National Library of Energy BETA

Sample records for maximum cell charge

  1. Conductivity maximum in a charged colloidal suspension (Journal...

    Office of Scientific and Technical Information (OSTI)

    effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we...

  2. Conductivity maximum in a charged colloidal suspension (Journal...

    Office of Scientific and Technical Information (OSTI)

    We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. ...

  3. System and method for charging electrochemical cells in series

    DOE Patents [OSTI]

    DeLuca, William H.; Hornstra, Jr, Fred; Gelb, George H.; Berman, Baruch; Moede, Larry W.

    1980-01-01

    A battery charging system capable of equalizing the charge of each individual cell at a selected full charge voltage includes means for regulating charger current to first increase current at a constant rate until a bulk charging level is achieved or until any cell reaches a safe reference voltage. A system controller then begins to decrease the charging rate as long as any cell exceeds the reference voltage until an equalization current level is reached. At this point, the system controller activates a plurality of shunt modules to permit shunting of current around any cell having a voltage exceeding the reference voltage. Leads extending between the battery of cells and shunt modules are time shared to permit alternate shunting of current and voltage monitoring without the voltage drop caused by the shunt current. After each cell has at one time exceeded the reference voltage, the charging current is terminated.

  4. Electrochemical cell with high discharge/charge rate capability

    DOE Patents [OSTI]

    Redey, Laszlo

    1988-01-01

    A fully charged positive electrode composition for an electrochemical cell includes FeS.sub.2 and NiS.sub.2 in about equal molar amounts along with about 2-20 mole percent of the reaction product Li.sub.2 S. Through selection of appropriate electrolyte compositions, high power output or low operating temperatures can be obtained. The cell includes a substantially constant electrode impedance through most of its charge and discharge range. Exceptionally high discharge rates and overcharge protection are obtainable through use of the inventive electrode composition.

  5. The use of experimental design to find the operating maximum power point of PEM fuel cells

    SciTech Connect (OSTI)

    Crăciunescu, Aurelian; Pătularu, Laurenţiu; Ciumbulea, Gloria; Olteanu, Valentin; Pitorac, Cristina; Drugan, Elena

    2015-03-10

    Proton Exchange Membrane (PEM) Fuel Cells are difficult to model due to their complex nonlinear nature. In this paper, the development of a PEM Fuel Cells mathematical model based on the Design of Experiment methodology is described. The Design of Experiment provides a very efficient methodology to obtain a mathematical model for the studied multivariable system with only a few experiments. The obtained results can be used for optimization and control of the PEM Fuel Cells systems.

  6. Battery and fuel cell electrodes containing stainless steel charging additive

    DOE Patents [OSTI]

    Zuckerbrod, David; Gibney, Ann

    1984-01-01

    An electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer comprises a hydrophilic composite which includes: (i) carbon particles; (ii) stainless steel particles; (iii) a nonwetting agent; and (iv) a catalyst, where at least one current collector contacts said composite.

  7. Charge-transfer absorption and emission in polymer: fullerene solar cells |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIT-Harvard Center for Excitonics Charge-transfer absorption and emission in polymer: fullerene solar cells April 13, 2010 at 3pm/36-428 Koen Vandewal Linköping University vandewal-small abstract: For an efficient conversion of photons to electrons by organic materials, the presence of a material interface between an electron donating and electron accepting material is crucial. Most successful active layers for organic solar cells today comprise a blend of conjugated polymers as electron

  8. In-situ imaging of charge carriers in an electrochemical cell.

    SciTech Connect (OSTI)

    Gerald, R. E. II

    1998-01-30

    A toroid cavity nuclear magnetic resonance (NMR) detector capable of quantitatively recording radial concentration profiles, diffusion constants, displacements of charge carriers, and radial profiles of spin-lattice relaxation time constants was employed to investigate the charge/discharge cycle of a solid-state electrochemical cell. One-dimensional radial concentration profiles (1D-images) of ions solvated in a polyethylene oxide matrix were recorded by {sup 19}F and {sup 7}Li NMR for several cells. A sequence of {sup 19}F NMR images, recorded at different stages of cell polarization, revealed the evolution of a region of the polymer depleted of charge carriers. From these images it is possible to extract the transference number for the Li{sup +} ion. Spatially localized diffusion coefficients and spin-lattice relaxation time constants can be measured simultaneously for the ions in the polymer electrolyte by a spin-labeling method that employs the radial B{sub 1}-field gradient of the toroid cavity. A spatial resolution of 7 {micro}m near the working electrode was achieved with a gradient strength of 800 gauss/cm. With this apparatus, it is also possible to investigate novel intercalation anode materials for lithium ion storage. These materials are coated onto the working electrode in a thin film. The penetration depth of lithium cations in these films can be imaged at different times in the charge/discharge cycle of the battery.

  9. Enhanced Charge Transport in Dissolved Polysulfide Li-S Cells with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supramolecular Redox Mediators - Joint Center for Energy Storage Research September 15, 2015, Research Highlights Enhanced Charge Transport in Dissolved Polysulfide Li-S Cells with Supramolecular Redox Mediators Schematic of nanostructured PBI 1 redox mediators in a Li-S battery, SEM image of the nanofiber morphology, reduced overpotential and 31 percent increase in S utilization at C/8, and cycling at C/4. Scientific Achievement A highly collaborative team of theorists and experimentalists

  10. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    SciTech Connect (OSTI)

    Pan, Shanlin

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an electrochemical cell. For example, we are able to use this technique to track electroluminescence of single Au NPs, and the electrodeposition of individual Ag NPs in-situ. These metallic NPs are useful to enhance light harvesting in organic photovoltaic systems. The scattering at the surface of an indium tin oxide (ITO) working electrode was measured during a potential sweep. Utilizing Mie scattering theory and high resolution scanning electron microscopy (SEM), the scattering data were used to calculate current-potential curves depicting the electrodeposition of individual Ag NPs. The oxidation of individual presynthesized and electrodeposited Ag NPs was also investigated using fluorescence and DFS microscopies. Our work has produced 1 US provisional patent, 15 published manuscripts, 1 submitted and two additional in-writing manuscripts. 5 graduate students, 1 postdoctoral student, 1 visiting professor, and two undergraduate students have received research training in the area of electrochemistry and optical spectroscopy under support of this award.

  11. Method Of Charging Maintenance-Free Nickel Metal Hydride Storage Cells

    DOE Patents [OSTI]

    Berlureau, Thierry; Liska, Jean-Louis

    1999-11-16

    A method of charging an industrial maintenance-free Ni-MH storage cell, the method comprising in combination a first stage at a constant current I.sub.1 lying in the range I.sub.c /10 to I.sub.c /2, and a second stage at a constant current I.sub.2 lying in the range I.sub.c /50 to I.sub.c /10, the changeover from the first stage to the second stage taking place when the time derivative of the temperature reaches a threshold value which varies as a function of the temperature at the time of the changeover.

  12. Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells

    SciTech Connect (OSTI)

    Heeger, Alan; Bazan, Guillermo; Nguyen, Thuc-Quyen; Wudl, Fred

    2015-02-27

    The need for renewable sources of energy is well known. Conversion of sunlight to electricity using solar cells is one of the most important opportunities for creating renewable energy sources. The research carried out under DE-FG02-08ER46535 focused on the science and technology of “Plastic” solar cells comprised of organic (i.e. carbon based) semiconductors. The Bulk Heterojunction concept involves a phase separated blend of two organic semiconductors each with dimensions in the nano-meter length scale --- one a material that functions as a donor for electrons and the other a material that functions as an acceptor for electrons. The nano-scale inter-penetrating network concept for “Plastic” solar cells was created at UC Santa Barbara. A simple measure of the impact of this concept can be obtained from a Google search which gives 244,000 “hits” for the Bulk Heterojunction solar cell. Research funded through this program focused on four major areas: 1. Interfacial effects in organic photovoltaics, 2. Charge transfer and photogeneration of mobile charge carriers in organic photovoltaics, 3. Transport and recombination of the photogenerated charge carriers in organic photovoltaics, 4. Synthesis of novel organic semiconducting polymers and semiconducting small molecules, including conjugated polyelectrolytes. Following the discovery of ultrafast charge transfer at UC Santa Barbara in 1992, the nano-organic (Bulk Heterojunction) concept was formulated. The need for a morphology comprising two interpenetrating bicontinuous networks was clear: one network to carry the photogenerated electrons (negative charge) to the cathode and one network to carry the photo-generated holes (positive charge) to the anode. This remarkable self-assembled network morphology has now been established using Transmission electron Microscopy (TEM) either in the Phase Contrast mode or via TEM-Tomography. The steps involved in delivering power from a solar cell to an external circuit are the following: • Photo-excitation of the donor (or the acceptor). • Charge transfer with holes in the donor domain and electrons in the acceptor domain. • Sweep-out to electrodes prior to recombination by the internal electric field. • Energy delivered to the external circuit. Each of these four steps was studied in detail using a wide variety of organic semiconductors with different molecular structures. This UC Santa Barbara group was the first to clarify the origin and the mechanism involved in the ultrafast charge transfer process. The ultrafast charge transfer (time scale approximately 100 times faster than the first step in the photo-synthesis of green plants) is the fundamental reason for the potential for high power conversion efficiency of sunlight to electricity from plastic solar cells. The UCSB group was the first to emphasize, clarify and demonstrate the need for sweep-out to electrodes prior to recombination by the internal electric field. The UCSB group was the first to synthesize small molecule organic semiconductors capable of high power conversion efficiencies. The results of this research were published in high impact peer-reviewed journals. Our published papers (40 in number) provide answers to fundamental questions that have been heavily discussed and debated in the field of Bulk Heterojunction Solar Cells; scientific questions that must be resolved before this technology can be ready for commercialization in large scale for production of renewable energy. Of the forty publications listed, nineteen were co-authored by two or more of the PIs, consistent with the multi-investigator approach described in the original proposal. The specific advantages of this “plastic” solar cell technology are the following: a. Manufacturing by low-cost printing technology using soluble organic semiconductors; this approach can be implemented in large scale by roll-to-roll printing on plastic substrates. b. Low energy cost in manufacturing; all steps carried out at room temperature (approx. a factor of ten less than the use of Silicon which requires high temperature processing). c. Low carbon footprint d. Lightweight, flexible and rugged Because of the resolution of many scientific issues, a significant fraction of which were addressed in the research results of DE-FG02-08ER46535, the power conversion efficiencies are improving at an ever increasing rate. During the funding period of DE-FG02-08ER46535, the power conversion efficiencies of plastic solar cells improved from just a few per cent to values greater than 11% with contributions from our group and from researchers all over the world.

  13. Photochemical charges separation and photoelectric properties of flexible solar cells with two types of heterostructures

    SciTech Connect (OSTI)

    Liu, Xiangyang E-mail: yzgu@henu.edu.cn; Wang, Shun; Zheng, Haiwu; Cheng, Xiuying; Gu, Yuzong E-mail: yzgu@henu.edu.cn

    2015-12-14

    Photochemical charges generation, separation, and transport at nanocrystal interfaces are central to energy conversion for solar cells. Here, Zn{sub 2}SnO{sub 4} nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} (ZTO/CBS), ZTO nanowires/CBS-reduced graphene oxide (ZTO/CBS-RGO), and bulk heterojunction (BHJ) solar cells were measured. The signals of steady state and electric field-induced surface photovoltage indicate that RGO with high electron mobility can evidently improve the photovoltaic response. Besides, ZTO/CBS and ZTO/CBS-RGO cells exhibit the excellent performance and the highest efficiencies of 1.2% and 2.8%, respectively. The internal relations of photoelectric properties to some factors, such as film thickness, direct paths, RGO conductive network, energy level matching, etc., were discussed in detail. Qualitative and quantitative analyses further verified the comprehensive effect of RGO and other factors. Importantly, the fine bendable characteristic of BHJ solar cells with excellent efficiency and facile, scalable production gives the as-made flexible solar cells device potential for practical application in future.

  14. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge ...

  15. Spacecraft charging analysis with the implicit particle-in-cell code iPic3D

    SciTech Connect (OSTI)

    Deca, J.; Lapenta, G. [Centre for Mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B bus 2400, 3001 Leuven (Belgium)] [Centre for Mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B bus 2400, 3001 Leuven (Belgium); Marchand, R. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada)] [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Markidis, S. [High Performance Computing and Visualization Department, KTH Royal Institute of Technology, Stockholm (Sweden)] [High Performance Computing and Visualization Department, KTH Royal Institute of Technology, Stockholm (Sweden)

    2013-10-15

    We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation results with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.

  16. Zinc-oxide charge trapping memory cell with ultra-thin chromium-oxide trapping layer

    SciTech Connect (OSTI)

    El-Atab, Nazek; Rizk, Ayman; Nayfeh, Ammar; Okyay, Ali K.; UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara

    2013-11-15

    A functional zinc-oxide based SONOS memory cell with ultra-thin chromium oxide trapping layer was fabricated. A 5 nm CrO{sub 2} layer is deposited between Atomic Layer Deposition (ALD) steps. A threshold voltage (V{sub t}) shift of 2.6V was achieved with a 10V programming voltage. Also for a 2V V{sub t} shift, the memory with CrO{sub 2} layer has a low programming voltage of 7.2V. Moreover, the deep trapping levels in CrO{sub 2} layer allows for additional scaling of the tunnel oxide due to an increase in the retention time. In addition, the structure was simulated using Physics Based TCAD. The results of the simulation fit very well with the experimental results providing an understanding of the charge trapping and tunneling physics.

  17. Tuning chargedischarge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    SciTech Connect (OSTI)

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new unit cell breathing mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during chargedischarge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metalmetal bonding is used to explain such abnormal behaviour and a generalized hypothesis is developed. The expansion of MM bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking MO as controlling factor in normal materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.

  18. Wireless Charging | Department of Energy

    Energy Savers [EERE]

    Wireless Charging Wireless Charging 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss103_miller_2013_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Wireless Charging Wireless Plug-in Electric Vehicle (PEV) Charging Wireless Plug-in Electric Vehicle (PEV) Charging

  19. Time-resolved photoluminescence measurements for determining voltage-dependent charge-separation efficiencies of subcells in triple-junction solar cells

    SciTech Connect (OSTI)

    Tex, David M.; Ihara, Toshiyuki; Kanemitsu, Yoshihiko; Akiyama, Hidefumi; Imaizumi, Mitsuru

    2015-01-05

    Conventional external quantum-efficiency measurement of solar cells provides charge-collection efficiency for approximate short-circuit conditions. Because this differs from actual operating voltages, the optimization of high-quality tandem solar cells is especially complicated. Here, we propose a contactless method, which allows for the determination of the voltage dependence of charge-collection efficiency for each subcell independently. By investigating the power dependence of photoluminescence decays, charge-separation and recombination-loss time constants are obtained. The upper limit of the charge-collection efficiencies at the operating points is then obtained by applying the uniform field model. This technique may complement electrical characterization of the voltage dependence of charge collection, since subcells are directly accessible.

  20. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    SciTech Connect (OSTI)

    Yang, Wenchao; Yao, Yao Wu, Chang-Qin

    2015-04-21

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (R{sub rec}−V) and the current density-voltage (J–V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted R{sub rec} data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the R{sub rec}–V characteristics. For the perovskites of increased band gaps, the R{sub rec}'s are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the R{sub rec} decrease slowly with the increasing voltage, which leads to increased open circuit voltage.

  1. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    Energy Science and Technology Software Center (OSTI)

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas.more » At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model. The code is guilt atop the Python interpreter language.« less

  2. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    SciTech Connect (OSTI)

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model. The code is guilt atop the Python interpreter language.

  3. Maximum-likelihood

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jurisdiction waters of the Gulf of Mexico. Alaska is all onshore. Total crews includes crews with unknown survey dimension. Data are reported on the first and fifteenth of each month, except January when they are reported only on the fifteenth. When semi-monthly values differ for the month, the larger of the two values is shown here. Consequently, this table reflects the maximum number of crews at work at any time during the month. See Definitions, Sources, and Notes link above for more

  4. Thermal influence on charge carrier transport in solar cells based on GaAs PN junctions

    SciTech Connect (OSTI)

    Osses-Márquez, Juan; Calderón-Muñoz, Williams R.

    2014-10-21

    The electron and hole one-dimensional transport in a solar cell based on a Gallium Arsenide (GaAs) PN junction and its dependency with electron and lattice temperatures are studied here. Electrons and heat transport are treated on an equal footing, and a cell operating at high temperatures using concentrators is considered. The equations of a two-temperature hydrodynamic model are written in terms of asymptotic expansions for the dependent variables with the electron Reynolds number as a perturbation parameter. The dependency of the electron and hole densities through the junction with the temperature is analyzed solving the steady-state model at low Reynolds numbers. Lattice temperature distribution throughout the device is obtained considering the change of kinetic energy of electrons due to interactions with the lattice and heat absorbed from sunlight. In terms of performance, higher values of power output are obtained with low lattice temperature and hot energy carriers. This modeling contributes to improve the design of heat exchange devices and thermal management strategies in photovoltaic technologies.

  5. Ab Initio Simulation of Charge Transfer at the Semiconductor Quantum Dot/TiO 2 Interface in Quantum Dot-Sensitized Solar Cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xin, Xukai; Li, Bo; Jung, Jaehan; Yoon, Young Jun; Biswas, Rana; Lin, Zhiqun

    2014-07-24

    Quantum dot-sensitized solar cells (QDSSCs) have emerged as a promising solar architecture for next-generation solar cells. The QDSSCs exhibit a remarkably fast electron transfer from the quantum dot (QD) donor to the TiO2 acceptor with size quantization properties of QDs that allows for the modulation of band energies to control photoresponse and photoconversion efficiency of solar cells. In order to understand the mechanisms that underpin this rapid charge transfer, the electronic properties of CdSe and PbSe QDs with different sizes on the TiO2 substrate are simulated using a rigorous ab initio density functional method. Our method capitalizes on localized orbitalmore » basis set, which is computationally less intensive. Quite intriguingly, a remarkable set of electron bridging states between QDs and TiO2 occurring via the strong bonding between the conduction bands of QDs and TiO2 is revealed. Such bridging states account for the fast adiabatic charge transfer from the QD donor to the TiO2 acceptor, and may be a general feature for strongly coupled donor/acceptor systems. All the QDs/TiO2 systems exhibit type II band alignments, with conduction band offsets that increase with the decrease in QD size. This facilitates the charge transfer from QDs donors to TiO2 acceptors and explains the dependence of the increased charge transfer rate with the decreased QD size.« less

  6. Removal to Maximum Extent Practical

    Broader source: Energy.gov [DOE]

    Summary Notes from 1 November 2007 Generic Technical Issue Discussion on Removal of Highly Radioactive Radionuclides/Key Radionuclides to the Maximum Extent Practical

  7. Workplace Charging Challenge: Sample Workplace Charging Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Policy Workplace Charging Challenge: Sample Workplace Charging Policy Review the policy guidelines used by one Workplace Charging Challenge partner to keep their ...

  8. Ab Initio Simulation of Charge Transfer at the Semiconductor Quantum Dot/TiO 2 Interface in Quantum Dot-Sensitized Solar Cells

    SciTech Connect (OSTI)

    Xin, Xukai; Li, Bo; Jung, Jaehan; Yoon, Young Jun; Biswas, Rana; Lin, Zhiqun

    2014-07-24

    Quantum dot-sensitized solar cells (QDSSCs) have emerged as a promising solar architecture for next-generation solar cells. The QDSSCs exhibit a remarkably fast electron transfer from the quantum dot (QD) donor to the TiO2 acceptor with size quantization properties of QDs that allows for the modulation of band energies to control photoresponse and photoconversion efficiency of solar cells. In order to understand the mechanisms that underpin this rapid charge transfer, the electronic properties of CdSe and PbSe QDs with different sizes on the TiO2 substrate are simulated using a rigorous ab initio density functional method. Our method capitalizes on localized orbital basis set, which is computationally less intensive. Quite intriguingly, a remarkable set of electron bridging states between QDs and TiO2 occurring via the strong bonding between the conduction bands of QDs and TiO2 is revealed. Such bridging states account for the fast adiabatic charge transfer from the QD donor to the TiO2 acceptor, and may be a general feature for strongly coupled donor/acceptor systems. All the QDs/TiO2 systems exhibit type II band alignments, with conduction band offsets that increase with the decrease in QD size. This facilitates the charge transfer from QDs donors to TiO2 acceptors and explains the dependence of the increased charge transfer rate with the decreased QD size.

  9. Charge transport in zirconium doped anatase nanowires dye-sensitized solar cells: Trade-off between lattice strain and photovoltaic parameters

    SciTech Connect (OSTI)

    Archana, P. S.; Gupta, Arunava; Yusoff, Mashitah M.; Jose, Rajan

    2014-10-13

    Zirconium (Zr) is doped up to 5 at.?% in anatase TiO{sub 2} nanowires by electrospinning and used as working electrode in dye-sensitized solar cells. Variations observed in the photovoltaic parameters were correlated by electrochemical impedance spectroscopy, open circuit voltage decay, and X-ray diffraction measurements. Results show that homovalent substitution of Zr in TiO{sub 2} increased the chemical capacitance and electron diffusion coefficient which in turn decreased charge transport resistance and charge transit time. However, lattice strain due to size mismatch between the Zr{sup 4+} and Ti{sup 4+} ions decreased open circuit voltage and fill factor thereby setting a trade-off between doping concentration and photovoltaic properties.

  10. Measuring momentum for charged particle tomography

    DOE Patents [OSTI]

    Morris, Christopher (Los Alamos, NM); Fraser, Andrew Mcleod (Los Alamos, NM); Schultz, Larry Joe (Los Alamos, NM); Borozdin, Konstantin N. (Los Alamos, NM); Klimenko, Alexei Vasilievich (Maynard, MA); Sossong, Michael James (Los Alamos, NM); Blanpied, Gary (Lexington, SC)

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  11. HPSS Charging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charging HPSS Charging NERSC uses Storage Resource Units (SRUs) to help manage HPSS storage. The goal is to provide a balanced computing environment with appropriate amounts of storage and adequate bandwidth to keep the compute engines fed with data. Performance and usage tracking allows NERSC to anticipate demand and maintain a responsive storage environment. Storage management also recognizes storage as a distinct resource in support of an increasing amount of data intensive computing. Storage

  12. Workplace Charging Challenge: Sample Municipal Workplace Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Workplace Charging Agreement Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement Review the agreement proposed by one municipality to register PEV ...

  13. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PRIME Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by ...

  14. Maximum Performance Group MPG | Open Energy Information

    Open Energy Info (EERE)

    Maximum Performance Group MPG Jump to: navigation, search Name: Maximum Performance Group (MPG) Place: College Point, New York Zip: 11356 Product: Technology based energy and asset...

  15. Boiler Maximum Achievable Control Technology (MACT) Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact Sheet, April 2015 Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact ...

