Powered by Deep Web Technologies
Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

White(etching!matter!in!bearing!steel! Part1:!Controlled(cracking!of!52100!steel!  

E-Print Network [OSTI]

! 1! White(etching!matter!in!bearing!steel! Part1:!Controlled(cracking!of!52100!steel! ! W!phenomena!such!as!the!appearance!of!"white(etching!areas"!or!"white(etching! cracks",!crack!particular!kind!of!microstructural!damage!in!the!form!of!regions!of!the! structure,! which! appear! white! in

Cambridge, University of

2

White-etching matter in bearing steel Part 2: Distinguishing cause and eect in bearing steel  

E-Print Network [OSTI]

White-etching matter in bearing steel Part 2: Distinguishing cause and eect in bearing steel through a mechanism called "white-structure flaking", has triggered many studies of microstructural damage associated with "white-etching ar- eas" created during rolling contact fatigue, although whether

Cambridge, University of

3

Latest Results in SLAC 75-MW PPM Klystrons  

SciTech Connect (OSTI)

75 MW X-band klystrons utilizing Periodic Permanent Magnet (PPM) focusing have been undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC) for almost nine years. The klystron development has been geared toward realizing the necessary components for the construction of the Next Linear Collider (NLC). The PPM devices built to date which fit this class of operation consist of a variety of 50 MW and 75 MW devices constructed by SLAC, KEK (Tsukuba, Japan) and industry. All these tubes follow from the successful SLAC design of a 50 MW PPM klystron in 1996. In 2004 the latest two klystrons were constructed and tested with preliminary results reported at EPAC2004. The first of these two devices was tested to the full NLC specifications of 75 MW, 1.6 microseconds pulse length, and 120 Hz. This 14.4 kW average power operation came with a tube efficiency >50%. The most recent testing of these last two devices will be presented here. Design and manufacturing issues of the latest klystron, due to be tested by the Fall of 2005, are also discussed.

Sprehn, D.; Caryotakis, G.; Haase, A.; Jongewaard, E.; Laurent, L.; Pearson, C.; Phillips, R.; /SLAC

2006-03-06T23:59:59.000Z

4

Demonstration of New Technologies Required for the Treatment of Mixed Waste Contaminated with {ge}260 ppm Mercury  

SciTech Connect (OSTI)

The Resource Conservation and Recovery Act (RCRA) defines several categories of mercury wastes, each of which has a defined technology or concentration-based treatment standard, or universal treatment standard (UTS). RCRA defines mercury hazardous wastes as any waste that has a TCLP value for mercury of 0.2 mg/L or greater. Three of these categories, all nonwastewaters, fall within the scope of this report on new technologies to treat mercury-contaminated wastes: wastes as elemental mercury; hazardous wastes with less than 260 mg/kg [parts per million (ppm)] mercury; and hazardous wastes with 260 ppm or more of mercury. While this report deals specifically with the last category--hazardous wastes with 260 ppm or more of mercury--the other two categories will be discussed briefly so that the full range of mercury treatment challenges can be understood. The treatment methods for these three categories are as follows: Waste as elemental mercury--RCRA identifies amalgamation (AMLGM) as the treatment standard for radioactive elemental mercury. However, radioactive mercury condensates from retorting (RMERC) processes also require amalgamation. In addition, incineration (IMERC) and RMERC processes that produce residues with >260 ppm of radioactive mercury contamination and that fail the RCRA toxicity characteristic leaching procedure (TCLP) limit for mercury (0.20 mg/L) require RMERC, followed by AMLGM of the condensate. Waste with <260 ppm mercury--No specific treatment method is specified for hazardous wastes containing <260 ppm. However, RCRA regulations require that such wastes (other than RMERC residues) that exceed a TCLP mercury concentration of 0.20 mg/L be treated by a suitable method to meet the TCLP limit for mercury of 0.025 mg/L. RMERC residues must meet the TCLP value of {ge}0.20 mg/L, or be stabilized and meet the {ge}0.025 mg/L limit. Waste with {ge}260 ppm mercury--For hazardous wastes with mercury contaminant concentrations {ge}260 ppm and RCRA-regulated organic contaminants (other than incinerator residues), incineration or retorting (IMERC or RMERC) is the treatment standard. For wastes with mercury contaminant concentrations {ge}260 ppm that are inorganic, including incinerator and retort residues, RMERC is the treatment standard. Mercury hazardous waste contaminated with {ge}260 ppm mercury is the primary focus of this report.

Morris, M.I.

2002-02-06T23:59:59.000Z

5

Simulating Rayleigh-Taylor (RT) instability using PPM hydrodynamics @scale on Roadrunner (u)  

SciTech Connect (OSTI)

The effect of initial conditions on the self-similar growth of the RT instability is investigated using a hydrodynamics code based on the piecewise-parabolic-method (PPM). The PPM code was converted to the hybrid architecture of Roadrunner in order to perform the simulations at extremely high speed and spatial resolution. This paper describes the code conversion to the Cell processor, the scaling studies to 12 CU's on Roadrunner and results on the dependence of the RT growth rate on initial conditions. The relevance of the Roadrunner implementation of this PPM code to other existing and anticipated computer architectures is also discussed.

Woodward, Paul R [Los Alamos National Laboratory; Dimonte, Guy [Los Alamos National Laboratory; Rockefeller, Gabriel M [Los Alamos National Laboratory; Fryer, Christopher L [Los Alamos National Laboratory; Dimonte, Guy [Los Alamos National Laboratory; Dai, W [Los Alamos National Laboratory; Kares, R. J. [Los Alamos National Laboratory

2011-01-05T23:59:59.000Z

6

Respiratory responses of vigorously exercising children to 0. 12 ppm ozone exposure  

SciTech Connect (OSTI)

Changes in respiratory function have been suggested for children exposed to less than 0.12 ppm ozone (O3) while engaged in normal activities. Because the results of these studies have been confounded by other variables, such as temperature or the presence of other pollutants or have been questioned as to the adequacy of exposure measurements, the authors determined the acute response of children exposed to 0.12 ppm O3 in a controlled chamber environment. Twenty-three white males 8 to 11 yr of age were exposed once to clean air and once to 0.12 ppm O3 in random order. Exposures were for 2.5 h and included 2 h of intermittent heavy exercise. Measures of forced expiratory volume in one second (FEV1) and the symptom cough were determined prior to and after each exposure. A significant decline in FEV1 was found after the O3 exposure compared to the air exposure, and it appeared to persist for 16 to 20 h. No significant increase in cough was found due to O3 exposure. Forced vital capacity, specific airways resistance, respiratory frequency, tidal volume, and other symptoms were measured in a secondary exploratory analysis of this study.

McDonnell, W.F. 3d.; Chapman, R.S.; Leigh, M.W.; Strope, G.L.; Collier, A.M.

1985-10-01T23:59:59.000Z

7

Refiner and Blender Net Production of Distillate Fuel Oil > 500 ppm Sulfur  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S.Feet) YearInformationDataUnderppm

8

Pulmonary function and symptom responses after 6. 6-hour exposure to 0. 12 ppm ozone with moderate exercise  

SciTech Connect (OSTI)

Episodes occasionally occur when ambient ozone (O/sub 3/) levels remain at or near 0.12 ppm for more than 6 h. Small decrements in lung function have been reported following 2-h exposures to 0.12 ppm O/sub 3/. For short exposures to higher O/sub 3/ concentrations, lung function decrements are a function of exposure duration. Thus, we investigated the hypothesis that prolonged exposure to 0.12 ppm O/sub 3/ would result in progressively larger changes in respiratory function and symptoms over time. Ten nonsmoking males were exposed once to clean air and once to 0.12 ppm O/sub 3/ for 6.6 h. Exposures consisted of six 50-min exercise periods, each followed by 10-min rest and measurement; a 35-min lunch period followed by the third exercise period. Exercise ventilation averaged approximately 40 L/min. Forced expiratory and inspiratory spirometry and respiratory symptoms were measured prior to exposure and after each exercise. Airway reactivity to methacholine was determined after each exposure. After correcting for the air exposures, FEV 1.0 was found to decrease linearly during the O/sub 3/ exposure and was decreased by an average of 13.0 percent at the end of exposure. Decreases in FVC and FEF24-75% were also linear and averaged 8.3 and 17.4 percent, respectively, at the end of exposure. On forced inspiratory tests, the FIVC and FIV05 were decreased 12.6 and 20.7 percent, respectively. Increases in the symptom ratings of cough and pain on deep inspiration were observed with O/sub 3/ exposure but not with clean air. Airway reactivity to methacholine was approximately doubled following O/sub 3/ exposure.

Folinsbee, L.J.; McDonnell, W.F.; Horstman, D.H.

1988-01-01T23:59:59.000Z

9

Pulmonary function and symptom responses after 6. 6-hour exposure to 0. 12-ppm ozone with moderate exercise (journal version)  

SciTech Connect (OSTI)

Episodes occasionally occur when ambient ozone (O/sub 3/) levels remain at or near 0.12 ppm for more than 6 h. The hypothesis that prolonged exposure to 0.12 ppm O/sub 3/ would result in progressively larger changes in respiratory function and symptoms over time was tested. Ten nonsmoking males (18-35 yr) were exposed once to clear air (CA) and once to 0.12 pp, O/sub 3/ for 6.75 h. Exposures consisted of six 50-min exercise periods, each followed by 10-min rest and measurement; a 45-min lunch period followed the third exercise period. Exercise ventilation averaged approximately 40 1/min. Forced expiratory and inspiratory spirometry and respiratory symptoms were measured prior to exposure and after each exercise. Increases in the symptom ratings of cough and pain on deep inspiration were observed with O/sub 3/ exposure but not with CA. Airway reactivity to methacholine was approximately doubled following O/sub 3/ exposure. Spirometry results indicate that prolonged exposure to 0.12 ppm O/sub 3/ results in a marked increase in non-specific airway reactivity and progressive changes in respiratory function.

Folinsbee, L.J.; Horstman, D.H.; McDonnell, W.F.

1988-01-01T23:59:59.000Z

10

The New (g-2) Experiment: A proposal to measure the muon anomalous magnetic moment to +-0.14 ppm precision  

SciTech Connect (OSTI)

We propose to measure the muon anomalous magnetic moment, a{sub {mu}}, to 0.14 ppm-a fourfold improvement over the 0.54 ppm precision obtained in the BNL experiment E821. The muon anomaly is a fundamental quantity and its precise determination will have lasting value. The current measurement was statistics limited, suggesting that greater precision can be obtained in a higher-rate, next-generation experiment. We outline a plan to use the unique FNAL complex of proton accelerators and rings to produce high-intensity bunches of muons, which will be directed into the relocated BNL muon storage ring. The physics goal of our experiment is a precision on the muon anomaly of 16 x 10{sup -11}, which will require 21 times the statistics of the BNL measurement, as well a factor of 3 reduction in the overall systematic error. Our goal is well matched to anticipated advances in the worldwide effort to determine the standard model (SM) value of the anomaly. The present comparison, {Delta}a{sub {mu}} (Expt: -SM) = (295 {+-} 81) x 10{sup -11}, is already suggestive of possible new physics contributions to the muon anomaly. Assuming that the current theory error of 51 x 10{sup -11} is reduced to 30 x 10{sup -11} on the time scale of the completion of our experiment, a future {Delta}a{sub {mu}} comparison would have a combined uncertainty of {approx} 34 x 10{sup -11}, which will be a sensitive and complementary benchmark for proposed standard model extensions. The experimental data will also be used to improve the muon EDM limit by up to a factor of 100 and make a higher-precision test of Lorentz and CPT violation. We describe in this Proposal why the FNAL complex provides a uniquely ideal facility for a next-generation (g-2) experiment. The experiment is compatible with the fixed-target neutrino program; indeed, it requires only the unused Booster batch cycles and can acquire the desired statistics in less than two years of running. The proton beam preparations are largely aligned with the new Mu2e experimental requirements. The (g-2) experiment itself is based on the solid foundation of E821 at BNL, with modest improvements related to systematic error control. We outline the motivation, conceptual plans, and details of the tasks, anticipated budget, and timeline in this proposal.

Carey, R.M.; Lynch, K.R.; Miller, J.P.; Roberts, B.L.; Morse, W.M.; Semertzides, Y.K.; Druzhinin, V.P.; Khazin, B.I.; Koop, I.A.; Logashenko, I.; Redin, S.I.; /Boston U. /Brookhaven /Novosibirsk, IYF /Cornell U., CIHEP /Fermilab /Frascati /Illinois U., Urbana /James Madison U. /Groningen, KVI /KEK, Tsukuba /Kentucky U.

2009-02-01T23:59:59.000Z

11

Dark Matters  

ScienceCinema (OSTI)

One of the greatest mysteries in the cosmos is that it is mostly dark. Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe. 營 will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

Joseph Silk

2010-01-08T23:59:59.000Z

12

Matter Field, Dark Matter and Dark Energy  

E-Print Network [OSTI]

A model concerning particle theory and cosmology is proposed. Matter field, dark matter and dark energy are created by an energy flow from space to primordial matter fields at the phase transition in the early universe.

Masayasu Tsuge

2009-03-24T23:59:59.000Z

13

A measurement of the absorption of liquid argon scintillation light by dissolved nitrogen at the part-per-million level  

E-Print Network [OSTI]

We report on a measurement of the absorption length of scintillation light in liquid argon due to dissolved nitrogen at the part-per-million (ppm) level. We inject controlled quantities of nitrogen into a high purity volume ...

Jones, Benjamin James Poyner

14

Thermodynamics of electroweak matter  

E-Print Network [OSTI]

This paper is a slightly modified version of the introductory part of a PhD thesis, also containing the articles hep-ph/0303019, hep-ph/0510375 and hep-ph/0512177. We provide a short history of the research of electroweak thermodynamics and a brief introduction to the theory as well as to the necessary theoretical tools needed to work at finite temperatures. We then review computations regarding the pressure of electroweak matter at high temperatures (the full expression of the perturbative expansion of the pressure is given in the appendix) and the electroweak phase diagram at finite chemical potentials. Finally, we compare electroweak and QCD thermodynamics.

A. Gynther

2006-09-21T23:59:59.000Z

15

Matter Wave Radiation Leading to Matter Teleportation  

E-Print Network [OSTI]

The concept of matter wave radiation is put forward, and its equation is established for the first time. The formalism solution shows that the probability density is a function of displacement and time. A free particle and a two-level system are reinvestigated considering the effect of matter wave radiation. Three feasible experimental designs, especially a modified Stern-Gerlach setup, are proposed to verify the existence of matter wave radiation. Matter wave radiation effect in relativity has been formulated in only a raw formulae, which offers another explanation of Lamb shift. A possible mechanics of matter teleportation is predicted due to the effect of matter wave radiation.

Yong-Yi Huang

2015-02-12T23:59:59.000Z

16

EXTRAGALACTIC DARK MATTER AND DIRECT DETECTION EXPERIMENTS  

SciTech Connect (OSTI)

Recent astronomical data strongly suggest that a significant part of the dark matter content of the Local Group and Virgo Supercluster is not incorporated into the galaxy halos and forms diffuse components of these galaxy clusters. A portion of the particles from these components may penetrate the Milky Way and make an extragalactic contribution to the total dark matter containment of our Galaxy. We find that the particles of the diffuse component of the Local Group are apt to contribute {approx}12% to the total dark matter density near Earth. The particles of the extragalactic dark matter stand out because of their high speed ({approx}600 km s{sup -1}), i.e., they are much faster than the galactic dark matter. In addition, their speed distribution is very narrow ({approx}20 km s{sup -1}). The particles have an isotropic velocity distribution (perhaps, in contrast to the galactic dark matter). The extragalactic dark matter should provide a significant contribution to the direct detection signal. If the detector is sensitive only to the fast particles (v > 450 km s{sup -1}), then the signal may even dominate. The density of other possible types of the extragalactic dark matter (for instance, of the diffuse component of the Virgo Supercluster) should be relatively small and comparable with the average dark matter density of the universe. However, these particles can generate anomaly high-energy collisions in direct dark matter detectors.

Baushev, A. N., E-mail: baushev@gmail.com [DESY, D-15738 Zeuthen (Germany); Institut fuer Physik und Astronomie, Universitaet Potsdam, D-14476 Potsdam-Golm (Germany)

2013-07-10T23:59:59.000Z

17

Baryonic matter and beyond  

E-Print Network [OSTI]

We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.

Kenji Fukushima

2014-10-01T23:59:59.000Z

18

Dark Matter Theory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dark Matter Theory Dark Matter Theory Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505)...

19

Dark Matter: Early Considerations  

E-Print Network [OSTI]

A review of the study of dark matter is given, starting with earliest studies and finishing with the establishment of the standard Cold Dark Matter paradigm in mid 1980-s. Particular attention is given to the collision of the classical and new paradigms concerning the matter content of the Universe. Also the amount of baryonic matter, dark matter and dark energy is discussed using modern estimates.

J. Einasto

2004-01-16T23:59:59.000Z

20

Design of programmable matter  

E-Print Network [OSTI]

Programmable matter is a proposed digital material having computation, sensing, actuation, and display as continuous properties active over its whole extent. Programmable matter would have many exciting applications, like ...

Knaian, Ara N. (Ara Nerses), 1977-

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

PART I  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002OpticsPeriodical: Volume 5, Issue 32012) | DepartmentC PART

22

PART III  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002OpticsPeriodical: Volume 5, Issue 32012)J TOC PART III List

23

PART I  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizing I/OP-Glycoprotein Structure andPALMB i PART I

24

PART I  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizing I/OP-Glycoprotein Structure andPALMB i PART I

25

in Condensed Matter Physics  

E-Print Network [OSTI]

Master in Condensed Matter Physics 颅 Master acad茅mique #12;2 #12;3 Students at the University. Condensed matter physics is about explaining and predicting the relationship between the atomic, and broad education in the field of condensed matter physics 路 introduce you to current research topics

van der Torre, Leon

26

Of Matters Condensed  

E-Print Network [OSTI]

The American Physical Society (APS) March Meeting of condensed matter physics has grown to nearly 10,000 participants, comprises 23 individual APS groups, and even warrants its own hashtag (#apsmarch). Here we analyze the text and data from March Meeting abstracts of the past nine years and discuss trends in condensed matter physics over this time period. We find that in comparison to atomic, molecular, and optical physics, condensed matter changes rapidly, and that condensed matter appears to be moving increasingly toward subject matter that is traditionally in materials science and engineering.

Shulman, Michael

2015-01-01T23:59:59.000Z

27

Incompressibility of strange matter  

E-Print Network [OSTI]

Strange stars calculated from a realistic equation of state (EOS), that incorporate chiral symmetry restoration as well as deconfinement at high density show compact objects in the mass radius curve. We compare our calculations of incompressibility for this EOS with that of nuclear matter. One of the nuclear matter EOS has a continuous transition to ud-matter at about five times normal density. Another nuclear matter EOS incorporates density dependent coupling constants. From a look at the consequent velocity of sound, it is found that the transition to ud-matter seems necessary.

Monika Sinha; Manjari Bagchi; Jishnu Dey; Mira Dey; Subharthi Ray; Siddhartha Bhowmick

2004-04-01T23:59:59.000Z

28

Big Questions: Dark Matter  

ScienceCinema (OSTI)

Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

Lincoln, Don

2014-08-07T23:59:59.000Z

29

VWC-0002- In the Matter of Daniel L. Holsinger  

Broader source: Energy.gov [DOE]

This case involves a complaint filed by Daniel Holsinger (Holsinger) under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. The matter comes before me...

30

VWC-0001- In the Matter of Daniel L. Holsinger  

Broader source: Energy.gov [DOE]

This case involves a complaint filed by Daniel Holsinger (Holsinger) under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. The matter comes before me...

31

Drought and the California Delta桝 Matter of Extremes  

E-Print Network [OSTI]

California Delta桝 Matter of Extremes Michael Dettinger 1, *1962 California is in an extreme drought as a result of lowIn large part, this extreme variability arises from the

Dettinger, Michael; Cayan, Daniel R.

2014-01-01T23:59:59.000Z

32

Matter: Space without Time  

E-Print Network [OSTI]

While Quantum Gravity remains elusive and Quantum Field Theory retains the interpretational difficulties of Quantum Mechanics, we have introduced an alternate approach to the unification of particles, fields, space and time, suggesting that the concept of matter as space without time provides a framework which unifies matter with spacetime and in which we anticipate the development of complete theories (ideally a single unified theory) describing observed 'particles, charges, fields and forces' solely with the geometry of our matter-space-time universe.

Yousef Ghazi-Tabatabai

2012-11-19T23:59:59.000Z

33

The Dark Matter problem  

E-Print Network [OSTI]

In these notes I will briefly summarize our knowledge about the dark matter problem, and emphasize the corresponding dynamical aspects. This covers a wide area of research, so I have been selective, and have concentrated on the subject of dark matter in nearby galaxies, in particular spirals.

A. Bosma

1998-12-01T23:59:59.000Z

34

Money Matters Parent Presentation  

E-Print Network [OSTI]

Money Matters Parent Presentation Presented by Becky Lore June 7, 2014 #12;Money Matters 路 Dates.fcac-acfc.gc.ca 路 Gail Vaz-Oxlade My Money, My Choices www.gailvazoxlade.com 路 Money Mentors www.moneymentors.ca/ 路 Money

Seldin, Jonathan P.

35

Isospin dependent properties of asymmetric nuclear matter  

SciTech Connect (OSTI)

The density dependence of nuclear symmetry energy is determined from a systematic study of the isospin dependent bulk properties of asymmetric nuclear matter using the isoscalar and isovector components of the density dependent M3Y interaction. The incompressibility K{sub {infinity}} for the symmetric nuclear matter, the isospin dependent part K{sub asy} of the isobaric incompressibility, and the slope L are all in excellent agreement with the constraints recently extracted from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes, from the neutron skin thickness of nuclei, and from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions. This work provides a fundamental basis for the understanding of nuclear matter under extreme conditions and validates the important empirical constraints obtained from recent experimental data.

Chowdhury, P. Roy [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064 (India); Basu, D. N. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700 064 (India); Samanta, C. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064 (India); Physics Department, Virginia Commonwealth University, Richmond, Virginia 232840 (United States); Physics Department, University of Richmond, Virginia 23173 (United States)

2009-07-15T23:59:59.000Z

36

Isospin dependent properties of asymmetric nuclear matter  

E-Print Network [OSTI]

The density dependence of nuclear symmetry energy is determined from a systematic study of the isospin dependent bulk properties of asymmetric nuclear matter using the isoscalar and the isovector components of density dependent M3Y interaction. The incompressibility $K_\\infty$ for the symmetric nuclear matter, the isospin dependent part $K_{asy}$ of the isobaric incompressibility and the slope $L$ are all in excellent agreement with the constraints recently extracted from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes, from the neutron skin thickness of nuclei and from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions. This work provides a fundamental basis for the understanding of nuclear matter under extreme conditions, and validates the important empirical constraints obtained from recent experimental data.

P. Roy Chowdhury; D. N. Basu; C. Samanta

2009-07-15T23:59:59.000Z

37

Programmable matter by folding  

E-Print Network [OSTI]

Programmable matter is a material whose properties can be programmed to achieve specific shapes or stiffnesses upon command. This concept requires constituent elements to interact and rearrange intelligently in order to ...

Wood, R. J.

38

The Heart of Matter  

E-Print Network [OSTI]

In this article I trace the development of the human understanding of the "Heart of Matter" from early concepts of "elements" (or alternatively "Panchmahabhootas") to the current status of "quarks" and "leptons" as the fundamental constituents of matter, interacting together via exchange of the various force carrier particles called "gauge bosons" such as the photon, W/Z-boson etc. I would like to show how our understanding of the fundamental constituents of matter has gone hand in hand with our understanding of the fundamental forces in nature. I will also outline how the knowledge of particle physics at the "micro" scale of less than a Fermi(one millionth of a nanometer), enables us to offer explanations of Cosmological observations at the "macro" scale. Consequently these observations, may in turn, help us address some very fundamental questions of the Physics at the "Heart of the Matter".

Godbole, Rohini M

2010-01-01T23:59:59.000Z

39

Matter & Energy Electronics  

E-Print Network [OSTI]

See also: Matter & Energy Electronics路 Detectors路 Technology路 Construction路 Sports Science Electronic Tongue Tastes Wine Variety, Vintage (Aug. 12, 2008) -- You don't need a wine expert to Advance

Suslick, Kenneth S.

40

The Heart of Matter  

E-Print Network [OSTI]

In this article I trace the development of the human understanding of the "Heart of Matter" from early concepts of "elements" (or alternatively "Panchmahabhootas") to the current status of "quarks" and "leptons" as the fundamental constituents of matter, interacting together via exchange of the various force carrier particles called "gauge bosons" such as the photon, W/Z-boson etc. I would like to show how our understanding of the fundamental constituents of matter has gone hand in hand with our understanding of the fundamental forces in nature. I will also outline how the knowledge of particle physics at the "micro" scale of less than a Fermi(one millionth of a nanometer), enables us to offer explanations of Cosmological observations at the "macro" scale. Consequently these observations, may in turn, help us address some very fundamental questions of the Physics at the "Heart of the Matter".

Rohini M. Godbole

2010-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Atomic dark matter  

SciTech Connect (OSTI)

We propose that dark matter is dominantly comprised of atomic bound states. We build a simple model and map the parameter space that results in the early universe formation of hydrogen-like dark atoms. We find that atomic dark matter has interesting implications for cosmology as well as direct detection: Weak-scale dark atoms can accommodate hyperfine splittings of order 100 keV, consistent with the inelastic dark matter interpretation of the DAMA data while naturally evading direct detection bounds. Moreover, protohalo formation can be suppressed below M{sub proto} ? 10{sup 3}10{sup 6}M{sub s}un for weak scale dark matter due to Ion-Radiation and Ion-Atom interactions in the dark sector.

Kaplan, David E.; Krnjaic, Gordan Z.; Rehermann, Keith R.; Wells, Christopher M., E-mail: dkaplan@pha.jhu.edu, E-mail: gordan@pha.jhu.edu, E-mail: keith@pha.jhu.edu, E-mail: cwells13@pha.jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States)

2010-05-01T23:59:59.000Z

42

23 23.2 23.4 23.6 23.8 24 24.2 (24) (3-minute) reference gas intervals: 450 ppm co2, sf=10 Hz  

E-Print Network [OSTI]

23 23.2 23.4 23.6 23.8 24 24.2 446 447 448 449 450 451 452 453 454 455 456 (24) (3-minute) reference gas intervals: 450 ppm co2, sf=10 Hz co2 day of year 2006 licormotionmodel.m, licormotionmodel.pdf, 15-Jun-2006, 14:16:6 #12;0.5 1 1.5 2 2.5 3 3.5 4 x 10 4 440 450 460 (24) concatenated (3-minute

Saltzman, Eric

43

Influence of quantum matter fluctuations on geodesic deviation  

E-Print Network [OSTI]

We study the passive influence of quantum matter fluctuations on the expansion parameter of a congruence of timelike geodesics in a semiclassical regime. In particular, we show that, the perturbations of this parameter can be considered to be elements of the algebra of matter fields at all perturbative order. Hence, once a quantum state for matter is chosen, it is possible to explicitly evaluate the behavior of geometric fluctuations. After introducing the formalism necessary to treat similar problems, in the last part of the paper, we estimate the approximated probability of having a geodesic collapse in a flat spacetime due to those fluctuations.

Nicol Drago; Nicola Pinamonti

2014-09-12T23:59:59.000Z

44

Thermodynamics of clusterized matter  

E-Print Network [OSTI]

Thermodynamics of clusterized matter is studied in the framework of statistical models with non-interacting cluster degrees of freedom. At variance with the analytical Fisher model, exact Metropolis simulation results indicate that the transition from homogeneous to clusterized matter lies along the $\\rho=\\rho_0$ axis at all temperatures and the limiting point of the phase diagram is not a critical point even if the surface energy vanishes at this point. Sensitivity of the inferred phase diagram to the employed statistical framework in the case of finite systems is discussed by considering the grand-canonical and constant-pressure canonical ensembles. A Wigner-Seitz formalism in which the fragment charge is neutralized by an uniform electron distribution allows to build the phase diagram of neutron star matter.

Ad. R. Raduta; F. Gulminelli

2009-08-26T23:59:59.000Z

45

Matter & Energy Nanotechnology  

E-Print Network [OSTI]

to electrical energy in order to power electronic devices, these results point to an advantage in reducingSee Also: Matter & Energy Nanotechnology Materials Science Technology Energy Technology Civil of potential functionalities, ranging from single-nanowire lasers and LEDs to more complex devices

Espinosa, Horacio D.

46

Matter & Energy Wind Energy  

E-Print Network [OSTI]

See Also: Matter & Energy Wind Energy Energy Technology Physics Nuclear Energy Petroleum 27, 2012) -- Energy flowing from large-scale to small-scale places may be prevented from flowing, indicating that there are energy flows from large to small scale in confined space. Indeed, under a specific

Shepelyansky, Dima

47

Matter & Energy Solar Energy  

E-Print Network [OSTI]

See Also: Matter & Energy Solar Energy路 Electronics路 Materials Science路 Earth & Climate Energy and the Environment 路 Renewable Energy路 Environmental Science 路 Reference Chemical compound路 Semiconductor路 Gallium at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry

Rogers, John A.

48

Matter & Energy Engineering  

E-Print Network [OSTI]

.com/products/seahawk/ Maryland Solar Panels-- Solar Installations from BGE HOME $0 Down For Big Energy Savings! www.bgehome.com/SolarLike 6 0 | More APA MLA See Also: Matter & Energy Petroleum Engineering Fossil Fuels Earth believe may be contributing to global warming. The UK government has just announced it is investing 1

S骲ester, Andr醩

49

Asymmetric condensed dark matter  

E-Print Network [OSTI]

We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate can be very light, $10^{-22}\\,{\\rm eV} \\lesssim m \\lesssim 10^2\\,{\\rm eV}$; the lower limit arises from constraints on small-scale structure formation, while the upper bound ensures that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of deco...

Aguirre, Anthony

2015-01-01T23:59:59.000Z

50

Dark matter axions `96  

SciTech Connect (OSTI)

This report discusses why axions have been postulated to exist, what cosmology implies about their presence as cold dark matter in the galactic halo, how axions might be detected in cavities wherein strong magnetic fields stimulate their conversion into photons, and relations between axions` energy spectra and galactic halos` properties.

Sikivie, P.

1996-12-31T23:59:59.000Z

51

Energy Matters in Washington State Page 1 Energy Matters  

E-Print Network [OSTI]

Energy Matters in Washington State 颅 Page 1 Energy Matters in Washington State June 2008 Updated November 2009 Updated and Revised October 2013 Grand Coulee Dam #12;Energy Matters in Washington State 颅 Page 2 Copyright 漏 2013 Washington State University Energy Program. 905 Plum Street SE, P.O. Box 43169

Collins, Gary S.

52

The Search for Dark Matter  

ScienceCinema (OSTI)

More than 25 years ago, PNNL scientists began the first underground measurements searching for dark matter using specialized radiation detector technology. Dark matter is yet to be discovered says Physicist John L. Orrell.

Orrell, John

2014-07-24T23:59:59.000Z

53

PPM Energy Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLC Place: Reno,PEPCODeployment) JumpPPLPPM

54

Can Cosmic Structure form without Dark Matter?  

SciTech Connect (OSTI)

One of the prime pieces of evidence for dark matter is the observation of large overdense regions in the universe. Since we know from the cosmic microwave background that the regions that contained the most baryons when the universe was {approx} 400, 000 years old were overdense by only one part in ten thousand, perturbations had to have grown since then by a factor greater than (1 + z{sub *}) {approx_equal} 1180 where z{sub *} is the epoch of recombination. This enhanced growth does not happen in general relativity, so dark matter is needed in the standard theory. We show here that enhanced growth can occur in alternatives to general relativity, in particular in Bekenstein's relativistic version of Modified Newtonian Dynamics (MOND). The vector field introduced in that theory for a completely different reason plays a key role in generating the instability that produces large cosmic structures today.

Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr.; Liguori, Michele; /Fermilab /Padua U. /INFN, Padua

2006-08-01T23:59:59.000Z

55

Can Cosmic Structure form without Dark Matter?  

E-Print Network [OSTI]

One of the prime pieces of evidence for dark matter is the observation of large overdense regions in the universe. Since we know from the cosmic microwave background that the regions that contained the most baryons when the universe was ~400,000 years old were overdense by only one part in ten thousand, perturbations had to have grown since then by a factor greater than $(1+z_*)\\simeq 1180$ where $z_*$ is the epoch of recombination. This enhanced growth does not happen in general relativity, so dark matter is needed in the standard theory. We show here that enhanced growth can occur in alternatives to general relativity, in particular in Bekenstein's relativistic version of MOdified Newtonian Dynamics (MOND). The vector field introduced in that theory for a completely different reason plays a key role in generating the instability that produces large cosmic structures today.

Scott Dodelson; Michele Liguori

2006-08-29T23:59:59.000Z

56

Normal matter storage of antiprotons  

SciTech Connect (OSTI)

Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

Campbell, L.J.

1987-01-01T23:59:59.000Z

57

dark matter dark energy inflation  

E-Print Network [OSTI]

theory dark matter dark energy inflation The National Science Foundation The Kavli Foundation NSF Site Review November 28-29, 2005 #12;dark matter dark energy inflation NSF Site Visit 颅 November 28 Gravitation initial conditions beyond single-field slow roll #12;dark matter dark energy inflation NSF Site

Hu, Wayne

58

Dark Energy and Dark Matter  

E-Print Network [OSTI]

A brief overview of our current understanding of abundance and properties of dark energy and dark matter is presented. A more focused discussion of supersymmetric dark matter follows. Included is a frequentist approach to the supersymmetric parameter space and consequences for the direct detection of dark matter.

Keith A. Olive

2010-01-27T23:59:59.000Z

59

Part removal of 3D printed parts  

E-Print Network [OSTI]

An experimental study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D printing using a patent ...

Pe馻 Doll, Mateo

2014-01-01T23:59:59.000Z

60

Constraining Decaying Dark Matter  

E-Print Network [OSTI]

We revisited the decaying dark matter (DDM) model, in which one collisionless particle decays early into two collisionless particles, that are potentially dark matter particles today. The effect of DDM will be manifested in the cosmic microwave background (CMB) and structure formation. With a systematic modification of CMB calculation tool \\texttt{camb}, we can numerically calculated this effect, and compare it to observations. Further Markov Chain Monte Carlo \\texttt{cosmomc} runnings update the constraints in that model: the free streaming length $\\lambda_{FS}\\lesssim0.5$Mpc for nonrelativistic decay, and $((M_{DDM}/keV) Y)^2 (T_d/yr)\\lesssim5\\times10^{-5}$ for relativistic decay.

Ran Huo

2011-07-13T23:59:59.000Z

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Relativistic calculation of the pion loop correlation energy in nuclear matter in a theory including confinement  

E-Print Network [OSTI]

Relativistic calculation of the pion loop correlation energy in nuclear matter in a theory of nuclear matter which contains the correlation energy. Pion loops are incorporated on top of a relativistic for the correlation energy is the Landau-Migdal parameter g governing the short-range part of the spin- isospin

Boyer, Edmond

62

INT 10-2A, Quantifying the Properties of Hot QCD Matter Preliminary Schedule of Talks,  

E-Print Network [OSTI]

:00 am - Ramona Vogt, Lawrence Berkeley National Laboratory "Cold Nuclear Matter Effects on Heavy Flavor - Loren Linden-Levy, University of Colorado "Experimental Results on Quarkonia at RHIC (part I)" 10:30 am

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

63

FIA-13-0017 - In the Matter of Partnership for Policy Integrity...  

Broader source: Energy.gov (indexed) [DOE]

for Policy Integrity FIA-13-0017 - In the Matter of Partnership for Policy Integrity On March 28, 2013, The Office of Hearings and Appeals (OHA) granted in part and denied in all...

64

Dark Matter in Disc Galaxies  

E-Print Network [OSTI]

Recent work on the mass distribution in spiral galaxies, using mainly HI observations, is reviewed. The principal problem is still to determine to what extent the dark matter is important in the inner parts of a galaxy, or in other words, how dominant is the self-gravitation of the disc. Studies of the shapes of rotation curves show that in detail there is sufficient individuality in spiral galaxies to prohibit the construction of ``Universal Rotation Curves''. A detailed account is given of the method of Athanassoula et al. (1987), where swing amplifier criteria are applied to set a range in the mass-to-light ratio of the disc. To restrict this range further, other methods might be useful. For a number of bright spirals the rotation curve drops just outside the optical image, but this feature by itself cannot constrain unambiguously the mass models. The use of velocity dispersions seems a promising way, though the observational problems are hard. Within the uncertainties, discs can be close to ``maximum'', even though a range of values cannot be excluded.

A. Bosma

1998-12-01T23:59:59.000Z

65

Constraints on particle dark matter from cosmic-ray antiprotons  

E-Print Network [OSTI]

Cosmic-ray antiprotons represent an important channel for dark matter indirect-detection studies. Current measurements of the antiproton flux at the top of the atmosphere and theoretical determinations of the secondary antiproton production in the Galaxy are in good agreement, with no manifest deviation which could point to an exotic contribution in this channel. Therefore, antiprotons can be used as a powerful tool for constraining particle dark matter properties. By using the spectrum of PAMELA data from 50 MV to 180 GV in rigidity, we derive bounds on the dark matter annihilation cross section (or decay rate, for decaying dark matter) for the whole spectrum of dark matter annihilation (decay) channels and under different hypotheses of cosmic-rays transport in the Galaxy and in the heliosphere. For typical models of galactic propagation, the constraints are significantly strong, setting a lower bound on the dark matter mass of a "thermal" relic at about 50-90 GeV for hadronic annihilation channels. These bounds are enhanced to about 150 GeV on the dark matter mass, when large cosmic-rays confinement volumes in the Galaxy are considered, and are reduced to 4-5 GeV for annihilation to light quarks (no bound for heavy-quark production) when the confinement volume is small. Bounds for dark matter lighter than few tens of GeV are due to the low energy part of the PAMELA spectrum, an energy region where solar modulation is relevant: to this aim, we have implemented a detailed solution of the transport equation in the heliosphere, which allowed us not only to extend bounds to light dark matter, but also to determine the uncertainty on the constraints arising from solar modulation modeling. Finally, we estimate the impact of soon-to-come AMS-02 data on the antiproton constraints.

