be 2620–2850 million tons and in 2020 might be 3090–3490 million tons, in which, coal used in power generation is still the driven force of coal demand growth.

Wang Yan; Li Jingwen

2008-01-01T23:59:59.000Z

265

Design of maximum density aggregate grading  

Science Journals Connector (OSTI)

An aggregate grading that yields maximum solid density and maximum particle interlock is highly desirable for both bound mixtures, such as asphalt concrete and plain and reinforced concrete, and for unbound mixtures such as those used in base courses. Maximum particle interlock leads to high strength. Whereas minimum voids in a certain material composition is conducive to high strength and low compression. Aggregate grading may be obtained, for instance, from the ASTM, which is based on experience or may be designed according to Lees’ method. In the present work five different types of aggregates were used, each with a variety of chosen grading. It was found that Lees’ method produced the lowest porosity of all types of aggregates as well as for the various employed gradings. Lees’ rational method of aggregate grading, however, is a very lengthy and time-consuming procedure. Therefore, programming of Lees’ method is an essential step to make such an excellent method available to practicing engineers. A program named ‘ratmix’ was developed and has incorporated 58 design graphs of the Lees’ method. ratmix is a comprehensive program for Lees’ rational method; it conducts interpolation for intermediate points within the design graphs as well as between graphs of different properties.

Yahia A Abdel-Jawad; Waddah Salman Abdullah

2002-01-01T23:59:59.000Z

266

Table 6.2 Consumption Ratios of Fuel, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Consumption Ratios of Fuel, 2002;" 2 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,"Consumption" " ",,"Consumption","per Dollar"," " " ","Consumption","per Dollar","of Value","RSE" "Economic","per Employee","of Value Added","of Shipments","Row" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

267

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006;" 3 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

268

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2002;" 3 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

269

High Quality Frozen Seafoods: The Need and the Potential  

E-Print Network [OSTI]

High Quality Frozen Seafoods:· The Need and the Potential in the United States J. T R. NICKERSON and a burgeoning interest in the vari- ous elements of the seafood industry. The potential for increased seafood for a significant increase in the per capita consumption of seafoods in this country (per capita consumption equals

270

The electricity consumption impacts of commercial energy management systems  

SciTech Connect (OSTI)

An investigation of energy management systems (EMS) in large commercial and institutional buildings in North Carolina was undertaken to determine how EMS currently affect electricity consumption and what their potential is for being used to reduce on-peak electricity demand. A survey was mailed to 5000 commercial customers; the 430 responses were tabulated and analyzed; EMS vendors were interviewed, and 30 sites were investigated in detail. The detailed assessments included a site interview and reconstruction of historic billing data to evaluate EMS impact, if any. The results indicate that well-tuned EMS can result in a 10 to 40 percent reduction in billed demand, and smaller reductions in energy.

Buchanan, S.; Taylor, R.; Paulos, S.; Warren, W.; Hay, J.

1989-02-01T23:59:59.000Z

271

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Technical Workshop on Behavior Economics Presentations Technical Workshop on Behavior Economics Presentations Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy

272

Federal Energy Management Program: Data Center Energy Consumption Trends  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Center Energy Data Center Energy Consumption Trends to someone by E-mail Share Federal Energy Management Program: Data Center Energy Consumption Trends on Facebook Tweet about Federal Energy Management Program: Data Center Energy Consumption Trends on Twitter Bookmark Federal Energy Management Program: Data Center Energy Consumption Trends on Google Bookmark Federal Energy Management Program: Data Center Energy Consumption Trends on Delicious Rank Federal Energy Management Program: Data Center Energy Consumption Trends on Digg Find More places to share Federal Energy Management Program: Data Center Energy Consumption Trends on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Data Center Energy Efficiency Energy Consumption Trends

273

Fact #839: September 22, 2014 World Petroleum Consumption Continues...  

Energy Savers [EERE]

39: September 22, 2014 World Petroleum Consumption Continues to Rise despite Declines from the United States and Europe Fact 839: September 22, 2014 World Petroleum Consumption...

274

Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption...  

Broader source: Energy.gov (indexed) [DOE]

9: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by State, 2010 Fact 749: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by...

275

Complex System Method to Assess Commercial Vehicle Fuel Consumption...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complex System Method to Assess Commercial Vehicle Fuel Consumption Complex System Method to Assess Commercial Vehicle Fuel Consumption Two case studies for commercial vehicle...

276

Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...  

Broader source: Energy.gov (indexed) [DOE]

5: December 12, 2011 Fuel Consumption Standards for Combination Tractors Fact 705: December 12, 2011 Fuel Consumption Standards for Combination Tractors The National Highway...

277

Lubricant Formulation and Consumption Effects on Diesel Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: 2005 Diesel Engine...

278

Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

6: December 19, 2011 Vocational Vehicle Fuel Consumption Standards Fact 706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards The National Highway Traffic Safety...

279

Table E7.1. Consumption Ratios of Fuel, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit:...

280

Impact of Driving Behavior on PHEV Fuel Consumption for Different...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control Impact of Driving Behavior on PHEV Fuel Consumption for Different Powertrain,...

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program 2012 DOE Hydrogen and Fuel Cells...

282

Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

-- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1...

283

Comparison of Real World Energy Consumption to Models and DOE...  

Broader source: Energy.gov (indexed) [DOE]

Comparison of Real World Energy Consumption to Models and DOE Test Procedures Comparison of Real World Energy Consumption to Models and DOE Test Procedures This study investigates...

284

Power to the Plug: An Introduction to Energy, Electricity, Consumption...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Below is...

285

New Water Booster Pump System Reduces Energy Consumption by 80...  

Broader source: Energy.gov (indexed) [DOE]

Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases...

286

Manufacturing Energy Consumption Survey (MECS) - Data - U.S....  

U.S. Energy Information Administration (EIA) Indexed Site

| 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total First Use (formerly Primary Consumption) of Energy...

287

Reducing fuel consumption on the field, by continuously measuring...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuel consumption on the field, by continuously measuring fuel quality on electronically fuel injected engines. Reducing fuel consumption on the field, by continuously measuring...

288

The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition The Impact of Oil Consumption Mechanisms on Diesel Exhaust...

289

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without...  

Broader source: Energy.gov (indexed) [DOE]

Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W. Bodman and...

290

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network [OSTI]

consumption. Total energy consumption (in thousand BTUs) waselectricity and total energy consumption. Because all homesin gas, electric, and total energy consumption. Removing

Kelsven, Phillip

2013-01-01T23:59:59.000Z

291

Accelerated maximum likelihood parameter estimation for stochastic biochemical systems  

E-Print Network [OSTI]

as: Daigle et al. : Accelerated maximum likelihood parame-Gillespie DT: Approximate accelerated stochastic simulationARTICLE Open Access Accelerated maximum likelihood parameter

Daigle, Bernie J; Roh, Min K; Petzold, Linda R; Niemi, Jarad

2012-01-01T23:59:59.000Z

292

The Hybrid Maximum Principle is a consequence of Pontryagin ...  

E-Print Network [OSTI]

We give a simple proof of the Maximum Principle for smooth hybrid control sys- ... result in the study of such problems is Hybrid Maximum Principle proved in [4] ...

2006-10-31T23:59:59.000Z

293

Housing as basis for sustainable consumption  

Science Journals Connector (OSTI)

An important element in the discussion regarding sustainable development in our part of the world is directed towards the large growth in private consumption, and the clash of interests that arises between this growth and sustainable development requirements. A considerable part of private consumption can be related to our houses and the living situations of which they are part. It is of considerable interest to obtain more knowledge about the variations in patterns and volumes of consumption between different living situations, as well as to explore the important factors behind these variations. The acquisition of this type of empirical knowledge is an important aim in the present study. It is based on the superior thesis that it is possible through land use and housing planning to achieve substantial changes in living situations and thus contribute to a development in a direction of ''sustainable production and consumption''. The article first sums up the state-of-art regarding research on relations between physical planning, household consumption and environment. A theoretical framework and the methods applied in a Norwegian research project acquiring new empirical knowledge into these relations are also presented. The project was intended to be finished by the end of year 2000. Parts of the investigations are, however, completed and the material has been analysed. Two different types of urban structure, Oslo and a small rural town, are included in the investigations. The article presents some of the findings and relates them to former research.

Karl Georg Hoyer; Erling Holden

2001-01-01T23:59:59.000Z

294

Energy Consumption of Die Casting Operations  

SciTech Connect (OSTI)

Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

Jerald Brevick; clark Mount-Campbell; Carroll Mobley

2004-03-15T23:59:59.000Z

295

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 All Buildings Using District Heat District Heat Consumption District Heat Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million dollars) All Buildings ................................ 67 5,576 83 636 7,279 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q Q Q Q Q 5,001 to 10,000 .............................. Q Q Q Q Q 10,001 to 25,000 ............................ 18 289 16 Q Q 25,001 to 50,000 ............................ 10 369 35 Q Q 50,001 to 100,000 .......................... 8 574 70 Q Q 100,001 to 200,000 ........................ 9 1,399 148 165 Q

296

International Energy Outlook 2001 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

World Energy Consumption World Energy Consumption picture of a printer Printer Friendly Version (PDF) This report presents international energy projections through 2020, prepared by the Energy Information Administration, including outlooks for major energy fuels and issues related to electricity, transportation, and the environment. The International Energy Outlook 2001 (IEO2001) presents the Energy Information Administration (EIA) outlook for world energy markets to 2020. Current trends in world energy markets are discussed in this chapter, followed by a presentation of the IEO2001 projections for energy consumption by primary energy source and for carbon emissions by fossil fuel. Uncertainty in the forecast is highlighted by an examination of alternative assumptions about economic growth and their impacts on the