  16. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  17. Strong focus space charge

    DOE Patents [OSTI]

    Booth, Rex

    1981-01-01

    Strong focus space charge lens wherein a combination of current-carrying coils and charged electrodes form crossed magnetic and electric fields to focus charged particle beams.

  18. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  19. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you ...

  20. Workplace Charging: Charging Up University Campuses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Workplace Charging: Charging Up University Campuses Carrie Giles, ICF International Carrie Ryder, ICF International Stephen Lommele, National Renewable Energy Laboratory March 2016 DRAFT REPORT Workplace 2 Workplace Charging: Charging Up University Campuses As leading regional employers, colleges and universities are on the front line of local- and national-level technology trends. To remain competitive, many schools are offering plug-in electric vehicle (PEV) charging to their faculty, staff,

  1. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 5, 1, 2 SO2 Case Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts ...

  2. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 4, 1, 2 SO2 Case Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts ...

  3. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 3, 1, 2 SO2 Case Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts ...

  4. Workplace Charging Challenge: Promote Charging at Work

    Broader source: Energy.gov [DOE]

    Employees with access to workplace charging are six times more likely to drive a plug-in electric vehicle (PEV) than the average worker. Promoting PEV charging at workplaces is one great way that...

  5. Workplace Charging Challenge: Sample Workplace Charging Policy

    Broader source: Energy.gov [DOE]

    Review the policy guidelines used by one Workplace Charging Challenge partner to keep their program running safe and successfully.

  6. Workplace Charging Equipment Costs

    Broader source: Energy.gov [DOE]

    Charging stations are available from a variety of manufacturers in a range of models for all charging applications. For a single port charging station, Level 1 hardware costs range from $300-$1,500...

  7. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on

  8. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on

  9. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on

  10. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on

  11. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on

  12. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on

  13. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on

  14. Workplace Charging Challenge

    SciTech Connect (OSTI)

    2013-09-01

    Fact sheet about the EV Everywhere Workplace Charging Challenge which is to increase the number of American employers offering workplace charging by tenfold in the next five years.

  15. Workplace Charging Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Workplace Charging Challenge, committing to install charging for plug-in electric vehicles (PEVs) at their worksites. By taking on this Challenge, they are helping...

  16. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or Twitter Attend local EV events Share your story Currently have 13 ChargePoint charging stations scattered throughout Vermont 2015 - 12 Freedom Stations & 10...

  17. Workplace Charging Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pioneering U.S. employers are accepting the EV Everywhere Workplace Charging Challenge, ... by increasing charging available in the workplace, is essential to making that transition. ...

  18. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    work EV Ambassador Work Attach "Ask me about my ... 13 ChargePoint charging stations scattered throughout ... GMP will provide on-site test drives GMP will offer ...

  19. Dynamic Wireless Charging

    SciTech Connect (OSTI)

    2015-03-13

    ORNL successfully demonstrated in-motion wireless charging in the laboratory using a small GEM vehicle and a series of six charging coils.

  20. Utilities and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles and the associated need and desire for workplace charging Aid in forecasting similar workplace charging needs with commercial customers across the Duke Energy ...

  1. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Mapping Particle Charges in Battery Electrodes Print Friday, 26 July 2013 14:18 The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how

  2. How usage is charged

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    usage is charged How usage is charged MPP Charging (Computational Systems) When a job runs on a NERSC MPP system, such as Hopper, charges accrue against one of the user's repository allocations. The unit of accounting for these charges is the "MPP Hour". A parallel job is charged for exclusive use of each multi-core node allocated to the job. The MPP charge for such a job is calculated as the product of: the job's elapsed wall-clock time in hours the number of nodes allocated to the

  3. Charging system and method for multicell storage batteries

    DOE Patents [OSTI]

    Cox, Jay A.

    1978-01-01

    A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.

  4. Universality of Charged Multiplicity Distributions

    SciTech Connect (OSTI)

    Goulianos, K.; /Rockefeller U.

    1981-12-01

    The charged multiplicity distributions of the diffractive and non-diffractive components of hadronic interactions, as well as those of hadronic states produced in other reactions, are described well by a universal Gaussian function that depends only on the available mass for pionization, has a maximum at n{sub o} {approx_equal} 2M{sup 1/2}, where M is the available mass in GeV, and a peak to width ratio n{sub o}/D {approx_equal} 2.

  5. Robust statistical reconstruction for charged particle tomography

    DOE Patents [OSTI]

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  6. FY14 Milestone: Simulated Impacts of Life-Like Fast Charging on BEV Batteries (Management Publication)

    SciTech Connect (OSTI)

    Neubauer, J.; Wood, E.; Burton, E.; Smith, K.; Pesaran, A.

    2014-09-01

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported NREL's development of BLAST-V 'the Battery Lifetime Analysis and Simulation Tool for Vehicles' to create a tool capable of accounting for all of these factors. The authors present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. The primary challenge for BEV batteries operated in the presence of fast charging is controlling maximum battery temperature, which can be achieved with active battery cooling systems.

  7. Charge regulation circuit

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA)

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply in the range of 0.01%. The charge regulation circuit is utilized in a preferred embodiment in providing regulated voltage for controlling the operation of a laser.

  8. Workplace Charging Challenge: Promote Charging at Work | Department of

    Energy Savers [EERE]

    Energy Plug-in Electric Vehicles & Batteries » Workplace Charging Challenge » Workplace Charging Challenge: Promote Charging at Work Workplace Charging Challenge: Promote Charging at Work Workplace Charging Challenge: Promote Charging at Work Employees with access to workplace charging are six times more likely to drive a plug-in electric vehicle (PEV) than the average worker. Promoting PEV charging at workplaces is one great way that states, cities and other organizations can

  9. Workplace Charging Challenge: Install and Manage PEV Charging at Work |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Install and Manage PEV Charging at Work Workplace Charging Challenge: Install and Manage PEV Charging at Work pev_workplace_charging_hosts_150x194.jpg To determine if workplace charging is right for your organization, use the employer resources to learn more about PEVs and charging stations. The PEV Handbook for Workplace Charging Hosts is particularly helpful for employers deciding if and how to install charging stations to ensure a successful workplace charging

  10. A Simple Index for Characterizing Charge Transport in Molecular...

    Office of Scientific and Technical Information (OSTI)

    solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, defects, charge transport, spin dynamics, membrane, materials...

  11. Workplace Charging Challenge: Higher Education PEV Charging Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge: Higher Education PEV Charging Webinar Workplace Charging Challenge: Higher Education PEV Charging Webinar Review the slides from our webinar which highlighted workplace ...

  12. DESIGN CONSIDERATIONS FOR LOW FIELD SHORT PHOTO-INJECTED RF ELECTRON GUN WITH HIGH CHARGE ELECTRON BUNCH.

    SciTech Connect (OSTI)

    CHANG,X.; BEN-ZVI,I.; KEWISCH,J.

    2004-06-21

    The RF field and space charge effect in a low field RF gun is given. The cell lengths are modified to have maximum accelerating efficiency. The modification introduces an extra RF field slice emittance. The phase space evolution of the following emittance compensation system is presented taking into account the chromatic effect. The emittance compensation mechanics for RF field and chromatic effect induced emittance is similar to that of compensating the space charge induced emittance. But the requirements are different to have best compensation for them. The beam waist is far in front of linac entrance to have best compensation for the RF field and chromatic effect induced emittance. For low field RF gun with high charge electron bunch this compensation is more important.

  13. Design Considerations For Low Field Short Photo-Injected RF Electron Gun With High Charge Electron Bunch

    SciTech Connect (OSTI)

    Chang Xiangyun; Ben-Zvi, Ilan; Kewisch, Joerg

    2004-12-07

    The RF field and space charge effect in a low field RF gun is given. The cell lengths are modified to have maximum accelerating efficiency. The modification introduces an extra RF field slice emittance. The phase space evolution of the following emittance compensation system is presented taking into account the chromatic effect. The emittance compensation mechanics for RF field and chromatic effect induced emittance is similar to that of compensating the space charge induced emittance. But the requirements are different to have best compensation for them. The beam waist is far in front of linac entrance to have best compensation for the RF field and chromatic effect induced emittance. For low field RF gun with high charge electron bunch this compensation is more important.

  14. Charge exchange system

    DOE Patents [OSTI]

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  15. Optimal Decentralized Protocol for Electric Vehicle Charging

    SciTech Connect (OSTI)

    Gan, LW; Topcu, U; Low, SH

    2013-05-01

    We propose a decentralized algorithm to optimally schedule electric vehicle (EV) charging. The algorithm exploits the elasticity of electric vehicle loads to fill the valleys in electric load profiles. We first formulate the EV charging scheduling problem as an optimal control problem, whose objective is to impose a generalized notion of valley-filling, and study properties of optimal charging profiles. We then give a decentralized algorithm to iteratively solve the optimal control problem. In each iteration, EVs update their charging profiles according to the control signal broadcast by the utility company, and the utility company alters the control signal to guide their updates. The algorithm converges to optimal charging profiles (that are as "flat" as they can possibly be) irrespective of the specifications (e.g., maximum charging rate and deadline) of EVs, even if EVs do not necessarily update their charging profiles in every iteration, and use potentially outdated control signal when they update. Moreover, the algorithm only requires each EV solving its local problem, hence its implementation requires low computation capability. We also extend the algorithm to track a given load profile and to real-time implementation.

  16. Thermite charge - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Trademark Office Marketing Summary: Linear Thermite Charge Abstract: The present invention provides for cutting operations using linear thermite charges; the charges cut one...

  17. Charge separation by photoexcitation in seimcrystalline polymeric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    semiconductors: An intrinsic or extrinsic mechanism? | MIT-Harvard Center for Excitonics Charge separation by photoexcitation in seimcrystalline polymeric semiconductors: An intrinsic or extrinsic mechanism? April 5, 2011 at 3pm/36-428 Carlos Silva University of Montreal CSilva abstract: Understanding charge generation by light absorption in polymeric semiconductors is of profound scientific importance due to the vigorous drive to develop organic solar cells. Confusion prevails with respect

  18. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  19. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  20. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  1. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  2. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  3. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    DOE Patents [OSTI]

    Logan, B. Grant

    1978-01-01

    Method and apparatus for cooling a plasma of warm charged species confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell, the cooling due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma.

  4. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1987-03-03

    This patent describes a flashlight employing a self-charging solar battery assembly comprising: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof, a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, the panel being mounted within the battery housing with the photo-voltaic cell means juxtapositioned to the transparent material of the battery housing such that solar rays may pass through the transparent material of the flashlight housing and the battery housing and excite the photo-voltaic cell means, a first means for connecting the positive terminal of the photo-voltaic cell means to the positive terminal of the battery cell means, and a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means.

  5. Automakers and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge Initiative Arguably the most important infrastructure strategy to accelerate adoption of PEVs. Why are we doing Workplace Charging? * PEV Market Growth - Critical now...

  6. Automakers and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... - Charger usage peak is during shift-change when both shifts are charging More ... Happy to share this and make it available to anyone. EV Barriers and Opportunities * ...

  7. System Benefits Charge

    Broader source: Energy.gov [DOE]

    New Hampshire's 1996 electric-industry restructuring legislation authorized the creation of a system benefits charge (SBC) to support energy efficiency programs and energy assistance programs for...

  8. Method for charging a hydrogen getter

    DOE Patents [OSTI]

    Tracy, C.E.; Keyser, M.A.; Benson, D.K.

    1998-09-15

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10{sup {minus}4} torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures. 9 figs.

  9. Method for charging a hydrogen getter

    DOE Patents [OSTI]

    Tracy, C. Edwin; Keyser, Matthew A.; Benson, David K.

    1998-01-01

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10.sup.-4 torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures.

  10. Spatially separated charge densities of electrons and holes in organic-inorganic halide perovskites

    SciTech Connect (OSTI)

    Li, Dan; Liang, Chunjun E-mail: zhqhe@bjtu.edu.cn; Zhang, Huimin; You, Fangtian; He, Zhiqun E-mail: zhqhe@bjtu.edu.cn; Zhang, Chunxiu

    2015-02-21

    Solution-processable methylammonium lead trihalide perovskites exhibit remarkable high-absorption and low-loss properties for solar energy conversion. Calculation from density functional theory indicates the presence of non-equivalent halogen atoms in the unit cell because of the specific orientation of the organic cation. Considering the ?100? orientation as an example, I{sub 1}, one of the halogen atoms, differs from the other iodine atoms (I{sub 2} and I{sub 3}) in terms of its interaction with the organic cation. The valance-band-maximum (VBM) and conduction-band-minimum (CBM) states are derived mainly from 5p orbital of I{sub 1} atom and 6p orbital of Pb atom, respectively. The spatially separated charge densities of the electrons and holes justify the low recombination rate of the pure iodide perovskite. Chlorine substitution further strengthens the unique position of the I{sub 1} atom, leading to more localized charge density around the I{sub 1} atom and less charge density around the other atoms at the VBM state. The less overlap of charge densities between the VBM and CBM states explains the relatively lower carrier recombination rate of the iodine-chlorine mixed perovskite. Chlorine substitution significantly reduces the effective mass at a direction perpendicular to the Pb-Cl bond and organic axis, enhancing the carrier transport property of the mixed perovskite in this direction.

  11. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1986-01-07

    This self-charging solar battery consists of: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing (with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof), a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, and a diode means mounted in the battery housing and comprising an anode and a cathode. The solar battery also has: a first means for connecting the positive terminal of the photo-voltaic cell means to the anode and for connecting the cathode to the positive terminal of the battery cell means, a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means, and cap means for closing each end of the battery housing.

  12. Electron energy spectrum and maximum disruption angle under multi...

    Office of Scientific and Technical Information (OSTI)

    Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung Citation Details In-Document Search Title: Electron energy spectrum and maximum disruption ...

  13. Oxidation State Optimization for Maximum Efficiency of NOx Adsorber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Oxidation State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Presentation given at the 16th ...

  14. Beam charge and current neutralization of high-charge-state heavy ions

    SciTech Connect (OSTI)

    Logan, B.G.; Callahan, D.A.

    1997-10-29

    High-charge-state heavy-ions may reduce the accelerator voltage and cost of heavy-ion inertial fusion drivers, if ways can be found to neutralize the space charge of the highly charged beam ions as they are focused to a target in a fusion chamber. Using 2-D Particle-In- Cell simulations, we have evaluated the effectiveness of two different methods of beam neutralization: (1) by redistribution of beam charge in a larger diameter, preformed plasma in the chamber, and (2), by introducing a cold-electron-emitting source within the beam channel at the beam entrance into the chamber. We find the latter method to be much more effective for high-charge-state ions.

  15. Evaluating Electric Vehicle Charging Impacts and Customer Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors: Experiences from Six Smart Grid Investment Grant Projects (December 2014) Evaluating Electric Vehicle ...

  16. Trends in Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Donofrio Ford Motor Company Trends in Workplace Charging Est EV NA NA approx 21 70-100 Miles: What Types of Chargers are Being Used? Considerations for Campus Installations *...

  17. Societal Benefits Charge

    Broader source: Energy.gov [DOE]

    During 2011 and 2012 several minor changes were made to the originally enacted SBC law. In 2011 a section was added prohibiting gas utilities from imposing an SBC charge (or several other types o...

  18. Electrically charged targets

    DOE Patents [OSTI]

    Goodman, Ronald K.; Hunt, Angus L.

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  19. TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS

    SciTech Connect (OSTI)

    Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M

    2007-11-12

    Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.

  20. Nissan EV Workplace Charging Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nissan EV Workplace Charging Program Workplace Charging Value Creation Value Proposition Nissan Support For Employer For Employee For Employee * Unique employee benefit * ...

  1. Demand Charges | Open Energy Information

    Open Energy Info (EERE)

    Demand Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967" Feedback Contact needs updating Image needs...

  2. Workplace Charging Challenge Partner: Siemens | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siemens Workplace Charging Challenge Partner: Siemens Workplace Charging Challenge Partner: Siemens Joined the Challenge: January 2013 Headquarters: Washington, DC Charging ...

  3. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein

    2001-02-01

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  4. ChargePoint America | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt073_vss_gogineni_2012_o.pdf More Documents & Publications ChargePoint America Electric Drive Vehicle Infrastructure Deployment Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  5. Vehicle Technologies Office: Workplace Charging Challenge Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Challenge Progress Update 2014 - Employers Take Charge Vehicle Technologies Office: Workplace Charging Challenge Progress Update 2014 - Employers Take Charge In ...

  6. EV Everywhere: Workplace Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Charging EV Everywhere: Workplace Charging EV Everywhere: Workplace Charging Most plug-in electric vehicle (EV) owners charge their vehicles primarily at home, but ...

  7. Size and charge effects of dopant M on the unit-cell parameters of monoclinic zirconia solid solutions Zr{sub 0.98}M{sub 0.02}O{sub 2{minus}{delta}} (M = Ce, La, Nd, Sm, Y, Er, Yb, Sc, Mg, Ca)

    SciTech Connect (OSTI)

    Yashima, Masatomo; Kakihana, Masato; Yoshimura, Masahiro; Hirose, Teruo; Suzuki, Yasuo

    1997-01-01

    The crystal structure of monoclinic phase [P2{sub 1}/c, Z = 4] has been refined by the Rietveld analysis of X-ray powder diffraction data to study the size and charge effects of dopant M{sup n+} on the unit-cell parameters of monoclinic ZrO{sub 2}-2 mol% MO{sub n/2} solid solutions (n = 4 for M = Ce; n = 3 for M = La, Nd, Sm, Y, Er, Yb, Sc; and n = 2 for M = Mg and Ca). For trivalent dopant (n = 3), the unit-cell parameters a{sub m}, b{sub m}, c{sub m} and unit-cell volume increase and {beta}{sub m} decreases with an increase of dopant size. Unit-cell volume increases with increasing of dopant charge n.

  8. Pretreatment [{sup 18}F]-fluoro-2-deoxy-glucose Positron Emission Tomography Maximum Standardized Uptake Value as Predictor of Distant Metastasis in Early-Stage Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy: Rethinking the Role of Positron Emission Tomography in Personalizing Treatment Based on Risk Status

    SciTech Connect (OSTI)

    Nair, Vimoj J.; MacRae, Robert; Sirisegaram, Abby; Pantarotto, Jason R.

    2014-02-01

    Purpose: The aim of this study was to determine whether the preradiation maximum standardized uptake value (SUV{sub max}) of the primary tumor for [{sup 18}F]-fluoro-2-deoxy-glucose positron emission tomography (FDG-PET) has a prognostic significance in patients with Stage T1 or T2N0 non-small cell lung cancer (NSCLC) treated with curative radiation therapy, whether conventional or stereotactic body radiation therapy (SBRT). Methods and Materials: Between January 2007 and December 2011, a total of 163 patients (180 tumors) with medically inoperable histologically proven Stage T1 or T2N0 NSCLC and treated with radiation therapy (both conventional and SBRT) were entered in a research ethics board approved database. All patients received pretreatment FDG-PET / computed tomography (CT) at 1 institution with consistent acquisition technique. The medical records and radiologic images of these patients were analyzed. Results: The overall survival at 2 years and 3 years for the whole group was 76% and 67%, respectively. The mean and median SUV{sub max} were 8.1 and 7, respectively. Progression-free survival at 2 years with SUV{sub max} <7 was better than that of the patients with tumor SUV{sub max} ?7 (67% vs 51%; P=.0096). Tumors with SUV{sub max} ?7 were associated with a worse regional recurrence-free survival and distant metastasis-free survival. In the multivariate analysis, SUV{sub max} ?7 was an independent prognostic factor for distant metastasis-free survival. Conclusion: In early-stage NSCLC managed with radiation alone, patients with SUV{sub max} ?7 on FDG-PET / CT scan have poorer outcomes and high risk of progression, possibly because of aggressive biology. There is a potential role for adjuvant therapies for these high-risk patients with intent to improve outcomes.

  9. Property:Maximum Velocity(m/s) | Open Energy Information

    Open Energy Info (EERE)

    Velocity(ms) Jump to: navigation, search Property Name Maximum Velocity(ms) Property Type String Pages using the property "Maximum Velocity(ms)" Showing 25 pages using this...

  10. Property:Maximum Wave Length(m) | Open Energy Information

    Open Energy Info (EERE)

    Length(m) Jump to: navigation, search Property Name Maximum Wave Length(m) Property Type String Pages using the property "Maximum Wave Length(m)" Showing 18 pages using this...

  11. Property:Maximum Wave Height(m) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Property Name Maximum Wave Height(m) Property Type String Pages using the property "Maximum Wave Height(m)" Showing 25 pages using this property....

  12. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AERMOD-PRIME | Department of Energy PRIME Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Compliance based on highest, second-highest, short-term, and highest annual concentrations. PDF icon Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME

  13. Visualization of Charge Distribution in a Lithium Battery Electrode

    SciTech Connect (OSTI)

    Liu, Jun; Kunz, Martin; Chen, Kai; Tamura, Nobumichi; Richardson, Thomas J.

    2010-07-02

    We describe a method for direct determination and visualization of the distribution of charge in a composite electrode. Using synchrotron X-ray microdiffraction, state-of-charge profiles in-plane and normal to the current collector were measured. In electrodes charged at high rate, the signatures of nonuniform current distribution were evident. The portion of a prismatic cell electrode closest to the current collector tab had the highest state of charge due to electronic resistance in the composite electrode and supporting foil. In a coin cell electrode, the active material at the electrode surface was more fully charged than that close to the current collector because the limiting factor in this case is ion conduction in the electrolyte contained within the porous electrode.

  14. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W. Henry

    1999-01-01

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.

  15. Bipolar charging of dust particles under ultraviolet radiation

    SciTech Connect (OSTI)

    Filippov, A. V. Babichev, V. N.; Fortov, V. E.; Gavrikov, A. V.; Pal', A. F.; Petrov, O. F.; Starostin, A. N.; Sarkarov, N. E.

    2011-05-15

    The photoemission charging of dust particles under ultraviolet radiation from a xenon lamp has been investigated. The velocities of yttrium dust particles with a work function of 3.3 eV and their charges have been determined experimentally; the latter are about 400-500 and about 100 elementary charges per micron of radius for the positively and negatively charged fractions, respectively. The dust particle charging and the dust cloud evolution in a photoemission cell after exposure to an ultraviolet radiation source under the applied voltage have been simulated numerically. The photoemission charging of dust particles has been calculated on the basis of nonlocal and local charging models. Only unipolar particle charging is shown to take place in a system of polydisperse dust particles with the same photoemission efficiency. It has been established that bipolar charging is possible in the case of monodisperse particles with different quantum efficiencies. Polydispersity in this case facilitates the appearance of oppositely charged particles in a photoemission plasma.

  16. Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement

    Broader source: Energy.gov [DOE]

    Review the agreement proposed by one municipality to register PEV drivers and inform staff of charging policy.