N. Fornengo; L. Maccione; A. Vittino

2015-01-30T23:59:59.000Z

66

Discrete dark matter  

SciTech Connect (OSTI)

We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-Abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z{sub 2} subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while {theta}{sub 13}=0 gives no CP violation in neutrino oscillations.

Hirsch, M.; Morisi, S.; Peinado, E.; Valle, J. W. F. [AHEP Group, Institut de Fisica Corpuscular--C.S.I.C./Universitat de Valencia, Edificio Institutos de Paterna, Apartado 22085, E-46071 Valencia (Spain)

2010-12-01T23:59:59.000Z

67

Materials/Condensed Matter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContractMaterials/Condensed Matter Print

68

Materials/Condensed Matter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContractMaterials/Condensed Matter

69

Halo Formation in Warm Dark Matter Models  

E-Print Network [OSTI]

Discrepancies have emerged between the predictions of standard cold dark matter (CDM) theory and observations of clustering on sub-galactic scales. Warm dark matter (WDM) is a simple modification of CDM in which the dark matter particles have initial velocities due either to their having decoupled as thermal relics, or having been formed via non-equilibrium decay. We investigate the nonlinear gravitational clustering of WDM with a high resolution N-body code, and identify a number of distinctive observational signatures. Relative to CDM, halo concentrations and core densities are lowered, core radii are increased, and large halos emerge with far fewer low mass satellites. The number of small halos is suppressed, and those present are formed by `top down' fragmentation of caustics, as part of a `cosmic web' connecting massive halos. Few small halos form outside this web. If we identify small halos with dwarf galaxies, their number, spatial distribution, and formation epoch appear in better agreement with the observations for WDM than they are for CDM.

Paul Bode; Jeremiah P. Ostriker; Neil Turok

2001-05-29T23:59:59.000Z

70

Nuclear Matter and Nuclear Dynamics  

E-Print Network [OSTI]

Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

M Colonna

2009-02-26T23:59:59.000Z

71

Statistical Mechanics of Jammed Matter  

E-Print Network [OSTI]

A thermodynamic formulation of jammed matter is reviewed. Experiments and simulations of compressed emulsions and granular materials are then used to provide a foundation for the thermodynamics.

Hernan A. Makse; Jasna Brujic; Sam F. Edwards

2005-03-03T23:59:59.000Z

72

Effects of periodic matter in kaon regeneration  

E-Print Network [OSTI]

We study the effects of periodic matter in kaon regeneration, motivated by the possibility of parametric resonance in neutrino oscillations. The large imaginary parts of the forward kaon-nucleon scattering amplitudes and the decay width difference $\\Delta\\Gamma$ prevent a sizable enhancement of the $K_L\\to K_S$ transition probability. However, some interesting effects can be produced using regenerators made of alternating layers of two different materials. Despite the fact that the regenerator has a fixed length one can obtain different values for the probability distribution of the $K_L$ decay into a final state. Using a two-arm regenerator set up it is possible to measure the imaginary parts of the $K^0(\\bar{K}^0)$-nucleon scattering amplitudes in the correlated decays of the $\\phi$-resonance. Combining the data of the single-arm regenerator experiments with direct and reverse orders of the matter layers in the regenerator one can independently measure the CP violating parameter $\\delta$.

Evgeny Akhmedov; Augusto Barroso; Petteri Ker鋘en

2001-07-23T23:59:59.000Z

73

Nucleons, Nuclear Matter and Quark Matter: A unified NJL approach  

SciTech Connect (OSTI)

We use an effective quark model to describe both hadronic matter and deconfined quark matter. By calculating the equations of state and the corresponding neutron star properties, we show that the internal properties of the nucleon have important implications for the properties of these systems.

S. Lawley; W. Bentz; A.W. Thomas

2006-02-10T23:59:59.000Z

74

Dark Matter; Modification of f(R) or Wimps Miracle  

E-Print Network [OSTI]

The identity of dark matter is one of the key outstanding problems in both particle and astrophysics. In this thesis, I review some candidates of dark matter, especially WIMPs (weakly interacting massive particles) which is one of the best candidate so it is called that WIMPs miracle. In addition of this, there are also some theories of modification of gravity, by changing the law of gravity, it could be possible that the dark matter observations are explained. Until the dark matter particle is detected, there is some room for uncertainty. So we should consider every part of the problem and solve it. Dark matter problem is covering a large area so every possibility is important. So f(R) gravity is also reviewed in this thesis and some theories are considered as a possible solution of dark matter problem. Finally we highlight that, even in the case of WIMPs or another particles solution, f(R) gravity is also can be used for this problem. However, last words will be said by experiments.

A. 講g黱

2013-01-23T23:59:59.000Z

75

Neutron-proton mass difference in isospin asymmetric nuclear matter  

E-Print Network [OSTI]

Isospin-breaking effects in the baryonic sector are studied in the framework of a medium-modified Skyrme model. The neutron-proton mass difference in infinite, asymmetric nuclear matter is discussed. In order to describe the influence of the nuclear environment on the skyrmions, we include energy-dependent charged and neutral pion optical potentials in the s- and p-wave channels. The present approach predicts that the neutron-proton mass difference is mainly dictated by its strong part and that it strongly decreases in neutron matter.

Ulf-G. Mei遪er; A. M. Rakhimov; A. Wirzba; U. T. Yakhshiev

2007-05-24T23:59:59.000Z

76

Astronomical Evidence for Dark Matter  

E-Print Network [OSTI]

weapon in "Quake 4" is the Dark Matter Gun. In Futurama they use dark matter fuel, where "one pound is 10 of dynamics: #12;Galaxy Clusters Also with Sunyaev-Zel'dovich Effect. Inverse Compton scattering Sensitive to baryons Spectral distortion: Line of sight integral of pressure #12;Galaxy Clusters SZ Effect Compute

Golwala, Sunil

77

Energy Matters in Washington State  

E-Print Network [OSTI]

Energy Matters in Washington State Energy Matters in Washington State www.energy.wsu.edu/library/ November 2009 #12;905 Plum Street SE, Building 3 P.O. Box 43169 Olympia, Washington 98504-3169 Energy University Extension Energy Program. 905 Plum Street SE, Building 3, P.O. Box 43169, Olympia, Washington

Collins, Gary S.

78

A Reconsideration of Matter Waves  

E-Print Network [OSTI]

Matter waves were discovered in the early 20th century from their wavelength, predicted by DeBroglie, Planck's constant divided by the particle's momentum, that is, lmw = h/mv. But, the failure to obtain a reasonable theory for the matter wave frequency resulted somewhat in loss of further interest. It was expected that the frequency of the matter wave should correspond to the particle kinetic energy, that is, fmw = 1/2mv^2/h but the resulting velocity of the matter of the particle, v = fmw x lmw, is that the matter wave moves at one half the speed of the particle, obviously absurd as the particle and its wave must move together. If relativistic mass is used (as it should in any case) the problem remains, the same mass appearing in numerator and denominator and canceling. It is no help to hypothesize that the total energy, not just the kinetic energy, yields the matter wave. That attributes a matter wave to a particle at rest. It also gives the resulting velocity as c^2/v, the wave racing ahead of its particle. A reinterpretation of Einstein's derivation of relativistic kinetic energy (which produced his famous E = mc^2) leads to a valid matter wave frequency and a new understanding of particle kinetics and of the atom's stable orbits.

Roger Ellman

2005-05-16T23:59:59.000Z

79

Charmonium mass in nuclear matter  

E-Print Network [OSTI]

The mass shift of charmonium states in nuclear matter is studied in the perturbative QCD approach. The leading-order effect due to the change of gluon condensate in nuclear matter is evaluated using the leading-order QCD formula, while the higher...

Lee, S. H.; Ko, Che Ming.

2003-01-01T23:59:59.000Z

80

WIMP Dark Matter Limit-Direct Detection Data and Sensitivity Plots from the Cryogenic Dark Matter Search II and the University of California at Santa Barbara  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Expectations for non-baryonic dark matter are founded principally in Big Bang nucleosynthesis calculations, which indicate that the missing mass of the universe is not likely to be baryonic. The supersymmetric standard model (SUSY) offers a promising framework for expectations of particle species which could satisfy the observed properties of dark matter. WIMPs are the most likely SUSY candidate for a dark matter particle. The High Energy Physics Group at University of California, Santa Barbara, is part of the CDMSII Collaboration and have provided the Interactive Plotter for WIMP Dark Matter Limit-Direct Detection Data on their website. They invite other collaborations working on dark matter research to submit datasets and, as a result, have more than 150 data sets now available for use with the plotting tool. The published source of the data is provided with each data set.

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Stocks of Distillate Fuel Oil Greater Than 15 ppm to 500 ppm Sulfur  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael Schaal Director, Oil and10:InformationSteam Coal109,4334,538

82

Energy Matters: Industrial Energy Efficiency | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Matters: Industrial Energy Efficiency Energy Matters: Industrial Energy Efficiency November 18, 2011 - 2:33pm Addthis On November 16, 2011, Deputy Assistant Secretary for Energy...

83

The Unification and Cogeneration of Dark Matter and Baryonic Matter  

E-Print Network [OSTI]

In grand unified theories with gauge groups larger than SU(5), the multiplets that contain the known quarks and leptons also contain fermions that are singlets under the Standard Model gauge group. Some of these could be the dark matter of the universe. Grand unified theories can also have accidental U(1) global symmetries (analogous to B-L in minimal SU(5)) that can stabilize dark matter. These ideas are illustrated in an SU(6) model.

S. M. Barr

2011-09-18T23:59:59.000Z

84

The Unification and Cogeneration of Dark Matter and Baryonic Matter  

E-Print Network [OSTI]

In grand unified theories with gauge groups larger than SU(5), the multiplets that contain the known quarks and leptons also contain fermions that are singlets under the Standard Model gauge group. Some of these could be the dark matter of the universe. Grand unified theories can also have accidental U(1) global symmetries (analogous to B-L in minimal SU(5)) that can stabilize dark matter. These ideas are illustrated in an SU(6) model.

Barr, S M

2011-01-01T23:59:59.000Z

85

Dark Matter Constraints from a Cosmic Index of Refraction  

SciTech Connect (OSTI)

The dark-matter candidates of particle physics invariably possess electromagnetic interactions, if only via quantum fluctuations. Taken en masse, dark matter can thus engender an index of refraction which deviates from its vacuum value. Its presence is signaled through frequency-dependent effects: the real part yields dispersive effects in propagation, and the imaginary part yields such in attenuation. We discuss theoretical constraints on the expansion of the index of refraction with frequency, the physical interpretation of the terms, and the particular observations needed to isolate its coefficients. This, with the advent of new opportunities to view gamma-ray bursts at cosmological distance scales, gives us a new probe of dark matter. As a first application we use the time delay determined from radio afterglow observations of gamma-ray bursts to limit the charge-to-mass ratio of dark matter to |{var_epsilon}|/M < 1.8 x 10{sup -5} eV{sup -1} at 95% CL.

Gardner, Susan; Latimer, David C.

2009-04-01T23:59:59.000Z

86

Distinct optical properties of relativistically degenerate matter  

SciTech Connect (OSTI)

In this paper, we use the collisional quantum magnetohydrodynamic (CQMHD) model to derive the transverse dielectric function of a relativistically degenerate electron fluid and investigate various optical parameters, such as the complex refractive index, the reflection and absorption coefficients, the skin-depth and optical conductivity. In this model we take into accounts effects of many parameters such as the atomic-number of the constituent ions, the electron exchange, electron diffraction effect and the electron-ion collisions. Study of the optical parameters in the solid-density, the warm-dense-matter, the big-planetary core, and the compact star number-density regimes reveals that there are distinct differences between optical characteristics of the latter and the former cases due to the fundamental effects of the relativistic degeneracy and other quantum mechanisms. It is found that in the relativistic degeneracy plasma regime, such as found in white-dwarfs and neutron star crusts, matter possess a much sharper and well-defined step-like reflection edge beyond the x-ray electromagnetic spectrum, including some part of gamma-ray frequencies. It is also remarked that the magnetic field intensity only significantly affects the plasma reflectivity in the lower number-density regime, rather than the high density limit. Current investigation confirms the profound effect of relativistic degeneracy on optical characteristics of matter and can provide an important plasma diagnostic tool for studying the physical processes within the wide scope of quantum plasma regimes be it the solid-density, inertial-confined, or astrophysical compact stars.

Akbari-Moghanjoughi, M. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz 51745-406 (Iran, Islamic Republic of); International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, Bochum D-44780 (Germany)

2014-06-15T23:59:59.000Z

87

Physical Protection of Classified Matter  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes policy and objectives for physical protection of classified matter. This directive does not cancel another directive. Chg 1, 7-30-93. Canceled by 5632.1C.

1988-02-03T23:59:59.000Z

88

Cosmology, Thermodynamics and Matter Creation  

E-Print Network [OSTI]

Several approaches to the matter creation problem in the context of cosmological models are summarily reviewed. A covariant formulation of the general relativistic imperfect simple fluid endowed with a process of matter creation is presented. By considering the standard big bang model, it is shown how the recent results of Prigogine et alii \\cite{1} can be recovered and, at the same time their limits of validity are explicited.

J. A. S. Lima; M. O. Calvao; I. Waga

2007-08-24T23:59:59.000Z

89

Lorentz-violating dark matter  

E-Print Network [OSTI]

LORENTZ-VIOLATING DARK MATTER A Dissertation by ANTONIO R. MONDRAGON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2007 Major Subject...: Physics LORENTZ-VIOLATING DARK MATTER A Dissertation by ANTONIO R. MONDRAGON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair...

Mondragon, Antonio Richard

2009-05-15T23:59:59.000Z

90

?CDM cosmology from matter only  

E-Print Network [OSTI]

I discuss a matter-only interpretation of {\\Lambda}CDM cosmology, based on conservation of energy and assuming a Machian definition of inertia. {\\Lambda}CDM cosmology can be linked to a Newtonian cosmic potential, subject to a propagating gravitational horizon. In a matter-only universe where total energy is conserved, Machian inertia related to the evolving potential may cause both deceleration and acceleration of recession.

Herman Telkamp

2015-04-08T23:59:59.000Z

91

Two field matter bounce cosmology  

SciTech Connect (OSTI)

We re-examine the non-singular Matter Bounce scenario first developed in [20], which starts with a matter-dominated period of contraction and transitions into an Ekpyrotic phase of contraction. We consider both matter fields, the first of which plays the role of regular matter, and the second of which is responsible for the non-singular bounce. Since the dominant matter field is massive, the induced curvature fluctuations are initially not scale-invariant, whereas the fluctuations of the second scalar field (which are initially entropy fluctuations) are scale-invariant. We study the transfer of the initial entropy perturbations into curvature fluctuations in the matter-dominated phase of contraction and show that the latter become nearly scale invariant on large scales but are blue tilted on small scales. We study the evolution of both curvature and entropy fluctuations through the bounce, and show that both have a scale-invariant spectrum which is blue-tilted on small scales. However, we find that the entropy fluctuations have an amplitude that is much smaller than that of the curvature perturbations, due to gravitational amplification of curvature perturbations during the bounce phase.

Cai, Yi-Fu; McDonough, Evan; Duplessis, Francis; Brandenberger, Robert H., E-mail: yifucai@physics.mcgill.ca, E-mail: evanmc@physics.mcgill.ca, E-mail: francis.duplessis@mail.mcgill.ca, E-mail: rhb@hep.physics.mcgill.ca [Department of Physics, McGill University, Montr閍l, QC H3A 2T8 (Canada)

2013-10-01T23:59:59.000Z

92

Part I, DAA Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652 Srivastava,Pacific1ofDepartmentb. Part B 1 Part

93

Final Report -Public Part -  

E-Print Network [OSTI]

objective of the PSO 6385 project was to develop stack materials, components and stack technology including and Demonstration of SOFC Stacks PSO Project No. 2006-1-6385 (part 3) 01.03.2006-29.02.2008 Topsoe Fuel Cell A.....................................................................................................................4 3. PROJECT RESULTS

94

Cryogenic Dark Matter Search (CDMS): The Hunt for Dark Matter  

SciTech Connect (OSTI)

Deciphering the nature of dark matter has great scientific importance. A leading hypothesis is that dark matter is made of Weakly Interactive Massive Particles (WIMPs), which may result from supersymmetry or additional spatial dimensions. The underground search for elastic scattering of WIMPs on suitable targets (the so-called 'direct detection') is currently led by the Cryogenic Dark Matter Search II (CDMS II) experiment. Its sensitivity is ten times better than any other experiment and we hope to obtain another factor ten in the coming two years. After a brief recall of our recent results, I will describe the complementarity between direct detection experiments, the LHC and the ILC and I will outline the role that SLAC could play in this SuperCDMS program.

Sadoulet, Bernard (UC Berkeley) [UC Berkeley

2006-03-06T23:59:59.000Z

95

Beryllium Related Matter  

SciTech Connect (OSTI)

In recent months, LLNL has identified, commenced, and implemented a series of interim controls, compensatory measures, and initiatives to ensure worker safety, and improve safety processes with regards to potential worker exposure to beryllium. Many of these actions have been undertaken in response to the NNSA Independent Review (COR-TS-5/15/2008-8550) received by LLNL in November of 2008. Others are the result of recent discoveries, events or incidents, and lessons learned, or were scheduled corrective actions from earlier commitments. Many of these actions are very recent in nature, or are still in progress, and vary in the formality of implementation. Actions are being reviewed for effectiveness as they progress. The documentation of implementation, and review of effectiveness, when appropriate, of these actions will be addressed as part of the formal Corrective Action Plan addressing the Independent Review. The mitigating actions taken fall into the following categories: (1) Responses to specific events/concerns; (2) Development of interim controls; (3) Review of ongoing activities; and (4) Performance improvement measures.

Gaylord, R F

2008-12-23T23:59:59.000Z

96

Chiral condensate in neutron matter  

E-Print Network [OSTI]

A recent chiral perturbation theory calculation of the in-medium quark condensate $$ is extended to the isospin-asymmetric case of pure neutron matter. In contrast to the behavior in isospin-symmetric nuclear matter we find only small deviations from the linear density approximation. This feature originates primarily from the reduced weight factors (e.g. 1/6 for the dominant contributions) of the $2\\pi$-exchange mechanisms in pure neutron matter. Our result suggests therefore that the tendencies for chiral symmetry restoration are actually favored in systems with large neutron excess (e.g. neutron stars). We also analyze the behavior of the density-dependent quark condensate $(\\rho_n)$ in the chiral limit $m_\\pi\\to 0$.

N. Kaiser; W. Weise

2008-08-06T23:59:59.000Z

97

The Power Spectrum of Matter  

E-Print Network [OSTI]

We calculate the mean power spectrum of galaxies using published power spectra of galaxies and clusters of galaxies. The mean power spectrum has a relatively sharp maximum on scale 120 Mpc (for Hubble constant h=1), followed by an almost exact power-law spectrum of index n = -1.9 toward smaller scales. The power spectrum found from APM 2-D galaxy distribution and from LCRS and IRAS 1.2 Jy surveys is flatter around the maximum. Power spectra of galaxies and matter are similar in shape, we find the bias parameter of galaxies relative to matter 1.3 + - 0.1. We compare the empirical power spectrum of matter with analytical power spectra and show that the primordial power spectrum has a break in amplitude and a spike.

J. Einasto

1998-11-27T23:59:59.000Z

98

On the condensed matter scheme for emergent gravity and interferometry  

E-Print Network [OSTI]

An increasingly popular approach to quantum gravity rests on the idea that gravity (and maybe electromagnetism and the other gauge fields) might be an 'emergent phenomenon', in the sense of representing a collective behaviour resulting from a very different microscopic physics. A prominent example of this approach is the condensed matter scheme for quantum gravity, which considers the possibility that gravity emerges as an effective low-energy phenomenon from the quantum vacuum in a way similar to the emergence of collective excitations in condensed matter systems. This condensed matter view of the quantum vacuum clearly hints that, while the term 'ether' has been discredited for about a century, quantum gravity holds many (if not all) of the characteristics that have led people in the past to label various hypothetical substances with the term 'ether'. Since the last burst of enthusiasm for an ether, at the end of the 19th century, was brought to the grave in part by the performance of a series of important experiments in interferometry, the suggestion then naturally arises that maybe interferometry could also play a role in the current discussion on quantum gravity. We will highlight some aspects of this suggestion in the context of the condensed matter scheme for emergent gravity.

G. Jannes

2008-11-10T23:59:59.000Z

99

Low-density instability of multicomponent matter with trapped neutrinos  

SciTech Connect (OSTI)

The effect of neutrino trapping on the longitudinal dielectric function at low densities has been investigated by using different relativistic mean-field models. Parameter sets G2 of Furnstahl-Serot-Tang and Z271 of Horowitz-Piekarewicz, along with the adjusted parameter sets of both models, have been used in this study. The role of the isovector adjustment and the effect of the Coulomb interaction have also been studied. The effect of the isovector adjustment is found to be more significant in the Horowitz-Piekarewicz model, not only in neutrinoless matter but also in matter with neutrino trapping. Although almost independent to the variation of the leptonic fraction, the instability region of matter with neutrino trapping is found to be larger. The presence of more protons and electrons compared to the neutrinoless case is the reason behind this finding. For parameter sets with soft equations of state at low density, the appearance of a large and negative {epsilon}{sub L}(q,q{sub 0}=0) in some parts of the edge of the instability region in matter with neutrino trapping is understood as a consequence of the fact that the Coulomb interaction produced by electron and proton interaction is larger than the repulsive isovector interaction created by the asymmetry between the proton and neutron numbers.

Mart, T.; Sulaksono, A. [Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424 (Indonesia)

2008-08-15T23:59:59.000Z

100

Part III - Section J  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF CIVIL RIGHTS/%2A en10 CFR Part

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Part III - Section J  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF CIVIL RIGHTS/%2A en10 CFR PartM280

102

Part 10 of 11  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on2005-74LaboratoriesCERCLAConcentratingPart

103

Part 11 of 11  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on2005-74LaboratoriesCERCLAConcentratingPart3.4

104

Part 2 of 11  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on2005-74LaboratoriesCERCLAConcentratingPart3.4(

105

PART I - THE SCHEDULE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizing I/OP-Glycoprotein Structure andPALMB i PART

106

PART I - THE SCHEDULE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizing I/OP-Glycoprotein Structure andPALMB i028 i PART

107

Your World Magazine - Microbes: Parts and Potential  

SciTech Connect (OSTI)

Microorganisms are tiny, but together, they make up more than 60 percent of the earth's living matter. Often people think only of bacteria when they talk about microbes, but viruses, fungi, protozoa, and microalgae are also microbes. Scientists estimate that there are 2 to 3 billion species of microorganisms. By learning what genes microbes contain and how they are arranged, what they do, and how they are expressed, researchers get a better grasp on how microbes have evolved, new possibilities for diagnosing and treating diseases, and ideas for ways to clean up the environment and produce energy. You can be a part of this exciting work in many ways. Figuring out the genes in microbes, or microbial genomics, is a field that gets a lot of help from computer science and mathematics. You could go into bioinformatics, which uses computers to collect and sort information about living matter. Or you could try computational modeling and help develop simple models of what an organism would look like and how it would function. Researchers want to understand microbes genetics well enough to build useful ones. As we move toward that possibility, we need to think about how that ability can be used wisely or poorly. Enjoy learning about microbial genomics in this issue of Your World, and think about what part you'd like to take in exploring this vital field. Some current uses of microbes are: (1) Saccharomyces cerevisiae (baker's yeast) - produces the CO{sub 2} that makes bread rise and is also used to make beer; (2) Streptomyces - soil bacteria that make streptomycin, an antibiotic, used to treat infections; (3) Pseudomonas putida - one of many microbes used to clean wastes from sewage at water treatment plants; (4) Escherichia coli - one of many kinds of microbes that live in your gut and help digest your food; and (5) Bacillus thuringiensis - a common soil bacterium that acts as a natural pest-killer in gardens and on crops.

Biotechnology Institute

2005-04-01T23:59:59.000Z

108

Solar Neutrino Matter Effects Redux  

E-Print Network [OSTI]

Following recent low-threshold analysis of the Sudbury Neutrino Observatory and asymmetry measurements of the BOREXINO Collaboration of the solar neutrino flux, we revisit the analysis of the matter effects in the Sun. We show that solar neutrino data constrains the mixing angle $\\theta_{13}$ poorly and that subdominant Standard Model effects can mimic the effects of the physics beyond the Standard Model.

A. B. Balantekin; A. Malkus

2011-12-19T23:59:59.000Z

109

Phi Meson in Dense Matter  

E-Print Network [OSTI]

The effect of the kaon loop correction to the property of a phi meson in dense matter is studied in the vector dominance model. Using the density-dependent kaon effective mass determined from the linear chiral perturbation theory, we find...

Ko, Che Ming; Levai, P.; Qiu, X. J.; Li, C. T.

1992-01-01T23:59:59.000Z

110

HEALTH MATTERS Copper T IUD  

E-Print Network [OSTI]

HEALTH MATTERS Copper T IUD What is the Copper T IUD? The Copper T IUD is one of two types of intrauterine devices available in the United States. The Copper T IUD is a small, flexible device made of soft plastic and copper. It is easily and quickly inserted into the uterus by a health care provider to prevent

Yener, Aylin

111

Laser Cooling of Matter INTRODUCTION  

E-Print Network [OSTI]

- velopment of techniques that have allowed the ion motion to be cooled into the ground state of the confiningLaser Cooling of Matter INTRODUCTION Laser cooling of neutral atoms in the past decades has been a breakthrough in the understanding of their dy- namics and led to the seminal proposals of laser cooling

Kaiser, Robin

112

Why Geology Matters: Decoding the Past, Anticipating the Future  

E-Print Network [OSTI]

Review: Why Geology Matters: Decoding the Past, AnticipatingUSA Macdougall, Doug. Why Geology Matters: Decoding theE-book available. Why Geology Matters pursues two goals: to

Anderson, Byron P.

2011-01-01T23:59:59.000Z

113

Energy Matters: Our Energy Independence | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Matters: Our Energy Independence Energy Matters: Our Energy Independence Addthis Description In this installment of the livechat series "Energy Matters," Dr. Arun Majumdar takes...

114

Condensed Matter Theory Center/JQI  

E-Print Network [OSTI]

Joint Condensed Matter Theory Center/JQI Seminar Wednesday, March 21, 11:00-12:30pm 2205 Physics in condensed matter physics. Among the exciting recent developments in this direction are the discoveries

Lathrop, Daniel P.

115

Condensed Matter Theory Center Tuesday, December 13  

E-Print Network [OSTI]

Condensed Matter Theory Center Seminar Tuesday, December 13 11:00am-12:30pm 2205 Physics Building" Abstract: At sufficiently low temperatures, condensed-matter systems tend to develop order. An notable

Lathrop, Daniel P.

116

Condensed Matter Theory Center Wednesday, May 18  

E-Print Network [OSTI]

Condensed Matter Theory Center Seminar Wednesday, May 18 11am-12pm 2205 Physics Building Zhengcheng condensed matter physics is based on two theories: symmetry breaking theory for phases and phase transitions

Lathrop, Daniel P.

117

Dark matter axions and caustic rings  

SciTech Connect (OSTI)

This report contains discussions on the following topics: the strong CP problem; dark matter axions; the cavity detector of galactic halo axions; and caustic rings in the density distribution of cold dark matter halos.

Sikivie, P.

1997-11-01T23:59:59.000Z

118

Statistical mechanics of hot dense matter  

SciTech Connect (OSTI)

Research on properties of hot dense matter produced with high intensity laser radiation is described in a brief informal review.

More, R.

1986-10-01T23:59:59.000Z

119

Nuclear matter to strange matter transition in holographic QCD  

E-Print Network [OSTI]

We construct a simple holographic QCD model to study nuclear matter to strange matter transition. The interaction of dense medium and hadrons is taken care of by imposing the force balancing condition for stable D4/D6/D6 configuration. By considering the intermediate and light flavor branes interacting with baryon vertex homogeneously distributed along R^3 space and requesting the energy minimization, we find that there is a well defined transition density as a function of current quark mass. We also find that as density goes up very high, intermediate (or heavy) and light quarks populate equally as expected from the Pauli principle. In this sense, the effect of the Pauli principle is realized as dynamics of D-branes.

Youngman Kim; Yunseok Seo; Sang-Jin Sin

2009-11-19T23:59:59.000Z

120

3D Imaging Of Wet Granular Matter  

E-Print Network [OSTI]

3D Imaging Of Wet Granular Matter Leonard Goff Advisor: Dr. Wolfgang Losert With Application to Penetrometer Insertion #12;3D Imaging Of Wet Granular Matter Leonard Goff, Advisor: Dr. Wolfgang Losert CoffeeSand Gravel Oops! #12;3D Imaging Of Wet Granular Matter Leonard Goff, Advisor: Dr. Wolfgang Losert

Anlage, Steven

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Personal Finance Make Your Money Matter  

E-Print Network [OSTI]

Personal Finance Make Your Money Matter Name: Registration number: Department: Year of study of your portfolio. #12;Personal Finance Make Your Money Matter2 Contents Timetable Page 3 Introduction 16 #12;Personal Finance Make Your Money Matter3 Timetable Friday 6.00 pm Introduction

Stevenson, Mark

122

Reducing cosmological small scale structure via a large dark matter-neutrino interaction: constraints and consequences  

E-Print Network [OSTI]

Cold dark matter explains a wide range of data on cosmological scales. However, there has been a steady accumulation of evidence for discrepancies between simulations and observations at scales smaller than galaxy clusters. Solutions to these small scale structure problems may indicate that simulations need to improve how they include feedback from baryonic matter, or may imply that dark matter properties differ from the standard cold, noninteracting scenario. One promising way to affect structure formation on small scales is a relatively strong coupling of dark matter to neutrinos. We construct an experimentally viable, simple, renormalizable, model with new interactions between neutrinos and dark matter. We show that addressing the small scale structure problems requires dark matter with a mass that is tens of MeV, and a present-day density determined by an initial particle-antiparticle asymmetry in the dark sector. Generating a sufficiently large dark matter-neutrino coupling requires a new heavy neutrino with a mass around 100 MeV. The heavy neutrino is mostly sterile but has a substantial $\\tau$ neutrino component, while the three nearly massless neutrinos are partly sterile. We provide the first discussion of how such dark matter-neutrino interactions affect neutrino (especially $\\tau$ neutrino) phenomenology. This model can be tested by future astrophysical, particle physics, and neutrino oscillation data. A feature in the neutrino energy spectrum and flavor content from a future nearby supernova would provide strong evidence of neutrino-dark matter interactions. Promising signatures include anomalous matter effects in neutrino oscillations due to nonstandard interactions and a component of the $\\tau$ neutrino with mass around 100 MeV.

Bridget Bertoni; Seyda Ipek; David McKeen; Ann E. Nelson

2014-12-09T23:59:59.000Z

123

On Math, Matter and Mind  

E-Print Network [OSTI]

We discuss the nature of reality in the ontological context of Penrose's math-matter-mind triangle. The triangle suggests the circularity of the widespread view that math arises from the mind, the mind arises out of matter, and that matter can be explained in terms of math. Non-physicists should be wary of any claim that modern physics leads us to any particular resolution of this circularity, since even the sample of three theoretical physicists writing this paper hold three divergent views. Some physicists believe that current physics has already found the basic framework for a complete description of reality, and only has to fill in the details. Others suspect that no single framework, from physics or other sources, will ever capture reality. Yet others guess that reality might be approached arbitrarily closely by some form of future physics, but probably based on completely different frameworks. We will designate these three approaches as the fundamentalist, secular and mystic views of the world, as seen by practicing physicists. We present and contrast each of these views, which arguably form broad categories capturing most if not all interpretations of physics. We argue that this diversity in the physics community is more useful than an ontological monoculture, since it motivates physicists to tackle unsolved problems with a wide variety of approaches.

Piet Hut; Mark Alford; Max Tegmark

2006-01-15T23:59:59.000Z

124

Conformal Inflation Coupled to Matter  

E-Print Network [OSTI]

We formulate new conformal models of inflation and dark energy which generalise the Higgs-Dilaton scenario. We embed these models in unimodular gravity whose effect is to break scale invariance in the late time Universe. In the early Universe, inflation occurs close to a maximum of both the scalar potential and the scalar coupling to the Ricci scalar in the Jordan frame. At late times, the dilaton, which decouples from the dynamics during inflation, receives a potential term from unimodular gravity and leads to the acceleration of the Universe. We address two central issues in this scenario. First we show that the Damour-Polyalov mechanism, when non-relativistic matter is present prior to the start of inflation, sets the initial conditions for inflation at the maximum of the scalar potential. We then show that conformal invariance implies that matter particles are not coupled to the dilaton in the late Universe at the classical level. When fermions acquire masses at low energy, scale invariance is broken and quantum corrections induce a coupling between the dilaton and matter which is still small enough to evade the gravitational constraints in the solar system.

P. Brax; A. C. Davis

2014-01-28T23:59:59.000Z

125

Effects of Advanced Combustion Technologies on Particulate Matter...  

Broader source: Energy.gov (indexed) [DOE]

Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Effects of Advanced Combustion Technologies on Particulate Matter Emissions...

126

Strange Quark Matter and Compact Stars  

E-Print Network [OSTI]

Astrophysicists distinguish between three different types of compact stars. These are white dwarfs, neutron stars, and black holes. The former contain matter in one of the densest forms found in the Universe which, together with the unprecedented progress in observational astronomy, make such stars superb astrophysical laboratories for a broad range of most striking physical phenomena. These range from nuclear processes on the stellar surface to processes in electron degenerate matter at subnuclear densities to boson condensates and the existence of new states of baryonic matter--like color superconducting quark matter--at supernuclear densities. More than that, according to the strange matter hypothesis strange quark matter could be more stable than nuclear matter, in which case neutron stars should be largely composed of pure quark matter possibly enveloped in thin nuclear crusts. Another remarkable implication of the hypothesis is the possible existence of a new class of white dwarfs. This article aims at giving an overview of all these striking physical possibilities, with an emphasis on the astrophysical phenomenology of strange quark matter. Possible observational signatures associated with the theoretically proposed states of matter inside compact stars are discussed as well. They will provide most valuable information about the phase diagram of superdense nuclear matter at high baryon number density but low temperature, which is not accessible to relativistic heavy ion collision experiments.

Fridolin Weber

2004-09-27T23:59:59.000Z

127

Cosmological perturbations in mimetic matter model  

E-Print Network [OSTI]

We investigate the cosmological evolution of mimetic matter model with arbitrary scalar potential. The cosmological reconstruction is explicitly done for different choices of potential. The cases that mimetic matter model shows the evolution as Cold Dark Matter(CDM), wCDM model, dark matter and dark energy with dynamical $Om(z)$ or phantom dark energy with phantom-non-phantom crossing are presented in detail. The cosmological perturbations for such evolution are studied in mimetic matter model. For instance, the evolution behavior of the matter density contrast which is different from usual one, i.e. $\\ddot \\delta + 2 H \\dot \\delta - \\kappa ^2 \\rho \\delta /2 = 0$ is investigated. The possibility of peculiar evolution of $\\delta$ in the model under consideration is shown. Special attention is paid to the behavior of matter density contrast near to future singularity where decay of perturbations may occur much earlier the singularity.

Matsumoto, Jiro; Sushkov, Sergey V

2015-01-01T23:59:59.000Z

128

Dark matter in B-L extended MSSM models  

SciTech Connect (OSTI)

We analyze the dark matter problem in the context of the supersymmetric U(1){sub B-L} model. In this model, the lightest neutralino can be the B-L gaugino Z-tilde{sub B-L} or the extra Higgsinos {chi}-tilde{sub 1,2} dominated. We compute the thermal relic abundance of these particles and show that, unlike the lightest neutralino in the MSSM, they can account for the observed relic abundance with no conflict with other phenomenological constraints. The prospects for their direct detection, if they are part of our galactic halo, are also discussed.

Khalil, S. [Centre for Theoretical Physics, British University in Egypt, El Sherouk City, Postal No, 11837, P.O. Box 43 (Egypt); Department of Mathematics, Ain Shams University, Faculty of Science, Cairo, 11566 (Egypt); Okada, H. [Centre for Theoretical Physics, British University in Egypt, El Sherouk City, Postal No, 11837, P.O. Box 43 (Egypt)

2009-04-15T23:59:59.000Z

129

Dim Matter in the Disks of Low Surface Brightness Galaxies  

E-Print Network [OSTI]

An attempt is made to set constraints on the otherwise ambiguous decomposition of the rotation curves of low surface brightness galaxies into contributions due to the various components of the galaxies. For this purpose galaxies are selected which show clear spiral structure. Arguments of density wave theory of galactic spiral arms are then used to estimate the masses of the galactic disks. These estimates seem to indicate that the disks of low surface brightness galaxies might be much more massive than currently thought. This unexpected result contradicts stellar population synthesis models. This would also mean that low surface brightness galaxies are not dominated by dark matter in their inner parts.

B. Fuchs

2002-04-23T23:59:59.000Z

130

Forms of matter and forms of radiation  

E-Print Network [OSTI]

The theory of defects in ordered and ill-ordered media is a well-advanced part of condensed matter physics. Concepts developed in this field also occur in the study of spacetime singularities, namely: i)- the topological theory of quantized defects (Kibble's cosmic strings) and ii)- the Volterra process for continuous defects, used to classify the Poincar\\'e symmetry breakings. We reassess the classification of Minkowski spacetime defects in the same theoretical frame, starting from the conjecture that these defects fall into two classes, as on they relate to massive particles or to radiation. This we justify on the empirical evidence of the Hubble's expansion. We introduce timelike and null congruences of geodesics treated as ordered media, viz. 'm'-crystals of massive particles and 'r'-crystals of massless particles, with parallel 4-momenta in M^4. Classifying their defects (or 'forms') we find (i) 'm'- and 'r'- Volterra continuous line defects and (ii) quantized topologically stable 'r'-defects, these latter forms being of various dimensionalities. Besides these 'perfect' forms, there are 'imperfect' disclinations that bound misorientation walls in three dimensions. We also speculate on the possible relation of these forms with the large-scale structure of the Universe.