297

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Natural Gas Consumption and Expenditures in All Buildings, 2003 3A. Total Natural Gas Consumption and Expenditures in All Buildings, 2003 All Buildings Using Natural Gas Natural Gas Consumption Natural Gas Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (billion cubic feet) Total (million dollars) All Buildings ................................ 2,538 48,473 19.1 2,100 2,037 16,010 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 1,134 3,175 2.8 257 249 2,227 5,001 to 10,000 .............................. 531 3,969 7.5 224 218 1,830 10,001 to 25,000 ............................ 500 7,824 15.6 353 343 2,897 25,001 to 50,000 ............................ 185 6,604 35.8 278 270 2,054

298

US Mnt(N) CO Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

Mnt(N) CO Mnt(N) CO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(N) CO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US Mnt(N) CO Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US Mnt(N) CO Expenditures dollars ELECTRICITY ONLY average per household * Colorado households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Average household energy costs in Colorado are 23% less than the national average, primarily due to historically lower natural gas prices in the state. * Average electricity consumption per household is lower than most other states, as Colorado residents do not commonly use electricity for main space heating, air

299

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 District Heat Consumption District Heat Expenditures per Building (million Btu) per Square Foot (thousand Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings ................................ 9,470 113.98 108.4 1.31 11.45 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q Q Q Q Q 5,001 to 10,000 .............................. Q Q Q Q Q 10,001 to 25,000 ............................ Q Q Q Q Q 25,001 to 50,000 ............................ Q Q Q Q Q 50,001 to 100,000 .......................... Q Q Q Q Q 100,001 to 200,000 ........................ 17,452 118.10 Q Q Q

300

US Mnt(N) CO Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Mnt(N) CO Mnt(N) CO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(N) CO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US Mnt(N) CO Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US Mnt(N) CO Expenditures dollars ELECTRICITY ONLY average per household * Colorado households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Average household energy costs in Colorado are 23% less than the national average, primarily due to historically lower natural gas prices in the state. * Average electricity consumption per household is lower than most other states, as Colorado residents do not commonly use electricity for main space heating, air

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million gallons) Total (million dollars) All Buildings ................................ 465 16,265 35 228 1,644 1,826 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 211 606 3 34 249 292 5,001 to 10,000 .............................. 102 736 7 36 262 307 10,001 to 25,000 ............................ 66 1,043 16 28 201 238 25,001 to 50,000 ............................ 24 895 38 17 124 134 50,001 to 100,000 .......................... 25 1,852 76 29 209 229

302

Monitoring and Management of Refinery Energy Consumption  

E-Print Network [OSTI]

the effects of same other nOl1"operational variables on the energy target. Figure 10 shows the results of the monitoring period in rep;Jrt form. The actual consumption for each utility is listed and converted to energy content. The base target consumption... ===============~===~.========.=.=====.=========~====================~===== ENERGY TOTAL CONTENT ENEF~GY ACTW~L CONSUMPT I ON UI\\lITS BTU/UI\\lIT MMBTU/DAY FUEL G?\\S: 441425.0 SCFH 1401.0 14842.5 FUEL OIL: O.C' BPO 6470000.0 0.0 HP STEAI1: -79344.0 tt/Hf~ 1136. C' -2163.2 MP STEAI1: 48488.0 tt/HR 952.0 1107.9 LP STEAM: BFW...

Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

303

Estimates of US biofuels consumption, 1990  

SciTech Connect (OSTI)

This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

Not Available

1991-10-01T23:59:59.000Z

304

Maximum mass of magnetic white dwarfs  

E-Print Network [OSTI]

We revisit in this work the problem of the maximum masses of magnetized White Dwarfs (WD). The impact of a strong magnetic field onto the structure equations is addressed. The pressures become anisotropic due to the presence of the magnetic field and split into a parallel and perpendicular components. We first construct stable solutions of TOV equations for the parallel pressures, and found that physical solutions vanish for the perpendicular pressure when $B \\gtrsim 10^{13}$ G. This fact establishes an upper bound for a magnetic field and the stability of the configurations in the (quasi) spherical approximation. Our findings also indicate that it is not possible to obtain stable magnetized WD with super Chandrasekhar masses because the values of the magnetic field needed for them are higher than this bound. To proceed into the anisotropic regime, we derived structure equations appropriated for a cylindrical metric with anisotropic pressures. From the solutions of the structure equations in cylindrical symme...

Paret, D Manreza; Horvath, J E

2015-01-01T23:59:59.000Z

305

Critical insulation thickness for maximum entropy generation  

Science Journals Connector (OSTI)

Critical insulation thickness is known to refer to the insulation thickness that maximises the rate of heat transfer in cylindrical and spherical systems. The same analogy is extended to the rate of entropy generation in the present study. The possible critical insulation thickness that yields a maximum rate of entropy generation is investigated. Entropy generation is related to heat transfer through and temperature distribution within the insulation material. It is found that there exists a critical insulation thickness for maximising the rate of entropy generation that is a function of the Bi number and the surface to ambient temperature ratio. The solution of such critical thickness is formulated analytically for both cylindrical and spherical geometries. It is also found that the critical insulation thickness for the rate of entropy generation does not coincide with that for the rate of heat transfer.

Ahmet Z. Sahin

2012-01-01T23:59:59.000Z

306

Window-Related Energy Consumption in the US Residential and Commercial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window-Related Energy Consumption in the US Residential and Commercial Window-Related Energy Consumption in the US Residential and Commercial Building Stock Title Window-Related Energy Consumption in the US Residential and Commercial Building Stock Publication Type Report LBNL Report Number LBNL-60146 Year of Publication 2006 Authors Apte, Joshua S., and Dariush K. Arasteh Call Number LBNL-60146 Abstract We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate that future window technologies offer energy savings potentials of up to 3.9 Quads.

307

PSM-throttling: Minimizing Energy Consumption for Bulk Data Communications in WLANs  

E-Print Network [OSTI]

effectively explore the power saving potential by considering the bandwidth throttling on streaming saving mode (PSM) and its enhancements can reduce power consumption by putting the wireless network. In this paper, instead of further manipulating the trade-off between the power saving and the incurred delay, we

Chen, Songqing

308

Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes  

SciTech Connect (OSTI)

This report documents the results of an in-depth evaluation of energy consumption and thermal comfort for two potential net zero-energy homes (NZEHs) in Massachusetts, as well as an indoor air quality (IAQ) evaluation performed in conjunction with Lawrence Berkeley National Laboratory (LBNL).

Engelmann, P.; Roth, K.; Tiefenbeck, V.

2013-01-01T23:59:59.000Z

309

LifeCycle Water Consumption of  

E-Print Network [OSTI]

of agricultural consumption · Analytical tools development #12;· 1/3 of Less Developed Countries predicted to have insufficient water resources to meet their needs by 2025 · Agriculture = 70% of withdrawn water ­ LCAbased policies ­ CA LCFS 3. But a good GHG LCA does not a responsible product make "Sustainability

Keller, Arturo A.

310

Coal consumption and economic growth in China  

Science Journals Connector (OSTI)

The aim of this paper is to re-examine the relationship between coal consumption and real GDP of China with the use of panel data. This paper applies modern panel data techniques to help shed light on the importance of the heterogeneity among different regions within China. Empirical analyses are conducted for the full panel as well as three subgroups of the panel. The empirical results show that coal consumption and GDP are both I(1) and cointegrated in all regional groupings. Heterogeneity is found in the GDP equation of the full panel. The regional causality tests reveal that the coal consumption–GDP relationship is bidirectional in the Coastal and Central regions whereas causality is unidirectional from GDP to coal consumption in the Western region. Thus, energy conservation measures will not adversely affect the economic growth of the Western region but such measures will likely encumber the economy of the Coastal and Central regions, where most of the coal intensive industries are concentrated.

Raymond Li; Guy C.K. Leung

2012-01-01T23:59:59.000Z

311

Energy consumption of bioclimatic buildings in Argentina during the period 2001–2008  

Science Journals Connector (OSTI)

The energy performance of two bioclimatic buildings located in Santa Rosa city, a temperate semi-arid agricultural region of central Argentina, is analysed. The bioclimatic design included direct solar gain, thermal inertia, natural ventilation, thermal insulation, external shading, building orientation, and dwelling grouping. Each double-story building is aligned on an East–West axis and it has a compact shape with 350 m2 of useful floor area (58 m2/apartment). The solar collection area is around 18% of the apartment's useful area on the ground floor and 14% on the upper floor. This paper describes the energy performance of the buildings during the period 2001–2008. The analysis includes: (a) the energy consumption (natural gas and electricity) during 2001–2007 (natural gas: annually, bimonthly; electricity: monthly); (b) the natural gas consumption and the thermal behaviour during the winters of year 2001 (between July 27 and August 3) and 2008 (between August 8 and 13); (c) the daily natural gas consumption and the thermal behaviour during 2001 and 2008 winters; (d) the comparison between the energy consumption for heating in bioclimatic and conventional buildings. The authors concluded that the results confirm the large potential of solar buildings design to reach significant levels of energy saving. The comparison of solar and conventional buildings in terms of natural gas consumption demonstrates the magnitude of such potential.

C. Filippín; S. Flores Larsen; M. Canori

2010-01-01T23:59:59.000Z

312

An Eddy Parameterization Based on Maximum Entropy Production with Application to Modeling of the Arctic Ocean Circulation  

Science Journals Connector (OSTI)

An eddy parameterization derived from statistical mechanics of potential vorticity is applied for inviscid shallow-water equations. The solution of a variational problem based on the maximum entropy production (MEP) principle provides, with some ...