  17. ChargePoint America

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Charge trapping by anionic quinones electrostatically bound to a highly charged cationic quinone-viologen polymer or a cationic poly(3-viologen-thiophene)

    SciTech Connect (OSTI)

    Hable, C.T.; Crooks, R.M.; Valentine, J.R.; Giasson, R.; Wrighton, M.S. )

    1993-06-03

    Charge associated with quinone reduction is trapped at low pH in systems composed of sulfonated anthraquinones electrostatically bound to a polymer derived from a monomer consisting of a quinone unit flanked by two viologen units. Each monomer repeat unit carries 6 equiv of positive charge which can be charge compensated by monosulfonated anthraquinone to yield a quinone-viologen ratio of nearly 7:2. At low pH, electrostatic binding is persistent, and the amount of trapped charge is 90% of the theoretical maximum. Some of the electrostatically bound quinine can be replaced with Fe(CN)[sub 6][sup 3[minus

  19. Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores

    SciTech Connect (OSTI)

    Qiao, Rui; Meunier, V.; Huang, Jingsong; Wu, Peng; Sumpter, Bobby G

    2012-01-01

    Using molecular dynamics simulations, we show that charge storage in subnanometer pores follows a distinct voltage-dependent behavior. Specifically, at lower voltages, charge storage is achieved by swapping co-ions in the pore with counterions in the bulk electrolyte. As voltage increases, further charge storage is due mainly to the removal of co-ions from the pore, leading to a capacitance increase. The capacitance eventually reaches a maximum when all co-ions are expelled from the pore. At even higher electrode voltages, additional charge storage is realized by counterion insertion into the pore, accompanied by a reduction of capacitance. The molecular mechanisms of these observations are elucidated and provide useful insight for optimizing energy storage based on supercapacitors.

  20. Black hole evaporation in a noncommutative charged Vaidya model

    SciTech Connect (OSTI)

    Sharif, M. Javed, W.

    2012-06-15

    We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstroem-like solution of this model, which leads to an exact (t - r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.

  1. Estimating the maximum potential revenue for grid connected electricity storage : arbitrage and regulation.

    SciTech Connect (OSTI)

    Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

    2012-12-01

    The valuation of an electricity storage device is based on the expected future cash ow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the maximum potential revenue benchmark. We conclude with a sensitivity analysis with respect to key parameters.

  2. Distributed charging of electrical assets

    DOE Patents [OSTI]

    Ghosh, Soumyadip; Phan, Dung; Sharma, Mayank; Wu, Chai Wah; Xiong, Jinjun

    2016-02-16

    The present disclosure relates generally to the field of distributed charging of electrical assets. In various examples, distributed charging of electrical assets may be implemented in the form of systems, methods and/or algorithms.

  3. Charging Your Time - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health & Safety Exposition Charging Your Time About Us Charging Your Time Committee Members Contact Us Electronic Registration Form Exhibitor and Vendor Information EXPO 2016 Sponsors EXPO Award Criteria How to Get to TRAC Special Events What is EXPO Why Should I Participate in EXPO Charging Your Time Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size How Do I Charge My Time Spent at EXPO? Each Hanford Prime Contractor may have different policies for attending

  4. Quantum Dot Solar Cells with Multiple Exciton Generation

    SciTech Connect (OSTI)

    Hanna, M. C.; Beard, M. C.; Johnson, J. C.; Murphy, J.; Ellingson, R. J.; Nozik, A. J.

    2005-11-01

    We have measured the quantum yield of the multiple exciton generation (MEG) process in quantum dots (QDs) of the lead-salt semiconductor family (PbSe, PbTe, and PbS) using fs pump-probe transient absorption measurements. Very high quantum yields (up to 300%) for charge carrier generation from MEG have been measured in all of the Pb-VI QDs. We have calculated the potential maximum performance of various MEG QD solar cells in the detailed balance limit. We examined a two-cell tandem PV device with singlet fission (SF), QD, and normal dye (N) absorbers in the nine possible series-connected combinations to compare the tandem combinations and identify the combinations with the highest theoretical efficiency. We also calculated the maximum efficiency of an idealized single-gap MEG QD solar cell with M multiplications and its performance under solar concentration.

  5. Engineer End Uses for Maximum Efficiency; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    End Uses for Maximum Efficiency Compressed air is one of the ... such as pneumatic tools, pneumatic controls, compressed air operated cylinders for machine actuation, ...

  6. Laser selection based on maximum permissible exposure limits...

    Office of Scientific and Technical Information (OSTI)

    Laser selection based on maximum permissible exposure limits for visible and middle-near infrared repetitively pulsed lasers. Citation Details In-Document Search Title: Laser ...

  7. Montana Total Maximum Daily Load Development Projects Wiki |...

    Open Energy Info (EERE)

    Wiki Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Total Maximum Daily Load Development Projects Wiki Abstract Provides information on...

  8. Engineer End Uses for Maximum Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Maximum Efficiency (August 2004) More Documents & Publications Maintaining System Air Quality Compressed Air Storage Strategies Alternative Strategies for Low Pressure End Uses

  9. High resolution printing of charge

    DOE Patents [OSTI]

    Rogers, John; Park, Jang-Ung

    2015-06-16

    Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.

  10. Workplace Charging Challenge Partner: Unum Group | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unum Group Workplace Charging Challenge Partner: Unum Group Workplace Charging Challenge Partner: Unum Group Joined the Challenge: July 2015 Headquarters: Chattanooga, TN Charging ...

  11. Workplace Charging Challenge Progress Update 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Progress Update 2014: Employers Take Charge Available at energy.goveerevehiclesev-everywhere-workplace-charging-challenge Workplace Charging Challenge 5 Cumulative...

  12. Workplace Charging Challenge Summit 2014: Agenda | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda Workplace Charging Challenge Summit 2014: Agenda Final Agenda for the 2014 Workplace Charging Challenge Summit PDF icon 2014 Workplace Charging Challenge Summit Agenda More ...

  13. Car Charging Group Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Car Charging Group, Inc. Place: Miami Beach, Florida Product: Miami Beach, USA based installer of plug-in vehicle charge equipment. References: Car Charging Group,...

  14. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  15. Charged pion production in $$\

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eberly, B.; et al.

    2015-11-23

    Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energymore » from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.« less

  16. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K.; Kintner-Meyer, Michael C. W.; Hammerstrom, Donald J.; Pratt, Richard M.

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  17. Workplace Charging - Attracting Tenants through Charged Up Facilities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy - Attracting Tenants through Charged Up Facilities Workplace Charging - Attracting Tenants through Charged Up Facilities Nationwide, leased facilities constitute almost half of workplaces. Competitive property managers are constantly looking for new, innovative offerings to attract tenants, including advanced building designs and services, mass transit accessibility, and energy-efficient certifications. As more plug-in electric vehicles (PEVs) hit the road across the

  18. Determination of time zero from a charged particle detector

    DOE Patents [OSTI]

    Green, Jesse Andrew

    2011-03-15

    A method, system and computer program is used to determine a linear track having a good fit to a most likely or expected path of charged particle passing through a charged particle detector having a plurality of drift cells. Hit signals from the charged particle detector are associated with a particular charged particle track. An initial estimate of time zero is made from these hit signals and linear tracks are then fit to drift radii for each particular time-zero estimate. The linear track having the best fit is then searched and selected and errors in fit and tracking parameters computed. The use of large and expensive fast detectors needed to time zero in the charged particle detectors can be avoided by adopting this method and system.

  19. Workplace Charging Challenge: Higher Education PEV Charging Webinar

    Broader source: Energy.gov [DOE]

    Review the slides from our webinar which highlighted workplace charging on higher education campuses across the country.

  20. Workplace Charging Challenge Progress Update 2014: Employers Take Charge

    Broader source: Energy.gov [DOE]

    The Workplace Charging Challenge Progress Update 2014 highlights the progress of the Challenge and its partners as determined through the annual partner survey.

  1. Workplace Charging Challenge: Install and Manage PEV Charging...

    Energy Savers [EERE]

    Plug-in Electric Vehicles & Batteries Workplace Charging Challenge Workplace ... Vehicles Home About the Vehicle Technologies Office Plug-in Electric Vehicles & Batteries ...

  2. Workplace Charging Challenge Partner: Sears Holdings Corporation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sears Holdings Corporation Workplace Charging Challenge Partner: Sears Holdings Corporation Workplace Charging Challenge Partner: Sears Holdings Corporation Joined the Challenge: ...

  3. Workplace Charging Challenge Partner: Melink Corporation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Melink Corporation Workplace Charging Challenge Partner: Melink Corporation Workplace Charging Challenge Partner: Melink Corporation Joined the Challenge: July 2014 Headquarters: ...

  4. Workplace Charging Challenge Partner: Vermont Energy Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vermont Energy Investment Corporation Workplace Charging Challenge Partner: Vermont Energy Investment Corporation Workplace Charging Challenge Partner: Vermont Energy Investment ...

  5. Workplace Charging Challenge Partner: Bosch Automotive Service...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive ...

  6. Workplace Charging Challenge Partner: Northwest Evaluation Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northwest Evaluation Association (NWEA) Workplace Charging Challenge Partner: Northwest Evaluation Association (NWEA) Workplace Charging Challenge Partner: Northwest Evaluation ...

  7. Workplace Charging Challenge Partner: University of California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa ...

  8. Explosive bulk charge

    DOE Patents [OSTI]

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  9. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W.H.

    1999-03-09

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector. 5 figs.

  10. High dynamic range charge measurements

    DOE Patents [OSTI]

    De Geronimo, Gianluigi

    2012-09-04

    A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.

  11. Low energy charged particles interacting with amorphous solid water layers

    SciTech Connect (OSTI)

    Horowitz, Yonatan; Asscher, Micha

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  12. Workplace Charging Toolkit: Example Events

    Broader source: Energy.gov [DOE]

    This section provides links to previous successful workplace charging events. These link directly to the organization’s website and contain event agendas and presentation materials.

  13. Workplace Charging Program and Initiatives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and charging infrastructure * Plug-in hybrid and battery electric vehicles * ... include trucks, buses, vans, passenger cars, low- speed vehicles and off-road ...

  14. Charge exchange molecular ion source

    DOE Patents [OSTI]

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  15. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AERMOD-PRIME, Units 3, 1, 2 SO2 Case | Department of Energy PRIME, Units 3, 1, 2 SO2 Case Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 3, 1, 2 SO2 Case Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 3, 1, 2 SO2 Case. Compliance based on highest, second-highest, short-term, and highest annual concentrations. PDF icon Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by

  16. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AERMOD-PRIME, Units 4, 1, 2 SO2 Case | Department of Energy 4, 1, 2 SO2 Case Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 4, 1, 2 SO2 Case Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 4, 1, 2 SO2 Case. Compliance based on highest, second-highest, short-term, and highest annual concentrations. PDF icon Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units

  17. Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AERMOD-PRIME, Units 5, 1, 2 SO2 Case | Department of Energy 5, 1, 2 SO2 Case Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 5, 1, 2 SO2 Case Docket No. EO-05-01: Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 5, 1, 2 SO2 Case. Compliance based on highest, second-highest, short-term, and highest annual concentrations. PDF icon Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units

  18. Maximum U.S. Active Seismic Crew Counts

    Gasoline and Diesel Fuel Update (EIA)

    differ for the month, the larger of the two values is shown here. Consequently, this table reflects the maximum number of crews at work at any time during the month. See...

  19. Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint

    SciTech Connect (OSTI)

    Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.

    2012-07-01

    This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

  20. Stratified charge internal combustion engine

    SciTech Connect (OSTI)

    Skopil, A.O.

    1991-01-01

    This patent describes an internal combustion engine. It comprises: a main cylinder, a main piston within the main cylinder, and means for delivering a combustible charge into the main cylinder; a smaller idle cylinder, and idle piston within the idle cylinder, and means for delivering a combustible charge into the idle cylinder; an ignition passageway leading from the idle cylinder to the main cylinder; and an ignition device within the ignition passageway operable to ignite a compressed charge discharged by the idle cylinder into the ignition passageway. The passageway being positioned to discharge the ignited compressed charge from the idle cylinder into the main cylinder to ignite the compressed charge within the main cylinder.

  1. "Table A52. Nonswitchable Minimum Requirements and Maximum...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which the" "switching status was not ascertained." " Notes: To obtain a RSE percentage for any table cell, multiply the cell's" "corresponding RSE column and RSE row factors. ...

  2. Table 10.1 Nonswitchable Minimum and Maximum Consumption,...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... is greater than 50 percent." " NANot available." " Notes: To obtain the RSE percentage for any table cell, multiply the cell's" "corresponding RSE column and RSE row factors. ...

  3. PV Charging System for Remote Area Operations

    SciTech Connect (OSTI)

    Ilsemann, Frederick; Thompson, Roger

    2008-07-31

    The objective of this project is to provide the public with a study of new as well existing technology to recharge batteries used in the field. A new product(s) will also be built based upon the information ascertained. American Electric Vehicles, Inc. (AEV) developed systems and methods suitable for charging state-of-the-art lithium-ion batteries in remote locations under both ideal and cloudy weather conditions. Conceptual designs are described for existing and next generation technology, particularly as regards solar cells, peak power trackers and batteries. Prototype system tests are reported.

  4. Charge-pump voltage converter

    DOE Patents [OSTI]

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  5. Workplace Charging Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation Workplace Charging Presentation Educate employers about plug-in electric vehicles and workplace charging using this sample presentation. The presentation covers the basics of PEVs and workplace charging as well as the benefit of supporting these sustainable transportation technologies at your organization. File Workplace Charging Ambassador Outreach Presentation Template More Documents & Publications Workplace Charging Toolkit: Workshop Outreach Presentation Template Workplace

  6. Workplace Charging Challenge Progress Update 2014: Employers Take Charge

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Progress Update 2014: Employers Take Charge U.S. Department of Energy's EV Everywhere Workplace 2 As the Workplace Charging Challenge nears its second anniversary, I am pleased to reflect on the continued rapid advancement of plug-in electric vehicles (PEVs), the exciting progress to date of our partners and ambassadors, and the phenomenal growth in the number of organizations that have joined the Challenge since its inception. What began as a commitment by 13 founding employer partners has now

  7. Electrokinetic concentration of charged molecules

    DOE Patents [OSTI]

    Singh, Anup K.; Neyer, David W.; Schoeniger, Joseph S.; Garguilo, Michael G.

    2002-01-01

    A method for separating and concentrating charged species from uncharged or neutral species regardless of size differential. The method uses reversible electric field induced retention of charged species, that can include molecules and molecular aggregates such as dimers, polymers, multimers, colloids, micelles, and liposomes, in volumes and on surfaces of porous materials. The retained charged species are subsequently quantitatively removed from the porous material by a pressure driven flow that passes through the retention volume and is independent of direction thus, a multi-directional flow field is not required. Uncharged species pass through the system unimpeded thus effecting a complete separation of charged and uncharged species and making possible concentration factors greater than 1000-fold.

  8. EV Charging Stations Take Off Across America

    Broader source: Energy.gov [DOE]

    Finding a charging station is getting more convenient than ever thanks to companies like ChargePoint, which recently finished installing 4,600 charging stations across the United States.

  9. AVTA: Bidirectional Fast Charging Report

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is an analysis of bi-directional fast charging, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  10. Vehicle Technologies Office: Workplace Charging Challenge Reports |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Office: Workplace Charging Challenge Reports Vehicle Technologies Office: Workplace Charging Challenge Reports The EV Everywhere Workplace Charging Challenge aims to have 500 U.S. employers offering workplace charging by 2018. These reports describe the progress made in the Challenge. In 2015, the Workplace Charging Challenge celebrated a major milestone - it reached the halfway point to its goal of 500 Challenge partners committed to installing workplace charging by

  11. Systems for detecting charged particles in object inspection

    DOE Patents [OSTI]

    Morris, Christopher L.; Makela, Mark F.

    2013-08-20

    Techniques, apparatus and systems for detecting particles such as muons. In one implementation, a monitoring system has a cosmic ray-produced charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray-produced muons, while also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  12. Sample Employee Survey for Workplace Charging Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We are considering the installation of charging infrastructure to assist employees who ... install electric vehicle charging stations at your employee parking garagelot? a. Yes b. ...

  13. Vehicle Technologies Office: Workplace Charging Challenge Reports...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of workplace charging as a sustainable business practice is growing across the country. ... an impact in their communities and helped identify best practices for workplace charging. ...

  14. Bringing Your Workplace Charging Story to Life

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    charging workshops * Other community events 10 Shannon.shea@ee.doe.gov http:energy.goveerevehiclesvehicle-technologies-office-ev-everywhere- workplace-charging-challenge 11...

  15. Workplace Charging Challenge Progress Update 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Update 2014 U.S. Department of Energy Sarah Olexsak Workplace Charging Challenge 2 Ambassador employer workshops & recognition events Workplace Charging Challenge 3 ...

  16. Workplace Charging Challenge Employer Workshop Best Practices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge Employer Workshop Best Practices Webinar Workplace Charging Challenge Employer ... and how they planned, organized, and administered successful workplace charging events. ...

  17. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging ...

  18. PosiCharge | Open Energy Information

    Open Energy Info (EERE)

    Product: PosiCharge brings to market a next-generation intelligent rapid charging battery system for industrial and other electric vehicle applications. References:...

  19. American Battery Charging Inc | Open Energy Information

    Open Energy Info (EERE)

    Battery Charging Inc Jump to: navigation, search Name: American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad...

  20. Premix charge, compression ignition combustion system optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

  1. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers A Spintronic Semiconductor with Selectable Charge Carriers Print Wednesday, 28 August 2013 00:00 Accentuating the ...

  2. ETA-UTP008 - Battery Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    conduct of charging the main propulsion batteries installed in an electric vehicle while ... The purpose of this procedure is to provide guidance on charging traction batteries during ...

  3. ETA-NTP008 Battery Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    conduct of charging the main propulsion batteries installed in an electric vehicle while ... provide guidance on charging traction batteries during the time the vehicle is being ...

  4. Workplace Charging Toolkit: Workshop Outreach Presentation Template...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach Presentation Template Workplace Charging Toolkit: Workshop Outreach Presentation Template Educate workshop attendees and employers about the benefits of workplace charging ...

  5. Workplace Charging Challenge Partner: Suffolk County Community...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The PEV charging stations may be used by faculty, staff, students, and the general public. Multimedia Watch a video by Workplace Charging Partner Suffolk County Community College. ...

  6. Workplace Charging Management Policies: Pricing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... RESOURCES Workplace Charging Management Webinar - Hear three employers discuss the ... Charging and Driving Behavior of Nissan Leaf Drivers in The EV Project with Access to ...

  7. Announcing $4 Million For Wireless EV Charging | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    charging technology to provide hands-free, automated charging of parked vehicles. Static wireless charging - or wireless charging when the vehicle is parked - can ensure easy...

  8. Maximum entanglement in squeezed boson and fermion states

    SciTech Connect (OSTI)

    Khanna, F. C.; Malbouisson, J. M. C.; Santana, A. E.; Santos, E. S.

    2007-08-15

    A class of squeezed boson and fermion states is studied with particular emphasis on the nature of entanglement. We first investigate the case of bosons, considering two-mode squeezed states. Then we construct the fermion version to show that such states are maximum entangled, for both bosons and fermions. To achieve these results, we demonstrate some relations involving squeezed boson states. The generalization to the case of fermions is made by using Grassmann variables.

  9. Maximum Entry and Mandatory Separation Ages for Certain Security Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-10-11

    The policy establishes the DOE policy on maximum entry and mandatory separation ages for primary or secondary positions covered under special statutory retirement provisions and for those employees whose primary duties are the protection of officials of the United States against threats to personal safety or the investigation, apprehension, and detention of individuals suspected or convicted of offenses against the criminal laws of the United States. Admin Chg 1, dated 12-1-11, supersedes DOE P 310.1.

  10. Maximum patch method for directional dark matter detection

    SciTech Connect (OSTI)

    Henderson, Shawn; Monroe, Jocelyn; Fisher, Peter [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Laboratory for Nuclear Science, MIT Kavli Institute for Astrophysics and Space Research, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2008-07-01

    Present and planned dark matter detection experiments search for WIMP-induced nuclear recoils in poorly known background conditions. In this environment, the maximum gap statistical method provides a way of setting more sensitive cross section upper limits by incorporating known signal information. We give a recipe for the numerical calculation of upper limits for planned directional dark matter detection experiments, that will measure both recoil energy and angle, based on the gaps between events in two-dimensional phase space.

  11. Alternator control for battery charging

    DOE Patents [OSTI]

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  12. Workplace Charging Challenge Partner: Northwest Evaluation Association

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (NWEA) | Department of Energy Northwest Evaluation Association (NWEA) Workplace Charging Challenge Partner: Northwest Evaluation Association (NWEA) Workplace Charging Challenge Partner: Northwest Evaluation Association (NWEA) Joined the Challenge: July 2015 Headquarters: Portland, OR Charging Location: Portland, OR Domestic Employees: 400 Northwest Evaluation Association (NWEA) encourages and supports many forms of public and personal sustainable transportation modes. Workplace charging is

  13. Workplace Charging Challenge Partner: University of Connecticut |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Connecticut Workplace Charging Challenge Partner: University of Connecticut Workplace Charging Challenge Partner: University of Connecticut Joined the Challenge: February 2015 Headquarters: Storrs, CT Charging Location: Storrs, CT Domestic Employees: 4,816 The University of Connecticut is committed to leadership in campus sustainability, including objective measurement and clear, concise communications about its progress. Joining the Workplace Charging Challenge commits

  14. Workplace Charging Challenge: Ambassadors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge: Ambassadors Workplace Charging Challenge: Ambassadors The Workplace Charging Challenge enlists stakeholder organizations as ambassadors to promote and support workplace charging. Ambassadors, including Clean Cities coalitions across the country, are organizations that are knowledgeable about local incentives, best practices for workplace charging, and other aspects of plug-in electric vehicle (PEV) community readiness. Challenge partners can benefit from working with ambassadors in

  15. Sample Employee Survey for Workplace Charging Planning

    Broader source: Energy.gov [DOE]

    Survey to determine employee interest in the benefits of employer installed charging infrastructure for their PEVs.

  16. Charge amplifier with bias compensation

    DOE Patents [OSTI]

    Johnson, Gary W.

    2002-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  17. Charged particle mobility refrigerant analyzer

    DOE Patents [OSTI]

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  18. Formation of H/sup -/ by charge transfer in alkaline-earth vapors

    SciTech Connect (OSTI)

    Schlachter, A.S.; Morgan, T.J.

    1983-10-01

    Progress on the study of H/sup -/ formation by charge transfer in alkaline-earth vapors is reported. The H/sup -/ equilibrium yield in strontium vapor reaches a maximum of 50% at an energy of 250 eV/amu, which is the highest H/sup -/ yield reported to date.