Maurice Kleman

2011-04-08T23:59:59.000Z

131

The Evolution of Galaxies by the Incompatibility between Dark Matter and Baryonic Matter  

E-Print Network [OSTI]

In this paper, the evolution of galaxies is by the incompatibility between dark matter and baryonic matter. Due to the structural difference, baryonic matter and dark matter are incompatible to each other as oil droplet and water in emulsion. In the interfacial zone between dark matter and baryonic matter, this incompatibility generates the modification of Newtonian dynamics to keep dark matter and baryonic matter apart. The five periods of baryonic structure development in the order of increasing incompatibility are the free baryonic matter, the baryonic droplet, the galaxy, the cluster, and the supercluster periods. The transition to the baryonic droplet generates density perturbation in the CMB. In the galaxy period, the first-generation galaxies include elliptical, normal spiral, barred spiral, irregular, and dwarf spheroidal galaxies. In the cluster period, the second-generation galaxies include modified giant ellipticals, cD, evolved S0, dwarf elliptical, BCD, and tidal dwarf galaxies. The whole observable expanding universe behaves as one unit of emulsion with increasing incompatibility between dark matter and baryonic matter. The properties of dark matter and baryonic matter are based on cosmology derived from the two physical structures: the space structure and the object structure. Baryonic matter can be described by the periodic table of elementary particles.

Ding-Yu Chung

2011-02-10T23:59:59.000Z

132

; r : : ~ I f ~ ACCEPTABLE PARTS LIST  

E-Print Network [OSTI]

Specifications H. Subcontractor's Non-Standard Part Approval Request I. Limited Usage Parts ATTACHMENTS: (I

Rathbun, Julie A.

133

Sterile dark matter and reionization  

E-Print Network [OSTI]

Sterile neutrinos with masses in the keV range can be the dark matter, and their emission from a supernova can explain the observed velocities of pulsars. The sterile neutrino decays could produce the x-ray radiation in the early universe, which could have an important effect on the formation of the first stars. X-rays could ionize gas and could catalyze the production of molecular hydrogen during the ``dark ages''. The increased fraction of molecular hydrogen could facilitate the cooling and collapse of the primordial gas clouds in which the first stars were formed.

Alexander Kusenko

2006-09-13T23:59:59.000Z

134

Dark Matter in the MSSM  

SciTech Connect (OSTI)

We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.

Cotta, R.C.; Gainer, J.S.; Hewett, J.L.; Rizzo, T.G.; /SLAC

2009-04-07T23:59:59.000Z

135

Initial value constraints with tensor matter  

E-Print Network [OSTI]

In generally covariant metric gravity theories with tensor matter fields, the initial value constraint equations, unlike in general relativity, are in general not just the 0\\mu-components of the metric field equation. This happens because higher derivatives can occur in the matter stress tensor. A universal form for these constraints is derived here from a generalized Bianchi identity that includes matter fields. As an application, the constraints for Einstein-aether theory are found.

Ted Jacobson

2011-08-06T23:59:59.000Z

136

Lorentz violation and Condensed Matter Physics  

E-Print Network [OSTI]

We present heuristic arguments that hint to a possible connection of Lorentz violation with observed phenomenon in condensed matter physics. Various references from condensed matter literature are cited where operators in the Standard Model Extension (SME) appear to be enhanced. Based on this we propose that, in the non-relativistic limit, Lorentz violation in the context of the SME exhibits itself in various condensed matter systems.

Muhammad Adeel Ajaib

2014-03-29T23:59:59.000Z

137

Noble Travails: Noble Liquid Dark Matter Detectors  

E-Print Network [OSTI]

, or water, 0.1x flux per 10 cm Cosmic Ray Muons generate high energy neutrons 50 MeV - 3 GeV which are toughGaitskell Noble Travails: Noble Liquid Dark Matter Detectors Rick Gaitskell Particle Astrophysics://particleastro.brown.edu/ http://gaitskell.brown.edu v1 #12;LUX Dark Matter Collaboration 2007 v01_7mm Dark Matter Theory

Golwala, Sunil

138

Axion Dark Matter Detection using Atomic Transitions  

E-Print Network [OSTI]

Dark matter axions may cause transitions between atomic states that differ in energy by an amount equal to the axion mass. Such energy differences are conveniently tuned using the Zeeman effect. It is proposed to search for dark matter axions by cooling a kilogram-sized sample to milliKelvin temperatures and count axion induced transitions using laser techniques. This appears an appropriate approach to axion dark matter detection in the $10^{-4}$ eV mass range.

P. Sikivie

2014-09-09T23:59:59.000Z

139

Boiler - tuning basics, part 1  

SciTech Connect (OSTI)

Tuning power plant controls takes nerves of steel and an intimate knowledge of plant systems gained only by experience. Tuning controls also requires equal parts art and science, which probably is why there are so few tuning experts in the power industry. In part 1 of a two-part series, the author explores a mix of the theoretical and practical aspects of tuning boiler control. 5 figs.

Leopold, T. [ABB Inc. (United States)

2009-03-15T23:59:59.000Z

140

Shapes of dark matter halos  

E-Print Network [OSTI]

I present an analysis of the density shapes of dark matter halos in LCDM and LWDM cosmologies. The main results are derived from a statistical sample of galaxy-mass halos drawn from a high resolution LCDM N-body simulation. Halo shapes show significant trends with mass and redshift: low-mass halos are rounder than high mass halos, and, for a fixed mass, halos are rounder at low z. Contrary to previous expectations, which were based on cluster-mass halos and non-COBE normalized simulations, LCDM galaxy-mass halos at z=0 are not strongly flattened, with short to long axis ratios of s = 0.70 +/- 0.17. I go on to study how the shapes of individual halos change when going from a LCDM simulation to a simulation with a warm dark matter power spectrum (LWDM). Four halos were compared, and, on average, the WDM halos are more spherical than their CDM counterparts (s =0.77 compared to s = 0.71). A larger sample of objects will be needed to test whether the trend is significant.

James S. Bullock

2001-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Supernovae. Part II: The aftermath  

E-Print Network [OSTI]

R. Viswanathan, 1980, As- Supernovae. Part II ExperimentalSmith, 1982, Astrophys. Supernovae. Chevalier, R. A. , andC. B. , 1974, Ed. , Supernovae and Supernova Rem- nants,

Trimble, V

1983-01-01T23:59:59.000Z

142

ALS Reveals New State of Matter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

papers and extensive news coverage of their work on a new state of matter embodied by "topological insulators," materials that conduct electricity only on their surfaces. First...

143

Condensed Matter Theory Center Fall 2009 Symposium  

E-Print Network [OSTI]

Condensed Matter Theory Center Fall 2009 Symposium September 28 - October 2, 2009 2202 Physics Barnett, "Vortex lattice locking in rotating BECs and spinor condensates" Maxim Dzero, "Cooper pair

Lathrop, Daniel P.

144

Quantum Condensates in Nuclear Matter: Problems  

E-Print Network [OSTI]

In connection with the contribution "Quantum Condensates in Nuclear Matter" some problems are given to become more familiar with the techniques of many-particle physics.

G. Ropke; D. Zablocki

2010-01-11T23:59:59.000Z

145

Dark Energy and Dark Matter Models  

E-Print Network [OSTI]

We revisit the problems of dark energy and dark matter and several models designed to explain them, in the light of some latest findings.

Burra G. Sidharth

2015-01-07T23:59:59.000Z

146

PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS  

E-Print Network [OSTI]

University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

Stocker, H.

2012-01-01T23:59:59.000Z

147

Dissipative dark matter explains rotation curves  

E-Print Network [OSTI]

Dissipative dark matter, where dark matter particles interact with a massless (or very light) boson, is studied. Such dark matter can arise in simple hidden sector gauge models, including those featuring an unbroken $U(1)'$ gauge symmetry, leading to a dark photon. Previous work has shown that such models can not only explain the LSS and CMB, but potentially also dark matter phenomena on small scales, such as the inferred cored structure of dark matter halos. In this picture, dark matter halos of disk galaxies not only cool via dissipative interactions but are also heated via ordinary supernovae (facilitated by an assumed photon - dark photon kinetic mixing interaction). This interaction between the dark matter halo and ordinary baryons, a very special feature of these types of models, plays a critical role in governing the physical properties of the dark matter halo. Here, we further study the implications of this type of dissipative dark matter for disk galaxies. Building on earlier work, we develop a simpl...

Foot, R

2015-01-01T23:59:59.000Z

148

The Majorana Parts Tracking Database  

E-Print Network [OSTI]

The Majorana Demonstrator is an ultra-low background physics experiment searching for the neutrinoless double beta decay of $^{76}$Ge. The Majorana Parts Tracking Database is used to record the history of components used in the construction of the Demonstrator. The tracking implementation takes a novel approach based on the schema-free database technology CouchDB. Transportation, storage, and processes undergone by parts such as machining or cleaning are linked to part records. Tracking parts provides a great logistics benefit and an important quality assurance reference during construction. In addition, the location history of parts provides an estimate of their exposure to cosmic radiation. A web application for data entry and a radiation exposure calculator have been developed as tools for achieving the extreme radio-purity required for this rare decay search.

Abgrall, N; Avignone, F T; Bertrand, F E; Brudanin, V; Busch, M; Byram, D; Caldwell, A S; Chan, Y-D; Christofferson, C D; Combs, D C; Cuesta, C; Detwiler, J A; Doe, P J; Efremenko, Yu; Egorov, V; Ejiri, H; Elliott, S R; Esterline, J; Fast, J E; Finnerty, P; Fraenkle, F M; Galindo-Uribarri, A; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guiseppe, V E; Gusev, K; Hallin, A L; Hazama, R; Hegai, A; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Keeter, K J; Kidd, M F; Kochetov, O; Kouzes, R T; LaFerriere, B D; Leon, J Diaz; Leviner, L E; Loach, J C; MacMullin, J; Martin, R D; Meijer, S J; Mertens, S; Miller, M L; Mizouni, L; Nomachi, M; Orrell, J L; O'Shaughnessy, C; Overman, N R; Petersburg, R; Phillips, D G; Poon, A W P; Pushkin, K; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Ronquest, M C; Shanks, B; Shima, T; Shirchenko, M; Snavely, K J; Snyder, N; Soin, A; Suriano, A M; Tedeschi, D; Thompson, J; Timkin, V; Tornow, W; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Xu, W; Yakushev, E; Young, A R; Yu, C -H; Zhitnikov, I

2015-01-01T23:59:59.000Z

149

The Majorana Parts Tracking Database  

E-Print Network [OSTI]

The Majorana Demonstrator is an ultra-low background physics experiment searching for the neutrinoless double beta decay of $^{76}$Ge. The Majorana Parts Tracking Database is used to record the history of components used in the construction of the Demonstrator. The tracking implementation takes a novel approach based on the schema-free database technology CouchDB. Transportation, storage, and processes undergone by parts such as machining or cleaning are linked to part records. Tracking parts provides a great logistics benefit and an important quality assurance reference during construction. In addition, the location history of parts provides an estimate of their exposure to cosmic radiation. A web application for data entry and a radiation exposure calculator have been developed as tools for achieving the extreme radio-purity required for this rare decay search.

The Majorana Collaboration; N. Abgrall; E. Aguayo; F. T. Avignone III; A. S. Barabash; F. E. Bertrand; V. Brudanin; M. Busch; D. Byram; A. S. Caldwell; Y-D. Chan; C. D. Christofferson; D. C. Combs; C. Cuesta; J. A. Detwiler; P. J. Doe; Yu. Efremenko; V. Egorov; H. Ejiri; S. R. Elliott; J. Esterline; J. E. Fast; P. Finnerty; F. M. Fraenkle; A. Galindo-Uribarri; G. K. Giovanetti; J. Goett; M. P. Green; J. Gruszko; V. E. Guiseppe; K. Gusev; A. L. Hallin; R. Hazama; A. Hegai; R. Henning; E. W. Hoppe; S. Howard; M. A. Howe; K. J. Keeter; M. F. Kidd; O. Kochetov; S. I. Konovalov; R. T. Kouzes; B. D. LaFerriere; J. Diaz Leon; L. E. Leviner; J. C. Loach; J. MacMullin; R. D. Martin; S. J. Meijer; S. Mertens; M. L. Miller; L. Mizouni; M. Nomachi; J. L. Orrell; C. O'Shaughnessy; N. R. Overman; R. Petersburg; D. G. Phillips II; A. W. P. Poon; K. Pushkin; D. C. Radford; J. Rager; K. Rielage; R. G. H. Robertson; E. Romero-Romero; M. C. Ronquest; B. Shanks; T. Shima; M. Shirchenko; K. J. Snavely; N. Snyder; A. Soin; A. M. Suriano; D. Tedeschi; J. Thompson; V. Timkin; W. Tornow; J. E. Trimble; R. L. Varner; S. Vasilyev; K. Vetter; K. Vorren; B. R. White; J. F. Wilkerson; C. Wiseman; W. Xu; E. Yakushev; A. R. Young; C. -H. Yu; V. Yumatov; I. Zhitnikov

2015-02-05T23:59:59.000Z

150

Public Service "The Minor That Matters"  

E-Print Network [OSTI]

degree. Employees in public service have the opportunity to: vdeliver and manage public programs vaddressMinorThatMatters" TAKEYOURCAR EER IN ANENTIRE LY NEW DIRECTION #12;Public Service...The Minor That Matters Purpose of the Minor designed to provide a solid foundation in public administration and non-profit management, including

151

Advanced particulate matter control apparatus and methods  

DOE Patents [OSTI]

Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

Miller, Stanley J. (Grand Forks, ND); Zhuang, Ye (Grand Forks, ND); Almlie, Jay C. (East Grand Forks, MN)

2012-01-10T23:59:59.000Z

152

Pressure inequalities for nuclear and neutron matter  

E-Print Network [OSTI]

We prove several inequalities using lowest-order effective field theory for nucleons which give an upper bound on the pressure of asymmetric nuclear matter and neutron matter. We prove two types of inequalities, one based on convexity and another derived from shifting an auxiliary field.

Dean Lee

2005-12-22T23:59:59.000Z

153

The earth matter effects in neutrino oscillation experiments from Tokai to Kamioka and Korea  

E-Print Network [OSTI]

We study the earth matter effects in the Tokai-to-Kamioka-and-Korea experiment (T2KK), which is a proposed extension of the T2K (Tokai-to-Kamioka) neutrino oscillation experiment between J-PARC at Tokai and Super-Kamiokande (SK) in Kamioka, where an additional detector is placed in Korea along the same neutrino beam line.By using recent geophysical measurements, we examine the earth matter effects on the oscillation probabilities at Kamioka and Korea. The average matter density along the Tokai-to-Kamioka baseline is found to be 2.6 g/cm^3, and that for the Tokai-to-Korea baseline is 2.85, 2.98, and 3.05 g/cm^3 for the baseline length of L = 1000, 1100, and 1200 km, respectively. The uncertainty of the average density is about 6%, which is determined by the uncertainty in the correlation between the accurately measured sound velocity and the matter density. The effect of the matter density distribution along the baseline is studied by using the step function approximation and the Fourier analysis. We find that the nu_mu -> nu_e oscillation probability is dictated mainly by the average matter density, with small but non-negligible contribution from the real part of the first Fourier mode. We also find that the sensitivity of the T2KK experiment on the neutrino mass hierarchy does not improve significantly by reducing the matter density error from 6% to 3%, since the measurement is limited by statistics for the minimum scenario of T2KK with SK at Kamioka anda 100 kt detector in Korea considered in this report. The sensitivity of the T2KK experiment on the neutrino mass hierarchy improves significantly by splitting the total beam time into neutrino and anti-neutrino runs, because the matter effect term contributes to the oscillation amplitudes with the opposite sign.

Kaoru Hagiwara; Naotoshi Okamura; Ken-ichi Senda

2011-09-08T23:59:59.000Z

154

Control of parts : parts making in the building industry  

E-Print Network [OSTI]

The thesis advances a diagramming tool called PAct. Each diagram is a model of a "value adding" enterprise, representing materials processing, parts manipulation and assembly, and the agents involved. Its purpose is to ...

Kendall, Stephen Holmes

1990-01-01T23:59:59.000Z

155

New Directions in Direct Dark Matter Searches  

E-Print Network [OSTI]

I present the status of direct dark matter detection with specific attention to the experimental results and their phenomenological interpretation in terms of dark matter interactions. In particular I review a new and more general approach to study signals in this field based on non-relativistic operators which parametrize more efficiently the dark matter-nucleus interactions in terms of a very limited number of relevant degrees of freedom. Then I list the major experimental results, pointing out the main uncertainties that affect the theoretical interpretation of the data. Finally, since the underlying theory that describes both the dark matter and the standard model fields is unknown, I address the uncertainties coming from the nature of the interaction. In particular, the phenomenology of a class of models in which the interaction between dark matter particles and target nuclei is of a long-range type is discussed.

Paolo Panci

2014-02-06T23:59:59.000Z

156

Dark Matter And The Habitability of Planets  

E-Print Network [OSTI]

In many models, dark matter particles can elastically scatter with nuclei in planets, causing those particles to become gravitationally bound. While the energy expected to be released through the subsequent annihilations of dark matter particles in the interior of the Earth is negligibly small (a few megawatts in the most optimistic models), larger planets that reside in regions with higher densities of slow moving dark matter could plausibly capture and annihilate dark matter at a rate high enough to maintain liquid water on their surfaces, even in the absence of additional energy from starlight or other sources. On these rare planets, it may be dark matter rather than light from a host star that makes it possible for life to emerge, evolve, and survive.

Hooper, Dan

2011-01-01T23:59:59.000Z

157

Dark Matter And The Habitability of Planets  

E-Print Network [OSTI]

In many models, dark matter particles can elastically scatter with nuclei in planets, causing those particles to become gravitationally bound. While the energy expected to be released through the subsequent annihilations of dark matter particles in the interior of the Earth is negligibly small (a few megawatts in the most optimistic models), larger planets that reside in regions with higher densities of slow moving dark matter could plausibly capture and annihilate dark matter at a rate high enough to maintain liquid water on their surfaces, even in the absence of additional energy from starlight or other sources. On these rare planets, it may be dark matter rather than light from a host star that makes it possible for life to emerge, evolve, and survive.

Dan Hooper; Jason H. Steffen

2012-03-06T23:59:59.000Z

158

White-matter abnormalities in brain during early abstinence from methamphetamine abuse  

E-Print Network [OSTI]

nuclear gray matter, and white matter of human subjects whoHC) subjects show larger white-matter volume (Thompson ethigher incidence of white-matter signal hyperintensities (

Tobias, Marc C.; O扤eill, Joseph; Hudkins, Matthew; Bartzokis, George; Dean, Andrew C.; London, Edythe D.

2010-01-01T23:59:59.000Z

159

Detecting the invisible universe with neutrinos and dark matter  

E-Print Network [OSTI]

Recent work in astrophysics has show that most of the matter in the universe is non-luminous. This work investigates two searches for non-luminous matter: hot dark matter formed from cosmic relic neutrinos from the Big ...

Kaboth, Asher C. (Asher Cunningham)

2012-01-01T23:59:59.000Z

160

MATLAB: Introduction Part 1 Assignment  

E-Print Network [OSTI]

MATLAB: Introduction Part 1 颅 Assignment Bruno Abreu Calfa Assigned: September 8th , 2011 Due Calculate the value of the function y(x) = |x| sin x2 for values of x = 3 and 6 . Hint 1: Use the MATLAB

Grossmann, Ignacio E.

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Contingency in the Direction and Mechanics of Soil Organic Matter...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contingency in the Direction and Mechanics of Soil Organic Matter Responses to Increased Rainfall. Contingency in the Direction and Mechanics of Soil Organic Matter Responses to...

162

Persistence of soil organic matter in eroding versus depositional...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Persistence of soil organic matter in eroding versus depositional landform positions. Persistence of soil organic matter in eroding versus depositional landform positions....

163

Reduction of Transient Particulate Matter Spikes with Decision...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transient Particulate Matter Spikes with Decision Tree Based Control Reduction of Transient Particulate Matter Spikes with Decision Tree Based Control Using a non-parametric...

164

Recent Progress on Steam Hydrogasification of Carbonaceous Matter...  

Broader source: Energy.gov (indexed) [DOE]

Recent Progress on Steam Hydrogasification of Carbonaceous Matter to Clean Synthetic Diesel Fuel Recent Progress on Steam Hydrogasification of Carbonaceous Matter to Clean...

165

Synchronization of PPM over Wideband Multipath Dana Porrat  

E-Print Network [OSTI]

of Electrical Engineering University of Southern California Los Angeles, CA USA ubli@ucs.edu Abstract amount of multi-path in UWB radio channels, methods for harnessing such diversity when the channel potential. We have shown in [6] that in the limit of large bandwidth, threshold based synchronizers cannot

Porrat, Dana

166

Iberdrola Renewables formerly PPM Energy Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a newIGUS InnovativeITi Solar

167

Stocks of Distillate Fuel Oil 15 ppm Sulfur and Under  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael Schaal Director, Oil and10:InformationSteam Coal109,433

168

Stocks of Distillate Fuel Oil Greater Than 500 ppm Sulfur  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael Schaal Director, Oil and10:InformationSteam

169

The Alcubierre Warp Drive: On the Matter of Matter  

E-Print Network [OSTI]

The Alcubierre warp drive allows a spaceship to travel at an arbitrarily large global velocity by deforming the spacetime in a bubble around the spaceship. Little is known about the interactions between massive particles and the Alcubierre warp drive, or the effects of an accelerating or decelerating warp bubble. We examine geodesics representative of the paths of null and massive particles with a range of initial velocities from -c to c interacting with an Alcubierre warp bubble travelling at a range of globally subluminal and superluminal velocities on both constant and variable velocity paths. The key results for null particles match what would be expected of massive test particles as they approach +/- c. The increase in energy for massive and null particles is calculated in terms of v_s, the global ship velocity, and v_p, the initial velocity of the particle with respect to the rest frame of the origin/destination of the ship. Particles with positive v_p obtain extremely high energy and velocity and become "time locked" for the duration of their time in the bubble, experiencing very little proper time between entering and eventually leaving the bubble. When interacting with an accelerating bubble, any particles within the bubble at the time receive a velocity boost that increases or decreases the magnitude of their velocity if the particle is moving towards the front or rear of the bubble respectively. If the bubble is decelerating, the opposite effect is observed. Thus Eulerian matter is unaffected by bubble accelerations/decelerations. The magnitude of the velocity boosts scales with the magnitude of the bubble acceleration/deceleration.

Brendan McMonigal; Geraint F. Lewis; Philip O'Byrne

2012-02-26T23:59:59.000Z

170

Unbound particles in dark matter halos  

SciTech Connect (OSTI)

We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.

Behroozi, Peter S.; Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, Stanford University and SLAC National Accelerator Laboratory 2575 Sand Hill Road, Menlo Park, CA (United States); Loeb, Abraham, E-mail: behroozi@stanford.edu, E-mail: aloeb@cfa.harvard.edu, E-mail: rwechsler@stanford.edu [Department of Astronomy, Harvard University 60 Garden St, Cambridge, MA (United States)

2013-06-01T23:59:59.000Z

171

Clusters in nuclear matter and Mott points  

E-Print Network [OSTI]

Light clusters (mass number $A \\leq 4$) in nuclear matter at subsaturation densities are described using a quantum statistical approach. In addition to self-energy and Pauli-blocking, effects of continuum correlations are taken into account to calculate the quasiparticle properties and abundances of light elements. Medium-modified quasiparticle properties are important ingredients to derive a nuclear matter equation of state applicable in the entire region of warm dense matter below saturation density. The influence of the nucleon-nucleon interaction on the quasiparticle shift is discussed.

G. R鰌ke

2015-01-06T23:59:59.000Z

172

Isotropic cosmological singularities: other matter models  

E-Print Network [OSTI]

Isotropic cosmological singularities are singularities which can be removed by rescaling the metric. In some cases already studied (gr-qc/9903008, gr-qc/9903009, gr-qc/9903018) existence and uniqueness of cosmological models with data at the singularity has been established. These were cosmologies with, as source, either perfect fluids with linear equations of state or massless, collisionless particles. In this article we consider how to extend these results to a variety of other matter models. These are scalar fields, massive collisionless matter, the Yang-Mills plasma of Choquet-Bruhat, or matter satisfying the Einstein-Boltzmann equation.

K. P. Tod

2002-09-20T23:59:59.000Z

173

The Bright Side of Dark Matter  

E-Print Network [OSTI]

We show that it is not possible in the absence of dark matter to construct a four-dimensional metric that explains galactic observations. In particular, by working with an effective potential it is shown that a metric which is constructed to fit flat rotation curves in spiral galaxies leads to the wrong sign for the bending of light i.e. repulsion instead of attraction. Hence, without dark matter the motion of particles on galactic scales cannot be explained in terms of geodesic motion on a four- dimensional metric. This reveals a new bright side to dark matter: it is indispensable if we wish to retain the cherished equivalence principle.

A. Edery

1999-05-27T23:59:59.000Z

174

Clusters in nuclear matter and Mott points  

E-Print Network [OSTI]

Light clusters (mass number $A \\leq 4$) in nuclear matter at subsaturation densities are described using a quantum statistical approach. In addition to self-energy and Pauli-blocking, effects of continuum correlations are taken into account to calculate the quasiparticle properties and abundances of light elements. Medium-modified quasiparticle properties are important ingredients to derive a nuclear matter equation of state applicable in the entire region of warm dense matter below saturation density. The influence of the nucleon-nucleon interaction on the quasiparticle shift is discussed.

R鰌ke, G

2015-01-01T23:59:59.000Z

175

Structure, composition, and location of organic matter in the enstatite chondrite Sahara 97096 (EH3)  

E-Print Network [OSTI]

The insoluble organic matter (IOM) of an unequilibrated enstatite chondrite Sahara (SAH) 97096 has been investigated using a battery of analytical techniques. As the enstatite chondrites are thought to have formed in a reduced environment at higher temperatures than carbonaceous chondrites, they constitute an interesting comparative material to test the heterogeneities of the IOM in the solar system and to constrain the processes that could affect IOM during solar system evolution. The SAH 97096 IOM is found in situ: as submicrometer grains in the network of fine-grained matrix occurring mostly around chondrules and as inclusions in metallic nodules, where the carbonaceous matter appears to be more graphitized. IOM in these two settings has very similar $\\delta^{15}N$ and $\\delta^{13}C$; this supports the idea that graphitized inclusions in metal could be formed by metal catalytic graphitization of matrix IOM. A detailed comparison between the IOM extracted from a fresh part and a terrestrially weathered part...

Piani, Laurette; Beyssac, Olivier; Binet, Laurent; Bourot-Denise, Mich鑜e; Derenne, Sylvie; Guillou, Corentin Le; Marrocchi, Yves; Mostefaoui, Smail; Rouzaud, Jean-Noel; Thomen, Aurelien

2015-01-01T23:59:59.000Z

176

Condensed Matter Theory Center Wednesday, January 4  

E-Print Network [OSTI]

Condensed Matter Theory Center Seminar Wednesday, January 4 11:00am-12:00pm 2205 Physics Building) methods may be used to address such a problem by calculating both global (condensate fraction, superfluid

Lathrop, Daniel P.

177

Coherent neutrino scattering in dark matter detectors  

E-Print Network [OSTI]

Coherent elastic neutrino-nucleus and weakly interacting massive particle-nucleus interaction signatures are expected to be quite similar. This paper discusses how a next-generation ton-scale dark matter detector could ...

Anderson, Alexander John

178

Cortical white matter: beyond the pale  

E-Print Network [OSTI]

The tracts within the subcortical white matter and corpus callosum provide an anatomical connectivity that is essential for normal cognitive functioning. These structures are predominantly made up of axons that are myelinated ...

Rockland, Kathleen

179

Antigravitation, Dark Energy, Dark Matter - Alternative Solution  

E-Print Network [OSTI]

Collisional damping of gravitational waves in the Newtonian matter is investigated. The generalized theory of Landau damping is applied to the gravitational physical systems in the context of the plasma gravitational analogy.

Boris V. Alexeev

2009-09-04T23:59:59.000Z

180

Manual for Classified Matter Protection and Control  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Provides detailed requirements for the protection and control of classified matter which supplement DOE O 471.2A. Cancels DOE M 471.2-1 dated 09/26/1995.

1998-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Investigation of Direct Injection Vehicle Particulate Matter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions This study focuses primarily on particulate matter mass analysis of a gasoline direct injection engine in a test cell with a chassis dynamometer. p-10gibbs.pdf...

182

Dark Matter Searches with Representing the  

E-Print Network [OSTI]

路 Supernova Remnants 路 Unidentified Gamma-ray Sources 路 Gamma-Ray Bursts 路 Solar Physics 路 Dark Matter #12)United States 路 California State University at Sonoma (SSU) 路 University of California at Santa Cruz - Santa

California at Santa Cruz, University of

183

Can Dark Matter Decay in Dark Energy?  

E-Print Network [OSTI]

We analyze the interaction between Dark Energy and Dark Matter from a thermodynamical perspective. By assuming they have different temperatures, we study the possibility of occurring a decay from Dark Matter into Dark Energy, characterized by a negative parameter $Q$. We find that, if at least one of the fluids has non vanishing chemical potential, for instance $\\mu_x0$, the decay is possible, where $\\mu_x$ and $\\mu_{dm}$ are the chemical potentials of Dark Energy and Dark Matter, respectively. Using recent cosmological data, we find that, for a fairly simple interaction, the Dark Matter decay is favored with a probability of $\\sim 93%$ over the Dark Energy decay. This result comes from a likelihood analysis where only background evolution has been considered.

S. H. Pereira; J. F. Jesus

2009-02-26T23:59:59.000Z

184

Neutron Matter from Low to High Density  

E-Print Network [OSTI]

Neutron matter is an intriguing nuclear system with multiple connections to other areas of physics. Considerable progress has been made over the last two decades in exploring the properties of pure neutron fluids. Here we begin by reviewing work done to explore the behavior of very low density neutron matter, which forms a strongly paired superfluid and is thus similar to cold Fermi atoms, though at energy scales differing by many orders of magnitude. We then increase the density, discussing work that ties the study of neutron matter with the determination of the properties of neutron-rich nuclei and neutron-star crusts. After this, we review the impact neutron matter at even higher densities has on the mass-radius relation of neutron stars, thereby making contact with astrophysical observations.

Gandolfi, Stefano; Carlson, J

2015-01-01T23:59:59.000Z

185

Superheavy sterile neutrinos as dark matter  

E-Print Network [OSTI]

Chung, Kolb, and Riotto have proposed nonthermal mechanisms for the production of superheavy dark matter, consisting of particles with masses which may range up to the GUT scale. Shi and Fuller, on the other hand, have proposed much lighter sterile...

Tang, Yongjun

2000-01-01T23:59:59.000Z

186

Magnetism and superconductivity in quark matter  

E-Print Network [OSTI]

Magnetic properties of quark matter and its relation to the microscopic origin of the magnetic field observed in compact stars are studied. Spontaneous spin polarization appears in high-density region due to the Fock exchange term, which may provide a scenario for the behaviors of magnetars. On the other hand, quark matter becomes unstable to form spin density wave in the moderate density region, where restoration of chiral symmetry plays an important role. Coexistence of magnetism and color superconductivity is also discussed.

T. Tatsumi; E. Nakano; K. Nawa

2005-06-01T23:59:59.000Z

187

From nuclear matter to Neutron Stars  

E-Print Network [OSTI]

Neutron stars are the most dense objects in the observable Universe and conventionally one uses nuclear theory to obtain the equation of state (EOS) of dense hadronic matter and the global properties of these stars. In this work, we review various aspects of nuclear matter within an effective Chiral model and interlink fundamental quantities both from nuclear saturation as well as vacuum properties and correlate it with the star properties.

T. K. Jha

2009-02-02T23:59:59.000Z

188

Desorption of hexachlorobiphenyl from selected particulate matter  

E-Print Network [OSTI]

DESORPTION OF HEXACHLOROBIPHENYL FROM SELECTED PARTICULATE MATTER A Thesis by REAGAN CARTWRIGHT RORS CHACH Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1989 Major Subject: Civil Engineering DESORPTION OF HEXACHLOROBIPHENYL FROM SELECTED PARTICULATE MATTER A Thesis by REAGAN C. RORSCHACH Approved as to style and content by: Robin L. Autenrieth (Chair of Committee...

Rorschach, Reagan Cartwright

1989-01-01T23:59:59.000Z

189

Cosmology with a stiff matter era  

E-Print Network [OSTI]

We provide a simple analytical solution of the Friedmann equations for a universe made of stiff matter, dust matter, and dark energy. A stiff matter era is present in the cosmological model of Zel'dovich (1972) where the primordial universe is assumed to be made of a cold gas of baryons. It also occurs in certain cosmological models where dark matter is made of relativistic self-gravitating Bose-Einstein condensates (BECs). When the energy density of the stiff matter is positive, the primordial universe is singular. It starts from a state with a vanishing scale factor and an infinite density. We consider the possibility that the energy density of the stiff matter is negative (anti-stiff matter). This happens, for example, when the BECs have an attractive self-interaction. In that case, the primordial universe is non-singular. It starts from a state in which the scale factor is finite and the energy density is equal to zero. For the sake of generality, we consider a cosmological constant of arbitrary sign. When the cosmological constant is positive, the universe asymptotically reaches a de Sitter phase where the scale factor increases exponentially rapidly. This can account for the accelerating expansion of the universe that we observe at present. When the cosmological constant is negative (anti-de Sitter), the evolution of the universe is cyclic. Therefore, depending on the sign of the energy density of the stiff matter and of the dark energy, we obtain singular and non-singular expanding or cyclic universes.

Pierre-Henri Chavanis

2014-11-27T23:59:59.000Z

190

{\\Lambda}CDM cosmology from matter only  

E-Print Network [OSTI]

I discuss a matter-only interpretation of {\\Lambda}CDM cosmology, based on conservation of energy and assuming a Machian definition of inertia. {\\Lambda}CDM cosmology can be linked to a Newtonian cosmic potential, subject to a propagating gravitational horizon. In a matter-only universe where total energy is conserved, Machian inertia related to the evolving potential may cause both deceleration and acceleration of recession.

Telkamp, Herman

2015-01-01T23:59:59.000Z

191

Dark Matter in Supersymmetric U(1){sub B-L} Model  

SciTech Connect (OSTI)

We analyze the dark matter problem in the context of supersymmetric, U(1){sub B-L} model. In this model, the lightest neutalino can be B-L gaugino Z-tilde{sub B-L} or Higgsinos {chi}-tilde{sub 1,2} dominated. We examine the thermal relic abundance of these particles and discuss the prospects for their direct detection if they form part of our galactic halo.

Khalil, S.; Okada, H. [Centre for Theoretical Physics, British University in Egypt, Cairo, 11837 (Egypt)

2009-04-17T23:59:59.000Z

192

Gravitational Field Equations and Theory of Dark Matter and Dark Energy  

E-Print Network [OSTI]

The main objective of this article is to derive a new set of gravitational field equations and to establish a new unified theory for dark energy and dark matter. The new gravitational field equations with scalar potential $\\varphi$ are derived using the Einstein-Hilbert functional, and the scalar potential $\\varphi$ is a natural outcome of the divergence-free constraint of the variational elements. Gravitation is now described by the Riemannian metric $g_{ij}$, the scalar potential $\\varphi$ and their interactions, unified by the new gravitational field equations. Associated with the scalar potential $\\varphi$ is the scalar potential energy density $\\frac{c^4}{8\\pi G} \\Phi=\\frac{c^4}{8\\pi G} g^{ij}D_iD_j \\varphi$, which represents a new type of energy caused by the non-uniform distribution of matter in the universe. The negative part of this potential energy density produces attraction, and the positive part produces repelling force. This potential energy density is conserved with mean zero: $\\int_M \\Phi dM=0$. The sum of this new potential energy density $\\frac{c^4}{8\\pi G} \\Phi$ and the coupling energy between the energy-momentum tensor $T_{ij}$ and the scalar potential field $\\varphi$ gives rise to a new unified theory for dark matter and dark energy: The negative part of this sum represents the dark matter, which produces attraction, and the positive part represents the dark energy, which drives the acceleration of expanding galaxies. In addition, the scalar curvature of space-time obeys $R=\\frac{8\\pi G}{c^4} T + \\Phi$. Furthermore, the new field equations resolve a few difficulties encountered by the classical Einstein field equations.

Tian Ma; Shouhong Wang

2012-07-11T23:59:59.000Z

193

TEELINDUSTRIAL OPERATING INSTRUCTIONS & PARTS MANUAL  

E-Print Network [OSTI]

-stage zoning applications in hydronic heating and cooling systems for residential, commercial and/or inTEELINDUSTRIAL SERIES OPERATING INSTRUCTIONS & PARTS MANUAL WATER CIRCULATING PUMPS MODELS 1P899A INSTRUCTIONS CAREFULLY BEFORE ATTEMPTING TO INSTALL, OPERATE, OR SERVICE TEEL PUMPS. PROTECT YOURSELF

Kleinfeld, David

194

Search for pseudoscalar cold dark matter  

SciTech Connect (OSTI)

AH dynamical evidence points to the conclusion that the predominant form of matter in the universe is in a non-luminous form. Furthermore, large scale deviations from uniform Hubble flow, and the recent COBE reports of inhomogeneities in the cosmic microwave background strongly suggest that we live in an exactly closed universe. If this is true, then ordinary baryonic matter could only be a minority component (10% at most) of the missing mass, and that what constitutes the majority of the dark matter must involve new physics. The axion is one of very few well motivated candidates which may comprise the dark matter. Additionally it is a `cold` dark-matter candidate which is preferred by the COBE data. We propose to construct and operate an experiment to search for axions which may constitute the dark matter of our own galaxy. As proposed by Sikivie, dark-matter axions may be detected by their stimulated conversion into monochromatic microwave photons in a tunable high-Q cavity inside a strong magnetic field. Our ability to mount an experiment quickly and take data within one year is due to a confluence of three factors. The first is the availability of a compact high field superconducting magnet and a local industrial partner, Wang NMR, who can make a very thermally efficient and economical cryostat for it. The second is an ongoing joint venture with the Institute for Nuclear Research of the Russian Academy of Sciences to do R&D on metalized precision-formed ceramic microwave cavities for the axion search, and INR has commited to providing all the microwave cavity arrays for this experiment, should this proposal be approved. The third is a commitment of very substantial startup capital monies from MIT for all of the state-of-the-art ultra-low noise microwave electronics, to one of our outstanding young collaborators who is joining their faculty.

van Bibber, K.; Stoeffl, W.; LLNL Collaborators

1992-05-29T23:59:59.000Z

195

Past and present of nuclear matter  

SciTech Connect (OSTI)

The subject of nuclear matter is interesting for many fields of physics ranging from condensed matter to lattice QCD. Knowing its properties is important for our understanding of neutron stars, supernovae and cosmology. Experimentally, we have the most precise information on ground state nuclear matter from the mass formula and from the systematics of monopole vibrations. This gives us the ground state density, binding energy and the compression modulus k at ground state density. However, those methods can not be extended towards the regime we are most interested in, the regime of high density and high temperature. Additional information can be obtained from the observation of neutron stars and of supernova explosions. In both cases information is limited by the rare events that nature provides for us. High energy heavy ion collisions, on the other hand, allow us to perform controlled experiments in the laboratory. For a very short period in time we can create a system that lets us study nuclear matter properties. Density and temperature of the system depend on the mass of the colliding nuclei, on their energy and on the impact parameter. The system created in nuclear collisions has at best about 200 constituents not even close to infinite nuclear matter, and it lasts only for collision times of {approx} 10{sup {minus}22}sec, not an ideal condition for establishing any kind of equilibrium. Extended size and thermal and chemical equilibrium, however, axe a priori conditions of nuclear matter. As a consequence we need realistic models that describe the collision dynamics and non-equilibrium effects in order to relate experimental observables to properties of nuclear matter. The study of high energy nuclear collisions started at the Bevalac. I will try to summarize the results from the Bevalac studies, the highlights of the continuing program, and extension to higher energies without claiming to be complete.