Igor Polyakov

2001-08-01T23:59:59.000Z

313

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C13. Total Electricity Consumption and Expenditures for Non-Mall Buildings, 2003 All Buildings* Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Primary Site Total (million dollars) Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings* ............................... 4,404 63,307 14.4 9,168 3,037 890 69,032 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,384 6,346 2.7 1,164 386 113 10,348 5,001 to 10,000 .............................. 834 6,197 7.4 790 262 77 7,296 10,001 to 25,000 ............................ 727 11,370 15.6 1,229 407 119 10,001

314

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

315

Electricity Demand and Energy Consumption Management System  

E-Print Network [OSTI]

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

316

Energy Consumption ESPRIMO E7935 E80+  

E-Print Network [OSTI]

joined the "Green Grid" and "Climate Savers Computing" initiatives and publishes SPECpower benchmark (WOL enabled) 4) 96.7 kWh/year Heat dissipation, WOL enabled (MJ, 1 W = 3.6 kJ/h) 348.3 MJ/year Heat Consumption (WOL enabled) 4) 103.6 kWh/year Heat dissipation, WOL enabled (MJ, 1 W = 3.6 kJ/h) 373.0 MJ

Ott, Albrecht

317

Comment on "Efficiency of Isothermal Molecular Machines at Maximum Power"  

E-Print Network [OSTI]

Comment on "Efficiency of Isothermal Molecular Machines at Maximum Power" (PRL 108, 210602 (2012), arXiv:1201.6396)

Yunxin Zhang

2012-06-06T23:59:59.000Z

318

Rooftop Solar Potential Distributed Solar Power in NW  

E-Print Network [OSTI]

6/19/2013 1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 in 2012 4 #12;6/19/2013 3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow

319

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 178 238 104 3,788 7,286 2,521 47.0 32.7 41.3 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 23 27 11 346 360 218 66.6 75.8 51.9 5,001 to 10,000 .............................. 14 36 Q 321 662 Q 45.1 53.8 Q 10,001 to 25,000 ............................ 31 33 Q 796 1,102 604 39.5 29.9 Q

320

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

1A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 1A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ................................ 201 412 431 13,124 31,858 25,200 15.3 12.9 17.1 Principal Building Activity Education ....................................... 9 55 45 806 5,378 3,687 11.1 10.2 12.2 Food Sales ..................................... 36 24 Q 747 467 Q 48.8 51.1 Q

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings* ............................. 1,488 2,794 1,539 17,685 29,205 17,893 84.1 95.7 86.0 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 191 290 190 2,146 2,805 1,838 89.1 103.5 103.5 5,001 to 10,000 ............................ 131 231 154 1,972 2,917 1,696 66.2 79.2 91.0 10,001 to 25,000 .......................... 235 351 191 3,213 4,976 3,346 73.1 70.5 57.0

322

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings .............................. 454 715 356 378 134 8,486 14,122 8,970 11,796 5,098 53.5 50.6 39.7 32.0 26.3 Building Floorspace (Square Feet) 1,001 to 5,000 ............................. 57 84 35 58 16 666 1,015 427 832 234 84.8 83.1 81.9 69.6 66.6 5,001 to 10,000 ........................... 50 57 33 61 17 666 1,030 639 1,243 392 75.2 54.9 51.2 49.2 44.0

323

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Total Energy Consumption by Major Fuel for All Buildings, 2003 A. Total Energy Consumption by Major Fuel for All Buildings, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings ................................ 4,859 71,658 6,523 10,746 3,559 2,100 228 636 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 685 1,185 392 257 34 Q 5,001 to 10,000 .............................. 948 7,033 563 883 293 224 36 Q 10,001 to 25,000 ............................ 810 12,659 899 1,464 485 353 28 Q 25,001 to 50,000 ............................ 261 9,382 742 1,199 397 278 17 Q 50,001 to 100,000 .......................... 147 10,291 913 1,579 523 277 29 Q

324

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings .............................. 137 254 189 261 202 11,300 18,549 12,374 17,064 10,894 12.1 13.7 15.3 15.3 18.5 Building Floorspace (Square Feet) 1,001 to 5,000 ............................. 19 27 14 32 23 1,210 1,631 923 1,811 903 15.7 16.4 15.0 17.8 25.8 5,001 to 10,000 ........................... 12 18 15 27 14 1,175 1,639 1,062 1,855 914 10.2 10.9 14.3 14.3 15.5

325

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings ................................ 172 234 452 185 13,899 17,725 26,017 12,541 12.4 13.2 17.4 14.7 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 14 30 52 19 1,031 1,742 2,410 1,296 13.5 17.4 21.5 14.6 5,001 to 10,000 .............................. 11 17 37 21 1,128 1,558 2,640 1,319 9.8 10.8 14.0 15.8 10,001 to 25,000 ............................ 22 33 59 28 2,094 3,317 4,746 2,338 10.4 10.0 12.5 12.1

326

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings ................................ 448 728 511 350 10,162 14,144 15,260 8,907 44.1 51.5 33.5 39.3 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 50 92 68 40 547 1,086 912 629 90.6 84.6 74.5 63.7 5,001 to 10,000 .............................. 39 63 69 46 661 1,064 1,439 806 59.2 59.4 48.1 57.4 10,001 to 25,000 ............................ 58 133 81 70 1,293 2,656 2,332 1,542 45.2 50.1 34.7 45.7

327

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

1A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 1A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ................................ 467 882 688 7,144 21,928 19,401 65.4 40.2 35.5 Principal Building Activity Education ....................................... Q 137 101 419 3,629 2,997 53.9 37.6 33.7 Food Sales ..................................... 16 Q Q 339 Q Q 46.6 Q Q

328

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 168 185 165 5,453 3,263 5,644 30.9 56.6 29.2 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 29 18 Q 334 266 363 87.9 68.5 60.2 5,001 to 10,000 .............................. 25 Q Q 545 291 514 45.6 62.7 54.4 10,001 to 25,000 ............................ 20 45 26 626 699 844 32.1 63.9 30.6

329

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 66 254 57 5,523 13,837 3,546 12.0 18.3 16.2 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 10 28 7 821 1,233 481 12.4 22.4 15.4 5,001 to 10,000 .............................. 7 20 5 681 1,389 386 10.8 14.4 13.3 10,001 to 25,000 ............................ 9 31 12 1,204 2,411 842 7.8 12.8 14.1

330

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C8. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 2 C8. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings* ............................... 436 1,064 309 5,485 12,258 3,393 79.5 86.8 91.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 60 116 36 922 1,207 538 64.9 96.5 67.8 5,001 to 10,000 .............................. 44 103 Q 722 1,387 393 60.5 74.0 Q

331

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ............................... 1,248 2,553 2,721 13,955 32,332 25,371 89.4 79.0 107.3 Principal Building Activity Education ...................................... 63 423 334 808 5,378 3,687 78.3 78.6 90.7 Food Sales ................................... 144 Q Q 765 467 Q 188.5 Q Q

332

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings* ........................... 990 1,761 1,134 1,213 724 10,622 17,335 11,504 15,739 9,584 93.2 101.6 98.5 77.0 75.5 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 143 187 90 170 95 1,313 1,709 1,010 1,915 975 108.7 109.6 88.8 89.0 97.9 5,001 to 10,000 .......................... 110 137 91 156 69 1,248 1,725 1,077 2,024 959 88.1 79.3 84.6 77.1 71.7

333

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings* ............................. 1,188 2,208 2,425 13,374 29,260 22,149 88.8 75.5 109.5 Principal Building Activity Education ...................................... 63 423 334 808 5,378 3,687 78.3 78.6 90.7

334

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 3 . Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings* ............................... 575 381 530 7,837 3,675 7,635 73.4 103.8 69.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 87 44 64 788 464 871 110.9 94.7 73.0 5,001 to 10,000 .............................. 60 36 76 879 418 820 68.2 86.7 92.9 10,001 to 25,000 ............................ 53 76 73 1,329 831 1,256 40.2 91.7 58.4

335

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 456 1,241 340 5,680 13,999 3,719 80.2 88.7 91.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 60 123 37 922 1,283 547 64.9 96.2 67.6 5,001 to 10,000 .............................. 45 111 27 738 1,468 420 61.6 75.4 63.2

336

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings* ............................. 1,271 1,690 1,948 911 12,905 17,080 23,489 11,310 98.5 98.9 82.9 80.6 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 118 206 240 108 1,025 1,895 2,533 1,336 115.1 108.5 94.9 80.6 5,001 to 10,000 ............................ 102 117 185 112 1,123 1,565 2,658 1,239 90.7 74.7 69.5 90.8

337

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 684 446 617 9,022 4,207 8,613 75.8 106.1 71.6 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 87 44 64 788 466 871 110.9 94.8 73.0 5,001 to 10,000 .............................. 67 39 84 957 465 878 69.7 84.8 95.1 10,001 to 25,000 ............................ 77 91 89 1,555 933 1,429 49.4 97.2 62.4

338

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 345 1,052 1,343 3,452 10,543 12,424 99.8 99.7 108.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 37 86 147 383 676 986 95.9 127.9 148.9 5,001 to 10,000 .............................. 39 68 83 369 800 939 106.0 85.4 88.2 10,001 to 25,000 ............................ Q 121 187 674 1,448 2,113 Q 83.4 88.4

339

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ............................... 1,522 3,228 1,772 18,031 33,384 20,243 84.4 96.7 87.6 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 193 300 193 2,168 2,904 1,850 89.0 103.2 104.2 5,001 to 10,000 ............................ 134 263 165 2,032 3,217 1,784 66.0 81.9 92.5 10,001 to 25,000 .......................... 241 432 226 3,273 5,679 3,707 73.6 76.1 60.9

340

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings ............................ 1,086 1,929 1,243 1,386 879 11,529 18,808 12,503 17,630 11,189 94.2 102.6 99.4 78.6 78.6 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 143 187 90 170 95 1,313 1,709 1,010 1,915 975 108.7 109.6 88.8 89.0 97.9 5,001 to 10,000 .......................... 110 137 91 156 69 1,248 1,725 1,077 2,024 959 88.1 79.3 84.6 77.1 71.7

