Sample records for max electricity demand

  1. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  2. Controlling electric power demand

    SciTech Connect (OSTI)

    Eikenberry, J.

    1984-11-15T23:59:59.000Z

    Traditionally, demand control has not been viewed as an energy conservation measure, its intent being to reduce the demand peak to lower the electric bill demand charge by deferring the use of a block of power to another demand interval. Any energy savings were essentially incidental and unintentional, resulting from curtailment of loads that could not be assumed at another time. This article considers a microprocessor-based multiplexed system linked to a minicomputer to control electric power demand in a winery. In addition to delivering an annual return on investment of 55 percent in electric bill savings, the system provides a bonus in the form of alarm and monitoring capability for critical processes.

  3. ELECTRICITY DEMAND FORECAST COMPARISON REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005.................................................................................................................................3 PACIFIC GAS & ELECTRIC PLANNING AREA ........................................................................................9 Commercial Sector

  4. Electrical Demand Control

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1984-01-01T23:59:59.000Z

    to the reservoir. Util i ties have iiting for a number of years. d a rebate for reducing their When the utility needs to shed is sent to turn off one or mnre mer's electric water heater or equipment. wges have enticed more and more same strategies... an increased need for demand 1 imiting. As building zone size is reduced, total instal led tonnage increases due to inversfty. Each compressor is cycled by a space thermostat. There is no control system to limit the number of compressors running at any...

  5. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01T23:59:59.000Z

    DEMAND . . . .Demand for Electricity and Power PeakDemand . . • . . ELECTRICITY REQUIREMENTS FOR AGRICULTUREResults . . Coriclusions ELECTRICITY SUPPLY Hydroelectric

  6. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01T23:59:59.000Z

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  7. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    fuel electricity demands, and generation from these plantplants .. 47 Additional generation .. 48 Electricityelectricity demand increases generation from NGCC power plants.

  8. SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK DRAFTSTAFFREPORT May ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B assessment of the capability of the physical electricity system to provide power to meet electricity demand

  9. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    and fuel-related electricity demands grow, so do the numberelectricity demands are unlikely to affect capacity additions and procurement decisions until they grow

  10. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01T23:59:59.000Z

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  11. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    Designing Markets for Electricity, Wiley-IEEE Press. CEC (in Major Drivers in U.S. Electricity Markets, NREL/CP-620-and fuel efficiency and electricity demand assumptions used

  12. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    49 Table 13. Vehicle and fuel efficiency and electricity14. Timing profiles and vehicle and fuel pathways includedand generation, Table 18. Vehicle demand and system load

  13. Demand Response and Electric Grid Reliability

    E-Print Network [OSTI]

    Wattles, P.

    2012-01-01T23:59:59.000Z

    Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

  14. Demand Response in U.S. Electricity Markets: Empirical Evidence

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01T23:59:59.000Z

    Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

  15. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01T23:59:59.000Z

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  16. What is a High Electric Demand Day?

    Broader source: Energy.gov [DOE]

    This presentation by T. McNevin of the New Jersey Bureau of Air Quality Planning was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  17. TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-085 TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN CALIFORNIA, California 94720-5180 www.ucei.org #12;TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING** Abstract This study analyzes state and regional electricity supply and demand trends for the eleven states

  18. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    integrating HECO and Hawaii Energy demand response relatedpotential. Energy efficiency and demand response efforts areBoth  energy  efficiency  and  demand  response  should  

  19. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    and best practices to guide HECO demand response developmentbest practices for DR renewable integration – Technically demand responseof best practices. This is partially because demand response

  20. Climate, extreme heat, and electricity demand in California

    E-Print Network [OSTI]

    Miller, N.L.

    2008-01-01T23:59:59.000Z

    1992. Global warming and electricity demand: A study ofValuing the Time-Varying Electricity Production of SolarCEC). 2002. 2002-2012 Electricity Outlook Report, P700- 01-

  1. Electric Demand Cost Versus Labor Cost: A Case Study

    E-Print Network [OSTI]

    Agrawal, S.; Jensen, R.

    Electric Utility companies charge industrial clients for two things: demand and usage. Depending on type of business and hours operation, demand cost could be very high. Most of the operations scheduling in a plant is achieved considering labor cost...

  2. Control Mechanisms for Residential Electricity Demand in SmartGrids

    E-Print Network [OSTI]

    Snyder, Larry

    Email: lvs2@lehigh.edu Abstract--We consider mechanisms to optimize electricity consumption both within subscription plan. Such methods for controlling electricity consumption are part of demand response, whichControl Mechanisms for Residential Electricity Demand in SmartGrids Shalinee Kishore Department

  3. Benefits of Demand Response in Electricity Markets and Recommendations...

    Broader source: Energy.gov (indexed) [DOE]

    bear little relation to the true production costs of electricity as they vary over time. Demand response is a tariff or program established to motivate changes in electric use by...

  4. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    renewable integration capability. Coordinating and integrating HECO and Hawaii Energy demand response related activities has the potential

  5. Electricity Markets Meet the Home through Demand Response Lazaros Gkatzikis

    E-Print Network [OSTI]

    ) programs motivate home users through dynamic pricing to shift electricity consumption from peak demand incentives to the users, usually in the form of dynamic pricing, to reduce their electricity consumption. For example, the residential sector in UK accounts for 31% of the total electricity consumption

  6. Analysis of recent projections of electric power demand

    SciTech Connect (OSTI)

    Hudson, D.V. Jr.

    1993-08-01T23:59:59.000Z

    This report reviews the changes and potential changes in the outlook for electric power demand since the publication of Review and Analysis of Electricity Supply Market Projections (B. Swezey, SERI/MR-360-3322, National Renewable Energy Laboratory). Forecasts of the following organizations were reviewed: DOE/Energy Information Administration, DOE/Policy Office, DRI/McGraw-Hill, North American Electric Reliability Council, and Gas Research Institute. Supply uncertainty was briefly reviewed to place the uncertainties of the demand outlook in perspective. Also discussed were opportunities for modular technologies, such as renewable energy technologies, to fill a potential gap in energy demand and supply.

  7. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    management in the US electricity sector, Energy Policy, 23(deep reductions in electricity sector GHG emissions requireson the electricity sector. 19 Table 3.

  8. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    in Figure 63. Average electricity costs are noticeably lowerprofile has lower average electricity costs, because fossiland generation, average electricity costs, and GHG emissions

  9. U.S. electric utility demand-side management 1995

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  10. The Impact of Climate Change on Electricity Demand in Thailand 

    E-Print Network [OSTI]

    Parkpoom, Suchao Jake

    2008-01-01T23:59:59.000Z

    Climate change is expected to lead to changes in ambient temperature, wind speed, humidity, precipitation and cloud cover. As electricity demand is closely influenced by these climatic variables, there is likely to be ...

  11. U.S. electric utility demand-side management 1993

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  12. Electric Demand Cost Versus Labor Cost: A Case Study 

    E-Print Network [OSTI]

    Agrawal, S.; Jensen, R.

    1998-01-01T23:59:59.000Z

    ELEcrRIC DEMAND COST Versus LABOR COST: A CASE STUDY Sanjay Agrawal Richard Jensen Assistant Director Director Industrial Assessment Center Department of Engineering Hofstra University, Hempstead, NY 11549 ABSTRAcr Electric Utility companies...

  13. Electrical ship demand modeling for future generation warships

    E-Print Network [OSTI]

    Sievenpiper, Bartholomew J. (Bartholomew Jay)

    2013-01-01T23:59:59.000Z

    The design of future warships will require increased reliance on accurate prediction of electrical demand as the shipboard consumption continues to rise. Current US Navy policy, codified in design standards, dictates methods ...

  14. The residential demand for electricity in New England,

    E-Print Network [OSTI]

    Levy, Paul F.

    1973-01-01T23:59:59.000Z

    The residential demand for electricity, studied on the national level for many years, is here investigated on the regional level. A survey of the literature is first presented outlining past econometric work in the field ...

  15. Smart Metering and Electricity Demand: Technology, Economics and International Experience

    E-Print Network [OSTI]

    Brophy Haney, A; Jamasb, Tooraj; Pollitt, Michael G.

    www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R Abstract Smart Metering and Electricity Demand: Technology, Economics and International Experience EPRG Working Paper EPRG0903 Cambridge Working Paper in Economics 0905 Aoife... Brophy Haney, Tooraj Jamasb and Michael G. Pollitt In recent years smart metering of electricity demand has attracted attention around the world. A number of countries and regions have started deploying new metering systems; and many others have...

  16. Sixth Northwest Conservation and Electric Power Plan Chapter 3: Electricity Demand Forecast

    E-Print Network [OSTI]

    been influenced by expected higher electricity prices that reflect a rapid rise in fuel prices and emerging carbon-emission penalties. For example, residential consumer retail electricity prices of this projected demand growth. The electricity demand increase is driven primarily by significant growth in two

  17. Sixth Northwest Conservation and Electric Power Plan Appendix H: Demand Response

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix H: Demand Response Introduction..................................................................................................................................... 1 Demand Response in the Council's Fifth Power Plan......................................................................................................................... 3 Estimate of Potential Demand Response

  18. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    of capacity factors of wind generation from a Vestas V112-demand is higher, while wind generation peaks at night andvalues of Tehachapi wind generation, Palm Springs solar

  19. Reducing Electricity Demand Charge for Data Centers with Partial Execution

    E-Print Network [OSTI]

    Li, Baochun

    . INTRODUCTION Data centers are the powerhouse behind many Internet services today. A modern data centerReducing Electricity Demand Charge for Data Centers with Partial Execution Hong Xu Department@eecg.toronto.edu ABSTRACT Data centers consume a large amount of energy and incur substantial electricity cost

  20. The Economics of Energy (and Electricity) Demand

    E-Print Network [OSTI]

    Platchkov, Laura M.; Pollitt, Michael G.

    13 taxation on the use of energy.6 This is in addition to taxation of the profits of energy companies and taxes on the production of oil and gas in the North Sea. Any migration of energy demand from heavily taxed liquid fuels to currently lightly... also be substituted for energy expenditure in the future (e.g. solar panels as part of a new roof). The figure shows that substantial amount of expenditure on transport where expenditure on vehicles and on their repair exceeds expenditure on fuel...

  1. Price-elastic demand in deregulated electricity markets

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.

    2003-05-01T23:59:59.000Z

    The degree to which any deregulated market functions efficiently often depends on the ability of market agents to respond quickly to fluctuating conditions. Many restructured electricity markets, however, experience high prices caused by supply shortages and little demand-side response. We examine the implications for market operations when a risk-averse retailer's end-use consumers are allowed to perceive real-time variations in the electricity spot price. Using a market-equilibrium model, we find that price elasticity both increases the retailers revenue risk exposure and decreases the spot price. Since the latter induces the retailer to reduce forward electricity purchases, while the former has the opposite effect, the overall impact of price responsive demand on the relative magnitudes of its risk exposure and end-user price elasticity. Nevertheless, price elasticity decreases cumulative electricity consumption. By extending the analysis to allow for early settlement of demand, we find that forward stage end-user price responsiveness decreases the electricity forward price relative to the case with price-elastic demand only in real time. Moreover, we find that only if forward stage end-user demand is price elastic will the equilibrium electricity forward price be reduced.

  2. US electric utility demand-side management, 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-26T23:59:59.000Z

    The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

  3. U.S. electric utility demand-side management 1996

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  4. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

    2011-12-06T23:59:59.000Z

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  5. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

    2006-12-12T23:59:59.000Z

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  6. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    global warming potentials of 23 and 296, respectively. Marginal electricity GHG emissions rates for vehicle recharging and hydrogen production

  7. Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost

    E-Print Network [OSTI]

    Pedram, Massoud

    is to perform demand side management (DSM) [1], which aims at matching the consum- ers' electricity demand between electricity consumption and generation. On the consumption side, electric demand ramps upDistributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue

  8. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    al Scott et al (2007) [97] EPRI and NRDC (2007) [6, StephanAir Resources Board. EPRI and NRDC (2007) Environmentalin the hydrogen-electric economy, EPRI. Lemoine, D.M. , D.M.

  9. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    System Operator. WECC (2006) Information Summary, Westernx SDG&E SMR SMUD TID v VMT WECC San Diego Gas & ElectricCoordinating Council (WECC) differ somewhat from the CEC and

  10. Trends in Regional Electricity Demands 1995-2012

    E-Print Network [OSTI]

    to Department of Energy in EIA form 861. Council staff takes annual reported retail sales by each utility. Street lighting sales are not metered but rather estimated . 10 #12;Losses are Defined as Energy LoadsTrends in Regional Electricity Demands 1995-2012 January 29, 2014 #12;In Today's Conversation

  11. 2012 Portland General Electric. All rights reserved. Planning for Demand

    E-Print Network [OSTI]

    2/13/2013 1 © 2012 Portland General Electric. All rights reserved. Planning for Demand Response Balance: Energy #12;2/13/2013 2 3 PGE Load ­ Resource Balance: Winter Capacity 4 Traditional Role decade, access to a material portion of its legacy hydro resources. Meanwhile, PGE (and other IOU

  12. Greater fuel diversity needed to meet growing US electricity demand

    SciTech Connect (OSTI)

    Burt, B.; Mullins, S. [Industrial Info Resources (United States)

    2008-01-15T23:59:59.000Z

    Electricity demand is growing in the USA. One way to manage the uncertainty is to diversity fuel sources. Fuel sources include coal, natural gas, nuclear and renewable energy sources. Tables show actual and planned generation projects by fuel types. 1 fig., 2 tabs.

  13. THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND

    E-Print Network [OSTI]

    LBNL-49947 THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND? ..................................... 8 What are the seasonal aspects of electric peak demand?............................ 9 What because of the California electricity crisis (Borenstein 2001). Uncertainties surrounding the reliability

  14. Climate, extreme heat, and electricity demand in California

    SciTech Connect (OSTI)

    Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

    2008-04-01T23:59:59.000Z

    Climate projections from three atmosphere-ocean climate models with a range of low to mid-high temperature sensitivity forced by the Intergovernmental Panel for Climate Change SRES higher, middle, and lower emission scenarios indicate that, over the 21st century, extreme heat events for major cities in heavily air-conditioned California will increase rapidly. These increases in temperature extremes are projected to exceed the rate of increase in mean temperature, along with increased variance. Extreme heat is defined here as the 90 percent exceedance probability (T90) of the local warmest summer days under the current climate. The number of extreme heat days in Los Angeles, where T90 is currently 95 F (32 C), may increase from 12 days to as many as 96 days per year by 2100, implying current-day heat wave conditions may last for the entire summer, with earlier onset. Overall, projected increases in extreme heat under the higher A1fi emission scenario by 2070-2099 tend to be 20-30 percent higher than those projected under the lower B1 emission scenario, ranging from approximately double the historical number of days for inland California cities (e.g. Sacramento and Fresno), up to four times for previously temperate coastal cities (e.g. Los Angeles, San Diego). These findings, combined with observed relationships between high temperature and electricity demand for air-conditioned regions, suggest potential shortfalls in transmission and supply during T90 peak electricity demand periods. When the projected extreme heat and peak demand for electricity are mapped onto current availability, maintaining technology and population constant only for demand side calculations, we find the potential for electricity deficits as high as 17 percent. Similar increases in extreme heat days are suggested for other locations across the U.S. southwest, as well as for developing nations with rapidly increasing electricity demands. Electricity response to recent extreme heat events, such as the July 2006 heat wave in California, suggests that peak electricity demand will challenge current supply, as well as future planned supply capacities when population and income growth are taken into account.

  15. Property:OpenEI/UtilityRate/DemandRateStructure/Tier2Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizationsInformation Tier2Max Jump to: navigation,

  16. Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizationsInformation Tier2Max Jump

  17. Property:OpenEI/UtilityRate/DemandRateStructure/Tier4Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizationsInformation Tier2Max

  18. Sixth Northwest Conservation and Electric Power Plan Chapter 5: Demand Response

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Chapter 5: Demand Response Summary of Key.............................................................................................................. 1 Demand Response in the Fifth Power Plan........................................................................................... 3 Demand Response in the Sixth Power Plan

  19. Quantifying Changes in Building Electricity Use, with Application to Demand Response

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    building control strategies and techniques for demand response,”demand response systems,” in Proceedings of 16th National Conference on BuildingBuilding Electricity Use, with Application to Demand Response

  20. Influence of Air Conditioner Operation on Electricity Use and Peak Demand

    E-Print Network [OSTI]

    McGarity, A. E.; Feuermann, D.; Kempton, W.; Norford, L. K.

    1987-01-01T23:59:59.000Z

    Electricity demand due to occupant controlled room air conditioners in a large mater-metered apartment building is analyzed. Hourly data on the electric demand of the building and of individual air conditioners are used in analyses of annual...

  1. Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey

    E-Print Network [OSTI]

    Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

    2001-01-01T23:59:59.000Z

    In contrast to a hybrid vehicle whichcombines multipleor 180 mile hybrid electric vehicle. Natural gas vehicles (1994) "Demand Electric Vehicles in Hybrid for Households:

  2. Draft Fourth Northwest Conservation and Electric Power Plan, Appendix D ECONOMIC AND DEMAND FORECASTS

    E-Print Network [OSTI]

    in the initial cost, if borne by homebuyers, may cause some increase in the number of homes heated by natural gas of alternative energy forms, such as natural gas, are also important determinants of electricity demand. Demand economy is the dominant determinant of electricity demand both now and in the future. The demand

  3. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18T23:59:59.000Z

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  4. Electric Water Heater Modeling and Control Strategies for Demand Response

    SciTech Connect (OSTI)

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

    2012-07-22T23:59:59.000Z

    Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid

  5. Electricity Demand Evolution Driven by Storm Motivated Population Movement

    SciTech Connect (OSTI)

    Allen, Melissa R [ORNL; Fernandez, Steven J [ORNL; Fu, Joshua S [ORNL; Walker, Kimberly A [ORNL

    2014-01-01T23:59:59.000Z

    Managing the risks posed by climate change to energy production and delivery is a challenge for communities worldwide. Sea Level rise and increased frequency and intensity of natural disasters due to sea surface temperature rise force populations to move locations, resulting in changing patterns of demand for infrastructure services. Thus, Infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Combining climate predictions and agent based population movement models shows promise for exploring the universe of these future population distributions and changes in coastal infrastructure configurations. In this work, we created a prototype agent based population distribution model and developed a methodology to establish utility functions that provide insight about new infrastructure vulnerabilities that might result from these patterns. Combining climate and weather data, engineering algorithms and social theory, we use the new Department of Energy (DOE) Connected Infrastructure Dynamics Models (CIDM) to examine electricity demand response to increased temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. This work suggests that the importance of established evacuation routes that move large populations repeatedly through convergence points as an indicator may be under recognized.