  19. Workplace Charging Challenge Partner: Shorepower Technologies | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Shorepower Technologies Workplace Charging Challenge Partner: Shorepower Technologies Workplace Charging Challenge Partner: Shorepower Technologies Joined the Challenge: May 2014 Headquarters: Hillsboro, OR Charging Location: Hillsboro, OR Domestic Employees: 12 Shorepower Technologies began offering workplace charging in 2011 and currently has three plug-in electric vehicles (PEVs) charging on a regular basis. Offering this amenity to employees and customers fits with Shorepower

  20. Workplace Charging Station Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station Basics Workplace Charging Station Basics As your organization moves forward with workplace charging, it is important to understand the fundamental differences and similarities between the types of charging stations, commonly referred to as electric vehicle supply equipment (EVSE) units. Charging stations deliver electrical energy from an electricity source to a plug-in electric vehicle (PEV) battery. There are three primary types of charging stations: AC Level 1, AC Level 2 and DC fast

  1. Workplace Charging Challenge: Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partners Workplace Charging Challenge: Partners Use the interactive map and list below to learn more about employers who have joined the U.S. Department of Energy's Workplace Charging Challenge. These employers are providing workplace charging for their employees who drive plug-in electric vehicles. Partners receive assistance from DOE to help them establish and expand workplace charging while ambassador organizations work to promote and support partners' workplace charging efforts across the

  2. Electrostatic wire stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  3. Stability of charged thin shells

    SciTech Connect (OSTI)

    Eiroa, Ernesto F.; Simeone, Claudio

    2011-05-15

    In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.

  4. Leading the Charge: Jim Manion

    Broader source: Energy.gov [DOE]

    Change doesn’t happen on its own. It’s led by dedicated and passionate people who are committed to empowering Indian Country to energize future generations. Leading the Charge is a regular Office of Indian Energy newsletter feature spotlighting the movers and shakers in energy development on tribal lands.

  5. Possible dynamical explanations for Paltridge's principle of maximum entropy production

    SciTech Connect (OSTI)

    Virgo, Nathaniel Ikegami, Takashi

    2014-12-05

    Throughout the history of non-equilibrium thermodynamics a number of theories have been proposed in which complex, far from equilibrium flow systems are hypothesised to reach a steady state that maximises some quantity. Perhaps the most celebrated is Paltridge's principle of maximum entropy production for the horizontal heat flux in Earth's atmosphere, for which there is some empirical support. There have been a number of attempts to derive such a principle from maximum entropy considerations. However, we currently lack a more mechanistic explanation of how any particular system might self-organise into a state that maximises some quantity. This is in contrast to equilibrium thermodynamics, in which models such as the Ising model have been a great help in understanding the relationship between the predictions of MaxEnt and the dynamics of physical systems. In this paper we show that, unlike in the equilibrium case, Paltridge-type maximisation in non-equilibrium systems cannot be achieved by a simple dynamical feedback mechanism. Nevertheless, we propose several possible mechanisms by which maximisation could occur. Showing that these occur in any real system is a task for future work. The possibilities presented here may not be the only ones. We hope that by presenting them we can provoke further discussion about the possible dynamical mechanisms behind extremum principles for non-equilibrium systems, and their relationship to predictions obtained through MaxEnt.

  6. AVTA: ChargePoint America Recovery Act Charging Infrastructure Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of data collected through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory.

  7. Overcharge tolerant high-temperature cells and batteries

    DOE Patents [OSTI]

    Redey, Laszlo; Nelson, Paul A.

    1989-01-01

    In a lithium-alloy/metal sulfide high temperature electrochemical cell, cell damage caused by overcharging is avoided by providing excess lithium in a high-lithium solubility phase alloy in the negative electrode and a specified ratio maximum of the capacity of a matrix metal of the negative electrode in the working phase to the capacity of a transition metal of the positive electrode. In charging the cell, or a plurality of such cells in series and/or parallel, chemical transfer of elemental lithium from the negative electrode through the electrolyte to the positive electrode provides sufficient lithium to support an increased self-charge current to avoid anodic dissolution of the positive electrode components above a critical potential. The lithium is subsequently electrochemically transferred back to the negative electrode in an electrochemical/chemical cycle which maintains high self-discharge currents on the order of 3-15 mA/cm.sup.2 in the cell to prevent overcharging.

  8. Workplace Charging: Safety and Management Policy For AC Level 1 Charging Receptacles

    Broader source: Energy.gov [DOE]

    Organizations offering plug-in electric vehicle (PEV) charging at AC Level 1 charging receptacles, or wall outlets, can ensure a safe and successful workplace charging experience by considering the...

  9. AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing Results |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Siemens-VersiCharge Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory. PDF icon Siemens-VersiCharge AC Level 2 - November

  10. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    001 The Atmospheric Radiation Measurement Program Infrastructure Review Report (AIR): ... DOESC-ARM-0001 The Atmospheric Radiation Measurement Program Infrastructure ...

  11. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Mixed-Phase Cloud Microphysics for Global Climate Models First Quarter 2007 ARM Metric Report January 2007 Xiaohong Liu and Steven J. Ghan Pacific Northwest National Laboratory Richland, Washington Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research X. Liu and S.J. Ghan, DOE/SC-ARM-0701 iii Summary Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The partitioning of condensed water into liquid

  12. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characters Characters Meet the characters of the game! Meet the characters of the game! Dr Raoul Fernandez's profile Helena Edison's profile Jerome Zabel's profile Nancy Sanders' profile Roc Bridges' profile

    ARM-0501 Marine Stratus Radiation, Aerosol, and Drizzle (MASRAD) Science Plan June 2005 M.A. Miller Brookhaven National Laboratory Earth System Science Division Upton, New York A. Bucholtz Naval Research Laboratory Monterey, California B. Albrecht and P. Kollias Rosenstiel School of

  13. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 DOE Review of the Atmospheric Radiation Measurement (ARM) Climate Research Facility February 3-4, 2005 American Geophysical Union, Washington, D.C. June 2005 W.R. Ferrell Climate Change Research Division Pacific Northwest National Laboratory Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DOE/SC-ARM-0502 CONTENTS 1. INTRODUCTION

  14. Enhanced ignition for I. C. engines with premixed charge

    SciTech Connect (OSTI)

    Dale, J.D.; Oppenheim, A.K.

    1980-10-01

    The development of lean charge, fast burn engines depends crucially on enhanced ignition, since one can obtain thereby proper means for increasing the rate of burn in mixtures characterized notoriously by low normal burning speeds. Enhanced ignition involves a wide dispersion of its sources so that combustion is carried out at as many sites throughout the charge as possible. Upon this premise, various ignition systems for I.C. engines, operating with premixed charge, are reviewed. The systems are grouped within the following categories: (1) high energy spark plugs; (2) plasma jet igniters; (3) photochemical, laser, and microwave ignition concepts; (4) torch cells; (5) divided chamber stratified charge engines; (6) flame jet igniters; (7) combustion jet ignition concepts; (8) EGR ignition system. The first three derive the power from electrical energy, the rest are powered by exothermic chemical reactions at a significantly lower, practically negligible, fuel consumption. The concept of staging the processes of initiation and propagation of combustion is emphasized. Relative positions of various ignition systems are expressed on the plane of relative energies and relative volumes. In principle, ignition systems for engines operating with premixed charge lie on the half-plane of relative energies below one, between 10/sup -5/ for standard spark plugs to 10/sup -1/ for divided chamber stratified charge engines, while their relative volumes extend from 0 for spark igniters to 0.2 for stratified charge engines. This suggests that proper compartmentization of the combustion process may lead to significant improvements in both pollution emissions from the cylinder and specific fuel consumption of I.C. engines.

  15. AVTA: ChargePoint AC Level 2 Charging System Testing Results | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy ChargePoint AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory. PDF icon ChargePoint AC Level 2 - February 2012 More Documents & Publications AVTA: EVSE Charging Protocol for On and Off-Peak Demand AVTA: 2012 Chevrolet Volt PHEV Downloadable Dynamometer Database Reports AVTA: ChargePoint America Recovery Act project map of charging units

  16. Maximum Likelihood Analysis of Low Energy CDMS II Germanium Data

    SciTech Connect (OSTI)

    Agnese, R.

    2015-03-30

    We report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search experiment using a maximum likelihood analysis. A background model is constructed using GEANT4 to simulate the surface-event background from Pb210decay-chain events, while using independent calibration data to model the gamma background. Fitting this background model to the data results in no statistically significant WIMP component. In addition, we also perform fits using an analytic ad hoc background model proposed by Collar and Fields, who claimed to find a large excess of signal-like events in our data. Finally, we confirm the strong preference for a signal hypothesis in their analysis under these assumptions, but excesses are observed in both single- and multiple-scatter events, which implies the signal is not caused by WIMPs, but rather reflects the inadequacy of their background model.

  17. Reduction in maximum time uncertainty of paired time signals

    DOE Patents [OSTI]

    Theodosiou, G.E.; Dawson, J.W.

    1981-02-11

    Reduction in the maximum time uncertainty (t/sub max/ - t/sub min/) of a series of paired time signals t/sub 1/ and t/sub 2/ varying between two input terminals and representative of a series of single events where t/sub 1/ less than or equal to t/sub 2/ and t/sub 1/ + t/sub 2/ equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t/sub min/) of the first signal t/sub 1/ closer to t/sub max/ and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20 to 800.

  18. Reduction in maximum time uncertainty of paired time signals

    DOE Patents [OSTI]

    Theodosiou, G.E.; Dawson, J.W.

    1983-10-04

    Reduction in the maximum time uncertainty (t[sub max]--t[sub min]) of a series of paired time signals t[sub 1] and t[sub 2] varying between two input terminals and representative of a series of single events where t[sub 1][<=]t[sub 2] and t[sub 1]+t[sub 2] equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t[sub min]) of the first signal t[sub 1] closer to t[sub max] and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20--800. 6 figs.

  19. Reduction in maximum time uncertainty of paired time signals

    DOE Patents [OSTI]

    Theodosiou, George E.; Dawson, John W.

    1983-01-01

    Reduction in the maximum time uncertainty (t.sub.max -t.sub.min) of a series of paired time signals t.sub.1 and t.sub.2 varying between two input terminals and representative of a series of single events where t.sub.1 .ltoreq.t.sub.2 and t.sub.1 +t.sub.2 equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t.sub.min) of the first signal t.sub.1 closer to t.sub.max and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20-800.

  20. Speech processing using conditional observable maximum likelihood continuity mapping

    DOE Patents [OSTI]

    Hogden, John; Nix, David

    2004-01-13

    A computer implemented method enables the recognition of speech and speech characteristics. Parameters are initialized of first probability density functions that map between the symbols in the vocabulary of one or more sequences of speech codes that represent speech sounds and a continuity map. Parameters are also initialized of second probability density functions that map between the elements in the vocabulary of one or more desired sequences of speech transcription symbols and the continuity map. The parameters of the probability density functions are then trained to maximize the probabilities of the desired sequences of speech-transcription symbols. A new sequence of speech codes is then input to the continuity map having the trained first and second probability function parameters. A smooth path is identified on the continuity map that has the maximum probability for the new sequence of speech codes. The probability of each speech transcription symbol for each input speech code can then be output.

  1. Free form hemispherical shaped charge

    DOE Patents [OSTI]

    Haselman, Jr., Leonard C.

    1996-01-01

    A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved.

  2. Free form hemispherical shaped charge

    DOE Patents [OSTI]

    Haselman, L.C. Jr.

    1996-06-04

    A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved. 8 figs.

  3. Property:Maximum Velocity with Constriction(m/s) | Open Energy...

    Open Energy Info (EERE)

    Velocity with Constriction(ms) Jump to: navigation, search Property Name Maximum Velocity with Constriction(ms) Property Type String Pages using the property "Maximum Velocity...

  4. Charging Graphene for Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  5. Methods for reduction of charging emissions

    SciTech Connect (OSTI)

    Schuecker, F.J.; Schulte, H.

    1997-12-31

    One of the most critical subjects in coking plants are charging emissions. The paper reviews the systems that have been used over the years to reduce charging emissions. The advantages and disadvantages are summarized for the following systems: Double collecting main with aspiration on both oven sides; Single collecting main with/without aspiration via standpipe, and extraction and cleaning of charging gas on charging car; Single collecting main with aspiration via standpipe and pretreatment of charging gas on the charging car as well as additional stationary exhaust and cleaning of charging gas; Single collecting main with aspiration via single standpipe; and Single collecting main with simultaneous aspiration via two standpipes and a U-tube connecting the oven chamber with the neighboring oven. The paper then briefly discusses prerequisites for reduction of charging emissions.

  6. Method for controlled hydrogen charging of metals

    DOE Patents [OSTI]

    Cheng, Bo-Ching (Fremont, CA); Adamson, Ronald B. (Fremont, CA)

    1984-05-29

    A method for controlling hydrogen charging of hydride forming metals through a window of a superimposed layer of a non-hydriding metal overlying the portion of the hydride forming metals to be charged.

  7. Workplace Charging Challenge Partner: Louisiana State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Louisiana State University Workplace Charging Challenge Partner: Louisiana State University Workplace Charging Challenge Partner: Louisiana State University Joined the Challenge: October 2015 Headquarters: Baton Rouge, LA Charging Location: Baton Rouge, LA Domestic Employees: 36,757 Louisiana State University (LSU) has 3 charging stations on campus, and 12 plug-in electric vehicles routinely used the stations in 2015. LSU Campus Sustainability aims to promote energy

  8. Workplace Charging Challenge Partner: Southern California Edison |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy California Edison Workplace Charging Challenge Partner: Southern California Edison Workplace Charging Challenge Partner: Southern California Edison Joined the Challenge: February 2013 Headquarters: Rosemead, CA Charging Location: Rosemead, CA Domestic Employees: 13,000 Southern California Edison (SCE) installed 49 Level 2 Electric Vehicle Service Equipment (EVSEs) at various locations between 2010-2012 for both employee and fleet charging. In early 2013, SCE began a

  9. Workplace Charging Challenge Partner: WESCO International, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy WESCO International, Inc. Workplace Charging Challenge Partner: WESCO International, Inc. Workplace Charging Challenge Partner: WESCO International, Inc. Joined the Challenge: April 2013 Headquarters: Pittsburgh, PA Charging Locations: Pittsburgh, PA; Phoenix, AZ Domestic Employees: 7,000 As a leading distributor of electrical products, WESCO provides plug-in electric vehicle (PEV) charging stations to its customers and employees. WESCO is committed to supporting

  10. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  11. Workplace Charging Challenge Partner: Argonne National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Argonne National Laboratory Workplace Charging Challenge Partner: Argonne National Laboratory Workplace Charging Challenge Partner: Argonne National Laboratory Joined the Challenge: June 2014 Headquarters: Argonne, IL Charging Location: Argonne, IL Domestic Employees: 3,400 Argonne National Laboratory is a multidisciplinary science and engineering research center where researchers work to address vital national challenges in clean energy, environment, technology and

  12. Charge Transport Anisotropy Due to Grain Boundaries in Directionally

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystallized Thin Films of Regio-Regular Poly(3-hexylthiophene) Charge Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regio-Regular Poly(3-hexylthiophene) Semicrystalline polymers, such as polythiophenes, hold much promise as active layers in printable electronic devices such as photovoltaic cells, sensors, and thin film transistors. As organic semiconductors approach commercialization, there is a need to better understand the relationship between

  13. Maximum Likelihood Analysis of Low Energy CDMS II Germanium Data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agnese, R.

    2015-03-30

    We report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search experiment using a maximum likelihood analysis. A background model is constructed using GEANT4 to simulate the surface-event background from Pb210decay-chain events, while using independent calibration data to model the gamma background. Fitting this background model to the data results in no statistically significant WIMP component. In addition, we also perform fits using an analytic ad hoc background model proposed by Collar and Fields, who claimed to find a large excess of signal-like events in ourmore » data. Finally, we confirm the strong preference for a signal hypothesis in their analysis under these assumptions, but excesses are observed in both single- and multiple-scatter events, which implies the signal is not caused by WIMPs, but rather reflects the inadequacy of their background model.« less

  14. Estimate of Maximum Underground Working Gas Storage Capacity in the United States

    Reports and Publications (EIA)

    2006-01-01

    This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacity seems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. The report presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.

  15. Boiler Maximum Achievable Control Technology (MACT) Technical Assistance- Fact Sheet, April 2015

    Broader source: Energy.gov [DOE]

    Fact sheet about the Boiler Maximum Achievable Control Technology (MACT) Technical Assistance Program

  16. EV Everywhere Workplace Charging Challenge: Benefits of Joining

    Broader source: Energy.gov [DOE]

    Workplace charging plays a critical role in America's plug-in electric vehicle (PEV) charging infrastructure. Installing workplace charging is a sign of corporate leadership, showing a willingness...

  17. Leading the Charge: Christine Klein

    Broader source: Energy.gov [DOE]

    Change doesn’t happen on its own. It’s led by dedicated and passionate people who are committed to empowering Indian Country to energize future generations. Leading the Charge is a regular Office of Indian Energy newsletter feature spotlighting the movers and shakers in energy development on tribal lands. In this issue, we talk to Christine Klein, an adopted Haida who is leading efforts to help Alaska Native villages address their energy challenges in her role as Vice President and Chief Operating Officer of the Calista Corporation.

  18. Vehicle Technologies Office: Workplace Charging Challenge Progress Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 - Employers Take Charge | Department of Energy Workplace Charging Challenge Progress Update 2014 - Employers Take Charge Vehicle Technologies Office: Workplace Charging Challenge Progress Update 2014 - Employers Take Charge In the 2014 Workplace Charging Challenge annual survey, partners shared for the first time how their efforts were making an impact in their communities and helped identify best practices for workplace charging. The Workplace Charging Challenge Progress Update

  19. Workplace Charging Challenge Partner: Washington Area New Automobile...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington Area New Automobile Dealers Association Workplace Charging Challenge Partner: Washington Area New Automobile Dealers Association Workplace Charging Challenge Partner: ...

  20. Workplace Charging Challenge Partner: Capital One Financial Corporatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capital One Financial Corporation Workplace Charging Challenge Partner: Capital One Financial Corporation Workplace Charging Challenge Partner: Capital One Financial Corporation ...

  1. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports The Vehicle Technologies Office's ...

  2. Charged rotating dilaton black strings

    SciTech Connect (OSTI)

    Dehghani, M.H.; Farhangkhah, N.

    2005-02-15

    In this paper we, first, present a class of charged rotating solutions in four-dimensional Einstein-Maxwell-dilaton gravity with zero and Liouville-type potentials. We find that these solutions can present a black hole/string with two regular horizons, an extreme black hole or a naked singularity provided the parameters of the solutions are chosen suitable. We also compute the conserved and thermodynamic quantities, and show that they satisfy the first law of thermodynamics. Second, we obtain the (n+1)-dimensional rotating solutions in Einstein-dilaton gravity with Liouville-type potential. We find that these solutions can present black branes, naked singularities or spacetimes with cosmological horizon if one chooses the parameters of the solutions correctly. Again, we find that the thermodynamic quantities of these solutions satisfy the first law of thermodynamics.

  3. System and method for collisional activation of charged particles

    DOE Patents [OSTI]

    Ibrahim, Yehia M; Belov, Mikhail E; Prior, David C

    2013-09-24

    A collision cell is disclosed that provides ion activation in various selective modes. Ion activation is performed inside selected segments of a segmented quadrupole that provides maximum optimum capture and collection of fragmentation products. The invention provides collisional cooling of precursor ions as well as product fragments and further allows effective transmission of ions through a high pressure interface into a coupled mass analysis instrument.

  4. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  5. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, Robert W.; Dobelbower, M. Christian

    1995-01-01

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  6. Non-intrusive refrigerant charge indicator

    DOE Patents [OSTI]

    Mei, Viung C.; Chen, Fang C.; Kweller, Esher

    2005-03-22

    A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.

  7. Review of Variable Generation Integration Charges

    SciTech Connect (OSTI)

    Porter, K.; Fink, S.; Buckley, M.; Rogers, J.; Hodge, B. M.

    2013-03-01

    The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviews the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.

  8. Particle accelerator employing transient space charge potentials

    DOE Patents [OSTI]

    Post, Richard F.

    1990-01-01

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.

  9. Workplace Charging Challenge Partner: Colorado State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Colorado State University Workplace Charging Challenge Partner: Colorado State University Workplace Charging Challenge Partner: Colorado State University Joined the Challenge: July 2015 Headquarters: Fort Collins, CO Charging Location: Fort Collins, CO Domestic Employees: 6,985 Colorado State University (CSU) has received the first Platinum rating and the highest score ever submitted in STARS, the American Association of Sustainability in Higher Education's

  10. Workplace Charging Challenge Partner: Eastern Washington University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Washington University Workplace Charging Challenge Partner: Eastern Washington University Workplace Charging Challenge Partner: Eastern Washington University Joined the Challenge: August 2015 Headquarters: Cheney, WA Charging Locations: N/A Domestic Employees: 1,989 In 2007 Eastern Washington University accepted the challenge to reduce campus emissions by becoming signatory to the American Colleges and University President's Climate Commitment (ACUPCC). Installing

  11. Workplace Charging Challenge Partner: Heartland Community College |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Heartland Community College Workplace Charging Challenge Partner: Heartland Community College Workplace Charging Challenge Partner: Heartland Community College Joined the Challenge: June 2014 Headquarters: Normal, IL Charging Location: Normal, IL Domestic Employees: 872 Heartland Community College values ethical decision-making and responsible use of environmental, financial, and community resources to promote a sustainable future. The college installed two Level 2

  12. Workplace Charging Challenge Partner: Portland General Electric |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Portland General Electric Workplace Charging Challenge Partner: Portland General Electric Workplace Charging Challenge Partner: Portland General Electric Joined the Challenge: October 2013 Headquarters: Portland, OR Charging Locations: Portland, OR; Gresham, OR; Beaverton, OR; Salem, OR; Tualatin, OR; Wilsonville, OR; Woodburn, OR; Oregon City, OR; Clackamas, OR Domestic Employees: 2,596 Since the late 1990s, Portland General Electric (PGE) has offered plug-in electric

  13. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers A Spintronic Semiconductor with Selectable Charge Carriers Print Wednesday, 28 August 2013 00:00 Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of

  14. Electrochemical cell

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1984-01-01

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5-1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1-10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  15. Tuning the Electron Gas at an Oxide Heterointerface via Free Surface Charges

    SciTech Connect (OSTI)

    Bell, Christopher

    2011-08-11

    Oxide heterointerfaces are emerging as one of the most exciting materials systems in condensed matter science. One remarkable example is the LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) interface, a model system in which a highly mobile electron gas forms between two band insulators, exhibiting two dimensional superconductivity and unusual magnetotransport properties. An ideal tool to tune such an electron gas is the electrostatic field effect. In principle, the electrostatic field can be generated by bound charges due to polarization (as in the normal and ferroelectric field effects) or by adding excess free charge. In previous studies, a large modulation of the carrier density and mobility of the LAO/STO interface has been achieved using the normal field effect. However, little attention has been paid to the field effect generated by free charges. This issue is scarcely addressed, even in conventional semiconductor devices, since the free charges are typically not stable. Here, we demonstrate an unambiguous tuning of the LAO/STO interface conductivity via free surface charges written using conducting atomic force microscopy (AFM). The modulation of the carrier density was found to be reversible, nonvolatile and surprisingly large, {approx}3 x 10{sup 13} cm{sup -2}, comparable to the maximum modulation by the normal field effect. Our finding reveal the efficiency of free charges in controlling the conductivity of this oxide interface, and suggest that this technique may be extended more generally to other oxide systems.