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 Fuel Oil Consumption Fuel Oil Expenditures per Building (gallons) per Square Foot (gallons) per Building (thousand dollars) per Square Foot (dollars) per Gallon (dollars) All Buildings ................................ 3,533 0.10 3.9 0.11 1.11 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 1,177 0.41 1.4 0.48 1.18 5,001 to 10,000 .............................. 2,573 0.36 3.0 0.42 1.17 10,001 to 25,000 ............................ 3,045 0.19 3.6 0.23 1.18 25,001 to 50,000 ............................ 5,184 0.14 5.6 0.15 1.09 50,001 to 100,000 .......................... 8,508 0.11 9.3 0.12 1.10 100,001 to 200,000 ........................ 12,639 0.09 13.1 0.09 1.03

342

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 141 68 117 8,634 4,165 8,376 16.3 16.3 14.0 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 17 7 12 696 439 857 24.1 15.7 14.0 5,001 to 10,000 .............................. 12 5 15 865 451 868 13.8 12.1 17.7 10,001 to 25,000 ............................ 16 12 16 1,493 933 1,405 11.0 13.0 11.5

343

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ................................ 162 538 343 17,509 32,945 19,727 9.2 16.3 17.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 24 54 38 2,072 2,767 1,640 11.4 19.4 23.0 5,001 to 10,000 .............................. 16 41 29 1,919 3,154 1,572 8.2 13.0 18.4 10,001 to 25,000 ............................ 28 69 45 3,201 5,610 3,683 8.7 12.3 12.2

344

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh) Distribution of Building-Level Intensities (kWh/square foot) 25th Per- centile Median 75th Per- centile per Building (thousand dollars) per Square Foot (dollars) per kWh (dollars) All Buildings ................................ 226 14.9 3.8 8.8 18.1 17.9 1.18 0.079 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 48 17.8 3.8 9.0 20.0 4.4 1.63 0.092 5,001 to 10,000 .............................. 96 12.9 4.0 8.2 15.5 9.2 1.23 0.096 10,001 to 25,000 ............................ 178 11.4 3.1 7.2 15.0 15.2 0.97 0.086

345

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ............................... 580 986 471 12,407 22,762 13,304 46.8 43.3 35.4 Building Floorspace (Square Feet) 1,001 to 5,000 ............................... 86 103 61 1,245 1,271 659 69.0 81.0 92.1 5,001 to 10,000 ............................. 57 101 60 1,154 1,932 883 49.4 52.3 67.6 10,001 to 25,000 ........................... 105 174 65 2,452 3,390 1,982 42.6 51.2 32.7

346

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 41 131 168 3,430 10,469 12,202 12.0 12.5 13.8 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 5 9 20 369 662 921 12.9 13.9 21.9 5,001 to 10,000 .............................. 3 8 9 360 768 877 8.4 10.4 10.8 10,001 to 25,000 ............................ Q 16 24 674 1,420 2,113 Q 11.6 11.2

347

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption (million gallons) Total Floorspace of Buildings Using Fuel Oil (million square feet) Fuel Oil Energy Intensity (gallons/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings .............................. 1,302 172 107 64 6,464 2,909 4,663 2,230 0.20 0.06 0.02 Q Building Floorspace (Square Feet) 1,001 to 10,000 ............................ 381 Q Q Q 763 Q 274 Q 0.50 Q 0.10 Q 10,001 to 100,000 ........................ 404 63 Q Q 1,806 648 985 351 0.22 0.10 Q Q Over 100,000 ............................... 517 21 45 Q 3,894 2,055 3,404 1,780 0.13 0.01 0.01 Q

348

US MidAtl NY Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

MidAtl NY MidAtl NY Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl NY Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NY Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl NY Expenditures dollars ELECTRICITY ONLY average per household * New York households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in New York homes is much lower than the U.S. average, because many households use other fuels for major energy end uses like space heating, water heating, and cooking. Electricity costs are closer to the national average due to higher than average electricity prices in the state.

349

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) All Buildings ................................ 4,859 71,658 14.7 6,523 1,342 91.0 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 2.7 685 265 99.0 5,001 to 10,000 .............................. 948 7,033 7.4 563 594 80.0 10,001 to 25,000 ............................ 810 12,659 15.6 899 1,110 71.0 25,001 to 50,000 ............................ 261 9,382 36.0 742 2,843 79.0

350

US MidAtl PA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

MidAtl PA MidAtl PA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl PA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl PA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl PA Expenditures dollars ELECTRICITY ONLY average per household * Pennsylvania households consume an average of 96 million Btu per year, 8% more than the U.S. average. Pennsylvania residents also spend 16% more than the average U.S. households for energy consumed in their homes. * Average electricity consumption in Pennsylvania homes is 10,402 kWh per year, which is lower than the national average, but 58% more than New York households and 17% more than New Jersey residents.

351

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) All Buildings* ............................... 4,645 64,783 13.9 5,820 1,253 89.8 79.9 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 2.7 672 263 98.9 67.6 5,001 to 10,000 .............................. 889 6,585 7.4 516 580 78.3 68.7 10,001 to 25,000 ............................ 738 11,535 15.6 776 1,052 67.3 72.0 25,001 to 50,000 ............................ 241 8,668 35.9 673 2,790 77.6 75.8

352

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 85 364 550 1,861 8,301 10,356 45.4 43.8 53.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q 42 69 Q 427 741 Q 98.4 92.9 5,001 to 10,000 .............................. Q 32 49 Q 518 743 Q 62.1 65.5 10,001 to 25,000 ............................ Q 47 102 Q 952 1,860 Q 49.7 54.6

353

US MidAtl PA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

MidAtl PA MidAtl PA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl PA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl PA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl PA Expenditures dollars ELECTRICITY ONLY average per household * Pennsylvania households consume an average of 96 million Btu per year, 8% more than the U.S. average. Pennsylvania residents also spend 16% more than the average U.S. households for energy consumed in their homes. * Average electricity consumption in Pennsylvania homes is 10,402 kWh per year, which is lower than the national average, but 58% more than New York households and 17% more than New Jersey residents.

354

US MidAtl NY Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

MidAtl NY MidAtl NY Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl NY Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NY Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl NY Expenditures dollars ELECTRICITY ONLY average per household * New York households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in New York homes is much lower than the U.S. average, because many households use other fuels for major energy end uses like space heating, water heating, and cooking. Electricity costs are closer to the national average due to higher than average electricity prices in the state.

355

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003 . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003 All Buildings* Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings* ............................... 4,645 64,783 5,820 9,168 3,037 1,928 222 634 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 672 1,164 386 250 34 Q 5,001 to 10,000 .............................. 889 6,585 516 790 262 209 36 Q 10,001 to 25,000 ............................ 738 11,535 776 1,229 407 309 27 Q 25,001 to 50,000 ............................ 241 8,668 673 1,058 350 258 16 Q 50,001 to 100,000 .......................... 129 9,057 759 1,223 405 244 26 Q

356

Baseline projections of transportation energy consumption by mode: 1981 update  

SciTech Connect (OSTI)

A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

1982-04-01T23:59:59.000Z

357

Window-Related Energy Consumption in the US Residential andCommercial Building Stock  

SciTech Connect (OSTI)

We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate that future window technologies offer energy savings potentials of up to 3.9 Quads.

Apte, Joshua; Arasteh, Dariush

2006-06-16T23:59:59.000Z

358

Trends in U.S. Residential Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

Trends in U.S. Residential Natural Gas Consumption Trends in U.S. Residential Natural Gas Consumption This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census Division (1998 through 2009). It examines a long-term downward per- customer consumption trend and analyzes whether this trend persists across Census Divisions. The report also examines some of the factors that have contributed to the decline in per-customer consumption. To provide a more meaningful measure of per-customer consumption, EIA adjusted consumption data presented in the report for weather. Questions or comments on the contents of this article should be directed to Lejla Alic at Lejla.Alic@eia.doe.gov or (202) 586-0858.

359

Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Plan to Reduce State Plan to Reduce Petroleum Consumption to someone by E-mail Share Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Facebook Tweet about Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Twitter Bookmark Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Google Bookmark Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Delicious Rank Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Digg Find More places to share Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Plan to Reduce Petroleum Consumption

360

The individual contribution of automotive components to vehicle fuel consumption  

E-Print Network [OSTI]

Fuel consumption has grown to become a major point of interest as oil reserves are depleted. The purpose of this study is to determine the key components that cause variation in the instantaneous fuel consumption of vehicles ...

Napier, Parhys L

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

362

Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

363

Colorado Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Total Consumption (Million Cubic Feet) Colorado Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

364

Fact #704: December 5, 2011 Fuel Consumption Standards for New...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans Fact 704: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans In September...

365

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING...

366

Evaluating Texas State University Energy Consumption According to Productivity  

E-Print Network [OSTI]

The Energy Utilization Index, energy consumption per square foot of floor area, is the most commonly used index of building energy consumption. However, a building or facility exists solely to support the activities of its occupants. Floor area...

Carnes, D.; Hunn, B. D.; Jones, J. W.

1998-01-01T23:59:59.000Z

367

Electricity Consumption Simulation Based on Multi-agent System  

Science Journals Connector (OSTI)

In order to simulate impact on electricity of macroeconomic policy and foreign trade, Electricity Consumption Simulation System (ECMAS) was established based ... according to I/O table and data of electricity consumption

Minjie Xu; Zhaoguang Hu; Baoguo Shan…

2009-01-01T23:59:59.000Z

368

Connecticut Natural Gas Total Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption (Million Cubic Feet) Connecticut Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

369

Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards  

SciTech Connect (OSTI)

This study surveyed the technical potential for efficiency improvements in 150 categories of appliances and equipment representing 33 quads of primary energy use across the US economy in 2010 and (1) documented efficient product designs, (2) identified the most promising cross-cutting strategies, and (3) ranked national energy savings potential by end use. Savings were estimated using a method modeled after US Department of Energy priority-setting reports - simplified versions of the full technical and economic analyses performed for rulemakings. This study demonstrates that large savings are possible by replacing products at the end-of-life with ultra-efficient models that use existing technology. Replacing the 50 top energy-saving end-uses (constituting 30 quads of primary energy consumption in 2010) with today's best-on-market equivalents would save {approx}200 quads of US primary energy over 30 years (25% of consumption anticipated there from). For the 29 products for maximum feasible savings potential could be estimated, the savings were twice as high. These results demonstrate that pushing ultra-efficient products to market could significantly escalate carbon emission reductions and is a viable strategy for sustaining large emissions reductions through standards. The results of this analysis were used by DOE for new coverage prioritization, to identify key opportunities for product prototyping and market development, and will leverage future standards rulemakings by identifying the full scope of maximum feasible technology options. High leverage products include advances lighting systems, HVAC, and televisions. High leverage technologies include electronic lighting, heat pumps, variable speed motors, and a host of controls-related technologies.