  6. Demand responsive programs - an emerging resource for competitive electricity markets?

    SciTech Connect (OSTI)

    Heffner, Grayson C. Dr.; Goldman, Charles A.

    2001-06-25T23:59:59.000Z

    The restructuring of regional electricity markets in the U.S. has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created significant new opportunities for technologies and business approaches that allow load serving entities and other aggregators, to control and manage the load patterns of their wholesale or retail end-users. These technologies and business approaches for manipulating end-user load shapes are known as Load Management or, more recently, Demand Responsive programs. Lawrence Berkeley National Laboratory (LBNL) is conducting case studies on innovative demand responsive programs and presents preliminary results for five case studies in this paper. These case studies illustrate the diversity of market participants and range of technologies and business approaches and focus on key program elements such as target markets, market segmentation and participation results; pricing scheme; dispatch and coordination; measurement, verification, and settlement; and operational results where available.

  7. Price Responsive Demand in New York Wholesale Electricity Market using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2013-01-01T23:59:59.000Z

    and Demand Response in Electricity Markets." University ofRates and Tariffs /Schedule for Electricity Service, P.S.C.no. 10- Electricity/Rules 24 (Riders)/Leaf No. 177-327."

  8. The Influence of Residential Solar Water Heating on Electric Utility Demand 

    E-Print Network [OSTI]

    Vliet, G. C.; Askey, J. L.

    1984-01-01T23:59:59.000Z

    Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence...

  9. The Influence of Residential Solar Water Heating on Electric Utility Demand

    E-Print Network [OSTI]

    Vliet, G. C.; Askey, J. L.

    1984-01-01T23:59:59.000Z

    Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence...

  10. Using Compressed Air Efficiency Projects to Reduce Peak Industrial Electric Demands: Lessons Learned

    E-Print Network [OSTI]

    Skelton, J.

    "To help customers respond to the wildly fluctuating energy markets in California, Pacific Gas & Electric (PG&E) initiated an emergency electric demand reduction program in October 2000 to cut electric use during peak periods. One component...

  11. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  12. Demand Response in U.S. Electricity Markets: Empirical Evidence

    SciTech Connect (OSTI)

    Cappers, Peter; Goldman, Charles; Kathan, David

    2009-06-01T23:59:59.000Z

    Empirical evidence concerning demand response (DR) resources is needed in order to establish baseline conditions, develop standardized methods to assess DR availability and performance, and to build confidence among policymakers, utilities, system operators, and stakeholders that DR resources do offer a viable, cost-effective alternative to supply-side investments. This paper summarizes the existing contribution of DR resources in U.S. electric power markets. In 2008, customers enrolled in existing wholesale and retail DR programs were capable of providing ~;;38,000 MW of potential peak load reductions in the United States. Participants in organized wholesale market DR programs, though, have historically overestimated their likely performance during declared curtailments events, but appear to be getting better as they and their agents gain experience. In places with less developed organized wholesale market DR programs, utilities are learning how to create more flexible DR resources by adapting legacy load management programs to fit into existing wholesale market constructs. Overall, the development of open and organized wholesale markets coupled with direct policy support by the Federal Energy Regulatory Commission has facilitated new entry by curtailment service providers, which has likely expanded the demand response industry and led to product and service innovation.

  13. A demand responsive bidding mechanism with price elasticity matrix in wholesale electricity pools

    E-Print Network [OSTI]

    Wang, Jiankang, Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    In the past several decades, many demand-side participation features have been applied in the electricity power systems. These features, such as distributed generation, on-site storage and demand response, add uncertainties ...

  14. The behavioral response to voluntary provision of an environmental public good: Evidence from residential electricity demand

    E-Print Network [OSTI]

    Kotchen, Matthew J.

    residential electricity demand Grant D. Jacobsen a,n , Matthew J. Kotchen b,c , Michael P. Vandenbergh d online 25 February 2012 JEL classification: H41 Q42 G54 Keywords: Green electricity Voluntary environmental protection Carbon offset Renewable energy Moral licensing Residential electricity demand a b s t r

  15. Direct Adaptive Control of Electricity Demand S. Keshav and C. Rosenberg

    E-Print Network [OSTI]

    Waterloo, University of

    Report CS-2010-17 ABSTRACT The legacy electrical grid upper-bounds a customer's en- ergy demand using An electrical grid supplies reliable power to residential, industrial, and commercial customers by dynamicallyDirect Adaptive Control of Electricity Demand S. Keshav and C. Rosenberg School of Computer Science

  16. On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic Dispatch

    E-Print Network [OSTI]

    Chen, Yiling

    On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic;On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic Dispatch Abstract Information asymmetry in retail electricity markets is one of the largest sources of inef

  17. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01T23:59:59.000Z

    for 90% of household electricity consumption in China. Usinggives an annual electricity consumption of 12kWh assumingto look at is electricity consumption at the household

  18. Projected electric power demands for the Potomac Electric Power Company. Volume 1

    SciTech Connect (OSTI)

    Estomin, S.; Kahal, M.

    1984-03-01T23:59:59.000Z

    This three-volume report presents the results of an econometric forecast of peak and electric power demands for the Potomac Electric Power Company (PEPCO) through the year 2002. Volume I describes the methodology, the results of the econometric estimations, the forecast assumptions and the calculated forecasts of peak demand and energy usage. Separate sets of models were developed for the Maryland Suburbs (Montgomery and Prince George's counties), the District of Columbia and Southern Maryland (served by a wholesale customer of PEPCO). For each of the three jurisdictions, energy equations were estimated for residential and commercial/industrial customers for both summer and winter seasons. For the District of Columbia, summer and winter equations for energy sales to the federal government were also estimated. Equations were also estimated for street lighting and energy losses. Noneconometric techniques were employed to forecast energy sales to the Northern Virginia suburbs, Metrorail and federal government facilities located in Maryland.

  19. Stackelberg Game based Demand Response for At-Home Electric Vehicle Charging

    E-Print Network [OSTI]

    Bahk, Saewoong

    Member, IEEE Abstract--Consumer electricity consumption can be controlled through electricity prices and customers respond accordingly with their electricity consumption levels. In particular, the demands as a game [7]. Note that in reality, electricity retailers are significantly regulated by governments

  20. THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY PROFESSION

    E-Print Network [OSTI]

    1 THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY, Iowa State University ABSTRACT There is a tremendous imbalance between engineering workforce demand and supply in the world in general, and in the US, in particular. The electric power and energy industry

  1. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01T23:59:59.000Z

    Domestic Electric Storage Water Heater (DESWH) Test Methodsfans, washing machines, water heaters and space heaters.and Space Heating Water heater intensities and electric

  2. aggregate electricity demand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: LBNL-6417E Grid Integration of Aggregated Demand Response, Part I: Load Availability Profiles Resources 4 12;12;12;CHAPTER 3:...

  3. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01T23:59:59.000Z

    fossil fuel for thermal electric generation. This will beThermal-Electric Energy Supply The shortfall in hydroelectric energy supply will be made up prim- arily by greater reliance upon thermal generation

  4. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01T23:59:59.000Z

    replaced with heat pump water heaters (efficiency of 250%).electric storage water heaters and heat pumps as shown infor Electric Water Heaters and Heat Pumps End Use Elec WH HP

  5. Increasing primary energy and electricity demand. Persistent energy deficit situation.

    E-Print Network [OSTI]

    -dependence on coal. 450 million people without access to electricity. Off-grid (basic lighting, irrigation pumps, etc

  6. Electricity Distribution Networks: Investment and Regulation, and Uncertain Demand

    E-Print Network [OSTI]

    Jamasb, Tooraj; Marantes, Cristiano

    2011-01-31T23:59:59.000Z

    " and describes a network investment assessment model developed as a tool to identify and assess the investment requirements of distribution networks. A broadening of the scope of network investments to include demand-related measures that can reduce the need...

  7. Quantifying Changes in Building Electricity Use, with Application to Demand Response

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Price, Phillip N.; Kiliccote, Sila; Piette, Mary Ann

    2010-11-17T23:59:59.000Z

    We present methods for analyzing commercial and industrial facility 15-minute-interval electric load data. These methods allow building managers to better understand their facility's electricity consumption over time and to compare it to other buildings, helping them to ask the right questions to discover opportunities for demand response, energy efficiency, electricity waste elimination, and peak load management. We primarily focus on demand response. Methods discussed include graphical representations of electric load data, a regression-based electricity load model that uses a time-of-week indicator variable and a piecewise linear and continuous outdoor air temperature dependence, and the definition of various parameters that characterize facility electricity loads and demand response behavior. In the future, these methods could be translated into easy-to-use tools for building managers.

  8. Demand Response in U.S. Electricity Markets: Empirical Evidence

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01T23:59:59.000Z

    the second half of the wholesale electric market equation.response with Midwest ISO wholesale markets, report no.DR Programs in Wholesale Markets 18

  9. Electricity demand as frequency controlled reserves, ENS (Smart...

    Open Energy Info (EERE)

    implementation, data analyses, etc., a technology will be developed in which the electricity consumption will be used as a frequencycontrolled reserve (DFR). References...

  10. Electricity demand as frequency controlled reserves, ForskEL...

    Open Energy Info (EERE)

    controlled reserve (DFR) implementation, a system that automatically stops or starts electricity consumption in response to system frequency variations. References "EU...

  11. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01T23:59:59.000Z

    standby power, space heaters, and water heating) account forDomestic Electric Storage Water Heater (DESWH) Test Methodswashing machines, water heaters and space heaters. BUENAS

  12. The role of building technologies in reducing and controlling peak electricity demand

    SciTech Connect (OSTI)

    Koomey, Jonathan; Brown, Richard E.

    2002-09-01T23:59:59.000Z

    Peak power demand issues have come to the fore recently because of the California electricity crisis. Uncertainties surrounding the reliability of electric power systems in restructured markets as well as security worries are the latest reasons for such concerns, but the issues surrounding peak demand are as old as the electric utility system itself. The long lead times associated with building new capacity, the lack of price response in the face of time-varying costs, the large difference between peak demand and average demand, and the necessity for real-time delivery of electricity all make the connection between system peak demand and system reliability an important driver of public policy in the electric utility sector. This exploratory option paper was written at the request of Jerry Dion at the U.S.Department of Energy (DOE). It is one of several white papers commissioned in 2002 exploring key issues of relevance to DOE. This paper explores policy-relevant issues surrounding peak demand, to help guide DOE's research efforts in this area. The findings of this paper are as follows. In the short run, DOE funding of deployment activities on peak demand can help society achieve a more economically efficient balance between investments in supply and demand-side technologies. DOE policies can promote implementation of key technologies to ameliorate peak demand, through government purchasing, technology demonstrations, and improvements in test procedures, efficiency standards, and labeling programs. In the long run, R&D is probably the most important single leverage point for DOE to influence the peak demand issue. Technologies for time-varying price response hold great potential for radically altering the way people use electricity in buildings, but are decades away from widespread use, so DOE R&D and expertise can make a real difference here.

  13. Export demand response in the Ontario electricity market

    SciTech Connect (OSTI)

    Peerbocus, Nash; Melino, Angelo

    2007-11-15T23:59:59.000Z

    Export responses to unanticipated price shocks can be a key contributing factor to the rapid mean reversion of electricity prices. The authors use event analysis - a technique more familiar from financial applications - to demonstrate how hourly export transactions respond to negative supply shocks in the Ontario electricity market. (author)

  14. Electric power supply and demand for the contiguous United States, 1980-1989

    SciTech Connect (OSTI)

    None

    1980-06-01T23:59:59.000Z

    A limited review is presented of the outlook for the electric power supply and demand during the period 1980 to 1989. Only the adequacy and reliability aspects of bulk electric power supply in the contiguous US are considered. The economic, financial and environmental aspects of electric power system planning and the distribution of electricity (below the transmission level) are topics of prime importance, but they are outside the scope of this report.

  15. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01T23:59:59.000Z

    Heating and Space Heating Water heater intensities and electric equipment marketheating intensities per region (North and Transition) were also taken from that study, along with conditioned floor space and equipment market

  16. Innovative and Progressive Electric Utility Demand-Side Management Strategies

    E-Print Network [OSTI]

    Epstein, G. J.; Fuller, W. H.

    Conservation of electric energy has been a concern of energy users in the residential, commercial and industrial sectors for several decades, and has increased in significance since the 1973 energy shortages. During this time, it has also become...

  17. Solutions for Summer Electric Power Shortages: Demand Response andits Applications in Air Conditioning and Refrigerating Systems

    SciTech Connect (OSTI)

    Han, Junqiao; Piette, Mary Ann

    2007-11-30T23:59:59.000Z

    Demand response (DR) is an effective tool which resolves inconsistencies between electric power supply and demand. It further provides a reliable and credible resource that ensures stable and economical operation of the power grid. This paper introduces systematic definitions for DR and demand side management, along with operational differences between these two methods. A classification is provided for DR programs, and various DR strategies are provided for application in air conditioning and refrigerating systems. The reliability of DR is demonstrated through discussion of successful overseas examples. Finally, suggestions as to the implementation of demand response in China are provided.

  18. California's Summer 2004 Electricity Supply and Demand Outlook

    E-Print Network [OSTI]

    to be 750 megawatts (MW) lower because of ongoing repairs to the Pacific Northwest DC transmission line, 2, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness transmission or system-wide electricity failures will occur; and, · No significant gaming (manipulation

  19. Table 11.1 Electricity: Components of Net Demand, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology by1 Electricity: Components of

  20. Table 11.2 Electricity: Components of Net Demand, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology by1 Electricity: Components

  1. Demand Response in U.S. Electricity Markets: Empirical Evidence |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton:|Electricity PolicyAct of 2005:

  2. Analysis of PG E's residential end-use metered data to improve electricity demand forecasts

    SciTech Connect (OSTI)

    Eto, J.H.; Moezzi, M.M.

    1992-06-01T23:59:59.000Z

    It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

  3. The impact of changes in electric transmission regulation on coal demand

    SciTech Connect (OSTI)

    Finn, E.J.

    1996-12-31T23:59:59.000Z

    The likely impact of changes in regulation of electric transmission and the environmental impacts associated with those changes on the demand for coal by the electric utility industry are discussed. Since the electric utility industry is currently the largest user of coal (in 1992, 87% of coal consumed in the United States was used to generate electricity by electric utilities) any systematic change in the electric utility industry could ripple through the coal industry. What deregulation or changes in regulations in the electric industry is occurring or has occurred at the federal level and the expected impact on the demand for coal are discussed. From the point of view of the electric industry, at least, the primary variable driving demand for coal up or down is its price relative to alternate fuels, particularly natural gas. This is no surprise. Regardless of how the regulators increase or alter their scrutiny of the industry, fundamental economics will prevail. Indeed, with the changes in regulation moving toward more free and open competition, those forces will move even more to the forefront.

  4. Abstract--Forecasting of future electricity demand is very important for decision making in power system operation and

    E-Print Network [OSTI]

    Ducatelle, Frederick

    Abstract--Forecasting of future electricity demand is very important for decision making in power industry, accurate forecasting of future electricity demand has become an important research area for secure operation, management of modern power systems and electricity production in the power generation

  5. Statewide Electricity and Demand Capacity Savings from the Implementation of IECC Code in Texas: Analysis for Single-Family Residences

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J.C.; Haberl, J.; Lewis, C.; Yazdani, B.

    2011-01-01T23:59:59.000Z

    STATEWIDE ELECTRICITY AND DEMAND CAPACITY SAVINGS FROM THE IMPLEMENTATION OF IECC CODE IN TEXAS: ANALYSIS FOR SINGLE?FAMILY RESIDENCES 11th International Conference for Enhanced Building Operations New York City, October 18 ? 20, 2011 Hyojin...&M University System Statewide Electricity and Demand Savings from the IECC Code in TX 11th ICEBO Conference Oct. 18 ? 20, 2011 2 Outline Introduction Methodology Base?Case Building Results Summary Statewide Electricity and Demand Savings from the IECC...

  6. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect (OSTI)

    McKane, Aimee; Rhyne, Ivin; Piette, Mary Ann; Thompson, Lisa; Lekov, Alex

    2008-08-01T23:59:59.000Z

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This 'electricity value chain' defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to 'demo' potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives. In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

  7. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect (OSTI)

    McKane, Aimee; Rhyne, Ivin; Lekov, Alex; Thompson, Lisa; Piette, MaryAnn

    2009-08-01T23:59:59.000Z

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This ?electricity value chain? defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to"demo" potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives.1 In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

  8. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  9. A Fresh Look at Weather Impact on Peak Electricity Demand and

    E-Print Network [OSTI]

    and Renewable Energy, the U.S.-China Clean Energy Research Center for Building Energy Efficiency, of the U Institute, Taiwan, ROC May 2013 This work was supported by the Assistant Secretary for Energy Efficiency at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

  10. Statewide Electricity and Demand Capacity Savings from the Implementation of IECC Code in Texas: Analysis for Single-Family Residences

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J.C.; Haberl, J.

    2011-01-01T23:59:59.000Z

    This paper presents estimates of the statewide electricity and electric demand savings achieved from the adoption of the International Energy Conservation Code (IECC) for single-family residences in Texas and includes the corresponding increase...

  11. Design for implementation : fully integrated charging & docking infrastructure used in Mobility-on-Demand electric vehicle fleets

    E-Print Network [OSTI]

    Martin, Jean Mario Nations

    2012-01-01T23:59:59.000Z

    As the technology used in electric vehicles continues to advance, there is an increased demand for urban-appropriate electric charging stations emphasizing a modern user interface, robust design, and reliable functionality. ...

  12. Statewide Emissions Reduction, Electricity and Demand Savings from the Implementation of Building-Energy-Codes in Texas

    E-Print Network [OSTI]

    Yazdani, B.; Haberl, J.; Kim, H.; Baltazar, J.C.; Zilbershtein, G.

    2012-01-01T23:59:59.000Z

    This paper focuses on the estimate of electricity reduction and electric demand savings from the adoption energy codes for single-family residences in Texas, 2002-2009, corresponding increase in cnstruction costs and estimates of the statewide...

  13. Use of bonus payments in an experimental study of electricity demand

    SciTech Connect (OSTI)

    Fishe, R.P.H. (Univ. of Miami, FL); McAfee, R.P.

    1983-08-01T23:59:59.000Z

    Results of an analysis show that the use of bonus payments in an experimental study of electricity demand is directly related to the income effects in the Slutsky equation. As with the income effect, it is not possible to predetermine the sign of the bonus effect. Theoretical results predict that if the relationship between the bonus payment and consumption of electricity is severed, then households would unambiguously increase consumption. The authors conclude that bonus plans will reduce electricity consumption and could be an alternative approach to promoting conservation. 10 references, 1 table.

  14. Demand-response (DR) programs, in which facilities reduce their electric loads in response to a utility signal, represent a

    E-Print Network [OSTI]

    The Issue Demand-response (DR) programs, in which facilities reduce their electric loads (Figure 1). The testing covered four Lighting the Way to Demand ResponseLighting the Way to Demand Response California Energy Commission's Public Interest Energy Research Program Technical Brief PIER

  15. The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market

    SciTech Connect (OSTI)

    Baek, Young Sun [ORNL; Hadley, Stanton W [ORNL

    2012-01-01T23:59:59.000Z

    This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

  16. Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options Neufville Professor of Engineering Systems Chair, ESD Education Committee #12;2 #12;3 Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities By Chia

  17. Influence of Climate Change Mitigation Technology on Global Demands of Water for Electricity Generation

    SciTech Connect (OSTI)

    Kyle, G. Page; Davies, Evan; Dooley, James J.; Smith, Steven J.; Clarke, Leon E.; Edmonds, James A.; Hejazi, Mohamad I.

    2013-01-17T23:59:59.000Z

    Globally, electricity generation accounts for a large and potentially growing water demand, and as such is an important component to assessments of global and regional water scarcity. However, the current suite—as well as potential future suites—of thermoelectric generation technologies has a very wide range of water demand intensities, spanning two orders of magnitude. As such, the evolution of the generation mix is important for the future water demands of the sector. This study uses GCAM, an integrated assessment model, to analyze the global electric sector’s water demands in three futures of climate change mitigation policy and two technology strategies. We find that despite five- to seven-fold expansion of the electric sector as a whole from 2005 to 2095, global electric sector water withdrawals remain relatively stable, due to the retirement of existing power plants with water-intensive once-through flow cooling systems. In the scenarios examined here, climate policies lead to the large-scale deployment of advanced, low-emissions technologies such as carbon dioxide capture and storage (CCS), concentrating solar power, and engineered geothermal systems. In particular, we find that the large-scale deployment of CCS technologies does not increase long-term water consumption from hydrocarbon-fueled power generation as compared with a no-policy scenario without CCS. Moreover, in sensitivity scenarios where low-emissions electricity technologies are required to use dry cooling systems, we find that the consequent additional costs and efficiency reductions do not limit the utility of these technologies in achieving cost-effective whole-system emissions mitigation.

  18. High Electric Demand Days: Clean Energy Strategies for Improving Air Quality

    Broader source: Energy.gov [DOE]

    This presentation by Art Diem of the State and Local Capacity Building Branch in the U.S. Environmental Protection Agency was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  19. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect (OSTI)

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01T23:59:59.000Z

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  20. Electrical Energy and Demand Savings from a Geothermal Heat Pump ESPC at Fort Polk, LA

    SciTech Connect (OSTI)

    Shonder, John A [ORNL; Hughes, Patrick [ORNL

    1997-06-01T23:59:59.000Z

    At Fort Polk, Louisiana, the space-conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. At the same time, other efficiency measures, such as compact fluorescent lights, low-flow hot water outlets, and attic insulation, were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. Fifteen-minute interval data were also taken on energy use from a sample of the residences. The analysis presented in this paper shows that for a typical meteorological year, the retrofits result in an electrical energy savings of approximately 25.6 million kWh, or 32.4% of the pre-retrofit electrical use in family housing. Peak electrical demand has also been reduced by about 6.8 MW, which is 40% of pre-retrofit peak demand. In addition, the retrofits save about 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the 'apparent' energy savings observed in the monitored data and are not to be mistaken for the 'contracted' energy savings used as the basis for payments. To determine the 'contracted' energy savings, the 'apparent' energy savings may require adjustments for such things as changes in indoor temperature performance criteri, addition of ceiling fans, and other factors.

  1. SmartCap: Flattening Peak Electricity Demand in Smart Homes Sean Barker, Aditya Mishra, David Irwin, Prashant Shenoy, and Jeannie Albrecht

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    SmartCap: Flattening Peak Electricity Demand in Smart Homes Sean Barker, Aditya Mishra, David Irwin--Flattening household electricity demand reduces generation costs, since costs are disproportionately affected by peak demands. While the vast majority of household electrical loads are interactive and have little scheduling

  2. Electricity demand-side management for an energy efficient future in China : technology options and policy priorities

    E-Print Network [OSTI]

    Cheng, Chia-Chin

    2005-01-01T23:59:59.000Z

    The main objective of this research is to identify robust technology and policy options which achieve substantial reductions in electricity demand in China's Shandong Province. This research utilizes a scenario-based ...

  3. Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application

    E-Print Network [OSTI]

    Meckler, G.

    1985-01-01T23:59:59.000Z

    Based on an experimental residential retrofit incorporating thermal storage, and extensive subsequent modeling, a commercial design was developed and implemented to use hot thermal storage to significantly reduce electric demand and utility energy...

  4. Integrating demand into the U.S. electric power system : technical, economic, and regulatory frameworks for responsive load

    E-Print Network [OSTI]

    Black, Jason W. (Jason Wayne)

    2005-01-01T23:59:59.000Z

    The electric power system in the US developed with the assumption of exogenous, inelastic demand. The resulting evolution of the power system reinforced this assumption as nearly all controls, monitors, and feedbacks were ...

  5. Statewide Electricity and Demand Capacity Savings from the Implementation of IECC Code in Texas: Analysis for Single-Family Residences 

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J.C.; Haberl, J.; Lewis, C.; Yazdani, B.

    2011-01-01T23:59:59.000Z

    al. 1996) ? Annual statewide electricity savings ($/yr) = MWh savings/yr x annual average electricity price ($/kWh)1 1U.S. DOE EIA (2011) Statewide Electricity and Demand Savings from the IECC Code in TX 11th ICEBO Conference Oct. 18 ? 20, 2011 9... Methodology (1/4) Building?Level Analysis ? Calculated ?per?house? energy savings and peak demand reductions ? ESL simulation model based on the DOE?2.1e of a single?family residence ? Two options by the type of heating fuel ? Electric/gas house...

  6. Measured electric hot water standby and demand loads from Pacific Northwest homes

    SciTech Connect (OSTI)

    Pratt, R.G.; Ross, B.A.

    1991-11-01T23:59:59.000Z

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  7. Automated Demand Response: The Missing Link in the Electricity Value Chain

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01T23:59:59.000Z

    and Open Automated Demand Response. In Grid Interop Forum.Berkeley National Laboratory. Demand Response ResearchCenter, Demand Response Research Center PIER Team Briefing,

  8. Quantifying Changes in Building Electricity Use, with Application to Demand Response

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    and techniques for demand response,” Lawrence BerkeleyNational action plan on demand response,” Prepared with the3] G. He?ner, “Demand response valuation frameworks paper,”

  9. Automated Demand Response: The Missing Link in the Electricity Value Chain

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01T23:59:59.000Z

    Laboratory. Berkeley. Demand Response Research Center,and Automated Demand Response in Wastewater TreatmentLaboratory. Berkeley. Demand Response Research Center,

  10. Load-side Demand Management in Buildings using Controlled Electric Springs

    E-Print Network [OSTI]

    Soni, Jayantika; Krishnanand, KR; Panda, Sanjib

    2014-01-01T23:59:59.000Z

    The concept of demand-side management for electricand simulation of demand-side management potential in urbanin smart grids, demand side management has been a keen topic

  11. Modeling of Electric Water Heaters for Demand Response: A Baseline PDE Model

    SciTech Connect (OSTI)

    Xu, Zhijie; Diao, Ruisheng; Lu, Shuai; Lian, Jianming; Zhang, Yu

    2014-09-05T23:59:59.000Z

    Demand response (DR)control can effectively relieve balancing and frequency regulation burdens on conventional generators, facilitate integrating more renewable energy, and reduce generation and transmission investments needed to meet peak demands. Electric water heaters (EWHs) have a great potential in implementing DR control strategies because: (a) the EWH power consumption has a high correlation with daily load patterns; (b) they constitute a significant percentage of domestic electrical load; (c) the heating element is a resistor, without reactive power consumption; and (d) they can be used as energy storage devices when needed. Accurately modeling the dynamic behavior of EWHs is essential for designing DR controls. Various water heater models, simplified to different extents, were published in the literature; however, few of them were validated against field measurements, which may result in inaccuracy when implementing DR controls. In this paper, a partial differential equation physics-based model, developed to capture detailed temperature profiles at different tank locations, is validated against field test data for more than 10 days. The developed model shows very good performance in capturing water thermal dynamics for benchmark testing purposes

  12. Statewide Electricity and Demand Capacity Savings from the International Energy Conservation Code (IECC) Adoption for Single-Family Residences in Texas (2002-2011)

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J. C.; Haberl, J. S.; Yazdani, B.

    2013-01-01T23:59:59.000Z

    This report is the continuation of the previous 2011 Statewide Electricity Savings report from code-compliant, single-family residences built between 2002 and 2009. Statewide electricity and electric demand savings achieved from the adoption...

  13. Industrial-Load-Shaping: The Practice of and Prospects for Utility/Industry Cooperation to Manage Peak Electricity Demand

    E-Print Network [OSTI]

    Bules, D. J.; Rubin, D. E.; Maniates, M. F.

    in programs that influence electric demand in ways that produce desired changes in the pattern and magnitude of a utility's electric load profile. These programs, commonly termed "de mand side management" (DSH) , have a customer orien tation... such a rescheduling. The residential customer class appears least suited to load-shaping efforts. Al though characterized by a relatively low load-profile (high peak-to-average ratio) and consistent electricity consumption pat terns, the timing...

  14. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

  15. Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts

    SciTech Connect (OSTI)

    Eto, J.H.; Moezzi, M.M.

    1992-06-01T23:59:59.000Z

    It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

  16. Price Responsive Demand in New York Wholesale Electricity Market using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2013-01-01T23:59:59.000Z

    and provide demand response (DR) through building controland provide demand response (DR) through building controlDemand Response Automation Server (DRAS) in a 15-minute interval. This allows the continuous monitoring of the building's

  17. Price Responsive Demand in New York Wholesale Electricity Market using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2013-01-01T23:59:59.000Z

    3. Price Variations of Wholesale Electricity Markets for NYC4. Price Variations of Wholesale Electricity Markets for NYCDemand in New York Wholesale Electricity Market using

  18. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01T23:59:59.000Z

    is fraction of total electricity consumption for commercialy) ! calculate total electricity consumption for the end-useis fraction of total electricity consumption for residential

  19. High ozone concentrations on hot days: The role of electric power demand and NOx1 , Linda Hembeck1

    E-Print Network [OSTI]

    Dickerson, Russell R.

    of tropospheric17 ozone, leading to concerns that global warming may exacerbate smog episodes. This18 widely1 High ozone concentrations on hot days: The role of electric power demand and NOx1 emissions2 3 Park,10 MD 20742, U.S.11 12 Key words: power plant emissions, ozone production efficiency, climate

  20. In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes

    SciTech Connect (OSTI)

    Puttagunta, S.; Shapiro, C.

    2012-04-01T23:59:59.000Z

    CARB partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and LAMELs through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and lighting, appliances, and miscellaneous loads (LAMELs).

  1. Load-side Demand Management in Buildings using Controlled Electric Springs

    E-Print Network [OSTI]

    Soni, Jayantika; Krishnanand, KR; Panda, Sanjib

    2014-01-01T23:59:59.000Z

    Load-side Demand Management in Buildings using Controlleddemand side management has been a keen topic of interest. Buildings,

  2. Automated Demand Response: The Missing Link in the Electricity Value Chain

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01T23:59:59.000Z

    Missing Link in the Electricity Value Chain Aimee McKane*,Missing Link in the Electricity Value Chain Aimee McKane,grid reliability and lower electricity use during periods of

  3. Automated Demand Response: The Missing Link in the Electricity Value Chain

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01T23:59:59.000Z

    Missing Link in the Electricity Value Chain Aimee McKane,Missing Link in the Electricity Value Chain Aimee McKane,grid reliability and lower electricity use during periods of

  4. Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.

    1997-06-01T23:59:59.000Z

    At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  5. California's Electricity Supply and Demand Balance Over the Next Five Years

    E-Print Network [OSTI]

    and Northwest over the past two years by about 8,000 megawatts. Natural gas prices have declined from the high the resources of the system. The Commission's 2003 Baseline Demand forecast assumes the following assumptions September October 1 CEC 2003 Baseline Demand Forecast (1-in-2 Weather)1, 2 3

  6. Statewide Electrical Energy Cost Savings and Peak Demand Reduction from the IECC Code-Compliant, Single-Family Residences in Texas (2002-2009)

    E-Print Network [OSTI]

    Kim, H; Baltazar, J.C.; Haberl, J.

    ESL-TR-11-02-01 STATEWIDE ELECTRICITY AND DEMAND CAPACITY SAVINGS FROM THE INTERNATIONAL ENERGY CONSERVATION CODE (IECC) ADOPTION FOR SINGLE-FAMILY RESIDENCES IN TEXAS (2002-2009) Hyojin Kim Juan-Carlos Baltazar...&M University EXECUTIVE SUMMARY Statewide electricity and electric demand savings achieved from the adoption of the different International Energy Conservation Code (IECC) versions for single-family residences in Texas and the corresponding construction...

  7. Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey

    E-Print Network [OSTI]

    Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

    1996-01-01T23:59:59.000Z

    travel by electric and hybrid vehicles. SAE Technical PapersIn contrast to a hybrid vehicle which combines multipleElectric, Hybrid and Other Alternative Vehicles. A r t h u r

  8. Modeling demand for electric vehicles: the effect of car users' attitudes and perceptions

    E-Print Network [OSTI]

    Bierlaire, Michel

    electric cars and petrol-driven ones and in particular which include the respondents' own cars. Electric vehicles have major advantages compared to the petrol-driven ones: they do not emit carbon dioxyde

  9. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    electricity demand forecast means that the region's electricity needs would grow by 5,343 average megawattsDemand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required in electricity demand is, of course, crucial to determining the need for new electricity resources and helping

  10. Forecasting the demand for electric vehicles: accounting for attitudes and perceptions

    E-Print Network [OSTI]

    Bierlaire, Michel

    prediction, transportation, attitudes and perceptions, hybrid choice models, fractional factorial design: survey design, model estimation and forecasting. We develop a stated preferences (SP) survey with issues related to the application of models designed to forecast demand for new alternatives, most

  11. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    SciTech Connect (OSTI)

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02T23:59:59.000Z

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  12. Automated Demand Response Technologies and Demonstration in New York City using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2014-01-01T23:59:59.000Z

    customers need to reduce energy demand during expensiveadditive) $11.42 / kW-max demand Energy Delivery Charges Alltype, floor space, peak demand, energy supplier, DR program

  13. Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems

    E-Print Network [OSTI]

    Han, Junqiao; Piette, Mary Ann

    2008-01-01T23:59:59.000Z

    for DR and demand side management, along with operationalresponse), DSM (demand side management), DR strategy, air

  14. Examination of the Regional Supply and Demand Balance for Renewable Electricity in the United States through 2015: Projecting from 2009 through 2015 (Revised)

    SciTech Connect (OSTI)

    Bird, L.; Hurlbut, D.; Donohoo, P.; Cory, K.; Kreycik, C.

    2010-06-01T23:59:59.000Z

    This report examines the balance between the demand and supply of new renewable electricity in the United States on a regional basis through 2015. It expands on a 2007 NREL study that assessed the supply and demand balance on a national basis. As with the earlier study, this analysis relies on estimates of renewable energy supplies compared to demand for renewable energy generation needed to meet existing state renewable portfolio standard (RPS) policies in 28 states, as well as demand by consumers who voluntarily purchase renewable energy. However, it does not address demand by utilities that may procure cost-effective renewables through an integrated resource planning process or otherwise.

  15. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 1: Statewide Electricity Demand, End-User Natural Gas Demand, and Energy Efficiency The California Energy Demand 2014-2024 Preliminary Forecast, Volume 1: Statewide Electricity Demand

  16. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    Energy Commission's final forecasts for 2012­2022 electricity consumption, peak, and natural gas demand Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand

  17. Cloud Security by Max Garvey

    E-Print Network [OSTI]

    Tolmach, Andrew

    Cloud Security Survey by Max Garvey #12;Cloudy Cloud is Cloudy What is the cloud? On Demand Service Network access Resource pooling Elasticity of Resources Measured Service #12;Cloud Types/Variants Iaa Cloud Public Cloud Hybrid Cloud combination. Private cloud with overflow going to public cloud. #12

  18. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01T23:59:59.000Z

    appliance_standards/. DOE EIA. 2011a. The Electricity Marketof Energy, Energy Information Administration (EIA)(DOE EIA 2013). The methods and assumptions implemented in

  19. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13T23:59:59.000Z

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

  20. Converting 15-Minute Interval Electricity Load Data into Reduced Demand, Energy Reduction and Cash Flow

    E-Print Network [OSTI]

    Herrin, D. G.

    , store managers are intimidated. 5 So what are the solutions? • A data acquisition system. • Pro-active with alarming and demand-response. Is there staff to maintain and ensure a response? • Passive. Acquire the data and then evaluate and assess... is not required, this will prevent the requirement for additional costs of installing an OAT sensor at the building and potentially adding costs to the datalogger hardware or configuration. If possible, it is best to use and on-site OAT sensor. If a demand-response...

  1. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

  2. Statewide Electrical Energy Cost Savings and Peak Demand Reduction from the IECC Code-Compliant, Single-Family Residences in Texas (2002-2009) 

    E-Print Network [OSTI]

    Kim, H; Baltazar, J.C.; Haberl, J.

    2011-01-01T23:59:59.000Z

    ............................................................................................................................ 5? 3? ENERGY SAVINGS AND DEMAND REDUCTIONS PER HOUSE ............................................... 8? 3.1? Annual Per-House Energy Consumption ......................................................................................... 8? 3....2? Annual Per-House Energy Savings from Adoption of the 2001 and 2006 IECC ............................ 9? 3.3? Per-House Peak Demand Reductions from 2001 and 2006 IECC ................................................... 9? 4? STATEWIDE ELECTRICITY...

  3. Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program

    SciTech Connect (OSTI)

    Pratt, R.G.; Ross, B.A.

    1991-11-01T23:59:59.000Z

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  4. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    advanced metering and demand response in electricityGoldman, and D. Kathan. “Demand response in U.S. electricity29] DOE. Benefits of demand response in electricity markets

  5. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    E-Print Network [OSTI]

    DeForest, Nicholas

    2014-01-01T23:59:59.000Z

    residential cooling energy demand to climate change, Energy,M. Sivak, Potential energy demand for cooling in the 50of the potential cooling energy demand comes from developing

  6. Electric Demand Reduction for the U.S. Navy Public Works Center San Diego, California

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW

    2000-09-30T23:59:59.000Z

    Pacific Northwest National Laboratory investigated the profitability of operating a Navy ship's generators (in San Diego) during high electricity price periods rather than the ships hooking up to the Base electrical system for power. Profitability is predicated on the trade-off between the operating and maintenance cost incurred by the Navy for operating the ship generators and the net profit associated with the sale of the electric power on the spot market. In addition, PNNL assessed the use of the ship's generators as a means to achieve predicted load curtailments, which can then be marketed to the California Independent System Operator.

  7. Dynamic pricing and stabilization of supply and demand in modern electric power grids

    E-Print Network [OSTI]

    Roozbehani, Mardavij

    The paper proposes a mechanism for real-time pricing of electricity in smart power grids, with price stability as the primary concern. In previous publications the authors argued that relaying the real-time wholesale market ...

  8. Floating offshore wind farms : demand planning & logistical challenges of electricity generation

    E-Print Network [OSTI]

    Nnadili, Christopher Dozie, 1978-

    2009-01-01T23:59:59.000Z

    Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

  9. Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior

    SciTech Connect (OSTI)

    John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

    2010-11-01T23:59:59.000Z

    Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Davis’s Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOE’s Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

  10. Max Schulze

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneo Matthew Cuneo MatthewEnergyMauroMauryMax

  11. Max Schulze

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition |MaterialsMatt DozierWaltherMattyMax

  12. The Impact of Residential Air Conditioner Charging and Sizing on Peak Electrical Demand

    E-Print Network [OSTI]

    Neal, L.; O'Neal, D. L.

    rebate and maintenance programs for many years. The purpose of these programs was to improve the efficiency of the stock of air conditioning equipment and provide better demand-side management. This paper examines the effect of refrigerant charging... increases. The cooling load is assumed to be zero at an outdoor temperature of 70 F. This would assume an internal heat gain equal to approximately 8 F if the thermostat setting is at 78 F. The house load is also assumed to be equal to the test unit...

  13. Solar Two is a concentrating solar power plant that can supply electric power "on demand"

    E-Print Network [OSTI]

    Laughlin, Robert B.

    . Solar One used water as a working fluid to generate the steam required to drive a conven- tional turbine steam, and electricity is produced by a conventional steam turbine. After the molten salt has cooled to about 285°C (550°F) in producing the steam, it is again pumped to the top of the tower to be heated

  14. The Impact of Residential Air Conditioner Charging and Sizing on Peak Electrical Demand 

    E-Print Network [OSTI]

    Neal, L.; O'Neal, D. L.

    1992-01-01T23:59:59.000Z

    . Dennis L. O'Neal Department of Mechanical Engineering Texas A & M University College Station, TX Federal and state governments can also impact the choice of central air conditioners/heat pumps through requirements mandated by legislation.... The National Energy Efficient Appliances Act requires an SEER of JO for all split-system central air conditioners or heat pumps manufactured after January 1, 1992, and an SEER of 9.7 for all package systems manufactured after January 1, 1993 [I]. Electric...

  15. Demand Response is Focus of New Effort by Electricity Industry Leaders |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton:|Electricity PolicyAct of

  16. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    the California Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand

  17. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak, and natural Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility

  18. AVTA: 2013 Ford C-MAX HEV Testing Results

    Broader source: Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford C-MAX HEV (a hybrid electric vehicle).

  19. Optimal Demand Response Libin Jiang

    E-Print Network [OSTI]

    Optimal Demand Response Libin Jiang Steven Low Computing + Math Sciences Electrical Engineering Caltech Oct 2011 #12;Outline Caltech smart grid research Optimal demand response #12;Global trends 1

  20. Peak-Coincident Demand Savings from Behavior-Based Programs: Evidence from PPL Electric's Behavior and Education Program

    E-Print Network [OSTI]

    Stewart, James

    2013-01-01T23:59:59.000Z

    A Review. Energy Policy 38 PPL Electric. 2012. First AnnualBased Programs: Evidence from PPL Electric’s Behavior andreports on the effects of PPL Electric’s behavior-based

  1. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    gas demands are forecast for the four natural gas utilitythe 2006-2016 Forecast. Commercial natural gas demand isforecasts and demand scenarios. Electricity planning area Natural gas

  2. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

  3. Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems

    E-Print Network [OSTI]

    Han, Junqiao; Piette, Mary Ann

    2008-01-01T23:59:59.000Z

    Demand Response Research Center Staff Scientist, Lawrence Berkeley National Laboratory 1 Cyclotron, Building

  4. Abstract--This paper formulates and develops a peak demand control tool for electric systems within the framework of direct

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad CatĂłlica de Chile)

    techniques. Index Terms--Demand Side Management, direct load control, peak demand control, genetic algorithms in order to evaluate the suitability of the decision chosen. The Demand Side Management (DSM) plans attempt for central air conditioning systems in commercial buildings, hence allowing a measured control of peak demand

  5. Abstract--This paper formulates and develops a peak demand control tool for electric systems within the framework of direct

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad CatĂłlica de Chile)

    techniques. Index Terms--Demand Side Management, direct load control, peak demand control, genetic algorithms in order to evaluate the suitability of the decision chosen. Demand Side Management (DSM) plans attempt for central air conditioning systems in commercial buildings, hence allowing a measured control of peak demand

  6. Sandia National Laboratories: How a Grid Manager Meets Demand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand (Load) How a Grid Manager Meets Demand (Load) In the "historical" electric grid, power-generating plants fell into three categories: No daily electrical demand data plot...

  7. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01T23:59:59.000Z

    B. Atanasiu (2006). Electricity Consumption and Efficiencywill see their electricity consumption rise significantly.the bulk of household electricity consumption in developing

  8. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    SciTech Connect (OSTI)

    McNeil, Michael A.; Iyer, Maithili

    2009-05-30T23:59:59.000Z

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

  9. A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real-World Electricity Pricing

    E-Print Network [OSTI]

    Urgaonkar, Bhuvan

    1 A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real bills. Our focus is on a subset of this work that carries out demand response (DR) by modulating

  10. A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real-World Electricity Pricing

    E-Print Network [OSTI]

    Urgaonkar, Bhuvan

    1 A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real for optimizing their utility bills. Our focus is on a subset of this work that carries out demand response (DR

  11. Electrical Demand Management

    E-Print Network [OSTI]

    Fetters, J. L.; Teets, S. J.

    1983-01-01T23:59:59.000Z

    bination of a 2200 ton, the 1200 ton and the 800 ton units or by two 2200 ton units. We sought to di sp 1ace the 1200 ton or part of a 2200 ton unit with two steam turbi ne chill ers duri ng peak hours at a total reduced cost for supplying all building...

  12. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01T23:59:59.000Z

    Domestic Electric Storage Water Heater (DESWH) Test Methodsby products 5 , and water heaters. Appliance diffusion isor endorsement levels. Water Heaters The share of electric

  13. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01T23:59:59.000Z

    stand-by products 5 , and water heaters. Appliance diffusionDomestic Electric Storage Water Heater (DESWH) Test Methodsor endorsement levels. Water Heaters The share of electric

  14. Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world

    SciTech Connect (OSTI)

    Heffner, Grayson C.

    2002-09-01T23:59:59.000Z

    The restructuring of regional and national electricity markets in the U.S. and around the world has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created new opportunities for technologies and business approaches that allow load serving entities and other aggregators to control and manage the load patterns of wholesale and retail end-users they serve. Demand Response Programs, once called Load Management, have re-emerged as an important element in the fine-tuning of newly restructured electricity markets. During the summers of 1999 and 2001 they played a vital role in stabilizing wholesale markets and providing a hedge against generation shortfalls throughout the U.S.A. Demand Response Programs include ''traditional'' capacity reservation and interruptible/curtailable rates programs as well as voluntary demand bidding programs offered by either Load Serving Entities (LSEs) or regional Independent System Operators (ISOs). The Lawrence Berkeley National Lab (LBNL) has been monitoring the development of new types of Demand Response Programs both in the U.S. and around the world. This paper provides a survey and overview of the technologies and program designs that make up these emerging and important new programs.

  15. Dynamic Control of Electricity Cost with Power Demand Smoothing and Peak Shaving for Distributed Internet Data Centers

    E-Print Network [OSTI]

    Rahman, A.K.M. Ashikur

    and efficiently manage the electricity cost of distributed IDCs based on the Locational Marginal Pricing (LMP on the electricity price in- formation of the regions where IDCs are located. Based on this observation various of all, due to electricity-price based biased work- load distribution, the IDCs located at relatively

  16. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency SEPTEMBER 2013 CEC2002013004SDV1REV CALIFORNIA The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 1: Statewide Electricity Demand and Methods

  17. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 2: Electricity Demand by Utility Planning Area Energy Policy Report. The forecast includes three full scenarios: a high energy demand case, a low

  18. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    E-Print Network [OSTI]

    DeForest, Nicholas

    2014-01-01T23:59:59.000Z

    N ATIONAL L ABORATORY Thermal Energy Storage for Electricity20, 2012. I. Dincer, On thermal energy storage systems andin research on cold thermal energy storage, International

  19. Open Automated Demand Response Communications Specification (Version 1.0)

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    Keywords: demand response, buildings, electricity use, Interface  Automated Demand Response  Building Automation of demand response in  commercial buildings.   One key 

  20. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    SciTech Connect (OSTI)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01T23:59:59.000Z

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small office; and 5) simulated energy savings and peak demand reduction by energy conservation measures using the TMY3 weather data can be significantly underestimated or overestimated. It is crucial to run multi-decade simulations with AMY weather data to fully assess the impact of weather on the long-term performance of buildings, and to evaluate the energy savings potential of energy conservation measures for new and existing buildings from a life cycle perspective.

  1. The European Electricity Grid System and Winter Peak Load Stress: For how long can the european grid system survive the ever increasing demand during cold winter days?

    E-Print Network [OSTI]

    Dittmar, Michael

    2008-01-01T23:59:59.000Z

    The rich countries of Western Europe and its citizens benefited during at least the last 30 years from an extraordinary stable electricity grid. This stability was achieved by the european grid system and a large flexible and reliable spare power plant capacity. This system allowed a continuous demand growth during the past 10-20 years of up to a few % per year. However, partially due to this overcapacity, no new large power plants have been completed during the past 10-15 years. The obvious consequence is that the reliable spare capacity has been reduced and that a further yearly demand growth of 1-2% for electric energy can only be achieved if new power plants will be constructed soon. Data from various European countries, provided by the UCTE, indicate that the system stress during peak load times and especially during particular cold winter days is much larger than generally assumed. In fact, the latest UCTE data on reliable power capacity indicate that already during the Winter 2007/8 only a few very col...

  2. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    Commission (FERC) 2008a. “Wholesale Competition in RegionsDemand Response into Wholesale Electricity Markets,” (URL:1 2. Wholesale and Retails Electricity Markets in

  3. Demand Response - Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    prices or when grid reliability is jeopardized. In regions with centrally organized wholesale electricity markets, demand response can help stabilize volatile electricity prices...

  4. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    demand-side management (DSM) framework presented in Table x provides three major areas for changing electric loads in buildings:

  5. Equity Effects of Increasing-Block Electricity Pricing

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    Evidence from Residential Electricity Demand,” Review ofLester D. “The Demand for Electricity: A Survey,” The BellResidential Demand for Electricity under Inverted Block

  6. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    more than 40% of end-use energy demand. It is important toin terms of building energy supply and demand. Additionally,to evaluate energy performance and demand response. Accurate

  7. Congestion control in charging of electric vehicles

    E-Print Network [OSTI]

    Carvalho, Rui; Gibbens, Richard; Kelly, Frank

    2015-01-01T23:59:59.000Z

    The increasing penetration of electric vehicles over the coming decades, taken together with the high cost to upgrade local distribution networks, and consumer demand for home charging, suggest that managing congestion on low voltage networks will be a crucial component of the electric vehicle revolution and the move away from fossil fuels in transportation. Here, we model the max-flow and proportional fairness protocols for the control of congestion caused by a fleet of vehicles charging on distribution networks. We analyse the inequality in the charging times as the vehicle arrival rate increases, and show that charging times are considerably more uneven in max-flow than in proportional fairness. We also analyse the onset of instability, and find that the critical arrival rate is indistinguishable between the two protocols.

  8. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    s natural gas and electricity sectors within the timeframeto California’s electricity sector led to rolling blackoutsimpacts on the electricity sector is the hourly demand

  9. Automated Demand Response and Commissioning

    SciTech Connect (OSTI)

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01T23:59:59.000Z

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  10. 97055-97044 Revision C May 2007 Ion Max and Ion Max-S

    E-Print Network [OSTI]

    97055-97044 Revision C May 2007 Ion Max and Ion Max-S API Source Hardware Manual #12;© 2007 Thermo, it meets all pertinent electromagnetic compatibility (EMC) and safety standards as described below. EMC/23/EEC and harmonized standard EN 61010-1:2001. Changes that you make to your system may void compliance

  11. Neurton Damage and MAX Phase Ternary Compounds

    SciTech Connect (OSTI)

    Barsoum, Michael; Hoffman, Elizabeth; Sindelar, Robert; Garcua-Duaz, Brenda; Kohse, Gordon

    2014-06-17T23:59:59.000Z

    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the resonse of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  12. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency DECEMBER 2013 CEC2002013004SFV1 CALIFORNIA and expertise of numerous California Energy Commission staff members in the Demand Analysis Office. In addition

  13. Draft for Public Comment Appendix A. Demand Forecast

    E-Print Network [OSTI]

    in the planning process. Electricity demand is forecast to grow from 20,080 average megawatts in 2000 to 25 forecast of electricity demand is a required component of the Council's Northwest Regional Conservation and Electric Power Plan.1 Understanding growth in electricity demand is, of course, crucial to determining

  14. Industrial Equipment Demand and Duty Factors

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

  15. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    2001. “Electricity Demand Side Management Study: Review ofEpping/North Ryde Demand Side Management Scoping Study:Energy Agency Demand Side Management (IEA DSM) Programme:

  16. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    Demand Response in Commercial Buildings 3.1. Demand Response in Commercial Buildings ElectricityDemand Response: Understanding the DR potential in commercial buildings

  17. Examining Uncertainty in Demand Response Baseline Models and Variability in Automated Response to Dynamic Pricing

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    demand response and energy ef?ciency in commercial buildings,”building control strategies and techniques for demand response,”building electricity use with application to demand response,”

  18. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    PA. 3. DEMAND RESPONSE IN COMMERCIAL BUILDINGS ElectricityDemand Response and Energy Efficiency in Commercial BuildingsDemand Response and Energy Efficiency in Commercial Buildings

  19. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    high.  Demand response helps to manage building electricity Building  Control Strategies and Techniques for Demand Response.  Non?Residential Building in California.   Demand Response 

  20. Cooperative Demand Response Using Repeated Game for Price-Anticipating Buildings in Smart Grid

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01T23:59:59.000Z

    1. Demand response with price-anticipating buildings. C.one-stage demand response because all the building managersbuilding electricity use, with application to demand response,”

  1. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Monitoring in an Agent-Based Smart Home, Proceedings of theConference on Smart Homes and Health Telematics, September,Smart Meter Motion sensors Figure 1: Schematic of the Demand Response Electrical Appliance Manager in a Home.

  2. Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5... for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 5 What is Demand Response? ?The temporary reduction of electricity demanded from the grid by an end-user in response to capacity shortages, system reliability events, or high wholesale...

  3. Harnessing the power of demand

    SciTech Connect (OSTI)

    Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

    2008-03-15T23:59:59.000Z

    Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

  4. ERCOT Demand Response Paul Wattles

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    changes or incentives.' (FERC) · `Changes in electric use by demand-side resources from their normalERCOT Demand Response Paul Wattles Senior Analyst, Market Design & Development, ERCOT Whitacre thermostats -- Other DLC Possible triggers: Real-time prices, congestion management, 4CP response paid

  5. Demand Response This is the first of the Council's power plans to treat demand response as a resource.1

    E-Print Network [OSTI]

    Demand Response This is the first of the Council's power plans to treat demand response the resource and describes some of the potential advantages and problems of the development of demand response. WHAT IS DEMAND RESPONSE? Demand response is a change in customers' demand for electricity corresponding

  6. Decision-making in demand-side management collaboratives: The influence of non-utility parties on electric-utility policies and programs

    SciTech Connect (OSTI)

    Schweitzer, M. [Oak Ridge National Lab., TN (United States); English, M.; Schexnayder, S. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1995-07-01T23:59:59.000Z

    Since the late 1980s, a number of electric utilities and interested non-utility parties (NUPs)-such as environmental groups, large industrial customers, and state government agencies-have tried a new approach to reaching agreement on program design and policy issues related to utility use of Demand-Side Management (DSM) resources. Through this new arrangement, known as the DSM collaborative process, parties who have often been adversaries attempt to resolve their differences through compromise and consensus rather than by using traditional litigation. This paper-which is based on studies of over a dozen collaboratives nationwide-discusses the organizational structure of collaboratives, the ways in which NUPs have been involved in the decision-making process, and how the amount of influence exerted by the NUPs is related to collaborative accomplishments. Most of the collaboratives studied had two organizational levels: a {open_quotes}working group{close_quotes} that provided policy direction and guidance for the collaborative and {open_quotes}subgroups{close_quotes} that performed the detailed tasks necessary to flesh out individual DSM programs. Most collaboratives also had a coordinator who was charged with scheduling meetings, exchanging information, and performing other important organizational functions, and it was common for the utility to fund consultants to provide expert assistance for the NUPs. In general, the utilities reserved the final decision-making prerogative for themselves, in line with their ultimate responsibility to shareholders, customers, and regulators. Still, there was substantial variation among the collaboratives in terms of how actively consensus was sought and how seriously the inputs of the NUPs were taken. In general, the collaboratives that resulted in the largest effects on utility DSM usage were those in which the utilities were most willing to allow their decisions to be shaped by the NUPs.

  7. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    Response Controls for HVAC Systems Clifford Federspiel,tests. Figure 5: Specific HVAC electric power consumptioncontrol, demand response, HVAC, wireless Executive Summary

  8. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01T23:59:59.000Z

    El-Saadany. “A summary of demand response in electricityadvanced metering and demand response in electricityWolak. When it comes to demand response is FERC is own worst

  9. Demand Control Utilizing Energy Management Systems - Report of Field Tests

    E-Print Network [OSTI]

    Russell, B. D.; Heller, R. P.; Perry, L. W.

    1984-01-01T23:59:59.000Z

    Energy Management systems and particularly demand controllers are becoming more popular as commercial and light industrial operations attempt to reduce their electrical usage and demand. Numerous techniques are used to control energy use and demand...

  10. Emerging Technologies for Industrial Demand-Side Management

    E-Print Network [OSTI]

    Neely, J. E.; Kasprowicz, L. M.

    Demand-side management (DSM) is a set of actions taken by an electric utility to influence the electricity usage by a customer. Typical DSM activities include rebates for higher efficiency appliances and discounted electric rates for electric...

  11. Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

  12. Behavioral Aspects in Simulating the Future US Building Energy Demand

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    USA, and published in the Conference Proceedings SBEAM Functionality Commercial Lighting Equipment Marketshare Commercial Electricity DemandUSA, and published in the Conference Proceedings SBEAM Functionality Commercial Lighting Equipment Marketshare Commercial Electricity Demand

  13. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant...

  14. "apsched: request exceeds max nodes, alloc"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "apsched: request exceeds max nodes, alloc" runtime error message: "apsched: request exceeds max nodes, alloc" September 12, 2014 (0 Comments) Symptom: User jobs with single or...

  15. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    Demand Side Management Framework for Industrial Facilities provides three major areas for changing electric loads in industrial buildings:

  16. The Case for Electric Vehicles

    E-Print Network [OSTI]

    Sperling, Daniel

    2001-01-01T23:59:59.000Z

    land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

  17. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01T23:59:59.000Z

    electricity costs (energy and demand charges), $ C EVTOU pricing for both energy and power (demand) charges. Themicrogrid to avoid high demand and energy charges during

  18. PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022

    E-Print Network [OSTI]

    PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022 AUGUST 2011 CEC-200-2011-011-SD CALIFORNIA for electric vehicles. #12;ii #12;iii ABSTRACT The Preliminary California Energy Demand Forecast 2012 includes three full scenarios: a high energy demand case, a low energy demand case, and a mid energy demand

  19. Demand Response Spinning Reserve Demonstration

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01T23:59:59.000Z

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  20. Demand Response and Open Automated Demand Response

    E-Print Network [OSTI]

    LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

  1. Reliability implications of price responsive demand : a study of New England's power system

    E-Print Network [OSTI]

    Whitaker, Andrew C. (Andrew Craig)

    2011-01-01T23:59:59.000Z

    With restructuring of the traditional, vertically integrated electricity industry come new opportunities for electricity demand to actively participate in electricity markets. Traditional definitions of power system ...

  2. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

  3. Near-Optimal Execution Policies for Demand-Response Contracts in Electricity Markets Vineet Goyal1, Garud Iyengar1 and Zhen Qiu1

    E-Print Network [OSTI]

    Goyal, Vineet

    -side participation including time of use pricing, real-time pricing for smart appliances and interruptible demand-AR0000235 the real-time spot price that can be significantly higher than the day-ahead price, especially contracts (if any) to offset the imbalance instead of paying the real-time spot price. Therefore

  4. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    Energy Commission's preliminary forecasts for 2014­2024 electricity consumption and peak: Electricity Demand by Utility Planning Area MAY 2013 CEC-200-2013-004-SD-V2 Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P. Oglesby Executive

  5. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST

    E-Print Network [OSTI]

    procurement process at the California Public Utilities Commission. This forecast was produced with the Energy Commission demand forecast models. Both the staff draft energy consumption and peak forecasts are slightly and commercial sectors. Keywords Electricity demand, electricity consumption, demand forecast, weather

  6. Graphical language for identification of control strategies allowing Demand Response

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Graphical language for identification of control strategies allowing Demand Response David DA SILVA. This will allow the identification of the electric appliance availability for demand response control strategies to be implemented in terms of demand response for electrical appliances. Introduction An important part

  7. Field Demonstration of Automated Demand Response for Both Winter and

    E-Print Network [OSTI]

    ) is a demand-side management strategy to reduce electricity use during times of high peak electric loads;1 Field Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings of a series of field test of automated demand response systems in large buildings in the Pacific Northwest

  8. Demand Response Programs for Oregon

    E-Print Network [OSTI]

    wholesale prices and looming shortages in Western power markets in 2000-01, Portland General Electric programs for large customers remain, though they are not active at current wholesale prices. Other programs demand response for the wholesale market -- by passing through real-time prices for usage above a set

  9. Max-Planck-Institut fr biologische Kybernetik Max Planck Institute for Biological Cybernetics

    E-Print Network [OSTI]

    Engineering (Aeronautics) The Max Planck Institute for Biological Cybernetics in Tübingen, Germany launches

  10. Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement

    E-Print Network [OSTI]

    Bode, Josh

    2013-01-01T23:59:59.000Z

    Measuring Short-term Air Conditioner Demand Reductions forMeasuring Short-term Air Conditioner Demand Reductions forpilots have shown that air conditioner (AC) electric loads

  11. Survey of Western U.S. Electric Utility Resource Plans

    E-Print Network [OSTI]

    Wilkerson, Jordan

    2014-01-01T23:59:59.000Z

    future peak power and energy demand, electricity generation,timelines, and energy demand. An inaccurate prediction ofto reduce their annual energy demand in 2020 by 39 TWh (

  12. Modeling Electric Vehicle Benefits Connected to Smart Grids

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    tariff-driven demand response in these buildings. By usingbuilding electricity costs distributed energy resources costs fuel costs demand responsebuilding energy systems. Local storage will enable demand response.

  13. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3

  14. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3January

  15. Quantifying the Variable Effects of Systems with Demand Response Resources

    E-Print Network [OSTI]

    Gross, George

    Quantifying the Variable Effects of Systems with Demand Response Resources Anupama Kowli and George in the electricity industry. In particular, there is a new class of consumers, called demand response resources (DRRs

  16. An Object-Oriented Method for ASCET Max Fuchs and Dieter Nazareth

    E-Print Network [OSTI]

    98MF19 BMW-ROOM An Object-Oriented Method for ASCET Max Fuchs and Dieter Nazareth BMW AG, 80788 Munich Maximilian.Fuchs,Dieter.Nazareth@bmw.de Dirk Daniel and Bernhard Rumpe Department of Computer kitchen without a cooking book. Plans to employ the tool for BMW vehicle software sparked off demand

  17. ,"Table 3A.1. January Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3 andA.1. January

  18. ,"Table 3B.1. FRCC Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3 andA.1.

  19. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3 andA.1.6"

  20. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3January 2010"

  1. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3January3a. January

  2. ,"Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3January3a. JanuaryB

  3. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01T23:59:59.000Z

    sjstems (ITS) Electricity Sector Promoting nuclear useindustrial and electricity generation sectors (Table 4-2).In the industrial sector, electricity demand will increase,

  4. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    in Demand Response for Wholesale Ancillary Services. ” Incan be used to link wholesale and retail real-time prices.11 Wholesale Electricity Market Information

  5. SGDP Report Now Available: Interoperability of Demand Response...

    Office of Environmental Management (EM)

    and demonstrate methodologies to enhance the ability of customer sited demand response resources, both conventional and renewable, to integrate more effectively with electric...

  6. SGDP Report: Interoperability of Demand Response Resources Demonstrati...

    Office of Environmental Management (EM)

    and demonstrate methodologies to enhance the ability of customer sited demand response resources, both conventional and renewable, to integrate more effectively with electric...

  7. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CA Control Areas CO 2 Carbon Dioxide CHP Combined Heat and Power CPP Critical Peak Pricing DG Distributed Generation DOE Department of Energy DR Demand Response DRCC Demand...

  8. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01T23:59:59.000Z

    Total Energy Source Demand Coal, Oil, Gas, Heat, ElectricityEnergy Source Demand per Household Coal, Oil, Gas, Heat,ton of oil equivalent Considerable increases in demand for

  9. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    value of re- newable electricity; and customer surveys ofCalifornia or Northwestern electricity demand. This may bebetween wind speed and electricity demand," Solar Energy,

  10. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

  11. Empirical Analysis of the Spot Market Implications of Price-Responsive Demand

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Bartholomew, Emily S.; Marnay, Chris

    2008-01-01T23:59:59.000Z

    and Demand Response in Electricity Markets,” CSEM Working Paper CSEM-WP-105, University of California Energy Institute, Berkeley, CA, USA.USA. Siddiqui, AS (2004), “Price-Elastic Demand in Deregulated Electricity

  12. Climate control : smart thermostats, demand response, and energy efficiency in Austin, Texas

    E-Print Network [OSTI]

    Bowen, Brian (Brian Richard)

    2015-01-01T23:59:59.000Z

    Energy efficiency and demand response are critical resources for the transition to a cleaner electricity grid. Demand-side management programs can reduce electricity use during peak times when power is scarce and expensive, ...

  13. Physically-based demand modeling 

    E-Print Network [OSTI]

    Calloway, Terry Marshall

    1980-01-01T23:59:59.000Z

    Transactions on Automatic Control, vol. AC-19, December 1974, pp. 887-893. L3] |4] LS] [6] [7] LB] C. W. Brice and S. K. Jones, MPhysically-Based Demand Modeling, d EC-77-5-01-5057, RF 3673, Electric Power Institute, Texas A&M University, October 1978.... C. W. Br ice and 5, K, Jones, MStochastically-Based Physical Load Models Topical Report, " EC-77-5-01-5057, RF 3673, Electric Power Institute, Texas A&M University, May 1979. S. K. Jones and C. W. Brice, "Point Process Models for Power System...

  14. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  15. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01T23:59:59.000Z

    benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

  16. Min-max and min-max regret versions of some combinatorial optimization problems : a survey

    E-Print Network [OSTI]

    Boyer, Edmond

    , such as deterministic or stochastic approaches, will fail to protect against exceptional high-impact events (earthquakes-clefs : Min-max, min-max regret, optimisation combinatoire, complexité, ap- proximation, analyse de robustesse in order to max- imize the level of protection. Quantifying the protection level using the expected impact

  17. Electric Efficiency Standard

    Broader source: Energy.gov [DOE]

    In December 2009, the Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity...

  18. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19T23:59:59.000Z

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  19. A Successful Implementation with the Smart Grid: Demand Response Resources

    E-Print Network [OSTI]

    Gross, George

    1 A Successful Implementation with the Smart Grid: Demand Response Resources Contribution of intelligent line switching, demand response resources (DRRs), FACTS devices and PMUs is key in the smart grid events as a result of voluntary load curtailments. Index Terms--Electricity Markets, Demand Response re

  20. Opportunities and Challenges for Data Center Demand Response

    E-Print Network [OSTI]

    Wierman, Adam

    Opportunities and Challenges for Data Center Demand Response Adam Wierman Zhenhua Liu Iris Liu of renewable energy into the grid as well as electric power peak-load shaving: data center demand response. Data center demand response sits at the intersection of two growing fields: energy efficient data

  1. An Integrated Architecture for Demand Response Communications and Control

    E-Print Network [OSTI]

    Gross, George

    An Integrated Architecture for Demand Response Communications and Control Michael LeMay, Rajesh for the MGA and ZigBee wireless communications. Index Terms Demand Response, Advanced Meter Infrastructure. In principle this can be done with demand response techniques in which electricity users take measures

  2. Towards Continuous Policy-driven Demand Response in Data Centers

    E-Print Network [OSTI]

    Shenoy, Prashant

    Towards Continuous Policy-driven Demand Response in Data Centers David Irwin, Navin Sharma, and Prashant Shenoy University of Massachusetts, Amherst {irwin,nksharma,shenoy}@cs.umass.edu ABSTRACT Demand response (DR) is a technique for balancing electricity sup- ply and demand by regulating power consumption

  3. Demand Response Providing Ancillary A Comparison of Opportunities and

    E-Print Network [OSTI]

    LBNL-5958E Demand Response Providing Ancillary Services A Comparison of Opportunities Government or any agency thereof or The Regents of the University of California. #12;Demand Response System Reliability, Demand Response (DR), Electricity Markets, Smart Grid Abstract Interest in using

  4. LEED Demand Response Credit: A Plan for Research towards Implementation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2014-01-01T23:59:59.000Z

    demand-side management activities and commercial buildings’demand-side management (DSM) framework presented in Figure 1 provides continuous energy management concepts for shaping electric loads in buildings,demand-side management activities, DR methods and levels of automation. We highlight OpenADR as a standard for commercial buildings

  5. Management of Power Demand through Operations of Building Systems

    E-Print Network [OSTI]

    ElSherbini, A. I.; Maheshwari, G.; Al-Naqib, D.; Al-Mulla, A.

    In hot summers, the demand for electrical power is dominated by the requirements of the air-conditioning and lighting systems. Such systems account for more than 80% of the peak electrical demand in Kuwait. A study was conducted to explore...

  6. Modelling the Energy Demand of Households in a Combined

    E-Print Network [OSTI]

    Steininger, Karl W.

    . Emissions from passenger transport, households'electricity and heat consumption are growing rapidly despite demand analysis for electricity (e.g. Larsen and Nesbakken, 2004; Holtedahl and Joutz, 2004Modelling the Energy Demand of Households in a Combined Top Down/Bottom Up Approach Kurt Kratena

  7. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29T23:59:59.000Z

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  8. Hydrogen and electricity: Parallels, interactions,and convergence

    E-Print Network [OSTI]

    Yang, Christopher

    2008-01-01T23:59:59.000Z

    impacts of marginal electricity demand for CA hydrogenUS DOE, 2007. EIA. Electricity data. [cited 2007 March 2,F. Decarbonized hydrogen and electricity from natural gas.

  9. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

  10. Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    building control strategies and techniques for demand response,”demand response and energy ef?ciency in commercial buildings,”building electricity use with application to demand response,”

  11. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15T23:59:59.000Z

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  12. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    potential as-available renewable over generation issues,examining many of the roadmap renewable integration options.integration of significant renewable resources into the HECO

  13. SUMMER 2006 ELECTRICITY SUPPLY AND DEMAND OUTLOOK

    E-Print Network [OSTI]

    (Average Forced and Planned)............................................ 15 Line 11: Zonal Transmission ............................................................................. 16 Line 14: High Zonal Transmission Limitation ................................................... 16, contractors, and subcontractors make no warrant, express or implied, and assume no legal liability

  14. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    Examination Table 1. HECO Water Heater Direct Control –Reliability Table 2. HECO Water Heater Direct Control –criteria for current water heater and air conditioning

  15. Electric Utility Demand-Side Evaluation Methodologies

    E-Print Network [OSTI]

    Treadway, N.

    of many publ ic projects because it provides a framework for public agency appraisal of noncommercial activities. Its application allows a summary of the benefits and costs of an activity from the perspective of society and the taxpayer or... of the rate impact at one point in tim.e. Rates do not change for ':the nonparticipant, or? for anyone ~lse unti 1. ?autil.ity' requests and receives a rate change. In Texas;.? r?atesar.e? based on the average embedded costs of a? one year historic time...

  16. Implications of Low Electricity Demand Growth

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has Hydrocarbon,2014 EIA

  17. Uranium 2009 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01T23:59:59.000Z

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  18. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    DECC aggregator managed portfolio automated demand responseaggregator designs their own programs, and offers demand responseaggregator is responsible for designing and implementing their own demand response

  19. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Data for Automated Demand Response in Commercial Buildings,Demand Response Infrastructure for Commercial Buildings",demand response and energy efficiency functions into the design of buildings,

  20. Demand response enabling technology development

    E-Print Network [OSTI]

    Arens, Edward; Auslander, David; Huizenga, Charlie

    2008-01-01T23:59:59.000Z

    behavior in developing a demand response future. Phase_II_Demand Response Enabling Technology Development Phase IIYi Yuan The goal of the Demand Response Enabling Technology

  1. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

  2. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Demand Response Enabling Technology Development Phase IEfficiency and Demand Response Programs for 2005/2006,Application to Demand Response Energy Pricing” SenSys 2003,

  3. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings”, Lawrencesystems. Demand Response using HVAC in Commercial BuildingsDemand Response Test in Large Facilities13 National Conference on Building

  4. Max Tech and Beyond Design Competition

    Broader source: Energy.gov [DOE]

    The Max Tech and Beyond Design Competition is an annual competition run by the Department of Energy (DOE) and the Lawrence Berkeley National Laboratory (LBNL) that challenges students to design...

  5. Max-Planck-Institut fur Mathematik

    E-Print Network [OSTI]

    , and Nihat Ay Preprint no.: 60 2013 #12;#12;Information-driven intrinsic motivation in reinforcement learning Keyan Zahedi1 , Georg Martius1 , and Nihat Ay1,2 1 Information Theory of Cognitive Systems, Max Planck

  6. Max-Planck-Institut fur Mathematik

    E-Print Network [OSTI]

    information by Nils Bertschinger, Johannes Rauh, Eckehard Olbrich, J¨urgen Jost, and Nihat Ay Preprint no1 , J¨urgen Jost1,2 , Nihat Ay1,2 1Max Planck Institute for Mathematics in the Sciences, Leipzig

  7. MaxPlanckInstitut fur Mathematik

    E-Print Network [OSTI]

    of strongly interacting Markov chains by Nihat Ay and Thomas Wennekers Preprint no.: 107 2001 #12; #12; Dynamical Properties of Strongly Interacting Markov Chains Nihat Ay and Thomas Wennekers Max

  8. Max-Planck-Institut fur Mathematik

    E-Print Network [OSTI]

    and Approximation Errors of Restricted Boltzmann Machines by Guido Mont´ufar, Johannes Rauh, and Nihat Ay Preprint F. Montufar1 , Johannes Rauh1 , Nihat Ay1,2 1 Max Planck Institute for Mathematics in the Sciences

  9. Max-Planck-Institut f ur Mathematik

    E-Print Network [OSTI]

    stochastic interaction in directed acyclic networks (revised version: March 2002) by Nihat Ay Preprint no.: 54 2001 #12; #12; Locality of Global Stochastic Interaction in Directed Acyclic Networks Nihat Ay Max

  10. Max-Planck-Institut fur Mathematik

    E-Print Network [OSTI]

    Universal Approximation in Embodied Systems by Guido Mont´ufar, Nihat Ay, and Keyan Ghazi-Zahedi Preprint no Planck Institute for Mathematics in the Sciences montufar@mis.mpg.de Nihat Ay Max Planck Institute

  11. Max-Planck-Institut fur Mathematik

    E-Print Network [OSTI]

    on complexity and stochastic interaction by Nihat Ay Preprint no.: 95 2001 #12; #12; Information Geometry on Complexity and Stochastic Interaction Nihat Ay Max-Planck-Institute for Mathematics in the Sciences Inselstr

  12. Electrical and Production Load Factors 

    E-Print Network [OSTI]

    Sen, Tapajyoti

    2010-07-14T23:59:59.000Z

    Load factors are an important simplification of electrical energy use data and depend on the ratio of average demand to peak demand. Based on operating hours of a facility they serve as an important benchmarking tool for ...

  13. Electrical and Production Load Factors

    E-Print Network [OSTI]

    Sen, Tapajyoti

    2010-07-14T23:59:59.000Z

    Load factors are an important simplification of electrical energy use data and depend on the ratio of average demand to peak demand. Based on operating hours of a facility they serve as an important benchmarking tool for the industrial sector...

  14. Energy Demand Staff Scientist

    E-Print Network [OSTI]

    Eisen, Michael

    Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused,000 2,000 3,000 4,000 5,000 6,000 7,000 2007 USChina #12;Overview:Overview: Key Energy Demand DriversKey Energy Demand Drivers · 290 million new urban residents 1990-2007 · 375 million new urban residents 2007

  15. Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

  16. Demand Response In California

    Broader source: Energy.gov [DOE]

    Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

  17. Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection

    E-Print Network [OSTI]

    Olsen, Daniel J.

    2014-01-01T23:59:59.000Z

    potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable

  18. Demand Side Bidding. Final Report

    SciTech Connect (OSTI)

    Spahn, Andrew

    2003-12-31T23:59:59.000Z

    This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

  19. Progress toward Producing Demand-Response-Ready Appliances

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Sastry, Chellury

    2009-12-01T23:59:59.000Z

    This report summarizes several historical and ongoing efforts to make small electrical demand-side devices like home appliances more responsive to the dynamic needs of electric power grids. Whereas the utility community often reserves the word demand response for infrequent 2 to 6 hour curtailments that reduce total electrical system peak load, other beneficial responses and ancillary services that may be provided by responsive electrical demand are of interest. Historically, demand responses from the demand side have been obtained by applying external, retrofitted, controlled switches to existing electrical demand. This report is directed instead toward those manufactured products, including appliances, that are able to provide demand responses as soon as they are purchased and that require few, or no, after-market modifications to make them responsive to needs of power grids. Efforts to be summarized include Open Automated Demand Response, the Association of Home Appliance Manufacturer standard CHA 1, a simple interface being developed by the U-SNAP Alliance, various emerging autonomous responses, and the recent PinBus interface that was developed at Pacific Northwest National Laboratory.

  20. Electric Drive Vehicle Infrastructure Deployment

    Broader source: Energy.gov (indexed) [DOE]

    pricing encourages off-peak energy * Smart Grid Integration o Charging stations with Demand Response, Time-of-Use Pricing, and AMI compatible with the modern electric grid *...

  1. POWERTECH 2009, JUNE 28 -JULY 2, 2009, BUCHAREST, ROMANIA 1 Incorporation of Demand Response Resources in

    E-Print Network [OSTI]

    Gross, George

    POWERTECH 2009, JUNE 28 - JULY 2, 2009, BUCHAREST, ROMANIA 1 Incorporation of Demand Response, IEEE, Abstract--The use of demand-side resources, in general, and demand response resources (DRRs concerns. Integration of demand response resources in the competitive electricity markets impacts resource

  2. Reduces electric energy consumption

    E-Print Network [OSTI]

    BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

  3. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    generator in California Power Plant Generating Costsplants in California and 1195 power plants collectively inbe banned in California, and they those power plants are not

  4. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    gas combined-cycle NGCT Natural gas combustion turbine NGSTfrom NGCC and natural gas combustion turbine (NGCT) powerthan that from average natural gas combustion turbine (NGCT)

  5. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    Generation from wind and solar power plants can be highlygrid. When wind stops blowing, another power plant must bethan intermittent wind availability or uncertain power plant

  6. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    global warming potentials of 23 and 296, respectively. Marginal electricityelectricity sector. State policies relevant to this dissertation are summarized below: Global Warming

  7. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    high fraction of coal generation, greenhouse gas emissionsimports in 2005 from [111]; instate coal generation adjustedaccordingly Instate coal generation set equal to 2005 value,

  8. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    from existing power plants without CCS technology declines.from existing NGCC and NGCT plants without CCS technology.Mixed technology grid profiles, existing nuclear plants are

  9. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    EIA-906, EIA-920, and EIA-923 Databases, Energy InformationDatabase (U.S. EPA database) EIA U.S. Energy Information

  10. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    cycle NGCT Natural gas combustion turbine NGST Natural gasfrom NGCC and natural gas combustion turbine (NGCT) powerfrom average natural gas combustion turbine (NGCT) plants.

  11. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    Economics, I. (2007) Wind Resources, Cost, and Performance (to higher generation costs than the Wind-heavy profile. The20% RPS, or Wind-heavy renewable profiles – cost increases

  12. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    power plants without carbon capture and sequestration. iiSystem Operator CCS Carbon capture and sequestration CECnew nuclear power or carbon capture and sequestration (CCS)

  13. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    in the state come renewable resources by 2010 [26]. Thegeneration to come from renewable resources by 2020 [27].loads until the renewable resource is available. Tehachapi

  14. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    turbine NGST Natural gas steam turbine NWPP Northwest Powerfrom natural gas steam turbine (NGST) and natural gasNGST = Natural gas steam turbine; NWPP = Northwest Power

  15. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    model simulates grid response to a number of scenarios relating to increased levels of vehicle recharging or renewable power

  16. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    coal), $2.50/MMBtu (biomass) No capital cost component for plantscosts $7/MMBtu, IGCC plants are not competitive, and no new coal-coal prices in LEDGE-CA .. 112 Figure 58. Comparison of dispatchable plant capacity using costs

  17. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    103 Figure 52. Relative solar thermal generation foris obscured. Future solar thermal power plants may have theThe SEGS facility is a solar thermal facility that can be

  18. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    the grid. Carbon capture and sequestration technology is notor carbon capture and sequestration (CCS) technology. The

  19. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    Photovoltaic Parabolic Small hydro Wind Hydro 1 Steam turbine and conventional hydro costs estimated from [144] Natural gas price

  20. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    plant dispatched – a nuclear plant, for example – ratherCalifornia’s two nuclear plants represent 8% of capacity,are coal facilities, one is a nuclear plant, and one is

  1. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    for the boom: a simulation study of power plant constructionLEDGE-CA simulations, about 22 GW of NGCT power plants arepower plant type (by prime mover), location, and ownership. Simulation

  2. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    Biomass Geothermal Small Hydro Solar Wind Statewide CA-N CA-with a relatively small hydro resource require additionaldairy Photovoltaic Parabolic Small hydro Wind Hydro 1 Steam

  3. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    competition between gas turbines and compressed air energyby fuel type, prime mover (gas turbine versus steam turbine,cycle NGCT Natural gas combustion turbine NGST Natural gas

  4. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    came from combustion turbines and steam turbines in 2005.hydro Wind Hydro 1 Steam turbine and conventional hydrogeneration from steam turbine and combustion turbine plants,

  5. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    Wind power planning: assessing long-term costs and benefits, Energy Policy,wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation, Energy Policy,wind or solar power will singularly provide a majority of renewable generation in a future with energy policies

  6. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    fractions of coal power, marginal emissions rates could beon coal power in LADWP leads to higher average emissionscoal-fired power plants, respectively, median hourly GHG emissions

  7. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01T23:59:59.000Z

    demand response is more environmentally friendly than fossil fueldemand response (DR) used in the commercial and industrial sectors is more environmentally friendly than fossil fuelfossil fuels are the predominant heating fuels for California’s commercial buildings, heating electricity demand

  8. energy: Supply, Demand, and impacts CooRDinATinG LeAD AUThoR

    E-Print Network [OSTI]

    Kammen, Daniel M.

    ;energy: supply, demand, and impacts 241 · Delivery of electricity may become more vulnerable is likely to have significant impacts. For example, a study found that electrical power blackouts and "sags, such as by increased peak electricity demand for cooling, damage to energy infrastructure by extreme events, disruption

  9. Satisfiability of Elastic Demand in the Smart Grid

    E-Print Network [OSTI]

    Tomozei, Dan-Cristian

    2010-01-01T23:59:59.000Z

    We study a stochastic model of electricity production and consumption where appliances are adaptive and adjust their consumption to the available production, by delaying their demand and possibly using batteries. The model incorporates production volatility due to renewables, ramp-up time, uncertainty about actual demand versus planned production, delayed and evaporated demand due to adaptation to insufficient supply. We study whether threshold policies stabilize the system. The proofs use Markov chain theory on general state space.

  10. Electric Power annual 1996: Volume II

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This document presents a summary of electric power industry statistics. Data are included on electric utility retail sales of electricity, revenues, environmental information, power transactions, emissions, and demand-side management.

  11. Interoperability of Demand Response Resources Demonstration in NY

    SciTech Connect (OSTI)

    Wellington, Andre

    2014-03-31T23:59:59.000Z

    The Interoperability of Demand Response Resources Demonstration in NY (Interoperability Project) was awarded to Con Edison in 2009. The objective of the project was to develop and demonstrate methodologies to enhance the ability of customer sited Demand Response resources to integrate more effectively with electric delivery companies and regional transmission organizations.

  12. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  13. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  14. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    An Exploration of Australian Petrol Demand: Unobserv- ableRelative Prices: Simulating Petrol Con- sumption Behavior.habit stock variable in a petrol demand regression, they

  15. Measurement and evaluation techniques for automated demand response demonstration

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-08-01T23:59:59.000Z

    The recent electricity crisis in California and elsewhere has prompted new research to evaluate demand response strategies in large facilities. This paper describes an evaluation of fully automated demand response technologies (Auto-DR) in five large facilities. Auto-DR does not involve human intervention, but is initiated at a facility through receipt of an external communications signal. This paper summarizes the measurement and evaluation of the performance of demand response technologies and strategies in five large facilities. All the sites have data trending systems such as energy management and control systems (EMCS) and/or energy information systems (EIS). Additional sub-metering was applied where necessary to evaluate the facility's demand response performance. This paper reviews the control responses during the test period, and analyzes demand savings achieved at each site. Occupant comfort issues are investigated where data are available. This paper discusses methods to estimate demand savings and results from demand response strategies at five large facilities.

  16. Max-Planck-Institut fur Mathematik

    E-Print Network [OSTI]

    Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) Corresponding author Dimensions $ L. Banjaia,1 , M. Kachanovskab, aDepartment of Mathematics, Heriot-Watt University, Edinburgh, EH14 4AS,UK bMax Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig

  17. Max-Planck-Institut f ur Mathematik

    E-Print Network [OSTI]

    physics are con­ sistent with the Moyal product of noncommutative field theory. An example­Witten noncommutative gauge theories by Friedemann Brandt, Carmelo P. Martin, and Fernando Ruiz Ruiz Preprint no.: 70­Witten noncommutative gauge theories Friedemann Brandt Max­Planck­Institute for Mathematics in the Sciences, Inselstra�e

  18. Max-Planck-Institut fur Mathematik

    E-Print Network [OSTI]

    18 1 Introduction Noncommutative quantum field theories (NCQFT) enjoy wide popularity among theoret. Quantum field theory on a noncommutative Minkowski spacetime was rigorously realised in [8]. The quantumJun2012 Wedge-Local Quantum Fields on a Nonconstant Noncommutative Spacetime A. Much Max

  19. Max-Planck-Institut fur Mathematik

    E-Print Network [OSTI]

    -organization of complex robotic behaviors by Georg Martius, Ralf Der, and Nihat Ay Preprint no.: 15 2013 #12;#12;Information driven self-organization of complex robotic behaviors Georg Martius1, Ralf Der1, Nihat Ay1,2 1Max

  20. Max-Planck-Institut fur Mathematik

    E-Print Network [OSTI]

    of Conditional Probability Polytopes by Guido Mont´ufar, Johannes Rauh, and Nihat Ay Preprint no.: 87 2014 #12 , and Nihat Ay1,2,3 {montufar, jrauh, nay}@mis.mpg.de 1 Max Planck Institute for Mathematics in the Sciences

  1. Max-Planck-Institut fur Mathematik

    E-Print Network [OSTI]

    of Conditional Restricted Boltzmann Machines for Sensorimotor Control by Guido Mont´ufar, Nihat Ay, and Keyan for Sensorimotor Control Guido Mont´ufar1 , Nihat Ay1,2,3 , and Keyan Zahedi1 1 Max Planck Institute

  2. Max-Planck-Institut fur Mathematik

    E-Print Network [OSTI]

    of Information Inequalities by Nihat Ay, and Walter Wenzel Preprint no.: 16 2011 #12;#12;On Solution Sets of Information Inequalities Nihat Ay1,2 & Walter Wenzel1,3 {nay, wenzel}@mis.mpg.de 1Max Planck Institute

  3. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    Declining coal stockpiles are a normal pattern most years from January to February as coal-fired generators meet winter electricity demand. The month-to-month stockpile change...

  4. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01T23:59:59.000Z

    No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

  5. DSM Electricity Savings Potential in the Buildings Sector in APP Countries

    E-Print Network [OSTI]

    McNeil, MIchael

    2011-01-01T23:59:59.000Z

    owned integrated hydro electricity utilities prevail,s Loading Order for Electricity Resources”, Staff Report,International Developments in Electricity Demand Management

  6. Integrated Mechanical & Electrical Engineering (IMEE)

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Integrated Mechanical & Electrical Engineering (IMEE) Department of Electronic & Electrical and electrical engineering are in great demand because of their ability to work on complex interdisciplinary and become an expert in the core areas of both mechanical and electrical engineering. Subject aims

  7. Demand response compensation, net Benefits and cost allocation: comments

    SciTech Connect (OSTI)

    Hogan, William W.

    2010-11-15T23:59:59.000Z

    FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

  8. Travel Demand Modeling

    SciTech Connect (OSTI)

    Southworth, Frank [ORNL; Garrow, Dr. Laurie [Georgia Institute of Technology

    2011-01-01T23:59:59.000Z

    This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

  9. CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Manager Kae Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency Demand Forecast report is the product of the efforts of many current and former California Energy

  10. Max Tech and Beyond: Fluorescent Lamps

    E-Print Network [OSTI]

    Scholand, Michael

    2012-01-01T23:59:59.000Z

    Laboratory, LBNL-4998E. General Electric Lamp and BallastEuropean Union General Electric High Intensity DischargeEnergy Saver”; and General Electric has a 26 watt T5 lamp (

  11. Open Automated Demand Response for Small Commerical Buildings

    SciTech Connect (OSTI)

    Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2009-05-01T23:59:59.000Z

    This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

  12. Topic A Awardee: Western Electricity Coordinating Council | Department...

    Office of Environmental Management (EM)

    factor in variables including electric demand, generation resources, energy policies, technology costs, impacts on transmission reliability, and emissions. The resulting...

  13. atomic electric company: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of California eScholarship Repository Summary: electricity grid, Outline potential demand response limitations, options, communication, and control technologies, and...

  14. Emerging Technologies for Industrial Demand-Side Management 

    E-Print Network [OSTI]

    Neely, J. E.; Kasprowicz, L. M.

    1993-01-01T23:59:59.000Z

    as demand-side management strategies for industrial consumers of electricity. An alternative strategy to replacing aging electric motors with high efficiency or ASD motors is a turbine let-down. A turbine letdown is a turbine which uses pressure reduction...

  15. Property:OpenEI/UtilityRate/DemandRateStructure/Tier1Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations JumpInformationEnergy

  16. Property:OpenEI/UtilityRate/DemandRateStructure/Tier5Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizationsInformation

  17. Property:OpenEI/UtilityRate/DemandRateStructure/Tier6Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins

  18. Outline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel

    E-Print Network [OSTI]

    Nagurney, Anna

    .S., electric power generation accounts for significant portions of fuel demands 30% of the natural gas demand (over 50% in the summer) 90% of the coal demand over 45% of the residual fuel oil demand #12;OutlineOutline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions

  19. Introduction Literature Review Integrated Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel

    E-Print Network [OSTI]

    Nagurney, Anna

    of fuel demands 30% of the natural gas demand (over 50% in the summer) 90% of the coal demand over 45% of the residual fuel oil demand. #12;Introduction Literature Review Integrated Electric Power Supply ChainsIntroduction Literature Review Integrated Electric Power Supply Chains Empirical Examples

  20. Only tough choices in Meeting growing demand

    SciTech Connect (OSTI)

    NONE

    2007-12-15T23:59:59.000Z

    U.S. electricity demand is not growing very fast by international or historical standards. Yet meeting this relatively modest growth is proving difficult because investment in new capacity is expected to grow at an even slower pace. What is more worrisome is that a confluence of factors has added considerable uncertainties, making the investment community less willing to make the long-term commitments that will be needed during the coming decade.

  1. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting Executive

  2. Max-Planck-Institut f ur Mathematik

    E-Print Network [OSTI]

    by the equations: (1.1) (# t +D)u = 0, u(x; 0) = #, and Bu = 0. The specific heat # is a section to the dual bundle V # . Let #(#, #, D, B)(t) := # M u# be the total heat energy content. As t # 0, there is a completeMax-Planck-Institut fË? ur Mathematik in den Naturwissenschaften Leipzig Heat content asymptotics

  3. Residential Demand Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    to the way they now behave. The intensity of end uses will change moderately in response to price changes. Electric end uses will continue to expand, but at a decreasing rate...

  4. Residential Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    to the way they now behave. The intensity of end-uses will change moderately in response to price changes. Electric end uses will continue to expand, but at a decreasing...

  5. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortal DecisionRichlandDelegations,Demand

  6. Open Automated Demand Response Communications Specification (Version 1.0)

    SciTech Connect (OSTI)

    Piette, Mary Ann; Ghatikar, Girish; Kiliccote, Sila; Koch, Ed; Hennage, Dan; Palensky, Peter; McParland, Charles

    2009-02-28T23:59:59.000Z

    The development of the Open Automated Demand Response Communications Specification, also known as OpenADR or Open Auto-DR, began in 2002 following the California electricity crisis. The work has been carried out by the Demand Response Research Center (DRRC), which is managed by Lawrence Berkeley National Laboratory. This specification describes an open standards-based communications data model designed to facilitate sending and receiving demand response price and reliability signals from a utility or Independent System Operator to electric customers. OpenADR is one element of the Smart Grid information and communications technologies that are being developed to improve optimization between electric supply and demand. The intention of the open automated demand response communications data model is to provide interoperable signals to building and industrial control systems that are preprogrammed to take action based on a demand response signal, enabling a demand response event to be fully automated, with no manual intervention. The OpenADR specification is a flexible infrastructure to facilitate common information exchange between the utility or Independent System Operator and end-use participants. The concept of an open specification is intended to allow anyone to implement the signaling systems, the automation server or the automation clients.

  7. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    SciTech Connect (OSTI)

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19T23:59:59.000Z

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  8. Residential Demand Response under Uncertainty Paul Scott and Sylvie Thiebaux and

    E-Print Network [OSTI]

    Thiébaux, Sylvie

    Residential Demand Response under Uncertainty Paul Scott and Sylvie Thi´ebaux and Menkes van den stochastic optimisation in residential demand response. 1 Introduction Electricity consumption in residential participate in smart grid activities such as demand response where loads are shifted to times favourable

  9. Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems

    E-Print Network [OSTI]

    Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems with Variable Resources Electric Energy System #12;#12;Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems benefits correspond to a real-world power system, as we use actual data on demand-response and wind

  10. Demand-Side Load Scheduling Incentivized by Dynamic Energy Hadi Goudarzi, Safar Hatami, and Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    Demand-Side Load Scheduling Incentivized by Dynamic Energy Prices Hadi Goudarzi, Safar Hatami growth in electrical energy consumption under worst- case demand conditions [1]. To avoid expending 90089 {hgoudarz, shatami, pedram}@usc.edu Abstract--Demand response is an important part of the smart

  11. Brussels, Belgium, November 19-22, 2012 Energy Demand Prediction in a Charge Station: A

    E-Print Network [OSTI]

    Boyer, Edmond

    EEVC Brussels, Belgium, November 19-22, 2012 Energy Demand Prediction in a Charge Station over a real database which can be associated with the energy demand generated by electric vehicles simplifying assumptions about the EV drivers' energy demand. To improve the accuracy of the modelling

  12. Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services

    E-Print Network [OSTI]

    Victoria, University of

    Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services by Simon Sustainable Demand-side Infrastructure for Power System Ancillary Services by Simon Christopher Parkinson B highly-distributed sustainable demand- side infrastructure, in the form of heat pumps, electric vehicles

  13. The Impact of Technological Change and Lifestyles on the Energy Demand

    E-Print Network [OSTI]

    Steininger, Karl W.

    of technological and socio- demographic variables on the demand for gasoline/diesel, heating and electricity. KeyThe Impact of Technological Change and Lifestyles on the Energy Demand of Households A Combination on the Energy Demand of Households A Combination of Aggregate and Individual Household Analysis Kurt Kratena

  14. Multi-period Optimal Procurement and Demand Responses in the Presence of Uncertain Supply

    E-Print Network [OSTI]

    Low, Steven H.

    Smart Grid involves changes in both the demand side and supply side. On the supply side, more renewable energy will be integrated to reduce greenhouse gas emissions and other pollution. On the demand side, smarter demand management systems will be available to respond to the electricity price and improve

  15. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    BEST PRACTICES AND RESULTS OF DR IMPLEMENTATION . 31 Encouraging End-User Participation: The Role of Incentives 16 Demand Response

  16. 1.0 Motivation............................................................................................................2 1.1Overview of Energy Supply and Demand in the 21st

    E-Print Network [OSTI]

    ............................................................................................................2 1.1Overview of Energy Supply and Demand in the 21st Century..........................2 1.2 UK Energy ...................................................................................24 6.6 Correlation between Wind Strength and Demand for Electricity..................24 6

  17. Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

    2006-01-01T23:59:59.000Z

    Demand-Side Management Framework for Commercial BuildingsTimes (NYT) Building and Its Demand-Side Management Lawrencedemand-side management (DSM) framework presented in Table 1 provides three major areas for changing electric loads in buildings:

  18. Case Study-Talquin Electric Cooperative

    Broader source: Energy.gov (indexed) [DOE]

    substation during a winter peak event and saved 12,000 in demand charges from their wholesale electricity provider. Mr. Eugene Kanikovsky, Director of Finance, believes it is...

  19. Energy Department - Electric Power Research Institute Cooperation...

    Broader source: Energy.gov (indexed) [DOE]

    by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy use during peak periods. "Through...

  20. Sixth Northwest Conservation and Electric Power Plan Chapter 11: Climate Change Issues

    E-Print Network [OSTI]

    demand and change precipitation patterns, river flows, and hydroelectric generation. Second, policies-reduction goals. The issue of potential changes to electricity demand and hydroelectric generation is discussed

  1. Demand Response: Load Management Programs 

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01T23:59:59.000Z

    CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs...

  2. Demand Response: Load Management Programs

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01T23:59:59.000Z

    CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

  3. SolarMax Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to:Voltaic MalaysiaSolarLab Jump to:SolarMax

  4. Resource Adequacy in Competitive Electricity Markets George Gross and Pablo Ruiz

    E-Print Network [OSTI]

    Gross, George

    of the electric system to supply the aggregate electrical demand and energy requirements of the customers at all, the existing electricity markets have not matured to the level of incorporating demand-side response. The lack of demand response is due to both the existing policies and the way electricity markets have been

  5. Assessment of Demand Response Resource

    E-Print Network [OSTI]

    Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

  6. Max-Planck-Institut fr biologische Kybernetik Max Planck Institute for Biological Cybernetics

    E-Print Network [OSTI]

    and analysis of human psychophysical experiments. · Good understanding of the English language in speaking Position in Human Motion Simulation The Max Planck Institute for Biological Cybernetics in Tübingen laws of perception will be implemented into the control framework of motion-based simulators. Human

  7. Scheduling for Electricity Cost in Smart Grid Mihai Burcea1,

    E-Print Network [OSTI]

    Wong, Prudence W.H.

    Scheduling for Electricity Cost in Smart Grid Mihai Burcea1, , Wing-Kai Hon2 , Hsiang-Hsuan Liu2 arising in "demand response manage- ment" in smart grid [7, 9, 18]. The electrical smart grid is one of electricity. Peak demand hours happen only for a short duration, yet makes existing electrical grid less

  8. Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation

    SciTech Connect (OSTI)

    None

    2012-02-11T23:59:59.000Z

    GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframes—incentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales —making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

  9. Installation and Commissioning Automated Demand Response Systems

    SciTech Connect (OSTI)

    Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

    2008-04-21T23:59:59.000Z

    Demand Response (DR) can be defined as actions taken to reduce electric loads when contingencies, such as emergencies and congestion, occur that threaten supply-demand balance, or market conditions raise supply costs. California utilities have offered price and reliability DR based programs to customers to help reduce electric peak demand. The lack of knowledge about the DR programs and how to develop and implement DR control strategies is a barrier to participation in DR programs, as is the lack of automation of DR systems. Most DR activities are manual and require people to first receive notifications, and then act on the information to execute DR strategies. Levels of automation in DR can be defined as follows. Manual Demand Response involves a labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. We refer to this as Auto-DR (Piette et. al. 2005). Auto-DR for commercial and industrial facilities can be defined as fully automated DR initiated by a signal from a utility or other appropriate entity and that provides fully-automated connectivity to customer end-use control strategies. One important concept in Auto-DR is that a homeowner or facility manager should be able to 'opt out' or 'override' a DR event if the event comes at time when the reduction in end-use services is not desirable. Therefore, Auto-DR is not handing over total control of the equipment or the facility to the utility but simply allowing the utility to pass on grid related information which then triggers facility defined and programmed strategies if convenient to the facility. From 2003 through 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) developed and tested a series of demand response automation communications technologies known as Automated Demand Response (Auto-DR). In 2007, LBNL worked with three investor-owned utilities to commercialize and implement Auto-DR programs in their territories. This paper summarizes the history of technology development for Auto-DR, and describes the DR technologies and control strategies utilized at many of the facilities. It outlines early experience in commercializing Auto-DR systems within PG&E DR programs, including the steps to configure the automation technology. The paper also describes the DR sheds derived using three different baseline methodologies. Emphasis is given to the lessons learned from installation and commissioning of Auto-DR systems, with a detailed description of the technical coordination roles and responsibilities, and costs.

  10. Analysis, Modification, and Implementation (AMI) of Scheduling Algorithm for the IEEE 802.116e (Mobile WiMAX)

    E-Print Network [OSTI]

    Ravichandiran, C; Vaidhyanathan, V

    2010-01-01T23:59:59.000Z

    Mobile WiMAX (Worldwide Interoperability for Microwave Access) is being touted as the most promising and potential broadband wireless technology. And the popularity rate has been surging to newer heights as the knowledge-backed service era unfolds steadily. Especially Mobile WiMAX is being projected as a real and strategic boon for developing counties such as India due to its wireless coverage acreage is phenomenally high. Mobile WiMAX has spurred tremendous interest from operators seeking to deploy high-performance yet cost-effective broadband wireless networks. The IEEE 802.16e standard based Mobile WiMAX system will be investigated for the purpose of Quality of Service provisioning. As a technical challenge, radio resource management will be primarily considered and main is the costly spectrum and the increasingly more demanding applications with ever growing number of subscribers. It is necessary to provide Quality of Service (QoS) guaranteed with different characteristics. As a possible solution the sche...

  11. Demand Responsive Lighting: A Scoping Study

    SciTech Connect (OSTI)

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03T23:59:59.000Z

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

  12. Analysis of Residential Demand Response and Double-Auction Markets

    SciTech Connect (OSTI)

    Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

    2011-10-10T23:59:59.000Z

    Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

  13. 6 MaxPlanckForschung 4 | 09 PERSPEKTIVEN

    E-Print Network [OSTI]

    ", zu dem die Max- Planck-Gesellschaft und Siemens über 400 Wissenschaftler, Politiker und Manager müsse. Siemens setze bereits ganz auf grüne Technologien, so Siemens-Chef Peter Löscher. Max-Planck-Gesellschaft und Siemens laden zum Future Dialogue Unter dem Titel ,,The Evolution of Me- dicine" fand vom 14. bis

  14. APPLICATION OF THE FUZZY MIN-MAX NEURAL NETWORK CLASSIFIER

    E-Print Network [OSTI]

    Blekas, Konstantinos

    . The fuzzy min-max classi cation network constitutes a promisimg pattern recognition approach that is based. Experimental results us- ing the modi ed model on a di cult pattern recognition prob- lem establishes of the fuzzy min-max clas- si cation neural network on a pattern recognition problem that involves both

  15. Demand Response Programs, 6. edition

    SciTech Connect (OSTI)

    NONE

    2007-10-15T23:59:59.000Z

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  16. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

  17. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

  18. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

  19. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

  20. Home Network Technologies and Automating Demand Response

    E-Print Network [OSTI]

    McParland, Charles

    2010-01-01T23:59:59.000Z

    and Automating Demand Response Charles McParland, Lawrenceand Automating Demand Response Charles McParland, LBNLCommercial and Residential Demand Response Overview of the

  1. Barrier Immune Radio Communications for Demand Response

    E-Print Network [OSTI]

    Rubinstein, Francis

    2010-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities,”Fully Automated Demand Response Tests in Large Facilities.for Automated Demand Response. Technical Document to

  2. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    Strategies Linking Demand Response and Energy Efficiency,”Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

  3. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

  4. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

  5. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    of energy and environmental benefits of demand controlledindicate the energy and cost savings for demand controlled24) (California Energy Commission 2008), demand controlled

  6. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    of energy and environmental benefits of demand controlled indicate the energy and cost savings for  demand controlled 24) (California Energy  Commission 2008), demand controlled 

  7. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

  8. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

  9. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Strategies for Demand Response in Commercial Buildings DavidStrategies for Demand Response in Commercial Buildings Davidadjusted for demand response in commercial buildings. The

  10. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    Demand Response Systems National Conference on BuildingDemand Response Systems National Conference on BuildingDemand Response Systems National Conference on Building

  11. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    In terms of demand response capability, building operatorsautomated demand response and improve building energy andand demand response features directly into building design

  12. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R [ORNL; Alkadi, Nasr E [ORNL; Letto, Daryl [Enbala Power Networks; Johnson, Brandon [University of Tennessee, Knoxville (UTK); Dowling, Kevin [University of Tennessee, Knoxville (UTK); George, Raoule [Enbala Power Networks; Khan, Saqib [University of Texas, Austin

    2013-01-01T23:59:59.000Z

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  13. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    DEMAND RESPONSE .7 Wholesale Marketuse at times of high wholesale market prices or when systemenergy expenditure. In wholesale markets, spot energy prices

  14. Results and commissioning issues from an automated demand responsepilot

    SciTech Connect (OSTI)

    Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

    2004-08-05T23:59:59.000Z

    This paper describes a research project to develop and test Automated Demand Response hardware and software technology in large facilities. We describe the overall project and some of the commissioning and system design problems that took place. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability purposes, manage electricity costs, and ensure that customers receive signals that encourage load reduction during times when the electric grid is near its capacity. There were a number of specific commissioning challenges in conducting this test including software compatibility, incorrect time zones, IT and EMCS failures, and hardware issues. The knowledge needed for this type of system commissioning combines knowledge of building controls with network management and knowledge of emerging information technologies.

  15. Home Network Technologies and Automating Demand Response

    SciTech Connect (OSTI)

    McParland, Charles

    2009-12-01T23:59:59.000Z

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

  16. Modcomp MAX IV System Processors reference guide

    SciTech Connect (OSTI)

    Cummings, J.

    1990-10-01T23:59:59.000Z

    A user almost always faces a big problem when having to learn to use a new computer system. The information necessary to use the system is often scattered throughout many different manuals. The user also faces the problem of extracting the information really needed from each manual. Very few computer vendors supply a single Users Guide or even a manual to help the new user locate the necessary manuals. Modcomp is no exception to this, Modcomp MAX IV requires that the user be familiar with the system file usage which adds to the problem. At General Atomics there is an ever increasing need for new users to learn how to use the Modcomp computers. This paper was written to provide a condensed Users Reference Guide'' for Modcomp computer users. This manual should be of value not only to new users but any users that are not Modcomp computer systems experts. This Users Reference Guide'' is intended to provided the basic information for the use of the various Modcomp System Processors necessary to, create, compile, link-edit, and catalog a program. Only the information necessary to provide the user with a basic understanding of the Systems Processors is included. This document provides enough information for the majority of programmers to use the Modcomp computers without having to refer to any other manuals. A lot of emphasis has been placed on the file description and usage for each of the System Processors. This allows the user to understand how Modcomp MAX IV does things rather than just learning the system commands.

  17. Electric power annual 1995. Volume II

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    This document summarizes pertinent statistics on various aspects of the U.S. electric power industry for the year and includes a graphic presentation. Data is included on electric utility retail sales and revenues, financial statistics, environmental statistics of electric utilities, demand-side management, electric power transactions, and non-utility power producers.

  18. Optimal Decentralized Protocols for Electric Vehicle Charging

    E-Print Network [OSTI]

    Low, Steven H.

    into the electric power grid. EV charging increases the electricity demand, and potentially amplifies the peak1 Optimal Decentralized Protocols for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low Abstract--We propose decentralized algorithms for optimally scheduling electric vehicle (EV) charging

  19. Using Whole-Building Electric Load Data in Continuous or Retro-Commissioning

    E-Print Network [OSTI]

    Price, Phillip N.

    2012-01-01T23:59:59.000Z

    Building Electricity Use, With Application to Demand Response,”Demand Response Research Center and a Program Manager in the Buildingand demand response. For example: Does the building use too

  20. Demand Response Technology Roadmap A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    workshop agendas, presentation materials, and transcripts. For the background to the Demand Response Technology Roadmap and to make use of individual roadmaps, the reader is...

  1. Driving Demand | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    strategies, results achieved to date, and advice for other programs. Driving Demand for Home Energy Improvements. This guide, developed by the Lawrence Berkeley National...

  2. Demand Response Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between May 2014 and February 2015. The Bonneville Power Administration (BPA) Demand Response Executive Sponsor Team decided upon the scope of the project in May. Two subsequent...

  3. Outline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel Market

    E-Print Network [OSTI]

    Nagurney, Anna

    Supply Chains and Fuel Markets In the U.S., electric power generation accounts for 30% of the natural gas demand (over 50% in the summer), 90% of the coal demand, and over 45% of the residual fuel oil demand, the wholesale electricity price in New England decreased by 38% mainly because the delivered natural gas price

  4. IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 1, JANUARY 2006 31 Price-Based Max-Min Fair Rate Allocation in

    E-Print Network [OSTI]

    Andrew, Lachlan

    of the max- imum utility rate allocations is max-min fair. This approach is applied to wireless in [5

  5. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

  6. Ris-R-1565(EN) Analyses of Demand Response

    E-Print Network [OSTI]

    of the power system, costs of producing electricity vary considerably over short time intervals. Yet, many in Denmark and the Nordic Power Market..........................21 4.2 Prices and demand response options in Denmark Department: Systems Analysis Department Risř-R-1565(EN) October 2006 ISSN 0106-2840 ISBN 87

  7. UBC STUDENT HOUSING DEMAND STUDY

    E-Print Network [OSTI]

    Ollivier-Gooch, Carl

    UBC STUDENT HOUSING DEMAND STUDY Presented by Nancy Knight and Andrew Parr FEBRUARY 5, 2010 #12;PURPOSE · To determine the need/demand for future on- campus student housing · To address requests from · A survey of students, and analysis of housing markets, and preparation of a forecast · The timeline

  8. Electric power annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-08T23:59:59.000Z

    This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

  9. Demand Response for Ancillary Services

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

    2013-01-01T23:59:59.000Z

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  10. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann; Ghatikar, Girish; Koch, Ed; Hennage, Dan; Hernandez, John; Chiu, Albert; Sezgen, Osman; Goodin, John

    2009-11-06T23:59:59.000Z

    The Pacific Gas and Electric Company (PG&E) is conducting a pilot program to investigate the technical feasibility of bidding certain demand response (DR) resources into the California Independent System Operator's (CAISO) day-ahead market for ancillary services nonspinning reserve. Three facilities, a retail store, a local government office building, and a bakery, are recruited into the pilot program. For each facility, hourly demand, and load curtailment potential are forecasted two days ahead and submitted to the CAISO the day before the operation as an available resource. These DR resources are optimized against all other generation resources in the CAISO ancillary service. Each facility is equipped with four-second real time telemetry equipment to ensure resource accountability and visibility to CAISO operators. When CAISO requests DR resources, PG&E's OpenADR (Open Automated DR) communications infrastructure is utilized to deliver DR signals to the facilities energy management and control systems (EMCS). The pre-programmed DR strategies are triggered without a human in the loop. This paper describes the automated system architecture and the flow of information to trigger and monitor the performance of the DR events. We outline the DR strategies at each of the participating facilities. At one site a real time electric measurement feedback loop is implemented to assure the delivery of CAISO dispatched demand reductions. Finally, we present results from each of the facilities and discuss findings.

  11. A dynamic model of industrial energy demand in Kenya

    SciTech Connect (OSTI)

    Haji, S.H.H. [Gothenburg Univ. (Sweden)

    1994-12-31T23:59:59.000Z

    This paper analyses the effects of input price movements, technology changes, capacity utilization and dynamic mechanisms on energy demand structures in the Kenyan industry. This is done with the help of a variant of the second generation dynamic factor demand (econometric) model. This interrelated disequilibrium dynamic input demand econometric model is based on a long-term cost function representing production function possibilities and takes into account the asymmetry between variable inputs (electricity, other-fuels and Tabour) and quasi-fixed input (capital) by imposing restrictions on the adjustment process. Variations in capacity utilization and slow substitution process invoked by the relative input price movement justifies the nature of input demand disequilibrium. The model is estimated on two ISIS digit Kenyan industry time series data (1961 - 1988) using the Iterative Zellner generalized least square method. 31 refs., 8 tabs.

  12. Princeton, Max Planck Society launch new research center for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planck Society President Peter Gruss, and Consul General of the Federal Republic of Germany in New York Busso von Alvensleben meet to sign an agreement launching the new Max...

  13. Centerfor Genome Bas Max Planck Institute for Molecular Genetics

    E-Print Network [OSTI]

    Spang, Rainer

    Be rlin Centerfor Genome Bas ed Bioinform a tics Max Planck Institute for Molecular Genetics109/209 and 01GR0455 of the German Federal Ministry of Education and Research. In addition X

  14. Centerfor Genome Bas Max Planck Institute for Molecular Genetics

    E-Print Network [OSTI]

    Spang, Rainer

    Be rlin Centerfor Genome Bas ed Bioinform a tics Max Planck Institute for Molecular Genetics of Education. 2 #12;Chapter 2 Implemented functions 2.1 twilight.pval: Testing effect sizes twilight

  15. LINEAR-PROGRAMMING DESIGN AND ANALYSIS OF FAST ALGORITHMS FOR MAX 2-CSP

    E-Print Network [OSTI]

    Scott, Alexander Alexander

    LINEAR-PROGRAMMING DESIGN AND ANALYSIS OF FAST ALGORITHMS FOR MAX 2-CSP ALEXANDER D. SCOTT AND GREGORY B. SORKIN Abstract. The class Max (r, 2)-CSP (or simply Max 2-CSP) consists of constraint(G) (13/75 + o(1))m, which gives a faster Max 2-CSP algorithm that uses exponential space: running in time

  16. Estimating Demand Response Market Potential Among Large Commercialand Industrial Customers:A Scoping Study

    SciTech Connect (OSTI)

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    Demand response is increasingly recognized as an essentialingredient to well functioning electricity markets. This growingconsensus was formalized in the Energy Policy Act of 2005 (EPACT), whichestablished demand response as an official policy of the U.S. government,and directed states (and their electric utilities) to considerimplementing demand response, with a particular focus on "price-based"mechanisms. The resulting deliberations, along with a variety of stateand regional demand response initiatives, are raising important policyquestions: for example, How much demand response is enough? How much isavailable? From what sources? At what cost? The purpose of this scopingstudy is to examine analytical techniques and data sources to supportdemand response market assessments that can, in turn, answer the secondand third of these questions. We focus on demand response for large(>350 kW), commercial and industrial (C&I) customers, althoughmany of the concepts could equally be applied to similar programs andtariffs for small commercial and residential customers.

  17. Cooperative Demand Response Using Repeated Game for Price-Anticipating Buildings in Smart Grid

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01T23:59:59.000Z

    Price-Anticipating Buildings in Smart Grid Kai Ma Guoqiangprice-anticipating buildings in smart grid. The cooperativebuilding electricity use, with application to demand response,” IEEE Transactions on Smart

  18. Power system balancing with high renewable penetration : the potential of demand response

    E-Print Network [OSTI]

    Critz, David Karl

    2012-01-01T23:59:59.000Z

    This study investigated the ability of responsive demand to stabilize the electrical grid when intermittent renewable resources are present. The WILMAR stochastic unit commitment model was used to represent a version of ...

  19. Stochastic dynamic optimization of consumption and the induced price elasticity of demand in smart grids

    E-Print Network [OSTI]

    Faghih, Ali

    2011-01-01T23:59:59.000Z

    This thesis presents a mathematical model of consumer behavior in response to stochastically-varying electricity prices, and a characterization of price-elasticity of demand created by optimal utilization of storage and ...

  20. Unexpected consequences of demand response : implications for energy and capacity price level and volatility

    E-Print Network [OSTI]

    Levy, Tal Z. (Tal Ze'ev)

    2014-01-01T23:59:59.000Z

    Historically, electricity consumption has been largely insensitive to short term spot market conditions, requiring the equating of supply and demand to occur almost exclusively through changes in production. Large scale ...

  1. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01T23:59:59.000Z

    Conference on Building Commissioning: May 4-6, 2005 Motegi,National Conference on Building Commissioning: May 4-6, 2005Demand Response and Commissioning Mary Ann Piette, David S.

  2. Marketing Demand-Side Management

    E-Print Network [OSTI]

    O'Neill, M. L.

    1988-01-01T23:59:59.000Z

    Demand-Side Management is an organizational tool that has proven successful in various realms of the ever changing business world in the past few years. It combines the multi-faceted desires of the customers with the increasingly important...

  3. Community Water Demand in Texas

    E-Print Network [OSTI]

    Griffin, Ronald C.; Chang, Chan

    Solutions to Texas water policy and planning problems will be easier to identify once the impact of price upon community water demand is better understood. Several important questions cannot be addressed in the absence of such information...

  4. Overview of Demand Side Response

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses the utility PJM's demand side response (DSR) capabilities, including emergency and economic responses.

  5. Power Systems Engineering Research Center Renewable Electricity Futures

    E-Print Network [OSTI]

    Van Veen, Barry D.

    Power Systems Engineering Research Center Renewable Electricity Futures Trieu Mai Electricity of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity

  6. Multi-scale Demand-Side Management for Continuous Power-intensive Processes

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    (DR) Reduce demand on operational level Energy Efficiency (EE) Permanently reduce power consumption Demand-Side Management (DSM) "Systematic utility and government activities designed to change the amount and/or timing of the customer's use of electricity for the collective benefit of the society

  7. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    A demand-side management framework from building operationsdemand-side management (DSM) framework presented in Table 2 provides three major areas for changing electric loads in buildings:buildings in California. This paper summarizes the integration of DR in demand-side management

  8. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    a building operations perspective, a demand-side managementdemand-side management (DSM) framework presented in Table 2 provides three major areas for changing electric loads in buildings:buildings in California. This report summarizes the integration of DR in demand-side management

  9. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

  10. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    E-Print Network [OSTI]

    Mares, K.C.

    2010-01-01T23:59:59.000Z

    Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

  11. Improving Grid Performance with Electric Vehicle Charging 2011San Diego Gas & Electric Company. All copyright and trademark rights reserved.

    E-Print Network [OSTI]

    California at Davis, University of

    Improving Grid Performance with Electric Vehicle Charging © 2011San Diego Gas & Electric Company · Education SDG&E Goal ­ Grid Integrated Charging · More plug-in electric vehicles · More electric grid to a hairdryer) per PEV in the population · Instantaneous demand, 40 all-electric vehicles for one day (8

  12. Making the most of Responsive Electricity Customer. Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? Making the most of Responsive...

  13. Electric Power Research Institute Cooperation to Increase Energy...

    Energy Savers [EERE]

    March 6, 2008 Memorandum of Understanding on Electric Utility Energy Efficiency, Demand Response, and the Smart Grid.pdf More Documents & Publications Microsoft Word -...

  14. FROM: Keith Dennis, National Rural Electric Cooperative Association...

    Broader source: Energy.gov (indexed) [DOE]

    standards for large (>55 gallon) residential electric storage water heaters used in demand response and thermal energy storage programs (Docket No. EERE-2012-BT-STD-0022). In...

  15. Advanced Materials and Devices for Stationary Electrical Energy...

    Broader source: Energy.gov (indexed) [DOE]

    with the increasing demands for electricity arising from continued growth in U.S. productivity, shifts in and continued expansion of national cultural imperatives (e.g., the...

  16. Modeling diffusion of electrical appliances in the residential sector

    E-Print Network [OSTI]

    McNeil, Michael A.

    2010-01-01T23:59:59.000Z

    Efficiency Standards in the Residential Electricity Sector.France. USDOE (2001). Residential Energy Consumption Survey,long-term response of residential cooling energy demand to

  17. Statement Of Patricia Hoffman Assistant Secretary For Electricity...

    Broader source: Energy.gov (indexed) [DOE]

    falling costs of distributed energy resources, electric vehicles, and demand-side management technologies mean that utility distribution systems must accommodate...

  18. Demand response-enabled residential thermostat controls.

    E-Print Network [OSTI]

    Chen, Xue; Jang, Jaehwi; Auslander, David M.; Peffer, Therese; Arens, Edward A

    2008-01-01T23:59:59.000Z

    human dimension of demand response technology from a caseArens, E. , et al. 2008. Demand Response Enabling TechnologyArens, E. , et al. 2006. Demand Response Enabling Technology

  19. Demand Response as a System Reliability Resource

    E-Print Network [OSTI]

    Joseph, Eto

    2014-01-01T23:59:59.000Z

    Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning ReserveFormat of 2009-2011 Demand Response Activity Applications.

  20. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

  1. National Action Plan on Demand Response

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses the National Assessment of Demand Response study, the National Action Plan for Demand Response, and demand response as related to the energy outlook.

  2. FacultyofElectrical Engineering,Mathematics

    E-Print Network [OSTI]

    Langendoen, Koen

    FacultyofElectrical Engineering,Mathematics andComputerScience MSc Programme Electrical Engineering, telecommunications and smart grids). The ever-increasing demand for processing power, sensing capabilities in Electrical Engineering at TU Delft offers the track Microelectronics. This two-year track is designed

  3. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

  4. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    demand response: ? Distribution utility ? ISO ? Aggregator (demand response less obstructive and inconvenient for the customer (particularly if DR resources are aggregated by a load aggregator).

  5. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    al: Installation and Commissioning Automated Demand ResponseConference on Building Commissioning: April 22 – 24, 2008al: Installation and Commissioning Automated Demand Response

  6. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    use of demand control ventilation systems in general officedemand controlled  ventilation systems, Dennis DiBartolomeo the demand controlled ventilation system increased the rate 

  7. Supply chain planning decisions under demand uncertainty

    E-Print Network [OSTI]

    Huang, Yanfeng Anna

    2008-01-01T23:59:59.000Z

    Sales and operational planning that incorporates unconstrained demand forecasts has been expected to improve long term corporate profitability. Companies are considering such unconstrained demand forecasts in their decisions ...

  8. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    sector, the demand response potential of California buildinga demand response event prohibit a building’s participationdemand response strategies in California buildings are

  9. Sandia National Laboratories: demand response inverter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demand response inverter ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities,...

  10. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Electric Coordinating Council (WECC); Fred LeBlanc, WesternAdministration (WAPA) and WECC; and Dorris Lam, Californiaon System Stability. WECC system stability is enhanced when

  11. Eigenvalues And Eigenvectors In The Max-Plus Algebra

    E-Print Network [OSTI]

    By Misoo; Misoo Chung; William E. Cherowitzo; David C. Fisher; David C. Fisher

    The max-plus algebra defined in the set ! [ f\\Gamma1g is an algebra with two binary operations \\Phi and\\Omega where a \\Phi b is the maximum of a and b, and a\\Omega b is the sum of a and b. These operations form a monoid-field (there is no inverse under \\Phi). This paper implements algorithms for solving linear systems and computing eigenvalues and eigenvectors including the first known polynomial-time algorithm for finding eigenvalues of matrices in the max-plus algebra. Analogs to the characteristic equation and the Cayley-Hamilton theorem are presented. This abstract accurately represents the content of the candidate's thesis. I recommend its publication. Signed David C. Fisher iii Contents 1 The Max-Plus Algebra 1 1.1 Matrix Multiplication in (! max ) n\\Thetan : : : : : : : : : : : : : : : : : 3 1.2 An Application : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 2 Systems of Linear Equations in (! max ) n 8 2.1 Solving Ax \\Phi b = Cx \\Phi d : : : : : : : : : : : ...

  12. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  13. Turkey's energy demand and supply

    SciTech Connect (OSTI)

    Balat, M. [Sila Science, Trabzon (Turkey)

    2009-07-01T23:59:59.000Z

    The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

  14. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  15. US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

    E-Print Network [OSTI]

    US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Page 1 of 25 US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

  16. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01T23:59:59.000Z

    that additional natural gas combustion would completelyAny additional natural gas combustion by the southern A

  17. Demand Response in U.S. Electricity Markets: Empirical Evidence

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01T23:59:59.000Z

    Independent System Operator (MISO) and Southwest PowerTo help inform the debate at MISO and SPP concerning how tosettled using the EIS market. MISO administers a day-ahead

  18. High-Performance with Solar Electric Reduced Peak Demand: Premier...

    Energy Savers [EERE]

    this Top Innovation. See another example of this Top Innovation in action. Find more case studies of Building America projects across the country that demonstrate high...

  19. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01T23:59:59.000Z

    July - August - Rancho Seco 1 PG&E hydroelectric power -PG&E hydroelectric powerPG&E hydroelectric power - PG&E hydroelectric power

  20. Tool Improves Electricity Demand Predictions to Make More Room...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Related Articles PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - Technology Hybrids Show Best Potential Updated Web Tool Focuses on Bottom Line...