Ritter, H.G.

1994-05-01T23:59:59.000Z

196

Working Group Report: Dark Matter Complementarity (Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond)  

SciTech Connect (OSTI)

In this Report we discuss the four complementary searches for the identity of dark matter: direct detection experiments that look for dark matter interacting in the lab, indirect detection experiments that connect lab signals to dark matter in our own and other galaxies, collider experiments that elucidate the particle properties of dark matter, and astrophysical probes sensitive to non-gravitational interactions of dark matter. The complementarity among the different dark matter searches is discussed qualitatively and illustrated quantitatively in several theoretical scenarios. Our primary conclusion is that the diversity of possible dark matter candidates requires a balanced program based on all four of those approaches.

Arrenberg, Sebastian; et al.,

2013-10-31T23:59:59.000Z

197

Matter Waves and Orbital Quantum Numbers  

E-Print Network [OSTI]

The atom's orbital electron structure in terms of quantum numbers (principal, azimuthal, magnetic and spin) results in space for a maximum of: 2 electrons in the n=1 orbit, 8 electrons in the n=2 orbit, 18 electrons in the n=3 orbit, and so on. Those dispositions are correct, but that is not because of quantum numbers nor angular momentum nor a "Pauli exclusion principle". Matter waves were discovered in the early 20th century from their wavelength, which was predicted by DeBroglie to be, Planck's constant divided by the particle's momentum. But, the failure to obtain a reasonable theory for the matter wave frequency resulted in loss of interest. That problem is resolved in "A Reconsideration of Matter Waves" in which a reinterpretation of Einstein's derivation of relativistic kinetic energy [which produced his famous E = mc^2] leads to a valid matter wave frequency and a new understanding of particle kinetics and the atom's stable orbits. It is analytically shown that the orbital electron arrangement is enforced by the necessity of accommodating the space that each orbiting electron's matter wave occupies.

Roger Ellman

2005-05-18T23:59:59.000Z

198

Color superconductivity and dense quark matter  

E-Print Network [OSTI]

The properties of cold and dense quark matter have been the subject of extensive investigation, especially in the last decade. Unfortunately, we still lack of a complete understanding of the properties of matter in these conditions. One possibility is that quark matter is in a color superconducting phase which is characterized by the formation of a diquark condensate. We review some of the basic concepts of color superconductivity and some of the aspects of this phase of matter which are relevant for compact stars. Since quarks have color, flavor as well as spin degrees of freedom many different color superconducting phases can be realized. At asymptotic densities QCD predicts that the color flavor locked phase is favored. At lower densities where the QCD coupling constant is large, perturbative methods cannot be applied and one has to rely on some effective model, eventually trying to constrain such a model with experimental observations. The picture is complicated by the requirement that matter in the interior of compact stars is in weak equilibrium and neutral. These conditions and the (possible) large value of the strange quark mass conspire to separate the Fermi momenta of quarks with different flavors, rendering homogenous superconducting phases unstable. One of the aims of this presentation is to introduce non-experts in the field to some of the basic ideas of color superconductivity and to some of its open problems.

Massimo Mannarelli

2008-12-26T23:59:59.000Z

199

NRC Transportation Security (Part 73 SNF Update and Part 37 Category...  

Office of Environmental Management (EM)

NRC Transportation Security (Part 73 SNF Update and Part 37 Category 1 and 2 Materials) NRC Transportation Security (Part 73 SNF Update and Part 37 Category 1 and 2 Materials) NRC...

200

Neutrino matter potentials induced by Earth  

E-Print Network [OSTI]

An instructive method of deriving the matter potentials felt by neutrinos propagating through matter on Earth is presented. This paper thoroughly guides the reader through the calculations involving the effective weak Hamiltonian for lepton and quark scattering. The matter potentials are well-known results since the late 70's, but a detailed and pedagogical calculation of these quantities is hard to find. We derive potentials due to charged and neutral current scattering on electrons, neutrons and protons. Intended readership is for undergraduates/graduates in the fields of relativistic quantum mechanics and quantum field theory. In addition to the derivation of the potentials for neutrinos, we explicitely study the origin of the reversed sign for potentials in the case of antineutrino-scattering.

J. Linder

2006-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Towards a 'Thermodynamics' of Active Matter  

E-Print Network [OSTI]

Self-propulsion allows living systems to display unusual collective behavior. Unlike passive systems in thermal equilibrium, active matter systems are not constrained by conventional thermodynamic laws. A question arises however as to what extent, if any, can concepts from classical thermodynamics be applied to nonequilibrium systems like active matter. Here we use the new swim pressure perspective to develop a simple theory for predicting phase separation in active matter. Using purely mechanical arguments we generate a phase diagram with a spinodal and critical point, and define a nonequilibrium chemical potential to interpret the "binodal." We provide a generalization of thermodynamic concepts like the free energy and temperature for nonequilibrium active systems. Our theory agrees with existing simulation data both qualitatively and quantitatively and may provide a framework for understanding and predicting the behavior of nonequilibrium active systems.

Sho C. Takatori; John F. Brady

2014-11-21T23:59:59.000Z

202

Bi-metric Gravity and "Dark Matter"  

E-Print Network [OSTI]

We present a bi-metric theory of gravity containing a length scale of galactic size. For distances less than this scale the theory satisfies the standard tests of General Relativity. For distances greater than this scale the theory yields an effective gravitational constant much larger than the locally observed value of Newton's constant. The transition from one regime to the other through the galactic scale can explain the observed rotation curves of galaxies and hence the effects normally attributed to the presence of dark matter. Phenomena on an extragalactic scale such as galactic clusters and the expansion of the universe are controlled by the enhanced gravitational coupling. This provides an explanation of the missing matter normally invoked to account for the observed value of Hubble's constant in relation to observed matter.

I. T. Drummond

2000-08-18T23:59:59.000Z

203

MODELING OBSERVATIONAL CONSTRAINTS FOR DARK MATTER HALOS  

SciTech Connect (OSTI)

Observations show that the underlying rotation curves at intermediate radii in spiral and low-surface-brightness galaxies are nearly universal. Further, in these same galaxies, the product of the central density and the core radius ({rho}{sub 0} r{sub 0}) is constant. An empirically motivated model for dark matter halos that incorporates these observational constraints is presented and shown to be in accord with the observations. A model fit to the observations of the galaxy cluster A611 shows that {rho}{sub 0} r{sub 0} for the dark matter halo in this more massive structure is larger by a factor of {approx}20 over that assumed for the galaxies. The model maintains the successful Navarro-Frenk-White form in the outer regions, although the well-defined differences in the inner regions suggest that modifications to the standard cold dark matter picture are required.

Hartwick, F. D. A. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada)

2012-12-01T23:59:59.000Z

204

Lattice Refining LQC and the Matter Hamiltonian  

E-Print Network [OSTI]

In the context of loop quantum cosmology, we parametrise the lattice refinement by a parameter, $A$, and the matter Hamiltonian by a parameter, $\\delta$. We then solve the Hamiltonian constraint for both a self-adjoint, and a non-self-adjoint Hamiltonian operator. Demanding that the solutions for the wave-functions obey certain physical restrictions, we impose constraints on the two-dimensional, $(A,\\delta)$, parameter space, thereby restricting the types of matter content that can be supported by a particular lattice refinement model.

William Nelson; Mairi Sakellariadou

2007-08-30T23:59:59.000Z

205

Holographic cold nuclear matter and neutron star  

E-Print Network [OSTI]

We have previously found a new phase of cold nuclear matter based on a holographic gauge theory, where baryons are introduced as instanton gas in the probe D8/$\\overline{\\rm D8}$ branes. In our model, we could obtain the equation of state (EOS) of our nuclear matter by introducing fermi momentum. Then, here we apply this model to the neutron star and study its mass and radius by solving the Tolman-Oppenheimer-Volkoff (TOV) equations in terms of the EOS given here. We give some comments for our holographic model from a viewpoint of the other field theoretical approaches.

Kazuo Ghoroku; Kouki Kubo; Motoi Tachibana; Fumihiko Toyoda

2014-02-19T23:59:59.000Z

206

Asymmetric dark matter and the Sun  

E-Print Network [OSTI]

Cold dark matter particles with an intrinsic matter-antimatter asymmetry do not annihilate after gravitational capture by the Sun and can affect its interior structure. The rate of capture is exponentially enhanced when such particles have self-interactions of the right order to explain structure formation on galactic scales. A `dark baryon' of mass 5 GeV is a natural candidate and has the required relic abundance if its asymmetry is similar to that of ordinary baryons. We show that such particles can solve the `solar composition problem'. The predicted small decrease in the low energy neutrino fluxes may be measurable by the Borexino and SNO+ experiments.

Mads T. Frandsen; Subir Sarkar

2010-06-01T23:59:59.000Z

207

Etherify field butanes: Part 2  

SciTech Connect (OSTI)

Worldwide interest in technical details concerning major components of world-scale MTBE complexes continues. Part 1 reviewed alternate scenarios for MTBE production and basic technological considerations to assess component processes for producing MTBE. Commercial technologies and cost considerations for world-scale MTBE complexes call for a focus on butane isomerization, isobutane dehydrogenation and isobutylene etherification. The paper describes isomerization; four commercial processes for dehydrogenation (Oleflex, Catofin, STAR, and FBD-4 processes); three methods for etherification (fixed bed with recycle, fixed bed tubular reactor, and catalytic distillation); and capital and production costs for the MTBE complex.

Sarathy, P.R. (John Brown, Houston, TX (United States)); Suffridge, G.S. (John Brown, Tulsa, OK (United States))

1993-02-01T23:59:59.000Z

208

HSWA Part II Permit Modification  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACMEFUTURE MOBILITY INPROCEEDINGS, R ePART

209

Part B | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPPSolarParagonThisParkman, OpenEI ReferencePart

210

Microsoft Word - MSW Part I  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthComments MEMA:May1.docEx Parte Memo.docx68 PageDepartment144 Prepared

211

Microsoft Word - PART 970.doc  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthComments MEMA:May1.docEx ParteNationalPolicyAssurances907.rtf

212

Method of forming and assembly of parts  

DOE Patents [OSTI]

A method of assembling two or more parts together that may be metal, ceramic, metal and ceramic parts, or parts that have different CTE. Individual parts are formed and sintered from particles that leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled, sintered parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.

Ripley, Edward B. (Knoxville, TN)

2010-12-28T23:59:59.000Z

213

Quartic isospin asymmetry energy of nuclear matter from chiral pion-nucleon dynamics  

E-Print Network [OSTI]

Based on a chiral approach to nuclear matter, we calculate the quartic term in the expansion of the equation of state of isospin-asymmetric nuclear matter. The contributions to the quartic isospin asymmetry energy $A_4(k_f)$ arising from $1\\pi$-exchange and chiral $2\\pi$-exchange in nuclear matter are calculated analytically together with three-body terms involving virtual $\\Delta(1232)$-isobars. From these interaction terms one obtains at saturation density $\\rho_0 = 0.16\\,$fm$^{-3}$ the value $A_4(k_{f0})= 1.5\\,$MeV, more than three times as large as the kinetic energy part. Moreover, iterated $1\\pi$-exchange exhibits components for which the fourth derivative with the respect to the isospin asymmetry parameter $\\delta$ becomes singular at $\\delta =0$. The genuine presence of a non-analytical term $\\delta^4 \\ln|\\delta|$ in the expansion of the energy per particle of isospin-asymmetric nuclear matter is demonstrated by evaluating a s-wave contact interaction at second order.

Kaiser, N

2015-01-01T23:59:59.000Z

214

RESEARCH HIGHLIGHTS Dark matter lost and found  

E-Print Network [OSTI]

-component condensate.They considered the limited access inherent to samples confined in a diamond anvil cell the gas disks of two spiral galaxies merge. As spirals have dark-matter haloes, their elliptical offspring颅Einstein condensate within a ring- shaped magnetic trap (Phys. Rev. Lett. (in the press); preprint at http

Loss, Daniel

215

Task and Machine Heterogeneities: Higher Moments Matter  

E-Print Network [OSTI]

Task and Machine Heterogeneities: Higher Moments Matter Abdulla M. Al-Qawasmeh 1 , Anthony A.potter}@colostate.edu jtsmith@digitalglobe.com Abstract - One type of heterogeneous computing (HC) systems consists of machines in this matrix represents the ETC of a specific task on a specific machine when executed exclusively. Heuristics

Maciejewski, Anthony A.

216

BIODIVERSITY Origin matters: alien consumers inflict  

E-Print Network [OSTI]

BIODIVERSITY RESEARCH Origin matters: alien consumers inflict greater damage on prey populations, University of Windsor, Windsor, ON N9B 3P4, Canada. E-mail: hughm@uwindsor.ca ABSTRACT Aim Introduced alien regard to whether such species are native or alien. This argument rests on the premise that native

Ricciardi, Anthony

217

Contracting Requirements and Why They Matter  

E-Print Network [OSTI]

Contracting Requirements and Why They Matter Presented by David E. Broome, Jr., General Counsel Amy's legally binding #12;Getting It Wrong 路 Case: Your unit contracts with Fun Corp (FC) to provide Student Fun Fair on campus. Contract requires that University indemnify FC for injuries/damage/liability arising

Howitt, Ivan

218

Condensed Matter Theory Center Ian Spielman  

E-Print Network [OSTI]

Condensed Matter Theory Center Seminar Ian Spielman (JQI) Tuesday, November 9 11:00am-12:30pm 2205 Physics Building "A Bose-Einstein condensate subject to synthetic gauge fields" Here will first present our experimental work creating a synthetic magnetic field in a Bose-Einstein condensate (BEC

Lathrop, Daniel P.

219

Condensed Matter Theory Center Fall 2010 Symposium  

E-Print Network [OSTI]

Condensed Matter Theory Center Fall 2010 Symposium November 2-4, 2010 2205 Physics Building bosons" Ryan Barnett, "Quantum dynamics in ferromagnetic and antiferromagnetic condensates" Hoi Yin Hui" Qi Zhou, "Inter-band coupling induced novel condensates in a double-well lattice" November 3, 2010

Lathrop, Daniel P.

220

Condensed Matter Theory Center 2011 Fall Symposium  

E-Print Network [OSTI]

Condensed Matter Theory Center 2011 Fall Symposium October 3 & 4, 2011 2205 Physics Building and Collective Modes in Fermionic Condensates with Bragg Scattering" Benjamin Fregoso "Degenerate FloquetEinstein condensates" Tuesday, October 4 Afternoon Session: 25:30pm ChienHung Lin "Stabilizing topological

Lathrop, Daniel P.

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Direct search for WIMP dark matter  

E-Print Network [OSTI]

We will review the experimental aspects of the direct search for WIMP dark matter. In thin search, one looks in a terrestrial target for nuclear recoils produced by the impacts with WIMPs from the galatic halo. After describing the different search strategies and review the currently running experiments and the prospects of future experiments

J. Gascon

2005-04-11T23:59:59.000Z

222

Dark Matter and Large Scale Structure  

E-Print Network [OSTI]

A review of the study of dark matter and large scale structure of the Universe at Tartu Observatory is given. Tartu astronomers have participated in this development, starting from Ernst "Opik and Grigori Kuzmin, and continuing with the present generation of astronomers. Our goal was to understand better the structure, origin and evolution of the Universe.

J. Einasto

2000-12-07T23:59:59.000Z

223

Alignment vs N framework for active matter  

E-Print Network [OSTI]

/Coffee at 11:15 AM) Seminar Hall, TCIS trivial Commission for Atomic Energy and Alternative propelled particlesAlignment vs N framework for active matter and collective motion Commission for Atomic Energy and Alternative Energies (CEA), Franc The collective properties of self interacting solely via some kind

Shyamasundar, R.K.

224

Classified Matter Protection and Control Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual supplements DOE O 471.2A, Information Security Program, and provides detailed requirements for the protection and control of classified matter. Cancels DOE M 471.2-1B except Chapter III paragraphs 1 and 2, and Chapter IV.

2001-04-17T23:59:59.000Z

225

Particle Dark Matter and its Detection  

E-Print Network [OSTI]

The status and prospects of the experimental efforts in the detection of Particle Dark Matter is reviewed. Emphasis is put in the direct searches for WIMPs (Weakly Interacting Massive Particles), outlining the various strategies and techniques currently followed and sumarizing the results. A briefing of the indirect methods of WIMP detection is also presented.

Angel Morales

1998-10-21T23:59:59.000Z

226

On the capture of dark matter by neutron stars  

E-Print Network [OSTI]

We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into account dark matter interactions with baryonic matter and the time evolution of the dark matter sphere as it collapses within the neutron star. We show that dark matter self-interactions play an important role in the rapid accumulation of dark matter in the core of the neutron star. We consider the possibility of determining an exclusion region of the parameter space for dark matter mass and dark matter interaction cross sections based on the observation of old neutron stars with strong dark matter self-interactions. We show that for a dark matter density of $~10^3$ GeV/cm$^3$ and dark matter mass $m_\\chi$ less than approximately 10 GeV, there is a potential exclusion region for dark matter interactions with nucleons that is three orders of magnitude more stringent than without self-interactions. The potential exclusion region for dark matter self-interaction cross sections is many orders of magnitude stronger than the current Bullet Cluster limit. For example, for high dark matter density regions, we find that for $m_\\chi\\sim 10$ GeV when the dark matter interaction cross section with the nucleons ranges from $\\sigma_{\\chi n}\\sim 10^{-52}$ cm$^2$ to $10^{-57}$ cm$^2$, the dark matter self-interaction cross section limit is $\\sigma_{\\chi\\chi}ten orders of magnitude stronger than the Bullet Cluster limit.

Tolga Guver; Arif Emre Erkoca; Mary Hall Reno; Ina Sarcevic

2014-04-09T23:59:59.000Z

227

An Alternative to Particle Dark Matter  

E-Print Network [OSTI]

We propose an alternative to particle dark matter that borrows ingredients of MOdified Newtonian Dynamics (MOND) while adding new key components. The first new feature is a dark matter fluid, in the form of a scalar field with small equation of state and sound speed. This component is critical in reproducing the success of cold dark matter for the expansion history and the growth of linear perturbations, but does not cluster significantly on non-linear scales. Instead, the missing mass problem on non-linear scales is addressed by a modification of the gravitational force law. The force law approximates MOND at large and intermediate accelerations, and therefore reproduces the empirical success of MOND at fitting galactic rotation curves. At ultra-low accelerations, the force law reverts to an inverse-square-law, albeit with a larger Newton's constant. This latter regime is important in galaxy clusters and is consistent with their observed isothermal profiles, provided the characteristic acceleration scale of MOND is mildly varying with scale or mass, such that it is ~12 times higher in clusters than in galaxies. We present an explicit relativistic theory in terms of two scalar fields. The first scalar field is governed by a Dirac-Born-Infeld action and behaves as a dark matter fluid on large scales. The second scalar field also has single-derivative interactions and mediates a fifth force that modifies gravity on non-linear scales. Both scalars are coupled to matter via an effective metric that depends locally on the fields. The form of this effective metric implies the equality of the two scalar gravitational potentials, which ensures that lensing and dynamical mass estimates agree. Further work is needed in order to make both the acceleration scale of MOND and the fraction at which gravity reverts to an inverse-square law explicitly dynamical quantities, varying with scale or mass.

Justin Khoury

2014-12-11T23:59:59.000Z

228

`The Heart and Soul of the Matter:' Contexts of Risk  

E-Print Network [OSTI]

`The Heart and Soul of the Matter:' Contexts of Risk and Prevention David Henry Institute #12;"Context is not just something, it is the heart and soul of the matter" (Kelly, 1998) 1. How do

Illinois at Chicago, University of

229

White matter integrity, substance use, and risk taking in adolescence  

E-Print Network [OSTI]

F. M. , Celano, M. J. , White, S. L. , Wallace, G. L. , Lee,inhibition is associated with white matter microstructure inTapert, S.F. (2009). White matter integrity in adolescents

Jacobus, Joanna

2011-01-01T23:59:59.000Z

230

Matter Collineations of Some Static Spherically Symmetric Spacetimes  

E-Print Network [OSTI]

We derive matter collineations for some static spherically symmetric spacetimes and compare the results with Killing, Ricci and Curvature symmetries. We conclude that matter and Ricci collineations are not, in general, the same.

M. Sharif

2004-01-16T23:59:59.000Z

231

Systematic Studies of Jet Quenching in Hot Nuclear Matter  

E-Print Network [OSTI]

??????????????????????????????..x CHAPTER I INTRODUCTION????????????????????????...1 Nuclear matter???????????????????????.1 The standard model of elementary particles??..?????????..1 Quark gluon plasma????????????.?????????3 Jet quenching... OF FIGURES FIGURE Page 1.1. Nuclear Matter Phase Transition Diagram????????????....................2 1.2. Colliding Particles Diagram...

Delgado, Andrea

2011-05-04T23:59:59.000Z

232

Matter wave optical techniques for probing many-body targets  

E-Print Network [OSTI]

This thesis reports on our investigation of the uses of matter waves to probe many-body targets. We begin by discussing decoherence in an atom interferometer, in which a free gas acts as a refractive medium for a matter ...

Sanders, Scott Nicholas

2010-01-01T23:59:59.000Z

233

Anatomy of symmetry energy of dilute nuclear matter  

E-Print Network [OSTI]

The symmetry energy coefficients of dilute clusterized nuclear matter are evaluated in the $S$-matrix framework. Employing a few different definitions commonly used in the literature for uniform nuclear matter, it is seen that the different definitions lead to perceptibly different results for the symmetry coefficients for dilute nuclear matter. They are found to be higher compared to those obtained for uniform matter in the low density domain. The calculated results are in reasonable consonance with those extracted recently from experimental data.

J. N. De; S. K. Samaddar; B. K. Agrawal

2010-09-23T23:59:59.000Z

234

Flow and the equation of state of nuclear matter  

E-Print Network [OSTI]

The status of flow in heavy-ion collisions and of inference of hadronic-matter properties is reviewed.

P. Danielewicz

2000-09-29T23:59:59.000Z

235

The equation of state of neutron star matter and the symmetry energy  

E-Print Network [OSTI]

We present an overview of microscopical calculations of the Equation of State (EOS) of neutron matter performed using Quantum Monte Carlo techniques. We focus to the role of the model of the three-neutron force in the high-density part of the EOS up to a few times the saturation density. We also discuss the interplay between the symmetry energy and the neutron star mass-radius relation. The combination of theoretical models of the EOS with recent neutron stars observations permits us to constrain the value of the symmetry energy and its slope. We show that astrophysical observations are starting to provide important insights into the properties of neutron star matter.

Stefano Gandolfi

2012-08-08T23:59:59.000Z

236

Pion condensation in electrically neutral cold matter with finite baryon density  

E-Print Network [OSTI]

The possibility of the pion condensation phenomenon in cold and electrically neutral dense baryonic matter is investigated in $\\beta$-equilibrium. For simplicity, the consideration is performed in the framework of a NJL model with two quark flavors at zero current quark mass and for rather small values of the baryon chemical potential, where the diquark condensation might be ignored. Two sets of model parameters are used. For the first one, the pion condensed phase with finite baryon density is realized. In this phase both electrons and the pion condensate take part in the neutralization of the quark electric charge. For the second set of model parameters, the pion condensation is impossible if the neutrality condition is imposed. The behaviour of meson masses vs quark chemical potential has been studied in electrically neutral matter.

D. Ebert; K. G. Klimenko

2006-04-26T23:59:59.000Z

237

Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics  

E-Print Network [OSTI]

The low-energy neutron-Sigma^- interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from a numerical evaluation of the QCD path integral using the technique of Lattice QCD. Our calculations, performed at a pion mass of m_pi ~ 389 MeV in two large lattice volumes, and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The interactions determined from QCD are consistent with those extracted from hyperon-nucleon experimental data within uncertainties, and strengthen theoretical arguments that the strange quark is a crucial component of dense nuclear matter.

S. R. Beane; E. Chang; S. D. Cohen; W. Detmold; H. -W. Lin; T. C. Luu; K. Orginos; A. Parreno; M. J. Savage; A. Walker-Loud

2012-04-16T23:59:59.000Z

238

The Heart of the Matter The Humanities and Social Sciences  

E-Print Network [OSTI]

The Heart of the Matter The Humanities and Social Sciences for a vibrant, competitive, and secure of the humanities and social sciences for a vibrant democracy. The Heart of the Matter, a report of the Commis- sion secure nation, the humanities and social sciences are the heart of the matter, the keeper of the republic

Rohs, Remo

239

Critical phenomena of asymmetric nuclear matter in the extended  

E-Print Network [OSTI]

Critical phenomena of asymmetric nuclear matter in the extended Zimanyi-Moszkowski model K nuclear matter produced by heavy-ion reactions is isospin asymmetric. Although the critical exponents. Miyazaki Abstract We have studied the liquid-gas phase transition of warm asymmetric nuclear matter

240

Condensed Matter Physics and the Nature of Spacetime  

E-Print Network [OSTI]

CHAPTER 16 Condensed Matter Physics and the Nature of Spacetime Jonathan Bain* Abstract This essay of a quantum liquid. It evaluates three examples of spacetime analogues in condensed matter systems that have literature not much attention has been given to concepts of spacetime arising from condensed matter physics

Aronov, Boris

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

White Matter Glucose Metabolism during Intracortical Electrostimulation: A Quantitative [18  

E-Print Network [OSTI]

White Matter Glucose Metabolism during Intracortical Electrostimulation: A Quantitative [18 F compared to 27.87 mol/min/100 g at baseline. LCMR- glu in gray and white matter control areas was stable in white matter, correlations between neural activity and LC- MRglu have never been explicitly addressed

242

DARK MATTER Tracing the "Cosmic Web" with Diffuse Gas  

E-Print Network [OSTI]

1 DARK MATTER STARS GAS NEUTRAL HYDROGEN Tracing the "Cosmic Web" with Diffuse Gas Quasar Quasar Absorption Lines Keck/HIRES Quasar Spectrum Observer baryons dark matter potential isotropic UV only on and the radiation field intensity... H I #12;5 GOAL: the primordial dark matter power spectrum

Steidel, Chuck

243

Part II: Project Summaries Project Summaries  

E-Print Network [OSTI]

Part II: Project Summaries Part II Project Summaries #12 generally cannot be achieved for reasonable computational cost. Applications that require modeling, and in nondestructive testing. The objective of this project is to advance the state of the art in electromagnetic

Perkins, Richard A.

244

Orienting Deformable Polygonal Parts without Sensors  

E-Print Network [OSTI]

actions that, when provided with the geometric description and a deformation model of choice for the part, exploits the deformation and generates a Plan that consists of the shortest sequence of manipulator actions guaranteed to orient the part up...

Kristek, Shawn

2012-02-14T23:59:59.000Z

245

Symmetry energy coefficients for asymmetric nuclear matter  

E-Print Network [OSTI]

Symmetry energy coefficients of asymmetric nuclear matter are investigated as the inverse of nuclear matter polarizabilities with two different approaches. Firstly a general calculation shows they may depend on the neutron-proton asymmetry itself. The choice of particular prescriptions for the density fluctuations lead to certain isospin (n-p asymmetry) dependences of the polarizabilities. Secondly, with Skyrme type interactions, the static limit of the dynamical polarizability is investigated corresponding to the inverse symmetry energy coefficient which assumes different values at different asymmetries (and densities and temperatures). The symmetry energy coefficient (in the isovector channel) is found to increase as n-p asymmetries increase. The spin symmetry energy coefficient is also briefly investigated.

F醔io L. Braghin

2003-12-16T23:59:59.000Z

246

Symmetry Energy I: Semi-Infinite Matter  

E-Print Network [OSTI]

Nuclear energy is considered in the macroscopic limit for a nucleus. Considered, further, is the Hohenberg-Kohn functional for a nuclear system, in terms of proton and neutron densities. Finally, Skyrme-Hartree-Fock calculations are carried out for half-infinite particle-stable nuclear matter. In each case, the attention is focused on the role of neutron-proton asymmetry and on the symmetry energy. We extend the considerations on the symmetry term from an energy formula to the respective term in the Hohenberg-Kohn functional. We show, in particular, that in continuum limit of the considered functional, and subject to possible Coulomb corrections, it is possible to construct isoscalar and isovector densities out of the proton and neutron densities, that retain a universal relation to each other, approximately independent of asymmetry. In the so-called local approximation, the isovector density is inversely proportional to the symmetry energy in uniform matter at the local isoscalar density. Generalized symmetr...

Danielewicz, Pawel

2008-01-01T23:59:59.000Z

247

The Surface Tension of Magnetized Quark Matter  

E-Print Network [OSTI]

The surface tension of quark matter plays a crucial role for the possibility of quark matter nucleation during the formation of compact stellar objects and also for the existence of a mixed phase within hybrid stars. However, despite its importance, this quantity does not have a well established numerical value. Some early estimates have predicted that, at zero temperature, the value falls within the wide range $\\gamma_0\\approx10-300{\\rm\\ MeV/fm^2}$ but, very recently, different model applications have reduced these numerical values to fall within the range $\\gamma_0\\approx5-30{\\rm\\ MeV/fm^2}$ which would favor the phase conversion process as well as the appearance of a mixed phase in hybrid stars. In magnetars one should also account for the presence of very high magnetic fields which may reach up to about $ eB\\approx 3-30\\, m_\\pi^2$ ($B \\approx 10^{19}-10^{20} \\,G$) at the core of the star so that it may also be important to analyze how the presence of a magnetic field affects the surface tension. With this aim we consider magnetized two flavor quark matter, described by the Nambu--Jona-Lasinio model. We show that although the surface tension oscillates around its B=0 value, when $0 surface tension value drops by about 30% while for $eB \\gtrsim 10\\, m_\\pi^2$ it quickly raises with the field intensity so that the phase conversion and the presence of a mixed phase should be suppressed if extremely high fields are present. We also investigate how thermal effects influence the surface tension for magnetized quark matter.

A. F. Garcia; M. B. Pinto

2013-06-13T23:59:59.000Z

248

Earth Matter Effect on Democratic Neutrinos  

E-Print Network [OSTI]

The neutrino propagation through the Earth is investigated in the framework of the democratic neutrino theory. In this theory the neutrino mixing angle theta-1-3 is approximately determined, which allows one to make a well defined neutrino oscillogram driven by the 1-3 mixing in the matter of the Earth. Significant differences in this oscillogram from the case of models with relatively small theta-1-3 are discussed.

Dmitry Zhuridov

2014-08-30T23:59:59.000Z

249

Dark Matter Search with Moderately Superheated Liquids  

E-Print Network [OSTI]

We suggest the use of moderately superheated liquids in the form of superheated droplet detectors for a new type of neutralino search experiment. The advantage of this method for Dark Matter detection is, that the detector material is cheap, readily available and that it is easily possible to fabricate a large mass detector. Moreover the detector can be made "background blind", i.e. exclusively sensitive to nuclear recoils.

L. A. Hamel; L. Lessard; V. Zacek; Bhaskar Sur

1996-02-14T23:59:59.000Z

250

Quark Nuggets as Baryonic Dark Matter  

E-Print Network [OSTI]

The cosmic first order phase transition from quarks to hadrons, occurring a few microseconds after the Big Bang, would lead to the formation of quark nuggets which would be stable on a cosmological time scale, if the associated baryon number is larger than a critical value. We examine the possibility that these surviving quark nuggets may not only be viable candidates for cold dark matter but even close the universe.

Jan-e Alam; Sibaji Raha; Bikash Sinha

1997-04-23T23:59:59.000Z

251

Energy Matters, September/October 1999  

SciTech Connect (OSTI)

Energy Matters is a quarterly newsletter to update partners on Motor Challenge progress. This issue includes these topics: small town plastics manufacturer produces big local energy and cost savings; technical advances improve industrial energy efficiency; energy service companies: cost-savings partners for industry; choosing the right energy service company to prove the value of motor upgrades projects; energy assets: tapping the hidden value; steam workshops promote energy efficiency; performance optimization tips.

NONE

1999-09-13T23:59:59.000Z

252

Big Bang Synthesis of Nuclear Dark Matter  

E-Print Network [OSTI]

We investigate the physics of dark matter models featuring composite bound states carrying a large conserved dark "nucleon" number. The properties of sufficiently large dark nuclei may obey simple scaling laws, and we find that this scaling can determine the number distribution of nuclei resulting from Big Bang Dark Nucleosynthesis. For plausible models of asymmetric dark matter, dark nuclei of large nucleon number, e.g. > 10^8, may be synthesised, with the number distribution taking one of two characteristic forms. If small-nucleon-number fusions are sufficiently fast, the distribution of dark nuclei takes on a logarithmically-peaked, universal form, independent of many details of the initial conditions and small-number interactions. In the case of a substantial bottleneck to nucleosynthesis for small dark nuclei, we find the surprising result that even larger nuclei, with size >> 10^8, are often finally synthesised, again with a simple number distribution. We briefly discuss the constraints arising from the novel dark sector energetics, and the extended set of (often parametrically light) dark sector states that can occur in complete models of nuclear dark matter. The physics of the coherent enhancement of direct detection signals, the nature of the accompanying dark-sector form factors, and the possible modifications to astrophysical processes are discussed in detail in a companion paper.

Edward Hardy; Robert Lasenby; John March-Russell; Stephen M. West

2015-01-24T23:59:59.000Z

253

Dark matter monopoles, vectors and photons  

E-Print Network [OSTI]

In a secluded dark sector which is coupled to the Standard Model via a Higgs portal interaction we arrange for the existence of 't Hooft-Polyakov magnetic monopoles and study their implications for cosmology. We point out that a dark sector which can accommodate stable monopoles will also contain massless dark photons gamma' as well as charged massive vector bosons W'. The dark matter in this scenario will be a combination of magnetically and electrically charged species under the unbroken U(1) subgroup of the dark sector. We estimate the cosmological production rate of monopoles and the rate of monopole-anti-monopole annihilation and conclude that monopoles with masses of few hundred TeV or greater, can produce sizeable contributions to the observed dark matter relic density. We scan over the parameter space and compute the relic density for monopoles and vector bosons. Turning to the dark photon radiation, we compute their contribution to the measured density of relativistic particles Neff and also apply observational constraints from the Bullet cluster and other large scale galaxies on long-range interactions for the self-interacting dark matter components made out of monopoles and out of dark vector bosons. At scales relevant for dwarf galaxies we identify regions on the parameter space where self-interacting monopole and vector dark mater components can aid solving the core-cusp and the too-big-to-fail problems.

Valentin V. Khoze; Gunnar Ro

2014-06-10T23:59:59.000Z

254

Color superconducting quark matter in compact stars  

E-Print Network [OSTI]

Recent indications for high neutron star masses (M \\sim 2 M_sun) and large radii (R > 12 km) could rule out soft equations of state and have provoked a debate whether the occurence of quark matter in compact stars can be excluded as well. We show that modern quantum field theoretical approaches to quark matter including color superconductivity and a vector meanfield allow a microscopic description of hybrid stars which fulfill the new, strong constraints. For these objects color superconductivity turns out to be an essential ingredient for a successful description of the cooling phenomenology in accordance with recently developed tests. We discuss the energy release in the neutrino untrapping transition as a new aspect of the problem that hybrid stars masquerade themselves as neutron stars. Quark matter searches in future generations of low-temperature/high-density nucleus-nucleus collision experiments such as low-energy RHIC and CBM @ FAIR might face the same problem of an almost crossover behavior of the deconfinement transition. Therefore, diagnostic tools shall be derived from effects of color superconductivity.

D. B. Blaschke; T. Klahn; F. Sandin

2007-12-02T23:59:59.000Z

255

Dark Matter Balls Help Supernovae to Explode  

E-Print Network [OSTI]

As a solution to the well-known problem that the shock wave potentially responsible for the explosion of a supernova actually tends to stall, we propose a new energy source arising from our model for dark matter. Our earlier model proposed that dark matter should consist of cm-large white dwarf-like objects kept together by a skin separating two different sorts of vacua. These dark matter balls or pearls will collect in the middle of any star throughout its lifetime. At some stage during the development of a supernova the balls will begin to take in neutrons and then other surrounding material. By passing into a ball nucleons fall through a potential of order 10 MeV, causing a severe production of heat - of order 10 foe for a solar mass of material eaten by the balls. The temperature in the iron core will thereby be raised, splitting up the iron into smaller nuclei. This provides a mechanism for reviving the shock wave when it arrives and making the supernova explosion really occur. The onset of the heating d...

Froggatt, Colin D

2015-01-01T23:59:59.000Z

256

Phase separation and coarsening in active matter  

E-Print Network [OSTI]

Active systems, or active matter, are self-driven systems which live, or function, far from equilibrium - a paradigmatic example which we focus on here is provided by a suspension of self-motile particles. Active systems are far from equilibrium because their microscopic constituents constantly consume energy from the environment in order to do work, for instance to propel themselves. The nonequilibrium nature of active matter leads to a variety of non-trivial intriguing phenomena. An important one which has recently been the subject of intense interest among biological and soft matter physicists is that of the so-called "motility-induced phase separation", whereby self-propelled particles accumulate into clusters in the absence of any explicit attractive interactions between them. Here we review the physics of motility-induced phase separation, and discuss this phenomenon within the framework of the classic physics of phase separation and coarsening. We also discuss cases where the coarsening may be arrested, either in theories for bacterial colonies or in experiments. Most of this work will focus on the case of run-and-tumble and active Brownian particles in the absence of solvent-mediated hydrodynamic interactions - we will briefly discuss at the end their role, which is not currently fully understood in this context.

Giuseppe Gonnella; Davide Marenduzzo; Antonio Suma; Adriano Tiribocchi

2015-02-08T23:59:59.000Z

257

DOL: Role in EEOICPA - Part B and Part E | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Parts B and E. Part B covers current and former workers who have been diagnosed with cancer, chronic beryllium disease, beryllium sensitivity, or silicosis, and whose illness was...

258

Dark matter, dark energy and gravitational proprieties of antimatter  

E-Print Network [OSTI]

We suggest that the eventual gravitational repulsion between matter and antimatter may be a key for understanding of the nature of dark matter and dark energy. If there is gravitational repulsion, virtual particle-antiparticle pairs in the vacuum, may be considered as gravitational dipoles. We use a simple toy model to reveal a first indication that the gravitational polarization of such a vacuum, caused by baryonic matter in a Galaxy, may produce the same effect as supposed existence of dark matter. In addition, we argue that cancellation of gravitational charges in virtual particle-antiparticle pairs, may be a basis for a solution of the cosmological constant problem and identification of dark energy with vacuum energy. Hence, it may be that dark matter and dark energy are not new, unknown forms of matter-energy but an effect of complex interaction between quantum vacuum and known baryonic matter.

Dragan Slavkov Hajdukovic

2009-10-21T23:59:59.000Z

259

Storage and turnover of organic matter in soil  

SciTech Connect (OSTI)

Historically, attention on soil organic matter (SOM) has focused on the central role that it plays in ecosystem fertility and soil properties, but in the past two decades the role of soil organic carbon in moderating atmospheric CO{sub 2} concentrations has emerged as a critical research area. This chapter will focus on the storage and turnover of natural organic matter in soil (SOM), in the context of the global carbon cycle. Organic matter in soils is the largest carbon reservoir in rapid exchange with atmospheric CO{sub 2}, and is thus important as a potential source and sink of greenhouse gases over time scales of human concern (Fischlin and Gyalistras 1997). SOM is also an important human resource under active management in agricultural and range lands worldwide. Questions driving present research on the soil C cycle include: Are soils now acting as a net source or sink of carbon to the atmosphere? What role will soils play as a natural modulator or amplifier of climatic warming? How is C stabilized and sequestered, and what are effective management techniques to foster these processes? Answering these questions will require a mechanistic understanding of how and where C is stored in soils. The quantity and composition of organic matter in soil reflect the long-term balance between plant carbon inputs and microbial decomposition, as well as other loss processes such as fire, erosion, and leaching. The processes driving soil carbon storage and turnover are complex and involve influences at molecular to global scales. Moreover, the relative importance of these processes varies according to the temporal and spatial scales being considered; a process that is important at the regional scale may not be critical at the pedon scale. At the regional scale, SOM cycling is influenced by factors such as climate and parent material, which affect plant productivity and soil development. More locally, factors such as plant tissue quality and soil mineralogy affect decomposition pathways and stabilization. These factors influence the stability of SOM in part by shaping its molecular characteristics, which play a fundamental role in nearly all processes governing SOM stability but are not the focus of this chapter. We review here the most important controls on the distribution and dynamics of SOM at plot to global scales, and methods used to study them. We also explore the concepts of controls, processes, and mechanisms, and how they operate across scales. The concept of SOM turnover, or mean residence time, is central to this chapter and so it is described in some detail. The Appendix details the use of radiocarbon ({sup 14}C), a powerful isotopic tool for studying SOM dynamics. Much of the material here was originally presented at a NATO Advanced Study Institute on 'Soils and Global Change: Carbon Cycle, Trace Gas Exchange and Hydrology', held June 16-27, 1997, at the Chateau de Bonas, France.

Torn, M.S.; Swanston, C.W.; Castanha, C.; Trumbore, S.E.

2008-07-15T23:59:59.000Z

260

Changing nature of equipment and parts qualification  

SciTech Connect (OSTI)

Ideally, the original supplier of a piece of nuclear safety-related equipment has performed a qualification program and will continue to support that equipment throughout the lifetime of the nuclear power plants in which in equipment is installed. The supplier's nuclear quality assurance program will be maintained and he will continue to offer all necessary replacement parts. These parts will be identical to the original parts, certified to the original purchase order requirements, and the parts will be offered at competitive prices. Due to the changing nature of the nuclear plant equipment market, however, one or more of those ideal features are frequently unavailable when safety-related replacement equipment or parts are required. Thus, the process of equipment and parts qualification has had to adjust in order to ensure obtaining qualified replacements when needed. This paper presents some new directions taken in the qualification of replacement equipment and parts to meet changes in the marketplace.

Bucci, R.M.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

FIA-12-0034- In the Matter of National Security Archive  

Broader source: Energy.gov [DOE]

The Office of Hearings and Appeals (OHA) issued a decision granting in part an appeal from a Freedom of Information Act (FOIA) determination issued by the Office of Information Resources (OIR). The National Security Archive (NSA) filed a FOIA request for documents relating to the Bonn Climate Change talks in August 2010. OIR conducted a search and located one responsive document. NSA challenged the adequacy of the search and the OIR agreed to search the retired records at the Washington National Records Center. Consequently, we remanded this matter to OIR so that a search of those records could be performed.

262

Method of forming and assembly of metal parts and ceramic parts  

DOE Patents [OSTI]

A method of forming and assembling at least two parts together that may be metal, ceramic, or a combination of metal and ceramic parts. Such parts may have different CTE. Individual parts that are formed and sintered from particles leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.

Ripley, Edward B. (Knoxville, TN)

2011-11-22T23:59:59.000Z

263

Symmetry Energy I: Semi-Infinite Matter  

E-Print Network [OSTI]

Energy for a nucleus is considered in macroscopic limit, in terms of nucleon numbers. Further considered for a nuclear system is the Hohenberg-Kohn energy functional, in terms of proton and neutron densities. Finally, Skyrme-Hartree-Fock calculations are carried out for a half-infinite particle-stable nuclear-matter. In each case, the attention is focused on the role of neutron-proton asymmetry and on the nuclear symmetry energy. We extend the considerations on the symmetry term from an energy formula to the respective term in the Hohenberg-Kohn functional. We show, in particular, that in the limit of an analytic functional, and subject to possible Coulomb corrections, it is possible to construct isoscalar and isovector densities out of the proton and neutron densities, that retain a universal relation to each other, approximately independent of asymmetry. In the so-called local approximation, the isovector density is inversely proportional to the symmetry energy in uniform matter at the local isoscalar density. Generalized symmetry coefficient of a nuclear system is related, in the analytic limit of a functional, to an integral of the isovector density. We test the relations, inferred from the Hohenberg-Kohn functional, in the Skyrme-Hartree-Fock calculations of half-infinite matter. Within the calculations, we obtain surface symmetry coefficients and parameters characterizing the densities, for the majority of Skyrme parameterizations proposed in the literature. The volume-to-surface symmetry-coefficient ratio and the displacement of nuclear isovector relative to isoscalar surfaces both strongly increase as the slope of symmetry energy in the vicinity of normal density increases.

Pawel Danielewicz; Jenny Lee

2008-07-23T23:59:59.000Z

264

Topological Matter, Integrable Models and Fusion Rings  

E-Print Network [OSTI]

We show how topological $G_k/G_k$ models can be embedded into the topological matter models that are obtained by perturbing the twisted $N=2$ supersymmetric, hermitian symmetric, coset models. In particular, this leads to an embedding of the fusion ring of $G$ as a sub-ring of the perturbed, chiral primary ring. The perturbation of the twisted $N=2$ model that leads to the fusion ring is also shown to lead to an integrable $N=2$ supersymmetric field theory when the untwisted $N=2$ superconformal field theory is perturbed by the same operator and its hermitian conjugate.

D. Nemeschansky; N. P. Warner

1991-10-19T23:59:59.000Z

265

Weak Lensing: Dark Matter, Dark Energy  

SciTech Connect (OSTI)

The light rays from distant galaxies are deflected by massive structures along the line of sight, causing the galaxy images to be distorted. Measurements of these distortions, known as weak lensing, provide a way of measuring the distribution of dark matter as well as the spatial geometry of the universe. I will describe the ideas underlying this approach to cosmology. With planned large imaging surveys, weak lensing is a powerful probe of dark energy. I will discuss the observational challenges ahead and recent progress in developing multiple, complementary approaches to lensing measurements.

Jain, Bhuvnesh (University of Pennsylvania) [University of Pennsylvania

2006-02-27T23:59:59.000Z

266

MSSM Inflaton: SUSY Dark Matter and LHC  

SciTech Connect (OSTI)

In this talk we will discuss how inflation can be embedded within a minimal extension of the Standard Model where the inflaton carries the Standard Model charges. There is no need of an ad-hoc scalar field to be introduced in order to explain the temperature anisotropy of the cosmic microwave background radiation, all the ingredients are present within a minimal supersymmetric Standard Model. For the first time inflaton properties can be directly linked to the particle phenomenology, dark matter, and the baryons of the Standard Model.

Mazumdar, A. [Physics Department, Lancaster University, Lancaster, LA1 4YB (United Kingdom) and Niels Bohr Institute, Copenhagen University, Blegdamsvej-17, DK-2100 (Denmark)

2009-09-08T23:59:59.000Z

267

Classified Matter Protection and Control Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Provides detailed requirements for the protection and control of classified matter which supplement DOE O 471.2A. Extended until 5-11-06 by DOE N 251.63, dated 5-11-05. This manual has been canceled by DOE M 471.2-1C except Chapter III paragraphs 1 and 2, and Chapter IV. Chapter IV was canceled by DOE O 471.4, Incidents of Security Concern, dated 3/17/2004. Cancels DOE M 471.2-1A.

1999-01-06T23:59:59.000Z

268

Classified Matter Protection and Control Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual supplements DOE O 471.2A, Information Security Program, dated 3-27-97, and provides detailed requirements for the protection and control of classified matter. Cancels DOE M 471.2-1B, dated 1-6-99, except Chapter III paragraphs 1 and 2 and Chapter IV. DOE M 471.2-1B Chapter IV was canceled by DOE O 471.4, Incidents of Security Concern, dated 3-17-04. Change 1, dated 7-14-2004, modifies requirements in Chapter II, paragraph 8c. Extended until 5-11-06 by DOE N 251.63, dated 5-11-05.

2004-07-14T23:59:59.000Z

269

Quark and Gluon Condensates in Isospin Matter  

E-Print Network [OSTI]

Applying the Hellmann-Feynman theorem to a charged pion gas, the quark and gluon condensates at low isospin density are determined by precise pion properties. At intermediate density around $ f_\\pi^2m_\\pi$, from both the estimation for the dilute pion gas and the calculation with Nambu--Jona-Lasinio model, the quark condensate is strongly and monotonously suppressed, while the gluon condensate is enhanced and can be larger than its vacuum value. This unusual behavior of the gluon condensate is universal for Bose condensed matter of mesons. Our results can be tested by lattice calculations at finite isospin density.

Lianyi He; Yin Jiang; Pengfei Zhuang

2009-05-03T23:59:59.000Z

270

Policy Matters Ohio | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips Color KineticsGrowth Jump to:BeyondMatters Ohio

271

Do New Technologies Matter? | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal Cycle ofDo New Technologies Matter? Do New

272

Los Alamos Lab: MPA: Material Matters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,LocalNuclear SecurityOfficeMatter December 2014 In

273

Biology and Soft Matter | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCouldBiofuelHelpBiology and Soft Matter

274

Gamma Ray Bursts from delayed collapse of neutron stars to quark matter stars  

E-Print Network [OSTI]

We propose a model to explain how a Gamma Rays Burst can take place days or years after a supernova explosion. Our model is based on the conversion of a pure hadronic star (neutron star) into a star made at least in part of deconfined quark matter. The conversion process can be delayed if the surface tension at the interface between hadronic and deconfined-quark-matter phases is taken into account. The nucleation time (i.e. the time to form a critical-size drop of quark matter) can be extremely long if the mass of the star is small. Via mass accretion the nucleation time can be dramaticaly reduced and the star is finally converted into the stable configuration. A huge amount of energy, of the order of 10$^{52}$--10$^{53}$ erg, is released during the conversion process and can produce a powerful Gamma Ray Burst. The delay between the supernova explosion generating the metastable neutron star and the new collapse can explain the delay proposed in GRB990705 and in GRB011211.

Berezhiani, Z G; Drago, A; Frontera, F; Lavagno, A

2003-01-01T23:59:59.000Z

275

Gamma Ray Bursts from delayed collapse of neutron stars to quark matter stars  

E-Print Network [OSTI]

We propose a model to explain how a Gamma Rays Burst can take place days or years after a supernova explosion. Our model is based on the conversion of a pure hadronic star (neutron star) into a star made at least in part of deconfined quark matter. The conversion process can be delayed if the surface tension at the interface between hadronic and deconfined-quark-matter phases is taken into account. The nucleation time (i.e. the time to form a critical-size drop of quark matter) can be extremely long if the mass of the star is small. Via mass accretion the nucleation time can be dramaticaly reduced and the star is finally converted into the stable configuration. A huge amount of energy, of the order of 10$^{52}$--10$^{53}$ erg, is released during the conversion process and can produce a powerful Gamma Ray Burst. The delay between the supernova explosion generating the metastable neutron star and the new collapse can explain the delay proposed in GRB990705 and in GRB011211.

Z. Berezhiani; I. Bombaci; A. Drago; F. Frontera; A. Lavagno

2003-02-13T23:59:59.000Z

276

Re: Corrected Memorandum Summarizing Ex Parte Communication  

Broader source: Energy.gov (indexed) [DOE]

(sent via email) Re: Corrected Memorandum Summarizing Ex Parte Communication This memorandum is submitted to revise and correct our earlier memorandum...

277

Re: Memorandum Summarizing Ex Parte Communication  

Broader source: Energy.gov (indexed) [DOE]

xpartecommunication@hq.doe.gov (sent via email) Re: Memorandum Summarizing Ex Parte Communication On October 9, 2014, a workshop was hosted by the American Gas Association and...

278

Taming astrophysical bias in direct dark matter searches  

SciTech Connect (OSTI)

We explore systematic biases in the identification of dark matter in future direct detection experiments and compare the reconstructed dark matter properties when assuming a self-consistent dark matter distribution function and the standard Maxwellian velocity distribution. We find that the systematic bias on the dark matter mass and cross-section determination arising from wrong assumptions for its distribution function is of order ? 1?. A much larger systematic bias can arise if wrong assumptions are made on the underlying Milky Way mass model. However, in both cases the bias is substantially mitigated by marginalizing over galactic model parameters. We additionally show that the velocity distribution can be reconstructed in an unbiased manner for typical dark matter parameters. Our results highlight both the robustness of the dark matter mass and cross-section determination using the standard Maxwellian velocity distribution and the importance of accounting for astrophysical uncertainties in a statistically consistent fashion.

Pato, Miguel [Physik-Department T30d, Technische Universit鋞 M黱chen, James-Franck-Stra遝, 85748 Garching (Germany); Strigari, Louis E. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Trotta, Roberto [Astrophysics Group and Imperial Centre for Inference and Cosmology, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Bertone, Gianfranco, E-mail: miguel.pato@tum.de, E-mail: strigari@stanford.edu, E-mail: r.trotta@imperial.ac.uk, E-mail: gf.bertone@gmail.com [GRAPPA Institute, University of Amsterdam, Science Park 904, 1090 GL Amsterdam (Netherlands)

2013-02-01T23:59:59.000Z

279

The Structure of Dark Matter Haloes in Dwarf Galaxies  

E-Print Network [OSTI]

Recent observations indicate that dark matter haloes have flat central density profiles. Cosmological simulations with non-baryonic dark matter predict however self similar haloes with central density cusps. This contradiction has lead to the conclusion that dark matter must be baryonic. Here it is shown that the dark matter haloes of dwarf spiral galaxies represent a one parameter family with self similar density profiles. The observed global halo parameters are coupled with each other through simple scaling relations which can be explained by the standard cold dark matter model if one assumes that all the haloes formed from density fluctuations with the same primordial amplitude. We find that the finite central halo densities correlate with the other global parameters. This result rules out scenarios where the flat halo cores formed subsequently through violent dynamical processes in the baryonic component. These cores instead provide important information on the origin and nature of dark matter in dwarf galaxies.

A. Burkert

1995-04-12T23:59:59.000Z

280

Indirect Dark Matter search with large neutrino telescopes  

E-Print Network [OSTI]

Dark matter is one of the main goals of neutrino astronomy. At present, there are two big neutrino telescopes based on the Cherenkov technique in ice and water: IceCube at the South Pole and ANTARES in the northern hemisphere. Both telescopes are performing an indirect search for Dark Matter by looking for a statistical excess of neutrinos coming from astrophysical massive objects. This excess could be an evidence of the possible annihilation of dark matter particles in the centre of these objects. In one of the most popular scenarios the Dark Matter is composed of WIMP particles. The analysis and results of the ANTARES neutrino telescope for the indirect detection of Dark Matter fluxes from the Sun are here presented, as well as the latest IceCube published sensitivity results, for different Dark Matter models.

Fermani, Paolo

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

From dark matter to neutrinoless double beta decay  

E-Print Network [OSTI]

Associated with two TeV-scale leptoquark scalars, a dark matter fermion which is the neutral component of an isotriplet can mediate a testable neutrinoless double beta decay at one-loop level. The dark matter fermion with determined mass and spin-independent scattering can be verified by the future dark matter direct detection experiments. We also discuss the implications on neutrino masses and baryon asymmetry.

Pei-Hong Gu

2012-09-13T23:59:59.000Z

282

Dark Matter Annihilations in the Large Magellanic Cloud  

E-Print Network [OSTI]

The flat rotation curve obtained for the outer star clusters of the Large Magellanic Cloud is suggestive of an LMC dark matter halo. From the composite HI and star cluster rotation curve, I estimate the parameters of an isothermal dark matter halo added to a `maximum disk.' I then examine the possibility of detecting high energy gamma-rays from non-baryonic dark matter annihilations in the central region of the Large Magellanic Cloud.

P Gondolo

1993-12-06T23:59:59.000Z

283

Strangeness, Cosmological Cold Dark Matter and Dark Energy  

E-Print Network [OSTI]

It is now believed that the universe is composed of a small amount of the normal luminous matter, a substantial amount of matter (Cold Dark Matter: CDM) which is non-luminous and a large amount of smooth energy (Dark Energy: DE). Both CDM and DE seem to require ideas beyond the standard model of particle interactions. In this work, we argue that CDM and DE can arise entirely from the standard principles of strong interaction physics out of the same mechanism.

Sibaji Raha; Shibaji Banerjee; Abhijit Bhattacharyya; Sanjay K. Ghosh; Ernst-Michael Ilgenfritz; Bikash Sinha; Eiichi Takasugi; Hiroshi Toki

2005-01-18T23:59:59.000Z

284

Discrimination of dark matter models in future experiments  

E-Print Network [OSTI]

Phenomenological aspects of simple dark matter models are studied. We discuss ways to discriminate the dark matter models in future experiments. We find that the measurements of the branching fraction of the Higgs boson into two photons and the electric dipole moment of the electron as well as the direct detection experiments are quite useful in discriminating particle models of dark matter. We also discuss the prospects of finding new particles in dark sector at the LHC/ILC.

Tomohiro Abe; Ryuichiro Kitano; Ryosuke Sato

2014-11-06T23:59:59.000Z

285

Bottom-strange mesons in hyperonic matter  

E-Print Network [OSTI]

The in-medium behavior of bottom-strange pseudoscalar mesons in hot, isospin asymmetric and dense hadronic environment is studied using a chiral effective model. The same was recently generalized to the heavy quark sector and employed to study the behavior of open-charm and open-bottom mesons. The heavy quark (anti-quark) is treated as frozen and all medium modifications of these bottom-strange mesons are due to their strange anti-quark (quark) content. We observe a pronounced dependence of their medium mass on baryonic density and strangeness content of the medium. Certain aspects of these in-medium interactions are similar to those observed for the strange-charmed mesons in a preceding investigation, such as the lifting of mass-degeneracy of $B_S^0$ and ${\\bar B}_S^0$ mesons in hyperonic matter, while the same is respected in vacuum as well as in nuclear matter. In general, however, there is a remarkable distinction between the two species, even though the formalism predicts a completely analogous in-medium interaction Lagrangian density. We discuss in detail the reason for different in-medium behavior of these bottom-strange mesons as compared to charmed-strange mesons, despite the dynamics of the heavy quark being treated as frozen in both cases.

Divakar Pathak; Amruta Mishra

2014-09-22T23:59:59.000Z

286

Quark Matter, Massive Stars and Strange Planets  

E-Print Network [OSTI]

This paper gives an overview of the properties of all possible equilibrium sequences of compact strange-matter stars with nuclear crusts, which range from strange stars to strange dwarfs. In contrast to their non-strange counterparts, --neutron stars and white dwarfs--, their properties are determined by two (rather than one) parameters, the central star density and the density at the base of the nuclear crust. This leads to stellar strange-matter configurations whose properties are much more complex than those of the conventional sequence. As an example, two generically different categories of stable strange dwarfs are found, which could be the observed white dwarfs. Furthermore we find very low-mass strange stellar objects, with masses as small as those of Jupiter or even lighter planets. Such objects, if abundant enough in our Galaxy, should be seen by the presently performed gravitational microlensing searches. Further aspects studied in this paper concern the limiting rotational periods and the cooling behavior of neutron stars and their strange counterparts.

F. Weber; Ch. Schaab; M. K. Weigel; N. K. Glendenning

1996-04-09T23:59:59.000Z

287

The rigidity of three flavor quark matter  

SciTech Connect (OSTI)

Cold three flavor quark matter at large (but not asymptotically large) densities may exist in a crystalline color superconducting phase. These phases are characterized by a gap parameter {Delta} that varies periodieally in space, forming a crystal structure. A Ginzburg-Landau expansion in {Delta} shows that two crystal structures based on cubic symetry are particularly favorable, and may be the ground state of matter at densities present in neutron star cores. We derive the effective action for the phonon fields that describe space-and time-dependent fluctuations of the crystal structure formed by {Delta}, and obtain the shear modulus from the coefficients of the spatial derivative terms. Within a Ginzburg-Landau approximation, we find shear moduli which are 20 to 1000 times larger than those of neutron star crusts. This phase ofmatter is thus more rigid than any known material in the universe, but at the same time the crystalline color superconducting phase is also superftuid. These properties raise the possibility that the presence of this phase within neutron stars may have distinct implications for their phenomenology. For example, (some) pulsar glitches may originate in crystalline superconducting neutron star cores.

Sharma, Rishi [Los Alamos National Laboratory; Mannarelli, Massimo [IEEC/CSIC

2008-01-01T23:59:59.000Z

288

A fluid mechanical explanation of dark matter  

E-Print Network [OSTI]

Matter in the universe has become ``dark'' or ``missing'' through misconceptions about the fluid mechanics of gravitational structure formation. Gravitational condensation occurs on non-acoustic density nuclei at the largest Schwarz length scale L_{ST}, L_{SV}, L_{SM}, L_{SD} permitted by turbulence, viscous, or magnetic forces, or by the fluid diffusivity. Non-baryonic fluids have diffusivities larger (by factors of trillions or more) than baryonic (ordinary) fluids, and cannot condense to nucleate baryonic galaxy formation as is usually assumed. Baryonic fluids begin to condense in the plasma epoch at about 13,000 years after the big bang to form proto-superclusters, and form proto-galaxies by 300,000 years when the cooling plasma becomes neutral gas. Condensation occurs at small planetary masses to form ``primordial fog particles'' from nearly all of the primordial gas by the new theory, Gibson (1996), supporting the Schild (1996) conclusion from quasar Q0957+651A,B microlensing observations that the mass of the lens galaxy is dominated by ``rogue planets ... likely to be the missing mass''. Non-baryonic dark matter condenses on superclusters at scale L_{SD} to form massive super-halos.

Carl H. Gibson

1999-04-22T23:59:59.000Z

289

Astrophysical constraints on millicharged atomic dark matter  

E-Print Network [OSTI]

Some models of inelastic dark matter posit the existence of bound states under some new $U(1)'$ gauge symmetry. If this new dark photon kinetically mixes with the standard model photon, then the constituent particles in these bound states can acquire a fractional electric charge. This electric charge renders a dark-matter medium dispersive. We compute this frequency-dependent index of refraction for such a medium and use the frequency-dependent arrival time of light from astrophysical sources to constrain the properties of dark atoms in the medium. Using optical-wavelength observations from the Crab Pulsar, we find the electric millicharge of dark (electrons) protons to be smaller than the electric charge $e$ for dark atom masses below 100 keV, assuming a dark fine structure constant $\\boldsymbol{\\alpha}=1$. We estimate that future broadband observations of gamma-ray bursts can produce constraints on the millicharge of dark atoms with masses in the keV range that are competitive with existing collider constraints.

Audrey K. Kvam; David C. Latimer

2014-12-01T23:59:59.000Z

290

Isobaric incompressibility of isospin asymmetric nuclear matter  

SciTech Connect (OSTI)

The isospin dependence of the saturation properties of asymmetric nuclear matter, particularly the incompressibility K{sub {infinity}}(X)=K{sub {infinity}}+K{sub {tau}}X{sup 2}+O(X{sup 4}) at saturation density, is systematically studied using density-dependent M3Y interaction. K{sub {tau}} characterizes the isospin dependence of the incompressibility at saturation density {rho}{sub 0}. The approximate expression K{sub asy}{approx_equal}K{sub sym}-6L is often used for K{sub {tau}} where L and K{sub sym} represent the slope and curvature parameters of the symmetry energy at {rho}{sub 0}, respectively. It can be expressed accurately as K{sub {tau}}=K{sub sym}-6L-(Q{sub 0}/K{sub {infinity}})L, where Q{sub 0} is the third-order-derivative parameter of symmetric nuclear matter at {rho}{sub 0}. The results of this addendum to [Phys. Rev. C 80, 011305(R) (2009)] indicate that the Q{sub 0} contribution to K{sub {tau}} is not insignificant.

Basu, D. N. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700 064 (India); Chowdhury, P. Roy [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064 (India); Samanta, C. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064 (India); Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-2000 (United States); Physics Department, University of Richmond, Richmond, Virginia 23173 (United States)

2009-11-15T23:59:59.000Z

291

ANTENNA-COUPLED LIGHT-MATTER INTERACTIONS  

SciTech Connect (OSTI)

This project is focused on antenna-coupled photon emission from single quantum emitters. The properties of optical antennas are tailored to control different photophysical parameters, such as the excited state lifetime, the saturation intensity, and the quantum yield [3]. Using a single molecule coupled to an optical antenna whose position and properties can be controllably adjusted we established a detailed and quantitative understanding of light-matter interactions in nanoscale environments. We have studied various quantum emitters: single molecules [11], quantum dots [7], rareearth ions [2], and NV centers in diamond [19]. We have systematically studied the interaction of these emitters with optical antennas. The overall objective was to establish a high-level of control over the light-matter interaction. In order to eliminate the coupling to the environment, we have taken a step further and explored the possibility of levitating the quantum emitter in high vacuum. What started as a side-project soon became a main activity in our research program and led us to the demonstration of vacuum trapping and cooling of a nanoscale particle [14].

NOVOTNY, LUKAS

2014-01-10T23:59:59.000Z

292

Nucleon sigma term and quark condensate in nuclear matter  

SciTech Connect (OSTI)

We study the bound nucleon sigma term and its effect on the quark condensate in nuclear matter. In the quark-meson coupling (QMC) model it is shown that the nuclear correction to the sigma term is small and negative. Thus, the correction decelerates the decrease of the quark condensate in nuclear matter. However, the quark condensate in nuclear matter is controlled primarily by the scalar-isoscalar sigma field of the model. It appreciably moderates the decrease relative to the leading term at densities around and larger than the normal nuclear matter density.

K. Tsushima; K. Saito; A. W. Thomas; A. Valcarce

2007-03-01T23:59:59.000Z

293

Neutron Scattering: Condensed Matter and Magnetic Science, MPA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neutron Scattering Neutron Scattering Capability description: Neutron scattering is a powerful probe of structure and collective modes of condensed matter. We are focused on direct...

294

Supersymmetric quantum solution for FRW cosmological model with matter  

E-Print Network [OSTI]

Using technique of supersymmetric quantum mechanics we present new cosmological quantum solution, in the regime for FRW cosmological model using a barotropic perfect fluid as matter field.

J. Socorro

2001-08-09T23:59:59.000Z

295

Speculations on a Unified Theory of Matter and Mind  

E-Print Network [OSTI]

Physics is so successful today in understanding the nature of matter. What can it say about mind ? Is it possible to have a unified theory of matter and mind within the framework of modern science ? Is Consciousness an accident or is it a natural consequence of laws of nature ? Are these laws of nature the same as the laws of physics ? We make an attempt here to unify mind with matter based on an extended formalism borrowed from Quantum theory where information plays a more fundamental role than matter or thought.

Manoj K. Samal

2001-11-08T23:59:59.000Z

296

TSO-1002 - In the Matter of Personnel Security Hearing | Department...  

Broader source: Energy.gov (indexed) [DOE]

the Matter of Personnel Security Hearing The individual held a security clearance from 1990 until 2002 while working for government contractors and the federal government. In...

297

Backgrounds and Projected Limits from Dark Matter Direct Detection Experiments  

E-Print Network [OSTI]

A simple formula is introduced which indicates the amount by which projections of dark matter direct detection experiments are expected to be degraded due to backgrounds.

Scott Dodelson

2008-12-08T23:59:59.000Z

298

Direct and indirect detection of dissipative dark matter  

E-Print Network [OSTI]

We study the constraints from direct detection and solar capture on dark matter scenarios with a subdominant dissipative component. This dissipative dark matter component in general has both a symmetric and asymmetric relic abundance. Dissipative dynamics allow this subdominant dark matter component to cool, resulting in its partial or total collapse into a smaller volume inside the halo (e.g., a dark disk) as well as a reduced thermal velocity dispersion compared to that of normal cold dark matter. We first show that these features considerably relax the limits from direct detection experiments on the couplings between standard model (SM) particles and dissipative dark matter. On the other hand, indirect detection of the annihilation of the symmetric dissipative dark matter component inside the Sun sets stringent and robust constraints on the properties of the dissipative dark matter. In particular, IceCube observations force dissipative dark matter particles with mass above 50 GeV to either have a small coupling to the SM or a low local density in the solar system, or to have a nearly asymmetric relic abundance. Possible helioseismology signals associated with purely asymmetric dissipative dark matter are discussed, with no present constraints.

JiJi Fan; Andrey Katz; Jessie Shelton

2014-07-02T23:59:59.000Z

299

On the Nature of Dark Matter and Dark Energy  

E-Print Network [OSTI]

It is shown that some problems connected with dark matter and dark energy can be solved in the framework of the byuon theory

Yu. A. Baurov; I. F. Malov

2007-10-16T23:59:59.000Z

300

asymmetric dark matter: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the baryon asymmetry as a way to address the observed similarity between the baryonic and dark matter energy densities today. Focusing on this framework we calculate the evolution...

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Neutrinoless double beta decay can constrain neutrino dark matter  

E-Print Network [OSTI]

We examine how constraints can be placed on the neutrino component of dark matter by an accurate measurement of neutrinoless double beta ($0\

V. Barger; S. L. Glashow; D. Marfatia; K. Whisnant

2002-02-26T23:59:59.000Z

302

Fuel-Neutral Studies of Particulate Matter Transport Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Program Annual Merit Review and Peer Evaluation ace056stewart2011o.pdf More Documents & Publications Fuel-Neutral Studies of Particulate Matter Transport Emissions...

303

atmospheric organic matter: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Theses and Dissertations Summary: ??Dissolved natural organic matter (NOM) and heavy metals are ubiquitous in aqueous and terrestrial systems. Adsorption processes involving...

304

anisotropic quark matter: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sunzu, Jefta M; Ray, Subharthi 2014-01-01 3 Anisotropic admixture in color-superconducting quark matter Nuclear Theory (arXiv) Summary: The analysis of...

305

Inert scalar dark matter in an extra dimension inspired model  

E-Print Network [OSTI]

In this paper we analyze a dark matter model inspired by theories with extra dimensions. The dark matter candidate corresponds to the first Kaluza-Klein mode of a real scalar added to the Standard Model. The tower of new particles enriches the calculation of the relic abundance. For large mass splitting, the model converges to the predictions of the inert singlet dark matter model. For nearly degenerate mass spectrum, coannihilations increase the cross-sections used for direct and indirect dark matter searches. Moreover, the Kaluza-Klein zero mode can mix with the SM higgs and further constraints can be applied.

R. A. Lineros; F. A. Pereira dos Santos

2014-11-12T23:59:59.000Z

306

Particulate Matter Sampling and Volatile Organic Compound Removal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization...

307

Quark-Gluon Plasma: a New State of Matter  

ScienceCinema (OSTI)

Physicist Peter Steinberg explains the nature of the quark gluon plasma (QGP), a new state of matter produced at Brookhaven Lab's Relativistic Heavy Ion Collider (RHIC).

Brookhaven Lab

2010-01-08T23:59:59.000Z

308

Recent Progress on Steam Hydrogasification of Carbonaceous Matter...  

Broader source: Energy.gov (indexed) [DOE]

Progress on Steam Hydrogasification of Carbonaceous Matter to Clean Synthetic Diesel Fuel Surinder P. Singh, Arun Raju, Chan Seung Park, Joe Norbeck University of California,...

309

IN THE MATTER OF: STATE OF NEW MEXICO ENVIRONMENT DEPARTMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MATTER OF: STATE OF NEW MEXICO ENVIRONMENT DEPARTMENT UNITED STATES DEPARTMENT ) ADMINISTRATIVE ORDER UNDER THE NEW MEXICO HAZARDOUS WASTE ACT 74-4-13 OF ENERGY AND NUCLEAR )...

310

Astrophysical search strategies for accelerator blind dark matter  

E-Print Network [OSTI]

A weakly interacting dark-matter particle may be difficult to discover at an accelerator because it either (1) is too massive, (2) has no standard-model gauge interactions, or (3) is almost degenerate with other states. In each of these cases, searches for annihilation products in the Galactic halo are useful probes of dark-matter properties. Using the example of supersymmetric dark matter, I discuss how astrophysical searches for dark matter may provide discovery and mass information inaccessible to collider physics programs such as the Tevatron and LHC.

James D. Wells

1998-08-06T23:59:59.000Z

311

White-Etching Matter in Bearing Steel. Part II: Distinguishing Cause and Effect in Bearing Steel Failure  

E-Print Network [OSTI]

The premature failure of large bearings of the type used in wind turbines, possibly through a mechanism called 搘hite-structure flaking, has triggered many studies of microstructural damage associated with 搘hite-etching areas created during...

Solano-Alvarez, W.; Bhadeshia, H. K. D. H.

2014-07-11T23:59:59.000Z

312

Cold Molecular Gas as a Possible Component of Dark Matter in the Outer Parts of Disk Galaxies  

E-Print Network [OSTI]

In the last few years new evidence has been presented for the presence of ongoing massive star formation in the outer HI disks of galaxies. These discoveries strongly suggest that precursor molecular gas must also be present in some physical state which is escaping detection by the usual means (CO(1-0), IR, etc.). We present a model for such a gas in a framework which views the HI as the result of an ongoing ``photodissociation dust grain reformation'' equilibrium in a cold, clumpy molecular medium with a small area filling factor.

Ronald J. Allen; Rosa Diaz-Miller

2004-03-16T23:59:59.000Z

313

Part II: Project Summaries Project Summaries  

E-Print Network [OSTI]

Part II: Project Summaries Part II Project Summaries #12;22 Math & Computational Sciences Division generally cannot be achieved for reasonable computational cost. Applications that require modeling of this project is to advance the state of the art in electromagnetic computations by eliminating three existing

Perkins, Richard A.

314

enter part number BNC / RP-BNC  

E-Print Network [OSTI]

enter part number Products 7/16 1.0/2.3 1.6/5.6 AFI AMC BNC / RP-BNC C FAKRA SMB FME HN MCX Mini ------- Product Search ------- Inventory Search Search Results for: 31-10152-RFX Results: 1 - 1 of 1 Part Number. All rights reserved. Copyright | Terms & Conditions | RF E-Mail Client | Contact Us | Amphenol

Berns, Hans-Gerd

315

Fixture for mounting small parts for processing  

DOE Patents [OSTI]

A fixture for mounting small parts, such as fusion target spheres or microelectronic components. A glass stalk is drawn and truncated near its tip. The truncated end of the glass stalk is dipped into silicone rubber forming an extending streamer. After the rubber cures for approximately 24 hours, a small part is touched to the streamer, and will be held securely throughout processing.

Foreman, Larry R. (2456 36th St., Los Alamos, NM 87544); Gomez, Veronica M. (Rte. 5 Box 283, Santa Fe, NM 87501); Thomas, Michael H. (Rte. 3-193-1, Espanola, NM 87532)

1990-01-01T23:59:59.000Z

316

SURFACE OXIDATION OF DIESEL PARTICULATE MATTER IN PRESENCE OF O3 +NOX: NEW TD/GC/MS ANALYSIS METHOD  

E-Print Network [OSTI]

in the atmosphere. TD-GC-MS ANALYSIS METHODOLOGY A thermal desorption (TD) injection device (M. Ezrin, 1991. Valve Spindle 10. Carrier Gas Inlet 11. Inlet Assembly 12. Injection Port Insert PAH standard Solution, 1ppm, 1碌L injection Alkanes Standard Solution, 0.1ppm, 1碌L injection FUTURE EXPERIMENTS Verify PM

Holm茅n, Britt A.

317

C12 PART IIA and Part IIB C12 MATERIALS SCIENCE AND METALLURGY  

E-Print Network [OSTI]

C12 PART IIA and Part IIB C12 MATERIALS SCIENCE AND METALLURGY Course C12: Plasticity Horwood, 1985 Kc38 G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, 1988 Ka62 W.F. Hosford and R

Colton, Jonathan S.

318

Mixed axion-wino dark matter  

E-Print Network [OSTI]

A variety of supersymmetric models give rise to a split mass spectrum characterized by very heavy scalars but sub-TeV gauginos, usually with a wino-like LSP. Such models predict a thermally-produced underabundance of wino-like WIMP dark matter so that non-thermal DM production mechanisms are necessary. We examine the case where theories with a wino-like LSP are augmented by a Peccei-Quinn sector including an axion-axino-saxion supermultiplet in either the SUSY KSVZ or SUSY DFSZ models and with/without saxion decays to axions/axinos. We show allowed ranges of PQ breaking scale f_a for various cases which are generated by solving the necessary coupled Boltzmann equations. We also present results for a model with radiatively-driven naturalness but with a wino-like LSP.

Bae, Kyu Jung; Lessa, Andre; Serce, Hasan

2015-01-01T23:59:59.000Z

319

Friction and dilatancy in immersed granular matter  

E-Print Network [OSTI]

The friction of a sliding plate on a thin immersed granular layer obeys Amonton-Coulomb law. We bring to the fore a large set of experimental results which indicate that, over a few decades of values, the effective dynamical friction-coefficient depends neither on the viscosity of the interstitial fluid nor on the size of beads in the sheared layer, which bears out the analogy with the solid-solid friction in a wide range of experimental parameters. We accurately determine the granular-layer dilatancy, which dependance on the grain size and slider velocity can be qualitatively accounted by considering the rheological behaviour of the whole slurry. However, additional results, obtained after modification of the grain surface by a chemical treatment, demonstrate that the theoretical description of the flow properties of granular matter, even immersed, requires the detailed properties of the grain surface to be taken into account.

Thibaut Divoux; Jean-Christophe G閙inard

2008-06-10T23:59:59.000Z

320

Shock phenomena in baryonless strongly interacting matter  

SciTech Connect (OSTI)

Shock phenomena associated with the quark-to-hadron matter phase transition are studied using the concept of adiabats. To allow for an analysis of a medium with vanishing baryon density, the shock and Poisson adiabats are formulated in terms of hydrodynamic fluxes, rather than only thermodynamic variables. The bag-model equation of state is used to describe the phase transition. It is shown that deflagrations from the quark phase above the critical temperature and strong detonations from the supercooled quark phase to the superheated hadron phase are unlikely. Instead the possibility of weak condensation detonations from the supercooled quark phase to a mixed phase is indicated. Strong detonations can occur if the latent energy density of the phase transition is small compared to the energy density of the hadron gas. Simple properties of the adiabats and of the equation of state are employed to derive several analytic results.

Danielewicz, P.; Ruuskanen, P.V.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Universal properties of cold holographic matter  

E-Print Network [OSTI]

We study the collective excitations of holographic quantum liquids formed in the low energy theory living at the intersection of two sets of D-branes. The corresponding field theory dual is a supersymmetric Yang-Mills theory with massless matter hypermultiplets in the fundamental representation of the gauge group which generically live on a defect of the unflavored theory. Working in the quenched (probe) approximation, we focus on determining the universal properties of these systems. We analyze their thermodynamics, the speed of first sound, the diffusion constant, and the speed of zero sound. We study the influence of temperature, chemical potential, and magnetic field on these quantities, as well as on the corresponding collisionless/hydrodynamic crossover. We also generalize the alternative quantization for all conformally $AdS_4$ backgrounds and study the anyonic correlators.

Niko Jokela; Alfonso V. Ramallo

2015-03-14T23:59:59.000Z

322

Dynamical insight into dark-matter haloes  

E-Print Network [OSTI]

We investigate, using the spherical Jeans equation, self-gravitating dynamical equilibria satisfying a relation rho/sigma_r^3 propto r^-alpha, which holds for simulated dark-matter haloes over their whole resolved radial range. Considering first the case of velocity isotropy, we find that this problem has only one solution with realistic density profile, which occurs only for a critical value of alpha_crit = 35/18 ~= 1.94, which is consistent with the empirical value of 1.9+/-0.05. We extend our analysis in two ways: first we introduce a parameter epsilon to allow for a more general relation rho/\\sigma_r^epsilon propto r^-alpha; second we consider velocity anisotropy. If we assume beta(r) := 1- sigma_theta^2 / sigma_r^2 to be linearly related to the logarithmic density slope gamma(r) := -dln(rho)/dln(r), which is in agreement with simulations, the problem remains analytically tractable and is equivalent to the simpler isotropic case: there exists only one physical solution, which occurs at a critical alpha value. Remarkably, this value of alpha and the density and velocity-dispersion profiles depend only on epsilon and the value beta_0 := beta(r=0), but not on the slope of the linear beta-gamma relation. For epsilon=3, alpha_crit = 35/18 - 2beta_0/9 and the resulting density profile is fully analytic (as are the velocity dispersion and circular speed) with an inner cusp rho propto r^{-(7+10beta_0)/9} and a very smooth transition to a steeper outer power-law asymptote. These models are in excellent agreement with the density, velocity-dispersion and anisotropy profiles of simulated dark-matter haloes over their full resolved radial range. If epsilon=3 is a universal constant, some scatter in beta_0 ~= 0 may account for some diversity in the density profiles. (ABRIDGED)

Walter Dehnen; Dean McLaughlin

2005-06-22T23:59:59.000Z

323

Summary: Section 4.1, Part 1 Summary: Section 4.1, Part 1  

E-Print Network [OSTI]

all ten vector space axioms hold, we can conclude that S is a vector space. Summary: Section 4.1, PartSummary: Section 4.1, Part 1 Summary: Section 4.1, Part 1 #12;A vector space is a nonempty set V of objects, called vectors, on which are defined addition and scalar multiplication, subject to the ten

Myers, Amy

324

Analytic study on backreacting holographic superconductors with dark matter sector  

E-Print Network [OSTI]

The variational method for Sturm-Liouville eigenvalue problem was employed to study analytically properties of the holographic superconductor with dark matter sector, in which a coupling between Maxwell field and another U(1)-gauge field was considered. The backreaction of the dark matter sector on gravitational background in question was also examined.

Lukasz Nakonieczny; Marek Rogatko

2014-11-04T23:59:59.000Z

325

The MSW effect in a fluctuating matter density  

E-Print Network [OSTI]

We consider the effect on matter-enhanced neutrino flavor transformation of a randomly fluctuating, delta-correlated matter density. The fluctuations will produce a distribution of neutrino survival probabilities. We find the mean and variance of the distribution for the case of solar neutrinos, and discuss the possibility of placing a limit on solar density fluctuations using neutrino data.

A. B. Balantekin; J. M. Fetter; F. N. Loreti

1996-04-11T23:59:59.000Z

326

Dissolved organic matter in Chesapeake Bay sediment pore waters  

E-Print Network [OSTI]

Dissolved organic matter in Chesapeake Bay sediment pore waters David J. Burdige * Department of recent studies of dissolved organic matter (DOM) in Chesapeake Bay sediment pore waters are summar- ized water DOM. This analysis shows that much of the DOM accumulating in sediment pore waters appears

Burdige, David

327

Looking for dark matter annihilations in dwarf galaxies  

E-Print Network [OSTI]

We calculate the flux of high energy gamma-rays from annihilation of neutralino dark matter in the centre of the Milky Way and the three nearest dwarf spheroidals (Sagittarius, Draco and Canis Major), using realistic models of the dark matter distribution.

F. Ferrer

2004-06-09T23:59:59.000Z

328

Hierarchy in the Phase Space and Dark Matter Astronomy  

E-Print Network [OSTI]

We develop a theoretical framework for describing the hierarchical structure of the phase space of cold dark matter haloes, due to gravitationally bound substructures. Because it includes the full hierarchy of the cold dark matter initial conditions and is hence complementary to the halo model, the stable clustering hypothesis is applied for the first time here to the small-scale phase space structure. As an application, we show that the particle dark matter annihilation signal could be up to two orders of magnitude larger than that of the smooth halo within the Galactic virial radius. The local boost is inversely proportional to the smooth halo density, and thus is O(1) within the solar radius, which could translate into interesting signatures for dark matter direct detection experiments: The temporal correlation of dark matter detection can change by a factor of 2 in the span of 10 years, while there will be significant correlations in the velocity space of dark matter particles. This can introduce O(1) uncertainty in the direction of local dark matter wind, which was believed to be a benchmark of directional dark matter searches or the annual modulation signal.

Niayesh Afshordi; Roya Mohayaee; Edmund Bertschinger

2009-11-02T23:59:59.000Z

329

Brief Communications Why Sex Matters: Brain Size Independent Differences in  

E-Print Network [OSTI]

Brief Communications Why Sex Matters: Brain Size Independent Differences in Gray Matter, Germany The different brain anatomy of men and women is both a classic and continuing topic of major interest. Among the most replicated and robust sex differences are larger overall brain dimensions in men

Gaser, Christian

330

Dark matter at the LHC: EFTs and gauge invariance  

E-Print Network [OSTI]

Effective field theory (EFT) formulations of dark matter interactions have proven to be a convenient and popular way to quantify LHC bounds on dark matter. However, some of the non-renormalizable EFT operators considered do not respect the gauge symmetries of the Standard Model. We carefully discuss under what circumstances such operators can arise, and outline potential issues in their interpretation and application.

Bell, Nicole F; Dent, James B; Leane, Rebecca K; Weiler, Thomas J

2015-01-01T23:59:59.000Z

331

The Phenomenology of Gravitino Dark Matter Scenarios in Supergravity Models  

E-Print Network [OSTI]

We review the phenomenology of gravitino dark matter within supergravity framework. Gravitino can be dark matter if it is the lightest supersymmetric particle, which is stable if R-parity is conserved. There are several distinct scenarios depending on what the next to lightest supersymmetric particle (NLSP) is. We discuss the constraints and summarize the phenomenology of neutralino, stau, stop and sneutrino NLSPs.

Yudi Santoso

2009-03-16T23:59:59.000Z

332

Ordinary Matter in Nonlinear Affine Gauge Theories of Gravitation  

E-Print Network [OSTI]

We present a general framework to include ordinary fermionic matter in the metric--affine gauge theories of gravity. It is based on a nonlinear gauge realization of the affine group, with the Lorentz group as the classification subgroup of the matter and gravitational fields.

A. L髉ez--Pinto; A. Tiemblo; R. Tresguerres

1994-12-16T23:59:59.000Z

333

argon dark matter: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

argon dark matter First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 The Argon Dark Matter Experiment HEP...

334

EDELWEISS dark matter search: Latest results and future plans  

E-Print Network [OSTI]

EDELWEISS dark matter search: Latest results and future plans Johann Gironnet Institut de Physique is a direct search for WIMP dark matter using cryogenic heat-and-ionization germanium detectors. We report the 4850 meter- water-equivalent rock cover reduces the cosmic-ray background by six order of magnitude

Boyer, Edmond

335

Indirect Search for Dark Matter with the ANTARES Neutrino Telescope  

E-Print Network [OSTI]

significant high energy neutrino fluxes. Indirect search for Dark Matter looking at such neutrino fluxes for the Cherenkov light induced by high energy muons during their travel in the sea water throughout the detectorIndirect Search for Dark Matter with the ANTARES Neutrino Telescope V. Bertin1 on behalf

Paris-Sud XI, Universit茅 de

336

Dark energy and dark matter from cosmological observations  

E-Print Network [OSTI]

The present status of our knowledge about the dark matter and dark energy is reviewed. Bounds on the content of cold and hot dark matter from cosmological observations are discussed in some detail. I also review current bounds on the physical properties of dark energy, mainly its equation of state and effective speed of sound.

Steen Hannestad

2005-09-14T23:59:59.000Z

337

Dark Matter and Dark Energy huncheng@math.mit.edu  

E-Print Network [OSTI]

Dark Matter and Dark Energy Hung Cheng huncheng@math.mit.edu January 17, 2008 Abstract We suggest. Besides producing particle masses, the mass generation mechanism also produces the observed dark energy that a candidate for dark matter is a meson with spin one the existence of which is dictated by local scale

Cheng, Hung

338

Regional White Matter and Neuropsychological Functioning across the Adult Lifespan  

E-Print Network [OSTI]

Regional White Matter and Neuropsychological Functioning across the Adult Lifespan Adam M. Brickman (MRI) to more fully elucidate the relationship among age, regional white matter, and neuropsychological neuropsychological assessment. MR images were spatially normalized and segmented by tissue type; relative white

339

8 Boltzmann Transport in Condensed Matter Franz Xaver Bronold  

E-Print Network [OSTI]

equations as applied to the analysis of transport and relaxation phenomena in condensed matter systems. 88 Boltzmann Transport in Condensed Matter Franz Xaver Bronold Institut f篓ur Physik, Universit of view. Envisaging the molecules of the gas to perform free flights, which are occasionally interrupted

Fehske, Holger

340

Do Applicant Patent Citations Matter? Christopher A. Cotropia  

E-Print Network [OSTI]

1 Do Applicant Patent Citations Matter? Christopher A. Cotropia Professor of Law University Applicant Patent Citations Matter? Abstract Patent law both imposes a duty on patent applicants to submit's patentability. In this paper, we examine the validity of these assumptions by studying the use made of applicant

Sekhon, Jasjeet S.

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Method for removing particulate matter from a gas stream  

DOE Patents [OSTI]

Particulate matter is removed from a stream of pressurized gas by directing the stream of gas upwardly through a bed of porous material, the porous bed being held in an open ended container and at least partially submerged in liquid. The passage of the gas through the porous bed sets up a circulation in the liquid which cleans the particulate matter from the bed.

Postma, Arlin K. (Benton City, WA)

1984-01-01T23:59:59.000Z

342

Neutrino interaction with background matter in a noninertial frame  

E-Print Network [OSTI]

We study Dirac neutrinos propagating in rotating background matter. First we derive the Dirac equation for a single massive neutrino in the noninertial frame, where matter is at rest. This equation is written in the effective curved space-time corresponding to the corotating frame. We find the exact solution of the Dirac equation. The neutrino energy levels for ultrarelativistic particles are obtained. Then we discuss several neutrino mass eigenstates, with a nonzero mixing between them, interacting with rotating background matter. We derive the effective Schr\\"{o}dinger equation governing neutrino flavor oscillations in rotating matter. The new resonance condition for neutrino oscillations is obtained. We also examine the correction to the resonance condition caused by the matter rotation.

Dvornikov, Maxim

2015-01-01T23:59:59.000Z

343

The inhomogeneous quark condensate in compressed skyrmion matter  

E-Print Network [OSTI]

The inhomogeneous quark condensate, responsible for the dynamical chiral symmetry breaking in the cold nuclear matter, is studied by putting skyrmions onto the face-centered cubic crystal and treating the skyrmion matter as a nuclear matter. By varying the crystal size, we explore the effect of density on the local structure of the quark-antiquark condensate. By endowing the light vector mesons $\\rho$ and $\\omega$ with hidden local symmetry and incorporating a scalar meson as a dilaton of spontaneously broken scale symmetry, we uncover the intricate interplay of heavy mesons in the local structure of quark condensate in dense baryonic matter described in terms of skyrmion crystal. It is found that that the inhomogeneous quark density persists to as high a density as $\\sim 4$ times nuclear matter density. The difference between the result from the present approach and that from the chiral density wave ansatz is also discussed.

Harada, Masayasu; Ma, Yong-Liang; Rho, Mannque

2015-01-01T23:59:59.000Z

344

Neutrino masses, leptogenesis, and sterile neutrino dark matter  

E-Print Network [OSTI]

We analyze a scenario in which the lightest heavy neutrino $N_1$ is a dark matter candidate and the second- heaviest neutrino $N_2$ decays producing a lepton number. If $N_1$ were in thermal equilibrium, its energy density today would be much larger than that of the observed dark matter, so we consider energy injection by the decay of $N_2$. In this paper, we show the parameters of this scenario that give the correct abundances of dark matter and baryonic matter and also induce the observed neutrino masses. This model can explain a possible sterile neutrino dark matter signal of $M_1$=7 keV in the x-ray observation of x-ray multi-mirror mission.

Takanao Tsuyuki

2014-07-20T23:59:59.000Z

345

Stealth Dark Matter: Dark scalar baryons through the Higgs portal  

E-Print Network [OSTI]

We present a new model of "Stealth Dark Matter": a composite baryonic scalar of an $SU(N_D)$ strongly-coupled theory with even $N_D \\geq 4$. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vector-like representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to $SU(4)$, and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominant...

Appelquist, Thomas; Buchoff, Michael I; Fleming, George T; Jin, Xiao-Yong; Kiskis, Joe; Kribs, Graham D; Neil, Ethan T; Osborn, James C; Rebbi, Claudio; Rinaldi, Enrico; Schaich, David; Schroeder, Chris; Syritsyn, Sergey; Vranas, Pavlos; Weinberg, Evan; Witzel, Oliver

2015-01-01T23:59:59.000Z

346

Remyelination failure following white matter stroke: new targets for repair identified by oligodendrocyte progenitor cell transcriptome database.  

E-Print Network [OSTI]

Differences between White Matter Stroke and Immune-mediated32 White Matter Stroke 厖厖厖厖厖厖厖厖厖..厖厖厖厖 3343 97 White Matter Stroke Model Using the Vasoconstrictive

Sozmen, Elif Guler

2013-01-01T23:59:59.000Z

347

Coordinated part delivery using distributed planning  

E-Print Network [OSTI]

In this thesis, we develop a distributed mobile robot platform to deliver parts around a model construction site. The platform's robots, specialized into delivery robots and assembly robots, use a distributed coverage ...

Bolger, Adrienne (Adrienne M.)

2010-01-01T23:59:59.000Z

348

11 Life on Herbert Island (part 2)  

E-Print Network [OSTI]

last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 11 Length of track 45 minutes Title of track Life on Herbert Island (part 2) Translation...

Leonard, Stephen Pax

349

13 Life on Herbert Island (part 3)  

E-Print Network [OSTI]

last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 13 Length of track 30 minutes Title of track Life on Herbert Island (part 3) Translation...

Leonard, Stephen Pax

350

12 Life on Herbert Island (part 1)  

E-Print Network [OSTI]

last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 12 Length of track 1 hour 35 minutes Title of track Life on Herbert Island (part 1...

Leonard, Stephen Pax

351

Sustainability Plan Part I: Strategy and Goals  

E-Print Network [OSTI]

Sustainability Plan Part I: Strategy and Goals Prepared By: Oregon State University Sustainability University (OSU) Sustainable Facilities Committee (SFC) was established in November, 2004 by the OSU infrastructure and operations toward sustainability. Additionally, the group serves as a discussion forum

Escher, Christine

352

Documentation of BioBrick parts  

E-Print Network [OSTI]

Purpose of this RFC is to improve the information supplied by BioBrick part vendors. Reason to have this RFC is that there would be much more information available which can help improve the search time of the user. ...

Slomp, Arend

2010-12-05T23:59:59.000Z

353

Fixture for mounting small parts for processing  

DOE Patents [OSTI]

A fixture for mounting small parts, such as fusion target spheres or microelectronic components is disclosed. A glass stalk is drawn and truncated near its tip. The truncated end of the glass stalk is dipped into silicone rubber forming an extending streamer. After the rubber cures for approximately 24 hours, a small part is touched to the streamer, and will be held securely throughout processing. 5 figs.

Foreman, L.R.; Gomez, V.M.; Thomas, M.H.

1990-05-29T23:59:59.000Z

354

VWZ-0011 - In the Matter of West Valley Nuclear Services Co....  

Office of Environmental Management (EM)

- In the Matter of West Valley Nuclear Services Co., Inc. VWZ-0012 - In the Matter of Lucy B. Smith VWA-0033 - In the Matter of Gretencord v. West Valley Nuclear Services Co., Inc....

355

Neutron-Proton Mass Difference in Nuclear Matter and in Finite Nuclei and the Nolen-Schiffer Anomaly  

E-Print Network [OSTI]

The neutron-proton mass difference in (isospin asymmetric) nuclear matter and finite nuclei is studied in the framework of a medium-modified Skyrme model. The proposed effective Lagrangian incorporates both the medium influence of the surrounding nuclear environment on the single nucleon properties and an explicit isospin-breaking effect in the mesonic sector. Energy-dependent charged and neutral pion optical potentials in the s- and p-wave channels are included as well. The present approach predicts that the neutron-proton mass difference is mainly dictated by its strong part and that it markedly decreases in neutron matter. Furthermore, the possible interplay between the effective nucleon mass in finite nuclei and the Nolen-Schiffer anomaly is discussed. In particular, we find that a correct description of the properties of mirror nuclei leads to a stringent restriction of possible modifications of the nucleon's effective mass in nuclei.

Ulf-G. Mei遪er; A. M. Rakhimov; A. Wirzba; U. T. Yakhshiev

2009-12-29T23:59:59.000Z

356

Hidden axion dark matter decaying through mixing with QCD axion and the 3.5 keV X-ray line  

E-Print Network [OSTI]

Hidden axions may be coupled to the standard model particles through a kinetic or mass mixing with QCD axion. We study a scenario in which a hidden axion constitutes a part of or the whole of dark matter and decays into photons through the mixing, explaining the 3.5 keV X-ray line signal. Interestingly, the required long lifetime of the hidden axion dark matter can be realized for the QCD axion decay constant at an intermediate scale, if the mixing is sufficiently small. In such a two component dark matter scenario, the primordial density perturbations of the hidden axion can be highly non-Gaussian, leading to a possible dispersion in the X-ray line strength from various galaxy clusters and near-by galaxies. We also discuss how the parallel and orthogonal alignment of two axions affects their couplings to gauge fields.

Tetsutaro Higaki; Naoya Kitajima; Fuminobu Takahashi

2014-08-18T23:59:59.000Z

357

Neutrino constraints on the dark matter total annihilation cross section  

SciTech Connect (OSTI)

In the indirect detection of dark matter through its annihilation products, the signals depend on the square of the dark matter density, making precise knowledge of the distribution of dark matter in the Universe critical for robust predictions. Many studies have focused on regions where the dark matter density is greatest, e.g., the galactic center, as well as on the cosmic signal arising from all halos in the Universe. We focus on the signal arising from the whole Milky Way halo; this is less sensitive to uncertainties in the dark matter distribution, and especially for flatter profiles, this halo signal is larger than the cosmic signal. We illustrate this by considering a dark matter model in which the principal annihilation products are neutrinos. Since neutrinos are the least detectable standard model particles, a limit on their flux conservatively bounds the dark matter total self-annihilation cross section from above. By using the Milky Way halo signal, we show that previous constraints using the cosmic signal can be improved on by 1-2 orders of magnitude; dedicated experimental analyses should be able to improve both by an additional 1-2 orders of magnitude.

Yueksel, Hasan [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210 (United States); Horiuchi, Shunsaku [Department of Physics, School of Science, University of Tokyo, Tokyo 113-0033 (Japan); Beacom, John F. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210 (United States); Department of Astronomy, Ohio State University, Columbus, Ohio 43210 (United States); Ando, Shin'ichiro [California Institute of Technology, Mail Code 130-33, Pasadena, California 91125 (United States)

2007-12-15T23:59:59.000Z

358

Composite dark matter from a model with composite Higgs boson  

E-Print Network [OSTI]

In a previous paper \\cite{Khlopov:2007ic}, we showed how the minimal walking technicolor model (WTC) can provide a composite dark matter candidate, by forming bound states between a -2 electrically charged techniparticle and a $^4He^{++}$. We studied the properties of these \\emph{techni-O-helium} $tOHe$ "atoms", which behave as warmer dark matter rather than cold. In this paper we extend our work on several different aspects. We study the possibility of a mixed scenario where both $tOHe$ and bound states between +2 and -2 electrically charged techniparticles coexist in the dark matter density. We argue that these newly proposed bound states solely made of techniparticles, although they behave as Weakly Interacting Massive Particles (WIMPs), due to their large elastic cross section with nuclei, can only account for a small percentage of the dark matter density. Therefore we conclude that within the minimal WTC, composite dark matter should be mostly composed of $tOHe$. Moreover in this paper, we put cosmological bounds in the masses of the techniparticles, if they compose the dark matter density. Finally we propose within this setup, a possible explanation of the discrepancy between the DAMA/NaI and DAMA/LIBRA findings and the negative results of CDMS and other direct dark matter searches that imply nuclear recoil measurement, which should accompany ionization.

Maxim Yu. Khlopov; Chris Kouvaris

2008-10-10T23:59:59.000Z

359

Diurnal modulation signal from dissipative hidden sector dark matter  

E-Print Network [OSTI]

We consider a simple generic dissipative dark matter model: a hidden sector featuring two dark matter particles charged under an unbroken $U(1)'$ interaction. Previous work has shown that such a model has the potential to explain dark matter phenomena on both large and small scales. In this framework, the dark matter halo in spiral galaxies features nontrivial dynamics, with the halo energy loss due to dissipative interactions balanced by a heat source. Ordinary supernovae can potentially supply this heat provided kinetic mixing interaction exists with strength $\\epsilon \\sim 10^{-9}$. This type of kinetically mixed dark matter can be probed in direct detection experiments. Importantly, this self-interacting dark matter can be captured within the Earth and shield a dark matter detector from the halo wind, giving rise to a diurnal modulation effect. We estimate the size of this effect for detectors located in the Southern hemisphere, and find that the modulation is large ($\\gtrsim 10\\%$) for a wide range of parameters.

R. Foot; S. Vagnozzi

2014-12-02T23:59:59.000Z

360

On-Board Engine Exhaust Particulate Matter Sensor for HCCI and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel...

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

E-Print Network 3.0 - abnormal grey matter Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Sample search results for: abnormal grey matter Page: << < 1 2 3 4 5 > >> 1 White Matter Abnormalities in Whole Brain and its Regional Specificity in Chronic...

362

E-Print Network 3.0 - attenuate white matter Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

white matter Search Powered by Explorit Topic List Advanced Search Sample search results for: attenuate white matter Page: << < 1 2 3 4 5 > >> 1 Parametric Transverse Relaxation...

363

Energy and Matter: The design of a nature centre, tunnel, and neutrino observatory.  

E-Print Network [OSTI]

??Neutrino physics proposes radical new conceptions of matter. Contemplating the extraordinary and mysterious nature of neutrinos in architectural terms, Energy and Matter considers the ideas (more)

Elsworthy, William

2015-01-01T23:59:59.000Z

364

E-Print Network 3.0 - axion dark matter Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Axions Summary: Lecture April 23, 2009 Outline: From neutrons to axions Axion phenomenology Axion dark matter Thursday... Axion phenomenology Axion dark matter Inflationary...

365

E-Print Network 3.0 - ambient particulate matter Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ambient particulate matter Page: << < 1 2 3 4 5 > >> 1 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Ambient Air Quality Standards...

366

E-Print Network 3.0 - ambient particulate matter-induced Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particulate matter-induced Page: << < 1 2 3 4 5 > >> 1 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Ambient Air Quality Standards...

367

Yield Stress Materials in Soft Condensed Matter  

E-Print Network [OSTI]

We present a comprehensive review of the physical behavior of yield stress materials in soft condensed matter, which encompasses a broad range of soft materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear response to an external mechanical forcing, which results from the existence of a finite force threshold for flow to occur, the yield stress. We discuss both the physical origin and the rheological consequences associated with this nonlinear behavior. We give an overview of the different experimental techniques developed to measure the yield stress. We discuss extensively the recent progress concerning a microscopic description of the flow dynamics of yield stress materials, emphasizing in particular the role played by relaxation timescales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and non-local effects in confined geometries. We finally review the status of modeling of the shear rheology of yield stress materials in the framework of continuum mechanics.

Daniel Bonn; Jose Paredes; Morton M. Denn; Ludovic Berthier; Thibaut Divoux; S閎astien Manneville

2015-02-18T23:59:59.000Z

368

Quantum Haplodynamics, Dark Matter and Dark Energy  

E-Print Network [OSTI]

In quantum haplodynamics (QHD) the weak bosons, quarks and leptons are bound states of fundamental constituents, denoted as haplons. The confinement scale of the associated gauge group SU(2)_h is of the order of $\\Lambda_h\\simeq 0.3$ TeV. One scalar state has zero haplon number and is the resonance observed at the LHC. In addition, there exist new bound states of haplons with no counterpart in the SM, having a mass of the order of 0.5 TeV up to a few TeV. In particular, a neutral scalar state with haplon number 4 is stable and can provide the dark matter in the universe. The QHD, QCD and QED couplings can unify at the Planck scale. If this scale changes slowly with cosmic time, all of the fundamental couplings, the masses of the nucleons and of the DM particles, including the cosmological term (or vacuum energy density), will evolve with time. This could explain the dark energy of the universe.

Harald Fritzsch; Joan Sola

2014-08-04T23:59:59.000Z

369

Dark Matter Constraints on Composite Higgs Models  

E-Print Network [OSTI]

In composite Higgs models the pseudo-Nambu-Goldstone Boson (pNGB) nature of the Higgs field is an interesting alternative for explaning the smallness of the electroweak scale with respect to the beyond the Standard Model scale. In non-minimal models additional pNGB states are present and can be a Dark Matter (DM) candidate, if there is an approximate symmetry suppressing their decay. Here we assume that the low energy effective theory (for scales much below the compositeness scale) corresponds to the Standard Model with a pNGB Higgs doublet and a pNGB DM multiplet. We derive general effective DM Lagrangians for several possible DM representations (under the SM gauge group), including the singlet, doublet and triplet cases. Within this framework we discuss how the DM observables (relic abundance, direct and indirect detection) constrain the dimension-6 operators induced by the strong sector assuming that DM behaves as a Weakly Interacting Particle (WIMP) and that the relic abundance is settled through the free...

Fonseca, Nayara; Lessa, Andre; Lopez-Honorez, Laura

2015-01-01T23:59:59.000Z

370

Does Transparent Hidden Matter Generate Optical Scintillation?  

E-Print Network [OSTI]

Stars twinkle because their light goes through the atmosphere. The same phenomenon is expected when the light of extra-galactic stars goes through a Galactic -- disk or halo -- refractive medium. Because of the large distances involved here, the length and time scales of the optical intensity fluctuations resulting from the wave distortions are accessible to the current technology. In this paper, we discuss the different possible scintillation regimes and we focus on the so-called strong diffractive regime that is likely to produce large intensity contrasts. The critical relationship between the source angular size and the intensity contrast in optical wavelengths is also discussed in detail. We propose to monitor small extra-galactic stars every $\\sim 10 \\mathrm{s}$ to search for intensity scintillation produced by molecular hydrogen clouds. We discuss means to discriminate such hidden matter signal from the foreground effects on light propagation. Appropriate observation of the scintillation process described here should allow one to detect column density stochastic variations in Galactic molecular clouds of order of $\\sim 3\\times 10^{-5} \\mathrm{g/cm^2}$, that is $10^{19} \\mathrm{molecules/cm^2}$ per $\\sim 10 000 \\mathrm{km}$ transverse distance.

M. Moniez

2003-09-22T23:59:59.000Z

371

Dark Energy - Dark Matter Unification: Generalized Chaplygin Gas Model  

E-Print Network [OSTI]

We review the main features of the generalized Chaplygin gas (GCG) proposal for unification of dark energy and dark matter and discuss how it admits an unique decomposition into dark energy and dark matter components once phantom-like dark energy is excluded. In the context of this approach we consider structure formation and show that unphysical oscillations or blow-up in the matter power spectrum are not present. Moreover, we demonstrate that the dominance of dark energy occurs about the time when energy density fluctuations start evolving away from the linear regime.

Orfeu Bertolami

2005-04-14T23:59:59.000Z

372

The Higgs boson, Supersymmetry and Dark Matter: Relations and Perspectives  

E-Print Network [OSTI]

The discovery of a light Higgs boson at the LHC opens a broad program of studies and measurements to understand the role of this particle in connection with New Physics and Cosmology. Supersymmetry is the best motivated and most thoroughly formulated and investigated model of New Physics which predicts a light Higgs boson and can explain dark matter. This paper discusses how the study of the Higgs boson connects with the search for supersymmetry and for dark matter at the LHC and at a future $e^+e^-$ collider and with dedicated underground dark matter experiments.

Alexandre Arbey; Marco Battaglia; Farvah Mahmoudi

2015-04-20T23:59:59.000Z

373

The Higgs boson, Supersymmetry and Dark Matter: Relations and Perspectives  

E-Print Network [OSTI]

The discovery of a light Higgs boson at the LHC opens a broad program of studies and measurements to understand the role of this particle in connection with New Physics and Cosmology. Supersymmetry is the best motivated and most thoroughly formulated and investigated model of New Physics which predicts a light Higgs boson and can explain dark matter. This paper discusses how the study of the Higgs boson connects with the search for supersymmetry and for dark matter at the LHC and at a future $e^+e^-$ collider and with dedicated underground dark matter experiments.

Arbey, Alexandre; Mahmoudi, Farvah

2015-01-01T23:59:59.000Z

374

A Note on the Sagnac Effect for Matter Beams  

E-Print Network [OSTI]

We study the Sagnac effect for matter beams, in order to estimate the kinematic corrections to the basic formula, deriving from the position and the extension of the interferometer, and discuss the analogy with the Aharonov-Bohm effect. We show that the formula for the Sagnac time delay is the same for matter and light beams in arbitrary stationary space-times, provided that a suitable condition on the speed of the beams is fulfilled. Hence, the same results obtained for light beams apply to matter beams.

Matteo Luca Ruggiero; Angelo Tartaglia

2014-11-01T23:59:59.000Z

375

Hidden Photon Dark Matter Search with a Large Metallic Mirror  

E-Print Network [OSTI]

If Dark Matter is composed of hidden-sector photons that kinetically mix with photons of the visible sector, then Dark Matter has a tiny oscillating electric field component. Its presence would lead to a small amount of visible radiation being emitted from a conducting surface, with the photon frequency given approximately by the mass of the hidden photon. Here, we report on experimental efforts that have started recently to search for such hidden photon Dark Matter in the (sub-)eV regime with a prototype mirror for the Auger fluorescence detector at the Karlsruhe Institute for Technology.

Babette D鯾rich; Kai Daumiller; Ralph Engel; Marek Kowalski; Axel Lindner; Javier Redondo; Markus Roth

2014-10-01T23:59:59.000Z

376

Part IV Council on Environmental Quality  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652 Srivastava,Pacific1ofDepartmentb. Part B 1 Part79

377

Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O{sub 3}  

SciTech Connect (OSTI)

The thermal and kinetic effects of O{sub 3} on flame propagation were investigated experimentally and numerically by using C{sub 3}H{sub 8}/O{sub 2}/N{sub 2} laminar lifted flames. Ozone produced by a dielectric barrier plasma discharge was isolated and measured quantitatively by using absorption spectroscopy. Significant kinetic enhancement by O{sub 3} was observed by comparing flame stabilization locations with and without O{sub 3} production. Experiments at atmospheric pressures showed an 8% enhancement in the flame propagation speed for 1260 ppm of O{sub 3} addition to the O{sub 2}/N{sub 2} oxidizer. Numerical simulations showed that the O{sub 3} decomposition and reaction with H early in the pre-heat zone of the flame produced O and OH, respectively, from which the O reacted rapidly with C{sub 3}H{sub 8} and produced additional OH. The subsequent reaction of OH with the fuel and fuel fragments, such as CH{sub 2}O, provided chemical heat release at lower temperatures to enhance the flame propagation speed. It was shown that the kinetic effect on flame propagation enhancement by O{sub 3} reaching the pre-heat zone of the flame for early oxidation of fuel was much greater than that by the thermal effect from the energy contained within O{sub 3}. For non-premixed laminar lifted flames, the kinetic enhancement by O{sub 3} also induced changes to the hydrodynamics at the flame front which provided additional enhancement of the flame propagation speed. The present results will have a direct impact on the development of detailed plasma-flame kinetic mechanisms and provided a foundation for the study of combustion enhancement by O{sub 2}(a{sup 1}{delta}{sub g}) in part II of this investigation. (author)

Ombrello, Timothy; Won, Sang Hee; Ju, Yiguang [Department of Mechanical and Aerospace Engineering, Engineering Quadrangle, Olden Street, Princeton, NJ 08544 (United States); Williams, Skip [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson AFB, OH 45433 (United States)

2010-10-15T23:59:59.000Z

378

Development and Demonstration of an Electronic Particulate Matter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Matter Sensor for Both Engine-Out and Post-DPF Exhaust Monitoring Demanding emission legislation has created a need for low-cost, sensitive, accurate, and robust PM...

379

Down to the Meter: Localized Vehicle Pollution Matters  

E-Print Network [OSTI]

Near-Roadway Vehicle Pollution, American Journal of Publicfor Vehicle-Related Air Pollution Exposure in Minority andMeter: Localized Vehicle Pollution Matters B Y D O U G L A S

Houston, Douglas; Wu, Jun; Ong, Paul; Winer, Arthur

2006-01-01T23:59:59.000Z

380

Measuring Earth Matter Density and Testing the MSW Theory  

E-Print Network [OSTI]

In this talk I have raised the question of how the future discovery of leptonic CP violation can be made robust even at accepting the rather large current experimental uncertainties in our knowledges of neutrino propagation in matter. To make progress toward answering the difficult question, I listed ways to proceed: (1) Obtain tighter constraints on the MSW theory by testing it by various neutrino experiments. (2) Measure the matter effect in situ, namely within the experiment for discovering CP violation itself. (3) Uncover leptonic CP violation in a matter effect free environment. I also reported a step made toward the above point (2) by taking neutrino factory as a concrete setting; An accurate in situ measurement of the matter effect looks promising.

Minakata, Hisakazu

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Measuring Earth Matter Density and Testing the MSW Theory  

E-Print Network [OSTI]

In this talk I have raised the question of how the future discovery of leptonic CP violation can be made robust even at accepting the rather large current experimental uncertainties in our knowledges of neutrino propagation in matter. To make progress toward answering the difficult question, I listed ways to proceed: (1) Obtain tighter constraints on the MSW theory by testing it by various neutrino experiments. (2) Measure the matter effect in situ, namely within the experiment for discovering CP violation itself. (3) Uncover leptonic CP violation in a matter effect free environment. I also reported a step made toward the above point (2) by taking neutrino factory as a concrete setting; An accurate in situ measurement of the matter effect looks promising.

Hisakazu Minakata

2007-05-07T23:59:59.000Z

382

Status of Matter-Gravity Couplings in the SME  

E-Print Network [OSTI]

Constraints on Lorentz violation in matter-gravity couplings are summarized along with existing proposals to obtain sensitivities that exceed current limits by up to 11 orders of magnitude.

Tasson, Jay D

2013-01-01T23:59:59.000Z

383

Status of Matter-Gravity Couplings in the SME  

E-Print Network [OSTI]

Constraints on Lorentz violation in matter-gravity couplings are summarized along with existing proposals to obtain sensitivities that exceed current limits by up to 11 orders of magnitude.

Jay D. Tasson

2013-08-06T23:59:59.000Z

384

Microbial production and consumption of marine dissolved organic matter  

E-Print Network [OSTI]

Marine phytoplankton are the principal producers of oceanic dissolved organic matter (DOM), the organic substrate responsible for secondary production by heterotrophic microbes in the sea. Despite the importance of DOM in ...

Becker, Jamie William

2013-01-01T23:59:59.000Z

385

Generative morphologies of architectural organization in matter force field  

E-Print Network [OSTI]

This thesis investigates generative methods of architectural form finding in matter force fields that produce spatial subdivision and organizational variation. Unlike the style driven contemporary free-form architecture ...

Mutlu, Murat

2010-01-01T23:59:59.000Z

386

asymmetric hyperonic matter: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Bottom-strange mesons in hyperonic matter Nuclear Theory (arXiv) Summary: The in-medium behavior of bottom-strange pseudoscalar mesons in hot, isospin asymmetric and dense...

387

ORIGINAL CONTRIBUTION Association of White Matter Hyperintensity Volume  

E-Print Network [OSTI]

ORIGINAL CONTRIBUTION Association of White Matter Hyperintensity Volume With Decreased Cognitive was restricted to the study of older in- dividuals, limiting our understanding of the full impact of WMH

California at Davis, University of

388

RIKEN Center for Emergent Matter Science Strong Correlation Physics Division  

E-Print Network [OSTI]

Molecular Function Research Group Emergent Bioinspired Soft Matter Research Team Emergent Device Research Bioengineering Materials Research Team Materials Characterization Support Unit Quantum Information Electronics Research Group Macroscopic Quantum Coherence Research Team Superconducting Quantum Electronics Research

Fukai, Tomoki

389

RIKEN Center for Emergent Matter Science Strong Correlation Physics Division  

E-Print Network [OSTI]

Molecular Function Research Group Emergent Bioinspired Soft Matter Research Team Emergent Device Research Bioengineering Materials Research Team Materials Characterization Support Unit Quantum Information Electronics Condensate Research Team Macroscopic Quantum Coherence Research Team Superconducting Quantum Electronics

Fukai, Tomoki

390

RIKEN Center for Emergent Matter Science Strong Correlation Physics Division  

E-Print Network [OSTI]

Device Research Team Emergent Soft Matter Structure Reserch Team Emergent Functional Polymers Research Information Electronics Division Quantum Functional System Research Group Quantum Optics Research Group Quantum Electronics Research Team Emergent Phenomena Observation Technology Research Team Quantum Nano

Fukai, Tomoki

391

Modeling rough energy landscapes in defected condensed matter  

E-Print Network [OSTI]

This dissertation is a computational and theoretical investigation of the behavior of defected condensed matter and its evolution over long time scales. The thesis provides original contributions to the methodology used ...

Monasterio Vel醩quez, Paul Rene

2010-01-01T23:59:59.000Z

392

Gray Matter Is Targeted in First-Attack Multiple Sclerosis  

SciTech Connect (OSTI)

The cause of multiple sclerosis (MS), its driving pathogenesis at the earliest stages, and what factors allow the first clinical attack to manifest remain unknown. Some imaging studies suggest gray rather than white matter may be involved early, and some postulate this may be predictive of developing MS. Other imaging studies are in conflict. To determine if there was objective molecular evidence of gray matter involvement in early MS we used high-resolution mass spectrometry to identify proteins in the cerebrospinal fluid (CSF) of first-attack MS patients (two independent groups) compared to established relapsing remitting (RR) MS and controls. We found that the CSF proteins in first-attack patients were differentially enriched for gray matter components (axon, neuron, synapse). Myelin components did not distinguish these groups. The results support that gray matter dysfunction is involved early in MS, and also may be integral for the initial clinical presentation.

Schutzer, Steven E.; Angel, Thomas E.; Liu, Tao; Schepmoes, Athena A.; Xie, Fang; Bergquist, Jonas P.; Vecsei, Lazlo'; Zadori, Denes; Camp, David G.; Holland, Bart K.; Smith, Richard D.; Coyle, Patricia K.

2013-09-10T23:59:59.000Z

393

Probing correlated electron matter with infrared magneto- optics  

E-Print Network [OSTI]

H. Kaddouri, S. Benet, Optics Comm. 204, 355361 (2002), [do not affect the magneto optics analysis. See F. Marsiglio,Matter with Infrared Magneto-Optics A dissertation submitted

LaForge, Andrew David

2009-01-01T23:59:59.000Z

394

article family matters: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

greater GMD in the right anterior cingulate among lithium Thompson, Paul 7 Does dark matter consist of baryons of new stable family quarks? Astrophysics (arXiv) Summary: We...

395

Light Dark Matter Detection Prospects at Neutrino Experiments  

E-Print Network [OSTI]

We consider the prospects for the detection of relatively light dark matter through direct annihilation to neutrinos. We specifically focus on the detection possibilities of water Cherenkov and liquid scintillator neutrino detection devices. We find in particular that liquid scintillator detectors may potentially provide excellent detection prospects for dark matter in the 4-10 GeV mass range. These experiments can provide excellent corroborative checks of the DAMA/LIBRA annual modulation signal, but may yield results for low mass dark matter in any case. We identify important tests of the ratio of electron to muon neutrino events (and neutrino versus anti-neutrino events), which discriminate against background atmospheric neutrinos. In addition, the fraction of events which arise from muon neutrinos or anti-neutrinos ($R_{\\mu}$ and $R_{\\bar \\mu}$) can potentially yield information about the branching fractions of hypothetical dark matter annihilations into different neutrino flavors. These results apply to n...

Kumar, Jason; Smith, Stefanie

2009-01-01T23:59:59.000Z

396

Wormhole solutions supported by interacting dark matter and dark energy  

E-Print Network [OSTI]

We show that the presence of a nonminimal interaction between dark matter and dark energy may lead to a violation of the null energy condition and to the formation of a configuration with nontrivial topology (a wormhole). In this it is assumed that both dark matter and dark energy satisfy the null energy condition, a violation of which takes place only in the inner high-density regions of the configuration. This is achieved by assuming that, in a high-density environment, a nonminimal coupling function changes its sign in comparison with the case where dark matter and dark energy have relatively low densities which are typical for a cosmological background. For this case, we find regular static, spherically symmetric solutions describing wormholes supported by dark matter nonminimally coupled to dark energy in the form of a quintessence scalar field.

Vladimir Folomeev; Vladimir Dzhunushaliev

2014-03-10T23:59:59.000Z

397

axino dark matter: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5times104gev. At higher treh and lower mass, axinos could constitute warm dark matter. In the scenario with axinos as relics, the gravitino problem finds a natural...

398

Thomson Scattering from Warm Dense Matter W. R. Johnson  

E-Print Network [OSTI]

Thomson Scattering from Warm Dense Matter W. R. Johnson University of Notre Dame, Notre Dame in cell method. Email addresses: johnson@nd.edu (W. R. Johnson), nilsen1@llnl.gov (J. Nilsen), ktcheng

Johnson, Walter R.

399

The effects of secondary air injection on particulate matter emissions  

E-Print Network [OSTI]

An experimental study was performed to investigate the effects of secondary air injection (SAI) on particulate matter (PM) emissions. SAI was developed to reduce hydrocarbon (HC) emissions and has been shown to be effective ...

Pritchard, Joseph James

2014-01-01T23:59:59.000Z

400

DMTPC: A dark matter detector with directional sensitivity  

E-Print Network [OSTI]

By correlating nuclear recoil directions with the Earth's direction of motion through the Galaxy, a directional dark matter detector can unambiguously detect Weakly Interacting Massive Particles (WIMPs), even in the presence ...

Battat, James

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Cosmic-ray electron signatures of dark matter  

SciTech Connect (OSTI)

There is evidence for an excess in cosmic-ray electrons at about 500 GeV energy, that may be related to dark-matter annihilation. I have calculated the expected electron contributions from a pulsar and from Kaluza-Klein dark matter, based on a realistic treatment of the electron propagation in the Galaxy. Pulsars younger than about 10{sup 5} years naturally cause a narrow peak at a few hundred GeV in the locally observed electron spectrum, similar to that observed. On the other hand, if electron production by dark matter is predominantly occurring in high-mass clumps (> or approx. 10{sup 3}M{sub {center_dot}}), the sharp cutoff in the contribution from Kaluza-Klein particles is sometimes more pronounced, but often smoothed out and indistinguishable from a pulsar source, and therefore the spectral shape of the electron excess is insufficient to discriminate a dark-matter origin from more conventional astrophysical explanations.

Pohl, Martin [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)

2009-02-15T23:59:59.000Z

402

Search for Dark Matter Satellites Using the FERMI-LAT  

SciTech Connect (OSTI)

Numerical simulations based on the {Lambda}CDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the {gamma}-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard {gamma}-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on {gamma}-ray spectra consistent with WIMP annihilation through the b{bar b} channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 GeV WIMP annihilating through the b{bar b} channel.

Ackermann, M.; /DESY; Albert, A.; /Ohio State U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bottacini, E.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Brandt, T.J.; /IRAP, Toulouse /Toulouse III U.; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Burnett, T.H.; /Washington U., Seattle; Caliandro, G.A.; /ICE, Bellaterra; Cameron, R.A.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /ASDC, Frascati /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stockholm U. /Stockholm U., OKC /ASDC, Frascati /Bari U. /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Bari U. /INFN, Bari /INFN, Bari /INFN, Perugia /Perugia U. /Bari U. /INFN, Bari /Bari U. /INFN, Bari /Bologna Observ. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

2012-08-16T23:59:59.000Z

403

Shape formation by self-disassembly in programmable matter systems  

E-Print Network [OSTI]

Programmable matter systems are composed of small, intelligent modules able to form a variety of macroscale objects with specific material properties in response to external commands or stimuli. While many programmable ...

Gilpin, Kyle W

2012-01-01T23:59:59.000Z

404

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1  

E-Print Network [OSTI]

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1 DIESEL EXHAUST.D. and Megan Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research....................................................................................... 3 Diesel aerosol size instrumentation............................................................ 4

Minnesota, University of

405

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2  

E-Print Network [OSTI]

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2 AEROSOL DYMAMICS Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research................................................................................................. 3 Diesel aerosol composition and structure................................................... 3

Minnesota, University of

406

Modeling of Particulate Matter Emissions from Agricultural Operations  

E-Print Network [OSTI]

State Air Pollution Regulation Agencies (SAPRAs) issue and enforce permits that limit particulate matter emissions from all sources including layer and broiler facilities, cattle feedyards, dairies, cotton gins, and grain elevators...

Bairy, Jnana 1988-

2013-01-02T23:59:59.000Z

407

Studying the Building Blocks of Matter: Public Talk Planned for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Studying the Building locks of Matter: Public Talk Planned for Oct. 7 at Jefferson Lab CEBAF Race Track This aerial photo shows the outline of the racetrack-shaped CEBAF...

408

Design and Construction of Prototype Dark Matter Detectors  

SciTech Connect (OSTI)

The Lepton Quark Studies (LQS) group is engaged in searching for dark matter using the Dark Matter Time Projection Chamber (DMTPC) at the Waste Isolation Pilot Plant (WIPP) (Carlsbad, NM). DMTPC is a direction-sensitive dark matter detector designed to measure the recoil direction and energy deposited by fluorine nuclei recoiling from the interaction with incident WIMPs. In the past year, the major areas of progress have been: #15; to publish the #12;first dark matter search results from a surface run of the DMTPC prototype detector, #15; to build and install the 10L prototype in the underground laboratory at WIPP which will house the 1 m{sup 3} detector, and #15; to demonstrate charge and PMT readout of the TPC using prototype detectors, which allow triggering and #1;{Delta}z measurement to be used in the 1 m{sup 3} detector under development.

Peter Fisher

2012-03-23T23:59:59.000Z

409

Making the Dark Matter Connection Between Particle Physics and Cosmology  

E-Print Network [OSTI]

be explained within the Standard Model of particle physics. However, models which extend the Standard Model, such as supersymmetry, can explain dark matter. This dissertation investigates the signals of some supersymmetry models in the context of collider...

Krislock, Abram Michael

2012-10-19T23:59:59.000Z

410

Quantitative analysis of cerebral white matter anatomy from diffusion MRI  

E-Print Network [OSTI]

In this thesis we develop algorithms for quantitative analysis of white matter fiber tracts from diffusion MRI. The presented methods enable us to look at the variation of a diffusion measure along a fiber tract in a single ...

Maddah, Mahnaz

2008-01-01T23:59:59.000Z

411

Linear response of homogeneous nuclear matter with energy density functionals  

E-Print Network [OSTI]

Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin-orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe-Salpeter equation for the particle-hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin-isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.

A. Pastore; D. Davesne; J. Navarro

2014-12-07T23:59:59.000Z

412

Tuned, driven, and active soft matter  

E-Print Network [OSTI]

One characteristic feature of soft matter systems is their strong response to external stimuli. As a consequence they are comparatively easily driven out of their ground state and out of equilibrium, which leads to many of their fascinating properties. Here, we review illustrative examples. This review is structured by an increasing distance from the equilibrium ground state. On each level, examples of increasing degree of complexity are considered. In detail, we first consider systems that are quasi-statically tuned or switched to a new state by applying external fields. These are common liquid crystals, liquid crystalline elastomers, or ferrogels and magnetic elastomers. Next, we concentrate on systems steadily driven from outside e.g. by an imposed flow field. In our case, we review the reaction of nematic liquid crystals, of bulk-filling periodically modulated structures such as block copolymers, and of localized vesicular objects to an imposed shear flow. Finally, we focus on systems that are "active" and "self-driven". Here our range spans from idealized self-propelled point particles, via sterically interacting particles like granular hoppers, via microswimmers such as self-phoretically driven artificial Janus particles or biological microorganisms, via deformable self-propelled particles like droplets, up to the collective behavior of insects, fish, and birds. As we emphasize, similarities emerge in the features and behavior of systems that at first glance may not necessarily appear related. We thus hope that our overview will further stimulate the search for basic unifying principles underlying the physics of these soft materials out of their equilibrium ground state.

Andreas M. Menzel

2015-01-28T23:59:59.000Z

413

Merger Rates of Dark-Matter Haloes  

E-Print Network [OSTI]

We derive analytic merger rates for dark-matter haloes within the framework of the Extended Press-Schechter (EPS) formalism. These rates become self-consistent within EPS once we realize that the typical merger in the limit of a small time-step involves more than two progenitors, contrary to the assumption of binary mergers adopted in earlier studies. We present a general method for computing merger rates that span the range of solutions permitted by the EPS conditional mass function, and focus on a specific solution that attempts to match the merger rates in N-body simulations. The corrected EPS merger rates are more accurate than the earlier estimates of Lacey & Cole, by ~20% for major mergers and by up to a factor of ~3 for minor mergers of mass ratio 1:10^4. Based on the revised merger rates, we provide a new algorithm for constructing Monte-Carlo EPS merger trees, that could be useful in Semi-Analytic Modeling. We provide analytic expressions and plot numerical results for several quantities that are very useful in studies of galaxy formation. This includes (a) the rate of mergers of a given mass ratio per given final halo, (b) the fraction of mass added by mergers to a halo, and (c) the rate of mergers per given main progenitor. The creation and destruction rates of haloes serve for a self-consistency check. Our method for computing merger rates can be applied to conditional mass functions beyond EPS, such as those obtained by the ellipsoidal collapse model or extracted from $N$-body simulations.

Eyal Neistein; Avishai Dekel

2008-05-22T23:59:59.000Z

414

Nuclear matter equation of state and three-body forces  

SciTech Connect (OSTI)

The energy per particle, symmetry energy, pressure, and free energy are calculated for symmetric nuclear matter using BHF approach with modern nucleon-nucleon CD-Bonn, Nijm1, Argonne v{sub 18}, and Reid 93 potentials. To obtain saturation in nuclear matter we add three-body interaction terms which are equivalent to a density-dependent two-nucleon interaction a la Skyrme force. Good agreement is obtained in comparison with previous theoretical estimates and experimental data.

Mansour, H. M. M.; Algamoudi, A. M. A. [Cairo University, Physics Department, Faculty of Science (Egypt)

2012-04-15T23:59:59.000Z

415

Direct Search for Low Mass Dark Matter Particles with CCDs  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

A direct dark matter search is performed using fully-depleted high-resistivity CCD detectors. Due to their low electronic readout noise (RMS ~7 eV) these devices operate with a very low detection threshold of 40 eV, making the search for dark matter particles with low masses (~5 GeV) possible. The results of an engineering run performed in a shallow underground site are presented, demonstrating the potential of this technology in the low mass region.

Barreto, J [Rio de Janeiro Federal U.; Cease, H.; Diehl, H.T.; Estrada, J.; Flaugher, B.; Harrison, N.; Jones, J.; Kilminster, B [Fermilab; Molina, J [Asuncion Natl. U.; Smith, J.; Sonnenschein, A [Fermilab

2012-05-15T23:59:59.000Z

416

Monte Carlo approach to nuclei and nuclear matter  

SciTech Connect (OSTI)

We report on the most recent applications of the Auxiliary Field Diffusion Monte Carlo (AFDMC) method. The equation of state (EOS) for pure neutron matter in both normal and BCS phase and the superfluid gap in the low-density regime are computed, using a realistic Hamiltonian containing the Argonne AV8' plus Urbana IX three-nucleon interaction. Preliminary results for the EOS of isospin-asymmetric nuclear matter are also presented.

Fantoni, Stefano [S.I.S.S.A., International School of Advanced Studies, INFN, Sezione di Trieste and INFM, CNR-DEMOCRITOS National Supercomputing Center (Italy); Gandolfi, Stefano; Illarionov, Alexey Yu. [S.I.S.S.A., International School of Advanced Studies, INFN, Sezione di Trieste (Italy); Schmidt, Kevin E. [Department of Physics, Arizona State University (United States); Pederiva, Francesco [Dipartimento di Fisica, University of Trento (Italy); INFM, CNR-DEMOCRITOS National Supercomputing Center (Greece)

2008-10-13T23:59:59.000Z

417

Monte Carlo approach to nuclei and nuclear matter  

E-Print Network [OSTI]

We report on the most recent applications of the Auxiliary Field Diffusion Monte Carlo (AFDMC) method. The equation of state (EOS) for pure neutron matter in both normal and BCS phase and the superfluid gap in the low--density regime are computed, using a realistic Hamiltonian containing the Argonne AV8' plus Urbana IX three--nucleon interaction. Preliminary results for the EOS of isospin--asymmetric nuclear matter are also presented.

Stefano Fantoni; Stefano Gandolfi; Alexey Yu. Illarionov; Kevin E. Schmidt; Francesco Pederiva

2008-07-31T23:59:59.000Z

418

Dark Energy and Dark Matter as Inertial Effects  

E-Print Network [OSTI]

A globally rotating model of the universe is postulated. It is shown that dark energy and dark matter are cosmic inertial effects resulting from such a cosmic rotation, corresponding to centrifugal and a combination of centrifugal and the Coriolis forces, respectively. The physics and the cosmological and galactic parameters obtained from the model closely match those attributed to dark energy and dark matter in the standard {\\Lambda}-CDM model.

Serkan Zorba

2012-10-20T23:59:59.000Z

419

Gif Lectures on direct detection of Dark Matter  

E-Print Network [OSTI]

These notes cover some of the topics associated with direct detection of dark matter at an introductory level. The general principles of dark matter search are summarized. The current status of some experiments is described, with an emphasis on bolometric and noble liquid techniques. Plots and illustrations associated to these notes may be found on transparencies presented during the lecture, on the web site of Gif school 2009.

Eric Armengaud

2010-03-11T23:59:59.000Z

420

At the heart of the matter: the origin of bulgeless dwarf galaxies and Dark Matter cores  

E-Print Network [OSTI]

For almost two decades the properties of "dwarf" galaxies have challenged the Cold Dark Matter (CDM) paradigm of galaxy formation. Most observed dwarf galaxies consists of a rotating stellar disc embedded in a massive DM halo with a near constant-density core. Yet, models based on the CDM scenario invariably form galaxies with dense spheroidal stellar "bulges" and steep central DM profiles, as low angular momentum baryons and DM sink to the center of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different DM particle candidate. This Letter presents new hydrodynamical simulations in a Lambda$CDM framework where analogues of dwarf galaxies, bulgeless and with a shallow central DM profile, are formed. This is achieved by resolving the inhomogeneous interstellar medium, resulting in strong outflows from supernovae explosions which remove low angular momentum gas. This inhibits the formation of bulges and decreases the dark-matter density to less than half within the central kiloparsec. Realistic dwarf galaxies are thus shown to be a natural outcome of galaxy formation in the CDM scenario.

Fabio Governato; Chris Brook; Lucio Mayer; Alyson Brooks; George Rhee; James Wadsley; Patrik Jonsson; Beth Willman; Greg Stinson; Thomas Quinn; Piero Madau

2009-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Decomposition of the total momentum in a linear dielectric into field and matter components  

SciTech Connect (OSTI)

The long-standing resolution of the Abraham朚inkowski electromagnetic momentum controversy is predicated on a decomposition of the total momentum of a closed continuum electrodynamic system into separate field and matter components. Using a microscopic model of a simple linear dielectric, we derive Lagrangian equations of motion for the electric dipoles and show that the dielectric can be treated as a collection of stationary simple harmonic oscillators that are driven by the electric field and produce a polarization field in response. The macroscopic energy and momentum are defined in terms of the electric, magnetic, and polarization fields that travel through the dielectric together as a pulse of electromagnetic radiation. We conclude that both the macroscopic total energy and the macroscopic total momentum are entirely electromagnetic in nature for a simple linear dielectric in the absence of significant reflections. -- Highlights: 昑he total momentum in a dielectric is identified by conservation principles. 昑he total momentum in a dielectric cannot be decomposed into field and matter parts. 旳 component of momentum in a dielectric is due to motion of the polarization field.

Crenshaw, Michael E., E-mail: michael.crenshaw@us.army.mil

2013-11-15T23:59:59.000Z

422

ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 194  

E-Print Network [OSTI]

of radioactive waste. If the Administrator of EPA determines that the WIPP will comply with the standards radioactive waste in the Waste Isolation Pilot Plant (WIPP). The EPA previously promulgated 40 CFR Part 191-Level and Transuranic Radioactive Wastes," to provide standards that will apply to all sites (except Yucca Mountain

423

Examen de Algebra Segunda Parte: Metodos numericos  

E-Print Network [OSTI]

Examen de Algebra Segunda Parte: M麓etodos num麓ericos 14 de junio de 2012 Resuelve los siguientes que tiene. b) Hallar la menor de las soluciones con el m麓etodo de Newton, con tres decimales exactos

Rocha, Jairo

424

PART I THE POLICY CHALLENGES CLIMATE CHANGE  

E-Print Network [OSTI]

parts of the West Antarctic and Greenland ice sheets could catastrophically raise sea levels by over 1 already been released, and because the green- house gases (GHG) that cause climate change stay unless techno- logical advances enable us to extract GHGs from the atmosphere.The Intergovernmental Panel

425

Afternoon Session-Part 1 Energy Harvesting  

E-Print Network [OSTI]

Afternoon Session- Part 1 Energy Harvesting Wireless Networks Aylin Yener yener@ee.psu.edu Wireless Wireless networking with rechargeable (energy harvesting) nodes: Green, self-sufficient nodes, Extended. 7/27/2011Wireless Information Theory Summer School in Oulu, Finland #12;Energy Harvesting

Ulukus, Sennur

426

Heart Physiology Lab Part 1: Pulse Rate  

E-Print Network [OSTI]

Heart Physiology Lab Part 1: Pulse Rate Measure your pulse in each of the following conditions (in in the class. You may use Table 1 in the Heart Physiology Worksheet for this, if you wish. Once you have all of the class averages for each measurement. You may use Graph 1 in the Heart Physiology Worksheet for this

Loughry, Jim

427

Engineering Economy Outline IE 305-Part 2  

E-Print Network [OSTI]

Engineering Economy Outline IE 305-Part 2 Stephen B. Vardeman ISU Fall 2013 Stephen B. Vardeman (ISU) Engineering Economy Outline Fall 2013 1 / 52 #12;Kinds of Production Costs Costs incurred). Stephen B. Vardeman (ISU) Engineering Economy Outline Fall 2013 2 / 52 #12;Costs and Production Volume

Vardeman, Stephen B.

428

Engineering Economy Outline IE 305-Part 1  

E-Print Network [OSTI]

Engineering Economy Outline IE 305-Part 1 Stephen B. Vardeman ISU Fall 2013 Stephen B. Vardeman (ISU) Engineering Economy Outline Fall 2013 1 / 53 #12;THE Basics The very basic notion that governs) Engineering Economy Outline Fall 2013 2 / 53 #12;Solving for P The (N

Vardeman, Stephen B.

429

Northern Kentucky University PART-TIME FACULTY  

E-Print Network [OSTI]

Northern Kentucky University HANDBOOK FOR PART-TIME FACULTY #12;THE UNIVERSITY History Northern Kentucky University, the newest of Kentucky's eight state universities, was founded in 1968. However of the University of Kentucky was located in the First District Elementary School in Covington. Then, as Northern

Boyce, Richard L.

430

Can dark matter be a Bose-Einstein condensate?  

E-Print Network [OSTI]

We consider the possibility that the dark matter, which is required to explain the dynamics of the neutral hydrogen clouds at large distances from the galactic center, could be in the form of a Bose-Einstein condensate. To study the condensate we use the non-relativistic Gross-Pitaevskii equation. By introducing the Madelung representation of the wave function, we formulate the dynamics of the system in terms of the continuity equation and of the hydrodynamic Euler equations. Hence dark matter can be described as a non-relativistic, Newtonian Bose-Einstein gravitational condensate gas, whose density and pressure are related by a barotropic equation of state. In the case of a condensate with quartic non-linearity, the equation of state is polytropic with index $n=1$. To test the validity of the model we fit the Newtonian tangential velocity equation of the model with a sample of rotation curves of low surface brightness and dwarf galaxies, respectively. We find a very good agreement between the theoretical rotation curves and the observational data for the low surface brightness galaxies. The deflection of photons passing through the dark matter halos is also analyzed, and the bending angle of light is computed. The bending angle obtained for the Bose-Einstein condensate is larger than that predicted by standard general relativistic and dark matter models. Therefore the study of the light deflection by galaxies and the gravitational lensing could discriminate between the Bose-Einstein condensate dark matter model and other dark matter models.

C. G. Boehmer; T. Harko

2007-06-21T23:59:59.000Z

431

The galactic halo in mixed dark matter cosmologies  

SciTech Connect (OSTI)

A possible solution to the small scale problems of the cold dark matter (CDM) scenario is that the dark matter consists of two components, a cold and a warm one. We perform a set of high resolution simulations of the Milky Way halo varying the mass of the WDM particle (m{sub WDM}) and the cosmic dark matter mass fraction in the WDM component ( f-bar {sub W}). The scaling ansatz introduced in combined analysis of LHC and astroparticle searches postulates that the relative contribution of each dark matter component is the same locally as on average in the Universe (e.g. f{sub W,s}un = f-bar {sub W}). Here we find however, that the normalised local WDM fraction (f{sub W,s}un / f-bar {sub W}) depends strongly on m{sub WDM} for m{sub WDM} < 1 keV. Using the scaling ansatz can therefore introduce significant errors into the interpretation of dark matter searches. To correct this issue a simple formula that fits the local dark matter densities of each component is provided.

Anderhalden, D.; Diemand, J.; Schneider, A. [Institute for Theoretical Physics, University of Z黵ich, Winterthurerst. 190, 8057 Z黵ich (Switzerland); Bertone, G. [GRAPPA Institute, University of Amsterdam, Science Park 904, 1090 GL Amsterdam (Netherlands); Macci, A.V., E-mail: donninoa@physik.uzh.ch, E-mail: diemand@physik.uzh.ch, E-mail: gf.bertone@gmail.com, E-mail: maccio@mpia.de, E-mail: aurel@physik.uzh.ch [Max-Planck-Insitute for Astronomy, K鰊igstuhl 17, 69117 Heidelberg (Germany)

2012-10-01T23:59:59.000Z

432

Phenomenology of "dark matter"- from the Everett's quantum cosmology  

E-Print Network [OSTI]

It is widely accepted that the Everett's (or "many-worlds") interpretation of quantum mechanics is the only one which is appropriate for quantum cosmology because no environment may exist for Universe as a whole. We discuss, in the framework of the Everett's interpretation, the (quasi-) classical stage of evolution of the Universe when there coexist "classically incompatible" configurations of matter, or classical alternative realities ("alternatives" for short). In the framework of the Everett's interpretation the semiclassical gravity (where the gravitational field is classical and the non-gravitational fields are quantum) is more natural than theories including quantizing gravitational field. It is shown that the semiclassical (at least on the astrophysical and cosmological scales) Everett-type gravity leads to the observational effect known as the effect of dark matter. Instead of assuming special forms of matter (weakly interacting with the known matter), the role of the dark matter is played in this case by the matter of the usual kind which however belongs to those alternative realities (Everett's worlds) which remain {\\guillemotleft}invisible{\\guillemotright}, i.e. not perceived with the help of non-gravitational fields.

M. B. Mensky

2011-05-21T23:59:59.000Z

433

Stealth Dark Matter: Dark scalar baryons through the Higgs portal  

E-Print Network [OSTI]

We present a new model of "Stealth Dark Matter": a composite baryonic scalar of an $SU(N_D)$ strongly-coupled theory with even $N_D \\geq 4$. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vector-like representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to $SU(4)$, and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass $m_B \\gtrsim 300$ GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. We briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including: collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.

Thomas Appelquist; Richard C. Brower; Michael I. Buchoff; George T. Fleming; Xiao-Yong Jin; Joe Kiskis; Graham D. Kribs; Ethan T. Neil; James C. Osborn; Claudio Rebbi; Enrico Rinaldi; David Schaich; Chris Schroeder; Sergey Syritsyn; Pavlos Vranas; Evan Weinberg; Oliver Witzel

2015-03-13T23:59:59.000Z

434

Fast six-channel pyrometer for warm-dense-matter experiments with intense heavy-ion beams  

SciTech Connect (OSTI)

This paper describes a fast multi-channel radiation pyrometer that was developed for warmdense-matter experiments with intense heavy ion beams at Gesellschaft fur Schwerionenforschung mbH (GSI). The pyrometer is capable of measuring of brightness temperatures from 2000 K to 50000 K, at 6 wavelengths in visible and near-infrared parts of spectrum, with 5 nanosecond temporal resolution and several micrometers spatial resolution. The pyrometer's spectral discrimination technique is based on interference filters, which act as filters and mirrors to allow for simultaneous spectral discrimination of the same ray at multiple wavelengths.

Ni, P.A.; Kulish, M.I.; Mintsev, V.; Nikolaev, D.N.; Ternovoi, V.Ya.; Hoffmann, D.H.H.; Udrea, S.; Tahir, N.A.; Varentsov, D.; Hug, A.

2008-12-01T23:59:59.000Z

435

Emerging Properties of Quantum Matter - Case Studies of Topological and Superconducting Phases  

SciTech Connect (OSTI)

Emerging properties in quantum matter is a major theme of modern physics, with the promise that insights gained would have implications far beyond these materials. This talk will address two interesting examples - topological insulators and high-temperature superconductors. The second part of the talk will report recent advances in the study of cuprate superconductors. It is now exactly 100 years since superconductivity was discovered and it took 45 years before a complete theory was formulated. High T_c superconductivity was discovered 25 years ago and it remains a major unsolved physics problem today. Recent ARPES results that suggest phase competition is a central piece of the cuprate physics will also be discussed.

Shen, Zhi-Xun (Stanford University) [Stanford University

2011-07-06T23:59:59.000Z

436

Final technical report; Mercury Release from Organic matter (OM) and OM-Coated Mineral Surfaces  

SciTech Connect (OSTI)

This document is the final technical report for a project designed to address fundamental processes controlling the release of mercury from flood plain soils associated with East Fork Poplar Creek, Tennessee near the U.S. Department of Energy Oak Ridge facility. The report summarizes the activities, findings, presentations, and publications resulting from an award to the U.S. Geological that were part of a larger overall effort including Kathy Nagy (University of Illinois, Chicago, Ill) and Joseph Ryan (University of Colorado, Boulder, CO). The specific charge for the U.S.G.S. portion of the study was to provide analytical support for the larger group effort (Nagy and Ryan), especially with regard to analyses of Hg and dissolved organic matter, and to provide information about the release of mercury from the floodplain soils.

Aiken, George

2014-10-02T23:59:59.000Z

437

Matter power spectrum for the generalized Chaplygin gas model: The relativistic case  

E-Print Network [OSTI]

The generalized Chaplygin gas (GCG) model is the prototype of a unified model of dark energy (DE) and dark matter (DM). It is characterized by equation-of-state (EoS) parameters $A$ and $\\alpha$. We use a statistical analysis of the 2dFGRS data to constrain these parameters. In particular, we find that very small (close to zero) and very large values ($\\alpha\\gg 1$) of the equation-of-state parameter $\\alpha$ are preferred. To test the validity of this type of unification of the dark sector we admit the existence of a separate DM component in addition to the Chaplygin gas and calculate the probability distribution for the fractional contributions of both components to the total energy density. This analysis favors a model for which the Universe is nearly entirely made up of the separate DM component with an almost negligible Chaplygin gas part. This confirms the results of a previous Newtonian analysis.

J. C. Fabris; H. E. S. Velten; W. Zimdahl

2010-01-22T23:59:59.000Z

438

Determination of the Dark Matter profile from the EGRET excess of diffuse Galactic gamma radiation  

E-Print Network [OSTI]

The excess above 1 GeV in the energy spectrum of the diffuse Galactic gamma radiation, measured with the EGRET experiment, can be interpreted as the annihilation of Dark Matter (DM) particles. The DM is distributed in a halo around the Milky Way. Considering the directionality of the gamma ray flux it is possible to determine the halo profile. The DM within the halo has a smooth and a clumpy component.These components can have different profiles as suggested by N-body simulations and the data is indeed compatible with a NFW profile for the diffuse component and a cored profile for the clumpy component.These DM clumps can be partly destroyed by tidal forces from interactions with stars and the gravitational potential of the Galactic disc.This effect mainly decreases the annihilation signal from the Galactic centre (GC). In this paper constraints on the different profiles and the survival probability of the clumps are discussed.

Markus Weber

2007-10-26T23:59:59.000Z

439

Effect of three-body forces on response functions in infinite neutron matter  

E-Print Network [OSTI]

We study the impact of three-body forces on the response functions of cold neutron matter. These response functions are determined in the random phase approximation (RPA) from a residual interaction expressed in terms of Landau parameters. Special attention is paid to the non-central part, including all terms allowed by the relevant symmetries. Using Landau parameters derived from realistic nuclear two- and three-body forces grounded in chiral effective field theory, we find that the three-body term has a strong impact on the excited states of the system and in the static and long-wavelength limit of the response functions for which a new exact formula is established.

D. Davesne; J. W. Holt; A. Pastore; J. Navarro

2014-11-12T23:59:59.000Z

440

Part I. Ecological Sites and Soil Part II. A Framework for Soil and  

E-Print Network [OSTI]

Part I. Ecological Sites and Soil Survey Part II. A Framework for Soil and Vegetation Dynamics Arlene Tugel, Soil Scientist Liaison to ARS, USDA-NRCS Las Cruces, NM and the Soils-ESD Advisory Group #12;What makes a site a site? Soil forming factors: climate, parent, material, biotic factors

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A General Effective Action for Quark Matter and its Application to Color Superconductivity  

E-Print Network [OSTI]

I derive a general effective theory for hot and/or dense quark matter. After introducing general projection operators for hard and soft quark and gluon degrees of freedom, I explicitly compute the functional integral for the hard quark and gluon modes in the QCD partition function. Upon appropriate choices for the projection operators one recovers various well-known effective theories such as the Hard Thermal Loop/ Hard Dense Loop Effective Theories as well as the High Density Effective Theory by Hong and Schaefer. I then apply the effective theory to cold and dense quark matter and show how it can be utilized to simplify the weak-coupling solution of the color-superconducting gap equation. In general, one considers as relevant quark degrees of freedom those within a thin layer of width 2 Lambda_q around the Fermi surface and as relevant gluon degrees of freedom those with 3-momenta less than Lambda_gl. It turns out that it is necessary to choose Lambda_q << Lambda_gl, i.e., scattering of quarks along the Fermi surface is the dominant process. Moreover, this special choice of the two cutoff parameters Lambda_q and Lambda_gl facilitates the power-counting of the numerous contributions in the gap-equation. In addition, it is demonstrated that both the energy and the momentum dependence of the gap function has to be treated self-consistently in order to determine the imaginary part of the gap function. For quarks close to the Fermi surface the imaginary part is calculated explicitly and shown to be of sub-subleading order in the gap equation.

Philipp T. Reuter

2006-02-13T23:59:59.000Z

442

Looking for Dark Matter through the Bottom of a Wine Glass!  

E-Print Network [OSTI]

Looking for Dark Matter through the Bottom of a Wine Glass! (IYA Strange Telescope Series://cfcpwork.uchicago.edu/mailman/listinfo/cafe! #12;Looking for Dark Matter through the Bottom of a Wine Glass! (IYA Strange Telescope Series and energy in the Universe. Dark Matter, an exotic new form of matter that has never been directly detected

Collar, Juan I.

443

White matter microstructure on diffusion tensor imaging is associated with conventional magnetic resonance imaging findings and  

E-Print Network [OSTI]

White matter microstructure on diffusion tensor imaging is associated with conventional magnetic to evaluate white matter architecture after preterm birth. The goals were (1) to compare white matter if sex, gestational age, birth- weight, white matter injury score from conventional magnetic resonance

Grill-Spector, Kalanit

444

Time-scale for accretion of matter  

E-Print Network [OSTI]

Mass accretion is the key factor for evolution of galaxies. It can occur through secular evolution, when gas in the outer parts is driven inwards by dynamical instabilities, such as spirals or bars. This secular evolution proceeds very slowly when spontaneous, and can be accelerated when triggered by companions. Accretion can also occur directly through merging of small companions, or more violent interaction and coalescence. We discuss the relative importance of both processes, their time-scale and frequency along a Hubble time. Signatures of both processes can be found in the Milky Way. It is however likely that our Galaxy had already gathered the bulk of its mass about 8-10 Gyr ago, as is expected in hierarchical galaxy formation scenarios.

F. Combes

1998-11-09T23:59:59.000Z

445

Studies of the Ammonia-soluble Organic Matter of the Soil.  

E-Print Network [OSTI]

to represent the - decomposed organic matter of the soil, and, therefore, if the theory cited above is correct, the more valuable organic matter. The.relation between the hvo forms of organic matter is largely a matter of color; while the ammonia does nct... oxtract all the organic matter from the soil, it does extract prad,ically all the black organic matter, leaving the soil residue near]? white. The organic matter of the soil soluble in ammonia is termed humus in America. The fact that the ammonia...

Fraps, G. S. (George Stronach); Hamner, N.C.

1910-01-01T23:59:59.000Z

446

PCR - Ligation Assembly Standard for BioBrick Parts  

E-Print Network [OSTI]

This Request for Comments (RFC) describes a novel method for the assembly of standard BioBrick parts. This assembly method for BioBrick parts is an improvement upon the conventional methods of BioBrick part assembly. This ...

He, Tony PeiYuan

2011-12-15T23:59:59.000Z

447

Building America Webinar: HVAC Right-Sizing Part 1-Calculating...  

Energy Savers [EERE]

HVAC Right-Sizing Part 1-Calculating Loads Building America Webinar: HVAC Right-Sizing Part 1-Calculating Loads During this webinar, Building America Research Team IBACOS...

448

Differential Geometry Tools for Multidisciplinary Design Optimization, Part I: Theory  

E-Print Network [OSTI]

for understanding, evaluating, and developing MDO methods; in Part I, we discuss the use of these tools and in Part II, we provide a specific application....

Bakker, Craig; Parks, Geoffrey T.

2014-01-01T23:59:59.000Z

449

Examen de Algebra Segunda Parte: Metodos numericos  

E-Print Network [OSTI]

Examen de Algebra Segunda Parte: M麓etodos num麓ericos 15 de septiembre de 2011 Tiempo: 2h. 1. (a) Explica c麓omo se halla una soluci麓on aproximada de una ecuaci麓on con el m麓etodo de la secante. (b) Emplea este m麓etodo para calcular las dos soluciones de la ecuaci麓on ln x = x2 - 2x con tres cifras decimales

Rocha, Jairo

450

Examen de Algebra Primera Parte: Metodos numericos  

E-Print Network [OSTI]

Examen de Algebra Primera Parte: M麓etodos num麓ericos 9 de septiembre de 2010 Tiempo: 2h. 1. (a.5 puntos) (b) Para hallarla con el m麓etodo de iteraci麓on de punto fijo se pueden emplear, en principio, las麓erminos de yi y cuatro pendientes ponderadas, de una manera similar al m麓etodo de Runge- Kutta; las cuatro

Rocha, Jairo

451

Examen de Algebra Segunda Parte: Metodos numericos  

E-Print Network [OSTI]

Examen de Algebra Segunda Parte: M麓etodos num麓ericos 29 de junio de 2011 Resuelve tres de los麓on negativa. Ac麓otala entre dos enteros a y a+1 y h麓allala con el m麓etodo de la bisecci麓on, con dos decimales exactos, partiendo del intervalo (a, a + 1). b) 驴Cu麓antos pasos se tienen que dar con este m麓etodo para

Rocha, Jairo

452

Examen de Algebra Primera Parte: Metodos numericos  

E-Print Network [OSTI]

Examen de Algebra Primera Parte: M麓etodos num麓ericos 22 de junio de 2010 Tiempo: 2h. 1. (a) Acota麓on aproximada de una ecuaci麓on con el m麓etodo de Newton. (0.5 puntos) (b) 驴Cu麓antas soluciones tiene la ecuaci麓on x3 - 5x2 + 3 = 0? Comprueba que tiene una en el intervalo (4, 5). Emplea el m麓etodo de Newton para

Rocha, Jairo

453

Chromatographic separations of soil organic matter for purposes of investigating the physico-chemical role of organic matter in soil aggregation  

E-Print Network [OSTI]

CHROMATOGRAPHIC SEPARATIONS OP SOIL ORGANIC MATTER POR PURPOSES OP INVESTIGATING THE PHYSICOCHEMICAL ROLE OP ORGANIC MATTER IN SOIL AGGREGATION A Dissertation *>y Cleveland Joseph Gerard May 1955 L IB R AR Y A&M COLLEGE OF TEXAS... CHROMATOGRAPHIC SEPARATIONS OP SOIL ORGANIC MATTER POR PURPOSES OP INVESTIGATING THE PHYSICOCHEMICAL ROLE OP ORGANIC MATTER IN SOIL AGGREGATION A Dissertation Cleveland Joseph Gerard Submitted to the Graduate School of the Agricultural and Mechanical College...

Gerard, C. J.

1955-01-01T23:59:59.000Z

454

Distribution and Structure of Matter in and around Galaxies  

E-Print Network [OSTI]

Understanding the origins and distribution of matter in the Universe is one of the most important quests in physics and astronomy. Themes range from astro-particle physics to chemical evolution in the Galaxy to cosmic nucleosynthesis and chemistry in an anticipation of a full account of matter in the Universe. Studies of chemical evolution in the early Universe will answer questions about when and where the majority of metals were formed, how they spread and why they appar today as they are. The evolution of matter in our Universe cannot be characterized as a simple path of development. In fact the state of matter today tells us that mass and matter is under constant reformation through on-going star formation, nucleosynthesis and mass loss on stellar and galactic scales. X-ray absorption studies have evolved in recent years into powerful means to probe the various phases of interstellar and intergalactic media. Future observatories such as IXO and Gen-X will provide vast new opportunities to study structure ...

Schulz, Norbert S; Bautz, Mark W; Canizares, Claude C; Davis, John; Dewey, Dan; Huenemoerder, David P; Heilmann, Ralf; Houck, John; Marshall, Herman L; Nowak, Mike; Schattenburg, Mark; Bregman, Joel; Diaz-Trigo, Maria; Fang, Taotao; Gagne, Marc; Kallman, Tim; Lautenegger, Maurice; Lee, Julia; Miller, Jon; Mukai, Koji; Parerels, Frits; Pollock, Andy; Rasmussen, Andy; Raymond, John; Smith, Randall; Yao, Yangsen

2009-01-01T23:59:59.000Z

455

Non-relativistic effective theory of dark matter direct detection  

E-Print Network [OSTI]

Dark matter direct detection searches for signals coming from dark matter scattering against nuclei at a very low recoil energy scale ~ 10 keV. In this paper, a simple non-relativistic effective theory is constructed to describe interactions between dark matter and nuclei without referring to any underlying high energy models. It contains the minimal set of operators that will be tested by direct detection. The effective theory approach highlights the set of distinguishable recoil spectra that could arise from different theoretical models. If dark matter is discovered in the near future in direct detection experiments, a measurement of the shape of the recoil spectrum will provide valuable information on the underlying dynamics. We bound the coefficients of the operators in our non-relativistic effective theory by the null results of current dark matter direct detection experiments. We also discuss the mapping between the non-relativistic effective theory and field theory models or operators, including aspects of the matching of quark and gluon operators to nuclear form factors.

JiJi Fan; Matthew Reece; Lian-Tao Wang

2010-12-10T23:59:59.000Z

456

Non-relativistic effective theory of dark matter direct detection  

SciTech Connect (OSTI)

Dark matter direct detection searches for signals coming from dark matter scattering against nuclei at a very low recoil energy scale ? 10 keV. In this paper, a simple non-relativistic effective theory is constructed to describe interactions between dark matter and nuclei without referring to any underlying high energy models. It contains the minimal set of operators that will be tested by direct detection. The effective theory approach highlights the set of distinguishable recoil spectra that could arise from different theoretical models. If dark matter is discovered in the near future in direct detection experiments, a measurement of the shape of the recoil spectrum will provide valuable information on the underlying dynamics. We bound the coefficients of the operators in our non-relativistic effective theory by the null results of current dark matter direct detection experiments. We also discuss the mapping between the non-relativistic effective theory and field theory models or operators, including aspects of the matching of quark and gluon operators to nuclear form factors.

Fan, JiJi; Wang, Lian-Tao [Department of Physics, Princeton University, Princeton, NJ, 08540 (United States); Reece, Matthew, E-mail: jijifan@princeton.edu, E-mail: mreece@princeton.edu, E-mail: lianwang@princeton.edu [Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, 08540 (United States)

2010-11-01T23:59:59.000Z

457

Complementarity of Dark Matter Searches in the pMSSM  

E-Print Network [OSTI]

As is well known, the search for and eventual identification of dark matter in supersymmetry requires a simultaneous, multi-pronged approach with important roles played by the LHC as well as both direct and indirect dark matter detection experiments. We examine the capabilities of these approaches in the 19-parameter p(henomenological)MSSM which provides a general framework for complementarity studies of neutralino dark matter. We summarize the sensitivity of dark matter searches at the 7, 8 (and eventually 14) TeV LHC, combined with those by \\Fermi, CTA, IceCube/DeepCore, COUPP, LZ and XENON. The strengths and weaknesses of each of these techniques are examined and contrasted and their interdependent roles in covering the model parameter space are discussed in detail. We find that these approaches explore orthogonal territory and that advances in each are necessary to cover the Supersymmetric WIMP parameter space. We also find that different experiments have widely varying sensitivities to the various dark matter annihilation mechanisms, some of which would be completely excluded by null results from these experiments.

Matthew Cahill-Rowley; Randy Cotta; Alex Drlica-Wagner; Stefan Funk; JoAnne Hewett; Ahmed Ismail; Tom Rizzo; Matthew Wood

2014-05-26T23:59:59.000Z

458

Gamma-ray probes of dark matter substructure  

SciTech Connect (OSTI)

The substructure content of dark matter halos is interesting because it can be affected by complex galaxy physics and dark matter particle physics. However, observing the small scale structure of dark matter is a challenge. The subhalo abundance (mass function, minimum mass) and morphology (density profile, subhalo shape, subsubstructure) contain information about complex astrophysics (halo formation processes) and new exotic fundamental physics (dark matter interactions). Indirect detection of dark matter annihilation radiation (DMAR) in gamma rays may be the most direct method for observing small scale structure. I outline the ways in which gamma rays may probe halo substructure. If substructure is bountiful, it may be responsible for the eventual discovery of DMAR, for instance in galaxy clusters or the diffuse gamma-ray background. Otherwise, the observation of DMAR in places without much substructure, such as the Galactic center, would lead to strict limits on the properties of small scale structure. Properties of the gamma-ray angular power spectrum will also provide information or constraints on Milky Way halo substructure.

Campbell, Sheldon [Department of Physics and Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, 191 W. Woodruff Ave., Columbus, OH 43210 (United States)

2014-06-24T23:59:59.000Z

459

Influence of Dark Matter on Light Propagation in Solar System  

E-Print Network [OSTI]

We investigated the influence of dark matter on light propagation in the solar system. We assumed the spherical symmetry of spacetime and derived the approximate solution of the Einstein equation, which consists of the gravitational attractions caused by the central celestial body, i.e. the Sun, and the dark matter surrounding it. We expressed the dark matter density in the solar system in the following simple power-law form, $\\varrho(t, r) = \\rho(t)(\\ell/r)^k$, where $t$ is the coordinate time; $r$, the radius from the central body; $\\ell$, the normalizing factor; $k$, the exponent characterizing $r$-dependence of dark matter density; and $\\rho(t)$, the arbitrary function of time $t$. On the basis of the derived approximate solution, we focused on light propagation and obtained the additional corrections of the gravitational time delay and the relative frequency shift caused by the dark matter. As an application of our results, we considered the secular increase in the astronomical unit reported by Krasinsky and Brumberg (2004) and found that it was difficult to provide an explanation for the observed $d{\\rm AU}/dt = 15 \\pm 4 ~[{\\rm m/century}]$.

Hideyoshi Arakida

2009-11-17T23:59:59.000Z

460

DARK MATTER AS AN ACTIVE GRAVITATIONAL AGENT IN CLOUD COMPLEXES  

SciTech Connect (OSTI)

We study the effect that the dark matter background (DMB) has on the gravitational energy content and, in general, on the star formation efficiency (SFE) of a molecular cloud (MC). We first analyze the effect that a dark matter halo, described by the Navarro-Frenk-White density profile, has on the energy budget of a spherical, homogeneous cloud located at different distances from the halo center. We found that MCs located in the innermost regions of a massive galaxy can feel a contraction force greater than their self-gravity due to the incorporation of the potential of the galaxy's dark matter halo. We also calculated analytically the gravitational perturbation that an MC produces over a uniform DMB (uniform at the scales of an MC) and how this perturbation will affect the evolution of the MC itself. The study shows that the star formation in an MC will be considerably enhanced if the cloud is located in a dense and low velocity dark matter environment. We confirm our results by measuring the SFE in numerical simulations of the formation and evolution of MCs within different DMBs. Our study indicates that there are situations where the dark matter's gravitational contribution to the evolution of the MCs should not be neglected.

Suarez-Madrigal, Andres; Ballesteros-Paredes, Javier; Colin, Pedro; D'Alessio, Paola, E-mail: a.suarez@crya.unam.mx [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 72-3 (Xangari), Morelia, Michocan, Mexico C.P. 58089 (Mexico)

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Sensitivity of Climate to Diapycnal Diffusivity: Part I. Equilibrium State; Part II. Global Warming Scenario  

E-Print Network [OSTI]

Part I: The diapycnal diffusivity in the ocean is one of the least known parameters in current climate models. Measurements of this diffusivity are sparse and insufficient for compiling a global map. Inferences from inverse ...

Dalan, Fabio.

462

TBH-0046- In the Matter of David K. Isham  

Broader source: Energy.gov [DOE]

David Isham filed a retaliation complaint (the Part 708 Complaint or the Complaint) under the Department of Energy (DOE) Contractor Employee Protection Program. 10 C.F.R. Part 708 (2007). As...

463

FIA-14-0011- In the Matter of Donna Deedy  

Broader source: Energy.gov [DOE]

On February 24, 2014, the Office of Hearings and Appeals (OHA) issued a decision granting in part and denying in part denying an appeal (Appeal) from a Freedom of Information Act (FOIA)...

464

On the solution of the initial value constraints for general relativity coupled to matter in terms of Ashtekar's variables  

E-Print Network [OSTI]

The method of solution of the initial value constraints for pure canonical gravity in terms of Ashtekar's new canonical variables due to CDJ is further developed in the present paper. There are 2 new main results : 1) We extend the method of CDJ to arbitrary matter-coupling again for non-degenerate metrics : the new feature is that the 'CDJ-matrix' adopts a nontrivial antisymmetric part when solving the vector constraint and that the Klein-Gordon-field is used, instead of the symmetric part of the CDJ-matrix, in order to satisfy the scalar constraint. 2) The 2nd result is that one can solve the general initial value constraints for arbitrary matter coupling by a method which is completely independent of that of CDJ. It is shown how the Yang-Mills and gravitational Gauss constraints can be solved explicitely for the corresponding electric fields. The rest of the constraints can then be satisfied by using either scalar or spinor field momenta. This new trick might be of interest also for Yang-Mills theories on curved backgrounds.

T. Thiemann

1993-10-07T23:59:59.000Z

465

Evolving Lorentzian wormholes supported by phantom matter and cosmological constant  

SciTech Connect (OSTI)

In this paper we study the possibility of sustaining an evolving wormhole via exotic matter made of phantom energy in the presence of a cosmological constant. We derive analytical evolving wormhole geometries by supposing that the radial tension of the phantom matter, which is negative to the radial pressure, and the pressure measured in the tangential directions have barotropic equations of state with constant state parameters. In this case the presence of a cosmological constant ensures accelerated expansion of the wormhole configurations. More specifically, for positive cosmological constant we have wormholes which expand forever and, for negative cosmological constant we have wormholes which expand to a maximum value and then recollapse. At spatial infinity the energy density and the pressures of the anisotropic phantom matter threading the wormholes vanish; thus these evolving wormholes are asymptotically vacuum {lambda}-Friedmann models with either open or closed or flat topologies.

Cataldo, Mauricio; Campo, Sergio del; Minning, Paul; Salgado, Patricio [Departamento de Fisica, Facultad de Ciencias, Universidad del Bio-Bio, Avenida Collao 1202, Casilla 5-C, Concepcion (Chile); Instituto de Fisica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Valparaiso (Chile); Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)

2009-01-15T23:59:59.000Z

466

Analytical Theory of Neutrino Oscillations in Matter with CP violation  

E-Print Network [OSTI]

We develop an exact analytical formulation of neutrino oscillations in matter within the framework of the Standard Neutrino Model assuming 3 Dirac Neutrinos. Our Hamiltonian formulation, which includes CP violation, leads to expressions for the partial oscillation probabilities that are linear combinations of spherical Bessel functions in the eigenvalue differences. The coefficients of these Bessel functions are polynomials in the neutrino CKM matrix elements, the neutrino mass differences squared, the strength of the neutrino interaction with matter, and the neutrino mass eigenvalues in matter. We give exact closed-form expressions for all partial oscillation probabilities in terms of these basic quantities. Adopting the Standard Neutrino Model, we then examine how the exact expressions for the partial oscillation probabilities might simplify by expanding in one of the small parameters {\\alpha} and sin{\\theta}13 of this model. We show explicitly that for small {\\alpha} and sin{\\theta}13 there are branch poin...

Johnson, Mikkel B; Kisslinger, Leonard S

2015-01-01T23:59:59.000Z

467

Circumscribing late dark matter decays model-independently  

SciTech Connect (OSTI)

A number of theories, spanning a wide range of mass scales, predict dark matter candidates that have lifetimes much longer than the age of the Universe, yet may produce a significant flux of gamma rays in their decays today. We constrain such late-decaying dark matter scenarios model-independently by utilizing gamma-ray line emission limits from the Galactic Center region obtained with the SPI spectrometer on INTEGRAL, and the determination of the isotropic diffuse photon background by SPI, COMPTEL, and EGRET observations. We show that no more than {approx}5% of the unexplained MeV background can be produced by late dark matter decays either in the Galactic halo or cosmological sources.

Yueksel, Hasan; Kistler, Matthew D. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States) and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210 (United States)

2008-07-15T23:59:59.000Z

468

Environment Dependence of Dark Matter Halos in Symmetron Modified Gravity  

E-Print Network [OSTI]

We investigate the environment dependence of dark matter halos in the symmetron modified gravity scenario. The symmetron is one of three known mechanisms for screening a fifth-force and thereby recovering General Relativity in dense environments. The effectiveness of the screening depends on both the mass of the object and the environment it lies in. Using high-resolution N-body simulations we find a significant difference, which depends on the halos mass and environment, between the lensing and dynamical masses of dark matter halos similar to the f(R) modified gravity. The symmetron can however yield stronger signatures due to a freedom in the strength of the coupling to matter.

Hans A. Winther; David F. Mota; Baojiu Li

2011-10-28T23:59:59.000Z

469

Testing a non-minimal coupling between matter and curvature  

E-Print Network [OSTI]

One of the most interesting and current phenomenological extensions of General Relativity is the so-called $f (R)$ class of theories; a natural generalization of this includes an explicit non-minimal coupling between matter and curvature. The purpose of this work is to present a unified view of the applicability of the latter to various contexts, ranging from astrophysical matter distributions to a cosmological setting. Various results are discussed, including the impact of this non-minimal coupling in the choice of Lagrangian density, a mechanism to mimic galactic dark matter and a Cosmological Constant at a astrophysical scale, the possibility of accounting for the accelerated expansion of the Universe and modifications to post-inflationary reheating. The equivalence between a model exhibiting a non-minimal coupling and multi-scalar-theories is also discussed.

J. P醨amos

2011-11-14T23:59:59.000Z

470

A Model of Asymmetric Hadronic Dark Matter and Leptogenesis  

E-Print Network [OSTI]

The paper suggests a model to account for the common origins of the asymmetric dark matter (ADM) and matter-antimatter asymmetry. The ADM nature is a stable hadronic particle consisting of a heavy color scalar and a light $u$ quark, which is formed after the QCD phase transition. At the early stage the ADM are in thermal equilibrium through collisions with the nucleons, moreover, they can emit the $\\gamma$ photons with $0.32$ MeV energy. However they are decoupling and become the dark matter at the temperature about $130$ MeV. The mass upper limit of the ADM is predicted as $M_{D}<1207$ GeV. It is feasible and promising to test the model in future experiments.

Yang, Wei-Min

2015-01-01T23:59:59.000Z

471

Composite Goldstone Dark Matter: Experimental Predictions from the Lattice  

E-Print Network [OSTI]

We study, via first principles lattice simulations, the nonperturbative dynamics of $SU(2)$ gauge theory with two fundamental Dirac flavors. The model can be used simultaneously as a template for composite Goldstone boson dark matter and for breaking the electroweak symmetry dynamically. We compute the form factor, allowing us to estimate the associated electromagnetic charge radius. Interestingly we observe that the form factor obeys vector meson dominance even for the two color theory. We finally compare the model predictions with dark matter direct detection experiments. We find that the composite Goldstone boson dark matter cross sections is constrained by the most stringent direct-detection experiments. Our results are a foundation for quantitative new composite dynamics relevant for model building, and are of interest to current experiments.

Ari Hietanen; Randy Lewis; Claudio Pica; Francesco Sannino

2014-09-15T23:59:59.000Z

472

Dark Energy Coupled with Dark Matter in Viscous Fluid Cosmology  

E-Print Network [OSTI]

We investigate cosmological models with two interacting fluids: dark energy and dark matter in flat Friedmann-Robertson-Walker universe. The interaction between dark energy and dark matter is described in terms of the parameters present in the inhomogeneous equation of state when allowance is made for bulk viscosity, for the Little Rip, the Pseudo Rip, and the bounce universes. We obtain analytic representation for characteristic properties in these cosmological models, in particular the bulk viscosity $\\zeta=\\zeta(H,t)$ as function of Hubble parameter and time. We discuss the corrections of thermodynamical parameters in the equations of state due coupling between the viscous fluid and dark matter. Some common properties of these corrections are elucidated.

I. Brevik; V. V. Obukhov; A. V. Timoshkin

2014-10-10T23:59:59.000Z

473

An informationally-complete unification of quantum spacetime and matter  

E-Print Network [OSTI]

It was known long ago that quantum theory and general relativity, two pillars of modern physics, are in sharp conflict in their foundations. Their fundamental inconsistencies render a consistent theory of quantum gravity the most challenging problem in physics. Here we propose an informationally-complete quantum field theory (ICQFT), which describes elementary particles, their gauge fields and gravity as a trinity without the Hilbert-space inconsistency of Einstein's equation. We then argue that the ICQFT provides a coherent picture and conceptual framework of unifying matter and spacetime. The trinary field is characterized by dual entanglement and dual dynamics. Spacetime-matter entanglement allows us to give a natural explanation of the holographic principle, as well as two conjectures on black-hole states and on a possible candidate to dark matter/energy.

Zeng-Bing Chen

2015-04-06T23:59:59.000Z

474

Right-handed Neutrinos as Superheavy Dark Matter  

E-Print Network [OSTI]

We propose that right-handed neutrinos are very long-lived dark matter. The long lifetime is realized by the separation of the wavefunction of right-handed neutrinos and that of other fermions in an extra dimension. Such long-lived and superheavy dark matter can naturally explain observed ultra high energy cosmic rays above the GZK cutoff (5 * 10^{19} eV) and huge amounts of cold dark matter simultaneously. Furthermore, the exponentially suppressed Yukawa couplings of right-handed neutrinos leads to the high predictablilty on the mass parameter of the neutrinoless double beta decay, as all the models which predict very small neutrino mass of one generation.

Yosuke Uehara

2002-01-04T23:59:59.000Z

475

Experimental High Energy Physics Research: Direct Detection of Dark Matter  

SciTech Connect (OSTI)

The grant supported research on an experimental search for evidence of dark matter interactions with normal matter. The PI carried out the research as a member of the LUX and LZ collaborations. The LUX research team collected a first data set with the LUX experiment, a large liquid xenon detector installed in the Sanford Underground Research Facility (SURF). The first results were published in Physical Review Letters on March 4, 2014. The journal Nature named the LUX result a scientific highlight of the year for 2013. In addition, the LZ collaboration submitted the full proposal for the Lux Zeplin experiment, which has since been approved by DOE-HEP as a second-generation dark matter experiment. Witherell is the Level 2 manager for the Outer Detector System on the LUX-Zeplin experiment.

Witherell, Michael S.

2014-10-02T23:59:59.000Z

476

Isospin-Violating Dark Matter and Neutrinos From the Sun  

E-Print Network [OSTI]

We study the indirect detection of dark matter through neutrino flux from their annihilation in the center of the Sun, in a class of theories where the dark matter-nucleon spin-independent interactions break the isospin symmetry. We point out that, while the direct detection bounds with heavy targets like Xenon are weakened and reconciled with the positive signals in DAMA and CoGeNT experiments, the indirect detection using neutrino telescopes can impose a relatively stronger constraint and brings tension to such explanation, if the annihilation is dominated by heavy quark or $\\tau$-lepton final states. As a consequence, the qualified isospin violating dark matter candidate has to preferably annihilate into light flavors.

Shao-Long Chen; Yue Zhang

2011-06-20T23:59:59.000Z

477

EFFECT OF DARK MATTER HALO SUBSTRUCTURES ON GALAXY ROTATION CURVES  

SciTech Connect (OSTI)

In this paper, the effect of halo substructures on galaxy rotation curves is investigated using a simple model of dark matter clustering. A dark matter halo density profile is developed based only on the scale-free nature of clustering that leads to a statistically self-similar distribution of the substructures at the galactic scale. A semi-analytical method is used to derive rotation curves for such a clumpy dark matter density profile. It is found that the halo substructures significantly affect the galaxy velocity field. Based on the fractal geometry of the halo, this self-consistent model predicts a Navarro-Frenk-White-like rotation curve and a scale-free power spectrum of the rotation velocity fluctuations.

Roy, Nirupam, E-mail: nroy@aoc.nrao.ed [NRAO, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States)

2010-11-01T23:59:59.000Z

478

Part-Time Farming in Northeast Texas.  

E-Print Network [OSTI]

measured in terms of farm sales in relation to costs and labor expended. On all part-time farms, gross sales averaged $1,623, cash farm expenses averaged $1,420 and net sales averaged only $203. The median value of farm sales was only $680. Other farm... income items, including mineral and rent income, value of farm perquisites and "land appreciation" value, averaged $1,317 per farm and was of more importance to farm operators than income from farm sales. In an analysis of total farm returns...

Martin, James R.; Southern, John H.

1961-01-01T23:59:59.000Z

479

Rotating electric machine with fluid supported parts  

DOE Patents [OSTI]

A rotating electric machine in which the armature winding thereof and other parts are supported by a liquid to withstand the mechanical stresses applied during transient overloads and the like. In particular, a narrow gap is provided between the armature winding and the stator which supports it and this gap is filled with an externally pressurized viscous liquid. The liquid is externally pressurized sufficiently to balance the static loads on the armature winding. Transient mechanical loads which deform the armature winding alter the gap dimensions and thereby additionally pressurize the viscous liquid to oppose the armature winding deformation and more nearly uniformly to distribute the resulting mechanical stresses.

Smith, Jr., Joseph L. (Concord, MA); Kirtley, Jr., James L. (Brookline, MA)

1981-01-01T23:59:59.000Z

480

Part 6, Authors: G To Gyser  

E-Print Network [OSTI]

, Pennsylvania. Lib. Mcintosh.?Library of Allen Mcintosh, Zoological Division, Bureau of Ani- mal Industry, U. S. Department of Agriculture, Washington, D. C. KEY TO SERIAL ABBREVIATIONS [Continued from Part 5] ?. ?. ?.??. M. M. Organo de la Asociaci?n M..., Febrero 24-28 de 1911. Habana. Actes Cong. Internat. Botan. (Amsterdam. 1877)?Actes du Congr?s International de Botanistes, d'Horticulteurs, de N?gociants et de Fabricants de Produits du R?gne V?g?tal Tenu ? Amsterdam en 1877. Leide. 1879. Actes Soc...

Hassall, Albert; Doss, Mildred A.; Taylor, Ruth M.; Carson, Gertrude B.; Segal, Dorothy B.

1942-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter ppm parts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Ex parte memorandum | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of Energy memo memorializesdiscussionSummary of ex parte

482

Property:PartOf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY Description URLsEndDateC CentralPartOf Jump to:

483

Ex Parte Communication Memo | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalonJusticeEnergy Efficiency Program for Certain CommercialParte

484

Ex Parte Communication Memorandum | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalonJusticeEnergy Efficiency Program for CertainParte

485

Ex Parte Communication | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalonJusticeEnergy Efficiency Program forParte Communication Ex

486

Ex parte Communication Memo | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalonJusticeEnergy Efficiency| Department ofTuesday,parte

487

Part 10, Authors: M To Mysh  

E-Print Network [OSTI]

., E. 1 1942 a.?The beet eelworm PART 10 ? AUTHORS: M ?? MYSH 1 UNITED STATES DEPARTMENT OF AGRICULTURE INDEX-CATALOGUE OF MEDICAL AND VETERINARY...

Segal, Dorothy B.; Ray, Doris H.; Hewlett, Ruth V.; Hassall, Albert; Doss, Mildred A.

1948-01-01T23:59:59.000Z

488

A Comprehensive Search for Dark Matter Annihilation in Dwarf Galaxies  

E-Print Network [OSTI]

We present a new formalism designed to discover dark matter annihilation occurring in the Milky Way's dwarf galaxies. The statistical framework extracts all available information in the data by simultaneously combining observations of all the dwarf galaxies and incorporating the impact of particle physics properties, the distribution of dark matter in the dwarfs, and the detector response. The method performs maximally powerful frequentist searches and produces confidence limits on particle physics parameters. Probability distributions of test statistics under various hypotheses are constructed exactly, without relying on large sample approximations. The derived limits have proper coverage by construction and claims of detection are not biased by imperfect background modeling. We implement this formalism using data from the Fermi Gamma-ray Space Telescope to search for an annihilation signal in the complete sample of Milky Way dwarfs whose dark matter distributions can be reliably determined. We find that the observed data is consistent with background for each of the dwarf galaxies individually as well as in a joint analysis. The strongest constraints are at small dark matter particle masses. Taking the median of the systematic uncertainty in dwarf density profiles, the cross section upper limits are below the pure s-wave weak scale relic abundance value (2.2 x 10^-26 cm^3/s) for dark matter masses below 26 GeV (for annihilation into b quarks), 29 GeV (tau leptons), 35 GeV (up, down, strange, charm quarks and gluons), 6 GeV (electrons/positrons), and 114 GeV (two-photon final state). For dark matter particle masses less than 1 TeV, these represent the strongest limits obtained to date using dwarf galaxies.

Alex Geringer-Sameth; Savvas M. Koushiappas; Matthew G. Walker

2014-10-08T23:59:59.000Z

489

Method of forming and assembly of metal and ceramic parts  

DOE Patents [OSTI]

A method of forming and assembling at least two parts together that may be metal, ceramic, or a combination of metal and ceramic parts. Such parts may have different CTE. Individual parts that are formed and sintered from particles leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.

Ripley, Edward B

2014-04-22T23:59:59.000Z

490

Earth Matter Effects in Detection of Supernova Neutrinos  

E-Print Network [OSTI]

We calculated the matter effect, including both the Earth and supernova, on the detection of neutrinos from type II supernovae at the proposed Daya Bay reactor neutrino experiment. It is found that apart from the dependence on the flip probability P_H inside the supernova and the mass hierarchy of neutrinos, the amount of the Earth matter effect depends on the direction of the incoming supernova neutrinos, and reaches the biggest value when the incident angle of neutrinos is around 93^\\circ. In the reaction channel \\bar{\

X. -H. Guo; Bing-Lin Young

2006-05-11T23:59:59.000Z

491

Critical temperature of antikaon condensation in nuclear matter  

E-Print Network [OSTI]

We investigate the critical temperature of Bose-Einstein condensation of $K^-$ mesons in neutron star matter. This is studied within the framework of relativistic field theoretical models at finite temperature where nucleon-nucleon and (anti)kaon-nucleon interactions are mediated by the exchange of mesons. The melting of the antikaon condensate is studied for different values of antikaon optical potential depths. We find that the critical temperature of antikaon condensation increases with baryon number density. Further it is noted that the critical temperature is lowered as antikaon optical potential becomes less attractive. We also construct the phase diagram of neutron star matter with $K^-$ condensate.

Sarmistha Banik; Walter Greiner; Debades Bandyopadhyay

2008-12-30T23:59:59.000Z

492

Gluon condensation and deconfinement critical density in nuclear matter  

E-Print Network [OSTI]

An upper limit to the critical density for the transition to the deconfined phase, at zero temperature, has been evaluated by analyzing the behavior of the gluon condensate in nuclear matter. Due to the non linear baryon density effects, the upper limit to the critical density, \\rho_c turns out about nine times the saturation density, rho_0 for the value of the gluon condensate in vacuum =0.012 GeV^4. For neutron matter \\rho_c \\simeq 8.5 \\rho_0. The dependence of the critical density on the value of the gluon condensate in vacuum is studied.

M. Baldo; P. Castorina; D. Zappala'

2004-10-07T23:59:59.000Z

493

Dark matter annihilation and the PAMELA, FERMI, and ATIC anomalies  

SciTech Connect (OSTI)

If dark matter annihilation accounts for the tantalizing excess of cosmic ray electron/positrons, as reported by the PAMELA, ATIC, HESS, and FERMI observatories, then the implied annihilation cross section must be relatively large. This results, in the context of standard cosmological models, in very small relic dark matter abundances that are incompatible with astrophysical observations. We explore possible resolutions to this apparent conflict in terms of nonstandard cosmological scenarios; plausibly allowing for large cross sections, while maintaining relic abundances in accord with current observations.

El Zant, A. A.; Okada, H. [Centre for Theoretical Physics, British University in Egypt, El Sherouk City, Postal No, 11837, Post Office Box 43 (Egypt); Khalil, S. [Centre for Theoretical Physics, British University in Egypt, El Sherouk City, Postal No, 11837, Post Office Box 43 (Egypt); Department of Mathematics, Ain Shams University, Faculty of Science, Cairo, 11566 (Egypt)

2010-06-15T23:59:59.000Z

494

A new test of the light dark matter hypothesis  

E-Print Network [OSTI]

Detection of a surprisingly high flux of positron annihilation radiation from the inner galaxy has motivated the proposal that dark matter is made of weakly interacting light particles (possibly as light as the electron). This scenario is extremely hard to test in current high energy physics experiments. Here, however, we demonstrate that the current value of the electron anomalous magnetic moment already has the required precision to unambiguously test the light dark matter hypothesis. If confirmed, the implications for astrophysics are far-reaching.

Celine Boehm; Joseph Silk

2007-08-21T23:59:59.000Z

495

Physics Beyond the Standard Model and Dark Matter  

E-Print Network [OSTI]

In this lecture note, I discuss why many of us are expecting rich physics at the TeV scale, drawing analogies from the history of physics in the last century. Then I review some of the possible candidates of new physics at this energy scale. I also discuss why we believe much of the matter in the universe is not atoms (baryons) or compact astronomical objects, and hence requires physics beyond the standard model. Finally I discuss some of the candidates for the non-baryonic dark matter.

Hitoshi Murayama

2007-04-18T23:59:59.000Z

496

Carbon Nanotubes Potentialities in Directional Dark Matter Searches  

E-Print Network [OSTI]

We propose a new solution to the problem of dark matter directional detection based on large parallel arrays of carbon nanotubes. The phenomenon of ion channeling in single wall nanotubes is simulated to calculate the expected number of recoiling carbon ions, due to the hypothetical scattering with dark matter particles, subsequently being driven along their longitudinal extension. As shown by explicit calculation, the relative orientation of the carbon nanotube array with respect to the direction of motion of the Sun has an appreciable effect on the channeling probability of the struck ion and this provides the required detector anisotropic response.

L. M. Capparelli; G. Cavoto; D. Mazzilli; A. D. Polosa

2014-12-28T23:59:59.000Z

497

Single-Particle Spectrum of Pure Neutron Matter  

E-Print Network [OSTI]

We have calculated the self-consistent auxiliary potential effects on the binding energy of neutron matter using the Brueckner Hartree Fock approach by adopting the Argonne V18 and CD-Bonn potentials. The binding energy with the four different choices for the self-consistent auxiliary potential is discussed. Also, the binding energy of neutron matter has been computed within the framework of the self-consistent Green s function approach. We also compare the binding energies obtained in this study with those obtained by various microscopic approaches.

Khalaf Gad; Hesham Mansour

2015-02-06T23:59:59.000Z

498

Laser in ultrastrong light-matter coupling regime  

E-Print Network [OSTI]

In ultrastrong light-matter coupling regime, it is found theoretically that lasing accompanies odd-order harmonics of radiation field both inside and outside the cavity and even-order harmonics of atomic population. This qualitative difference from the normal laser is generally obtained independent of whether we choose the Coulomb gauge or the electric-dipole one, although quantitative behaviors strongly depend on the gauge choice due to the two-level and single-mode approximations used in our calculation. The lasing also shows a bistability for strong enough light-matter coupling and low enough cavity loss.

Motoaki Bamba; Tetsuo Ogawa

2014-10-15T23:59:59.000Z

499

Dark Energy and Dark Matter in Stars Physic  

E-Print Network [OSTI]

We present the basic equations and relations for the relativistic static spherically symmetric stars (SSSS) in the model of minimal dilatonic gravity (MDG) which is {\\em locally} equivalent to the f(R) theories of gravity and gives an alternative description of the effects of dark matter and dark energy. The results for the simplest form of the relativistic equation of state (EOS) of neutron matter are represented. Our approach overcomes the well-known difficulties of the physics of SSSS in the f(R) theories of gravity introducing two novel EOS for cosmological energy-pressure densities and dilaton energy-pressure densities, as well as proper boundary conditions.

Plamen Fiziev

2014-11-02T23:59:59.000Z

500

Dark energy and dark matter as curvature effects  

E-Print Network [OSTI]

Astrophysical observations are pointing out huge amounts of dark matter and dark energy needed to explain the observed large scale structures and cosmic accelerating expansion. Up to now, no experimental evidence has been found, at fundamental level, to explain such mysterious components. The problem could be completely reversed considering dark matter and dark energy as shortcomings of General Relativity and claiming for the correct theory of gravity as that derived by matching the largest number of observational data. As a result, accelerating behavior of cosmic fluid and rotation curves of spiral galaxies are reproduced by means of curvature effects.

S. Capozziello; V. F. Cardone; A. Troisi

2006-03-20T23:59:59.000Z