Garbesi, Karina; Desroches, Louis-Benoit; Bolduc, Christopher; Burch, Gabriel; Hosseinzadeh, Griffin; Saltiel, Seth

2011-05-06T23:59:59.000Z

370

Federal Energy Consumption and Progress Made toward Requirements  

Broader source: Energy.gov [DOE]

The Federal Energy Management Program (FEMP) tracks Federal agency energy consumption and progress toward achieving energy laws and requirements.

371

Photosynthesis and the dynamics of oxygen consumption in a ...  

Science Journals Connector (OSTI)

photosynthesis minus oxygen consumption), and gross photosynthesis at high ... The depth distribution of gross photosynthesis, as obtained by the cycling ...

1999-11-15T23:59:59.000Z

372

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

SciTech Connect (OSTI)

While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

Zhou, Nan; Lin, Jiang

2007-08-01T23:59:59.000Z

373

Dynamic energy-consumption indicators for domestic appliances: environment, behaviour and design  

Science Journals Connector (OSTI)

The literature concerning the application of information-feedback methods for saving energy in the home is reviewed. Particular attention is given to electronic feedback via smart meters and displays, or “energy-consumption indicators” (ECI). Previous studies have not focused on individual appliances, but this paper presents the findings of a UK field study involving 44 households which considered domestic cooking: it compares the effectiveness of providing paper-based energy-use/saving information with electronic feedback of energy-consumption via \\{ECIs\\} designed specifically for this investigation. Twelve Control Group households were monitored for a period of at least 12 months and this revealed an average daily consumption for electric cooking of 1.30 kWh. Subsequently across a minimum monitoring period of 2 months, 14 out of 31 households achieved energy savings of greater than 10% and six of these achieved savings of greater than 20%. The average reduction for households employing an ECI was 15%, whereas those given antecedent information alone reduced their electricity consumption, on average, by only 3%. The associated behavioural changes and the importance of providing regular feedback during use are identified. It is recommended that further attention be given to optimising the design and assessing the use of energy-consumption indicators in the home, in order to maximise the associated energy-saving potential.

G. Wood; M. Newborough

2003-01-01T23:59:59.000Z

374

Pattern formation, logistics, and maximum path probability  

Science Journals Connector (OSTI)

The concept of pattern formation, which to current researchers is a synonym for self-organization, carries the connotation of deductive logic together with the process of spontaneous inference. Defining a pattern as an equivalence relation on a set of thermodynamic objects, we establish that a large class of irreversible pattern-forming systems, evolving along idealized quasisteady paths, approaches the stable steady state as a mapping upon the formal deductive imperatives of a propositional function calculus. In the preamble the classical reversible thermodynamics of composite systems is analyzed as an externally manipulated system of space partitioning and classification based on ideal enclosures and diaphragms. The diaphragms have discrete classificationcapabilities which are designated in relation to conserved quantities by descriptors such as impervious, diathermal, and adiabatic. Differentiability in the continuum thermodynamic calculus is invoked as equivalent to analyticity and consistency in the underlying class or sentential calculus. The seat of inference, however, rests with the thermodynamicist. In the transition to an irreversible pattern-forming system the defined nature of the composite reservoirs remains, but a given diaphragm is replaced by a pattern-forming system which by its nature is a spontaneously evolving volume partitioner and classifier of invariants. The seat of volition or inference for the classification system is thus transferred from the experimenter or theoretician to the diaphragm, and with it the full deductive facility. The equivalence relations or partitions associated with the emerging patterns may thus be associated with theorems of the natural pattern-forming calculus. The entropyfunction, together with its derivatives, is the vehicle which relates the logistics of reservoirs and diaphragms to the analog logistics of the continuum. Maximum path probability or second-order differentiability of the entropy in isolation are sufficiently strong interpretations of the second law of thermodynamics to define the approach to and the nature of patterned stable steady states. For many pattern-forming systems these principles define quantifiable stable states as maxima or minima (or both) in the dissipation. An elementary statistical-mechanical proof is offered. To turn the argument full circle, the transformations of the partitions and classes which are predicated upon such minimax entropic paths can through digital modeling be directly identified with the syntactic and inferential elements of deductive logic. It follows therefore that all self-organizing or pattern-forming systems which possess stable steady states approach these states according to the imperatives of formal logic, the optimum pattern with its rich endowment ofequivalence relations representing the central theorem of the associated calculus. Logic is thus ‘‘the stuff of the universe,’’ and biological evolution with its culmination in the human brain is the most significant example of all the irreversible pattern-forming processes. We thus conclude with a few remarks on the relevance of the contribution to the theory of evolution and to research on artificial intelligence.

J. S. Kirkaldy

1985-05-01T23:59:59.000Z

375

Energy Consumption Characteriation of Heterogeneous Servers School of Computer Science  

E-Print Network [OSTI]

Energy Consumption Characteriation of Heterogeneous Servers Xiao Zhang School of Computer Science Machine between servers to save energy. An accurate energy consumption model is the basic of energy management. Most past studies show that energy consumption has linear relation with resource utilization. We

Qin, Xiao

376

Getting to Green: Understanding Resource Consumption in the Home  

E-Print Network [OSTI]

Getting to Green: Understanding Resource Consumption in the Home Marshini Chetty, David Tran managing their domestic resource consumption. Yet, the question of what tools Ubicomp researchers can and natural gas systems in the home. We find that in-the- moment resource consumption is mostly invisible

Grinter, Rebecca Elizabeth

377

American Options, Multiarmed Bandits, and Optimal Consumption Plans  

E-Print Network [OSTI]

American Options, Multi­armed Bandits, and Optimal Consumption Plans: A Unifying View By Peter Bank consumption choice can all be reduced to the same problem of representing a given stochastic process in terms­armed bandits, optimal consumption plans, optimal stopping, representation theorem, universal exercise signal

Föllmer, Hans

378

Optimal consumption and investment for markets with randoms coefficients.  

E-Print Network [OSTI]

Optimal consumption and investment for markets with randoms coefficients. Belkacem Berdjane and Serguei Pergamenshchikov February 6, 2011 Abstract We consider an optimal consumption - investment problem consumption - investment strategies are obtained. It turns out that the optimal convergence rate in this case

379

Optimal lifetime consumption and investment under drawdown constraint  

E-Print Network [OSTI]

Optimal lifetime consumption and investment under drawdown constraint Romuald Elie Nizar Touzi October 21, 2006 Abstract We consider the infinite horizon optimal consumption-investment problem under-form expressions for the optimal consumption and investment strategy. Key words: portfolio allocation, drawdown

Elie, Romuald

380

Optimal consumption policies in illiquid markets Alessandra Cretarola1)  

E-Print Network [OSTI]

Optimal consumption policies in illiquid markets Alessandra Cretarola1) , Fausto Gozzi1) , Huy Abstract We investigate optimal consumption policies in the liquidity risk model intro- duced in [5]. Our main result is to derive smoothness C1 results for the value functions of the portfolio/consumption

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Term Structure of Interest Rates with Consumption Commitments  

E-Print Network [OSTI]

Term Structure of Interest Rates with Consumption Commitments J. C. Duan Risk Management Institute Abstract We study the term structure of interest rates in the presence of consumption commitments using and develop computation methods. Examples are ana- lyzed to illustrate the effect of consumption commitments

Zhu, Qiji Jim

382

On the Energy Consumption and Performance of Systems Software  

E-Print Network [OSTI]

On the Energy Consumption and Performance of Systems Software Appears in the proceedings of the 4th,grosu,psehgal,sas,stoller,ezk}@cs.stonybrook.edu ABSTRACT Models of energy consumption and performance are necessary to understand and identify system. This paper considers the energy consumption and performance of servers running a relatively simple file

Zadok, Erez

383

Using Bytecode Instruction Counting as Portable CPU Consumption Metric  

E-Print Network [OSTI]

Using Bytecode Instruction Counting as Portable CPU Consumption Metric Walter Binder and Jarle-1015 Lausanne, Switzerland firstname.lastname@epfl.ch Abstract Accounting for the CPU consumption consumption information in order to detect a resource overuse of client components (detection of denial

Binder, Walter

384

Power Consumption of GPUs from a Software Perspective  

E-Print Network [OSTI]

Power Consumption of GPUs from a Software Perspective Sylvain Collange1 , David Defour1 and Arnaud computing solutions. They have power consumptions up to 300 W. This may lead to power supply and thermal. However, as long as the main goal of GPU was to serve in desktops, their power consumption was secondary

Paris-Sud XI, Université de

385

A Realistic Power Consumption Model for Wireless Sensor Network Devices  

E-Print Network [OSTI]

1 A Realistic Power Consumption Model for Wireless Sensor Network Devices Qin Wang, Mark Hempstead}@eecs.harvard.edu Abstract-- A realistic power consumption model of wireless communication subsystems typically used in many sensor network node devices is presented. Simple power consumption models for major components

Hempstead, Mark

386

A STOCHASTIC CONTROL MODEL OF INVESTMENT, PRODUCTION AND CONSUMPTION  

E-Print Network [OSTI]

A STOCHASTIC CONTROL MODEL OF INVESTMENT, PRODUCTION AND CONSUMPTION BY WENDELL H. FLEMING is to choose investment and consumption controls which maximize total expected discounted HARA utility of consumption. Optimal control policies are found using the method of dynamic programming. In case

Pang, Tao

387

Energy Consumption in Coded Queues for Wireless Information Exchange  

E-Print Network [OSTI]

Energy Consumption in Coded Queues for Wireless Information Exchange Jasper Goseling, Richard J customers. We use this relation to ob- tain bounds on the energy consumption in a wireless information, for example, from the observations in [3] that using network coding can reduce the energy consumption

Boucherie, Richard J.