  16. First charge breeding results at CARIBU EBIS

    SciTech Connect (OSTI)

    Kondrashev, S. Barcikowski, A. Dickerson, C. Ostroumov, P. N. Sharamentov, S. Vondrasek, R.; Pikin, A.

    2015-01-09

    The Electron Beam Ion Source (EBIS) developed to breed CARIBU radioactive beams at ATLAS is currently in the off-line commissioning stage. The beam commissioning is being performed using a low emittance surface ionization source producing singly-charged cesium ions. The primary goal of the off-line commissioning is the demonstration of high-efficiency charge breeding in the pulsed injection mode. An overview of the final design of the CARIBU EBIS charge breeder, the off-line commissioning installation and the first results on charge breeding of stable cesium ions are presented and discussed.

  17. An optimization framework for workplace charging strategies ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    addressing different eligible levels of charging technology and employees' demographic distributions. The optimization model is to minimize the lifetime cost of...

  18. Workplace Charging Management Policies Webinar | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learn about effective workplace charging policies and procedures in the areas of administration, registration and liability, pricing and sharing. Read the text version. PDF icon ...

  19. Interested in joining the Workplace Charging Challenge?

    Broader source: Energy.gov [DOE]

    Thinking of joining the Workplace Charging Challenge? Tell us a little more about your organization, industry, and sustainability goals. After receiving your inquiry, one of our account managers...

  20. Workplace Charging Management Policies: Registration & Liability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organizations offering plug-in electric vehicle (PEV) charging at work can benefit from setting clear guidelines in the areas of administration, registration and liability, ...

  1. Workplace Charging Management Policies: Administration | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at work can benefit from setting clear guidelines in the areas of administration, ... Sample Workplace Charging Policy - Review the policy guidelines used by one Workplace ...

  2. ADA Requirements for Workplace Charging Installation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    individuals with disabilities. This Guidance provides best practices, special design guidelines and requirements for installing plug-in electric vehicle charging stations in ...

  3. Workplace Charging Toolkit: Workshop Best Practices

    Broader source: Energy.gov [DOE]

    These best practices for planning, organizing, and executing a successful and educational workplace charging event have been developed based on lessons learned from more than 20 employer workplace...

  4. Workplace Charging: Comparison of Sustainable Commuting Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging: Comparison of Sustainable Commuting Options November 18, 2014 Austin Brown National Renewable Energy Laboratory vehicles.energy.gov Relevance of ROI ...

  5. Smart Charge Adaptor | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart EV-charging infrastructure with applications world-wide across residential, workplace, and public locations. The SCA is EV and EVSE agnostic, so customers are not limited...

  6. Workplace Charging Toolkit: Workshop Agenda Template

    Broader source: Energy.gov [DOE]

    Develop a streamlined workshop with this half-day agenda focused on introductory-level PEV education and firsthand employer workplace charging experience.

  7. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA...

  8. EV Everywhere ? Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Consumer Acceptance and Charging Infrastructure Workshop David Sandalow Under Secretary of Energy (Acting) Assistant Secretary for Policy and International Affairs U.S....

  9. Consumer Acceptance and Public Policy Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    to enable widespread residentialMDU and workplace charging infrastructure * Include use case data collected to date and collect data not available * Work with DOT and planning...

  10. Distributed Solar Photovoltaics for Electric Vehicle Charging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear ...

  11. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles...

  12. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF ...

  13. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupereportoutcaci.pdf More Documents & Publications EV Everywhere...

  14. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupareportoutcaci.pdf More Documents & Publications EV Everywhere...

  15. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupdreportoutcaci.pdf More Documents & Publications EV Everywhere...

  16. 10Charge Inc | Open Energy Information

    Open Energy Info (EERE)

    Place: Dallas, Texas Zip: 75001 Product: Developer of patented technology for faster battery charging time which also extends battery lifetime. Coordinates: 32.778155,...

  17. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive ... Strategies for developing spintronic semiconductors have been based on surface doping or ...

  18. Workplace Charging Toolkit: Workshop Speaker Instruction Letter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Toolkit: Workshop Speaker Instruction Letter Template Inform speakers participating in the employer experience panel about their role in the event. File General ...

  19. Workplace Charging Toolkit: Workshop Speaker Outreach Letter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Invite employers in your community that already have charging to speak on an employer experience panel. File General Speaker Outreach Letter Template File Clean Cities Branded ...

  20. Workplace Charging Challenge Partner: American Lung Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Denver Clean Cities Website American Lung Association's Initiatives Workplace Charging News Announcement on Facebook from Oct 28: Last night, our Executive Director, Curt Huber, ...

  1. Permit for Charging Equipment Installation: Electric Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Where electric vehicle nonvented storage batteries are used or where the electric vehicle supply equipment is listed or labeled as suitable for charging electric vehicles indoors ...

  2. Workplace Charging Toolkit: Workshop Outreach Presentation Template

    Broader source: Energy.gov [DOE]

    Educate workshop attendees and employers about the benefits of workplace charging and the Challenge by selecting slides from this sample presentation.

  3. Workplace Charging Challenge Partners: EV Connect | Department...

    Office of Environmental Management (EM)

    Leveraging their own workplace solution at their offices, more than half of EV Connect's employees drive plug-in electric vehicles (PEVs). Fast Facts Joined the Workplace Charging ...

  4. Workplace Charging Management Policies: Sharing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... if users are experiencing issues with equipment or co-workers' behavior. RESOURCES Workplace Charging Management Webinar - Hear three employers discuss the policies that they ...

  5. 2011-07 "Maximum Utilization of WIPP by Increasing MDA G TRU...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 "Maximum Utilization of WIPP by Increasing MDA G TRU Shipments" 2011-07 "Maximum Utilization of WIPP by Increasing MDA G TRU Shipments" The intent of this recommendation is to ...

  6. Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy...

    Open Energy Info (EERE)

    at Wave Period(s) Jump to: navigation, search Property Name Maximum Wave Height(m) at Wave Period(s) Property Type String Pages using the property "Maximum Wave Height(m) at Wave...

  7. U.S. Lower 48 States Onshore Maximum Number of Active Crews Engaged...

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Lower 48 States Onshore Maximum Number of Active Crews Engaged in Seismic Surveying...

  8. U.S. Maximum Number of Active Crews Engaged in Seismic Surveying...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb...

  9. U.S. Lower 48 States Offshore Maximum Number of Active Crews...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Offshore Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Lower 48 States Offshore Maximum Number of Active Crews Engaged in Seismic Surveying...

  10. Ion extraction and charge exchange in laser isotope separation

    SciTech Connect (OSTI)

    Hostein, D.; Doneddu, F.

    1996-02-01

    In the atomic vapor laser isotope separation (AVLIS) process, a vapor is ionized by pulsed laser beams, and the ions are extracted by negatively biased collectors. The authors compute the unsteady dynamics of the photoplasma using a two-dimensional (2-D) particle-in-cell (PIC) code. Collisions between ions and neutral species are simulated by a Monte Carlo technique. The plasma dynamics is visualized by snapshots of particle positions showing the directions of their velocities. The three kinds of particles (electrons, photo-ions, and ions created by charge exchange) are marked by different colors. The graphic outputs illustrate the motion of the electrons toward the anodes, the vertical drift of the plasma, its erosion by the transient ion sheath, and nonselective ionization by charge exchange.

  11. Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DC fast charging...

  12. Electrochemical cell

    DOE Patents [OSTI]

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1996-01-01

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  13. Electrochemical cell

    DOE Patents [OSTI]

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1994-01-01

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  14. Electrochemical cell

    DOE Patents [OSTI]

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-02-01

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm[sup 3]; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6[times]10[sup 4] cm[sup 2]/g of Ni. 8 figures.

  15. Electrochemical cell

    DOE Patents [OSTI]

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1996-07-16

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm{sup 3}; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6{times}10{sup 4}cm{sup 2}/g of Ni. 6 figs.

  16. PRECISE CHARGE MEASUREMENT FOR LASER PLASMA ACCELERATORS

    SciTech Connect (OSTI)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; Tilborg, Jeroen van; Osterhoff, Jens; Donahue, Rich; Rodgers, David; Smith, Alan; Byrne, Warren; Leemans, Wim

    2011-07-19

    Cross-calibrations of charge diagnostics are conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). Employed diagnostics are a scintillating screen, activation based measurement, and integrating current transformer. The diagnostics agreed within {+-}8 %, showing that they can provide accurate charge measurements for LPAs provided they are used properly.

  17. Electronically shielded solid state charged particle detector

    DOE Patents [OSTI]

    Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  18. Electronically shielded solid state charged particle detector

    DOE Patents [OSTI]

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  19. Proximity charge sensing for semiconductor detectors

    DOE Patents [OSTI]

    Luke, Paul N; Tindall, Craig S; Amman, Mark

    2013-10-08

    A non-contact charge sensor includes a semiconductor detector having a first surface and an opposing second surface. The detector includes a high resistivity electrode layer on the first surface and a low resistivity electrode on the high resistivity electrode layer. A portion of the low resistivity first surface electrode is deleted to expose the high resistivity electrode layer in a portion of the area. A low resistivity electrode layer is disposed on the second surface of the semiconductor detector. A voltage applied between the first surface low resistivity electrode and the second surface low resistivity electrode causes a free charge to drift toward the first or second surface according to a polarity of the free charge and the voltage. A charge sensitive preamplifier coupled to a non-contact electrode disposed at a distance from the exposed high resistivity electrode layer outputs a signal in response to movement of free charge within the detector.

  20. Survey Says: Workplace Charging is Growing in Popularity and Impact |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Survey Says: Workplace Charging is Growing in Popularity and Impact Survey Says: Workplace Charging is Growing in Popularity and Impact November 18, 2014 - 3:54pm Addthis Survey Says: Workplace Charging is Growing in Popularity and Impact Survey Says: Workplace Charging is Growing in Popularity and Impact Survey Says: Workplace Charging is Growing in Popularity and Impact Survey Says: Workplace Charging is Growing in Popularity and Impact Sarah Olexsak Workplace Charging

  1. Workplace Charging Challenge: Signage Guidance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge: Signage Guidance Workplace Charging Challenge: Signage Guidance Electric vehicle parking signage. No parking except for electric vehicle charging. Signage for plug-in electric vehicle (PEV) charging stations is an important consideration at workplaces that offer access to charging. Appropriate charging station signage can: Help PEV drivers navigate to and identify charging stations Optimize use of EVSE by helping all drivers understand that parking spaces at charging stations are for

  2. Workplace Charging Equipment and Installation Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment and Installation Costs Workplace Charging Equipment and Installation Costs The costs for a workplace charging program include the costs for charging equipment, installation, maintenance, and supplying electricity. Charging equipment costs depend on the type of charging station you decide to install in your workplace. Level 1 ($300-$1,500) and Level 2 ($400-$6,500) charging stations are commonly installed at workplaces. Explore how charging station equipment features affect the total

  3. Optical state-of-charge monitor for batteries

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    1999-01-01

    A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cell or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

  4. Workplace Charging Toolkit: Outreach Letter Template | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach Letter Template Workplace Charging Toolkit: Outreach Letter Template Reach out to employers in your community who may be interested in offering workplace charging with this template. File General Outreach Letter Template File Clean Cities Branded Outreach Letter Template More Documents & Publications Workplace Charging Toolkit: Workshop Host Outreach Letter Template Workplace Charging Toolkit: Workshop Speaker Outreach Letter Template Workplace Charging Toolkit: Workshop Speaker

  5. Workplace Charging Toolkit: Workshop Invitation Template | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Invitation Template Workplace Charging Toolkit: Workshop Invitation Template Engage possible workplace charging event attendees with this template invitation. File General Workshop Invitation Template File Clean Cities Branded Workshop Invitation Template More Documents & Publications Workplace Charging Toolkit: Workshop Speaker Outreach Letter Template Workplace Charging Toolkit: Workshop Agenda Template Workplace Charging Toolkit: Workshop Host Outreach

  6. Self-Charging Battery Project

    SciTech Connect (OSTI)

    Yager, Eric

    2007-07-25

    In March 2006, a Cooperative Research and Development Agreement (CRADA) was formed between Fauton Tech, Inc. and INL to develop a prototype for a commercial application that incorporates some INL-developed Intellectual Properties (IP). This report presents the results of the work performed at INL during Phase 1. The objective of Phase 1 was to construct a prototype battery in a D cell form factor, determine optimized internal components for a baseline configuration using a standard coil design, perform a series of tests on the baseline configuration, and document the test results in a logbook.

  7. ION SOURCE WITH SPACE CHARGE NEUTRALIZATION

    DOE Patents [OSTI]

    Flowers, J.W.; Luce, J.S.; Stirling, W.L.

    1963-01-22

    This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)

  8. Multi-cylinder axial stratified charging studied

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    Charge stratification can be obtained inside a noncylindrical combustion chamber of a fuel injected multi-cylinder engine by properly timing the injection event, directing the fuel spray into the inlet port, and imparting swirl to the inlet charge. A production 1.8-liter engine modified to operate as an axially stratified-charge engine showed 50% improvement in combustion stability, 3.5% lower fuel consumption, five research octane number lower octane requirement, and increased tolerance to dilute mixtures when compared with an unmodified engine.

  9. Charge Transport and Glassy Dynamics in Ionic Liquids

    SciTech Connect (OSTI)

    Sangoro, Joshua R; Kremer, Friedrich

    2012-01-01

    Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on EinsteinSmoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.

  10. Electron energy spectrum and maximum disruption angle under multi-photon

    Office of Scientific and Technical Information (OSTI)

    beamstrahlung (Conference) | SciTech Connect Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung Citation Details In-Document Search Title: Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung The final electron energy spectrum under multi-photon beamstrahlung process is derived analytically in the classical and the intermediate regimes. The maximum disruption angle from the low energy tail of the spectrum is also

  11. Workplace Charging Challenge Progress Update 2014: Employers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Workplace Charging Challenge partner employees are 20x more likely to drive a PEV than the average worker. 1 in 73 partners' employees drive a PEV, while the national average is 1 ...

  12. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes ... The ultimate goal of spintronics is to utilize electron spin-in addition to charge-for the ...

  13. EV Everywhere: Vehicle Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In addition to the three types above, wireless charging uses an electro-magnetic field to transfer electricity to an EV without a cord. The Department of Energy is supporting ...

  14. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spin-up and spin-down states as well as both positive and negative charge carriers. Strategies for developing spintronic semiconductors have been based on surface doping or...

  15. EV Everywhere - Charge to Breakout Sessions

    Broader source: Energy.gov (indexed) [DOE]

    Name or Ancillary Text eere.energy.gov EV Everywhere Charge to Breakout Sessions Steven Boyd Department of Energy Energy Efficiency & Renewable Energy steven.boyd@doe.gov July 24,...

  16. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The STXM capabilities at ALS Beamline 5.3.2 and 11.0.2 allow researchers to not only map the particles' charges in freeze frame, but also enable in situ tracking during the...

  17. Charging Up in King County, Washington

    Broader source: Energy.gov [DOE]

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a...

  18. High temperature charge amplifier for geothermal applications

    DOE Patents [OSTI]

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  19. Charging Up in King County, Washington

    ScienceCinema (OSTI)

    Constantine, Dow; Oliver, LeAnn; Inslee, Jay; Sahandy, Sheida; Posthuma, Ron; Morrison, David;

    2013-05-29

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a low-income senior housing development.

  20. Help Your Employer Install Electric Vehicle Charging

    Broader source: Energy.gov [DOE]

    Educate your employer about the benefits of installing plug-in electric vehicle (PEV) workplace charging. Use the resources below and the Plug-in Electric Vehicle (PEV) Handbook for Workplace...

  1. Orlando Plugs into Electric Vehicle Charging Stations

    Broader source: Energy.gov [DOE]

    Imagine spending the day at a theme park in Orlando. After hours of rides, games and fun, you head back to your rental car, which is plugged in at an electric vehicle (EV) charging station in the parking lot.

  2. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Leviton AC Level 2 - February 2012 Schneider Electric AC Level 2 - November 2012 Siemens-VersiCharge AC Level 2 - November 2012 SPX AC Level 2 - February 2012 Voltec AC Level ...

  3. Alaska Maximum Number of Active Crews Engaged in Three-Dimensional...

    Gasoline and Diesel Fuel Update (EIA)

    Three-Dimensional Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Three-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar...

  4. Maximum allowable hydraulic ram force for heel jet removal Tank 241-C-106

    SciTech Connect (OSTI)

    PAULSEN, S.S.

    2003-01-10

    This document contains an evaluation of the maximum force that can be used to actuate the hydraulic ram assembly without causing permanent damage to the riser or pit.

  5. EV Everywhere: Charging on the Road | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find EV Models Saving Money Vehicle Charging EV Benefits EV Stories EV Basics Most ... Most public charging uses Level 2 or DC fast-charge electric vehicle supply equipment ...

  6. Workplace Charging Challenge Summit 2014: Session 1, Track A

    Broader source: Energy.gov [DOE]

    “Promoting your workplace charging program”:  A robust workplace charging program doesn't conclude once the charging stations are in the ground. Many partners are working to promote PEV deployment...

  7. Workplace Charging Challenge Partner: Baxter International Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Baxter International Inc. Workplace Charging Challenge Partner: Baxter International Inc. Workplace Charging Challenge Partner: Baxter International Inc. Baxter International Inc. is committed to advancing sustainability in its workplaces and local communities. The company has a legacy of sustainable development grounded in responsible business practices to create lasting social, environmental and economic value. At its Illinois locations, Baxter has installed four duel

  8. Workplace Charging Challenge Partner: Kankakee Community College |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Kankakee Community College Workplace Charging Challenge Partner: Kankakee Community College Workplace Charging Challenge Partner: Kankakee Community College In 2007, Kankakee Community College (KCC) set a goal to make sustainability a locally and regionally recognized feature of the college. This same year, they also signed the American College and University Presidents' Climate Commitment and the Illinois Sustainable Campus Compact, and hired a Dean for Environmental

  9. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  10. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  11. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  12. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  13. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  14. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  15. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  16. Method for forming electrically charged laser targets

    DOE Patents [OSTI]

    Goodman, Ronald K.; Hunt, Angus L.

    1979-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  17. Workplace Charging Challenge MidProgram Review Webinar | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy MidProgram Review Webinar Workplace Charging Challenge MidProgram Review Webinar Read the text version. More Documents & Publications Workplace Charging Management Policies Webinar Workplace Charging Management Policies Webinar Workplace Charging Plug-In Electric Vehicle Ride and Drive Webinar Ride and Drive Webinar Workplace Charging Challenge Employer Workshop Best Practices Webinar Workplace Charging Challenge Employer Workshop Best Practices Webinar

  18. Workplace Charging Challenge Partner: Telefonix, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Telefonix, Inc. Workplace Charging Challenge Partner: Telefonix, Inc. Workplace Charging Challenge Partner: Telefonix, Inc. Joined the Challenge: October 2014 Headquarters: Waukegan, IL Charging Location: Waukegan, IL Domestic Employees: 94 As an ISO 1400 certified manufacturer of plug-in electric vehicle (PEV) charging stations, workplace charging is a part of the Telefonix company ethos. Telefonix currently has two PEV charging stations installed, which support the three PEVs

  19. Alternative Fuels Data Center: Electric Vehicle Charging Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Stations on Digg Find More places to

  20. Alternative Fuels Data Center: EV Charging Stations Spread Through Philly

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    EV Charging Stations Spread Through Philly to someone by E-mail Share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Facebook Tweet about Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Twitter Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Google Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Delicious Rank Alternative Fuels Data Center: EV Charging Stations

  1. Energy Jobs: Electric Vehicle Charging Station Installer | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Electric Vehicle Charging Station Installer Energy Jobs: Electric Vehicle Charging Station Installer October 28, 2014 - 3:23pm Addthis As the demand for electric vehicles goes up, charging stations become more prevalent -- here an electric vehicle owner uses a local charging station. | Photo Courtesy of the Energy Department. As the demand for electric vehicles goes up, charging stations become more prevalent -- here an electric vehicle owner uses a local charging station. | Photo

  2. Platinum-Loading Reduction in PEM Fuel Cells - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the hydrogen atom, which enables the membrane within a PEM (proton exchange membrane) fuel cell to generate a charge, and thus generate clean, direct current electricity. In PEM...

  3. Charging Infrastructure for Electric Vehicles (Smart Grid Project...

    Open Energy Info (EERE)

    level and remote onoff functionality. A onestopshop charging offer was tested on the market and further developed within the project. An internal development plan for charging...

  4. Workplace Charging Challenge Partner: Hannah Solar, LLC | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Challenge Partner: Hannah Solar, LLC Joined the Challenge: June 2014 Headquarters: Atlanta, GA Charging Location: Atlanta, GA Domestic Employees: 25 Hannah Solar ...

  5. Workplace Charging Challenge Partner: Georgia Institute of Technology...

    Energy Savers [EERE]

    Workplace Charging Challenge Partner: Georgia Institute of Technology Joined the Challenge: February 2014 Headquarters: Atlanta, GA Charging Location: Atlanta, GA Domestic ...

  6. Centrality evolution of the charged-particle pseudorapidity density...

    Office of Scientific and Technical Information (OSTI)

    Centrality evolution of the charged-particle pseudorapidity density over a broad ... Citation Details In-Document Search Title: Centrality evolution of the charged-particle ...

  7. Dual initiation strip charge apparatus and methods for making...

    Office of Scientific and Technical Information (OSTI)

    A Dual Initiation Strip Charge (DISC) apparatus is initiated by a single initiation source and detonates a strip of explosive charge at two separate contacts. The reflection of ...

  8. Space Charge Correction on Emittance Measurement of Low Energy...

    Office of Scientific and Technical Information (OSTI)

    of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the...

  9. Transverse Mode Coupling Instability with Space Charge (Journal...

    Office of Scientific and Technical Information (OSTI)

    Transverse Mode Coupling Instability with Space Charge Citation Details In-Document Search Title: Transverse Mode Coupling Instability with Space Charge Transverse mode coupling ...

  10. Transverse Mode Coupling Instability with Space Charge (Journal...

    Office of Scientific and Technical Information (OSTI)

    Transverse Mode Coupling Instability with Space Charge Citation Details In-Document Search Title: Transverse Mode Coupling Instability with Space Charge You are accessing a ...

  11. Experimental evidence of space charge driven resonances in high...

    Office of Scientific and Technical Information (OSTI)

    Experimental evidence of space charge driven resonances in high intensity linear accelerators Citation Details In-Document Search Title: Experimental evidence of space charge ...

  12. Technology available for license: Charging of liquid energy storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charged liquid can be used in flow batteries for transportation and stationary energy-storage applications. Radiolysis charging can be conducted on aqueous and non-aqueous battery ...

  13. EV Everywhere Consumer/Charging Workshop: Target-Setting Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior EV Everywhere ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior Presentation ...

  14. Workplace Charging Challenge Mid-Program Review: Employees Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of workplace charging as a sustainable business practice is growing across the country. ... at educating employers about the benefits of workplace charging in their communities. ...

  15. Workplace Charging Challenge Mid-Program Review: Promising Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    workplace charging as a sustainable business practice is growing across the United States. ... Challenge partners are leading charging infrastructure deployment in their communities and ...

  16. Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities...

    Office of Scientific and Technical Information (OSTI)

    Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities and Diagnostic Necessities Citation Details In-Document Search Title: Highly Charged Ions in Magnetic Fusion ...

  17. EV Everywhere Workplace Charging Challenge | Department of Energy

    Energy Savers [EERE]

    Plug-in Electric Vehicles & Batteries EV Everywhere Workplace Charging Challenge EV Everywhere Workplace Charging Challenge Join the...

  18. Workplace Charging Challenge Partner: CFV Solar Test Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CFV Solar Test Laboratory, Inc. Workplace Charging Challenge Partner: CFV Solar Test Laboratory, Inc. Workplace Charging Challenge Partner: CFV Solar Test Laboratory, Inc. Joined ...

  19. DC Fast Charging at the Workplace | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DC Fast Charging at the Workplace DC Fast Charging at the Workplace Most employers offering plug-in electric vehicle (PEV) charging install Level 1 or Level 2 charging stations, but there are some cases where employers may want to consider installing DCFC. Level 1 and Level 2 charging can meet the needs of most employees that are parked during an average workday. During one hour of charging, Level 1 charging can replenish 2 to 5 miles of range and Level 2 charging can add about 10-20 miles of

  20. Vehicle Technologies Office: EV Everywhere Workplace Charging Challenge

    Broader source: Energy.gov [DOE]

    The EV Everywhere Workplace Charging Challenge page has moved to http://energy.gov/eere/vehicles/ev-everywhere-workplace-charging-challenge.

  1. Workplace Charging Toolkit: Workshop Host Outreach Letter Template...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Host Outreach Letter Template Workplace Charging Toolkit: Workshop Host Outreach Letter Template Approach employers in your community that already have workplace charging to serve ...

  2. CBEI: Virtual Refrigerant Charge Sensing and Load Metering -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue ...

  3. John Papanikolas: Visualizing Charge Carrier Motion in Nanowires...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John Papanikolas: Visualizing Charge Carrier Motion in Nanowires Using Femtosecond Pump-Pr... Visualizing Charge Carrier Motion in Nanowires Using Femtosecond Pump-Probe Microscopy ...

  4. Vehicle Technologies Office Merit Review 2014: Wireless Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon vss103jones 2014o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Wireless Charging of Electric Vehicles Wireless Charging Wireless ...

  5. Charged Particle Optics in Circular Higgs Factory (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Charged Particle Optics in Circular Higgs Factory Citation Details In-Document Search Title: Charged Particle Optics in Circular Higgs Factory You are accessing a ...

  6. Charge flow model for atomic ordering in nonisovalent alloys...

    Office of Scientific and Technical Information (OSTI)

    Charge flow model for atomic ordering in nonisovalent alloys Title: Charge flow model for atomic ordering in nonisovalent alloys Authors: Wang, Shuzhi ; Wang, Lin-Wang Publication ...

  7. Working with DOE to Promote your Workplace Charging Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge Partner profile and partner map 2 Workplace Charging Challenge DOE social media opportunities 3 Workplace Charging Challenge Sample shot Group photo of all ...

  8. A Generalized Boltzmann Fokker-Planck Method for Coupled Charged...

    Office of Scientific and Technical Information (OSTI)

    A Generalized Boltzmann Fokker-Planck Method for Coupled Charged Particle Transport ... prohibitive for routine calculation of charged particle interaction phenomena. ...

  9. Workplace Charging Challenge Partner: Intertek Center for Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    By offering workplace charging, Intertek CECET hopes to incentivize employee PEV purchase and increase employee PEV knowledge. Multimedia Watch a video by Workplace Charging ...

  10. ADA Requirements for Workplace Charging Installation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon ADA Requirements for Workplace Charging Installation More Documents & Publications Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Workplace Charging Presentation Request for Proposal Guidance

  11. Fact #920: April 11, 2016 Electric Charging Stations are the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 920: April 11, 2016 Electric Charging Stations are the Fastest Growing Type of Alternative Fueling Station - Dataset Excel file and dataset for Electric Charging Stations are ...

  12. Intrinsic charge and spin conductivities of doped graphene in...

    Office of Scientific and Technical Information (OSTI)

    Intrinsic charge and spin conductivities of doped graphene in the Fermi-liquid regime ... Title: Intrinsic charge and spin conductivities of doped graphene in the Fermi-liquid ...

  13. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Broader source: Energy.gov (indexed) [DOE]

    describes DC fast charging's effects on plug-in electric vehicle batteries. This research was conducted by Idaho National Laboratory. PDF icon DC Fast Charge Effects on Battery ...

  14. Long-lived charge carrier generation in ordered films of a covalent perylenediimide–diketopyrrolopyrrole–perylenediimide molecule

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hartnett, Patrick E.; Dyar, Scott M.; Margulies, Eric A.; Shoer, Leah E.; Cook, Andrew W.; Eaton, Samuel W.; Marks, Tobin J.; Wasielewski, Michael R.

    2015-07-31

    The photophysics of a covalently linked perylenediimide–diketopyrrolopyrrole–perylenediimide acceptor–donor–acceptor molecule (PDI–DPP–PDI, 1) were investigated and found to be markedly different in solution versus in unannealed and solvent annealed films. Photoexcitation of 1 in toluene results in quantitative charge separation in τ = 3.1 ± 0.2 ps, with charge recombination in τ = 340 ± 10 ps, while in unannealed/disordered films of 1, charge separation occurs in τ < 250 fs, while charge recombination displays a multiexponential decay in ~6 ns. The absence of long-lived, charge separation in the disordered film suggests that few free charge carriers are generated. In contrast, uponmore » CH₂Cl₂ vapor annealing films of 1, grazing-incidence X-ray scattering shows that the molecules form a more ordered structure. Photoexcitation of the ordered films results in initial formation of a spin-correlated radical ion pair (electron–hole pair) as indicated by magnetic field effects on the formation of free charge carriers which live for ~4 μs. This result has significant implications for the design of organic solar cells based on covalent donor–acceptor systems and shows that long-lived, charge-separated states can be achieved by controlling intramolecular charge separation dynamics in well-ordered systems.« less

  15. Long-lived charge carrier generation in ordered films of a covalent perylenediimide–diketopyrrolopyrrole–perylenediimide molecule

    SciTech Connect (OSTI)

    Hartnett, Patrick E.; Dyar, Scott M.; Margulies, Eric A.; Shoer, Leah E.; Cook, Andrew W.; Eaton, Samuel W.; Marks, Tobin J.; Wasielewski, Michael R.

    2015-07-31

    The photophysics of a covalently linked perylenediimide–diketopyrrolopyrrole–perylenediimide acceptor–donor–acceptor molecule (PDI–DPP–PDI, 1) were investigated and found to be markedly different in solution versus in unannealed and solvent annealed films. Photoexcitation of 1 in toluene results in quantitative charge separation in τ = 3.1 ± 0.2 ps, with charge recombination in τ = 340 ± 10 ps, while in unannealed/disordered films of 1, charge separation occurs in τ < 250 fs, while charge recombination displays a multiexponential decay in ~6 ns. The absence of long-lived, charge separation in the disordered film suggests that few free charge carriers are generated. In contrast, upon CH₂Cl₂ vapor annealing films of 1, grazing-incidence X-ray scattering shows that the molecules form a more ordered structure. Photoexcitation of the ordered films results in initial formation of a spin-correlated radical ion pair (electron–hole pair) as indicated by magnetic field effects on the formation of free charge carriers which live for ~4 μs. This result has significant implications for the design of organic solar cells based on covalent donor–acceptor systems and shows that long-lived, charge-separated states can be achieved by controlling intramolecular charge separation dynamics in well-ordered systems.

  16. Where do Nissan Leaf drivers in The EV Project charge when they have the opportunity to charge at work?

    SciTech Connect (OSTI)

    John Smart; Don Scoffield

    2014-03-01

    This paper invesigates where Nissan Leaf drivers in the EV Project charge when they have the opportunity to charge at work. Do they charge at work, home, or some other location?

  17. Where do Chevrolet Volt drivers in The EV Project charge when they have the opportunity to charge at work?

    SciTech Connect (OSTI)

    John Smart; Don Scoffield

    2014-03-01

    This paper investigates where Chevy Volt drivers in the EV Project charge when they have the opportunity to charge at work. Do they charge at home, work, or some other location.

  18. Dust charging and charge fluctuations in a weakly collisional radio-frequency sheath at low pressure

    SciTech Connect (OSTI)

    Piel, Alexander Schmidt, Christian

    2015-05-15

    Models for the charging of dust particles in the bulk plasma and in the sheath region are discussed. A new model is proposed that describes collision-enhanced ion currents in the sheath. The collisions result in a substantial reduction of the negative charge of the dust. Experimental data for the dust charge in the sheath can be described by this model when a Bi-Maxwellian electron distribution is taken into account. Expressions for the dust charging rate for all considered models are presented and their influence on the rise of the kinetic dust temperature is discussed.

  19. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E Breakout Report

    Broader source: Energy.gov [DOE]

    Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

  20. Charge trapping of Ge-nanocrystals embedded in TaZrO{sub x} dielectric films

    SciTech Connect (OSTI)

    Lehninger, D. Seidel, P.; Geyer, M.; Schneider, F.; Heitmann, J.; Klemm, V.; Rafaja, D.; Borany, J. von

    2015-01-12

    Ge-nanocrystals (NCs) were synthesized in amorphous TaZrO{sub x} by thermal annealing of co-sputtered Ge-TaZrO{sub x} layers. Formation of spherical shaped Ge-NCs with small variation of size, areal density, and depth distribution was confirmed by high-resolution transmission electron microscopy. The charge storage characteristics of the Ge-NCs were investigated by capacitance-voltage and constant-capacity measurements using metal-insulator-semiconductor structures. Samples with Ge-NCs exhibit a maximum memory window of 5 V by sweeping the bias voltage from −7 V to 7 V and back. Below this maximum, the width of the memory window can be controlled by the bias voltage. The fitted slope of the memory window versus bias voltage characteristics is very close to 1 for samples with one layer Ge-NCs. A second layer Ge-NCs does not result in a second flat stair in the memory window characteristics. Constant-capacity measurements indicate charge storage in trapping centers at the interfaces between the Ge-NCs and the surrounding materials (amorphous matrix/tunneling oxide). Charge loss occurs by thermal detrapping and subsequent band-to-band tunneling. Reference samples without Ge-NCs do not show any memory window.

  1. Ion charge state fluctuations in vacuum arcs

    SciTech Connect (OSTI)

    Anders, Andre; Fukuda, Kentaro; Yushkov, Georgy Yu

    2004-12-14

    Ion charge state distributions of cathodic vacuum arcs have been investigated using a modified time-of-flight method. Experiments have been done in double gate and burst gate mode, allowing us to study both systematic and stochastic changes of ion charge state distributions with a time resolution down to 100 ns. In the double gate method, two ion charge spectra are recorded with a well-defined time between measurements. The elements Mg, Bi, and Cu were selected for tests, representing metals of very different properties. For all elements it was found that large stochastic changes occur even at the limit of resolution. This is in agreement with fast changing arc properties observed elsewhere. Correlation of results for short times between measurements was found but it is argued that this is due to velocity mixing rather than due to cathode processes. The burst mode of time-of-flight measurements revealed the systematic time evolution of ion charge states within a single arc discharge, as opposed to previous measurements that relied on data averaged over many pulses. The technique shows the decay of the mean ion charge state as well as the level of material-dependent fluctuations.

  2. Photovoltaic battery charging experience in the Philippines

    SciTech Connect (OSTI)

    Navarro, S.T. Jr.

    1997-12-01

    With the turn of the century, people in remote areas still live without electricity. Conventional electrification will hardly reach the remaining 50% of the population of the Philippines in remote areas. With photovoltaic technology, the delivery of electricity to remote areas can be sustainable. Malalison island was chosen as a project site for electrification using photovoltaic technology. With the fragile balance of ecology and seasonal income in this island, the PV electrification proved to be a better option than conventional fossil based electrification. The Solar Battery Charging Station (SBCS) was used to suit the economic and geographical condition of the island. Results showed that the system can charge as many as three batteries in a day for an average fee of $0.54 per battery. Charging is measured by an ampere-hour counter to determine the exact amount of charge the battery received. The system was highly accepted by the local residents and the demand easily outgrew the system within four months. A technical, economic and social evaluation was done. A recovery period of seven years and five months is expected when competed with the conventional battery charging in the mainland. The technical, economic, institutional and social risks faced by the project were analyzed. Statistics showed that there is a potential of 920,000 households that can benefit from PV electrification in the Philippines. The data and experiences gained in this study are valuable in designing SBCS for remote unelectrified communities in the Philippines and other developing countries.

  3. Driving and Charging Behavior of Nissan Leafs in The EV Project with Access to Workplace Charging

    SciTech Connect (OSTI)

    Don Scoffield; Shawn Salisbury; John Smart

    2014-11-01

    This paper documents findings from analysis of data collected from Nissan Leafs enrolled in The EV Project who parked and charged at workplaces with EV charging equipment. It will be published as a white paper on INL's website, accessible by the general public.

  4. Highly charged ion secondary ion mass spectroscopy

    DOE Patents [OSTI]

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  5. Workplace Charging Toolkit: Workshop Host Outreach Letter Template

    Broader source: Energy.gov [DOE]

    Approach employers in your community that already have workplace charging to serve as a workshop host.

  6. Workplace Charging Challenge Partner: Eastern Connecticut State University

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Connecticut State University Workplace Charging Challenge Partner: Eastern Connecticut State University Workplace Charging Challenge Partner: Eastern Connecticut State University Joined the Challenge: September 2015 Headquarters: Willimantic, CT Charging Location: Willimantic, CT Domestic Employees: 980 As part of the University's commitment to Sustainability, Eastern Connecticut State University installed its first Level 2 charging station in December 2014, creating

  7. Workplace Charging Toolkit: Workshop Speaker Outreach Letter Template |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Outreach Letter Template Workplace Charging Toolkit: Workshop Speaker Outreach Letter Template Invite employers in your community that already have charging to speak on an employer experience panel. File General Speaker Outreach Letter Template File Clean Cities Branded Speaker Outreach Letter Template More Documents & Publications Workplace Charging Toolkit: Workshop Host Outreach Letter Template Workplace Charging Toolkit: Workshop Speaker Instruction

  8. Jefferson Lab electron beam charges up (Inside Business) | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsreleasesjefferson-lab-electron-beam-charges Submitted: Friday, October 24, 2008...

  9. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Broader source: Energy.gov (indexed) [DOE]

    Charging Infrastructure Group D Breakout Report | Department of Energy d_report_out_caci.pdf More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group C Breakout Report EV Everywhere Consumer Acceptance Workshop: Breakout Group B Report Out

  10. Extension of a Virtual Refrigerant Charge Sensor

    SciTech Connect (OSTI)

    Kim, Woohyun; Braun, J.

    2015-07-01

    The primary goal of the work described in this paper was to evaluate and extend a virtual refrigerant charge sensor (VRC) for determining refrigerant charge for equipment having variable-speed compressors and fans. To evaluate the accuracy of the VRC, data were first collected from previous laboratory tests for different systems and over a wide range of operating conditions. In addition, new laboratory tests were performed to consider conditions not available within the existing data set. The systems for the new laboratory tests were two residential ductless split heat pump systems that employ a variable-speed compressor and R-410a as the refrigerant. Based on the evaluations, the original virtual charge sensor (termed model I) was found to work well in estimating the refrigerant charge for systems with a variable-speed compressor under many operating conditions. However, for extreme test conditions such as low outdoor temperatures and low compressor speed, the VRC needed to be improved. To overcome the limitations, the model associated with the VRC sensor was modified to include a term involving the inlet quality to the evaporator estimated from the condenser outlet condition (termed model II). Both model I and II showed good performance in terms of predicting charge levels for systems with a constant speed compressor, but model II gave better performance for systems with a variable-speed compressor. However, when the superheat of the compressor was zero, neither model I nor II could accurately predict charge level. Therefore, a third approach (Model III) was developed that includes the discharge superheat of the compressor. This model improved performance for a laboratory-tested system that included a number of points with no superheat entering the compressor.

  11. Explosive shaped charge penetration into tuff rock

    SciTech Connect (OSTI)

    Vigil, M.G.

    1988-10-01

    Analysis and data for the use of Explosive Shaped Charges (ESC) to generate holes in tuff rock formation is presented. The ESCs evaluated include Conical Shaped Charges (CSC) and Explosive Formed Projectiles (EFP). The CSCs vary in size from 0.158 to 9.1 inches inside cone diameter. The EFPs were 5.0 inches in diameter. Data for projectile impact angles of 30 and 90 degrees are presented. Analytically predicted depth of penetration data generally compared favorably with experimental data. Predicted depth of penetration versus ESC standoff data and hole profile dimensions in tuff are also presented. 24 refs., 45 figs., 6 tabs.

  12. Pressure enhanced penetration with shaped charge perforators

    DOE Patents [OSTI]

    Glenn, Lewis A.

    2001-01-01

    A downhole tool, adapted to retain a shaped charge surrounded by a superatmospherically pressurized light gas, is employed in a method for perforating a casing and penetrating reservoir rock around a wellbore. Penetration of a shaped charge jet can be enhanced by at least 40% by imploding a liner in the high pressure, light gas atmosphere. The gas pressure helps confine the jet on the axis of penetration in the latter stages of formation. The light gas, such as helium or hydrogen, is employed to keep the gas density low enough so as not to inhibit liner collapse.

  13. Delayed charging. A means to improve two-stroke engine characteristics

    SciTech Connect (OSTI)

    Rochelle, P.H.C.

    1994-09-01

    We have developed and patented a new simple device which reduces the amount of short-circuited fresh charge in two-stroke cycle engines and produces stratified charging and combustion. The principle consists in scavenging the burnt gases with fresh air and delaying the introduction of the fresh charge in the cylinder. A numerical simulation showed a good promise of consumption and pollution improvement for this configuration. Then, preliminary bench tests have been carried out with a 50 cc production engine and the same modified engine including a delay-circuit. Due to delayed charging, brake specific fuel consumption shows a mean 20% reduction, down to a maximum of 25% comparing to production engine figures; unburnt hydrocarbons show a mean 35% reduction, down to more than 50%; carbon-monoxide production decreases to a mean 1% concentration; and torque increases at low r.p.m., but lowers at higher speeds of revolution due to the diminished permeability of this first prototype engine. 23 refs., 10 figs.

  14. Generalized charge-screening in relativistic ThomasFermi model

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M.

    2014-10-15

    In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, the variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, (N{sub s}?r{sub TF}{sup 3}/r{sub d}{sup 3} where r{sub TF} and r{sub d} are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact stellar objects.

  15. Model-Independent Characterization of Charge Diffusion in Thick Fully

    Office of Scientific and Technical Information (OSTI)

    Depleted CCDs (Journal Article) | SciTech Connect Model-Independent Characterization of Charge Diffusion in Thick Fully Depleted CCDs Citation Details In-Document Search Title: Model-Independent Characterization of Charge Diffusion in Thick Fully Depleted CCDs We present a new method to measure charge diffusion in charge-coupled devices (CCDs). The method is based on a statistical characterization of the shapes of charge clouds produced by low-energy X-rays using known properties of the

  16. Workplace Charging Challenge Mid-Program Review: Promising Progress from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Employers | Department of Energy Workplace Charging Challenge Mid-Program Review: Promising Progress from U.S. Employers Workplace Charging Challenge Mid-Program Review: Promising Progress from U.S. Employers December 1, 2015 - 9:56am Addthis Workplace Charging Challenge Mid-Program Review: Promising Progress from U.S. Employers Sarah Olexsak Workplace Charging Challenge Coordinator The EV Everywhere Workplace Charging Challenge is celebrating a major milestone - it's now halfway to its

  17. Workplace Charging Challenge Partner: AeroVironment, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy AeroVironment, Inc. Workplace Charging Challenge Partner: AeroVironment, Inc. Workplace Charging Challenge Partner: AeroVironment, Inc. Joined the Challenge: August 2014 Headquarters: Monrovia, CA Charging Locations: Monrovia, CA; Simi Valley, CA Domestic Employees: 625 AeroVironment, a developer and innovator of unmanned aircraft systems, EV charging solutions, and innovative technology systems, leads by example with workplace charging strategies. AeroVironment has about 20 electric

  18. Workplace Charging Challenge Partner: Alliant Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alliant Energy Workplace Charging Challenge Partner: Alliant Energy Workplace Charging Challenge Partner: Alliant Energy Joined the Challenge: March 2016 Headquarters: Madison, WI Charging Locations: Madison, WI Domestic Employees: 4,000 Alliant Energy is excited to offer electric vehicle charging at their office in Madison, WI. The charging stations are one component of an innovative energy education and research initiative that also includes a variety of solar components and battery energy

  19. Workplace Charging Challenge Partner: City of Sacramento | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sacramento Workplace Charging Challenge Partner: City of Sacramento Workplace Charging Challenge Partner: City of Sacramento Joined the Challenge: February 2013 Headquarters: Sacramento, CA Charging Location: Sacramento, CA Domestic Employees: 3,792 In 2012, Sacramento's City Council adopted a resolution to proceed with a contract to implement "Electric Vehicle Charging Stations in Various City Public Parking Garages." The City of Sacramento installed a total of 28 charging

  20. Workplace Charging Challenge Partner: Eli Lilly | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eli Lilly Workplace Charging Challenge Partner: Eli Lilly Workplace Charging Challenge Partner: Eli Lilly Joined the Challenge: January 2013 Headquarters: Indianapolis, IN Charging Location: Indianapolis, IN Domestic Employees: 17,000 In 2012, Lilly installed several workplace charging stations at its two main campuses in Indianapolis, Indiana. Employee engagement is important to the company and the demand for plug-in electric vehicle (PEV) charging is on the rise. Lilly continues to monitor

  1. Workplace Charging Challenge Partner: FCA US LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCA US LLC Workplace Charging Challenge Partner: FCA US LLC Workplace Charging Challenge Partner: FCA US LLC Joined the Challenge: January 2013 Headquarters: Auburn Hills, MI Charging Location: Auburn Hills, MI Domestic Employees: 44,000 FCA US LLC currently has six plug-in electric vehicle (PEV) charging stations available for employee use at its Auburn Hills headquarters. In support of the DOE's Workplace Charging Challenge, FCA US LLC will continue to evaluate existing and future workplace

  2. Workplace Charging Challenge Partner: JEA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JEA Workplace Charging Challenge Partner: JEA Workplace Charging Challenge Partner: JEA Joined the Challenge: February 2015 Headquarters: Jacksonville, FL Charging Location: Jacksonville, FL Domestic Employees: 1,600 By joining the Workplace Charging Challenge, JEA celebrates its community leadership role in the advancement of PEVs. JEA is actively engaged with the community to increase the awareness and education of the benefits of driving electric. Through the Workplace Charging Challenge, JEA

  3. Workplace Charging Challenge Partner: lynda.com | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lynda.com Workplace Charging Challenge Partner: lynda.com Workplace Charging Challenge Partner: lynda.com Joined the Challenge: March 2013 Headquarters: Carpinteria, CA Charging Locations: Carpinteria, CA; San Francisco, CA Domestic Employees: 350 lynda.com demonstrates an ongoing commitment to its employees and to sustainability through its participation in the U.S. Department of Energy's Workplace Charging Challenge. The company offers free, on-site plug-in electric vehicle (PEV) charging to

  4. Workplace Charging Toolkit: Press Release Template | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Press Release Template Workplace Charging Toolkit: Press Release Template Raise the profile of employers in the community who are offering workplace charging and encourage the adoption of workplace charging among other employers through this press release template. File General Press Release Template File Clean Cities Branded Press Release Template More Documents & Publications Workplace Charging Toolkit: Workshop Speaker Outreach Letter Template Workplace Charging Toolkit: Outreach Letter

  5. Workplace Charging at University Campuses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at University Campuses Workplace Charging at University Campuses College and universities across the nation are educating our future workforce and doubling as hubs for innovation and technology. Higher education campuses are among a growing number of organizations at the forefront of promoting plug-in electric vehicle (PEV) adoption and its associated charging infrastructure. The Workplace Charging Challenge's case study, Workplace Charging: Charging Up University Campuses, explores the

  6. Proton's Weak Charge Determined for First Time | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton's Weak Charge Determined for First Time Proton's Weak Charge Determined for First Time Q-weak at Jefferson Lab has measured the proton's weak charge Q-weak at Jefferson Lab has measured the proton's weak charge. NEWPORT NEWS, VA, Sept. 17, 2013 - Researchers have made the first experimental determination of the weak charge of the proton in research carried out at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab). The results, accepted for

  7. Observation of Ordered Structures in Counterion Layers near Wet Charged

    Office of Scientific and Technical Information (OSTI)

    Surfaces: A Potential Mechanism for Charge Inversion (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Observation of Ordered Structures in Counterion Layers near Wet Charged Surfaces: A Potential Mechanism for Charge Inversion Citation Details In-Document Search Title: Observation of Ordered Structures in Counterion Layers near Wet Charged Surfaces: A Potential Mechanism for Charge Inversion Authors: Miller, Mitchell ; Chu, Miaoqi ; Lin, Binhua ; Meron,

  8. Alternative Fuels Data Center: Electric Vehicle Charging Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Charging Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle

  9. Electrostatic wire for stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, Daniel S.; Caporaso, George J.; Briggs, Richard J.

    1985-01-01

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  10. Alaska Maximum Number of Active Crews Engaged in Two-Dimensional...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Two-Dimensional Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Two-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr...

  11. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Three-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in Three-Dimensional Seismic Surveying (Number of...

  12. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Four-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in Four-Dimensional Seismic Surveying (Number of...

  13. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Two-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in Two-Dimensional Seismic Surveying (Number of Elements)...

  14. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Two-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in Two-Dimensional Seismic Surveying (Number of Elements)...

  15. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Four-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in Four-Dimensional Seismic Surveying (Number of...

  16. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged...

    Gasoline and Diesel Fuel Update (EIA)

    Three-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in Three-Dimensional Seismic Surveying (Number of...

  17. Title 43 CFR 3206.12 What are the Minimum and Maximum Lease Sizes...

    Open Energy Info (EERE)

    .12 What are the Minimum and Maximum Lease Sizes? Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 43...

  18. Electron energy spectrum and maximum disruption angle under multi-photon

    Office of Scientific and Technical Information (OSTI)

    beamstrahlung (Conference) | SciTech Connect Conference: Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung Citation Details In-Document Search Title: Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI

  19. A Requirement for Significant Reduction in the Maximum BTU Input Rate of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers | Department of Energy A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers Comment that a requirement to reduce the BTU input rate of existing decorative

  20. Energy storage device with large charge separation

    DOE Patents [OSTI]

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  1. The PHEV Charging Infrastructure Planning (PCIP) Problem

    SciTech Connect (OSTI)

    Dashora, Yogesh [University of Texas, Austin; Barnes, J. Wesley [University of Texas, Austin; Pillai, Rekha S [ORNL; Combs, Todd E [ORNL; Hilliard, Michael R [ORNL; Chinthavali, Madhu Sudhan [ORNL

    2010-01-01

    Increasing debates over a gasoline independent future and the reduction of greenhouse gas (GHG) emissions has led to a surge in plug-in hybrid electric vehicles (PHEVs) being developed around the world. The majority of PHEV related research has been directed at improving engine and battery operations, studying future PHEV impacts on the grid, and projecting future PHEV charging infrastructure requirements. Due to the limited all-electric range of PHEVs, a daytime PHEV charging infrastructure will be required for most PHEV daily usage. In this paper, for the first time, we present a mixed integer mathematical programming model to solve the PHEV charging infrastructure planning (PCIP) problem for organizations with thousands of people working within a defined geographic location and parking lots well suited to charging station installations. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results, indicates the viability of the modeling approach and substantiates the importance of considering both employee convenience and appropriate grid connections in the PCIP problem.

  2. Three-dimensional charge coupled device

    DOE Patents [OSTI]

    Conder, Alan D.; Young, Bruce K. F.

    1999-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  3. Process for fabricating a charge coupled device

    DOE Patents [OSTI]

    Conder, Alan D.; Young, Bruce K. F.

    2002-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  4. Heterogeneity-corrected vs -uncorrected critical structure maximum point doses in breast balloon brachytherapy

    SciTech Connect (OSTI)

    Kim, Leonard; Narra, Venkat; Yue, Ning

    2013-07-01

    Recent studies have reported potentially clinically meaningful dose differences when heterogeneity correction is used in breast balloon brachytherapy. In this study, we report on the relationship between heterogeneity-corrected and -uncorrected doses for 2 commonly used plan evaluation metrics: maximum point dose to skin surface and maximum point dose to ribs. Maximum point doses to skin surface and ribs were calculated using TG-43 and Varian Acuros for 20 patients treated with breast balloon brachytherapy. The results were plotted against each other and fit with a zero-intercept line. Max skin dose (Acuros) = max skin dose (TG-43) ? 0.930 (R{sup 2} = 0.995). The average magnitude of difference from this relationship was 1.1% (max 2.8%). Max rib dose (Acuros) = max rib dose (TG-43) ? 0.955 (R{sup 2} = 0.9995). The average magnitude of difference from this relationship was 0.7% (max 1.6%). Heterogeneity-corrected maximum point doses to the skin surface and ribs were proportional to TG-43-calculated doses. The average deviation from proportionality was 1%. The proportional relationship suggests that a different metric other than maximum point dose may be needed to obtain a clinical advantage from heterogeneity correction. Alternatively, if maximum point dose continues to be used in recommended limits while incorporating heterogeneity correction, institutions without this capability may be able to accurately estimate these doses by use of a scaling factor.

  5. Theoretical performance of solar cell based on mini-bands quantum dots

    SciTech Connect (OSTI)

    Aly, Abou El-Maaty M. E-mail: ashraf.nasr@gmail.com; Nasr, A. E-mail: ashraf.nasr@gmail.com

    2014-03-21

    The tremendous amount of research in solar energy is directed toward intermediate band solar cell for its advantages compared with the conventional solar cell. The latter has lower efficiency because the photons have lower energy than the bandgap energy and cannot excite mobile carriers from the valence band to the conduction band. On the other hand, if mini intermediate band is introduced between the valence and conduction bands, then the smaller energy photons can be used to promote charge carriers transfer to the conduction band and thereby the total current increases while maintaining a large open circuit voltage. In this article, the influence of the new band on the power conversion efficiency for structure of quantum dots intermediate band solar cell is theoretically investigated and studied. The time-independent Schrdinger equation is used to determine the optimum width and location of the intermediate band. Accordingly, achievement of a maximum efficiency by changing the width of quantum dots and barrier distances is studied. Theoretical determination of the power conversion efficiency under the two different ranges of QD width is presented. From the obtained results, the maximum power conversion efficiency is about 70.42%. It is carried out for simple cubic quantum dot crystal under fully concentrated light. It is strongly dependent on the width of quantum dots and barrier distances.

  6. Solid state cloaking for electrical charge carrier mobility control

    DOE Patents [OSTI]

    Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang

    2015-07-07

    An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.

  7. Isotope separation by selective charge conversion and field deflection

    DOE Patents [OSTI]

    Hickman, Robert G.

    1978-01-01

    A deuterium-tritium separation system wherein a source beam comprised of positively ionized deuterium (D.sup.+) and tritium (T.sup.+) is converted at different charge-exchange cell sections of the system to negatively ionized deuterium (D.sup.-) and tritium (T.sup.-). First, energy is added to the beam to accelerate the D.sup.+ ions to the velocity that is optimum for conversion of the D.sup.+ ions to D.sup.- ions in a charge-exchange cell. The T.sup.+ ions are accelerated at the same time, but not to the optimum velocity since they are heavier than the D.sup.+ ions. The T.sup.+ ions are, therefore, not converted to T.sup.- ions when the D.sup.+ ions are converted to D.sup.- ions. This enables effective separation of the beam by deflection of the isotopes with an electrostatic field, the D.sup.- ions being deflected in one direction and the T.sup.+ ions being deflected in the opposite direction. Next, more energy is added to the deflected beam of T.sup.+ ions to bring the T.sup.+ ions to the optimum velocity for their conversion to T.sup.- ions. In a particular use of the invention, the beams of D.sup.- and T.sup.- ions are separately further accelerated and then converted to energetic neutral particles for injection as fuel into a thermonuclear reactor. The reactor exhaust of D.sup.+ and T.sup.+ and the D.sup.+ and T.sup.+ that was not converted in the respective sections is combined with the source beam and recycled through the system to increase the efficiency of the system.

  8. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum...

  9. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum...

  10. Method and apparatus for charged particle propagation

    DOE Patents [OSTI]

    Hershcovitch, A.

    1996-11-26

    A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator includes an evacuated chamber having a gun for discharging a beam of charged particles such as an electron beam or ion beam. The beam is discharged through a beam exit in the chamber into a higher pressure region. A plasma interface is disposed at the beam exit and includes a plasma channel for bounding a plasma maintainable between a cathode and an anode disposed at opposite ends thereof. The plasma channel is coaxially aligned with the beam exit for propagating the beam from the chamber, through the plasma, and into the higher pressure region. The plasma is effective for pumping down the beam exit for preventing pressure increase in the chamber and provides magnetic focusing of the beam discharged into the higher pressure region 24. 7 figs.

  11. State of charge indicators for a battery

    DOE Patents [OSTI]

    Rouhani, S. Zia

    1999-01-01

    The present invention relates to state of charge indicators for a battery. One aspect of the present invention utilizes expansion and contraction displacements of an electrode plate of a battery to gauge the state of charge in the battery. One embodiment of a battery of the present invention includes an anodic plate; a cathodic plate; an electrolyte in contact with the anodic and cathodic plates; plural terminals individually coupled with one of the anodic and cathodic plates; a separator intermediate the anodic and cathodic plates; an indicator configured to indicate an energy level of the battery responsive to movement of the separator; and a casing configured to house the anodic and cathodic plates, electrolyte, and separator.

  12. High gradient lens for charged particle beam

    DOE Patents [OSTI]

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  13. Anomalous Charge Transport in Disordered Organic Semiconductors

    SciTech Connect (OSTI)

    Muniandy, S. V.; Woon, K. L.; Choo, K. Y.

    2011-03-30

    Anomalous charge carrier transport in disordered organic semiconductors is studied using fractional differential equations. The connection between index of fractional derivative and dispersion exponent is examined from the perspective of fractional Fokker-Planck equation and its link to the continuous time random walk formalism. The fractional model is used to describe the bi-scaling power-laws observed in the time-of flight photo-current transient data for two different types of organic semiconductors.

  14. Verification of maximum impact force for interim storage cask for the Fast Flux Testing Facility

    SciTech Connect (OSTI)

    Chen, W.W.; Chang, S.J.

    1996-06-01

    The objective of this paper is to perform an impact analysis of the Interim Storage Cask (ISC) of the Fast Flux Test Facility (FFTF) for a 4-ft end drop. The ISC is a concrete cask used to store spent nuclear fuels. The analysis is to justify the impact force calculated by General Atomics (General Atomics, 1994) using the ILMOD computer code. ILMOD determines the maximum force developed by the concrete crushing which occurs when the drop energy has been absorbed. The maximum force, multiplied by the dynamic load factor (DLF), was used to determine the maximum g-level on the cask during a 4-ft end drop accident onto the heavily reinforced FFTF Reactor Service Building`s concrete surface. For the analysis, this surface was assumed to be unyielding and the cask absorbed all the drop energy. This conservative assumption simplified the modeling used to qualify the cask`s structural integrity for this accident condition.

  15. Direct charge radioisotope activation and power generation

    DOE Patents [OSTI]

    Lal, Amit; Li, Hui; Blanchard, James P.; Henderson, Douglass L.

    2002-01-01

    An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

  16. Circuits and methods for determination and control of signal transition rates in electrochemical cells

    DOE Patents [OSTI]

    Jamison, David Kay

    2016-04-12

    A charge/discharge input is for respectively supplying charge to, or drawing charge from, an electrochemical cell. A transition modifying circuit is coupled between the charge/discharge input and a terminal of the electrochemical cell and includes at least one of an inductive constituent, a capacitive constituent and a resistive constituent selected to generate an adjusted transition rate on the terminal sufficient to reduce degradation of a charge capacity characteristic of the electrochemical cell. A method determines characteristics of the transition modifying circuit. A degradation characteristic of the electrochemical cell is analyzed relative to a transition rate of the charge/discharge input applied to the electrochemical cell. An adjusted transition rate is determined for a signal to be applied to the electrochemical cell that will reduce the degradation characteristic. At least one of an inductance, a capacitance, and a resistance is selected for the transition modifying circuit to achieve the adjusted transition rate.

  17. Cosmological Behavior of a Parity and Charge-Parity Violating...

    Office of Scientific and Technical Information (OSTI)

    Cosmological Behavior of a Parity and Charge-Parity Violating Varying Alpha Theory Citation Details In-Document Search Title: Cosmological Behavior of a Parity and Charge-Parity ...

  18. Cosmological behavior of a parity and charge-parity violating...

    Office of Scientific and Technical Information (OSTI)

    Cosmological behavior of a parity and charge-parity violating varying alpha theory Citation Details In-Document Search Title: Cosmological behavior of a parity and charge-parity ...

  19. Evidence for charge Kondo effect in superconducting Tl-doped...

    Office of Scientific and Technical Information (OSTI)

    Evidence for charge Kondo effect in superconducting Tl-doped PbTe Citation Details In-Document Search Title: Evidence for charge Kondo effect in superconducting Tl-doped PbTe ...

  20. Charged Particle Optics in Circular Higgs Factory (Conference...

    Office of Scientific and Technical Information (OSTI)

    Charged Particle Optics in Circular Higgs Factory Citation Details In-Document Search Title: Charged Particle Optics in Circular Higgs Factory Similar to a super B-factory, a ...

  1. Workplace Charging Challenge Summit 2014: Session 2, Track A

    Broader source: Energy.gov [DOE]

    “Workplace charging at leased facilities”: Employers who lease properties face a unique set of challenges when installing charging stations. Since they do not own the facility, they may feel...

  2. Workplace Lessons Learned through the Nation's Largest PEV Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gov Workplace Lessons Learned through the Nation's Largest PEV Charging Projects DOE Workplace Charging Challenge Summit Alexandria, VA John Smart 11-18-2014 INLMIS-14-33698 Idaho ...

  3. Plug-In Electric Vehicle Fast Charge Station Operational Analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... assumptions that residential charging remains the dominant method will guide this study. ... when running low on energy. 2.1 Driving Profiles To simulate fast charge usage based on ...

  4. Electrostatic attraction of charged drops of water inside dropwise cluster

    SciTech Connect (OSTI)

    Shavlov, A. V.; Tyumen State Oil and Gas University, 38, Volodarskogo Str., Tyumen 625000 ; Dzhumandzhi, V. A.

    2013-08-15

    Based on the analytical solution of the Poisson-Boltzmann equation, we demonstrate that inside the electrically neutral system of charges an electrostatic attraction can occur between the like-charged particles, where charge Z ? 1 (in terms of elementary charge) and radius R > 0, whereas according to the literature, only repulsion is possible inside non-electrically neutral systems. We calculate the free energy of the charged particles of water inside a cluster and demonstrate that its minimum is when the interdroplet distance equals several Debye radii defined based on the light plasma component. The deepest minimum depth is in a cluster with close spatial packing of drops by type, in a face-centered cubic lattice, if almost all the electric charge of one sign is concentrated on the drops and that of the other sign is concentrated on the light compensation carriers of charge, where the charge moved by equilibrium carriers is rather small.

  5. Fact #909: January 25, 2016 Workplace Charging Accounts for About...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Although the Nissan Leaf is an all-electric vehicle while the Chevrolet Volt is a plug-in hybrid, both models had similar charging patterns with more than half of all charging ...

  6. Thirteen Major Companies Join Energy Department's Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge | Department of Energy Major Companies Join Energy Department's Workplace Charging Challenge Thirteen Major Companies Join Energy Department's Workplace Charging Challenge January 31, 2013 - 11:38am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Energy Secretary Steven Chu announced 13 major U.S. employers and eight stakeholder groups have joined the new Workplace Charging Challenge to help expand access to workplace charging stations for American workers across the

  7. Using Solar Power to Supplement Workplace Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Solar Power to Supplement Workplace Charging Using Solar Power to Supplement Workplace Charging Installing plug-in electric vehicle (PEV) charging stations at the workplace demonstrates a commitment towards a greener campus. With workplace charging, most employees plug in their PEVs during the day, when the sun is shining. Using solar power to supplement electricity from the grid can help employers further reduce their carbon footprint by off-setting the mid-day electricity consumption of

  8. Workplace Charging Challenge Overview Factsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Factsheet Workplace Charging Challenge Overview Factsheet Pioneering U.S. employers are accepting the EV Everywhere Workplace Charging Challenge, committing to install charging for plug-in electric vehicles (PEVs) at their worksites. By taking on this Challenge, they are helping build our nation's PEV charging infrastructure and offering a valuable employee benefit. A full transition to electric-drive vehicles (including all-electric vehicles, plug-in hybrid electric vehicles, and

  9. Workplace Charging Challenge Partner: ABB, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ABB, Inc. Workplace Charging Challenge Partner: ABB, Inc. Workplace Charging Challenge Partner: ABB, Inc. Joined the Challenge: June 2013 Headquarters: Cary, NC Charging Locations: New Berlin, WI; Raleigh, NC; Houston, TX Domestic Employees: 20,000 Operating in nearly 100 countries around the world, ABB is a global power and automation leader dedicated to energy efficiency solutions and smart grid technology. Multimedia Watch a video by Workplace Charging Partner ABB Inc. View more videos on the

  10. Workplace Charging Challenge Partner: Alameda County, CA | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alameda County, CA Workplace Charging Challenge Partner: Alameda County, CA Workplace Charging Challenge Partner: Alameda County, CA Joined the Challenge: January 2014 Headquarters: Oakland, CA Charging Locations: Alameda, CA; Hayward, CA; San Leandro, CA; Oakland, CA Domestic Employees: 8,000 Alameda County has fully embraced plug-in electric vehicles (PEVs) to help meet its Climate Action goals. In 2013, Alameda County installed its first 40 PEV charging stations, the majority of

  11. Workplace Charging Challenge Partner: Avista Utilities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Avista Utilities Workplace Charging Challenge Partner: Avista Utilities Workplace Charging Challenge Partner: Avista Utilities Joined the Challenge: November 2014 Headquarters: Spokane, WA Charging Location: Spokane, WA Domestic Employees: 1,643 Avista Utilities is committed to effective support for plug-in electric vehicle (PEV) adoption in its service territories. Avista installed two stations for a total of four charging outlets for public and employee use in the Spokane

  12. Workplace Charging Challenge Partner: Bentley Systems, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bentley Systems, Inc. Workplace Charging Challenge Partner: Bentley Systems, Inc. Workplace Charging Challenge Partner: Bentley Systems, Inc. Joined the Challenge: February 2013 Headquarters: Exton, PA Charging Locations: Huntsville, AL; Exton, PA Domestic Employees: 1,230 Bentley Systems has committed to installing at least one plug-in electric vehicle (PEV) charging location at one of its U.S. office locations. The company will monitor and assess colleague feedback and explore

  13. Workplace Charging Challenge Partner: Black & Veatch | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Black & Veatch Workplace Charging Challenge Partner: Black & Veatch Workplace Charging Challenge Partner: Black & Veatch Joined the Challenge: November 2015 Headquarters: Overland Park, KS Charging Location: Overland Park, KS Domestic Employees: 7,120 Black & Veatch is an independent engineering, consulting, and construction firm working in water, energy and telecommunications. The company supported the design and construction of the world's largest DC fast charging network in

  14. Workplace Charging Challenge Partner: BookFactory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BookFactory Workplace Charging Challenge Partner: BookFactory Workplace Charging Challenge Partner: BookFactory Joined the Challenge: April 2013 Headquarters: Dayton, OH Charging Location: Dayton, OH Domestic Employees: 32 BookFactory, a veteran-owned small business, has incorporated sustainability into every aspect of the company. To fuel the management team's passion for electric vehicles, BookFactory installed one Level 2 charging station and one Level 3 charger, which is capable of providing

  15. Workplace Charging Challenge Partner: Caltech | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caltech Workplace Charging Challenge Partner: Caltech Workplace Charging Challenge Partner: Caltech Joined the Challenge: March 2016 Headquarters: Pasadena, CA Charging Locations: Pasadena, CA Domestic Employees: 5,000 As part of Caltech's commitment to encourage alternative transportation and support electric vehicles, 54 Level 2 stations have been installed in the California parking structure in February 2016. Caltech has developed the Adaptive Charging Station which allows a large number of

  16. Workplace Charging Challenge Partner: City of Atlanta | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Atlanta Workplace Charging Challenge Partner: City of Atlanta Workplace Charging Challenge Partner: City of Atlanta Joined the Challenge: March 2014 Headquarters: Atlanta, GA Charging Location: Atlanta, GA Domestic Employees: 8,107 The City of Atlanta's provision of workplace charging builds upon a larger strategy to improve transportation in the region and provide sustainable transportation options. The first component focuses on increasing the adoption of alternative transportation

  17. Workplace Charging Challenge Partner: City of Benicia | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Benicia Workplace Charging Challenge Partner: City of Benicia Workplace Charging Challenge Partner: City of Benicia Joined the Challenge: June 2015 Headquarters: Benicia, CA Charging Location: Benicia, CA Domestic Employees: 400 The City of Benicia has applied for and received a number of grants to install plug-in electric vehicle (PEV) charging stations at city facilities. Through work with local and regional partners, it has installed 3 Level 2 stations at two different city

  18. Workplace Charging Challenge Partner: City of Fort Collins | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fort Collins Workplace Charging Challenge Partner: City of Fort Collins Workplace Charging Challenge Partner: City of Fort Collins Joined the Challenge: February 2015 Headquarters: Fort Collins, CO Charging Location: Fort Collins, CO Domestic Employees: 2,000 The City of Fort Collins has partnered with Drive Electric Northern Colorado to create infrastructure, policy, and awareness campaigns about electric vehicles. As of 2015, the City has 12 public charging stations that are capable

  19. Workplace Charging Challenge Partner: City of Hillsboro | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hillsboro Workplace Charging Challenge Partner: City of Hillsboro Workplace Charging Challenge Partner: City of Hillsboro Joined the Challenge: July 2014 Headquarters: Hillsboro, OR Charging Location: Hillsboro, OR Domestic Employees: 750 The City of Hillsboro is proud to offer plug-in electric vehicle (PEV) charging for employees, its fleets, and the public at multiple locations in the downtown area. Beginning in 2009, the City has installed 35 EVSE, including the state's first Level

  20. Workplace Charging Challenge Partner: ClipperCreek, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy ClipperCreek, Inc. Workplace Charging Challenge Partner: ClipperCreek, Inc. Workplace Charging Challenge Partner: ClipperCreek, Inc. Joined the Challenge: April 2014 Headquarters: Auburn, CA Charging Location: Auburn, CA Domestic Employees: 35 ClipperCreek is a leading manufacturer of Electric Vehicle Supply Equipment (EVSE). The company strives to advance the plug-in electric vehicle (PEV) market by helping to provide convenient PEV charging solutions. ClipperCreek has installed six

  1. Workplace Charging Challenge Partner: Concurrent Design, Inc. | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Concurrent Design, Inc. Workplace Charging Challenge Partner: Concurrent Design, Inc. Workplace Charging Challenge Partner: Concurrent Design, Inc. Joined the Challenge: February 2014 Headquarters: Austin, TX Charging Location: Austin, TX Domestic Employees: 18 Concurrent Design is committed to clean energy, and is purpose-built to support the development of clean energy products. Concurrent Design aims to have no upstream fossil fuels involved in vehicle charging at their office.

  2. Workplace Charging Challenge Partner: DIRECTV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DIRECTV Workplace Charging Challenge Partner: DIRECTV Workplace Charging Challenge Partner: DIRECTV Joined the Challenge: November 2014 Headquarters: El Segundo, CA Charging Locations: El Segundo, CA; Marina Del Ray, CA; Englewood, CO Domestic Employees: 17,150 DIRECTV is committed to reducing its overall footprint, and reducing greenhouse gas emissions from its employees' commutes is one strategy for accomplishing that. DIRECTV currently provides 21 plug-in electric vehicle charging stations

  3. Workplace Charging Challenge Partner: EV Connect | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Connect Workplace Charging Challenge Partner: EV Connect Workplace Charging Challenge Partner: EV Connect Joined the Challenge: January 7, 2015 Headquarters: Los Angeles, CA Charging Location: Los Angeles, CA Domestic Employees: 20 EV Connect develops and produces electric vehicle charging solutions. Leveraging their own workplace solution at their offices, more than half of EV Connect's employees drive plug-in electric vehicles (PEVs). Meet Challenge Partners

  4. Workplace Charging Challenge Partner: El Camino Real Charter High School |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy El Camino Real Charter High School Workplace Charging Challenge Partner: El Camino Real Charter High School Workplace Charging Challenge Partner: El Camino Real Charter High School Joined the Challenge: September 2014 Headquarters: Woodland Hills, CA Charging Location: Woodland Hills, CA Domestic Employees: 225 El Camino Real Charter High School (ECRCHS) has installed 4 plug-in electric vehicle (PEV) chargers, with plans to expand if demand increases. The charging

  5. Workplace Charging Challenge Partner: Ford Motor Company | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Ford Motor Company Workplace Charging Challenge Partner: Ford Motor Company Workplace Charging Challenge Partner: Ford Motor Company Joined the Challenge: January 2013 Headquarters: Dearborn, MI Charging Location: Dearborn, MI Domestic Employees: 69,000 Ford's strong commitment to electrification includes six all-new electrified vehicles available in 2013-including three hybrid electric vehicles (HEVs) and three plug-in electric vehicles (PEVs). Workplace charging is consistent with

  6. Workplace Charging Challenge Partner: Gonzaga University | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Gonzaga University Workplace Charging Challenge Partner: Gonzaga University Workplace Charging Challenge Partner: Gonzaga University Joined the Challenge: June 2015 Headquarters: Spokane, WA Charging Location: Spokane, WA Domestic Employees: 1,187 For Gonzaga University, installing plug-in electric vehicle charging stations is consummate with their mission to care for creation and be stewards of resources. As part of this missioned responsibility and in light of the growing pressures

  7. Workplace Charging Challenge Partner: Hewlett-Packard | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hewlett-Packard Workplace Charging Challenge Partner: Hewlett-Packard Workplace Charging Challenge Partner: Hewlett-Packard Joined the Challenge: February 2015 Headquarters: Palo Alto, CA Charging Locations: Boise, ID; Corvallis, OR; Fort Collins, CO; Fremont, CA; Houston, TX; Palo Alto, CA; Plano, TX; Roseville, CA; Sunnyvale, CA Domestic Employees: 302,000 Plug-in electric vehicle (PEV) charging ties directly into HP's Corporate Stewardship Objectives. Employee commuting accounts

  8. Workplace Charging Challenge Partner: Idaho Power Company | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Idaho Power Company Workplace Charging Challenge Partner: Idaho Power Company Workplace Charging Challenge Partner: Idaho Power Company Joined the Challenge: February 2016 Headquarters: Boise, ID Charging Locations: Boise, ID; Nampa, ID; Pocatello, ID; Twin Falls, ID; Payette, ID; Hailey, ID Domestic Employees: 2,011 In 2016, Idaho Power completed the installation of workplace charging facilities in employee parking lots across their service area. In an effort to promote workplace

  9. Workplace Charging Challenge Partner: Intel Corporation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Intel Corporation Workplace Charging Challenge Partner: Intel Corporation Workplace Charging Challenge Partner: Intel Corporation Joined the Challenge: June 2014 Headquarters: Santa Clara, CA Charging Locations: Hillsboro, OR; Folsom, CA; Santa Clara CA; Chandler, AZ; Chandler, AZ Domestic Employees: 59,180 Intel is committed to being on the forefront of green initiatives and has invested heavily to supply over 100 plug-in electric vehicle charging stations at 7 of their major sites

  10. Workplace Charging Challenge Partner: JLA Public Involvement | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy JLA Public Involvement Workplace Charging Challenge Partner: JLA Public Involvement Workplace Charging Challenge Partner: JLA Public Involvement Joined the Challenge: March 2013 Headquarters: Portland, OR Charging Location: Portland, OR Domestic Employees: 15 Purchasing a plug-in electric vehicle (PEV) and installing a charging station has expanded JLA Public Involvement's sustainability efforts and allowed them to achieve Gold certification in the City of Portland's Sustainability

  11. Workplace Charging Challenge Partner: Kaiser Permanente | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Kaiser Permanente Workplace Charging Challenge Partner: Kaiser Permanente Workplace Charging Challenge Partner: Kaiser Permanente Joined the Challenge: June 2014 Headquarters: Oakland, CA Charging Location: Roseville, CA Domestic Employees: 174,415 As part of its commitment to reducing greenhouse gas emissions and creating healthy communities, Kaiser Permanente plans to host plug-in electric vehicle charging stations at an initial 45 hospitals and other locations through 2015, with

  12. Workplace Charging Challenge Partner: Lane Regional Air Protection Agency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lane Regional Air Protection Agency Workplace Charging Challenge Partner: Lane Regional Air Protection Agency Workplace Charging Challenge Partner: Lane Regional Air Protection Agency Joined the Challenge: June 2014 Headquarters: Springfield, OR Charging Location: Springfield, OR Domestic Employees: 15 Lane Regional Air Protection Agency is committed to ensuring clean air for everyone in Lane County. By joining the Workplace Charging Challenge, LRAPA is setting an

  13. Workplace Charging Challenge Partner: MOM's Organic Market | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy MOM's Organic Market Workplace Charging Challenge Partner: MOM's Organic Market Workplace Charging Challenge Partner: MOM's Organic Market Joined the Challenge: September 2015 Headquarters: Rockville, MD Charging Location: Rockville, MD Domestic Employees: 889 Offering workplace charging is one of the ways MOM's Organic Market lives "Our Purpose" - to protect and restore the environment. MOM's employees are passionate environmentalists in all facets of their lives, including

  14. Workplace Charging Challenge Partner: NRG Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NRG Energy Workplace Charging Challenge Partner: NRG Energy Workplace Charging Challenge Partner: NRG Energy Joined the Challenge: February 2013 Headquarters: Princeton, NJ Charging Locations: Princeton, NJ; Phoenix, AZ; Carlsbad, CA; Emeryville, CA; Los Angeles, CA; Houston, TX Domestic Employees: 8,000 NRG Energy is a Fortune 500 company and a leader in changing how people think about and use energy. NRG offers workplace charging to its employees, alongside a corporate incentive for employees

  15. Workplace Charging Challenge Partner: Nissan North America, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nissan North America, Inc. Workplace Charging Challenge Partner: Nissan North America, Inc. Workplace Charging Challenge Partner: Nissan North America, Inc. Joined the Challenge: January 2013 Headquarters: Franklin, TN Charging Locations: Franklin, TN; Smyrna, TN; Farmington Hills, MI; San Diego, CA; Silicon Valley, CA; Irvine, CA Domestic Employees: 19,400 Nissan offers plug-in electric vehicle (PEV) charging to its employees at its headquarters, regional offices, and

  16. Workplace Charging Challenge Partner: Oak Ridge National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oak Ridge National Laboratory Workplace Charging Challenge Partner: Oak Ridge National Laboratory Workplace Charging Challenge Partner: Oak Ridge National Laboratory Joined the Challenge: November 2014 Headquarters: Oak Ridge, TN Charging Location: Oak Ridge, TN Domestic Employees: 4,400 Oak Ridge National Laboratory's (ORNL's) Sustainable Campus Initiative contains a roadmap for development of electric vehicle charging stations, indicating that plug-in electric vehicle

  17. Workplace Charging Challenge Partner: Pacific Gas & Electric Company |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Pacific Gas & Electric Company Workplace Charging Challenge Partner: Pacific Gas & Electric Company Workplace Charging Challenge Partner: Pacific Gas & Electric Company Joined the Challenge: October 2014 i>Headquarters: San Francisco, CA Charging Locations: San Francisco, CA; San Ramon, CA ; Concord, CA Domestic Employees: 22,000 In keeping with its strong support for clean transportation, PG&E employees now have an opportunity to charge plug-in

  18. Workplace Charging Challenge Partner: Prairie State College | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Prairie State College Workplace Charging Challenge Partner: Prairie State College Workplace Charging Challenge Partner: Prairie State College Joined the Challenge: June 2014 Headquarters: Chicago Heights, IL Charging Location: Chicago Heights, IL Domestic Employees: 525 As part of Prairie State College's sustainability initiatives, the college installed two Level 2 plug-in electric vehicle (PEV) charging stations that are available for employee, student and community use. This

  19. Workplace Charging Challenge Partner: Purchase College, State University of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New York | Department of Energy Purchase College, State University of New York Workplace Charging Challenge Partner: Purchase College, State University of New York Workplace Charging Challenge Partner: Purchase College, State University of New York Joined the Challenge: June 2015 Headquarters: Purchase, NY Charging Location: Purchase, NY Domestic Employees: 678 Purchase College, State University of New York can accommodate six vehicles at four charging stations throughout campus. In addition

  20. Workplace Charging Challenge Partner: Raytheon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Raytheon Workplace Charging Challenge Partner: Raytheon Workplace Charging Challenge Partner: Raytheon Joined the Challenge: February 2013 Headquarters: Waltham, MA Charging Locations: El Segundo, CA; Dulles, VA; Tewksbury, MA; Aurora, CO; McKinney, TX; Woburn, MA; Largo, FL Domestic Employees: 60,000 Raytheon has installed fifteen dual 220-volt plug-in electric vehicle (PEV) charging stations spread across six operating locations in California, Colorado, Massachusetts, Texas and Virginia.

  1. Workplace Charging Challenge Partner: ReVision Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy ReVision Energy Workplace Charging Challenge Partner: ReVision Energy Workplace Charging Challenge Partner: ReVision Energy Joined the Challenge: December 2015 Headquarters: Portland, ME Charging Locations: Brentwood, NH; Portland, ME Domestic Employees: 125 ReVision Energy's mission is to reduce fossil fuel consumption and carbon emissions. Since 50% of all carbon emissions in their region come from transportation, the company is embracing workplace charging as a critical path to

  2. Workplace Charging Challenge Partner: Samsung Electronics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Samsung Electronics Workplace Charging Challenge Partner: Samsung Electronics Workplace Charging Challenge Partner: Samsung Electronics Joined the Challenge: June 2013 Headquarters: Ridgefield Park, NJ Charging Locations: Rancho Dominguez, CA; Pine Brook, NJ; San Diego, CA; Mountain View, CA; San Jose, CA Domestic Employees: 6,800 Samsung Electronics demonstrated an early commitment to plug-in electric vehicle (PEV) charging when it installed 2 EVSEs at its Rancho Dominguez, CA office

  3. Workplace Charging Challenge Partner: SemaConnect, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SemaConnect, Inc. Workplace Charging Challenge Partner: SemaConnect, Inc. Workplace Charging Challenge Partner: SemaConnect, Inc. Joined the Challenge: July 2014 Headquarters: Bowie, MD Charging Location: Bowie, MD Domestic Employees: 25 SemaConnect develops and produces electric vehicle charging stations and management software. At SemaConnect, all employees are eligible to receive a monthly stipend so they can drive a plug-in electric vehicle (PEV) and reduce their carbon footprint.

  4. Workplace Charging Challenge Partner: State of Oregon | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Oregon Workplace Charging Challenge Partner: State of Oregon Workplace Charging Challenge Partner: State of Oregon Joined the Challenge: July 2014 Headquarters: Salem, OR Charging Locations: Salem, OR; Corvallis, OR; Portland, OR Domestic Employees: 82,800 As the first state in the country to sign up for the Workplace Charging Challenge, the State of Oregon has over 20 EVSE available for employees, demonstrating that employers can help to accelerate EV deployment. Oregon is working on

  5. Workplace Charging Challenge Partner: The Hartford | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Hartford Workplace Charging Challenge Partner: The Hartford Workplace Charging Challenge Partner: The Hartford Joined the Challenge: April 2013 Headquarters: Hartford, CT Charging Locations: Hartford, CT; Windsor, CT; Simsbury, CT Domestic Employees: 20,000 With more than 200 years of expertise, The Hartford is a leader in property and casualty insurance, group benefits and mutual funds. In 2011, The Hartford installed 6 charging stations at its three main campuses in Hartford, Simsbury and

  6. Workplace Charging Challenge Partner: University of Hawaii at Hilo |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hawaii at Hilo Workplace Charging Challenge Partner: University of Hawaii at Hilo Workplace Charging Challenge Partner: University of Hawaii at Hilo Joined the Challenge: September 2015 Headquarters: Hilo, HI Charging Location: Hilo, HI Domestic Employees: 664 University of Hawaii's (UH) Board of Regents has embraced sustainability as a core aspect of the UH mission. UH Hilo offers a level 2 electric vehicle charging station, located in the Life Science Building parking

  7. Workplace Charging Challenge Partner: University of North Carolina at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pembroke | Department of Energy North Carolina at Pembroke Workplace Charging Challenge Partner: University of North Carolina at Pembroke Workplace Charging Challenge Partner: University of North Carolina at Pembroke Joined the Challenge: June 2014 Headquarters: Pembroke, NC Charging Location: Pembroke, NC Domestic Employees: 917 Workplace charging is one of UNCP's commuting transportation strategies that supports the campus' sustainability goal of becoming carbon neutral by the year 2050.

  8. Workplace Charging Challenge Partner: Utilidata | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilidata Workplace Charging Challenge Partner: Utilidata Workplace Charging Challenge Partner: Utilidata Joined the Challenge: June 2015 Headquarters: Providence, RI Charging Location: Providence, RI Domestic Employees: 50 Utilidata is proud to join the U.S. Department of Energy's Workplace Charging Challenge. Through its efforts, Utilidata is helping to reduce petroleum use and greenhouse gas emissions while also providing a valuable employee benefit. Utilidata is pleased to support this

  9. Workplace Charging Challenge Partner: Verizon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Verizon Workplace Charging Challenge Partner: Verizon Workplace Charging Challenge Partner: Verizon Joined the Challenge: January 2013 Headquarters: New York, NY Charging Locations: Twinsburg, OH; Huntington Beach, CA; Irvine, CA; Basking Ridge, NJ; Irving, TX Domestic Employees: 180,000 Verizon is committed to sustainability in all areas of our business, including making 'green driving' more convenient. Verizon now has three workplaces with charging stations: a retail store, data center, and

  10. Workplace Charging Challenge Plug-In Electric Vehicle Support Networks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Plug-In Electric Vehicle Support Networks Workplace Charging Challenge Plug-In Electric Vehicle Support Networks When promoting PEV deployment, it can be helpful to tap into existing networks. The DOE Clean Cities program, along with Workplace Charging Challenge ambassadors and partners, have a wealth of knowledge on PEVs and workplace charging that can help inform your employees. These groups can also provide assistance in operating an effective workplace charging

  11. Workplace Charging Challenge Summit 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge Summit 2014 Workplace Charging Challenge Summit 2014 Workplace Charging Challenge Summit 2014 Challenge partners and ambassadors from across the country convened at the Workplace Charging Challenge Summit 2014 to network with their peers, participate in interactive breakout sessions, and return to their workplaces with new ideas and resources for accomplishing their workplace charging goals. The Summit featured presentations by Department of Energy (DOE) leadership and plug-in electric

  12. Workplace Charging Challenge Employer Workshop Best Practices Webinar

    Broader source: Energy.gov [DOE]

    Learn about the experiences of four event hosts and how they planned, organized, and administered successful workplace charging events.

  13. Workplace Charging Challenge Summit 2014: Session 2, Track B | Department

    Energy Savers [EERE]

    of Energy 2, Track B Workplace Charging Challenge Summit 2014: Session 2, Track B "Managing increased charging demand": In many parts of the country, employer partners have observed an "if you build it, they will come" phenomenon as an increasing number of their staff have adopted PEVs after they install workplace charging. Panelists from partner organizations who have successfully managed increasing employee charging demand present their experiences. PDF icon Panelist

  14. Workplace Charging Challenge: Join the Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Join the Challenge Workplace Charging Challenge: Join the Challenge Workplace Charging Challenge: Join the Challenge The Workplace Charging Challenge aims to have 500 U.S. employers join the initiative as partners by 2018. Partners set a minimum goal of providing charging for a portion of plug-in electric vehicle (PEV) driving employees and a best practice goal of meeting all employee demand. As of January 2016, more than 250 employers joined as Challenge partners and the installation of

  15. Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Boost Sustainability Utah Paperbox Adds Workplace Charging to Boost Sustainability to someone by E-mail Share Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Facebook Tweet about Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Twitter Bookmark Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Google Bookmark Alternative Fuels Data Center: Utah Paperbox

  16. Innovative Cathode Coating Enables Faster Battery Charging, Dischargin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Cathode Coating Enables Faster Battery Charging, Discharging Technology available for licensing: Coating increases electrical conductivity of cathode materials Coating...

  17. First Measurement of Muon Neutrino Charged Current Quasielastic...

    Office of Scientific and Technical Information (OSTI)

    Using a high statistics sample of muon neutrino charged current quasielastic (CCQE) ... NEUTRINO OSCILLATION; NEUTRINOS; NUCLEONS; SCATTERING; SIMULATION; STATISTICS; TARGETS

  18. Charge Prediction of Lipid Fragments in Mass Spectrometry

    SciTech Connect (OSTI)

    Schrom, Brian T.; Kangas, Lars J.; Ginovska, Bojana; Metz, Thomas O.; Miller, John H.

    2011-12-18

    An artificial neural network is developed for predicting which fragment is charged and which fragment is neutral for lipid fragment pairs produced from a liquid chromatography tandem mass spectrometry simulation process. This charge predictor is integrated into software developed at PNNL for in silico spectra generation and identification of metabolites known as Met ISIS. To test the effect of including charge prediction in Met ISIS, 46 lipids are used which show a reduction in false positive identifications when the charge predictor is utilized.

  19. workplace Charging Challenge Partner: Advanced Micro Devices | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy workplace Charging Challenge Partner: Advanced Micro Devices workplace Charging Challenge Partner: Advanced Micro Devices workplace Charging Challenge Partner: Advanced Micro Devices Joined the Challenge: February 2014 Headquarters: Sunnyvale, CA Charging Locations: Austin, TX; Sunnyvale, CA Domestic Employees: 3,450 AMD recognizes its responsibility as a global citizen to reduce our direct impacts on the environment and to inspire and enable others to do the same. Employee

  20. An Optimization Framework for Workplace Charging Strategies | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory An Optimization Framework for Workplace Charging Strategies Title An Optimization Framework for Workplace Charging Strategies Publication Type Journal Article Year of Publication 2015 Authors Huang, Y, Zhou, Y Journal Journal of Transportation Research Part C: Emerging Technologies Volume 52 Start Page 144 Pagination 11 Keywords Workplace charging; Optimization; Resource allocation Abstract The workplace charging (WPC) has been recently recognized as the most important