388

Power Consumption Prediction and Power-Aware Packing in Consolidated  

E-Print Network [OSTI]

Power Consumption Prediction and Power-Aware Packing in Consolidated Environments Jeonghwan Choi the power consumption of groups of colocated applications. Such characterization is crucial for effective prediction and enforcement of appropriate limits on power consumption--power budgets--within the data center

Urgaonkar, Bhuvan

389

Minimizing Energy Consumption in Body Sensor Networks via Convex Optimization  

E-Print Network [OSTI]

Minimizing Energy Consumption in Body Sensor Networks via Convex Optimization Sidharth Nabar energy consumption while limiting the latency in data transfer. In this paper, we focus on polling energy consumption and latency. We show that this problem can be posed as a geometric program, which

Poovendran, Radha

390

An explanation for enhanced perceptions of attractiveness after alcohol consumption  

E-Print Network [OSTI]

An explanation for enhanced perceptions of attractiveness after alcohol consumption L.G. Halseya alcohol consumption increases ratings of attractiveness to faces. This may help to explain increased attraction may be the result of alcohol consumption decreasing ability to detect bilateral asymmetry

Little, Tony

391

American Options, Multiarmed Bandits, and Optimal Consumption Plans  

E-Print Network [OSTI]

American Options, Multi­armed Bandits, and Optimal Consumption Plans: A Unifying View By Peter Bank, and in the microeconomic theory of intertemporal consumption choice can all be reduced to the same problem of representing and phrases. American options, Gittins index, multi­armed bandits, optimal consumption plans, optimal stopping

Bank, Peter

392

Towards New Widgets to Reduce PC Power Consumption  

E-Print Network [OSTI]

1 Towards New Widgets to Reduce PC Power Consumption Abstract We present a study which describes document) were compared for power consumption across both a desktop and a laptop computer and across two in the power consumption of the interac- tion technique is the number of screen updates in- volved. Keywords

Williamson, John

393

Oxygen Consumption Rates of Bacteria under Nutrient-Limited Conditions  

Science Journals Connector (OSTI)

...research-article Environmental Microbiology Oxygen Consumption Rates of Bacteria under Nutrient-Limited...heterotrophic bacteria was measured. The oxygen consumption and population density of batch cultures...tracked for up to 200 days. The oxygen consumption per CFU (QO2) declined by more than...

Timothy E. Riedel; William M. Berelson; Kenneth H. Nealson; Steven E. Finkel

2013-06-14T23:59:59.000Z

394

Optimal consumption policies in illiquid markets Alessandra Cretarola1)  

E-Print Network [OSTI]

Optimal consumption policies in illiquid markets Alessandra Cretarola1) , Fausto Gozzi1) , Huyên optimal consumption policies in the liquidity risk model intro- duced in [5]. Our main result is to derive smoothness C1 results for the value functions of the portfolio/consumption choice problem. As an important

Pham, Huyên

395

On the Energy Consumption and Performance of Systems Software  

E-Print Network [OSTI]

On the Energy Consumption and Performance of Systems Software Zhichao Li, Radu Grosu, Priya Sehgal {zhicli,grosu,psehgal,sas,stoller,ezk}@cs.stonybrook.edu ABSTRACT Models of energy consumption that can balance out performance and energy use. This paper considers the energy consumption

Stoller, Scott

396

Energino: a Hardware and Software Solution for Energy Consumption Monitoring  

E-Print Network [OSTI]

Energino: a Hardware and Software Solution for Energy Consumption Monitoring Karina Gomez, Roberto.granelli@disi.unitn.it Abstract--Accurate measurement of energy consumption of practical wireless deployments is vital in the availability of affordable and scalable energy consumption monitoring tools for the research community

Paris-Sud XI, Université de

397

Food Consumption by Sea Lions: Existing Data and Techniques  

E-Print Network [OSTI]

Food Consumption by Sea Lions: Existing Data and Techniques Arliss J. Winship, Andrea M.J. Hunter on the quantity of food consumed by sea lions in captivity, and examined how consumption varied by species, body ranges of estimates of food consumption for sea lions that can be used in various modeling strategies

398

A Note on Irreversible Investment, Hedging and Optimal Consumption Problems  

E-Print Network [OSTI]

A Note on Irreversible Investment, Hedging and Optimal Consumption Problems Vicky Henderson who aims to maximize expected utility of consumption over an infinite horizon. The agent pays a fixed to partially hedge risk. The agent maximizes his expected utility from consumption over an infinite horizon

399

Optimal lifetime consumption and investment under drawdown constraint  

E-Print Network [OSTI]

Optimal lifetime consumption and investment under drawdown constraint Romuald Elie Nizar Touzi consumption-investment problem under the drawdown constraint, i.e. the wealth process never falls below in explicit form, and we derive closed-form expressions for the optimal consumption and investment strategy

Touzi, Nizar

400

Power consumption optimization in multi-mode mobile relay  

E-Print Network [OSTI]

Power consumption optimization in multi-mode mobile relay C´edric L´evy-Bencheton #1 , Guillaume-mode can reduce terminal power consumption. Software Defined Radio is an enabler towards multi through relays, is another solution to reduce power consumption. We look at multi-mode relaying, where

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS  

E-Print Network [OSTI]

GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS Maha IDRISSI AOUAD.loria.fr/zendra Keywords: Energy consumption reduction, Genetic heuristics, memory allocation management, optimizations on heuristic methods for SPMs careful management in order to reduce memory energy consumption. We propose

Schott, René - Institut de Mathématiques �lie Cartan, Université Henri Poincaré

402

Reducing the Energy Consumption of Mobile Applications Behind the Scenes  

E-Print Network [OSTI]

Reducing the Energy Consumption of Mobile Applications Behind the Scenes Young-Woo Kwon and Eli, an increasing number of perfective maintenance tasks are concerned with optimizing energy consumption. However, optimizing a mobile application to reduce its energy consumption is non-trivial due to the highly volatile

Tilevich, Eli

403

Optimization of Energy and Water Consumption in Cornbased Ethanol Plants  

E-Print Network [OSTI]

1 Optimization of Energy and Water Consumption in Corn­based Ethanol Plants Elvis Ahmetovi). First, we review the major alternatives in the optimization of energy consumption and its impact for the water streams. We show that minimizing energy consumption leads to process water networks with minimum

Grossmann, Ignacio E.

404

Automated Analysis of Performance and Energy Consumption for Cloud Applications  

E-Print Network [OSTI]

Automated Analysis of Performance and Energy Consumption for Cloud Applications Feifei Chen, John providers is thus to develop resource provisioning and management solutions at minimum energy consumption system performance and energy consumption patterns in complex cloud systems is imperative to achieve

Schneider, Jean-Guy

405

Optimizing Communication Energy Consumption in Perpetual Wireless Nanosensor Networks  

E-Print Network [OSTI]

Optimizing Communication Energy Consumption in Perpetual Wireless Nanosensor Networks Shahram}@cs.odu.edu Abstract--This paper investigates the effect of various param- eters of energy consumption. Finding the optimum combination of parameters to minimize energy consumption while satisfying the Qo

Weigle, Michele

406

The Impact of Distributed Programming Abstractions on Application Energy Consumption  

E-Print Network [OSTI]

The Impact of Distributed Programming Abstractions on Application Energy Consumption Young-Woo Kwon of their energy consumption patterns. By varying the abstractions with the rest of the functionality fixed, we measure and analyze the impact of distributed programming abstractions on application energy consumption

Tilevich, Eli

407

On the Interplay of Parallelization, Program Performance, and Energy Consumption  

E-Print Network [OSTI]

to either minimize the total energy consumption or minimize the energy-delay product. The impact of staticOn the Interplay of Parallelization, Program Performance, and Energy Consumption Sangyeun Cho through parallel execution of applications, suppressing the power and energy consumption remains an even

Marchal, Loris

408

INCREASED FOOD AND ENERGY CONSUMPTION OF LACTATING NORTHERN FUR SEALS,  

E-Print Network [OSTI]

respectively. Fish accounted for 66.4% of food biomass (69.4% of total energy consumption); squidINCREASED FOOD AND ENERGY CONSUMPTION OF LACTATING NORTHERN FUR SEALS, CALWRHINUS URSINUS MICHAEL A on ter- restrial mammals have specifically shown increased energy consumption by lactating females

409

Vehicle Technologies Office: Fact #410: February 6, 2006 Maximum Speed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0: February 6, 0: February 6, 2006 Maximum Speed Limits by State, 2005 to someone by E-mail Share Vehicle Technologies Office: Fact #410: February 6, 2006 Maximum Speed Limits by State, 2005 on Facebook Tweet about Vehicle Technologies Office: Fact #410: February 6, 2006 Maximum Speed Limits by State, 2005 on Twitter Bookmark Vehicle Technologies Office: Fact #410: February 6, 2006 Maximum Speed Limits by State, 2005 on Google Bookmark Vehicle Technologies Office: Fact #410: February 6, 2006 Maximum Speed Limits by State, 2005 on Delicious Rank Vehicle Technologies Office: Fact #410: February 6, 2006 Maximum Speed Limits by State, 2005 on Digg Find More places to share Vehicle Technologies Office: Fact #410: February 6, 2006 Maximum Speed Limits by State, 2005 on AddThis.com...

410

Heterogeneity-corrected vs -uncorrected critical structure maximum point doses in breast balloon brachytherapy  

SciTech Connect (OSTI)

Recent studies have reported potentially clinically meaningful dose differences when heterogeneity correction is used in breast balloon brachytherapy. In this study, we report on the relationship between heterogeneity-corrected and -uncorrected doses for 2 commonly used plan evaluation metrics: maximum point dose to skin surface and maximum point dose to ribs. Maximum point doses to skin surface and ribs were calculated using TG-43 and Varian Acuros for 20 patients treated with breast balloon brachytherapy. The results were plotted against each other and fit with a zero-intercept line. Max skin dose (Acuros) = max skin dose (TG-43) ? 0.930 (R{sup 2} = 0.995). The average magnitude of difference from this relationship was 1.1% (max 2.8%). Max rib dose (Acuros) = max rib dose (TG-43) ? 0.955 (R{sup 2} = 0.9995). The average magnitude of difference from this relationship was 0.7% (max 1.6%). Heterogeneity-corrected maximum point doses to the skin surface and ribs were proportional to TG-43-calculated doses. The average deviation from proportionality was 1%. The proportional relationship suggests that a different metric other than maximum point dose may be needed to obtain a clinical advantage from heterogeneity correction. Alternatively, if maximum point dose continues to be used in recommended limits while incorporating heterogeneity correction, institutions without this capability may be able to accurately estimate these doses by use of a scaling factor.

Kim, Leonard, E-mail: kimlh@umdnj.edu [Department of Radiation Oncology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ (United States); Narra, Venkat; Yue, Ning [Department of Radiation Oncology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ (United States)

2013-07-01T23:59:59.000Z

411

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network [OSTI]

Residential Density on Vehicle Usage and Energy ConsumptionResidential Density on Vehicle Usage and Energy ConsumptionResidential Density on Vehicle Usage and Energy Consumption

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

412

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andfor Residential Energy Consumption in China Nan Zhou,

Zhou, Nan

2010-01-01T23:59:59.000Z

413

Cost and Energy Consumption Optimization of Product Manufacture in a Flexible Manufacturing System  

E-Print Network [OSTI]

Selection for Energy Consumption Reduction in Machining,Dornfeld, D. (2011): Energy Consumption Characterization and2011): Unit Process Energy Consumption Models for Material

Diaz, Nancy; Dornfeld, David

2012-01-01T23:59:59.000Z

414

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network [OSTI]

Vehicle Usage and Energy Consumption Table 2 Housing Unitsresidential vehicular energy consumption is graphed as aon Vehicle Usage and Energy Consumption with vehicles, but

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

415

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

comparison o f energy consumption i n housing (1998) (Trends i n household energy consumption (Jyukankyo Research4) Average (N=2976) Energy consumption [GJ / household-year

2006-01-01T23:59:59.000Z

416

Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach  

E-Print Network [OSTI]

on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

Ma, Kai; Hu, Guoqiang; Spanos, Costas J

2014-01-01T23:59:59.000Z

417

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

Estimating Total Energy Consumption and Emissions of China’sof China’s total energy consumption mix. However, accuratelyof China’s total energy consumption, while others estimate

Fridley, David G.

2008-01-01T23:59:59.000Z

418

ResPoNSe: modeling the wide variability of residential energy consumption.  

E-Print Network [OSTI]

affect appliance energy consumption. For example, differentStates, 2005 Residential Energy Consumption Survey: HousingModeling of End-Use Energy Consumption in the Residential

Peffer, Therese; Burke, William; Auslander, David

2010-01-01T23:59:59.000Z

419

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network [OSTI]

the total annual energy consumption. The behavior patternsin total residential energy consumption per home, even whenthe variability in energy consumption can vary by factors of

Kelsven, Phillip

2013-01-01T23:59:59.000Z

420

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

The China Residential Energy Consumption Survey, Human andof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

Zhou, Nan

2010-01-01T23:59:59.000Z

422

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

accounting for 79% of non-biomass energy consumption inreliance on biomass for rural energy consumption shows thereliance on biomass for rural energy consumption shows the

Zhou, Nan

2010-01-01T23:59:59.000Z

423

Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis  

E-Print Network [OSTI]

of steady state engine fuel consumption and emission maps.affecting engine load and consequently fuel consumption. Theand engine speed which it then relates to fuel consumption

Scora, George Alexander

2011-01-01T23:59:59.000Z

424

Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model  

E-Print Network [OSTI]

that the diesel engines fuel consumption and emissions doEmissions and Fuel Consumption Model engine manufacturersEmissions and Fuel Consumption Model Connection to engine

Barth, Matthew; Younglove, Theodore; Scora, George

2005-01-01T23:59:59.000Z

425

Heavy-Duty Diesel Vehicle Fuel Consumption Modeling Based on Road Load and Power Train Parameters  

E-Print Network [OSTI]

Injection Diesel Engine Fuel Consumption”, SAE 971142, 11.engine load, engine speed, and fuel consumption. The tirevehicle speed, engine speed, fuel consumption, engine load,

Giannelli, R; Nam, E K; Helmer, K; Younglove, T; Scora, G; Barth, M

2005-01-01T23:59:59.000Z

426

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

ABORATORY Estimating Total Energy Consumption and Emissionscomponent of China’s total energy consumption mix. However,about 19% of China’s total energy consumption, while others

Fridley, David G.

2008-01-01T23:59:59.000Z

427

Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control  

E-Print Network [OSTI]

combination of the total energy consumption and the peakalso reduces the total energy consumption of the occupancyTotal and Peak Energy Consumption Minimization of Building

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

428

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

the fraction of total energy consumption attributable toFraction of Total Energy Consumption Background Although thewindow fraction of total energy consumption. We believe that

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

429

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network [OSTI]

about half of the total energy consumption from Wii consolescan estimate total national energy consumption due to videoof on mode energy consumption to the total AEC. For most

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

430

Household activities through various lenses: crossing surveys, diaries and electric consumption  

E-Print Network [OSTI]

comparison between electricity consumption and behavioralU.S. residential electricity consumption” Energy Policy, 42(of the residential electricity consumption. ” Energy Policy,

Durand-Daubin, Mathieu

2013-01-01T23:59:59.000Z

431

Impacts of Electric Vehicles on Primary Energy Consumption and Petroleum Displacement  

E-Print Network [OSTI]

to Btu, EC is the electricity consumption of EVs in Kwh perreductions EV in electricity consumption contributedsensitive to EV electricity consumption, which,in turn,is

Wang, Quanlu; Delucchi, Mark A.

1991-01-01T23:59:59.000Z

432

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

end-use Residential primary energy consumption was 6.6 EJ inof primary energy. Primary energy consumption includes final14 Residential Primary Energy Consumption by Fuel (with

Zhou, Nan

2010-01-01T23:59:59.000Z

433

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

18 Figure 6 Primary Energy Consumption by End-Use in24 Figure 7 Primary Energy Consumption by Fuel in Commercialbased on total primary energy consumption (source energy),

Fridley, David G.

2008-01-01T23:59:59.000Z

434

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

liters Figure 7 Primary Energy Consumption (EJ) Refrigeratorby Efficiency Class Primary Energy Consumption (EJ) Figure 8by Fuel Figure 1 Primary Energy Consumption by End-use)

Zhou, Nan

2010-01-01T23:59:59.000Z

435

1999 Commercial Buildings Energy Consumption Survey Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption and Expenditures Tables Table C1. Total Energy Consumption by Major Fuel ............................................... 124 Table C2. Total Energy Expenditures by Major Fuel................................................ 130 Table C3. Consumption for Sum of Major Fuels ...................................................... 135 Table C4. Expenditures for Sum of Major Fuels....................................................... 140 Table C5. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels................................................................................................... 145 Table C6. Expenditures by Census Region for Sum of Major Fuels......................... 150 Table C7. Consumption and Gross Energy Intensity by Building Size for Sum of

436

Table 24. Refining Industry Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

- Corrections to Tables 24 to 32 - Corrections to Tables 24 to 32 Table 24. Refining Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2002- 2025 Carbon Dioxide Emissions 4/ (million metric tons) 190.4 185.7 188.0 191.3 207.3 215.6 220.0 222.8 225.1 226.3 228.0 230.7 234.1 237.5 238.5 239.4 239.4 238.6 240.6 240.5 242.2 244.2 245.9 246.3 246.6 1.2% Table 25. Food Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2002- 2025 Carbon Dioxide Emissions 3/ (million metric tons) 87.8 89.4 87.5 87.8 89.2 90.2 90.9 91.4 92.2 93.5 94.5 95.7 96.7 97.7 98.6 99.6 100.8 101.9 102.9 104.1 105.4 107.0 108.7 110.3 112.1 1.0% Table 26. Paper Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007

437

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network [OSTI]

Solar Energy Center ABSTRACT Currently, total electricity consumption of furnacesFurnace Blower Electricity: National and Regional Savings Potential Victor Franco, James Lutz, Alex Lekov, and Lixing Gu (Florida Solar

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

438

Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: August 9, 5: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment to someone by E-mail Share Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Facebook Tweet about Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Twitter Bookmark Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Google Bookmark Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Delicious Rank Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Digg Find More places to share Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on

439

The impact of retirement on household consumption in Japan  

Science Journals Connector (OSTI)

Using monthly data from the Japanese Family Income and Expenditure Survey, we examine the impact of retirement on household consumption. We find little evidence of an immediate change in consumption at retirement, on average, in Japan. However, we find a decrease in consumption at retirement for low income households that is concentrated in food and work-related consumption. The availability of substantial retirement bonuses to a large share of Japanese retirees may help smooth consumption at retirement. We find that those households that are more likely to receive such bonuses experience a short-run consumption increase at retirement. However, among households that are less likely to receive a retirement bonus, we find that consumption decreases at retirement.

Melvin Stephens Jr.; Takashi Unayama

2012-01-01T23:59:59.000Z

440

Induced seismicity within geologic carbon sequestration projects: Maximum earthquake magnitude and leakage potential from undetected faults  

E-Print Network [OSTI]

Wilson and Gerard, editors, Carbon Capture and Sequestration2010, Shell's Barendrecht Carbon-Capture Project Canceled,s-barendrecht-carbon-capture-project-canceled.html. Pruess,

Mazzoldi, A.P.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Table 3.2 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010; 2 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. NAICS Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,158 257 12 22 579 6 182 2 99 3112 Grain and Oilseed Milling 350 56 * 1 121 * 126 0 45 311221 Wet Corn Milling 214 25 * * 53 * 110 0 25 31131 Sugar Manufacturing 107 4 1 1 15 * 49 2 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 31 1 Q 100 1 2 0 4 3115 Dairy Products 105 33 2 2 66 1 * 0 2 3116 Animal Slaughtering and Processing 212 69 5 3 125 2 Q 0 8 312 Beverage and Tobacco Products 86 29 1 1 38 1 10 0 7 3121 Beverages

442

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings* ............................... 155 447 288 17,163 28,766 17,378 9.0 15.5 16.6 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 23 52 37 2,049 2,668 1,628 11.3 19.6 23.0 5,001 to 10,000 .............................. 15 35 27 1,859 2,854 1,484 8.1 12.2 18.1 10,001 to 25,000 ............................ 27 55 37 3,141 4,907 3,322 8.5 11.3 11.2

443

Table 3.3 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2010; 3 Fuel Consumption, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Net Residual Distillate LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,148 314 6 53 446 14 25 Q 291 20-49 1,018 297 13 22 381 18 97 5 185 50-99 1,095 305 7 13 440 6 130 9 186 100-249 1,728 411 16 11 793 7 131 7 353 250-499 1,916 391 16 11 583 3 185 5 722 500 and Over 7,323 720 21 21 2,569 21 300 348 3,323 Total 14,228 2,437 79 130 5,211 69 868 376 5,059 Employment Size Under 50 1,149 305 12 45 565 21 31

444

CBECS 1992 - Consumption & Expenditures, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Figure on Energy Consumption in Commercial Buildings by Energy Source, 1992 Divider Line The 49 tables present detailed energy consumption and expenditure data for buildings in the commercial sector. This section provides assistance in reading the tables by explaining some of the headings for the data categories. It will also explain the use of row and column factors to compute both the confidence levels of the estimates given in the tables and the statistical significance of differences between the data in two or more categories. The section concludes with a "Quick-Reference Guide" to the statistics in the different tables. Categories of Data in the Tables After Table 3.1, which is a summary table, the tables are grouped into the major fuel tables (Tables 3.2 through 3.13) and the specific fuel tables (Tables 3.14 through 3.29 for electricity, Tables 3.30 through 3.40 for natural gas, Tables 3.41 through 3.45 for fuel oil, and Tables 3.46 through 3.47 for district heat). Table 3.48 presents energy management and DSM data as reported by the building respondent. Table 3.49 presents data on participation in electric utility-sponsored DSM programs as reported by both the building respondent and the electricity supplier.

445

Engineer End Uses for Maximum Efficiency | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

for Maximum Efficiency (August 2004) More Documents & Publications Maintaining System Air Quality Compressed Air Storage Strategies Alternative Strategies for Low Pressure End Uses...

446

Commercial Buildings Energy Consumption and Expenditures 1992 - Executive  

U.S. Energy Information Administration (EIA) Indexed Site

& Expenditures > Executive Summary & Expenditures > Executive Summary 1992 Consumption & Expenditures Executive Summary Commercial Buildings Energy Consumption and Expenditures 1992 presents statistics about the amount of energy consumed in commercial buildings and the corresponding expenditures for that energy. These data are based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), a national energy survey of buildings in the commercial sector, conducted by the Energy Information Administration (EIA) of the U.S. Department of Energy. Figure ES1. Energy Consumption is Commercial Buidings by Energy Source, 1992 Energy Consumption: In 1992, the 4.8 million commercial buildings in the United States consumed 5.5 quadrillion Btu of electricity, natural gas, fuel oil, and district heat. Of those 5.5 quadrillion Btu, consumption of site electricity accounted for 2.6 quadrillion Btu, or 48.0 percent, and consumption of natural gas accounted for 2.2 quadrillion Btu, or 39.6 percent. Fuel oil consumption made up 0.3 quadrillion Btu, or 4.0 percent of the total, while consumption of district heat made up 0.4 quadrillion Btu, or 7.9 percent of energy consumption in that sector. When the energy losses that occur at the electricity generating plants are included, the overall energy consumed by commercial buildings increases to about 10.8 quadrillion Btu (Figure ES1).

447

Impact of Office Productivity Cloud Computing on Energy Consumption and Greenhouse Gas Emissions  

Science Journals Connector (OSTI)

A Lenovo U260 Laptop and Acer Iconia W500 Tablet device (Supporting Information Table S1) were analyzed as previous research(3) indicated that low power devices are best suited to cloud services and will be more common in the future. ... For example, while using Word in O365 one could also be listening to music, potentially making more use of the idle energy consumption of the OS as a consequence. ...

Daniel R. Williams; Yinshan Tang

2013-04-02T23:59:59.000Z

448

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

E-Print Network [OSTI]

the total primary energy consumption in 2000. Furthermore,The Commercial Primary Energy Consumption by Sector GDP

Zhou, Nan

2008-01-01T23:59:59.000Z

449

Connecticut Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

450

Alaska Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

451

Delaware Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

452

Mississippi Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

453

Minnesota Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

454

Energy Information Administration - Energy Efficiency, energy consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Efficiency Efficiency Energy Efficiency energy consumption savings households, buildings, industry & vehicles The Energy Efficiency Page reflects EIA's information on energy efficiency and related information. This site provides an in depth discussion of the concept of energy efficiency and how it is measured, measurement, summaries of formal user meetings on energy efficiency data and measurement, as well as analysis of greenhouse gas emissions as related to energy use and energy efficiency. At the site you will find links to other sources of information, and via a listserv all interested analysts can share ideas, data, and ask for assistance on methodological problems associated with energy use, energy efficiency, and greenhouse gas issues. Contact: Behjat.Hojjati@eia.doe.gov

455

(1) Who owns energy consumption data  

Broader source: Energy.gov (indexed) [DOE]

Elster July 12, 2010 Reply to DOE Request for Information of May 11, 2010 Elster July 12, 2010 Reply to DOE Request for Information of May 11, 2010 regarding Data Privacy The DOE questions are restated followed by an answer. Please note that this matter is also related to the May 11, 2010 RFI on needs for utility communications. If data is provided to third parties there is a data processing and communications cost that depends on how many parties data is provided to and by how often data is communicated. These costs are minimized if an in-home display and/or smart thermostat are provided data directly from a smart meter. (1) Q. Who owns energy consumption data? A. Typically by state law the consumer owns the data. (2) Q. Who should be entitled to privacy protections relating to energy information? A. The consumer.

456

Nevada Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

457

Arizona Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

458

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Steel Industry Analysis Brief Change Topic: Steel | Chemical Steel Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities Introduction The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago.1 The U.S. steel industry (including iron production) relies significantly on natural gas and coal coke and breeze for fuel, and is one of the largest

459

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Chemical Industry Analysis Brief Change Topic: Steel | Chemical Chemical Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities | Fuel Switching Capacity Introduction The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials for producing an extensive assortment of consumer goods. They are also crucial materials in creating many resources that are essential inputs to the numerous industries and sectors of the U.S. economy.1 The manufacturing sector is classified by the North American Industry Classification System (NAICS) of which the chemicals sub-sector is NAICS

460

Idaho Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Arkansas Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

462

Kentucky Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

463

Idaho Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

464

Massachusetts Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

465

Maryland Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

466

Missouri Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

467

Kansas Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

468

Wisconsin Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

469

Alabama Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

470

Connecticut Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

471

Household Vehicles Energy Consumption 1994 - Appendix C  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction This appendix discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on these data. The first section discusses undercoverage of the vehicle stock in the residential sector. The second section discusses the effects of using July 1994 as a time reference for the survey. The remainder of this appendix discusses the treatment of sampling and nonsampling errors in the RTECS, the quality of specific data items such as the Vehicle Identification Number (VIN) and fuel prices, and poststratification procedures used in the 1994 RTECS. The quality of the data collection and the processing of the data affects the accuracy of estimates based on survey data. All the statistics

472

Montana Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

473

Wyoming Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

474

Oklahoma Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

475

Ohio Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

476

Utah Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

477

Minnesota Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

478

Texas Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

479

Missouri Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

480

Delaware Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

Note: This page contains sample records for the topic "maximum consumption potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Alabama Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

482

Nebraska Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

483

Maine Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

484

California Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

485

Georgia Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

486

Florida Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

487

Arkansas Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

488

Alaska Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

489

Maine Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

490

Colorado Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

491

Oregon Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

492

Nebraska Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

493

Kentucky Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

494

Montana Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

495

Modeling and optimization of HVAC energy consumption  

Science Journals Connector (OSTI)

A data-driven approach for minimization of the energy to air condition a typical office-type facility is presented. Eight data-mining algorithms are applied to model the nonlinear relationship among energy consumption, control settings (supply air temperature and supply air static pressure), and a set of uncontrollable parameters. The multiple-linear perceptron (MLP) ensemble outperforms other models tested in this research, and therefore it is selected to model a chiller, a pump, a fan, and a reheat device. These four models are integrated into an energy optimization model with two decision variables, the setpoint of the supply air temperature and the static pressure in the air handling unit. The model is solved with a particle swarm optimization algorithm. The optimization results have demonstrated the total energy consumed by the heating, ventilation, and air-conditioning system is reduced by over 7%.

Andrew Kusiak; Mingyang Li; Fan Tang

2010-01-01T23:59:59.000Z

496

Florida Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

497

California Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

498

Hawaii Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

499

Kansas Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

500

Michigan Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption