Powered by Deep Web Technologies
Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Small-Scale Power Spectrum of Cold Dark Matter  

E-Print Network (OSTI)

One of the best motivated hypotheses in cosmology states that most of the matter in the universe is in the form of weakly-interacting massive particles that decoupled early in the history of the universe and cooled adiabatically to an extremely low temperature. Nevertheless, the finite temperature and horizon scales at which these particles decoupled imprint generic signatures on their small scales density fluctuations. We show that the previously recognized cut-off in the fluctuation power-spectrum due to free-streaming of particles at the thermal speed of decoupling, is supplemented by acoustic oscillations owing to the initial coupling between the cold dark matter (CDM) and the radiation field. The power-spectrum oscillations appear on the scale of the horizon at thermal decoupling which corresponds to a mass scale of \\~10^{-4}*(T_d/10MeV)^{-3} solar masses for a CDM decoupling temperature T_d. The suppression of the power-spectrum on smaller scales by the acoustic oscillations is physically independent from the free-streaming effect, although the two cut-off scales are coincidentally comparable for T_d~10MeV and a particle mass of M~100GeV. The initial conditions for recent numerical simulations of the earliest and smallest objects to have formed in the universe, need to be modified accordingly. The smallest dark matter clumps may be detectable through gamma-ray production from particle annihilation, through fluctuations in the event rate of direct detection experiments, or through their tidal gravitational effect on wide orbits of objects near the outer edge of the solar system.

Abraham Loeb; Matias Zaldarriaga

2005-04-05T23:59:59.000Z

2

Information content of the non-linear matter power spectrum  

E-Print Network (OSTI)

We use an ensemble of N-body simulations of the currently favoured (concordance) cosmological model to measure the amount of information contained in the non-linear matter power spectrum about the amplitude of the initial power spectrum. Two surprising results emerge from this study: (i) that there is very little independent information in the power spectrum in the translinear regime (k ~ 0.2-0.8 Mpc/h at the present day) over and above the information at linear scales and (ii) that the cumulative information begins to rise sharply again with increasing wavenumber in the non-linear regime. In the fully non-linear regime, the simulations are consistent with no loss of information during translinear and non-linear evolution. If this is indeed the case then the results suggest a picture in which translinear collapse is very rapid, and is followed by a bounce prior to virialization, impelling a wholesale revision of the HKLM-PD formalism.

C. D. Rimes; A. J. S. Hamilton

2005-02-03T23:59:59.000Z

3

Information content in the halo-model dark-matter power spectrum II: Multiple cosmological parameters  

E-Print Network (OSTI)

We investigate the cosmological Fisher information in the non-linear dark-matter power spectrum in the context of the halo model. We find that there is a plateau in information content on translinear scales which is generic to all cosmological parameters we tried. There is a rise in information on smaller scales, but we find that it is quite degenerate among different cosmological parameters (except, perhaps, the tilt). This suggests that it could be difficult to constrain cosmological parameters using the non-linear regime of the dark-matter power spectrum. We suggest ways to get around this problem, such as removing the largest haloes from consideration in survey analysis.

Mark C. Neyrinck; István Szapudi

2006-10-06T23:59:59.000Z

4

Reproducing neutrino effects on the matter power spectrum through a degenerate Fermi gas approach  

E-Print Network (OSTI)

Modifications on the predictions about the matter power spectrum based on the hypothesis of a tiny contribution from a degenerate Fermi gas (DFG) test-fluid to some dominant cosmological scenario are investigated. Reporting about the systematic way of accounting for all the cosmological perturbations, through the Boltzmann equation we obtain the analytical results for density fluctuation, $\\delta$, and fluid velocity divergence, $\\theta$, of the DFG. Small contributions to the matter power spectrum are analytically obtained for the radiation-dominated background, through an ultra-relativistic approximation, and for the matter-dominated and $\\Lambda$-dominated eras, through a non-relativistic approximation. The results can be numerically reproduced and compared with those of considering non-relativistic and ultra-relativistic neutrinos into the computation of the matter power spectrum. Lessons concerning the formation of large scale structures of a DFG are depicted, and consequent deviations from standard $\\Lambda$CDM predictions for the matter power spectrum (with and without neutrinos) are quantified.

E. L. D. Perico; Alex E. Bernardini

2011-02-19T23:59:59.000Z

5

The Effect of Massive Neutrinos on Matter Power Spectrum  

E-Print Network (OSTI)

We investigate the impact of massive neutrinos on the distribution of matter in the semi-nonlinear regime (0.1eV-1.9 eV respectively. We also discuss the precision levels that future cosmological datasets would have to achieve in order to resolve between the normal and inverted neutrino mass hierarchies.

Agarwal, Shankar

2010-01-01T23:59:59.000Z

6

Nonlinearities in modified gravity cosmology: Signatures of modified gravity in the nonlinear matter power spectrum  

SciTech Connect

A large fraction of cosmological information on dark energy and gravity is encoded in the nonlinear regime. Precision cosmology thus requires precision modeling of nonlinearities in general dark energy and modified gravity models. We modify the Gadget-2 code and run a series of N-body simulations on modified gravity cosmology to study the nonlinearities. The modified gravity model that we investigate in the present paper is characterized by a single parameter {zeta}, which determines the enhancement of particle acceleration with respect to general relativity (GR), given the identical mass distribution ({zeta}=1 in GR). The first nonlinear statistics we investigate is the nonlinear matter power spectrum at k < or approx. 3h/Mpc, which is the relevant range for robust weak lensing power spectrum modeling at l < or approx. 2000. In this study, we focus on the relative difference in the nonlinear power spectra at corresponding redshifts where different gravity models have the same linear power spectra. This particular statistics highlights the imprint of modified gravity in the nonlinear regime and the importance of including the nonlinear regime in testing GR. By design, it is less susceptible to the sample variance and numerical artifacts. We adopt a mass assignment method based on wavelet to improve the power spectrum measurement. We run a series of tests to determine the suitable simulation specifications (particle number, box size, and initial redshift). We find that, the nonlinear power spectra can differ by {approx}30% for 10% deviation from GR (|{zeta}-1|=0.1) where the rms density fluctuations reach 10. This large difference, on one hand, shows the richness of information on gravity in the corresponding scales, and on the other hand, invalidates simple extrapolations of some existing fitting formulae to modified gravity cosmology.

Cui Weiguang; Zhang Pengjie; Yang Xiaohu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Partner Group of MPA, Nandan Road 80, Shanghai, 200030 (China)

2010-05-15T23:59:59.000Z

7

Information content in the halo-model dark-matter power spectrum  

E-Print Network (OSTI)

Using the halo model, we investigate the cosmological Fisher information in the non-linear dark-matter power spectrum about the initial amplitude of linear power. We find that there is little information on `translinear' scales (where the one- and two-halo terms are both significant) beyond what is on linear scales, but that additional information is present on small scales, where the one-halo term dominates. This behavior agrees with the surprising results that Rimes & Hamilton (2005, 2006) found using N-body simulations. We argue that the translinear plateau in cumulative information arises largely from fluctuations in the numbers of large haloes in a finite volume. This implies that more information could be extracted on non-linear scales if the masses of the largest haloes in a survey are known.

Mark C. Neyrinck; István Szapudi; Christopher D. Rimes

2006-04-13T23:59:59.000Z

8

Damping of the baryon acoustic oscillations in the matter power spectrum as a probe of the growth factor  

SciTech Connect

We investigate the damping of the baryon acoustic oscillation (BAO) signature in the matter power spectrum due to the quasi-non-linear clustering of density perturbations. On the basis of the third-order perturbation theory, we construct a fitting formula for the damping in an analytic way. This demonstrates that the damping is closely related to the growth factor and the amplitude of the matter power spectrum. Then, we investigate the feasibility of constraining the growth factor through a measurement of the damping of the BAO signature. An extension of our formula including higher order corrections of density perturbations is also discussed.

Nomura, Hidenori; Yamamoto, Kazuhiro [Graduate School of Sciences, Hiroshima University, Higashi-Hiroshima 735-8526 (Japan)] [Graduate School of Sciences, Hiroshima University, Higashi-Hiroshima 735-8526 (Japan); Nishimichi, Takahiro, E-mail: hide@theo.phys.sci.hiroshima-u.ac.jp, E-mail: kazuhiro@hiroshima-u.ac.jp, E-mail: nishimichi@utap.phys.s.u-tokyo.ac.jp [Department of Physics, School of Science, The University of Tokyo, Tokyo 113-0033 (Japan)] [Department of Physics, School of Science, The University of Tokyo, Tokyo 113-0033 (Japan)

2008-10-15T23:59:59.000Z

9

Inferring the dark matter power spectrum from the Lyman-alpha forest in high-resolution QSO absorption spectra  

E-Print Network (OSTI)

We use the LUQAS sample (Kim et al. 2004), a set of 27 high-resolution and high signal-to-noise QSO absorption spectra at a median redshift of z=2.25, and the data from Croft et al. (2002) at a median redshift of z=2.72, together with a large suite of high-resolution large box-size hydro-dynamical simulations, to estimate the linear dark matter power spectrum on scales 0.003 s/km power spectrum at z=2.72 also agrees with that inferred from LUQAS at lower redshift if we assume that the increase of the amplitude is due to gravitational growth between these redshifts. We further argue that the smaller mean optical depth measured from high-resolution spectra is more accurate than the larger value obtained from low-resolution spectra by Press et al. (1993) which Croft et al. used. For the smaller optical depth we obtain a ~ 20% higher value for the rms fluctuation amplitude of the matter density. By combining the amplitude of the matter power spectrum inferred from the Lyman-alpha forest with the amplitude on large scales inferred from measurements of the CMB we obtain constraints on the primordial spectral index n and the normalisation sigma_8. For values of the mean optical depth favoured by high-resolution spectra, the inferred linear power spectrum is consistent with a LambdaCDM model with a scale-free (n=1) primordial power spectrum.

Matteo Viel; Martin G. Haehnelt; Volker Springel

2004-04-30T23:59:59.000Z

10

Inferring the dark matter power spectrum from the Lyman-alpha forest in high-resolution QSO absorption spectra  

E-Print Network (OSTI)

We use the LUQAS sample (Kim et al. 2004), a set of 27 high-resolution and high signal-to-noise QSO absorption spectra at a median redshift of z=2.25, and the data from Croft et al. (2002) at a median redshift of z=2.72, together with a large suite of high-resolution large box-size hydro-dynamical simulations, to estimate the linear dark matter power spectrum on scales 0.003 s/km power spectrum at z=2.72 also agrees with that inferred from LUQAS at lower redshift if we assume that the increase of the amplitude is due to gravitational growth between these redshifts. We further argue that the smaller mean optical depth measured from high-resolution spectra is more accurate than the larger value obtained from low-resolution spectra by Press et al. (1993) which Croft et al. used. For the smaller optical depth we...

Viel, M; Springel, V

2004-01-01T23:59:59.000Z

11

Cross-Power Spectrum and Its Application  

E-Print Network (OSTI)

Cross-power spectrum is a quadratic estimator between two maps that can provide unbiased estimate of the underlying power spectrum of correlated signals, which is therefore used for extracting the power spectrum in the WMAP data. In this letter we discuss the limit of cross-power spectrum and derive the residual from uncorrelated signal, which is the source of error in power spectrum extraction. We also employed cross-power spectrum to extract window functions from extragalactic point sources.

Chiang, Lung-Yih

2010-01-01T23:59:59.000Z

12

THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE PRIMORDIAL POWER SPECTRUM  

SciTech Connect

We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT) in combination with measurements from the Wilkinson Microwave Anisotropy Probe and a prior on the Hubble constant. The angular resolution of ACT provides sensitivity to scales beyond l = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k {approx_equal} 0.2 Mpc{sup -1}. We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from cosmic microwave background measurements (which probe the power spectrum in the linear regime) with existing probes of galaxy clustering, cluster abundances, and weak-lensing constraints on the primordial power. This highlights the range of scales probed by current measurements of the matter power spectrum.

Hlozek, Renee; Dunkley, Joanna; Addison, Graeme [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Appel, John William; Das, Sudeep; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Carvalho, C. Sofia [IPFN, IST, Av. RoviscoPais, 1049-001Lisboa, Portugal and RCAAM, Academy of Athens, Soranou Efessiou 4, 11-527 Athens (Greece); Devlin, Mark J.; Klein, Jeff [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Duenner, Rolando; Gallardo, Patricio [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Halpern, Mark; Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hilton, Matt [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Hughes, John P. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Irwin, Kent D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); and others

2012-04-10T23:59:59.000Z

13

DARK MATTER POWERED STARS: CONSTRAINTS FROM THE EXTRAGALACTIC BACKGROUND LIGHT  

SciTech Connect

The existence of predominantly cold non-baryonic dark matter is unambiguously demonstrated by several observations (e.g., structure formation, big bang nucleosynthesis, gravitational lensing, and rotational curves of spiral galaxies). A candidate well motivated by particle physics is a weakly interacting massive particle (WIMP). Self-annihilating WIMPs would affect the stellar evolution especially in the early universe. Stars powered by self-annihilating WIMP dark matter should possess different properties compared with standard stars. While a direct detection of such dark matter powered stars seems very challenging, their cumulative emission might leave an imprint in the diffuse metagalactic radiation fields, in particular in the mid-infrared part of the electromagnetic spectrum. In this work, the possible contributions of dark matter powered stars (dark stars, DSs) to the extragalactic background light (EBL) are calculated. It is shown that existing data and limits of the EBL intensity can already be used to rule out some DS parameter sets.

Maurer, A.; Raue, M.; Kneiske, T.; Horns, D. [Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Elsaesser, D. [Institut fuer Theoretische Physik und Astrophysik, Am Hubland, D-97074 Wuerzburg (Germany); Hauschildt, P. H., E-mail: andreas.maurer@physik.uni-hamburg.de [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)

2012-02-01T23:59:59.000Z

14

Revisiting the matter power spectra in $f(R)$ gravity  

E-Print Network (OSTI)

In this paper, we study the non-linear matter power spectrum in a specific family of $f(R)$ models that can reproduce the $\\Lambda$CDM background expansion history, using high resolution $N$-body simulations based on the {\\sc ecosmog} code. We measure the matter power spectrum in the range of $0.05h{\\rm Mpc}^{-1}10^{-3}$, we find no chameleon screening in dense regions at late times ($z<3$), which means that those models could be ruled out due to the factor-of-1/3 enhancement to the strength of Newtonian gravity. We also give the best-fit parameters for a generalised PPF fitting formula which works well for the models studied here.

He, Jian-hua; Jing, Yipeng

2013-01-01T23:59:59.000Z

15

Lyman Alpha Flux Power Spectrum and Its Covariance  

E-Print Network (OSTI)

We analyze the flux power spectrum and its covariance using simulated Lyman alpha forests. We find that pseudo-hydro techniques are good approximations of hydrodynamical simulations at high redshift. However, the pseudo-hydro techniques fail at low redshift because they are insufficient for characterizing some components of the low-redshift intergalactic medium, notably the warm-hot intergalactic medium. Hence, to use the low-redshift Lyman alpha flux power spectrum to constrain cosmology, one would need realistic hydrodynamical simulations. By comparing one-dimensional mass statistics with flux statistics, we show that the nonlinear transform between density and flux quenches the fluctuations so that the flux power spectrum is much less sensitive to cosmological parameters than the one-dimensional mass power spectrum. The covariance of the flux power spectrum is nearly Gaussian. As such, the uncertainties of the underlying mass power spectrum could still be large, even though the flux power spectrum can be p...

Zhan, H; Eisenstein, D J; Katz, N; Zhan, Hu; Dave, Romeel; Eisenstein, Daniel; Katz, Neal

2005-01-01T23:59:59.000Z

16

Classification of multi class dataset using wavelet power spectrum  

Science Conference Proceedings (OSTI)

Data mining techniques are widely used in many fields. One of the applications of data mining in the field of the Bioinformatics is classification of tissue samples. In the present work, a wavelet power spectrum based approach has been presented for ... Keywords: Feature selection, Multi class, RPV, Wavelet power spectrum

S. Prabakaran; Rajendra Sahu; Sekher Verma

2007-12-01T23:59:59.000Z

17

VEA-0009 - In the Matter of American Electric Power Company,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 - In the Matter of American Electric Power Company, Inc. VEA-0009 - In the Matter of American Electric Power Company, Inc. This Decision and Order considers an Appeal filed by...

18

Lyman Alpha Flux Power Spectrum and Its Covariance  

E-Print Network (OSTI)

We analyze the flux power spectrum and its covariance using simulated Lyman alpha forests. We find that pseudo-hydro techniques are good approximations of hydrodynamical simulations at high redshift. However, the pseudo-hydro techniques fail at low redshift because they are insufficient for characterizing some components of the low-redshift intergalactic medium, notably the warm-hot intergalactic medium. Hence, to use the low-redshift Lyman alpha flux power spectrum to constrain cosmology, one would need realistic hydrodynamical simulations. By comparing one-dimensional mass statistics with flux statistics, we show that the nonlinear transform between density and flux quenches the fluctuations so that the flux power spectrum is much less sensitive to cosmological parameters than the one-dimensional mass power spectrum. The covariance of the flux power spectrum is nearly Gaussian. As such, the uncertainties of the underlying mass power spectrum could still be large, even though the flux power spectrum can be precisely determined from a small number of lines of sight.

Hu Zhan; Romeel Dave; Daniel Eisenstein; Neal Katz

2005-04-19T23:59:59.000Z

19

Quantifying galactic propagation uncertainty in WIMP dark matter search with AMS01 Z=-1 spectrum  

E-Print Network (OSTI)

A search for a WIMP dark matter annihilation signal is carried out in the AMS01 negatively charged (Z=-I) particle spectrum, following a set of supersymmetric benchmark scenarios in the mSUGRA framework. The result is ...

Xiao, Sa, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

20

Spectrum Widths from Echo Power Differences Reveal Meteorological Features  

Science Conference Proceedings (OSTI)

A new Doppler spectrum width estimator using the absolute power differences (APDs) at lag one is presented, and its performance is evaluated using simulated signals as well as those recorded from the National Severe Storms Laboratory's Research ...

Valery M. Melnikov; Richard J. Doviak

2002-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

MEASURING THE JET POWER OF FLAT-SPECTRUM RADIO QUASARS  

SciTech Connect

We use frequency-dependent position shifts of flat-spectrum radio cores to estimate the kinetic power of active galactic nucleus (AGN) jets. We find a correlation between the derived jet powers and AGN narrow-line luminosity, consistent with the well-known relation for radio galaxies and steep spectrum quasars. This technique can be applied to intrinsically weak jets even at high redshift.

Shabala, S. S.; Santoso, J. S. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, TAS 7001 (Australia); Godfrey, L. E. H. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia)

2012-09-10T23:59:59.000Z

22

The power spectrum of the atomic dipole moment  

E-Print Network (OSTI)

This paper calculates the power spectrum S(omega) of the electric field generated by the atomic dipole moment of a laser-driven two-level system from an open quantum systems perspective. Its shape is similar to the shape of Mollow's resonance fluorescence spectrum but there are some differences. For sufficiently strong laser driving, there are two sidebands but their relative height is reduced. Moreover, the amplitude of this spectrum has a different dependence on the laser Rabi frequency Omega. It does not vanish when Omega tends to zero. The calculation of the spectrum which we present here involves less approximations than the calculation of Mollow's spectrum and constitutes an interesting alternative property.

Adam Stokes; Almut Beige

2013-03-31T23:59:59.000Z

23

Power Spectrum Analysis of the ESP Galaxy Redshift Survey  

E-Print Network (OSTI)

We measure the power spectrum of the galaxy distribution in the ESO Slice Project (ESP) galaxy redshift survey. We develope a technique to describe the survey window function analytically, and then deconvolve it from the measured power spectrum using a variant of the Lucy method. We test the whole deconvolution procedure on ESP mock catalogues drawn from large N-body simulations, and find that it is reliable for recovering the correct amplitude and shape of $P(k)$ at $k> 0.065 h$ Mpc$^{-1}$. In general, the technique is applicable to any survey composed by a collection of circular fields with arbitrary pattern on the sky, as typical of surveys based on fibre spectrographs. The estimated power spectrum has a well-defined power-law shape $k^n$ with $n\\simeq -2.2$ for $k\\ge 0.2 h$ Mpc$^{-1}$, and a smooth bend to a flatter shape ($n\\simeq -1.6$) for smaller $k$'s. The smallest wavenumber, where a meaningful reconstruction can be performed ($k\\sim 0.06 h$ Mpc$^{-1}$), does not allow us to explore the range of scales where other power spectra seem to show a flattening and hints for a turnover. We also find, by direct comparison of the Fourier transforms, that the estimate of the two-point correlation function $\\xi(s)$ is much less sensitive to the effect of a problematic window function as that of the ESP, than the power spectrum. Comparison to other surveys shows an excellent agreement with estimates from blue-selected surveys. In particular, the ESP power spectrum is virtually indistinguishable from that of the Durham-UKST survey over the common range of $k$'s, an indirect confirmation of the quality of the deconvolution technique applied.

E. Carretti; C. Bertoni; A. Messina; E. Zucca; L. Guzzo

2000-07-02T23:59:59.000Z

24

SIC (MUltiple SIgnal Classification) CSP (Cross-power Spectrum Phase)  

E-Print Network (OSTI)

2ch CSP ( ) 1 MU- SIC (MUltiple SIgnal Classification) CSP (Cross- power Spectrum Phase) [1, 2, 3, 4] [5, 6] [7, 8, 9, 10] [7] CSP CSP [8] [9] CSP [10] Estimation of talker's head orientation based (Kobe univ.) [11] 2ch CSP CSP CSP CSP 2 CSP GCC-PHAT (Generalized Cross- Correlation PHAse Transform

Takiguchi, Tetsuya

25

An optimised gene selection approach using wavelet power spectrum  

Science Conference Proceedings (OSTI)

Data mining is a boon to many fields like bioinformatics for processing a vast amount of data. In our previous paper, we proposed a novel feature selection method for microarray data classification using Wavelet Power Spectrum (WPS). In this paper, we ...

Prabakaran Subramani; Rajendra Sahu; Sekhar Verma; S. Prabakaran

2011-11-01T23:59:59.000Z

26

The power spectrum of the seeing during solar observations  

E-Print Network (OSTI)

Measurements of the power spectrum of the atmospheric seeing in the line of sight of the Sun, in the range 0.001-1 Hz, have been performed in Santa Maria degli Angeli Lucernaria Dome, at IRSOL and in Huairou Station. This study is aimed to understand the criticity of the meridian transits method for solar diameter monitoring.

Sigismondi, Costantino; Wang, Xiaofan; De Rosi, Giulia; Bianda, Michele; Ramelli, Renzo

2011-01-01T23:59:59.000Z

27

Higher Order Contributions to the 21 cm Power Spectrum  

E-Print Network (OSTI)

We consider the contribution of 3rd and 4th order terms to the power spectrum of 21 cm brightness temperature fluctuations during the epoch of reionization, which arise because the 21 cm brightness temperature involves a product of the hydrogenic neutral fraction and the gas density. The 3rd order terms vanish for Gaussian random fields, and have been previously neglected or ignored. We measure these higher order terms from radiative transfer simulations and estimate them using cosmological perturbation theory. In our simulated models, the higher order terms are significant: neglecting them leads to a >~100% error in 21 cm power spectrum predictions on scales of k >~ 1 Mpc^{-1} when the neutral fraction is ~0.5. The higher order terms have a simple physical interpretation. On small scales they are produced by gravitational mode coupling. Small scale structure grows more readily in large-scale overdense regions, but the same regions tend to be ionized and hence do not contribute to the 21 cm signal. This acts to suppress the influence of non-linear density fluctuations and the small-scale amplitude of the 21 cm power spectrum. These results modify earlier intuition that the 21 cm power spectrum simply traces the density power spectrum on scales smaller than that of a typical bubble, and imply that small scale measurements contain more information about the nature of the ionizing sources than previously believed. On large scales, higher order moments are not directly related to gravity. They are non-zero because over-dense regions tend to ionize first and are important in magnitude at late times owing to the large fluctuations in the neutral fraction. (Abridged)

Adam Lidz; Oliver Zahn; Matthew McQuinn; Matias Zaldarriaga; Suvendra Dutta; Lars Hernquist

2006-10-02T23:59:59.000Z

28

The Turbulence Power Spectrum in Optically Thick Interstellar Clouds  

E-Print Network (OSTI)

The Fourier power spectrum is one of the most widely used statistical tools to analyze the nature of magnetohydrodynamic turbulence in the interstellar medium. Lazarian & Pogosyan (2004) predicted that the spectral slope should saturate to -3 for an optically thick medium and many observations exist in support of their prediction. However, there have not been any numerical studies to-date testing these results. We analyze the spatial power spectrum of MHD simulations with a wide range of sonic and Alfv\\'enic Mach numbers, which include radiative transfer effects of the $^{13}$CO transition. We confirm numerically the predictions of Lazarian & Pogosyan (2004) that the spectral slope of line intensity maps of an optically thick medium saturates to -3. Furthermore, for very optically thin supersonic CO gas, where the density or CO abundance values are too low to excite emission in all but the densest shock compressed gas, we find that the spectral slope is shallower than expected from the column density....

Burkhart, Blakesley; Ossenkopf, V; Stutzki, J

2013-01-01T23:59:59.000Z

29

Study of the Gamma-ray Spectrum from the Galactic Center in view of Multi-TeV Dark Matter Candidates  

E-Print Network (OSTI)

Motivated by the complex gamma-ray spectrum of the Galactic Center source now measured over five decades in energy, we revisit the issue of the role of dark matter annihilations in this interesting region. We reassess whether the emission measured by the HESS collaboration could be a signature of dark matter annihilation, and we use the {\\em Fermi} LAT spectrum to model the emission from SgrA*, using power-law spectral fits. We find that good fits are achieved by a power law with an index $\\sim 2.5-2.6$, in combination with a spectrum similar to the one observed from pulsar population and with a spectrum from a $\\gsi10$ TeV DM annihilating to a mixture of $b{\\bar b}$ and harder $\\tau^+ \\tau^-$ channels and with boost factors of the order of a hundred. Alternatively, we also consider the combination of a log-parabola fit with the DM contribution. Finally, as both the spectrum of gamma rays from the Galactic Center and the spectrum of cosmic ray electrons exhibit a cutoff at TeV energies, we study the dark matt...

Belikov, Alexander V; Silk, Joseph

2012-01-01T23:59:59.000Z

30

CMB and Matter Power Spectra of Early f(R) Cosmology in Palatini Formalism  

E-Print Network (OSTI)

We calculate in this article the CMB and matter power spectra of a class of early $f(R)$ cosmologies, which takes the form of $f(R) = R + \\lambda_1 H_0^2\\text{exp}[R/(\\lambda_2 H_0^2)]$. Unlike the late-time $f(R)$ cosmologies such as $f(R) = R + \\alpha(-R)^\\beta$ ($\\betaR)$ Cosmology}), and this important feature leads to rather different ISW effect and CMB spectrum. The matter power spectrum of this model is, at the same time, again very sensitive to the chosen parameters, and LSS observations such as SDSS should constrain the parameter space stringently. We expect that our results are applicable at least qualitatively to other models that produce $f(R)$ modification to GR at earlier times (\\emph{e.g.}, redshifts $\\mathcal{O}(10) \\lesssim z \\lesssim \\mathcal{O}(1)$) than when dark energy begins to dominate -- such models are strongly disfavored by data on CMB and matter power spectra.

Baojiu Li; Ming-Chung Chu

2006-10-16T23:59:59.000Z

31

BAYESIAN ANGULAR POWER SPECTRUM ANALYSIS OF INTERFEROMETRIC DATA  

Science Conference Proceedings (OSTI)

We present a Bayesian angular power spectrum and signal map inference engine which can be adapted to interferometric observations of anisotropies in the cosmic microwave background (CMB), 21 cm emission line mapping of galactic brightness fluctuations, or 21 cm absorption line mapping of neutral hydrogen in the dark ages. The method uses Gibbs sampling to generate a sampled representation of the angular power spectrum posterior and the posterior of signal maps given a set of measured visibilities in the uv-plane. We use a mock interferometric CMB observation to demonstrate the validity of this method in the flat-sky approximation when adapted to take into account arbitrary coverage of the uv-plane, mode-mode correlations due to observations on a finite patch, and heteroschedastic visibility errors. The computational requirements scale as O(n{sub p} log n{sub p}) where n{sub p} measures the ratio of the size of the detector array to the inter-detector spacing, meaning that Gibbs sampling is a promising technique for meeting the data analysis requirements of future cosmology missions.

Sutter, P. M.; Wandelt, Benjamin D. [Department of Physics, 1110 West Green Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Malu, Siddarth S. [Raman Research Institute, C V Raman Avenue, Bangalore 560080 (India)

2012-09-15T23:59:59.000Z

32

Gabor Transforms on the Sphere with Applications to CMB Power Spectrum Estimation  

E-Print Network (OSTI)

The Fourier transform of a dataset apodised with a window function is known as the Gabor transform. In this paper we extend the Gabor transform formalism to the sphere with the intention of applying it to CMB data analysis. The Gabor coefficients on the sphere known as the pseudo power spectrum is studied for windows of different size. By assuming that the pseudo power spectrum coefficients are Gaussian distributed, we formulate a likelihood ansatz using these as input parameters to estimate the full sky power spectrum from a patch on the sky. Since this likelihood can be calculated quickly without having to invert huge matrices, this allows for fast power spectrum estimation. By using the pseudo power spectrum from several patches on the sky together, the full sky power spectrum can be estimated from full-sky or nearly full-sky observations.

Frode K. Hansen; Krzysztof M. Gorski; Eric Hivon

2002-07-22T23:59:59.000Z

33

A low-power digital matched filter for spread-spectrum systems  

Science Conference Proceedings (OSTI)

A Digital Matched Filter (DMF) is an essential device for Direct-Sequence Spread-Spectrum (DS-SS) communication systems. Reducing the power consumption of a DMF is especially critical for battery-powered terminals. The reception registers and the correlation-calculating ... Keywords: CDMA, VLSI, low power, matched filter, spread-spectrum

Shoji Goto; Takashi Yamada; Norihisa Takayama; Yoshifumi Matsushita; Yasoo Harada; Hiroto Yasuura

2002-08-01T23:59:59.000Z

34

Modeling the affect of dark matter distributions in the Milky Way on the component of the cosmic rays energy spectrum as incident on Earth  

E-Print Network (OSTI)

In this thesis, we investigate the effect of dark matter distribution in the galaxy on the positron spectrum on earth. We wrote code to simulate two district dark matter distribution functions as well as the annihilations ...

Kamenetska, Masha

2005-01-01T23:59:59.000Z

35

Solar gamma rays powered by secluded dark matter  

Science Conference Proceedings (OSTI)

Secluded dark matter models, in which weakly interacting massive particles annihilate first into metastable mediators, can present novel indirect detection signatures in the form of gamma rays and fluxes of charged particles arriving from directions correlated with the centers of large astrophysical bodies within the Solar System, such as the Sun and larger planets. This naturally occurs if the mean free path of the mediator is in excess of the solar (or planetary) radius. We show that existing constraints from water Cerenkov detectors already provide a novel probe of the parameter space of these models, complementary to other sources, with significant scope for future improvement from high angular resolution gamma-ray telescopes such as Fermi-LAT. Fluxes of charged particles produced in mediator decays are also capable of contributing a significant solar system component to the spectrum of energetic electrons and positrons, a possibility which can be tested with the directional and timing information of PAMELA and Fermi.

Batell, Brian; Shang Yanwen [Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2J 2W9 (Canada); Pospelov, Maxim [Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2J 2W9 (Canada); Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 1A1 (Canada); Ritz, Adam [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 1A1 (Canada)

2010-04-01T23:59:59.000Z

36

Solar Gamma Rays Powered by Secluded Dark Matter  

E-Print Network (OSTI)

Secluded dark matter models, in which WIMPs annihilate first into metastable mediators, can present novel indirect detection signatures in the form of gamma rays and fluxes of charged particles arriving from directions correlated with the centers of large astrophysical bodies within the solar system, such as the Sun and larger planets. This naturally occurs if the mean free path of the mediator is in excess of the solar (or planetary) radius. We show that existing constraints from water Cerenkov detectors already provide a novel probe of the parameter space of these models, complementary to other sources, with significant scope for future improvement from high angular resolution gamma-ray telescopes such as Fermi-LAT. Fluxes of charged particles produced in mediator decays are also capable of contributing a significant solar system component to the spectrum of energetic electrons and positrons, a possibility which can be tested with the directional and timing information of PAMELA and Fermi.

Brian Batell; Maxim Pospelov; Adam Ritz; Yanwen Shang

2009-10-08T23:59:59.000Z

37

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters  

Science Conference Proceedings (OSTI)

Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

Robert J. Goldston

2010-03-03T23:59:59.000Z

38

Fast CMB Power Spectrum Estimation of Temperature and Polarisation with Gabor Transforms  

E-Print Network (OSTI)

We extend the analysis of Gabor transforms on a Cosmic Microwave Background (CMB) temperature map (Hansen, Gorski and Hivon 2002) to polarisation. We study the temperature and polarisation power spectra on the cut sky, the so-called pseudo power spectra. The transformation kernels relating the full-sky polarisation power spectra and the polarisation pseudo power spectra are found to be similar to the kernel for the temperature power spectrum. This fact is used to construct a fast power spectrum estimation algorithm using the pseudo power spectrum of temperature and polarisation as data vectors in a maximum likelihood approach. Using the pseudo power spectra as input to the likelihood analysis solves the problem of having to invert huge matrices which makes the standard likelihood approach infeasible.

Frode K. Hansen; Krzysztof M. Gorski

2002-07-24T23:59:59.000Z

39

PROBING THE INFLATON: SMALL-SCALE POWER SPECTRUM CONSTRAINTS FROM MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND ENERGY SPECTRUM  

Science Conference Proceedings (OSTI)

In the early universe, energy stored in small-scale density perturbations is quickly dissipated by Silk damping, a process that inevitably generates {mu}- and y-type spectral distortions of the cosmic microwave background (CMB). These spectral distortions depend on the shape and amplitude of the primordial power spectrum at wavenumbers k {approx}window functions that account for the effects of thermalization and dissipation physics. We show that COBE/FIRAS places a robust upper limit on the amplitude of the small-scale power spectrum. This limit is about three orders of magnitude stronger than the one derived from primordial black holes in the same scale range. Furthermore, this limit could be improved by another three orders of magnitude with PIXIE, potentially opening up a new window to early universe physics. To illustrate the power of these constraints, we consider several generic models for the small-scale power spectrum predicted by different inflation scenarios, including running-mass inflation models and inflation scenarios with episodes of particle production. PIXIE could place very tight constraints on these scenarios, potentially even ruling out running-mass inflation models if no distortion is detected. We also show that inflation models with sub-Planckian field excursion that generate detectable tensor perturbations should simultaneously produce a large CMB spectral distortion, a link that could potentially be established with PIXIE.

Chluba, Jens; Erickcek, Adrienne L.; Ben-Dayan, Ido, E-mail: jchluba@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, Ontario M5S 3H8 (Canada)

2012-10-20T23:59:59.000Z

40

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters  

Science Conference Proceedings (OSTI)

Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

Robert J. Goldston

2011-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Rectification of the Bias in the Wavelet Power Spectrum  

Science Conference Proceedings (OSTI)

This paper addresses a bias problem in the estimate of wavelet power spectra for atmospheric and oceanic datasets. For a time series comprised of sine waves with the same amplitude at different frequencies the conventionally adopted wavelet ...

Yonggang Liu; X. San Liang; Robert H. Weisberg

2007-12-01T23:59:59.000Z

42

Cosmic microwave background constraints on dark energy dynamics: analysis beyond the power spectrum  

E-Print Network (OSTI)

We consider the distribution of the non-Gaussian signal induced by weak lensing on the primary total intensity cosmic microwave background (CMB) anisotropies. Our study focuses on the three point statistics exploiting an harmonic analysis based on the CMB bispectrum. By considering the three multipoles as independent variables, we reveal a complex structure of peaks and valleys determined by the re-projection of the primordial acoustic oscillations through the lensing mechanism. We study the dependence of this system on the expansion rate at the epoch in which the weak lensing power injection is relevant, probing the dark energy equation of state at redshift corresponding to the equivalence with matter or higher ($w_\\infty$). We evaluate the impact of the bispectrum observable on the CMB capability of constraining the dark energy dynamics. We perform a maximum likelihood analysis by varying the dark energy abundance, the present equation of state $w_0$ and $w_\\infty$. We show that the projection degeneracy affecting a pure power spectrum analysis in total intensity is broken if the bispectrum is taken into account. For a Planck-like experiment, assuming nominal performance, no foregrounds or systematics, and fixing all the parameters except $w_0$, $w_\\infty$ and the dark energy abundance, a percent and ten percent precision measure of $w_0$ and $w_\\infty$ is achievable from CMB data only. These results indicate that the detection of the weak lensing signal by the forthcoming CMB probes may be relevant to gain insight into the dark energy dynamics at the onset of cosmic acceleration.

Fabio Giovi; Carlo Baccigalupi; Francesca Perrotta

2004-11-25T23:59:59.000Z

43

Angular Power Spectrum of the Microwave Background Anisotropy seen by the COBE Differential Microwave Radiometer  

E-Print Network (OSTI)

The angular power spectrum estimator developed by Peebles (1973) and Hauser & Peebles (1973) has been modified and applied to the 4 year maps produced by the COBE DMR. The power spectrum of the observed sky has been compared to the power spectra of a large number of simulated random skies produced with noise equal to the observed noise and primordial density fluctuation power spectra of power law form, with $P(k) \\propto k^n$. The best fitting value of the spectral index in the range of spatial scales corresponding to spherical harmonic indices $3 \\leq \\ell \\lesssim 30$ is an apparent spectral index $n_{app}$ = 1.13 (+0.3) (-0.4) which is consistent with the Harrison-Zel'dovich primordial spectral index $n_{pri} = 1$ The best fitting amplitude for $n_{app} = 1$ is $\\langle Q_{RMS}^2\\rangle^{0.5}$ = 18 uK.

E. L. Wright; C. L. Bennett; K. Gorski; G. Hinshaw; G. F. Smoot

1996-01-12T23:59:59.000Z

44

Power, energy, and spectrum of a naked singularity explosion  

E-Print Network (OSTI)

Naked singularity occurs in the gravitational collapse of an inhomogeneous dust ball from an initial density profile which is physically reasonable. We show that explosive radiation is emitted during the formation process of the naked singularity. The energy flux is proportional to $(t_{\\rm CH}-t)^{-3/2}$ for a minimally coupled massless scalar field, while is proportional to $(t_{\\rm CH}-t)^{-1}$ for a conformally coupled massless scalar field, where $t_{\\rm CH}-t$ is the `remained time' until the distant observer could observe the singularity if the naked singularity was formed. As a consequence, the radiated energy grows unboundedly for both scalar fields. The amount of the power and the energy depends on parameters which characterize the initial density profile but do not depend on the gravitational mass of the cloud. In particular, there is characteristic frequency $\

Tomohiro Harada; Hideo Iguchi; Ken-ichi Nakao

2000-05-25T23:59:59.000Z

45

Observation of the Power Spectrum of Ocean Waves Using a Cloverleaf Buoy  

Science Conference Proceedings (OSTI)

The power spectra of typical sets of ocean wave data obtained in the open ocean using a cloverleaf buoy are analyzed to determine an idealized form for the spectrum of ocean surface waves. It is shown that most of the single-peaked spectra ...

Hisashi Mitsuyasu; Fukuzo Tasai; Toshiro Suhara; Shinjiro Mizuno; Makoto Ohkusu; Tadao Honda; Kunio Rikiishi

1980-02-01T23:59:59.000Z

46

What can be learned from the lensed cosmic microwave background B-mode polarization power spectrum?  

E-Print Network (OSTI)

The effect of weak gravitational lensing on the cosmic microwave background (CMB) temperature anisotropies and polarization will provide access to cosmological information that cannot be obtained from the primary anisotropies alone. We compare the information content of the lensed B-mode polarization power spectrum, properly accounting for the non-Gaussian correlations between the power on different scales, with that of the unlensed CMB fields and the lensing potential. The latter represent the products of an (idealised) optimal analysis that exploits the lens-induced non-Gaussianity to reconstruct the fields. Compressing the non-Gaussian lensed CMB into power spectra is wasteful and leaves a tight degeneracy between the equation of state of dark energy and neutrino mass that is much stronger than in the more optimal analysis. Despite this, a power spectrum analysis will be a useful first step in analysing future B-mode polarization data. For this reason, we also consider how to extract accurate parameter constraints from the lensed B-mode power spectrum. We show with simulations that for cosmic-variance-limited measurements of the lensed B-mode power, including the non-Gaussian correlations in existing likelihood approximations gives biased parameter results. We develop a more refined likelihood approximation that performs significantly better. This new approximation should also be of more general interest in the wider context of parameter estimation from Gaussian CMB data.

Sarah Smith; Anthony Challinor; Graca Rocha

2005-11-24T23:59:59.000Z

47

CROSS-POWER SPECTRUM AND ITS APPLICATION ON WINDOW FUNCTIONS IN THE WILKINSON MICROWAVE ANISOTROPY PROBE DATA  

Science Conference Proceedings (OSTI)

The cross-power spectrum is a quadratic estimator between two maps that can provide unbiased estimate of the underlying power spectrum of the correlated signals, which is therefore used for extracting the power spectrum in the Wilkinson Microwave Anisotropy Probe (WMAP) data. In this paper, we discuss the limit of the cross-power spectrum and derive the residual from the uncorrelated signal, which is the source of error in power spectrum extraction. We employ the estimator to extract window functions by crossing pairs of extragalactic point sources. We demonstrate its usefulness in WMAP difference assembly maps where the window functions are measured via Jupiter and then extract the window functions of the five WMAP frequency band maps.

Chiang, Lung-Yih; Chen, Fei-Fan, E-mail: lychiang@asiaa.sinica.edu.tw [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China)

2011-09-10T23:59:59.000Z

48

A Bayesian approach to power-spectrum significance estimation, with application to solar neutrino data  

E-Print Network (OSTI)

The usual procedure for estimating the significance of a peak in a power spectrum is to calculate the probability of obtaining that value or a larger value by chance, on the assumption that the time series contains only noise (e.g. that the measurements were derived from random samplings of a Gaussian distribution). However, it is known that one should regard this P-Value approach with caution. As an alternative, we here examine a Bayesian approach to estimating the significance of a peak in a power spectrum. This approach requires that we consider explicitly the hypothesis that the time series contains a periodic signal as well as noise. The challenge is to identify a probability distribution function for the power that is appropriate for this hypothesis. We propose what seem to be reasonable conditions to require of this function, and then propose a simple function that meets these requirements. We also propose a consistency condition, and check to see that our function satisfies this condition. We find that the Bayesian significance estimates are considerably more conservative than the conventional estimates. We apply this procedure to three recent analyses of solar neutrino data: (a) bimodality of GALLEX data; (b) power spectrum analysis of Super-Kamiokande data; and (c) the combined analysis of radiochemical neutrino data and irradiance data.

P. A. Sturrock

2008-09-01T23:59:59.000Z

49

Comparison of Two Methods of Noise Power Spectrum Determinations of Medical Radiography Systems  

Science Conference Proceedings (OSTI)

Noise in medical images is recognized as an important factor that determines the image quality. Image noise is characterized by noise power spectrum (NPS). We compared two methods of NPS determination namely the methods of Wagner and Dobbins on Lanex Regular TMG screen-film system and Hologic Lorad Selenia full field digital mammography system, with the aim of choosing the better method to use. The methods differ in terms of various parametric choices and algorithm implementations. These parameters include the low pass filtering, low frequency filtering, windowing, smoothing, aperture correction, overlapping of region of interest (ROI), length of fast Fourier transform, ROI size, method of ROI normalization, and slice selection of the NPS. Overall, the two methods agreed to the practical value of noise power spectrum between 10{sup -3}-10{sup -6} mm{sup 2} over spatial frequency range 0-10 mm{sup -1}.

Hassan, Wan Muhamad Saridan Wan; Ahmed Darwish, Zeki [Department of Physics, Faculty of Science, University Teknologi Malaysia, 81310 UTM Skudai, Johor DT (Malaysia)

2011-03-30T23:59:59.000Z

50

Energy spectrum of the electrons accelerated by reconnection electric field: exponential or power-law?  

E-Print Network (OSTI)

The direct current (DC) electric field near the reconnection region has been proposed as an effective mechanism to accelerate protons and electrons in solar flares. A power-law energy spectrum was generally claimed in the simulations of electron acceleration by the reconnection electric field. However, in most of the literature, the electric and magnetic fields were chosen independently. In this paper, we perform test particle simulations of electron acceleration in reconnecting magnetic field, where both the electric and magnetic fields are adopted from numerical simulations of the MHD equations. It is found that the accelerated electrons present a truncated power-law energy spectrum with an exponential tail at high energies, which is analogous to the case of diffusive shock acceleration. The influences of the reconnection parameters on the spectral feature are also investigated, such as the longitudinal and transverse components of the magnetic field and the size of the current sheet. It is suggested that t...

Liu, W J; Ding, M D; Fang, C

2008-01-01T23:59:59.000Z

51

Peaks and Troughs in Helioseismology: The Power Spectrum of Solar Oscillations  

E-Print Network (OSTI)

I present a matched-wave asymptotic analysis of the driving of solar oscillations by a general localised source. The analysis provides a simple mathematical description of the asymmetric peaks in the power spectrum in terms of the relative locations of eigenmodes and troughs in the spectral response. It is suggested that the difference in measured phase function between the modes and the troughs in the spectrum will provide a key diagnostic of the source of the oscillations. I also suggest a form for the asymmetric line profiles to be used in the fitting of solar power spectra. Finally I present a comparison between the numerical and asymptotic descriptions of the oscillations. The numerical results bear out the qualitative features suggested by the asymptotic analysis but suggest that numerical calculations of the locations of the troughs will be necessary for a quantitative comparison with the observations.

Colin S. Rosenthal

1998-04-03T23:59:59.000Z

52

Power Spectrum of Primordial Inhomogeneity Determined from the 4-Year COBE DMR Sky Maps  

E-Print Network (OSTI)

Fourier analysis and power spectrum estimation of the cosmic microwave background anisotropy on an incompletely sampled sky developed by Gorski (1994) has been applied to the high-latitude portion of the 4-year COBE DMR 31.5, 53 and 90 GHz sky maps. Likelihood analysis using newly constructed Galaxy cuts (extended beyond |b| = 20deg to excise the known foreground emission) and simultaneously correcting for the faint high latitude galactic foreground emission is conducted on the DMR sky maps pixelized in both ecliptic and galactic coordinates. The Bayesian power spectrum estimation from the foreground corrected 4-year COBE DMR data renders n ~ 1.2 +/- 0.3, and Q_{rms-PS} ~ 15.3^{+3.7}_{-2.8} microK (projections of the two-parameter likelihood). These results are consistent with the Harrison-Zel'dovich n=1 model of amplitude Q_{rms-PS} ~ 18 microK detected with significance exceeding 14sigma (dQ/Q < 0.07). (A small power spectrum amplitude drop below the published 2-year results is predominantly due to the application of the new, extended Galaxy cuts.)

K. M. Gorski; A. J. Banday; C. L. Bennett; G. Hinshaw; A. Kogut; G. F. Smoot; E. L. Wright

1996-01-12T23:59:59.000Z

53

Angular Power Spectrum of the Microwave Background Anisotropy seen by the COBE Differential Microwave Radiometer  

E-Print Network (OSTI)

The angular power spectrum estimator developed by Peebles (1973) and Hauser & Peebles (1973) has been modified and applied to the 2 year maps produced by the COBE DMR. The power spectrum of the real sky has been compared to the power spectra of a large number of simulated random skies produced with noise equal to the observed noise and primordial density fluctuation power spectra of power law form, with $P(k) \\propto k^n$. Within the limited range of spatial scales covered by the COBE DMR, corresponding to spherical harmonic indices $3 \\leq \\ell \\lsim 30$, the best fitting value of the spectral index is $n = 1.25^{+0.4}_{-0.45}$ with the Harrison-Zeldovich value $n = 1$ approximately 0.5$\\sigma$ below the best fit. For $3 \\leq \\ell \\lsim 19$, the best fit is $n = 1.46^{+0.39}_{-0.44}$. Comparing the COBE DMR $\\Delta T/T$ at small $\\ell$ to the $\\Delta T/T$ at $\\ell \\approx 50$ from degree scale anisotropy experiments gives a smaller range of acceptable spectral indices which includes $n = 1$.

E. L. Wright; G. F. Smoot; C. L. Bennett; P. M. Lubin

1994-01-11T23:59:59.000Z

54

VEA-0009 - In the Matter of American Electric Power Company, Inc. |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 - In the Matter of American Electric Power Company, Inc. 09 - In the Matter of American Electric Power Company, Inc. VEA-0009 - In the Matter of American Electric Power Company, Inc. This Decision and Order considers an Appeal filed by American Electric Power Company, Inc. (AEP) from a determination issued on July 7, 1998, by the Office of Energy Efficiency and Renewable Energy (EE) of the Department of Energy (DOE), under provisions of 10 C.F.R. Part 490 (Alternative Fuel Transportation Program). In its determination, EE substantially denied a request filed by AEP for an exemption from the firm's 1998 Model Year (MY) alternative fuel vehicle (AFV) purchase requirements under the Part 490 program. If the present Appeal were granted, AEP would be exempted from its 1998 MY purchase requirements, as initially requested by the firm. As

55

VEA-0012 - In the Matter of American Electric Power Company, Inc. |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12 - In the Matter of American Electric Power Company, Inc. 12 - In the Matter of American Electric Power Company, Inc. VEA-0012 - In the Matter of American Electric Power Company, Inc. This Decision and Order considers an Appeal filed by American Electric Power Company, Inc. (AEP) from a determination issued on October 15, 1999, by the Office of Energy Efficiency and Renewable Energy (EE) of the Department of Energy (DOE), under provisions of 10 C.F.R. Part 490 (Alternative Fuel Transportation Program). In its determination, EE granted in part a request filed by AEP for an exemption from the firm's 1998 and 1999 Model Year (MY) alternative fuel vehicle (AFV) purchase requirements under the Part 490 program. If the present Appeal were granted, AEP would be granted exemptions from its 1998 MY purchase requirements, in addition

56

Second Season QUIET Observations: Measurements of the CMB Polarization Power Spectrum at 95 GHz  

Science Conference Proceedings (OSTI)

The Q/U Imaging ExperimenT (QUIET) has observed the cosmic microwave background (CMB) at 43 and 95GHz. The 43-GHz results have been published in QUIET Collaboration et al. (2011), and here we report the measurement of CMB polarization power spectra using the 95-GHz data. This data set comprises 5337 hours of observations recorded by an array of 84 polarized coherent receivers with a total array sensitivity of 87 {mu}K{radical}s. Four low-foreground fields were observed, covering a total of {approx} 1000 square degrees with an effective angular resolution of 12'.8, allowing for constraints on primordial gravitational waves and high-signal-to-noise measurements of the E-modes across three acoustic peaks. The data reduction was performed using two independent analysis pipelines, one based on a pseudo-C{ell} (PCL) cross-correlation approach, and the other on a maximum-likelihood (ML) approach. All data selection criteria and filters were modified until a predefined set of null tests had been satisfied before inspecting any non-null power spectrum. The results derived by the two pipelines are in good agreement. We characterize the EE, EB and BB power spectra between {ell} = 25 and 975 and find that the EE spectrum is consistent with {Lambda}CDM, while the BB power spectrum is consistent with zero. Based on these measurements, we constrain the tensor-to-scalar ratio to r = 1.1{sup +0.9}{sub -0.8} (r pipeline, and r = {sup +0.9}{sub -0.8} (r pipeline. In one of the fields, we find a correlation with the dust component of the Planck Sky Model, though the corresponding excess power is small compared to statistical errors. Finally, we derive limits on all known systematic errors, and demonstrate that these correspond to a tensor-to-scalar ratio smaller than r = 0.01, the lowest level yet reported in the literature.

Araujo, D.; /Columbia U., CBA; Bischoff, C.; /Chicago U., EFI /Harvard-Smithsonian Ctr. Astrophys.; Brizius, A.; /Chicago U., EFI /Bonn, Max Planck Inst., Radioastron.; Buder, I.; /Chicago U., EFI /Harvard-Smithsonian Ctr. Astrophys.; Chinone, Y.; /KEK, Tsukuba /Tohoku U.; Cleary, K.; /Caltech; Dumoulin, R.N.; /Columbia U., CBA; Kusaka, A.; /Chicago U., EFI /Princeton U.; Monsalve, R.; /Miami U.; ss, S.K.N\\ae; /Oslo U.; Newburgh, L.B.; /Columbia U., CBA /Princeton U. /Caltech

2012-07-01T23:59:59.000Z

57

Reforming the Power Sector in Transition: Do Institutions Matter?  

E-Print Network (OSTI)

  tempted  to  add  additional generation capacity through meaningful power sector reforms in the lurch  towards reducing energy dependency.    As  of  1989,  numerous  nuclear  reactors  in  Armenia,  Bulgaria,  Lithuania,  Russia,  Slovakia...  relationship between country level institutions and power sector reforms    Although  the  neoclassical  economic  theory  considers  both  competition  and  privatization  as  the  core  aspects  of  a market  economy;  the  outcomes  cannot  be  guaranteed  to  be  Pareto  efficient  in  the  absence  of  proper  institutional...

Nepal, Rabindra; Jamasb, Tooraj

58

Continuum Power Spectrum Components in X-Ray Sources: Detailed Modelling and Search for Coherent Periodicities  

E-Print Network (OSTI)

This paper summarises two recently developed techniques in power spectral analysis and their application to a sample of X-ray light curves of accreting collapsed objects in active galactic nuclei and X-ray binaries. The first technique is designed to carry out detailed model fitting of continuum power spectrum components arising from noise variability by using maximum likelihood methods. The technique is applied to the light curves of a number of highly variable AGNs observed with EXOSAT. Substantially steeper logarithmic power spectrum slopes are obtained than previously estimated with standard methods. The second technique was devised in order to reveal coherent periodicities in the presence of ``coloured" (i.e. non--white) noise variability components from the source. To this aim the power spectra are searched for significant narrow peaks superposed on the ``coloured" continuum components. We present the results of a search for an orbital modulation in the light curves of a sample of 25 low mass X--ray binaries (LMXRBs), for which the orbital period is either unknown or detected only at optical wavelengths. This led to the discovery of a significant X--ray orbital modulation at the few percent level in the burster MXB1636-539.

L. Stella; E. Arlandi; G. Tagliaferri; G. L. Israel

1994-11-13T23:59:59.000Z

59

FOUR FUNDAMENTAL FOREGROUND POWER SPECTRUM SHAPES FOR 21 cm COSMOLOGY OBSERVATIONS  

SciTech Connect

Contamination from instrumental effects interacting with bright astrophysical sources is the primary impediment to measuring Epoch of Reionization (EoR) and Baryon Acoustic Oscillations (BAO) 21 cm power spectra-an effect called mode mixing. In this paper, we identify four fundamental power spectrum shapes produced by mode mixing that will affect all upcoming observations. We are able, for the first time, to explain the wedge-like structure seen in advanced simulations and to forecast the shape of an 'EoR window' that is mostly free of contamination. Understanding the origins of these contaminations also enables us to identify calibration and foreground subtraction errors below the imaging limit, providing a powerful new tool for precision observations.

Morales, Miguel F.; Hazelton, Bryna; Sullivan, Ian; Beardsley, Adam [Department of Physics, University of Washington, Seattle, WA 98195 (United States)

2012-06-20T23:59:59.000Z

60

DIRECT MEASUREMENT OF THE ANGULAR POWER SPECTRUM OF COSMIC MICROWAVE BACKGROUND TEMPERATURE ANISOTROPIES IN THE WMAP DATA  

Science Conference Proceedings (OSTI)

The angular power spectrum of the cosmic microwave background temperature anisotropies is one of the most important characteristics in cosmology that can shed light on the properties of the universe such as its geometry and total density. Using flat sky approximation and Fourier analysis, we estimate the angular power spectrum from an ensemble of the least foreground-contaminated square patches from the Wilkinson Microwave Anisotropy Probe W and V frequency band map. This method circumvents the issue of foreground cleaning and that of breaking orthogonality in spherical harmonic analysis because we are able to mask out the bright Galactic plane region, thereby rendering a direct measurement of the angular power spectrum. We test and confirm the Gaussian statistical characteristic of the selected patches, from which the first and second acoustic peaks of the power spectrum are reproduced, and the third peak is clearly visible, albeit with some noise residual at the tail.

Chiang, Lung-Yih [Institute of Astrophysics, National Taiwan University, 1, Rooservolt Road, Taipei, Taiwan (China); Chen, Fei-Fan, E-mail: lychiang@asiaa.sinica.edu.tw [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China)

2012-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy Spectrum of the Electrons Accelerated by a Reconnection Electric Field: Exponential or Power Law?  

E-Print Network (OSTI)

The direct current (DC) electric field near the reconnection region has been proposed as an effective mechanism to accelerate protons and electrons in solar flares. A power-law energy spectrum was generally claimed in the simulations of electron acceleration by the reconnection electric field. However in most of the literature, the electric and magnetic fields were chosen independently. In this paper, we perform test-particle simulations of electron acceleration in a reconnecting magnetic field, where both the electric and magnetic fields are adopted from numerical simulations of the MHD equations. It is found that the accelerated electrons present a truncated power-law energy spectrum with an exponential tail at high energies, which is analogous to the case of diffusive shock acceleration. The influences of reconnection parameters on the spectral feature are also investigated, such as the longitudinal and transverse components of the magnetic field and the size of the current sheet. It is suggested that the DC electric field alone might not be able to reproduce the observed single or double power-law distributions.

W. J. Liu; P. F. Chen; M. D. Ding; C. Fang

2008-09-07T23:59:59.000Z

62

Star formation in molecular cores III. The effect of the turbulent power spectrum  

E-Print Network (OSTI)

We investigate the effect of the turbulent power spectrum (P(k) \\propto k^{-n}, with n=3, 4 or 5) on the fragmentation of low-mass cores, by means of SPH simulations. We adopt initial density profiles and low levels of turbulence based on observation, and for each n-value we conduct an ensemble of simulations with different initial seeds for the turbulent velocity field, so as to obtain reasonable statistics. We find that when power is concentrated at larger scales (i.e. for larger n), more protostellar objects form and there is a higher proportion of low-mass stars and brown dwarfs. This is in direct contrast with the recent results of Delgado Donate et al., presumably because they adopted much higher levels of turbulence.

S. P. Goodwin; A. P. Whitworth; D. Ward-Thompson

2006-02-28T23:59:59.000Z

63

SECOND SEASON QUIET OBSERVATIONS: MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRUM AT 95 GHz  

Science Conference Proceedings (OSTI)

The Q/U Imaging ExperimenT (QUIET) has observed the cosmic microwave background (CMB) at 43 and 95 GHz. The 43 GHz results have been published in a previous paper, and here we report the measurement of CMB polarization power spectra using the 95 GHz data. This data set comprises 5337 hr of observations recorded by an array of 84 polarized coherent receivers with a total array sensitivity of 87 {mu}K{radical}s. Four low-foreground fields were observed, covering a total of {approx}1000 deg{sup 2} with an effective angular resolution of 12.'8, allowing for constraints on primordial gravitational waves and high signal-to-noise measurements of the E-modes across three acoustic peaks. The data reduction was performed using two independent analysis pipelines, one based on a pseudo-C {sub l} (PCL) cross-correlation approach, and the other on a maximum-likelihood (ML) approach. All data selection criteria and filters were modified until a predefined set of null tests had been satisfied before inspecting any non-null power spectrum. The results derived by the two pipelines are in good agreement. We characterize the EE, EB, and BB power spectra between l = 25 and 975 and find that the EE spectrum is consistent with {Lambda}CDM, while the BB power spectrum is consistent with zero. Based on these measurements, we constrain the tensor-to-scalar ratio to r = 1.1{sup +0.9} {sub -0.8} (r pipeline, and r = 1.2{sup +0.9} {sub -0.8} (r pipeline. In one of the fields, we find a correlation with the dust component of the Planck Sky Model, though the corresponding excess power is small compared to statistical errors. Finally, we derive limits on all known systematic errors, and demonstrate that these correspond to a tensor-to-scalar ratio smaller than r = 0.01, the lowest level yet reported in the literature.

Araujo, D.; Dumoulin, R. N.; Newburgh, L. B.; Zwart, J. T. L. [Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A. [Kavli Institute for Cosmological Physics, Department of Physics, Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States); Chinone, Y. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Cleary, K.; Reeves, R. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 E. California Blvd M/C 249-17, Pasadena, CA 91125 (United States); Monsalve, R.; Bustos, R. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Naess, S. K.; Eriksen, H. K. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Wehus, I. K. [Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Bronfman, L. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Church, S. E. [Kavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stanford University, Varian Physics Building, 382 Via Pueblo Mall, Stanford, CA 94305 (United States); Dickinson, C. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Gaier, T., E-mail: ibuder@uchicago.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Collaboration: QUIET Collaboration; and others

2012-12-01T23:59:59.000Z

64

Power Spectrum Analysis of Mount-Wilson Solar Diameter Measurements: Evidence for Solar Internal R-mode Oscillations  

E-Print Network (OSTI)

This article presents a power-spectrum analysis of 39,024 measurements of the solar diameter made at the Mount Wilson Observatory from 1968.670 to 1997.965. This power spectrum contains a number of very strong peaks. We find that eight of these peaks agree closely with the frequencies of r-mode oscillations for a region of the Sun where the sidereal rotation frequency is 12.08 year$^{-1}$. We estimate that there is less than one chance in ten to the sixth power of finding this pattern by chance.

Sturrock, Peter A

2010-01-01T23:59:59.000Z

65

PARAMETRIC TENSION BETWEEN EVEN AND ODD MULTIPOLE DATA OF THE WMAP POWER SPECTRUM: UNACCOUNTED CONTAMINATION OR MISSING PARAMETERS?  

Science Conference Proceedings (OSTI)

There exists power contrast in even and odd multipoles of the WMAP power spectrum at low and intermediate multipole ranges. This anomaly is explicitly associated with the angular power spectrum, which is heavily used for cosmological model fitting. Having noted this, we have investigated whether even (odd) multipole data set is individually consistent with the WMAP concordance model. Our investigation shows that the WMAP concordance model does not make a good fit for even (odd) multipole data set, which indicates parametric tension between even and odd multipole data set. Noting that tension is highest in primordial power spectrum parameters, we have additionally considered a running spectral index, but found that tension increases to even a higher level. We believe these parametric tensions may be indications of unaccounted contamination or imperfection of the model.

Kim, Jaiseung; Naselsky, Pavel, E-mail: jkim@nbi.d [Niels Bohr Institute and Discovery Center, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)

2010-12-01T23:59:59.000Z

66

The Linear Theory Power Spectrum from the Lyman-alpha Forest in the Sloan Digital Sky Survey  

E-Print Network (OSTI)

We analyze the SDSS Lyman-alpha forest P_F(k,z) measurement to determine the linear theory power spectrum. Our analysis is based on fully hydrodynamic simulations, extended using hydro-PM simulations. We account for the effect of absorbers with damping wings, which leads to an increase in the slope of the linear power spectrum. We break the degeneracy between the mean level of absorption and the linear power spectrum without significant use of external constraints, which is possible because of the high precision of the P_F(k,z) measurements over a wide range of redshift and scale. We infer linear theory power spectrum amplitude Delta^2_L(k_p=0.009s/km,z_p=3.0)=0.452_{-0.057-0.116}^{+0.069+0.141} and slope n_eff(k_p,z_p)=-2.321_{-0.047-0.102}^{+0.055+0.131} (errors are Delta chi^2=1 and 4, with possible systematic errors included through nuisance parameters in the fit; the errors are correlated with r~0.63). The inferred curvature of the linear power spectrum and the evolution of its amplitude and slope with r...

McDonald, P; Cen, R; Weinberg, D H; Burles, S; Schneider, D P; Schlegel, D J; Bahcall, Neta A; Brinkmann, J; Ivezic, Z; Kent, S; Vanden Berk, Daniel E

2004-01-01T23:59:59.000Z

67

Measurement of beam energy spectrum and impurity content in high-power neutral beam injectors  

DOE Green Energy (OSTI)

The energy spectrum and impurity content of a high-power neutral beam are measured by implanting the beam into high-purity silicon crystals. The depth distribution of the beam particles is then measured by secondary ion mass spectrometry (SIMS); the penetration depth is a function of the incident particle energy. This is one of the few measurement techniques that can determine neutral beam energy components directly. From the results, percentages of atomic and molecular ions in the source plasma can be inferred. Use of deuterium as the source gas provides insight into the role of residual hydrogen in the ion source and accelerating grids and in the SIMS analysis. The principal impurities are carbon and oxygen. Preliminary data indicate that carbon can originate from both methane and carbon monoxide, while oxygen can come from molecular oxygen, carbon monoxide, and water. Results are given and future plans are discussed.

Langley, R.A.; Ryan, P.M.; Tsai, C.C.; Menon, M.M.; Botnick, E.M.; Magee, C.W.

1985-05-01T23:59:59.000Z

68

Time Variations of the Superkamiokande Solar Neutrino Flux Data by Rayleigh Power Spectrum Analysis  

E-Print Network (OSTI)

We have used the Rayleigh Power Spectrum Analysis of the solar neutrino flux data from 1) 5-day-long samples from Super-Kamiokande-I detector during the period from June, 1996 to July, 2001; 2) 10 -day-long samples from the same detector during the same period and (3) 45-day long from the same detector during the same period. According to our analysis (1) gives periodicities around 0.25, 23.33, 33.75 and 42.75 months; (2) exhibits periodicities around 0.5, 1.0, 28.17, 40.67 and 52.5 months and (3) shows periodicities around 16.5 and 28.5 months. We have found almost similar periods in the solar flares, sunspot data, solar proton data.

Koushik Ghosh; Probhas Raychaudhuri

2006-06-05T23:59:59.000Z

69

The Linear Theory Power Spectrum from the Lyman-alpha Forest in the Sloan Digital Sky Survey  

E-Print Network (OSTI)

We analyze the SDSS Ly-alpha forest P_F(k,z) measurement to determine the linear theory power spectrum. Our analysis is based on fully hydrodynamic simulations, extended using hydro-PM simulations. We account for the effect of absorbers with damping wings, which leads to an increase in the slope of the linear power spectrum. We break the degeneracy between the mean level of absorption and the linear power spectrum without significant use of external constraints. We infer linear theory power spectrum amplitude Delta^2_L(k_p=0.009s/km,z_p=3.0)=0.452_{-0.057-0.116}^{+0.069+0.141} and slope n_eff=-2.321_{-0.047-0.102}^{+0.055+0.131} (possible systematic errors are included through nuisance parameters in the fit - a factor >~5 smaller errors would be obtained on both parameters if we ignored modeling uncertainties). The errors are correlated and not perfectly Gaussian, so we provide a chi^2 table to accurately describe the results. The result corresponds to sigma_8=0.85, n=0.94, for a LCDM model with Omega_m=0.3, Omega_b=0.04, and h=0.7, but is most useful in a combined fit with the CMB. The inferred curvature of the linear power spectrum and the evolution of its amplitude and slope with redshift are consistent with expectations for LCDM models, with the evolution of the slope, in particular, being tightly constrained. We use this information to constrain systematic contamination, e.g., fluctuations in the UV background. This paper should serve as a starting point for more work to refine the analysis, including technical improvements such as increasing the size and number of the hydrodynamic simulations, and improvements in the treatment of the various forms of feedback from galaxies and quasars.

P. McDonald; U. Seljak; R. Cen; D. Shih; D. H. Weinberg; S. Burles; D. P. Schneider; D. J. Schlegel; N. A. Bahcall; J. W. Briggs; J. Brinkmann; M. Fukugita; Z. Ivezic; S. Kent; D. E. Vanden Berk

2004-07-19T23:59:59.000Z

70

The noise power spectrum in CT with direct fan beam reconstruction  

Science Conference Proceedings (OSTI)

The noise power spectrum (NPS) is a useful metric for understanding the noise content in images. To examine some unique properties of the NPS of fan beam CT, the authors derived an analytical expression for the NPS of fan beam CT and validated it with computer simulations. The nonstationary noise behavior of fan beam CT was examined by analyzing local regions and the entire field-of-view (FOV). This was performed for cases with uniform as well as nonuniform noise across the detector cells and across views. The simulated NPS from the entire FOV and local regions showed good agreement with the analytically derived NPS. The analysis shows that whereas the NPS of a large FOV in parallel beam CT (using a ramp filter) is proportional to frequency, the NPS with direct fan beam FBP reconstruction shows a high frequency roll off. Even in small regions, the fan beam NPS can show a sharp transition (discontinuity) at high frequencies. These effects are due to the variable magnification and therefore are more pronounced as the fan angle increases. For cases with nonuniform noise, the NPS can show the directional dependence and additional effects.

Baek, Jongduk; Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States) and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States)

2010-05-15T23:59:59.000Z

71

MASKING VERSUS REMOVING POINT SOURCES IN CMB DATA: THE SOURCE-CORRECTED WMAP POWER SPECTRUM FROM NEW EXTENDED CATALOG  

Science Conference Proceedings (OSTI)

In Scodeller et al., a new and extended point source catalog obtained from the Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data was presented. It includes most of the sources included in the standard WMAP seven-year point source catalogs as well as a large number of new detections. Here, we study the effects on the estimated CMB power spectrum when taking the newly detected point sources into consideration. We create point source masks for all the 2102 sources that we detected as well as a smaller one for the 665 sources detected in the Q, V, and W bands. We also create WMAP7 maps with point sources subtracted in order to compare with the spectrum obtained with source masks. The extended point source masks and point source cleaned WMAP7 maps are made publicly available. Using the proper residual correction, we find that the CMB power spectrum obtained from the point source cleaned map without any source mask is fully consistent with the spectrum obtained from the masked map. We further find that the spectrum obtained masking all 2102 sources is consistent with the results obtained using the standard WMAP seven-year point source mask (KQ85y7). We also verify that the removal of point sources does not introduce any skewness.

Scodeller, Sandro; Hansen, Frode K., E-mail: sandro.scodeller@astro.uio.no, E-mail: frodekh@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

2012-12-20T23:59:59.000Z

72

Power-spectrum analysis of Super-Kamiokande solar neutrino data, taking into account asymmetry in the error estimates  

E-Print Network (OSTI)

The purpose of this article is to carry out a power-spectrum analysis (based on likelihood methods) of the Super-Kamiokande 5-day dataset that takes account of the asymmetry in the error estimates. Whereas the likelihood analysis involves a linear optimization procedure for symmetrical error estimates, it involves a nonlinear optimization procedure for asymmetrical error estimates. We find that for most frequencies there is little difference between the power spectra derived from analyses of symmetrized error estimates and from asymmetrical error estimates. However, this proves not to be the case for the principal peak in the power spectra, which is found at 9.43 yr-1. A likelihood analysis which allows for a "floating offset" and takes account of the start time and end time of each bin and of the flux estimate and the symmetrized error estimate leads to a power of 11.24 for this peak. A Monte Carlo analysis shows that there is a chance of only 1% of finding a peak this big or bigger in the frequency band 1 - 36 yr-1 (the widest band that avoids artificial peaks). On the other hand, an analysis that takes account of the error asymmetry leads to a peak with power 13.24 at that frequency. A Monte Carlo analysis shows that there is a chance of only 0.1% of finding a peak this big or bigger in that frequency band 1 - 36 yr-1. From this perspective, power spectrum analysis that takes account of asymmetry of the error estimates gives evidence for variability that is significant at the 99.9% level. We comment briefly on an apparent discrepancy between power spectrum analyses of the Super-Kamiokande and SNO solar neutrino experiments.

P. A. Sturrock; J. D. Scargle

2006-01-30T23:59:59.000Z

73

Constraints on primordial non-Gaussianity from WMAP7 and luminous red galaxies power spectrum and forecast for future surveys  

Science Conference Proceedings (OSTI)

We place new constraints on the primordial local non-Gaussianity parameter f{sub NL} using recent cosmic microwave background anisotropy and galaxy clustering data. We model the galaxy power spectrum according to the halo model, accounting for a scale-dependent bias correction proportional to f{sub NL}/k{sup 2}. We first constrain f{sub NL} in a full 13 parameters analysis that includes 5 parameters of the halo model and 7 cosmological parameters. Using the WMAP7 CMB data and the SDSS DR4 galaxy power spectrum, we find f{sub NL}=171{sub -139}{sup +140} at 68% C.L. and -69forecast the constraints on f{sub NL} from future surveys as EUCLID and from CMB missions as Planck showing that their combined analysis could detect f{sub NL{approx}}5.

De Bernardis, Francesco [Physics Department and INFN, Universita di Roma 'La Sapienza', Ple Aldo Moro 2, 00185, Rome (Italy); Center for Cosmology, Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697 (United States); Serra, Paolo; Cooray, Asantha [Center for Cosmology, Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697 (United States); Melchiorri, Alessandro [Physics Department and INFN, Universita di Roma 'La Sapienza', Ple Aldo Moro 2, 00185, Rome (Italy)

2010-10-15T23:59:59.000Z

74

A Gamma-Ray Burst/Pulsar for Cosmic-Ray Positrons with a Dark Matter-like Spectrum  

E-Print Network (OSTI)

We propose that a nearby gamma-ray burst (GRB) or GRB-like (old, single and short-lived) pulsar/supernova remnant/microquasar about 10^{5-6} years ago may be responsible for the excesses of cosmic-ray positrons and electrons recently observed by the PAMELA, ATIC/PPB-BETS, Fermi and HESS experiments. We can reproduce the smooth Fermi/HESS spectra as well as the spiky ATIC/PPB-BETS spectra. The spectra have a sharp cutoff that is similar to the dark matter predictions, sometimes together with a line (not similar), since higher energy cosmic-rays cool faster where the cutoff/line energy marks the source age. A GRB-like astrophysical source is expected to have a small but finite spread in the cutoff/line as well as anisotropy in the cosmic-ray and diffuse gamma-ray flux, providing a method for the Fermi and future CALET experiments to discriminate between dark matter and astrophysical origins.

Kunihito Ioka

2008-12-30T23:59:59.000Z

75

Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation  

Science Conference Proceedings (OSTI)

When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.

Not Available

2010-12-01T23:59:59.000Z

76

Review of Methods of Power-Spectrum Analysis as Applied to Super-Kamiokande Solar Neutrino Data  

E-Print Network (OSTI)

To help understand why different published analyses of the Super-Kamiokande solar neutrino data arrive at different conclusions, we have applied six different methods to a standardized problem. The key difference between the various methods rests in the amount of information that each processes. A Lomb-Scargle analysis that uses the mid times of the time bins and ignores experimental error estimates uses the least information. A likelihood analysis that uses the start times, end times, and mean live times, and takes account of the experimental error estimates, makes the greatest use of the available information. We carry out power-spectrum analyses of the Super-Kamiokande 5-day solar neutrino data, using each method in turn, for a standard search band (0 to 50 yr-1). For each method, we also carry out a fixed number (10,000) of Monte-Carlo simulations for the purpose of estimating the significance of the leading peak in each power spectrum. We find that, with one exception, the results of these calculations are compatible with those of previously published analyses. (We are unable to replicate Koshio's recent results.) We find that the significance of the peaks at 9.43 yr-1 and at 43.72 yr-1 increases progressively as one incorporates more information into the analysis procedure.

P. A. Sturrock

2004-08-02T23:59:59.000Z

77

Detection of periodic signatures in the solar power spectrum. On the track of l=1 gravity modes  

E-Print Network (OSTI)

In the present work we show robust indications of the existence of g modes in the Sun using 10 years of GOLF data. The present analysis is based on the exploitation of the collective properties of the predicted low-frequency (25 to 140 microHz) g modes: their asymptotic nature, which implies a quasi equidistant separation of their periods for a given angular degree (l). The Power Spectrum (PS) of the Power Spectrum Density (PSD), reveals a significant structure indicating the presence of features (peaks) in the PSD with near equidistant periods corresponding to l=1 modes in the range n=-4 to n=-26. The study of its statistical significance of this feature was fully undertaken and complemented with Monte Carlo simulations. This structure has a confidence level better than 99.86% not to be due to pure noise. Furthermore, a detailed study of this structure suggests that the gravity modes have a much more complex structure than the one initially expected (line-widths, magnetic splittings...). Compared to the latest solar models, the obtained results tend to favor a solar core rotating significantly faster than the rest of the radiative zone. In the framework of the Phoebus group, we have also applied the same methodology to other helioseismology instruments on board SoHO and ground based networks.

R. A. Garcia; S. Turck-Chieze; S. J. Jimenez-Reyes; J. Ballot; P. L. Palle; A. Eff-Darwich; S. Mathur; J. Provost

2006-11-27T23:59:59.000Z

78

Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation  

DOE Green Energy (OSTI)

Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants.

Not Available

2010-12-01T23:59:59.000Z

79

Characteristics of inhalable particulate matter concentration and size distribution from power plants in China  

Science Conference Proceedings (OSTI)

The collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two- stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 {mu}m. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM (PM2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38 99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1 1 0 {mu}m. In this size range, ESP and baghouse collection efficiencies are 85.79 98.6% and 99.54%. Real- time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory. 19 refs., 11 figs., 6 tabs.

Honghong Yi; Jiming Hao; Lei Duan; Xinghua Li; Xingming Guo [Tsinghua University, Beijing (China). Department of Environmental Science and Engineering

2006-09-15T23:59:59.000Z

80

Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector  

E-Print Network (OSTI)

tax credit for wind turbine power plants is an ineffective2007). “Should a coal-fired power plant be replaced orfor Coal-Fired Power Plants. ” Environmental Science &

Barradale, Merrill Jones

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector  

E-Print Network (OSTI)

2006). “Survey of Electric Power Sector Professionals. ”b. Years of experience in electric power c. Experience byover course of career in electric power (utility, developer,

Barradale, Merrill Jones

2010-01-01T23:59:59.000Z

82

Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector  

E-Print Network (OSTI)

2007). “Should a coal-fired power plant be replaced orUncertainty for Coal-Fired Power Plants. ” Environmentalin alternative coal-fired power plant technologies. ” Energy

Barradale, Merrill Jones

2010-01-01T23:59:59.000Z

83

Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector  

E-Print Network (OSTI)

electric power plants, the volatility of natural gas marketsnatural gas overtook coal as the fuel of choice for new power plants,natural gas per kilowatthour generated), among investments in the electric power sector, coal-fired power plants

Barradale, Merrill Jones

2010-01-01T23:59:59.000Z

84

Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector  

E-Print Network (OSTI)

Annual Report on U.S. Wind Power Installation, Cost, andAnnual Report on U.S. Wind Power Installation, Cost, anda Durable Market for Wind Power in the United States. ” The

Barradale, Merrill Jones

2010-01-01T23:59:59.000Z

85

Power Spectrum Analysis of Physikalisch-Technische Bundesanstalt Decay-Rate Data: Evidence for Solar Rotational Modulation  

E-Print Network (OSTI)

Evidence for an anomalous annual periodicity in certain nuclear decay data has led to speculation concerning a possible solar influence on nuclear processes. We have recently analyzed data concerning the decay rates of Cl-36 and Si-32, acquired at the Brookhaven National Laboratory (BNL), to search for evidence that might be indicative of a process involving solar rotation. Smoothing of the power spectrum by weighted-running-mean analysis leads to a significant peak at frequency 11.18/yr, which is lower than the equatorial synodic rotation rates of the convection and radiative zones. This article concerns measurements of the decay rates of Ra-226 acquired at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. We find that a similar (but not identical) analysis yields a significant peak in the PTB dataset at frequency 11.21/yr, and a peak in the BNL dataset at 11.25/yr. The change in the BNL result is not significant since the uncertainties in the BNL and PTB analyses are estimated to be 0.13/yr and 0.07/yr, respectively. Combining the two running means by forming the joint power statistic leads to a highly significant peak at frequency 11.23/yr. We comment briefly on the possible implications of these results for solar physics and for particle physics.

P. A. Sturrock; J. B. Buncher; E. Fischbach; J. T. Gruenwald; D. Javorsek II; J. H. Jenkins; R. H. Lee; J. J. Mattes; J. R. Newport

2010-10-11T23:59:59.000Z

86

Bilayer Polymer Solar Cells with Improved Power Conversion Efficiency and Enhanced Spectrum Coverage  

SciTech Connect

We demonstrate the construction of an efficient bilayer polymer solar cell comprising of Poly(3-hexylthiophene)(P3HT) as a p-type semiconductor and asymmetric fullerene (C{sub 70}) as n-type counterparts. The bilayer configuration was very efficient compared to the individual layer performance and it behaved like a regular p-n junction device. The photovoltaic characteristic of the bilayers were studied under AM 1.5 solar radiation and the optimized device parameters are the following: Voc = 0.5V, Jsc = 10.1 mA/cm{sup 2}, FF = 0.60 and power conversion efficiency of 3.6 %. A high fill factor of {approx}0.6 was achieved, which is only slightly reduced at very intense illumination. Balanced mobility between p-and n-layers is achieved which is essential for achieving high device performance. Correlation between the crystallinity, morphology and the transport properties of the active layers is established. The External quantum efficiency (EQE) spectral distribution of the bilayer devices with different processing solvents correlates well with the trends of short circuit current densities (J{sub sc}) measured under illumination. Efficiency of the bilayer devices with rough P3HT layer was found to be about 3 times higher than those with a planar P3HT surface. Hence it is desirable to have a larger grains with a rough surface of P3HT layer for providing larger interfacial area for the exciton dissociation.

Kekuda, Dhananjaya [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal, India 576 104 (India); Chu, Chih-Wei [Research Center for Applied Science, Academia Sinica, Taipei, Taiwan 300 13 (China)

2011-10-20T23:59:59.000Z

87

Application of Bayesian model averaging to measurements of the primordial power spectrum  

Science Conference Proceedings (OSTI)

Cosmological parameter uncertainties are often stated assuming a particular model, neglecting the model uncertainty, even when Bayesian model selection is unable to identify a conclusive best model. Bayesian model averaging is a method for assessing parameter uncertainties in situations where there is also uncertainty in the underlying model. We apply model averaging to the estimation of the parameters associated with the primordial power spectra of curvature and tensor perturbations. We use CosmoNest and MultiNest to compute the model evidences and posteriors, using cosmic microwave data from WMAP, ACBAR, BOOMERanG, and CBI, plus large-scale structure data from the SDSS DR7. We find that the model-averaged 95% credible interval for the spectral index using all of the data is 0.940

Parkinson, David; Liddle, Andrew R. [Astronomy Centre, University of Sussex, Brighton BN1 9QH (United Kingdom)

2010-11-15T23:59:59.000Z

88

Power-Spectrum Analyses of Super-Kamiokande Solar Neutrino Data: Variability and its Implications for Solar Physics and Neutrino Physics  

E-Print Network (OSTI)

There have been conflicting claims as to whether or not power-spectrum analysis of the Super-Kamiokande solar neutrino data yields evidence of variability. Comparison of these claims is complicated by the fact that the relevant articles may use different datasets, different methods of analysis, and different procedures for significance estimation. The purpose of this article is to clarify the role of power spectrum analysis. To this end, we analyze only the Super-Kamiokande 5-day dataset, and we use a standard procedure for significance estimation proposed by the Super-Kamiokande collaboration. We then analyze this dataset, with this method of significance estimation, using six methods of power spectrum analysis. We find that the significance of the principal peak in the power spectrum (that at 9.43 yr-1with a depth of modulation of 7%) shows a clear correlation with the amount and relevance of the information being processed, as would be expected if there were a real signal in the data. The significance level reaches 99.3% for one method of analysis. We discuss, in terms of sub-dominant processes, possible neutrino-physics interpretations of the apparent variability of the Super-Kamiokande measurements, and we suggest steps that could be taken to resolve the question of variability of the solar neutrino flux.

P. A. Sturrock; D. O. Caldwell; J. D. Scargle; M. S. Wheatland

2005-01-21T23:59:59.000Z

89

Multiple Peaks in the Angular Power Spectrum of the CosmicMicrowave Background: Significance and Consequences for Cosmology  

Science Conference Proceedings (OSTI)

Three peaks and two dips have been detected in the power spectrum of the cosmic microwave background from the BOOMERANG experiment, at {ell} {approx} 210, 540, 840 and {ell} {approx} 420, 750, respectively. Using model-independent analyses, we find that all five features are statistically significant and we measure their location and amplitude. These are consistent with the adiabatic inflationary model. We also calculate the mean and variance of the peak and dip locations and amplitudes in a large 7-dimensional parameter space of such models, which gives good agreement with the model-independent estimates, and forecast where the next few peaks and dips should be found if the basic paradigm is correct. We test the robustness of our results by comparing Bayesian marginalization techniques on this space with likelihood maximization techniques applied to a second 7-dimensional cosmological parameter space, using an independent computational pipeline, and find excellent agreement: {Omega}{sub tot} = 1.02{sub -0.05}{sup +0.06} vs. 1.04 {+-} 0.05, {Omega}{sub b}h{sup 2} = 0.022{sub -0.003}{sup +0.004} vs. 0.019{sub -0.004}{sup +0.005}, and n{sub s} = 0.96{sub -0.09}{sup +0.10} vs. 0.90 {+-} 0.08. The deviation in primordial spectral index n{sub s} is a consequence of the strong correlation with the optical depth.

de Bernardis, P.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill,J.; Boscaleri, A.; Coble, K.; Contaldi, C.R.; Crill, B.P.; De Troia, G.; Farese, P.; Ganga, K.; Giacometti, M.; Hivon, E.; Hristov, V.V.; Iacoangeli, A.; Jaffe, A.H.; Jones, W.C.; Lange, A.E.; Martinis, L.; Masi, S.; Mason, P.; Mauskopf, P.D.; Melchiorri, A.; Montroy, T.; Netterfield, C.B.; Pascale, E.; Piacentini, F.; Pogosyan, D.; Polenta,G.; Pongetti, F.; Prunet, S.; Romeo, G.; Ruhl, J.E.; Scaramuzzi, F.

2001-05-17T23:59:59.000Z

90

Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector  

E-Print Network (OSTI)

structures on the cost of wind power. ” Energy Policy 25(1):cost. Favorable tariff mechanisms have been used to promote wind energy

Barradale, Merrill Jones

2010-01-01T23:59:59.000Z

91

Dark Matter Capture in the first star: a Power source and a limit on Stellar Mass  

E-Print Network (OSTI)

Weakly interacting massive particles, which are their own antiparticles, can annihilate and provide an important heat source for the first (zero-metallicity) stars. When dark matter (DM) capture via scattering off of baryons is included, the luminosity from DM annihilation may dominate over the luminosity due to fusion, depending on the DM density and scattering cross-section. Even more interesting is the possibility that the DM annihilation may exceed the Eddington luminosity and prevent the first stars from growing beyond a limited mass. In such a case, DM will uniquely determine the mass of the first stars. Alternatively, if sufficiently massive zero-metallicity stars are found, they may be used to bound dark matter properties.

Freese, Katherine; Aguirre, Anthony

2008-01-01T23:59:59.000Z

92

Dark Matter Capture in the First Stars: a Power Source and Limit on Stellar Mass  

E-Print Network (OSTI)

The annihilation of weakly interacting massive particles can provide an important heat source for the first (Pop. III) stars, potentially leading to a new phase of stellar evolution known as a "Dark Star". When dark matter (DM) capture via scattering off of baryons is included, the luminosity from DM annihilation may dominate over the luminosity due to fusion, depending on the DM density and scattering cross-section. The influx of DM due to capture may thus prolong the lifetime of the Dark Stars. Comparison of DM luminosity with the Eddington luminosity for the star may constrain the stellar mass of zero metallicity stars; in this case DM will uniquely determine the mass of the first stars. Alternatively, if sufficiently massive Pop. III stars are found, they might be used to bound dark matter properties.

Katherine Freese; Douglas Spolyar; Anthony Aguirre

2008-02-12T23:59:59.000Z

93

Condensed Matter Cluster Reactions in LENR Power Cells for a Radical New Type of Space Power Source  

Science Conference Proceedings (OSTI)

This paper reviews previous theoretical and experimental study on the possibility of nuclear events in multilayer thin film electrodes (Lipson et al., 2004 and 2005; Miley et al., 2007), including the correlation between excess heat and transmutations (Miley and Shrestha, 2003) and the cluster theory that predicts it. As a result of this added understanding of cluster reactions, a new class of electrodes is under development at the University of Illinois. These electrodes are designed to enhance cluster formation and subsequent reactions. Two approaches are under development. The first employs improved loading-unloading techniques, intending to obtain a higher volumetric density of sites favoring cluster formation. The second is designed to create nanostructures on the electrode where the cluster state is formed by electroless deposition of palladium on nickel micro structures. Power units employing these electrodes should offer unique advantages for space applications. This is a fundamental new nuclear energy source that is environmentally compatible with a minimum of radiation involvement, high specific power, very long lifetime, and scalable from micro power to kilowatts.

Yang Xiaoling; Miley, George H.; Hora, Heinz [University of Illinois Urbana-Champaign, NPL Associates, Urbana, IL 217-333-3772 (United States); Department of Theoretical Physics Univ. of New South Wales Sydney (Australia)

2009-03-16T23:59:59.000Z

94

Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector  

E-Print Network (OSTI)

of these policies would give wind energy a boost relative toon the cost of wind power. ” Energy Policy 25(1): 15-27.of Policy Uncertainty on Renewable Energy Investment: Wind

Barradale, Merrill Jones

2010-01-01T23:59:59.000Z

95

Quantum Condensed Matter | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Condensed Matter SHARE Quantum Condensed Matter Neutron scattering is a uniquely powerful probe for measuring the structure and dynamics of condensed matter. As such it is...

96

Quantum Condensed Matter | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Condensed Matter SHARE Quantum Condensed Matter Neutron scattering is a uniquely powerful probe for measuring the structure and dynamics of condensed matter. As such it is...

97

Power Spectrum Analysis of LMSU (Lomonosov Moscow State University) Nuclear Decay-Rate Data: Further Indication of r-Mode Oscillations in an Inner Solar Tachocline  

E-Print Network (OSTI)

This article presents a power-spectrum analysis of 2,350 measurements of the $^{90}$Sr/$^{90}$Y decay process acquired over the interval 4 August 2002 to 6 February 2009 at the Lomonosov Moscow State University (LMSU). As we have found for other long sequences of decay measurements, the power spectrum is dominated by a very strong annual oscillation. However, we also find a set of low-frequency peaks, ranging from 0.26 year$^{-1}$ to 3.98 year$^{-1}$, which are very similar to an array of peaks in a power spectrum formed from Mt Wilson solar diameter measurements. The Mt Wilson measurements have been interpreted in terms of r-mode oscillations in a region where the sidereal rotation frequency is 12.08 year$^{-1}$. We find that the LMSU measurements may also be attributed to the same type of r-mode oscillations in a solar region with the same sidereal rotation frequency. We propose that these oscillations occur in an inner tachocline that separates the radiative zone from a more slowly rotating solar core.

Peter A. Sturrock; Alexander G. Parkhomov; Ephraim Fischbach; Jere H. Jenkins

2012-03-14T23:59:59.000Z

98

ALS Spectrum  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrum Print Begun in 2007, ALS Spectrum is a publication that encapsulates the same type of information contained in the ALS Activity Report but in a short, readable,...

99

SCAVENGING OF PARTICULATE MATTER IN CONNECTION WITH NUCLEAR-POWERED SHIPS. Final Scientific Report  

SciTech Connect

The work carried out over a 2 1/2-yr period on the scavenging of radioactive particles which might be released by the reactor system of a nuclear- powered ship is summarized. Two types of dispersions were considered: aerosols and hydrosols. Radioactive aerosols were scavenged by heterogeneous coagulation with solid and liquid aerosols produced within the radioactive aerosol cloud. Liquid or highly hygroscopic particles, which can be classified as solid particles with liquld films on their surfaces, were found to be the most effective scavengers. A system of fine water spray and hydrolysis products of silicon tetrafluoride was found to be suitable for field application. Scavenging of radioactive cations, anions, and colloids of corrosion and fission products was studied in substitute ocean water, natural ocean water, and natural harbor water. A scavenging system composed of KMnO/sub 4/ and ferrous salts successfully removed most of the radioisotopes. Fe(OH)/sub 3/--MnO/sub 2/ hydrate adsorbed and absorbed radioactive species, thus transferring them from a liquid to a solid phase. Addition of Floc 111 to the system improved sedimentation. The KMnO/sub 4/-FeSO/sub 4/-Floc 111 system was found to bs suitable for field application. (auth)

Rosinski, J.

1960-07-29T23:59:59.000Z

100

Constraint on the cosmological f(R) model from the multipole power spectrum of the SDSS luminous red galaxy sample and prospects for a future redshift survey  

SciTech Connect

A constraint on the viable f(R) model is investigated by confronting theoretical predictions with the multipole power spectrum of the luminous red galaxy sample of the Sloan Digital Sky Survey, data release 7. We obtain a constraint on the Compton wavelength parameter of the f(R) model on the scales of cosmological large-scale structure. A prospect of constraining the Compton wavelength parameter with a future redshift survey is also investigated. The usefulness of the redshift-space distortion for testing the gravity theory on cosmological scales is demonstrated.

Yamamoto, Kazuhiro; Nakamura, Gen; Narikawa, Tatsuya; Sato, Takahiro [Department of Physical Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Huetsi, Gert [Tartu Observatory, EE-61602 Torevere (Estonia)

2010-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ALS Spectrum  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Spectrum Print Begun in 2007, ALS Spectrum is a publication that encapsulates the same type of information contained in the ALS Activity Report but in a short, readable,...

102

Matter & Energy Electricity  

E-Print Network (OSTI)

See Also: Matter & Energy Electricity Energy Technology Computers & Math Distributed Computing Computer Science Science & Society Energy Issues Environmental Policies Reference Electric power transmission Distributed generation Electric power Grid computing ScienceDaily (Oct. 12, 2010) -- A new study

Hines, Paul

103

Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal resources-the steam and water that lie below the earth's surface-have the Geothermal resources-the steam and water that lie below the earth's surface-have the potential to supply vast amounts of clean energy. But continuing to produce geothermal power efficiently and inexpensively can require innovative adjustments to the technology used to process it. Located in the Mayacamas Mountains of northern California, The Geysers is the world's larg- est geothermal complex. Encompassing 45 square miles along the Sonoma and Lake County border, the complex harnesses natural steam reservoirs to create clean renewable energy that accounts for one-fifth of the green power produced in California. In the late 1990s, the pressure of geothermal steam at The Geysers was falling, reducing the output of its power plants. NREL teamed with Pacific

104

Spectrum analysis of the power line flicker induced by the electrical test of the prototype Booster dipole  

Science Conference Proceedings (OSTI)

Testing of the prototype Booster dipole magnet at full current produced measurable disturbances of the beam position at the National Synchrotron Light Source. Power for the magnet and the NSLS are distributed from three substation transformers at Temple Place. Normally the substation configuration is for two independent 13.8 KV buses, derived from the 69 KV LILCO distribution. The buses are connected through a circuit breaker that is normally open circuited. Power for the magnet test is derived from one of the 13.8 KV buses and power for the NSLS is derived from the second bus. Coupling of the pulsating magnet load and the NSLS is at the 69 KV level. However, on the days that the interference was first observed at the NSLS only one-half of the substation transformers at Temple Place were in service. The 13.8 KV tie breaker was closed and the full substation load was supplied from this common bus. Thus the coupling between the pulsating magnet load and the NSLS was at the 13.8 KV level. Establishing the normal two bus configurations at Temple Place appeared to reduce the disturbance. These events suggested a controlled experiment to measure the magnet power swing and the induced powerline flicker; and from these measurements project the flicker on the lab site generated by the Booster operating at full energy. This experiment could corroborate the validity of the electrical models used in analyzing the power flow from the LILCO power grid and its distribution on the Lab site described in Accelerator Division Technical Note 220.

Meth, M.

1992-07-17T23:59:59.000Z

105

NREL Uses Computing Power to Investigate Tidal Power (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Uses Computing Power to Uses Computing Power to Investigate Tidal Power Researchers at the National Renewable Energy Laboratory (NREL) have applied their knowledge of wind flow and turbulence to simulations of underwater tidal turbines. Inspired by similar simulations of wind turbine arrays, NREL researchers used their wind expertise, a supercomputer, and large-eddy simulation to study how the placement of turbines affects the power production of an underwater tidal turbine array. As tides ebb and flow, they create water currents that carry a significant amount of kinetic energy. To capture this energy, several companies are developing and deploying devices known as horizontal-axis tidal turbines, which resemble small wind turbines. These devices can be arranged in an array of multiple turbines to maximize the energy extracted in tidal

106

Evaluation of the Emission, Transport, and Deposition of Mercury, Arsenic, and Fine Particulate Matter From Coal-Based Power Plants in the Ohio River Valley  

NLE Websites -- All DOE Office Websites (Extended Search)

Kevin crist Kevin crist Principal Investigator Ohio University Research and Technology Center Athens, OH 45701 740-593-4751 cristk@ohiou.edu Environmental and Water Resources Evaluation of thE Emission, transport, and dEposition of mErcury, arsEnic, and finE particulatE mattEr from coal-BasEd powEr plants in thE ohio rivEr vallEy rEgion Background The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has established an aggressive research initiative to address the technical and scientific issues surrounding the impact of coal-based power systems on ambient levels of fine particulate matter (PM 2.5 ), nitrogen oxides (NO X ), mercury/air toxics, and acid gases. Regulatory drivers such as the 1990 Clean Air Act Amendments, the 1997 revised National Ambient Air Quality Standards, and the 2005 Clean Air

107

Predict flare noise and spectrum  

Science Conference Proceedings (OSTI)

Predicting flare combustion noise is important to ensure the flare is a certain distance from inhabited areas. Generally, it not feasible to increase the stack height to lower the overall noise at a particular point. This article shows how to calculate flare noise including spectrum considerations. Depending on the spectrum, a lower power noise source may sound louder than a higher power source.

Leite, O.C. (Pilgrim Steel Co., Glassboro, NJ (US))

1988-12-01T23:59:59.000Z

108

Black Hole Spectrum: Continuous or Discrete?  

E-Print Network (OSTI)

We formulate a qualitative argument, based on Heisenberg's uncertainty principle, to support the claim that when the effects of matter fields are assumed to overshadow the effects of quantum mechanics of spacetime, the discrete spectrum of black hole radiation, as such as predicted by Bekenstein's proposal for a discrete black hole area spectrum, reduces to Hawking's black-body spectrum.

Jarmo Makela

1996-08-30T23:59:59.000Z

109

Forecasts for CMB ?- and i-type spectral distortion constraints on the primordial power spectrum on scales 8 < k < 10^4 Mpc^-1 with the future Pixie-like experiments  

E-Print Network (OSTI)

Silk damping at redshifts 1.5 x 10^4 < z < 2 x 10^6 erases CMB anisotropies on scales corresponding to the comoving wavenumbers 8 < k < 10^4 Mpc^-1 (10^5 < \\ell < 10^8). This dissipated energy is gained by the CMB monopole, creating distortions from a blackbody in the CMB spectrum of the \\mu-type and the i-type. We study, using Fisher matrices, the constraints we can get from measurements of these spectral distortions on the primordial power spectrum from future experiments such as Pixie, and how these constraints change as we change the frequency resolution and the sensitivity of the experiment. We show that the additional information in the shape of the $i$-type distortions, in combination with the \\mu-type distortions, allows us to break the degeneracy between the amplitude and the spectral index of the power spectrum on these scales and leads to much tighter constraints. We quantify the information contained in both the \\mu-type distortions and the i-type distortions taking into account the partial degeneracy with the y-type distortions and the temperature of the blackbody part of the CMB. We also calculate the constraints possible on the primordial power spectrum when the spectral distortion information is combined with the CMB anisotropies measured by the WMAP, SPT, ACT and Planck experiments.

Rishi Khatri; Rashid A. Sunyaev

2013-03-28T23:59:59.000Z

110

Spatial energy spectrum of primordial magnetic fields  

E-Print Network (OSTI)

Here, we analyze the primordial magnetic field transition between a radiative and a matter-dominated universe. The gravitational structure formation affects its evolution and energy spectrum. The structure excitation can trigger magnetic field amplification and the steepening of its energy density spectrum.

Grazyna Siemieniec-Ozieblo

2004-10-04T23:59:59.000Z

111

Time Variations of the Solar Neutrino Flux Data from Sage and Gallex-Gno Detectors Obtained by Rayleigh Power Spectrum Analysis  

E-Print Network (OSTI)

We have used Rayleigh power spectrum analysis of the monthly solar neutrino flux data from (1) SAGE detector during the period from 1st January 1990 to 31st December 2000; (2) SAGE detector during the period from April 1998 to December 2001; (3) GALLEX detector during the period from May 1991 to January 1997; (4) GNO detector during the period from May 1998 to December 2001; (5) GALLEX-GNO detector (combined data) from May 1991 to December 2001 and (6) average of the data from GNO and SAGE detectors during the period from May 1998 to December 2001. (1) exhibits periodicity around 1.3, 4.3, 5.5, 6.3, 7.9, 8.7, 15.9, 18.7, 23.9, 32.9 and 48.7 months. (2) shows periodicity around 1.5, 2.9, 4.5, 10.1 months. For (3) we observe periodicity around 1.7, 18.7 and 26.9 months. For (4) periodicity is seen around 3.5, 5.5, 7.7 and 10.5 months. (5) gives periodicity around 1.7, 18.5, 28.5 and 42.1 months while (6) shows periodicity around 4.3, 6.9, 10.3 and 18.1 months. We have found almost similar periods in the solar flares, sunspot data, solar proton data which indicates that the solar activity cycle may be due to the variable character of nuclear energy generation inside the sun.

Koushik Ghosh; Probhas Raychaudhuri

2006-06-05T23:59:59.000Z

112

Weak gravitational lensing as a method to constrain unstable dark matter  

SciTech Connect

The nature of the dark matter remains a mystery. The possibility of an unstable dark matter particle decaying to invisible daughter particles has been explored many times in the past few decades. Meanwhile, weak gravitational lensing shear has gained a lot of attention as a probe of dark energy, though it was previously considered a dark matter probe. Weak lensing is a useful tool for constraining the stability of the dark matter. In the coming decade a number of large galaxy imaging surveys will be undertaken and will measure the statistics of cosmological weak lensing with unprecedented precision. Weak lensing statistics are sensitive to unstable dark matter in at least two ways. Dark matter decays alter the matter power spectrum and change the angular diameter distance-redshift relation. We show how measurements of weak lensing shear correlations may provide the most restrictive, model-independent constraints on the lifetime of unstable dark matter. Our results rely on assumptions regarding nonlinear evolution of density fluctuations in scenarios of unstable dark matter and one of our aims is to stimulate interest in theoretical work on nonlinear structure growth in unstable dark matter models.

Wang Meiyu; Zentner, Andrew R. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States)

2010-12-15T23:59:59.000Z

113

Changes in the halo formation rates due to features in the primordial spectrum  

E-Print Network (OSTI)

Features in the primordial scalar power spectrum provide a possible roadway to describe the outliers at the low multipoles in the WMAP data. Apart from the CMB angular power spectrum, these features can also alter the matter power spectrum and, thereby, the formation of the large scale structure. Carrying out a complete numerical analysis, we investigate the effects of primordial features on the formation rates of the halos. We consider a few different inflationary models that lead to features in the scalar power spectrum and an improved fit to the CMB data, and analyze the corresponding imprints on the formation of halos. Performing a Markov Chain Monte Carlo analysis with the WMAP seven year data and the SDSS halo power spectrum from LRG DR7 for the models of our interest, we arrive at the parameter space of the models allowed by the data. We illustrate that, inflationary potentials, such as the quadratic potential with sinusoidal modulations and the axion monodromy model, which generate certain repeated, oscillatory features in the inflationary perturbation spectrum, do not induce a substantial difference in the number density of halos at their best fit values, when compared with, say, a nearly scale invariant spectrum as is generated by the standard quadratic potential. However, we find that the number density and the formation rates of halos change by about 13-22% for halo masses ranging over 10^4-10^14 solar mass, for potential parameters that lie within 2-sigma around the best fit values arrived at from the aforesaid joint constraints. We briefly discuss the implications of our results.

Dhiraj Kumar Hazra

2012-10-26T23:59:59.000Z

114

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

Science Conference Proceedings (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley Region, operated independently of this project. These sites may include (1) the DOE National Energy Technology Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2004-04-02T23:59:59.000Z

115

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

Science Conference Proceedings (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley Region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley Region.

Kevin Crist

2003-10-02T23:59:59.000Z

116

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

Science Conference Proceedings (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2005-04-02T23:59:59.000Z

117

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

Science Conference Proceedings (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2004-10-02T23:59:59.000Z

118

Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region  

Science Conference Proceedings (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2005-10-02T23:59:59.000Z

119

Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region  

Science Conference Proceedings (OSTI)

As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This is accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results were compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory’s monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions provides critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2008-12-31T23:59:59.000Z

120

Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region  

Science Conference Proceedings (OSTI)

As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2006-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S  

E-Print Network (OSTI)

The measurement of an excess in the cosmic-ray electron spectrum between 300 and 800 GeV by the ATIC experiment has - together with the PAMELA detection of a rise in the positron fraction up to 100 GeV - motivated many interpretations in terms of dark matter scenarios; alternative explanations assume a nearby electron source like a pulsar or supernova remnant. Here we present a measurement of the cosmic-ray electron spectrum with H.E.S.S. starting at 340 GeV. The H.E.S.S. data with their lower statistical errors show no indication of a structure in the electron spectrum, but rather a power-law spectrum with spectral index of 3.0 +- 0.1 (stat.) +- 0.3 (syst.) which steepens at about 1 TeV.

Aharonian, F

2009-01-01T23:59:59.000Z

122

From the Spectrum to Inflation: An Inverse Formula for the General Slow-Roll Spectrum  

E-Print Network (OSTI)

We propose a general inverse formula for extracting inflationary parameters from the observed power spectrum of cosmological perturbations. Under the general slowroll scheme, which helps to probe the properties of inflation in a model independent way, we invert the leading order, single field, power spectrum formula. We also give some physically interesting examples to demonstrate its wide applicability and illuminate its properties.

Minu Joy; Ewan D. Stewart; Jinn-ouk Gong Hyun-chul Lee

2008-01-01T23:59:59.000Z

123

Space Time Matter inflation  

E-Print Network (OSTI)

We study a model of power-law inflationary inflation using the Space-Time-Matter (STM) theory of gravity for a five dimensional (5D) canonical metric that describes an apparent vacuum. In this approach the expansion is governed by a single scalar (neutral) quantum field. In particular, we study the case where the power of expansion of the universe is $p \\gg 1$. This kind of model is more successful than others in accounting for galaxy formation.

Mariano Anabitarte; Mauricio Bellini

2005-08-31T23:59:59.000Z

124

Dark Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

with other matter. Based on observations of the relationships between mass and gravity and the speed of the stars and other cosmological systems, scientists believe that...

125

NRELs Wind Powering America Team Helps Indiana Develop Wind Resources (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Wind Powering NREL's Wind Powering America Team Helps Indiana Develop Wind Resources How does a state advance, in just five years, from having no wind power to having more than 1000 megawatts (MW) of installed capacity? The Wind Powering America (WPA) initiative, based at the National Renewable Energy Laboratory (NREL), employs a state-focused approach that has helped accelerate wind energy deployment in many states. One such state is Indiana, which is now home to the largest wind plant east of the Mississippi. Since 1999, WPA has helped advance technology acceptance and wind energy deployment across the United States through the formation of state wind working groups (WWGs). The WWGs facilitate workshops, manage anemometer loan programs, conduct outreach, and

126

Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Components Makeover Gives Components Makeover Gives Concentrating Solar Power a Boost Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants. Space Frames for Lower Costs To maximize the overall efficiency of the conventional glass-mirror trough system, NREL worked with Acciona Solar Power-then known as Solargenix Energy-to improve vari- ous system components. A key focus was the structural framework that holds the mirrors

127

NREL Helps Cool the Power Electronics in Electric Vehicles (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Helps Cool the Power Helps Cool the Power Electronics in Electric Vehicles Researchers at the National Renewable Energy Laboratory (NREL) are developing and demonstrating innovative heat-transfer technologies for cooling power electronics devices in hybrid and electric vehicles. In collaboration with 3M and Wolverine Tube, Inc., NREL is using surface enhancements to dissipate heat more effectively, permitting a reduction in the size of power electronic systems and potentially reducing the overall costs of electric vehicles. Widespread use of advanced electric-drive vehicles-including electric vehicles (EVs) and hybrid electric vehicles (HEVs)-could revolutionize transportation and dramatically reduce U.S. oil consumption. Improving the cost and performance of these vehicles' electric-drive systems

128

Quark Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Quark Quark Matter in Neutron Stars Prashanth Jaikumar Argonne National Laboratory, (PHY) September 7th, 2006 . - p.1/29 Outline * Neutron stars: observations by a theorist . - p.2/29 Outline * Neutron stars: observations by a theorist * Mass-Radius constraints on Equation of State (EoS) . - p.2/29 Outline * Neutron stars: observations by a theorist * Mass-Radius constraints on Equation of State (EoS) * Is quark matter inside neutron stars ruled out? . - p.2/29 Outline * Neutron stars: observations by a theorist * Mass-Radius constraints on Equation of State (EoS) * Is quark matter inside neutron stars ruled out? ------------------------ * Strange Quark stars: Features and "Findings" . - p.2/29 Outline * Neutron stars: observations by a theorist * Mass-Radius constraints on Equation of State (EoS) * Is quark matter inside neutron stars ruled out? ------------------------

129

NREL Triples Previous Estimates of U.S. Wind Power Potential (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Triples Previous Estimates of Triples Previous Estimates of U.S. Wind Power Potential The National Renewable Energy Laboratory (NREL) recently released new estimates of the U.S. potential for wind-generated electricity, using advanced wind mapping and validation techniques that triple previous estimates of the size of the nation's wind resources. The new study, conducted by NREL and AWS TruePower, finds that the contiguous 48 states have the potential to generate up to 37 million gigawatt-hours annually. In comparison, the total U.S. electricity generation from all sources was roughly 4 million gigawatt-hours in 2009. Detailed state-by-state estimates of wind energy potential for the United States show the estimated average wind speeds at an 80-meter height. The wind resource maps and estimates

130

The 1998 November 14 Occultation of GSC 0622-00345 by Saturn. II. Stratospheric Thermal Profile, Power Spectrum, and Gravity Waves  

E-Print Network (OSTI)

On 1998 November 14, Saturn and its rings occulted the star GSC 0622-00345. The occultation latitude was 55.5 degrees S. This paper analyzes the 2.3 {\\mu}m light curve derived by Harrington & French. A fixed-baseline isothermal fit to the light curve has a temperature of 140 +/- 3 K, assuming a mean molecular mass of 2.35 AMU. The thermal profile obtained by numerical inversion is valid between 1 and 60 {\\mu}bar. The vertical temperature gradient is >0.2 K/km more stable than the adiabatic lapse rate, but it still shows the alternating-rounded-spiked features seen in many temperature gradient profiles from other atmospheric occultations and usually attributed to breaking gravity (buoyancy) waves. We conduct a wavelet analysis of the thermal profile, and show that, even with our low level of noise, scintillation due to turbulence in Earth's atmosphere can produce large temperature swings in light-curve inversions. Spurious periodic features in the "reliable" region of a wavelet amplitude spectrum can excee...

Harrington, Joseph; Matcheva, Katia; 10.1088/0004-637X/716/1/404

2010-01-01T23:59:59.000Z

131

Using Light to Control How X Rays Interact with Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Light to Control How X Rays Interact with Matter Print Using Light to Control How X Rays Interact with Matter Print Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the visible-light regime where an optical control pulse influences how an optical probe pulse interacts with a medium. This approach has opened new research directions in fields like quantum computing and nonlinear optics, while also spawning entirely new research areas, such as electromagnetically induced transparency and slow light. However, it has been unclear whether similar optical control schemes could be used to modify how x rays interact with matter. In a dramatic breakthrough demonstration at the ALS, a Berkeley Lab-Argonne National Laboratory group has now used powerful visible-light lasers to render a nominally opaque material transparent to x rays. While x-ray transparency will have immediate applications at x-ray light sources, the important result is that the findings lay a foundation for a broader spectrum of applications.

132

Using Light to Control How X Rays Interact with Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Light to Control How X Rays Interact with Matter Print Using Light to Control How X Rays Interact with Matter Print Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the visible-light regime where an optical control pulse influences how an optical probe pulse interacts with a medium. This approach has opened new research directions in fields like quantum computing and nonlinear optics, while also spawning entirely new research areas, such as electromagnetically induced transparency and slow light. However, it has been unclear whether similar optical control schemes could be used to modify how x rays interact with matter. In a dramatic breakthrough demonstration at the ALS, a Berkeley Lab-Argonne National Laboratory group has now used powerful visible-light lasers to render a nominally opaque material transparent to x rays. While x-ray transparency will have immediate applications at x-ray light sources, the important result is that the findings lay a foundation for a broader spectrum of applications.

133

Using Light to Control How X Rays Interact with Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Light to Control How X Using Light to Control How X Rays Interact with Matter Using Light to Control How X Rays Interact with Matter Print Wednesday, 27 January 2010 00:00 Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the visible-light regime where an optical control pulse influences how an optical probe pulse interacts with a medium. This approach has opened new research directions in fields like quantum computing and nonlinear optics, while also spawning entirely new research areas, such as electromagnetically induced transparency and slow light. However, it has been unclear whether similar optical control schemes could be used to modify how x rays interact with matter. In a dramatic breakthrough demonstration at the ALS, a Berkeley Lab-Argonne National Laboratory group has now used powerful visible-light lasers to render a nominally opaque material transparent to x rays. While x-ray transparency will have immediate applications at x-ray light sources, the important result is that the findings lay a foundation for a broader spectrum of applications.

134

The Morphology of the Galactic Dark Matter Synchrotron Emission with Self-Consistent Cosmic Ray Diffusion Models  

E-Print Network (OSTI)

A generic prediction in the paradigm of weakly interacting dark matter is the production of relativistic particles from dark matter pair-annihilation in regions of high dark matter density. Ultra-relativistic electrons and positrons produced in the center of the Galaxy by dark matter annihilation should produce a diffuse synchrotron emission. While the spectral shape of the synchrotron dark matter haze depends on the particle model (and secondarily on the galactic magnetic fields), the morphology of the haze depends primarily on (1) the dark matter density distribution, (2) the galactic magnetic field morphology, and (3) the diffusion model for high-energy cosmic-ray leptons. Interestingly, an unidentified excess of microwave radiation with characteristics similar to those predicted by dark matter models has been claimed to exist near the galactic center region in the data reported by the WMAP satellite, and dubbed the "WMAP haze". In this study, we carry out a self-consistent treatment of the variables enumerated above, enforcing constraints from the available data on cosmic rays, radio surveys and diffuse gamma rays. We outline and make predictions for the general morphology and spectral features of a "dark matter haze" and we compare them to the WMAP haze data. We also characterize and study the spectrum and spatial distribution of the inverse Compton emission resulting from the same population of energetic electrons and positrons. We point out that the spectrum and morphology of the radio emission at different frequencies is a powerful diagnostics to test whether a galactic synchrotron haze indeed originates from dark matter annihilation.

Tim Linden; Stefano Profumo; Brandon Anderson

2010-04-22T23:59:59.000Z

135

Pulsar Emission Spectrum  

E-Print Network (OSTI)

Emission spectrum is calculated for a weak axisymmetric pulsar. Also calculated are the observed spectrum, efficiency, and the observed efficiency. The underlying flow of electrons and positrons turns out to be curiously intricate.

Gruzinov, Andrei

2013-01-01T23:59:59.000Z

136

Matter Field, Dark Matter and Dark Energy  

E-Print Network (OSTI)

A model concerning particle theory and cosmology is proposed. Matter field, dark matter and dark energy are created by an energy flow from space to primordial matter fields at the phase transition in the early universe.

Masayasu Tsuge

2008-02-01T23:59:59.000Z

137

Correlation between the Mean Matter Density and the Width of the Saturated Lyman Alpha Absorption  

E-Print Network (OSTI)

We report a scaling of the mean matter density with the width of the saturated Lyman alpha absorptions. This property is established using the ``pseudo-hydro'' technique (Croft et al. 1998). It provides a constraint for the inversion of the Lyman alpha forest, which encounters difficulty in the saturated region. With a Gaussian density profile and the scaling relation, a simple inversion of the simulated Lyman alpha forests shows that the one-dimensional mass power spectrum is well recovered on scales above 2 Mpc/h, or roughly k small scales, but improvement is possible with a more sophisticated algorithm.

Zhan, H

2003-01-01T23:59:59.000Z

138

Correlation between the Mean Matter Density and the Width of the Saturated Lyman Alpha Absorption  

E-Print Network (OSTI)

We report a scaling of the mean matter density with the width of the saturated Lyman alpha absorptions. This property is established using the ``pseudo-hydro'' technique (Croft et al. 1998). It provides a constraint for the inversion of the Lyman alpha forest, which encounters difficulty in the saturated region. With a Gaussian density profile and the scaling relation, a simple inversion of the simulated Lyman alpha forests shows that the one-dimensional mass power spectrum is well recovered on scales above 2 Mpc/h, or roughly k small scales, but improvement is possible with a more sophisticated algorithm.

Hu Zhan

2003-05-24T23:59:59.000Z

139

THE ZEEMAN SPECTRUM OF SCANDIUM  

E-Print Network (OSTI)

hundred lines in the solar spectrum. Fraunhofer was thea list of over 15,000 solar spectrum lines, measured and

Lulu, Bruce Alan

2010-01-01T23:59:59.000Z

140

Holographic dark matter and dark energy with second order invariants  

E-Print Network (OSTI)

One of the main goals of modern cosmology remains to summon up a self consistent policy, able to explain, in the framework of the Einstein's theory, the cosmic speed up and the presence of Dark Matter in the Universe. Accordingly to the Holographic principle, which postulates the existence of a minimal size of a physical region, we argue, in this paper, that if this size exists for the Universe and it is accrued from the independent geometrical second order invariants, it would be possible to ensure a surprising source for Dark Matter and a viable candidate for explaining the late acceleration of the Universe. Along the work, we develop low redshift tests, such as Supernovae Ia and kinematical analysis complied by the use of Cosmography and we compare the outcomes with higher redshift tests, such as CMB peak and anisotropy of the cosmic power spectrum. All the results indicate that the models presented here can be interpreted as unified models that are capable to describe both the dark matter and the dark energy.

Alejandro Aviles; Luca Bonanno; Orlando Luongo; Hernando Quevedo

2011-09-14T23:59:59.000Z

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Radiation detector spectrum simulator  

DOE Patents (OSTI)

A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

Wolf, M.A.; Crowell, J.M.

1985-04-09T23:59:59.000Z

142

Radiation detector spectrum simulator  

SciTech Connect

A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

Wolf, Michael A. (Los Alamos, NM); Crowell, John M. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

143

Dark energy interacting with neutrinos and dark matter: a phenomenological theory  

E-Print Network (OSTI)

A model for a flat homogeneous and isotropic Universe composed of dark energy, dark matter, neutrinos, radiation and baryons is analyzed. The fields of dark matter and neutrinos are supposed to interact with the dark energy. The dark energy is considered to obey either the van der Waals or the Chaplygin equations of state. The ratio between the pressure and the energy density of the neutrinos varies with the red-shift simulating massive and non-relativistic neutrinos at small red-shifts and non-massive relativistic neutrinos at high red-shifts. The model can reproduce the expected red-shift behaviors of the deceleration parameter and of the density parameters of each constituent. The recent astronomical measurements of type-IA supernovae [1, 2, 3, 4] and the analysis of the power spectrum of the CMBR [5, 6, 7, 8, 9] provided strong evidence for a present accelerated

G. M. Kremer

2008-01-01T23:59:59.000Z

144

A Cosmological Kinetic Theory for the Evolution of Cold Dark Matter Halos with Substructure: Quasi-Linear Theory  

E-Print Network (OSTI)

We present a kinetic theory for the evolution of the phase-space distribution of dark matter particles in galaxy halos in the presence of a cosmological spectrum of fluctuations. This theory introduces a new way to model the formation and evolution of halos, which traditionally have been investigated by analytic gravitational infall models or numerical N-body methods. Unlike the collisionless Boltzmann equation, our kinetic equation contains nonzero terms on the right-hand side arising from stochastic fluctuations in the gravitational potential due to substructures in the dark matter mass distribution. Using statistics for constrained Gaussian random fields in standard cosmological models, we show that our kinetic equation to second-order in perturbation theory is of the Fokker-Planck form, with one scattering term representing drift and the other representing diffusion in velocity-space. The drift is radial, and the drift and diffusion coefficients depend only on positions and not velocities; our relaxation process in the quasilinear regime is therefore different from the standard two-body relaxation. We provide explicit expressions relating these coefficients to the linear power spectrum of mass fluctuation and present results for the currently favored cold dark matter model with a nonzero cosmological constant. Solutions to this kinetic equation will provide a complete description of the cold dark matter spatial and velocity distributions for the average halo during the early phases of galaxy halo formation.

Chung-Pei Ma; Edmund Bertschinger

2003-11-03T23:59:59.000Z

145

Physics Out Loud - Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Previous Video (Laser) Physics Out Loud Main Index Next Video (Neutron) Neutron Matter David Lawrence, a Jefferson Lab physicist, discusses matter...

146

A Note on the Ocean Surface Roughness Spectrum  

Science Conference Proceedings (OSTI)

In a recent study, the dimensionless surface roughness spectrum has been empirically parameterized as a power-law function of the dimensionless wind speed expressed as the ratio of wind friction velocity and phase speed of the surface roughness ...

Paul A. Hwang

2011-03-01T23:59:59.000Z

147

Spectrum Policy Seminar | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrum Policy Seminar Spectrum Policy Seminar Slide show from FCC's Public Safety and Homeland Security Bureau's presenation on spectrum policy. Spectrum Policy Seminar More...

148

Broad spectrum solar cell  

DOE Patents (OSTI)

An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA); Wu, Junqiao (Richmond, CA); Schaff, William J. (Ithaca, NY)

2007-05-15T23:59:59.000Z

149

Dark Matter in the Private Higgs Model  

E-Print Network (OSTI)

The extremely large hierarchy observed in the fermion mass spectrum remains as one of the most puzzling and unresolved issues in particle physics. In a recent proposal, however, it was demonstrated that by introducing one Higgs doublet (or Private Higgs) per fermion this hierarchy could be made natural by making the Yukawa couplings between each fermion and its respective Higgs boson of order unity. Among the interesting predictions of the Private Higgs scenario is a variety of scalars which could be probed at future collider experiments and a possible dark matter candidate. In this paper, we study in some detail the dark matter sector of the Private Higgs model. We first calculate the annihilation cross sections of dark matter in this model and find that one can easily account for the observed density of dark matter in the Universe with relatively natural values of the model's parameters. Finally, we investigate the possibility of detecting Private Higgs dark matter indirectly via the observation of anomalous gamma rays originating from the galactic halo. We show that a substantial flux of photons can be produced from the annihilation of Private Higgs dark matter such that, if there is considerable clumping of dark matter in the galactic halo, the flux of these gamma rays could be observed by ground-based telescope arrays such as VERITAS and HESS.

C. B. Jackson

2008-04-23T23:59:59.000Z

150

The Spectrum of High-Frequency Internal Waves in the Atmospheric Waveguide  

Science Conference Proceedings (OSTI)

The vertical structure and power spectrum of the field of internal waves generated in the atmospheric waveguide by random vertical displacements were considered in this paper.

I. P. Chunchuzov

1996-07-01T23:59:59.000Z

151

Self-interfering matter-wave patterns generated by a moving laser obstacle in a two-dimensional Bose-Einstein condensate inside a power trap cut off by box potential boundaries  

SciTech Connect

We report the observation of highly energetic self-interfering matter-wave (SIMW) patterns generated by a moving obstacle in a two-dimensional Bose-Einstein condensate (BEC) inside a power trap cut off by hard-wall box potential boundaries. The obstacle initially excites circular dispersive waves radiating away from the center of the trap which are reflected from hard-wall box boundaries at the edges of the trap. The resulting interference between outgoing waves from the center of the trap and reflected waves from the box boundaries institutes, to the best of our knowledge, unprecedented SIMW patterns. For this purpose we simulated the time-dependent Gross-Pitaevskii equation using the split-step Crank-Nicolson method and the obstacle was modelled by a moving impenetrable Gaussian potential barrier. Various trapping geometries are considered in which the dynamics of the spatial and momentum density, as well as the energy, are considered. The momentum dynamics reveal an oscillatory behavior for the condensate fraction, indicative of excitations out of and de-excitations back into the condensate state. An oscillatory pattern for the energy dynamics reveals the presence of solitons in the system. Some vortex features are also obtained.

Sakhel, Roger R. [Department of Basic Sciences, Faculty of Information Technology, Isra University, Amman 11622 (Jordan); Sakhel, Asaad R. [Department of Applied Sciences, Faculty of Engineering Technology, Al-Balqa Applied University, Amman 11134 (Jordan); Ghassib, Humam B. [Department of Physics, The University of Jordan, Amman 11942 (Jordan)

2011-09-15T23:59:59.000Z

152

Chapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy spectrum  

E-Print Network (OSTI)

;Photovoltaic devices or solar cells convert thePhotovoltaic devices or solar cells convert the incident solar 4 Solar cell plant #12;Cars powered by photovoltaic devices PHYS 5320 Chapter Nine 5 #12;SolarChapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy

Wang, Jianfang

153

Dark Matter & Dark Energy from a single scalar field: CMB spectrum and matter transfer function  

E-Print Network (OSTI)

The dual axion model (DAM), yielding bot DM and DE form a PQ-like scalar field solving the strong CP problem, is known to allow a fair fit of CMB data. Recently, however, it was shown that its transfer function exhibits significant anomalies, causing difficulties to fit deep galaxy sample data. Here we show how DAM can be modified to agree with the latter data set. The modification follows the pattern suggested to reconcile any PQ-like approach with gravity. Modified DAM allows precise predictions which can be testable against future CMB and/or deep sample data.

Mainini Roberto; Silvio Bonometto

2007-09-03T23:59:59.000Z

154

SaskPower Small Power Producers Program (Saskatchewan, Canada...  

Open Energy Info (EERE)

SaskPower Small Power Producers Program (Saskatchewan, Canada) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to:...

155

RHIC | Why Does Quark Matter Matter?  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Does Quark Matter 'Matter'? Why Does Quark Matter 'Matter'? The history of modern technological development can be viewed as a series of investigations, with ever increasing resolution, into the microscopic structure of matter. Since the days of the early Greek philosophers, science has been on a continual quest to find the smallest piece - the most fundamental building block - forming the substance of the universe. STAR researchers During that journey, many beautiful and exotic properties of the subatomic world have been discovered: particles with wave-like properties the ultimate position of which can never be known; "particles" of light that deliver a fixed amount of energy when they strike the atoms of a material's surface; particles in some types of electrical conductors that

156

Constraints on inelastic dark matter from XENON10  

SciTech Connect

It has been suggested that dark matter particles which scatter inelastically from detector target nuclei could explain the apparent incompatibility of the DAMA modulation signal (interpreted as evidence for particle dark matter) with the null results from CDMS-II and XENON10. Among the predictions of inelastically interacting dark matter are a suppression of low-energy events, and a population of nuclear recoil events at higher nuclear recoil equivalent energies. This is in stark contrast to the well-known expectation of a falling exponential spectrum for the case of elastic interactions. We present a new analysis of XENON10 dark matter search data extending to E{sub nr} = 75 keV nuclear recoil equivalent energy. Our results exclude a significant region of previously allowed parameter space in the model of inelastically interacting dark matter. In particular, it is found that dark matter particle masses m{sub x} {approx}> 150 GeV are disfavored.

Angle, J; Aprile, E; Arneodo, F; Baudis, L; Bernstein, A; Bolozdynya, A; Coelho, L C; Dahl, C E; DeViveiros, L; Ferella, A D; Fernandes, L P; Fiorucci, S; Gaitskell, R J; Giboni, K L; Gomez, R; Hasty, R; Kastens, L; Kwong, J; Lopes, J M; Madden, N; Manalaysay, A; Manzur, A; McKinsey, D N; Monzani, M E; Ni, K; Oberlack, U; Orboeck, J; Plante, G; Santorelli, R; dos Santos, J; Shagin, P; Shutt, T; Sorensen, P; Schulte, S; Winant, C; Yamashita, M

2009-11-23T23:59:59.000Z

157

Exothermic dark matter  

E-Print Network (OSTI)

We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, ...

Graham, Peter W.

158

Design of programmable matter  

E-Print Network (OSTI)

Programmable matter is a proposed digital material having computation, sensing, actuation, and display as continuous properties active over its whole extent. Programmable matter would have many exciting applications, like ...

Knaian, Ara N. (Ara Nerses), 1977-

2008-01-01T23:59:59.000Z

159

THE COSMIC EVOLUTION OF FAINT SATELLITE GALAXIES AS A TEST OF GALAXY FORMATION AND THE NATURE OF DARK MATTER  

SciTech Connect

The standard cosmological model based on cold dark matter (CDM) predicts a large number of subhalos for each galaxy-size halo. Matching the subhalos to the observed properties of luminous satellites of galaxies in the local universe poses a significant challenge to our understanding of the astrophysics of galaxy formation. We show that the cosmic evolution and host mass dependence of the luminosity function of satellites provide a powerful new diagnostic to disentangle astrophysical effects from variations in the underlying dark matter mass function. We illustrate this by comparing recent observations of satellites between redshifts 0.1 < z < 0.8 based on Hubble Space Telescope images, with predictions from three different state-of-the-art semi-analytic models applied to CDM power spectra, with one model also applied to a warm dark matter (WDM) spectrum. We find that even though CDM models provide a reasonable fit to the local luminosity function of satellites around galaxies comparable to the Milky Way, they do not reproduce the data as well for different redshifts and host galaxy stellar masses, indicating that further improvements in the description of star formation are likely needed. The WDM model matches the observed mass dependence and redshift evolution of satellite galaxies more closely, indicating that a modification of the underlying power spectrum may offer an alternative solution to this tension. We conclude by presenting predictions for the color distribution of satellite galaxies to demonstrate how future observations will be able to further distinguish between these models and to help constrain baryonic and non-baryonic physics.

Nierenberg, A. M.; Treu, T. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Menci, N. [NAF-Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monteporzio (Italy); Lu, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94309 (United States); Wang, W., E-mail: amn01@physics.ucsb.edu [Key Laboratory for Research in Galaxies and Cosmology of Chinese Academy of Sciences, Max-Planck-Institute Partner Group, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China)

2013-08-01T23:59:59.000Z

160

Discrete multiwavelength spectrum created  

NLE Websites -- All DOE Office Websites (Extended Search)

Supramolecular structure of polymer blends Supramolecular structure of polymer blends * Macroscale self-similarity of rocks * Structure of colloidal crystals and alloys * Hydration of cement pastes * Aggregation in colloidal dispersions * Self-assembling of polymers * Mesoscopic structure of natural composites * Structure of granular powders * Morphology of colloidal reinforcing fillers * Structure and morphology of complex fluids * Rheology and morphology of hydrogels 06-G01637F/gim Moderator Decoupled poisoned hydrogen Source- detector distance 30 m Focusing premono- chromator Cooper mosaic Cu(111) crystals Monochro- mator and analyzer Si(220) channel-cut, triple-bounce crystals Bragg angle 70° Wavelength spectrum 4 Bragg

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Understanding the cost of power interruptions to U.S. electricity consumers  

E-Print Network (OSTI)

Laboratory, Berkeley CA. Electric Power Research Institute.Spectrum, 30 (6), 40. Electric Power Research Institute.Applications. Electric Power Research Institute, Palo Alto

LaCommare, Kristina Hamachi; Eto, Joseph H.

2004-01-01T23:59:59.000Z

162

Just the Basics: Particulate Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

is Particulate is Particulate Matter? One of the major components of air pollution is particulate matter, or PM. PM refers to airborne particles that include dust, dirt, soot, smoke, and liquid droplets. These particles can range in size from microscopic to large enough to be seen. PM is characterized by its size, with fine particles of less than 2.5 micrometers in size designated as PM 2.5 and coarser particles between 2.5 and 10 micrometers in size designated as PM 10 . PM arises from many sources, including combustion occurring in factories, power plants, cars, trucks, buses, trains, or wood fires; or through simple agitation of existing particulates by tilling of land, quarrying and stone-crushing, and off- road vehicular movement. Of particular interest is PM generated during diesel

163

On the Spectrum of the Resonant Quantum Kicked Rotor  

E-Print Network (OSTI)

It is proven that none of the bands in the quasi-energy spectrum of the Quantum Kicked Rotor is flat at any primitive resonance of any order. Perturbative estimates of bandwidths at small kick strength are established for the case of primitive resonances of prime order. Different bands scale with different powers of the kick strength, due to degeneracies in the spectrum of the free rotor.

Italo Guarneri

2009-02-23T23:59:59.000Z

164

On the Spectrum of the Resonant Quantum Kicked Rotor  

E-Print Network (OSTI)

It is proven that none of the bands in the quasi-energy spectrum of the Quantum Kicked Rotor is flat at any primitive resonance of any order. Perturbative estimates of bandwidths at small kick strength are established for the case of primitive resonances of prime order. Different bands scale with different powers of the kick strength, due to degeneracies in the spectrum of the free rotor.

Guarneri, Italo

2009-01-01T23:59:59.000Z

165

Comments of The American Public Power Association | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Public Power Association In the Matter of National Broadband Plan Request for Information: Communications Requirements Unlocking Customer Value: The Virtual Power Plant...

166

Direct Detection of Dark Matter Debris Flows  

E-Print Network (OSTI)

Tidal stripping of dark matter from subhalos falling into the Milky Way produces narrow, cold tidal streams as well as more spatially extended "debris flows" in the form of shells, sheets, and plumes. Here we focus on the debris flow in the Via Lactea II simulation, and show that this incompletely phase-mixed material exhibits distinctive high velocity behavior. Unlike tidal streams, which may not necessarily intersect the Earth's location, debris flow is spatially uniform at 8 kpc and thus guaranteed to be present in the dark matter flux incident on direct detection experiments. At Earth-frame speeds greater than 450 km/s, debris flow comprises more than half of the dark matter at the Sun's location, and up to 80% at even higher speeds. Therefore, debris flow is most important for experiments that are particularly sensitive to the high speed tail of the dark matter distribution, such as searches for light or inelastic dark matter or experiments with directional sensitivity. We show that debris flow yields a distinctive recoil energy spectrum and a broadening of the distribution of incidence direction.

Michael Kuhlen; Mariangela Lisanti; David N. Spergel

2012-01-31T23:59:59.000Z

167

The Microscopic Approach to Nuclear Matter and Neutron Star Matter  

E-Print Network (OSTI)

We review a variety of theoretical and experimental investigations aimed at improving our knowledge of the nuclear matter equation of state. Of particular interest are nuclear matter extreme states in terms of density and/or isospin asymmetry. The equation of state of matter with unequal concentrations of protons and neutrons has numerous applications. These include heavy-ion collisions, the physics of rare, short-lived nuclei and, on a dramatically different scale, the physics of neutron stars. The "common denominator" among these (seemingly) very different systems is the symmetry energy, which plays a crucial role in both the formation of the neutron skin in neutron-rich nuclei and the radius of a neutron star (a system 18 orders of magnitude larger and 55 orders of magnitude heavier). The details of the density dependence of the symmetry energy are not yet sufficiently constrained. Throughout this article, our emphasis will be on the importance of adopting a microscopic approach to the many-body problem, which we believe to be the one with true predictive power.

Francesca Sammarruca

2010-01-31T23:59:59.000Z

168

Federal Spectrum Management at the National Telecommunications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Slides from National Telecommunications and Information Administration's presentation on Federal spectrum management. Federal Spectrum Management at the National...

169

Scale Transformations, Tree-level Perturbation Theory, and the Cosmological Matter Bispectrum  

E-Print Network (OSTI)

Scale transformations have played an extremely successful role in studies of cosmological large-scale structure by relating the non-linear spectrum of cosmological density fluctuations to the linear primordial power at longer wavelengths. Here we generalize this approach to investigate the usefulness of scale transformations for nonlinear higher-order statistics, specifically the bispectrum. We find that the bispectrum predicted by perturbation theory at tree-level can be rescaled to match the results of full numerical simulations in the weakly and intermediately nonlinear regimes, especially at high redshifts, with an accuracy that is surprising given the simplicity of the procedure used. This discovery not only offers a simple practical way of calculating the matter bispectrum, but also suggests that scale transformations may yet yield even deeper insights into the physics of hierarchical clustering.

Jun Pan; Peter Coles; Istvan Szapudi

2007-07-11T23:59:59.000Z

170

Quark Matter 2004  

NLE Websites -- All DOE Office Websites (Extended Search)

Seventeenth International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004) took place in Oakland, California from January 11 - 17, 2004. The location...

171

Magnetization of neutron matter  

SciTech Connect

In this paper, we compute magnetization of neutron matter at strong magnetic field using the lowest order constrained variational (LOCV) technique.

Bigdeli, M. [Department of Physics, Zanjan University, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of)

2011-09-21T23:59:59.000Z

172

Dark matter at colliders  

SciTech Connect

We show that colliders can impose strong constraints on dark matter. We take an effective field theory approach where dark matter couples to quarks and gluons through high dimensional operators. We discuss limits on interactions of dark matter and hadronic matter from the ATLAS experiment at the Large Hadron Collider (LHC). For spin-independent scattering, the LHC limits are stronger than those from direct detection experiments for light WIMPs. For spin-dependent scattering, the LHC sets better limits over much of parameter space.

Yu Haibo [Department of Physics, University of Michigan, Ann Arbor, MI, 48109 (United States)

2013-05-23T23:59:59.000Z

173

Materials/Condensed Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Insulators ALS Reveals New State of Matter First Observation of Plasmarons in Graphene Electron Correlation in Iron-Based Superconductors Towards Heavy Fermions in Europium...

174

The Universe Adventure - The Search for Dark Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Search for Dark Matter Search for Dark Matter Large Hadron Collider Particle accelerators, such as the newly constructed LHC (Large Hadron Collider) at CERN in Geneva, Switzerland, use powerful magnets to accelerate particles to velocities near that of light and collide them into target beams. Physicists analyze the spray of particles created by the collisions which may contain clues about the properties of elusive dark matter particles. Today the search for dark matter is carried out in labs, observatories, and particle accelerators around the world. Scientists hope that the next generation of experiments will finally uncover the identity of dark matter. Alternatives to Dark Matter Some cosmologists are looking for alternative theories that explain these phenomena without relying on unobservable dark matter. Most of these

175

The Spectrum of the Kazakov Migdal-Model  

E-Print Network (OSTI)

Gross has found an exact expression for the density of eigenvalues in the simplest version of the Kazakov-Migdal model of induced QCD. In this paper we compute the spectrum of small fluctuations around Gross's semi-circular solution. By solving Migdal's wave equation we find a string-like spectrum which, in four dimensions, corresponds to the infinite tower of mesons in strong coupling lattice QCD with adjoint matter. In one dimension our formula reproduces correctly the well known spectrum of the hermitean matrix model with a harmonic oscillator potential. We comment on the relevance of our results to the possibility of the model describing extended objects in more than one dimension.

S. Aoki; A. Gocksch

1992-12-20T23:59:59.000Z

176

Geomagnetic Temporal Spectrum Catherine Constable 1 GEOMAGNETIC TEMPORAL SPECTRUM  

E-Print Network (OSTI)

Geomagnetic Temporal Spectrum Catherine Constable ­1 GEOMAGNETIC TEMPORAL SPECTRUM Catherine: +1 858 534 8090 For the Encyclopedia of Geomagnetism and Paleomagnetism Editors, David Gubbins and Emilio Herrera-Bervera for Encyclopedia of Geomagnetism and Paleomagnetism, July 7, 2005 #12;Geomagnetic

Constable, Catherine G.

177

Search for Dark Matter  

E-Print Network (OSTI)

The search for dark matter is a very wide an active field of research, and I necessarily concentrate here only in some aspects of it. I will review the prospects for direct and indirect dark matter searches of Weakly Interacting Massive Particles in the dark halo of our galaxy and focus in particular on the data of GLAST, PAMELA and DAMA.

Graciela B. Gelmini

2008-10-21T23:59:59.000Z

178

PINS Spectrum Identification Guide  

SciTech Connect

The Portable Isotopic Neutron Spectroscopy—PINS, for short—system identifies the chemicals inside munitions and containers without opening them, a decided safety advantage if the fill chemical is a hazardous substance like a chemical warfare agent or an explosive. The PINS Spectrum Identification Guide is intended as a reference for technical professionals responsible for the interpretation of PINS gamma-ray spectra. The guide is divided into two parts. The three chapters that constitute Part I cover the science and technology of PINS. Neutron activation analysis is the focus of Chapter 1. Chapter 2 explores PINS hardware, software, and related operational issues. Gamma-ray spectral analysis basics are introduced in Chapter 3. The six chapters of Part II cover the identification of PINS spectra in detail. Like the PINS decision tree logic, these chapters are organized by chemical element: phosphorus-based chemicals, chlorine-based chemicals, etc. These descriptions of hazardous, toxic, and/or explosive chemicals conclude with a chapter on the identification of the inert chemicals, e.g. sand, used to fill practice munitions.

A.J. Caffrey

2012-03-01T23:59:59.000Z

179

Burning actinides in very hard spectrum reactors  

SciTech Connect

The major unresolved problem in the nuclear industry is the ultimate disposition of the waste products of light water reactors. The study demonstrates the feasibility of designing a very hard spectrum actinide burner reactor (ABR). A 1100 MW/sub t/ ABR design fueled entirely with actinides reprocessed from light water reactor (LWR) wastes is proposed as both an ultimate disposal mechanism for actinides and a means of concurrently producing usable power. Actinides from discharged ABR fuel are recycled to the ABR while fission products are routed to a permanent repository. As an integral part of a large energy park, each such ABR would dispose of the waste actinides from 2 LWRs.

Robinson, A.H.; Shirley, G.W.; Prichard, A.W.; Trapp, T.J.

1978-03-20T23:59:59.000Z

180

Dynamic spectrum management using GA  

Science Conference Proceedings (OSTI)

Thousands of equipments of the wireless network and the mobile devices are widely used and the demand of dynamic spectrum resources is significantly growing. How to maximize the social utility in modern technique becomes an important issue. In this paper, ... Keywords: Shannon utility, background interference, crosstalk, dynamic spectrum management, genetic algorithm

Ping-Liang Chen; Chia-Liang Peng; Shin-Jia Chen; Yu-Cheng Lin

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NREL: Innovation Spectrum Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Spectrum Innovation Spectrum Te xt version The scope of NREL's capabilities emulates the nature of the innovation process itself. Moving new technologies from initial concept to commercial application requires a breadth of expertise across the innovation spectrum, encompassing: Fundamental science Market-relevant research Systems integration Testing and validation Commercialization Deployment The NREL innovation spectrum is highly interactive within the laboratory and across other research institutions and private industry. NREL provides the scientific and analytical leadership to guide the innovation process, contributing knowledge and expertise at each stage. Innovation Success Stories Learn more about the spectrum of clean energy innovation and how NREL is creating a future of sustainable energy systems based on clean,

182

In the Matter of National Broadband Plan Request for Information:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In the Matter of National Broadband Plan Request for Information: In the Matter of National Broadband Plan Request for Information: Communications Requirements In the Matter of National Broadband Plan Request for Information: Communications Requirements The American Public Power Association ("APPA") appreciates this opportunity to respond to the Department of Energy ("the Department" or "DOE") regarding its Request for Information ("RFI") on Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy. In the Matter of National Broadband Plan Request for Information: Communications Requirements More Documents & Publications Communications Requirements of Smart Grid Technologies RE: NBP RFI: Communications Requirements

183

Dark Matter in the Light of COBE  

E-Print Network (OSTI)

The observations of all three COBE instruments are examined for the effects of dark matter. The anisotropy measured by the DMR, and especially the degree-scale ground- and balloon-based experiments, is only compatible with large-scale structure formation by gravity if the Universe is dominated by non-baryonic dark matter. The FIRAS instrument measures the total power radiated by cold dust, and thus places tight limits on the absorption of starlight by very cold gas and dust in the outer Milky Way. The DIRBE instrument measures the infrared background, and will place tight limits on the emission by low mass stars in the Galactic halo.

Edward L. Wright

1994-08-01T23:59:59.000Z

184

NREL: Innovation Spectrum - NREL Spectrum of Innovation Video (Text  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrum of Innovation Video (Text Version) Spectrum of Innovation Video (Text Version) Below is the text version of the NREL Spectrum of Innovation video. "...renewable energy is a national imperative..." "...This breakthrough technology will..." "...we are still looking for an innovative material that will..." "...we need a study to determine..." "...the right people need to work together..." "...competing priorities mean we cannot..." There are many voices calling for a future of abundant, clean energy. The choices are many...and the challenges are daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation, including Fundamental Science, Market-Relevant Research, Systems Integration, Testing and Validation, Commercialization, and

185

Equilibrium Wave Spectrum and Sea State Bias in Satellite Altimetry  

Science Conference Proceedings (OSTI)

For a well-developed sea at equilibrium with a constant wind, the energy-containing range of the wavenumber spectrum for wind-generated gravity waves is approximated by a generalized power law ?(U2/g)2?k?4+2?Y(k,?), where Y is the angular spread ...

Roman E. Glazman; Meric A. Srokosz

1991-11-01T23:59:59.000Z

186

Dark matter dynamics  

E-Print Network (OSTI)

N-body simulations have revealed a wealth of information about dark matter halos but their results are largely empirical. Here we attempt to shed light on simulation results by using a combination of analytic and numerical ...

Zukin, Phillip Gregory

2012-01-01T23:59:59.000Z

187

The Heart of Matter  

E-Print Network (OSTI)

In this article I trace the development of the human understanding of the "Heart of Matter" from early concepts of "elements" (or alternatively "Panchmahabhootas") to the current status of "quarks" and "leptons" as the fundamental constituents of matter, interacting together via exchange of the various force carrier particles called "gauge bosons" such as the photon, W/Z-boson etc. I would like to show how our understanding of the fundamental constituents of matter has gone hand in hand with our understanding of the fundamental forces in nature. I will also outline how the knowledge of particle physics at the "micro" scale of less than a Fermi(one millionth of a nanometer), enables us to offer explanations of Cosmological observations at the "macro" scale. Consequently these observations, may in turn, help us address some very fundamental questions of the Physics at the "Heart of the Matter".

Godbole, Rohini M

2010-01-01T23:59:59.000Z

188

The Heart of Matter  

E-Print Network (OSTI)

In this article I trace the development of the human understanding of the "Heart of Matter" from early concepts of "elements" (or alternatively "Panchmahabhootas") to the current status of "quarks" and "leptons" as the fundamental constituents of matter, interacting together via exchange of the various force carrier particles called "gauge bosons" such as the photon, W/Z-boson etc. I would like to show how our understanding of the fundamental constituents of matter has gone hand in hand with our understanding of the fundamental forces in nature. I will also outline how the knowledge of particle physics at the "micro" scale of less than a Fermi(one millionth of a nanometer), enables us to offer explanations of Cosmological observations at the "macro" scale. Consequently these observations, may in turn, help us address some very fundamental questions of the Physics at the "Heart of the Matter".

Rohini M. Godbole

2010-06-30T23:59:59.000Z

189

Phases of Nuclear Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

and on the density of the nucleons. Thus we may ask what is the equation of state for nuclear matter? In their normal states of lowest energy, nuclei show liquid-like...

190

Programmable matter by folding  

E-Print Network (OSTI)

Programmable matter is a material whose properties can be programmed to achieve specific shapes or stiffnesses upon command. This concept requires constituent elements to interact and rearrange intelligently in order to ...

Wood, R. J.

191

Dark matter: Theoretical perspectives  

SciTech Connect

I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)

1993-01-01T23:59:59.000Z

192

Lyapunov spectrum of granular gases  

Science Conference Proceedings (OSTI)

We calculate and study the Lyapunov spectrum of a granular gas maintained in a steady state by an isokinetic thermostat. Considering restitution coefficients greater than unity allows us to show that the spectra change smoothly and continuously at equilibrium. The shearing instability of the granular gas, however, provokes an abrupt change in the structure of the spectrum. The relationship between various physically relevant quantities and the energy dissipation rate differs from previously studied nonequilibrium steady states.

McNamara, Sean; Mareschal, Michel

2001-06-01T23:59:59.000Z

193

On the Oscillation of Neutrinos Produced by the Annihilation of Dark Matter inside the Sun  

E-Print Network (OSTI)

The annihilation of dark matter particles captured by the Sun can lead to a neutrino flux observable in neutrino detectors. Considering the fact that these dark matter particles are non-relativistic, if a pair of dark matter annihilates to a neutrino pair, the spectrum of neutrinos will be monochromatic. We show that in this case, even after averaging over production point inside the Sun, the oscillatory terms of the oscillation probability do not average to zero. This leads to interesting observable features in the annual variation of the number of muon track events. We show that smearing of the spectrum due to thermal distribution of dark matter inside the Sun is too small to wash out this variation. We point out the possibility of studying the initial flavor composition of neutrinos produced by the annihilation of dark matter particles via measuring the annual variation of the number of muon-track events in neutrino telescopes.

Arman Esmaili; Yasaman Farzan

2009-12-20T23:59:59.000Z

194

LyMAS: Predicting Large-Scale Lyman-alpha Forest Statistics from the Dark Matter Density Field  

E-Print Network (OSTI)

[abridged] We describe LyMAS (Ly-alpha Mass Association Scheme), a method of predicting clustering statistics in the Ly-alpha forest on large scales from moderate resolution simulations of the dark matter distribution, with calibration from high-resolution hydrodynamic simulations of smaller volumes. We use the "Horizon MareNostrum" simulation, a 50 Mpc/h comoving volume evolved with the adaptive mesh hydrodynamic code RAMSES, to compute the conditional probability distribution P(F_s|delta_s) of the transmitted flux F_s, smoothed (1-dimensionally) over the spectral resolution scale, on the dark matter density contrast delta_s, smoothed (3-dimensionally) over a similar scale. In this study we adopt the spectral resolution of the SDSS-III BOSS at z=2.5, and we find optimal results for a dark matter smoothing length sigma=0.3 Mpc/h (comoving). In extended form, LyMAS exactly reproduces both the 1-dimensional power spectrum and 1-point flux distribution of the hydro simulation spectra. Applied to the MareNostrum ...

Peirani, Sébastien; Colombi, Stéphane; Blaizot, Jérémy; Dubois, Yohan; Pichon, Christophe

2013-01-01T23:59:59.000Z

195

Statistical Physics of Dark and Normal Matter Distribution in Galaxy Formation : Dark Matter Lumps and Black Holes in Core and Halo of Galaxy  

E-Print Network (OSTI)

In unified field theory the cosmological model of the universe has supersymmetric fields. Supersymmetric particles as dark and normal matter in galaxy clusters have a phase separation. Dark matter in halos have a statistical physics equation of state. Neutralino particle gas with gravitation can have a collapse of dark matter lumps. A condensate phase due to boson creation by annhillation and exchange can occur at high densities. The collapse of the boson condensate, including neutralinos, into the Schwarzschild radius creates dark matter black holes. Microscopic dark matter black holes can evaporate with Hawking effect giving gamma ray bursts and create a spectrum of normal particles. The phase separation of normal and dark matter in galaxy clusters and inside galaxies is given by statistical physics.

Ajay Patwardhan

2008-05-15T23:59:59.000Z

196

Could One Find Petroleum Using Neutrino Oscillations in Matter?  

E-Print Network (OSTI)

In neutrino physics, it is now widely believed that neutrino oscillations are influenced by the presence of matter, modifying the energy spectrum produced by a neutrino beam traversing the Earth. Here, we will discuss the reverse problem, i.e. what could be learned about the Earth's interior from a single neutrino baseline energy spectrum, especially about the Earth's mantle. We will use a statistical analysis with a low-energy neutrino beam under very optimistic assumptions. At the end, we will note that it is hard to find petroleum with such a method, though it is not too far away from technical feasibility.

Tommy Ohlsson; Walter Winter

2001-11-20T23:59:59.000Z

197

Compressed Baryonic Matter: from Nuclei to Pulsars  

E-Print Network (OSTI)

Our world is wonderful because of the negligible baryonic part although unknown dark matter and dark energy dominate the Universe. Those nuclei in the daily life are forbidden to fuse by compression due to the Coulomb repulse, nevertheless, it is usually unexpected in extraterrestrial extreme-environments: the gravity in a core of massive evolved star is so strong that all the other forces (including the Coulomb one) could be neglected. Compressed baryonic matter is then produced after supernova, manifesting itself as pulsar-like stars observed. The study of this compressed baryonic matter can not only be meaningful in fundamental physics (e.g., the elementary color interaction at low-energy scale, testing gravity theories, detecting nano-Hertz background gravitational waves), but has also profound implications in engineering applications (including time standard and navigation), and additionally, is focused by Chinese advanced telescopes, either terrestrial or in space. Historically, in 1930s, L. Landau speculated that dense matter at supra-nuclear density in stellar cores could be considered as gigantic nuclei (the prototype of standard model of neutron star), however, we address that the residual compact object of supernova could be of condensed matter of quark clusters. The idea that pulsars are quark-cluster stars was not ruled out during the last decade, and we are expecting to test further by future powerful facilities. (in Chinese)

Renxin Xu

2013-10-12T23:59:59.000Z

198

Gamma-Ray Lines from Radiative Dark Matter Decay  

E-Print Network (OSTI)

The decay of dark matter particles which are coupled predominantly to charged leptons has been proposed as a possible origin of excess high-energy positrons and electrons observed by cosmic-ray telescopes PAMELA and Fermi LAT. Even though the dark matter itself is electrically neutral, the tree-level decay of dark matter into charged lepton pairs will generically induce radiative two-body decays of dark matter at the quantum level. Using an effective theory of leptophilic dark matter decay, we calculate the rates of radiative two-body decays for scalar and fermionic dark matter particles. Due to the absence of astrophysical sources of monochromatic gamma rays, the observation of a line in the diffuse gamma-ray spectrum would constitute a strong indication of a particle physics origin of these photons. We estimate the intensity of the gamma-ray line that may be present in the energy range of a few TeV if the dark matter decay interpretation of the leptonic cosmic-ray anomalies is correct and comment on observational prospects of present and future Imaging Cherenkov Telescopes, in particular the CTA.

Mathias Garny; Alejandro Ibarra; David Tran; Christoph Weniger

2010-11-16T23:59:59.000Z

199

Analysis of Wind Power and Load Data at Multiple Time Scales  

E-Print Network (OSTI)

The spectrum of power from wind turbines. Journal of PowerAWEA 2010. American Wind Energy Association ProjectsErik and Jason Kemper. 2009. Wind Plant Ramping Behavior.

Coughlin, Katie

2011-01-01T23:59:59.000Z

200

Materials/Condensed Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials/Condensed Matter Print Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating properties (structural, physical, chemical, electrical, magnetic, optical, etc.). Increasingly, the frontiers of materials research include materials that are "strongly correlated," characterized by strong coupling between a material's electrons with other electrons, magnetism, or the material lattice itself. This coupling often results in novel behavior, such as superconductivity, that may lead to technologically important applications.

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Phase transition from hadronic matter to quark matter  

Science Conference Proceedings (OSTI)

We study the phase transition from nuclear matter to quark matter within the SU(3) quark mean field model and NJL model. The SU(3) quark mean field model is used to give the equation of state for nuclear matter, while the equation of state for color superconducting quark matter is calculated within the NJL model. It is found that at low temperature, the phase transition from nuclear to color superconducting quark matter will take place when the density is of order 2.5?0 - 5?0. At zero density, the quark phase will appear when the temperature is larger than about 148 MeV. The phase transition from nuclear matter to quark matter is always first order, whereas the transition between color superconducting quark matter and normal quark matter is second order.

P. Wang; A.W. Thomas; A.G. Williams

2007-04-01T23:59:59.000Z

202

Bremsstrahlung gamma rays from light Dark Matter  

E-Print Network (OSTI)

We discuss the often-neglected role of bremsstrahlung processes on the interstellar gas in computing indirect signatures of Dark Matter (DM) annihilation in the Galaxy, particularly for light DM candidates in the phenomenologically interesting O(10) GeV mass range. Especially from directions close to the Galactic Plane, the expected gamma-ray spectrum is altered via two effects: directly, by the photons emitted in the bremsstrahlung process on the interstellar gas by energetic electrons which are among the DM annihilation byproducts; indirectly, by the modification of the same electron spectrum, due to the additional energy loss process in the diffusion-loss equation (e.g. the resulting inverse Compton emission is altered). We quantify the importance of the bremsstrahlung emission in the GeV energy range, showing that it is the dominant component of the gamma-ray spectrum for some cases. We also find that, in regions in which bremsstrahlung dominates energy losses, the related gamma-ray emission is only moderately sensitive to possible large variations in the gas density. Still, we stress that, for computing precise spectra in the (sub-)GeV range, it is important to obtain a reliable description of the inner Galaxy gas distribution as well as to compute self-consistently the gamma emission and the solution to the diffusion-loss equation. For example, these are crucial issues to quantify and interpret meaningfully gamma-ray map `residuals' in terms of (light) DM annihilations.

Marco Cirelli; Pasquale D. Serpico; Gabrijela Zaharijas

2013-07-26T23:59:59.000Z

203

Smart Radio Spectrum Management for Cognitive Radio  

E-Print Network (OSTI)

Today's wireless networks are characterized by fixed spectrum assignment policy. The limited available spectrum and the inefficiency in the spectrum usage necessitate a new communication paradigm to exploit the existing wireless spectrum opportunistically. Cognitive radio is a paradigm for wireless communication in which either a network or a wireless node changes its transmission or reception parameters to communicate efficiently avoiding interference with licensed or unlicensed users. In this work, a fuzzy logic based system for spectrum management is proposed where the radio can share unused spectrum depending on some parameters like distance, signal strength, node velocity and availability of unused spectrum. The system is simulated and is found to give satisfactory results.

Bhattacharya, Partha Pratim; Gera, Rishita; Agarwal, Anjali

2011-01-01T23:59:59.000Z

204

Matter & Energy Solar Energy  

E-Print Network (OSTI)

See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

Rogers, John A.

205

Little Higgs Dark Matter  

E-Print Network (OSTI)

The introduction of T parity dramatically improves the consistency of Little Higgs models with precision electroweak data, and renders the lightest T-odd particle (LTP) stable. In the Littlest Higgs model with T parity, the LTP is typically the T-odd heavy photon, which is weakly interacting and can play the role of dark matter. We analyze the relic abundance of the heavy photon, including its coannihilations with other T-odd particles, and map out the regions of the parameter space where it can account for the observed dark matter. We evaluate the prospects for direct and indirect discovery of the heavy photon dark matter. The direct detection rates are quite low and a substantial improvement in experimental sensitivity would be required for observation. A substantial flux of energetic gamma rays is produced in the annihilation of the heavy photons in the galactic halo. This flux can be observed by the GLAST telescope, and, if the distribution of dark matter in the halo is favorable, by ground-based telescope arrays such as VERITAS and HESS.

Andreas Birkedal; Andrew Noble; Maxim Perelstein; Andrew Spray

2006-03-09T23:59:59.000Z

206

Matter: the fundamental particles  

E-Print Network (OSTI)

"The largest particle physics centre in the world is located in Europe. It straddles the Franco-Swiss border, near Geneva. At CERN - the European Organisation for Nuclear Research , which is focused on the science of nuclear matter rather than on the exploitation of atomic energy - there are over 6 500 scientists." (1 page)

Landua, Rolf

2007-01-01T23:59:59.000Z

207

Uncertainty of the Solar Neutrino Energy Spectrum  

E-Print Network (OSTI)

The solar neutrino spectrum measured by the Super-Kamiokande shows an excess in high energy bins, which may be explained by vacuum oscillation solution or $hep$ neutrino effect. Here we reconsider an uncertainty of the data caused by the tail of the energy resolution function. Events observed at energy higher than 13.5 MeV are induced by the tail of the resolution. At Super-Kamiokande precision level this uncertainty is no more than few percent within a Gaussian tail. But a power-law decay tail at 3 $\\sigma$ results considerable excesses in these bins, which may be another possible explanation of the anomaly in 708d(825d) data.

Q. Y. Liu

1999-06-30T23:59:59.000Z

208

Effect of resonance broadening on the evolution of the edge of a turbulent spectrum  

SciTech Connect

The extent to which nonlinear wave-particle resonance broadening results in a narrowing of an incident lower-hybrid wave spectrum is investigated. This narrowing is of concern because it could make control of lower-hybrid heating difficult. We numerically show, however, that relatively uniform spatial power deposition occurs if resonance broadening effects are treated consistently on both the wave spectrum and the particle distribution. A more naive approach, including only the effects on the evolution of the wave spectrum, would incorrectly predict an unfavorable power deposition profile.

Kritz, A.H.; Fisch, N.J.; Karney, C.F.F.

1980-06-01T23:59:59.000Z

209

Joint spectrum allocation and scheduling for fair spectrum sharing in cognitive radio wireless networks  

Science Conference Proceedings (OSTI)

Cognitive radio and Dynamic Spectrum Access (DSA) enable wireless users to share a wide range of available spectrums. In this paper, we study joint spectrum allocation and scheduling problems in cognitive radio wireless networks with the objectives of ... Keywords: Cognitive radio, Dynamic spectrum access, Fairness, Scheduling, Spectrum allocation

Jian Tang; Satyajayant Misra; Guoliang Xue

2008-08-01T23:59:59.000Z

210

Energy Matters in Washington State Page 1 Energy Matters  

E-Print Network (OSTI)

Energy Matters in Washington State ­ Page 1 Energy Matters in Washington State June 2008 Updated November 2009 Updated and Revised October 2013 Grand Coulee Dam #12;Energy Matters in Washington State ­ Page 2 Copyright © 2013 Washington State University Energy Program. 905 Plum Street SE, P.O. Box 43169

Collins, Gary S.

211

Quark Matter 2004 Conference Hotel  

NLE Websites -- All DOE Office Websites (Extended Search)

as the conference Hotel. It is adjacent to the Oakland Convention Center where all Quark Matter talks will be held. Quark Matter attendees can get a reduced price of 126...

212

Centrifugal torque in rotating matter  

E-Print Network (OSTI)

Thermal molecular motion in combination with rotation and differences in centrifugal forces causes a torque in matter. The effect is derived for gas but does also exist in liquid and solid matter.

Jonsson, David

2010-01-01T23:59:59.000Z

213

Particulate Matter Standards (Ohio)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter of the law that establishes the Ohio Environmental Protection Agency sets the standards for particulate emissions from a variety of sources, including facilities that generate power. ...

214

Utilization and fairness in spectrum assignment for opportunistic spectrum access  

E-Print Network (OSTI)

users’ channel availability and transmission power, which inits own channel availability and transmission constraints.transmission link or a broadcast access point. The channel availability

Peng, ChunYi; Zheng, Haitao; Zhao, Ben Y

2006-01-01T23:59:59.000Z

215

Superdense muonic matter  

DOE Green Energy (OSTI)

A possible method of creation of superdense matter with approximate atomic density 4 x 10/sup 29/cm/sup -3/ is suggested. A pulsed beam of 10/sup 8/ muons, with duration 3 x 10/sup -6/sec is shone on liquid hydrogen of volume approx.(300A)/sup 3/. A muon charge-exchanges with an electron in a hydrogen atom: with enough muonic hydrogen atoms, the compressibility tends to diverge and condensation into a much higher density state begins. The muon beam should be cooled by the ionization process and channeled through crystal axes before irradiation on the hydrogen specimen. When magnetic fields are present upon irradiation, the fields may be enhanced up to 10/sup 9/ Gauss. A possible state of this matter is speculated.

Tajima, T.

1987-07-01T23:59:59.000Z

216

Rigid particulate matter sensor  

DOE Patents (OSTI)

A sensor to detect particulate matter. The sensor includes a first rigid tube, a second rigid tube, a detection surface electrode, and a bias surface electrode. The second rigid tube is mounted substantially parallel to the first rigid tube. The detection surface electrode is disposed on an outer surface of the first rigid tube. The detection surface electrode is disposed to face the second rigid tube. The bias surface electrode is disposed on an outer surface of the second rigid tube. The bias surface electrode is disposed to face the detection surface electrode on the first rigid tube. An air gap exists between the detection surface electrode and the bias surface electrode to allow particulate matter within an exhaust stream to flow between the detection and bias surface electrodes.

Hall, Matthew (Austin, TX)

2011-02-22T23:59:59.000Z

217

Quantum Condensed Matter Division | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Condensed Matter Division SHARE Quantum Condensed Matter Division QCMD Director Steve Nagler The Quantum Condensed Matter Division (QCMD) enables and conducts a broad...

218

Brookhaven Condensed Matter Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Matter Physics Condensed Matter Physics Condensed matter physicists study the properties of bulk matter-solids and liquids-as well as the properties exhibited at surfaces and interfaces, with a view to obtaining a fundamental understanding of the unusual properties that materials can exhibit. These problems are some of the most challenging in physics today, but have the huge pay-off in that such an understanding may ultimately lead to improved materials for use in applications as diverse as computing, memory storage, electric motors, and energy storage and transport. At Brookhaven Lab, this work includes both experimental and theoretical studies. Much of the experimental work carried out today uses the National Synchrotron Light Source (NSLS, shown at right)-one of the premiere synchrotron light sources of the last two decades. Commissioned in the 1980s, the NSLS is host to more than 2,200 users per year and produces copious amounts of light, from the infrared to the ultraviolet to the x-ray. By using this light as a probe, scientists can learn about the arrangement of the atoms and electrons in the materials and how they behave under various conditions. Among other projects, BNL scientists have played leading roles in the development and application of resonant and inelastic x-ray scattering techniques to the study of magnetic and other materials, have pioneered the use of photoemission techniques (based on the photoelectric effect that Einstein first understood 100 years ago) for looking at electronic and magnetic materials, and have carried out some of the seminal experiments to understand the atomic and magnetic structure at surfaces.

219

Aging Matters What's Inside  

E-Print Network (OSTI)

Aging Matters What's Inside Letter from the dean PSU winS Carter award artiSan eConomy eLi BUi and Public affairs 2008 fall newsletter www.pdx.edu/cupa aGinG is a modern fact of life. In 2006 the world's population of adults aged 60 or over was 650 million. By 2025 that number will nearly double. By 2050

Bertini, Robert L.

220

Normal matter storage of antiprotons  

SciTech Connect

Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

Campbell, L.J.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Dark Energy and Dark Matter  

E-Print Network (OSTI)

A brief overview of our current understanding of abundance and properties of dark energy and dark matter is presented. A more focused discussion of supersymmetric dark matter follows. Included is a frequentist approach to the supersymmetric parameter space and consequences for the direct detection of dark matter.

Keith A. Olive

2010-01-27T23:59:59.000Z

222

dark matter dark energy inflation  

E-Print Network (OSTI)

theory dark matter dark energy inflation The National Science Foundation The Kavli Foundation NSF Site Review November 28-29, 2005 #12;dark matter dark energy inflation NSF Site Visit ­ November 28 Gravitation initial conditions beyond single-field slow roll #12;dark matter dark energy inflation NSF Site

Hu, Wayne

223

Longevity Problem of Sterile Neutrino Dark Matter  

E-Print Network (OSTI)

Sterile neutrino dark matter of mass O(1-10) keV decays into an active neutrino and an X-ray photon, and the non-observation of the corresponding X-ray line requires the sterile neutrino to be more long-lived than estimated based on the seesaw formula : the longevity problem. We show that, if one or more of the B-L Higgs fields are charged under a flavor symmetry (or discrete R symmetry), the split mass spectrum for the right-handed neutrinos as well as the required longevity is naturally realized. We provide several examples in which the predicted the X-ray flux is just below the current bound.

Hiroyuki Ishida; Kwang Sik Jeong; Fuminobu Takahashi

2013-09-12T23:59:59.000Z

224

ON THE ORIGIN OF THE 1/f SPECTRUM IN THE SOLAR WIND MAGNETIC FIELD  

Science Conference Proceedings (OSTI)

We present a mechanism for the formation of the low-frequency 1/f magnetic spectrum based on numerical solutions of a shell-reduced MHD model of the turbulent dynamics inside the sub-Alfvenic solar wind. We assign reasonably realistic profiles to the wind speed and the density along the radial direction, and a radial magnetic field. Alfven waves of short periodicity (600 s) are injected at the base of the chromosphere, penetrate into the corona, and are partially reflected, thus triggering a turbulent cascade. The cascade is strong for the reflected wave while it is weak for the outward propagating waves. Reflection at the transition region recycles the strong turbulent spectrum into the outward weak spectrum, which is advected beyond the Alfvenic critical point without substantial evolution. There, the magnetic field has a perpendicular power-law spectrum with slope close to the Kolmogorov -5/3. The parallel spectrum is inherited from the frequency spectrum of large (perpendicular) eddies. The shape is a double power law with slopes of {approx_equal} - 1 and -2 at low and high frequencies, respectively, with the position of the break depending on the injected spectrum. We suggest that the double power-law spectrum measured by Helios at 0.3 AU, where the average magnetic field is not aligned with the radial (contrary to our assumptions), results from the combination of such different spectral slopes. At low frequency the parallel spectrum dominates with its characteristic 1/f shape, while at higher frequencies its steep spectral slope (-2) is masked by the more energetic perpendicular spectrum (slope -5/3).

Verdini, Andrea [Solar-Terrestrial Center of Excellence-SIDC, Royal Observatory of Belgium, Bruxelles (Belgium); Grappin, Roland [LUTH, Observatoire de Paris, CNRS, Universite Paris-Diderot, 92190 Meudon (France); Pinto, Rui [Laboratoire AIM Paris-Saclay, CEA/Irfu, and Universite Paris-Diderot CNRS/INSU, Gis-sur-Yvette (France); Velli, Marco, E-mail: verdini@oma.be, E-mail: Roland.Grappin@obspm.fr, E-mail: rui.pinto@cea.fr, E-mail: mvelli@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States)

2012-05-10T23:59:59.000Z

225

Dynamic spectrum access -- concepts and future architectures  

Science Conference Proceedings (OSTI)

New trends and developments in radio technology are enhancing the future capabilities of devices to access electromagnetic spectrum using the full range of dimensions associated with the spectrum. This increased capability, together with current developments ...

M. Nekovee

2006-04-01T23:59:59.000Z

226

Estimates of Large Spectrum Width from Autocovariances  

Science Conference Proceedings (OSTI)

The authors demonstrate that there are maximum measurable (saturation) spectrum widths for standard autocovariance techniques, the 0,1-lag autocovariance estimator and the 1,2-lag estimator. The maximal mean measurable spectrum widths from the ...

Valery M. Melnikov; Dusan S. Zrni?

2004-06-01T23:59:59.000Z

227

Laser Cooling and Cold Atomic Matter  

Science Conference Proceedings (OSTI)

Laser Cooling and Cold Atomic Matter: to advance the understanding and applications of cold atomic matter, including ...

2012-05-30T23:59:59.000Z

228

The Spectrum of Convectively Coupled Kelvin Waves and the Madden–Julian Oscillation in Regions of Low-Level Easterly and Westerly Background Flow  

Science Conference Proceedings (OSTI)

The zonal wavenumber–frequency power spectrum of outgoing longwave radiation in the global tropics suggests that power in convectively coupled Kelvin waves and the Madden–Julian oscillation (MJO) is organized into two distinct spectral peaks with ...

Paul E. Roundy

2012-07-01T23:59:59.000Z

229

Thermodynamics of electroweak matter  

E-Print Network (OSTI)

This paper is a slightly modified version of the introductory part of a PhD thesis, also containing the articles hep-ph/0303019, hep-ph/0510375 and hep-ph/0512177. We provide a short history of the research of electroweak thermodynamics and a brief introduction to the theory as well as to the necessary theoretical tools needed to work at finite temperatures. We then review computations regarding the pressure of electroweak matter at high temperatures (the full expression of the perturbative expansion of the pressure is given in the appendix) and the electroweak phase diagram at finite chemical potentials. Finally, we compare electroweak and QCD thermodynamics.

A. Gynther

2006-09-21T23:59:59.000Z

230

A dark matter scaling relation from mirror dark matter  

E-Print Network (OSTI)

Mirror dark matter, and other similar dissipative dark matter candidates, need an energy source to stabilize dark matter halos in spiral galaxies. It has been suggested previously that ordinary supernovae can potentially supply the required energy. By matching the energy supplied to the halo from supernovae to that lost due to radiative cooling, we here derive a rough scaling relation, $R_{SN} \\propto \\rho_0 r_0^2$ ($R_{SN}$ is the supernova rate and $\\rho_0, \\ r_0$ the dark matter central density and core radius). Such a relation is consistent with dark matter properties inferred from studies of spiral galaxies with halo masses larger than $3\\times 10^{11} M_\\odot$. We speculate that other observed galaxy regularities might be explained within the framework of such dissipative dark matter.

R. Foot

2013-03-07T23:59:59.000Z

231

Non-relativistic effective theory of dark matter direct detection  

E-Print Network (OSTI)

Dark matter direct detection searches for signals coming from dark matter scattering against nuclei at a very low recoil energy scale ~ 10 keV. In this paper, a simple non-relativistic effective theory is constructed to describe interactions between dark matter and nuclei without referring to any underlying high energy models. It contains the minimal set of operators that will be tested by direct detection. The effective theory approach highlights the set of distinguishable recoil spectra that could arise from different theoretical models. If dark matter is discovered in the near future in direct detection experiments, a measurement of the shape of the recoil spectrum will provide valuable information on the underlying dynamics. We bound the coefficients of the operators in our non-relativistic effective theory by the null results of current dark matter direct detection experiments. We also discuss the mapping between the non-relativistic effective theory and field theory models or operators, including aspects of the matching of quark and gluon operators to nuclear form factors.

JiJi Fan; Matthew Reece; Lian-Tao Wang

2010-08-09T23:59:59.000Z

232

The TeV spectrum of H1426+428  

E-Print Network (OSTI)

The BL Lac object H1426+428 was recently detected as a high energy gamma-ray source by the VERITAS collaboration (Horan et al. 2002). We have reanalyzed the 2001 portion of the data used in the detection in order to examine the spectrum of H1426+428 above 250 GeV. We find that the time-averaged spectrum agrees with a power law of the shape dF/dE = 10^(-7.31 +- 0.15(stat) +- 0.16(syst)) x E^(-3.50 +- 0.35(stat) +- 0.05(syst)) m^(-2)s^(-1)TeV^(-1) The statistical evidence from our data for emission above 2.5 TeV is 2.6 sigma. With 95% c.l., the integral flux of H1426+428 above 2.5 TeV is larger than 3% of the corresponding flux from the Crab Nebula. The spectrum is consistent with the (non-contemporaneous) measurement by Aharonian et al. (2002) both in shape and in normalization. Below 800 GeV, the data clearly favours a spectrum steeper than that of any other TeV Blazar observed so far indicating a difference in the processes involved either at the source or in the intervening space.

D. Petry; I. H. Bond; S. M. Bradbury; J. H. Buckley; D. A. Carter-Lewis; W. Cui; C. Duke; I. de la Calle Perez; A. Falcone; D. J. Fegan; S. J. Fegan; J. P. Finley; J. A. Gaidos; K. Gibbs; S. Gammell; J. Hall; T. A. Hall; A. M. Hillas; J. Holder; D. Horan; M. Jordan; M. Kertzman; D. Kieda; J. Kildea; J. Knapp; K. Kosack; F. Krennrich; S. LeBohec; P. Moriarty; D. Müller; T. N. Nagai; R. Ong; M. Page; R. Pallassini; B. Power-Mooney; J. Quinn; N. W. Reay; P. T. Reynolds; H. J. Rose; M. Schroedter; G. H. Sembroski; R. Sidwell; N. Stanton; S. P. Swordy; V. V. Vassiliev; S. P. Wakely; G. Walker; T. C. Weekes

2002-07-23T23:59:59.000Z

233

The PICASSO Dark Matter Experiment  

Science Conference Proceedings (OSTI)

The PICASSO experiment searches for cold dark matter through the direct detection of weakly interacting massive particles (WIMPs) via their spin?dependent interactions with fluorine at SNOLAB

Ubi Wichoski; The PICASSO Collaboration

2011-01-01T23:59:59.000Z

234

Statistical Mechanics of Jammed Matter  

E-Print Network (OSTI)

A thermodynamic formulation of jammed matter is reviewed. Experiments and simulations of compressed emulsions and granular materials are then used to provide a foundation for the thermodynamics.

Hernan A. Makse; Jasna Brujic; Sam F. Edwards

2005-03-03T23:59:59.000Z

235

An Introduction to Particulate Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

for Fiscal Year 2014. Title An Introduction to Particulate Matter Publication Type Book Chapter Year of Publication 2009 Authors Prisco, Joe, Rich Hill, Pam Lembke, D. Moore,...

236

Nuclear Matter and Nuclear Dynamics  

E-Print Network (OSTI)

Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

M Colonna

2009-02-26T23:59:59.000Z

237

Cold Dark Matter Resuscitated?  

E-Print Network (OSTI)

The Cold Dark Matter (CDM) model has an elegant simplicitly which makes it very predictive, but when its parameters are fixed at their `canonical' values its predictions are in conflict with observational data. There is, however, much leeway in the initial conditions within the CDM framework. We advocate a re-examination of the CDM model, taking into account modest variation of parameters from their canonical values. We find that CDM models with $n=0.8$--0.9 and $h=0.45$--0.50 can fit the available data. Our ``best fit'' CDM model has $n=0.9$, $h=0.45$ and $C_2^{T}/C_2^{S}=0.7$. We discuss the current state of observations which could definitely rule out this model.

Martin White; Douglas Scott; Joe Silk; Marc Davis

1995-08-02T23:59:59.000Z

238

Search for Spatial Variability in the Solar Acoustic Spectrum  

E-Print Network (OSTI)

Motivated by the various examples of spatial variability in the power of the acoustic spectrum, we attempted to look for spatial variability in the peak frequency of the spectrum. However, the determination of this peak frequency on a spatial scale of a single pixel (8 arc seconds for the GONG data) is limited by the stochastic variations in the power spectrum presumably caused by the stochastic nature of the excitation process. Averaging over a large number of spectra (100 spectra from a 10 $\\times$ 10 pixels area) produced stabler spectra. The peak frequencies of 130 such locations were found to be distributed with a FWHM of about 130 $\\mu$Hz. A map of the spatial variation of this peak frequency did not show any strong feature with statistically significant deviation from the mean of the distribution. Likewise, the scatter in the peak frequencies masked the detection of magnetic field induced changes in the peak frequency. On a much larger scale, the N latitudes showed a slightly lower value of the peak frequency as compared to the S latitudes, although the difference (25 $\\mu$Hz) is barely larger than the {\\it rms} spread (20 $\\mu$Hz).

P. Venkatakrishnan; Brajesh Kumar; S. C. Tripathy

2001-05-22T23:59:59.000Z

239

SEARCH FOR SPATIAL VARIABILITY IN THE SOLAR ACOUSTIC SPECTRUM  

E-Print Network (OSTI)

Abstract. Motivated by the various examples of spatial variability in the power of the acoustic spectrum, we attempted to look for spatial variability in the peak frequency of the spectrum. However, the determination of this peak frequency on a spatial scale of a single pixel (8 arc seconds for the GONG data) is limited by the stochastic variations in the power spectrum presumably caused by the stochastic nature of the excitation process. Averaging over a large number of spectra (100 spectra from a 10 × 10 pixels area) produced stabler spectra. The peak frequencies of 130 such locations were found to be distributed with a FWHM of about 130 µHz. A map of the spatial variation of this peak frequency did not show any strong feature with statistically significant deviation from the mean of the distribution. Likewise, the scatter in the peak frequencies masked the detection of magnetic field induced changes in the peak frequency. On a much larger scale, the N latitudes showed a slightly lower value of the peak frequency as compared to the S latitudes, although the difference (25 µHz) is barely larger than the rms spread (20 µHz). 1.

P. Venkatakrishnan; Brajesh Kumar; S. C. Tripathy

2001-01-01T23:59:59.000Z

240

Mesoscale Temperature Fluctuations Induced by a Spectrum of Gravity Waves: A Comparison of Parameterizations and Their Impact on Stratospheric Microphysics  

Science Conference Proceedings (OSTI)

Power spectral densities (PSDs) of mesoscale fluctuations of temperature and rate of change of temperature (heating–cooling rate) due to a spectrum of stratospheric gravity waves are derived using canonical spectral forms based on observations ...

Julio T. Bacmeister; Stephen D. Eckermann; Athanasios Tsias; Kenneth S. Carslaw; Thomas Peter

1999-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

37Black Hole Power...X Black holes are sometimes surrounded  

E-Print Network (OSTI)

37Black Hole Power...X Black holes are sometimes surrounded by a disk of orbiting matter. This disk is very hot. As matter finally falls into the black hole from the inner edge of that disk, it releases the infalling matter is about 7% of its rest-mass in all forms (heat+ light). The power produced by a black hole

242

Anti-competitive behaviour in spectrum markets: Analysis and response  

Science Conference Proceedings (OSTI)

The introduction of spectrum trading creates opportunities for operators, singly or jointly, to foreclose entry into downstream markets by accumulating unneeded spectrum holdings. After considering how these issues are treated under administrative methods ... Keywords: Competition law, Spectrum caps, Spectrum management

Martin Cave

2010-06-01T23:59:59.000Z

243

Energy Matters in Washington State  

E-Print Network (OSTI)

Energy Matters in Washington State Energy Matters in Washington State www.energy.wsu.edu/library/ November 2009 #12;905 Plum Street SE, Building 3 P.O. Box 43169 Olympia, Washington 98504-3169 Energy University Extension Energy Program. 905 Plum Street SE, Building 3, P.O. Box 43169, Olympia, Washington

Collins, Gary S.

244

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Materials Energy Materials Advanced Energy Materials Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory A bird's eye view is provided of superconducting and thermoelectric materials research at the Advanced Energy Materials Group*. We study both the microscopic and macroscopic properties of complex and nano-structured materials and develop their application in energy related technologies. Abstract Abstract Abstract are capable of carrying electrical current without loss, and hence offer powerful opportunities for increasing the capacity and efficiency of the power grid. The superconducting materials program at BNL studies the basic relationships between structure and properties of superconductors to provide understanding of fundamental materials science and physics

245

Collaborative spectrum sensing in cognitive radio networks.  

E-Print Network (OSTI)

??The radio frequency (RF) spectrum is a scarce natural resource, currently regulated by government agencies. With the explosive emergence of wireless applications, the demands for… (more)

Sun, Hongjian

2011-01-01T23:59:59.000Z

246

A New Solar Irradiance Reference Spectrum  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Solar Irradiance Reference Spectrum Pilewskie, Peter University of Colorado Fontenla, Juan LASP University of Colorado Harder, Jerry LASP University of Colorado Category:...

247

Multicarrier Orthogonal Spread-Spectrum (MOSS) Data ...  

Multicarrier Orthogonal Spread-Spectrum (MOSS) Data Transmission Method Note: The technology described above is an early stage opportunity. Licensing rights to this ...

248

Snowmass CF1 Summary: WIMP Dark Matter Direct Detection  

E-Print Network (OSTI)

As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The charge to CF1 was (a) to summarize the current status and projected sensitivity of WIMP direct detection experiments worldwide, (b) motivate WIMP dark matter searches over a broad parameter space by examining a spectrum of WIMP models, (c) establish a community consensus on the type of experimental program required to explore that parameter space, and (d) identify the common infrastructure required to practically meet those goals.

P. Cushman; C. Galbiati; D. N. McKinsey; H. Robertson; T. M. P. Tait; D. Bauer; A. Borgland; B. Cabrera; F. Calaprice; J. Cooley; T. Empl; R. Essig; E. Figueroa-Feliciano; R. Gaitskell; S. Golwala; J. Hall; R. Hill; A. Hime; E. Hoppe; L. Hsu; E. Hungerford; R. Jacobsen; M. Kelsey; R. F. Lang; W. H. Lippincott; B. Loer; S. Luitz; V. Mandic; J. Mardon; J. Maricic; R. Maruyama; R. Mahapatra; H. Nelson; J. Orrell; K. Palladino; E. Pantic; R. Partridge; A. Ryd; T. Saab; B. Sadoulet; R. Schnee; W. Shepherd; A. Sonnenschein; P. Sorensen; M. Szydagis; T. Volansky; M. Witherell; D. Wright; K. Zurek

2013-10-30T23:59:59.000Z

249

Power Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Operations Outage Coordination Standards of Conduct Transmission Planning You are here: SN Home page > Power Operations Power Operations Western's Sierra Nevada Region...

250

Pulsed power -- Research and technology at Sandia National Laboratories  

SciTech Connect

Over the past 15 years, steady and sometimes exciting progress has been made in the hybrid technology called Pulsed Power. Based on both electrical engineering and physics, pulsed power involves the generation, modification, and use of electrical pulses up to the multitrillion-watt and multimillion-volt ranges. The final product of these powerful pulses can take diverse forms--hypervelocity projectiles or imploding liners, energetic and intense particle beams, X-ray and gamma-ray pulses, laser light beams that cover the spectrum from ultraviolet to infrared, or powerful microwave bursts. At first, the needs of specific applications largely shaped research and technology in this field. New the authors are beginning to see the reverse--new applications arising from technical capabilities that until recently were though impossible. Compressing and heating microscopic quantities of matter until they reach ultra-high energy density represents one boundary of their scientific exploration. The other boundary might be a defensive weapon that can project vast amounts of highly directed energy over long distances. Other applications of the technology may range from the use of electron beams to sterilize sewage, to laboratory simulation of radiation effects on electronics, to electromagnetic launchings of projectiles into earth or into solar orbits. Eventually the authors hope to use pulsed power to produce an inexhaustible supply of energy by means of inertial confinement fusion (ICF)--a technique for heating and containing deuterium-tritium fuel through compression. Topics covered here are: (1) inertial confinement fusion; (2) simulation technology; (3) development of new technology; and (4) application to directed energy technologies.

1981-12-31T23:59:59.000Z

251

The Energy of Charged Matter  

E-Print Network (OSTI)

In this talk I will discuss some of the techniques that have been developed over the past 35 years to estimate the energy of charged matter. These techniques have been used to solve stability of (fermionic) matter in different contexts, and to control the instability of charged bosonic matter. The final goal will be to indicate how these techniques with certain improvements can be used to prove Dyson's 1967 conjecture for the energy of a charged Bose gas--the sharp $N^{7/5}$ law.

Jan Philip Solovej

2004-04-16T23:59:59.000Z

252

The Unification and Cogeneration of Dark Matter and Baryonic Matter  

E-Print Network (OSTI)

In grand unified theories with gauge groups larger than SU(5), the multiplets that contain the known quarks and leptons also contain fermions that are singlets under the Standard Model gauge group. Some of these could be the dark matter of the universe. Grand unified theories can also have accidental U(1) global symmetries (analogous to B-L in minimal SU(5)) that can stabilize dark matter. These ideas are illustrated in an SU(6) model.

S. M. Barr

2011-09-12T23:59:59.000Z

253

The Unification and Cogeneration of Dark Matter and Baryonic Matter  

E-Print Network (OSTI)

In grand unified theories with gauge groups larger than SU(5), the multiplets that contain the known quarks and leptons also contain fermions that are singlets under the Standard Model gauge group. Some of these could be the dark matter of the universe. Grand unified theories can also have accidental U(1) global symmetries (analogous to B-L in minimal SU(5)) that can stabilize dark matter. These ideas are illustrated in an SU(6) model.

Barr, S M

2011-01-01T23:59:59.000Z

254

THE SUBMILLIMETER SPECTRUM OF GLYCOLALDEHYDE  

SciTech Connect

Glycolaldehyde (HOCH{sub 2}CHO) is a sugar-related interstellar prebiotic molecule that has been detected in two star-forming regions, Sgr B2(N) and G31.41+0.31. Glycolaldehyde is suspected to form from photodissociation-driven ice chemistry, and therefore can be used to trace complex organic chemistry in interstellar environments. The relative abundance of glycolaldehyde to its structural isomers, methyl formate (HCOOCH{sub 3}) and acetic acid (CH{sub 3}COOH), can be used to constrain astrochemical models. Given its central role in the complex chemistry of the interstellar medium, glycolaldehyde has been suggested as a prime molecular target for upcoming high-frequency molecular line searches using new far-infrared observatories. In particular, glycolaldehyde is a target for the Herschel Space Observatory HEXOS Key Program, which is conducting spectral line surveys of the Sgr B2(N) and Orion KL star-forming regions across the entire HIFI band. Laboratory investigation of glycolaldehyde in the HIFI frequency range is required before its lines can be identified in these spectra. We have therefore acquired the laboratory spectrum of glycolaldehyde in selected frequency ranges across the submillimeter range. We present here the laboratory spectral analysis of the ground vibrational state of glycolaldehyde up to 1.2 THz.

Carroll, P. Brandon; Widicus Weaver, Susanna L. [Department of Chemistry, Emory University, Atlanta, GA 30322 (United States); Drouin, Brian J., E-mail: pbcarro@emory.ed, E-mail: susanna.widicus.weaver@emory.ed, E-mail: brian.j.drouin@jpl.nasa.go [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

2010-11-01T23:59:59.000Z

255

Matter Matters: Unphysical Properties of the Rh = ct Universe  

E-Print Network (OSTI)

It is generally agreed that there is matter in the universe and, in this paper, we show that the existence of matter is extremely problematic for the proposed Rh = ct universe. Considering a dark energy component with an equation of state of w=-1/3, it is shown that the presence of matter destroys the strict expansion properties that define the evolution of Rh = ct cosmologies, distorting the observational properties that are touted as its success. We further examine whether an evolving dark energy component can save this form of cosmological expansion in the presence of matter by resulting in an expansion consistent with a mean value of = -1/3, finding that the presence of mass requires unphysical forms of the dark energy component in the early universe. We conclude that matter in the universe significantly limits the fundamental properties of the Rh = ct cosmology, and that novel, and unphysical, evolution of the matter component would be required to save it. Given this, Rh = ct cosmology is not simpler or...

Lewis, Geraint F

2013-01-01T23:59:59.000Z

256

Towards real-time dynamic spectrum auctions  

Science Conference Proceedings (OSTI)

In this paper, we propose a low-complexity auction framework to distribute spectrum in real-time among a large number of wireless users with dynamic traffic. Our design consists of a compact and highly expressive bidding format, two pricing models to ... Keywords: Algorithms, Auctions, Spectrum

Sorabh Gandhi; Chiranjeeb Buragohain; Lili Cao; Haitao Zheng; Subhash Suri

2008-03-01T23:59:59.000Z

257

Ultrafast Spectroscopy of Warm Dense Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

of planet formation and structures as well as the evolution of an imploding inertial fusion capsule depends on our understanding of matter in the complex warm dense matter...

258

MSD Condensed Matter Theory - Argonne National Laboratories,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Condensed Matter Theory Condensed Matter Theory research interacts with the materials research program at ANL through a mix of individual theoretical studies and...

259

Quantum Condensed Matter Division | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Condensed Matter Division Steve Nagler, QCMD Director QCMD Director Steve Nagler. The Quantum Condensed Matter Division (QCMD) enables and conducts a broad program of...

260

Spectrum Energy Inc SEI | Open Energy Information  

Open Energy Info (EERE)

Energy Inc SEI Energy Inc SEI Jump to: navigation, search Name Spectrum Energy Inc (SEI) Place Elk Grove, California Zip 95758 Sector Efficiency, Services, Solar Product US-based solar and energy services company that installs PV systems on a turnkey-basis; also provides evaluations of energy efficiency. References Spectrum Energy Inc (SEI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Spectrum Energy Inc (SEI) is a company located in Elk Grove, California . References ↑ "Spectrum Energy Inc (SEI)" Retrieved from "http://en.openei.org/w/index.php?title=Spectrum_Energy_Inc_SEI&oldid=351613" Categories: Clean Energy Organizations Companies Organizations

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NREL Spectrum of Clean Energy Innovation (Brochure)  

DOE Green Energy (OSTI)

This brochure describes the NREL Spectrum of Clean Energy Innovation, which includes analysis and decision support, fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. Through deep technical expertise and an unmatched breadth of capabilities, the National Renewable Energy Laboratory (NREL) leads an integrated approach across the spectrum of renewable energy innovation. From scientific discovery to accelerating market deployment, NREL works in partnership with private industry to drive the transformation of our nation's energy systems. NREL integrates the entire spectrum of innovation, including fundamental science, market relevant research, systems integration, testing and validation, commercialization, and deployment. Our world-class analysis and decision support informs every point on the spectrum. The innovation process at NREL is inter-dependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies may come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

Not Available

2011-09-01T23:59:59.000Z

262

Hot and Dense QCD Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

QCD Matter QCD Matter A Community White Paper on the Future of Relativistic Heavy-Ion Physics in the US Unraveling the Mysteries of the Strongly Interacting Quark-Gluon-Plasma Executive Summary This document presents the response of the US relativistic heavy-ion community to the request for comments by the NSAC Subcommittee, chaired by Robert Tribble, that is tasked to recommend optimizations to the US Nuclear Science Program over the next five years. The study of the properties of hot and dense QCD matter is one of the four main areas of nuclear physics research described in the 2007 NSAC Long Range Plan. The US nuclear physics community plays a leading role in this research area and has been instrumental in its most important discovery made over the past decade, namely that hot and dense QCD matter acts as a strongly interacting system with unique and previously unexpected

263

Brookhaven Soft Condensed Matter Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

surface freezing are still unresolved. One objective of the soft matter program at Brookhaven is to understand the behavior of ultra-thin organic films on solid and liquid...

264

Fast Spectrum Molten Salt Reactor Options  

DOE Green Energy (OSTI)

During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

2011-07-01T23:59:59.000Z

265

Shear viscosity of nuclear matter  

E-Print Network (OSTI)

In this talk I report my recent study on the shear viscosity of neutron-rich nuclear matter from a relaxation time approach. An isospin- and momentum-dependent interaction is used in the study. Effects of density, temperature, and isospin asymmetry of nuclear matter on its shear viscosity have been discussed. Similar to the symmetry energy, the symmetry shear viscosity is defined and its density and temperature dependence are studied.

Jun Xu

2013-02-01T23:59:59.000Z

266

Strongly interacting parton matter equilibration  

Science Conference Proceedings (OSTI)

We study the kinetic and chemical equilibration in 'infinite' parton matter within the Parton-Hadron-String Dynamics transport approach. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different energy densities. Particle abundances, kinetic energy distributions, and the detailed balance of the off-shell quarks and gluons in the strongly-interacting quarkgluon plasma are addressed and discussed.

Ozvenchuk, V., E-mail: ozvenchuk@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies (Germany); Linnyk, O. [Goethe-Universitaet, Institut fuer Theoretische Physik (Germany); Bratkovskaya, E. [Frankfurt Institute for Advanced Studies (Germany); Gorenstein, M. [NAS Ukraine, Bogolyubov Institute for Theoretical Physics (Ukraine); Cassing, W. [Justus-Liebig Universitaet, Institut fuer Theoretische Physik (Germany)

2012-07-15T23:59:59.000Z

267

Cosmology, Thermodynamics and Matter Creation  

E-Print Network (OSTI)

Several approaches to the matter creation problem in the context of cosmological models are summarily reviewed. A covariant formulation of the general relativistic imperfect simple fluid endowed with a process of matter creation is presented. By considering the standard big bang model, it is shown how the recent results of Prigogine et alii \\cite{1} can be recovered and, at the same time their limits of validity are explicited.

J. A. S. Lima; M. O. Calvao; I. Waga

2007-08-24T23:59:59.000Z

268

Shear viscosity of nuclear matter  

E-Print Network (OSTI)

In this talk I report my recent study on the shear viscosity of neutron-rich nuclear matter from a relaxation time approach. An isospin- and momentum-dependent interaction is used in the study. Effects of density, temperature, and isospin asymmetry of nuclear matter on its shear viscosity have been discussed. Similar to the symmetry energy, the symmetry shear viscosity is defined and its density and temperature dependence are studied.

Xu, Jun

2013-01-01T23:59:59.000Z

269

Infrared Searches for Dark Matter in the Form of Brown Dwarfs  

E-Print Network (OSTI)

Brown dwarfs, stars with insufficient mass to burn hydrogen, could contribute to the dark matter in the Galactic disk, galactic halos or even a background critical density. We consider the detectability of such brown dwarfs in various scenarios, extending previous work by allowing for the possibility that they may have an extended mass spectrum or be clumped into dark clusters. We investigate the constraints placed on such scenarios by the \\iras survey. Whilst an extrapolation of the mass function of visible disk stars makes it unlikely that brown dwarfs comprise all of the proposed disk dark matter, \\iras does not exclude brown dwarfs providing the dark matter in our own halo or a cosmological background. Neither does it improve on existing dynamical constraints on the mass and radius of brown dwarf clusters in our halo. Future satellites such as \\iso and \\sirtf will either detect brown dwarfs or brown dwarf clusters or else severely constrain their contribution to the dark matter.

E. J. Kerins; B. J. Carr

1993-09-02T23:59:59.000Z

270

Nonextensive theory of dark matter and gas density profiles  

E-Print Network (OSTI)

Pronounced core-halo patterns of dark matter and gas density profiles, observed in relaxed galaxies and clusters, were hitherto fitted by empirical power-laws. On the other hand, similar features are well known from astrophysical plasma environments, subject to long-range interactions, modeled in the context of nonextensive entropy generalization. We link nonextensive statistics to the problem of density distributions in large-scale structures and provide fundamentally derived density profiles, representing accurately the characteristics of both, dark matter and hot plasma distributions, as observed or generated in simulations. The bifurcation of the density distribution into a kinetic dark matter and thermodynamic gas branch turns out as natural consequence of the theory and is controlled by a single parameter kappa, measuring physically the degree of coupling within the system. Consequently, it is proposed to favor nonextensive distributions, derived from the fundamental physical context of entropy generali...

Leubner, M P

2005-01-01T23:59:59.000Z

271

Electric power annual 1992  

SciTech Connect

The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

Not Available

1994-01-06T23:59:59.000Z

272

Dark Matter Detectors as Dark Photon Helioscopes  

E-Print Network (OSTI)

Light new particles with masses below 10 keV, often considered as a plausible extension of the Standard Model, will be emitted from the solar interior, and can be detected on the Earth with a variety of experimental tools. Here we analyze the new "dark" vector state V, a massive vector boson mixed with the photon via an angle kappa, that in the limit of the small mass m_V has its emission spectrum strongly peaked at low energies. Thus, we utilize the constraints on the atomic ionization rate imposed by the results of the XENON10 experiment to set the limit on the parameters of this model: kappa times m_V< 3 times10^{-12} eV. This makes low-threshold Dark Matter experiments the most sensitive dark vector helioscopes, as our result not only improves current experimental bounds from other searches by several orders of magnitude, but also surpasses even the most stringent astrophysical and cosmological limits in a seven-decade-wide interval of m_V. We generalize this approach to other light exotic particles, and set the most stringent direct constraints on "mini-charged" particles.

Haipeng An; Maxim Pospelov; Josef Pradler

2013-04-11T23:59:59.000Z

273

Boron abundance and solar neutrino spectrum distortion  

E-Print Network (OSTI)

The presence of neutrinos from Boron decay in the flux observed on Earth is attested by the observation of their energy spectrum. Possible distortions of the spectrum investigated in current detectors are often interpreted in terms of evidence in favour or against various schemes of neutrino oscillations. We stress here that a distortion of the spectrum at high energies could also result from an increase in the ratio of neutrinos originating from ($^3$He+p) and $^8$B reactions. While a $^8$B neutrino depletion would contribute to this effect, an increase in the Hep contribution seems also needed to reproduce the preliminary data.

R. Escribano; J. -M. Frere; A. Gevaert; D. Monderen

1998-05-06T23:59:59.000Z

274

Distillation by repeated measurements: Continuous spectrum case  

Science Conference Proceedings (OSTI)

Repeated measurements on one part of a bipartite system strongly affect the other part that is not measured, the dynamics of which is regulated by an effective contracted evolution operator. When the spectrum of this operator is discrete, the nonmeasured system is driven into a pure state, irrespective of the initial state, provided that the spectrum satisfies certain conditions. We show here that, even in the case of continuous spectrum, an effective distillation can occur under rather general conditions. We confirm it by applying our formalism to a simple model.

Bellomo, Bruno; Compagno, Giuseppe [CNISM and Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo, via Archirafi 36, IT-90123 Palermo (Italy); Nakazato, Hiromichi [Department of Physics, Waseda University, Tokyo 169-8555 (Japan); Yuasa, Kazuya [Waseda Institute for Advanced Study, Waseda University, Tokyo 169-8050 (Japan)

2010-12-15T23:59:59.000Z

275

Climate Change, Nuclear Power and Nuclear  

E-Print Network (OSTI)

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters Rob Goldston MIT IAP biomass wind hydro coal CCS coal nat gas CCS nat gas nuclear Gen IV nuclear Gen III nuclear Gen II 5-1 Electricity Generation: CCS and Nuclear Power Technology Options Available Global Electricity Generation WRE

276

The Energy Spectrum of Fronts: Time Evolution of Shocks in Burgers‚ Equation  

Science Conference Proceedings (OSTI)

Andrews and Hoskins used semigeostrophic theory to argue that the energy spectrum of a front should decay like the ?8/3 power of the wavenumber. They note, however, that their inviscid analysis is restricted to the very moment of breaking; that ...

John P. Boyd

1992-01-01T23:59:59.000Z

277

Decision Analysis of Dynamic Spectrum Access Rules  

SciTech Connect

A current trend in spectrum regulation is to incorporate spectrum sharing through the design of spectrum access rules that support Dynamic Spectrum Access (DSA). This paper develops a decision-theoretic framework for regulators to assess the impacts of different decision rules on both primary and secondary operators. We analyze access rules based on sensing and exclusion areas, which in practice can be enforced through geolocation databases. Our results show that receiver-only sensing provides insufficient protection for primary and co-existing secondary users and overall low social welfare. On the other hand, using sensing information between the transmitter and receiver of a communication link, provides dramatic increases in system performance. The performance of using these link end points is relatively close to that of using many cooperative sensing nodes associated to the same access point and large link exclusion areas. These results are useful to regulators and network developers in understanding in developing rules for future DSA regulation.

Juan D. Deaton; Luiz A. DaSilva; Christian Wernz

2011-12-01T23:59:59.000Z

278

KamLAND and Solar Antineutrino Spectrum  

E-Print Network (OSTI)

We use the recent KamLAND observations to predict the solar antineutrino spectrum at some confidence limits. We find that a scaling of the antineutrino probability with respect to the magnetic field profile --in the sense that the same probability function can be reproduced by any profile with a suitable peak field value-- can be utilised to obtain a general shape of the solar antineutrino spectrum. This scaling and the upper bound on the solar antineutrino event rate, that can be derived from the data, lead to: 1) an upper bound on the solar antineutrino flux, 2) the prediction of their energy spectrum, as the normalisation of the spectrum can be obtained from the total number of antineutrino events recorded in the experiment. We get $\\phi_{\\bar\

Bhag C. Chauhan; Joao Pulido; E. Torrente-Lujan

2003-09-08T23:59:59.000Z

279

Intelligent Condition Assessment of Power Transformer Based on Data Mining Techniques.  

E-Print Network (OSTI)

??In recent years, the trade-off between quality and cost of power system components has become a matter of interest for many utilities. The widespread use… (more)

Tahir, Monsef

2013-01-01T23:59:59.000Z

280

Fake Dark Matter at Colliders  

E-Print Network (OSTI)

If the dark matter (DM) consists of a weakly interacting massive particle (WIMP), it can be produced and studied at future collider experiments like those at the LHC. The production of collider-stable WIMPs is characterized by hard scattering events with large missing transverse energy. Here we point out that the discovery of this well-characterized DM signal may turn out to be a red herring. We explore an alternative explanation -- fake dark matter -- where the only sources of missing transverse energy are standard model neutrinos. We present examples of such models, focusing on supersymmetric models with R-parity violation. We also briefly discuss means of differentiating fake dark matter from the production of new collider-stable particles.

Chang, Spencer

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fake Dark Matter at Colliders  

E-Print Network (OSTI)

If the dark matter (DM) consists of a weakly interacting massive particle (WIMP), it can be produced and studied at future collider experiments like those at the LHC. The production of collider-stable WIMPs is characterized by hard scattering events with large missing transverse energy. Here we point out that the discovery of this well-characterized DM signal may turn out to be a red herring. We explore an alternative explanation -- fake dark matter -- where the only sources of missing transverse energy are standard model neutrinos. We present examples of such models, focusing on supersymmetric models with R-parity violation. We also briefly discuss means of differentiating fake dark matter from the production of new collider-stable particles.

Spencer Chang; Andre de Gouvea

2009-01-30T23:59:59.000Z

282

Dark energy from bulk matter  

SciTech Connect

We consider the possibility of getting accelerated expansion and w=-1 crossing in the context of a braneworld cosmological setup, endowed with a bulk energy-momentum tensor. For a given ansatz of the bulk content, we demonstrate that the bulk pressures dominate the dynamics at late times and can lead to accelerated expansion. We also analyze the constraints under which we can get a realistic profile for the effective equation of state and conclude that matter in the bulk has the effect of dark energy on the brane. Furthermore, we show that it is possible to simulate the behavior to a Chaplygin gas using nonexotic bulk matter.

Bogdanos, C.; Dimitriadis, A.; Tamvakis, K. [Physics Department, University of Ioannina, Ioannina GR451 10 (Greece)

2007-04-15T23:59:59.000Z

283

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crone, Director Crone, Director Research Reactors Division Oak Ridge National Laboratory UT-Battelle, LLC September 20, 2012 - Bethesda, MD High Flux Isotope Reactor Spallation Neutron Source Oak Ridge National Laboratory - Main Campus Materials Irradiation Testing * Fusion Energy - provides best available neutron spectrum for radiation damage testing on fusion components; collaboration between U.S. and Japan for over thirty years * Fission Energy - research supporting next-generation commercial power reactors including accident tolerant fuel and reactor materials * National Security - Neutron Activation Analysis supporting IAEA non-proliferation monitoring 1,021 Materials and NAA Irradiations in FY2011 Reliable Source of Unique Isotopes * Californium-252 - HFIR supplies 80% of the world

284

The Cold Dark Matter Search test stand warm electronics card  

SciTech Connect

A card which does the signal processing for four SQUID amplifiers and two charge sensitive channels is described. The card performs the same functions as is presently done with two custom 9U x 280mm Eurocard modules, a commercial multi-channel VME digitizer, a PCI to GPIB interface, a PCI to VME interface and a custom built linear power supply. By integrating these functions onto a single card and using the power over Ethernet standard, the infrastructure requirements for instrumenting a Cold Dark Matter Search (CDMS) detector test stand are significantly reduced.

Hines, Bruce; /Colorado U., Denver; Hansen, Sten; /Fermilab; Huber, Martin; /Colorado U., Denver; Kiper, Terry; /Fermilab; Rau, Wolfgang; /Queen's U., Kingston; Saab, Tarek; /Florida U.; Seitz, Dennis; Sundqvist, Kyle; /UC, Berkeley; Mandic, Vuk; /Minnesota U.

2010-11-01T23:59:59.000Z

285

The Information and the Matter  

E-Print Network (OSTI)

In this article a revised, to some extent, version of the Information concept as utmost fundamental essence ("The Information and the Matter",v1) is presented - a little more logical grounds and may be of a philosophy, the correction and the development of the gravity force concept, etc...

S. V. Shevchenko; V. V. Tokarevsky

2007-03-05T23:59:59.000Z

286

Solar Neutrino Matter Effects Redux  

E-Print Network (OSTI)

Following recent low-threshold analysis of the Sudbury Neutrino Observatory and asymmetry measurements of the BOREXINO Collaboration of the solar neutrino flux, we revisit the analysis of the matter effects in the Sun. We show that solar neutrino data constrains the mixing angle $\\theta_{13}$ poorly and that subdominant Standard Model effects can mimic the effects of the physics beyond the Standard Model.

A. B. Balantekin; A. Malkus

2011-09-24T23:59:59.000Z

287

Universal Ownership: Why Environmental Externalities Matter to  

Open Energy Info (EERE)

Universal Ownership: Why Environmental Externalities Matter to Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Jump to: navigation, search Tool Summary Name: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Agency/Company /Organization: UNEP-Financing Initiative Focus Area: Industry Topics: Co-benefits assessment Resource Type: Lessons learned/best practices Website: www.unepfi.org/fileadmin/documents/universal_ownership.pdf Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Screenshot References: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors[1] Logo: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Summary "This study assesses the financial implications of unsustainable natural

288

Microsoft PowerPoint - Gough, USMC.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

'Spectrum' 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 FUEL CELL Watts Military Civil Soldier Power Residential Automotive Electronics Ship Service Ship Propulsion Heavy Vehicle...

289

The Spectrum of Non-Local Discrete Schroedinger Operators with a delta-Potential  

E-Print Network (OSTI)

The behaviour of the spectral edges (embedded eigenvalues and resonances) is discussed at the two ends of the continuous spectrum of non-local discrete Schr\\"odinger operators with a $\\delta$-potential. These operators arise by replacing the discrete Laplacian by a strictly increasing $C^1$-function of the discrete Laplacian. The dependence of the results on this function and the lattice dimension are explicitly derived. It is found that while in the case of the discrete Schr\\"odinger operator these behaviours are the same no matter which end of the continuous spectrum is considered, an asymmetry occurs for the non-local cases. A classification with respect to the spectral edge behaviour is also offered.

Fumio Hiroshima; József L?rinczi

2013-09-18T23:59:59.000Z

290

Nuclear matter to strange matter transition in holographic QCD  

E-Print Network (OSTI)

We construct a simple holographic QCD model to study nuclear matter to strange matter transition. The interaction of dense medium and hadrons is taken care of by imposing the force balancing condition for stable D4/D6/D6 configuration. By considering the intermediate and light flavor branes interacting with baryon vertex homogeneously distributed along R^3 space and requesting the energy minimization, we find that there is a well defined transition density as a function of current quark mass. We also find that as density goes up very high, intermediate (or heavy) and light quarks populate equally as expected from the Pauli principle. In this sense, the effect of the Pauli principle is realized as dynamics of D-branes.

Youngman Kim; Yunseok Seo; Sang-Jin Sin

2009-11-19T23:59:59.000Z

291

Interstellar Communication: The Case for Spread Spectrum  

E-Print Network (OSTI)

Spread spectrum, widely employed in modern digital wireless terrestrial radio systems, chooses a signal with a noise-like character and much higher bandwidth than necessary. This paper advocates spread spectrum modulation for interstellar communication, motivated by robust immunity to radio-frequency interference (RFI) of technological origin in the vicinity of the receiver while preserving full detection sensitivity in the presence of natural sources of noise. Receiver design for noise immunity alone provides no basis for choosing a signal with any specific character, therefore failing to reduce ambiguity. By adding RFI to noise immunity as a design objective, the conjunction of choice of signal (by the transmitter) together with optimum detection for noise immunity (in the receiver) leads through simple probabilistic argument to the conclusion that the signal should possess the statistical properties of a burst of white noise. Thus spread spectrum also provides an implicit coordination between transmitter a...

Messerschmitt, David G

2012-01-01T23:59:59.000Z

292

Turbulent Density Spectrum in Solar Wind Plasma  

E-Print Network (OSTI)

The density fluctuation spectrum in the solar wind reveals a Kolmogorov-like scaling with a spectral slope of -5/3 in wavenumber space. The energy transfer process in the magnetized solar wind, characterized typically by MHD turbulence, over extended length-scales remains an unresolved paradox of modern turbulence theories, raising the question of how a compressible magnetofluid exhibits a turbulent spectrum that is characteristic of an incompressible hydrodynamic fluid. To address these questions, we have undertaken three-dimensional time dependent numerical simulations of a compressible magnetohydrodynamic fluid describing super-Alfv\\'enic, supersonic and strongly magnetized plasma fluid. It is shown that a Kolmogorov-like density spectrum can develop by plasma motions that are dominated by Alfv\\'enic cascades whereas compressive modes are dissipated.

Shaikh, Dastgeer

2009-01-01T23:59:59.000Z

293

Density Spectrum in the Solar Wind Plasma  

E-Print Network (OSTI)

The density fluctuation spectrum in the solar wind reveals a Kolmogorov-like scaling with a spectral slope of -5/3 in wavenumber space. The energy transfer process in the magnetized solar wind, characterized typically by MHD turbulence, over extended length-scales remains an unresolved paradox of modern turbulence theories, raising the question of how a compressible magnetofluid exhibits a turbulent spectrum that is characteristic of an incompressible hydrodynamic fluid. To address these questions, we have undertaken three-dimensional time dependent numerical simulations of a compressible magnetohydrodynamic fluid describing super-Alfv\\'enic, supersonic and strongly magnetized plasma fluid. It is shown that a Kolmogorov-like density spectrum can develop by plasma motions that are dominated by Alfv\\'enic cascades whereas compressive modes are dissipated.

Shaikh, Dastgeer

2009-01-01T23:59:59.000Z

294

Federal Spectrum Management at the National Telecommunications and Information Administration  

Energy.gov (U.S. Department of Energy (DOE))

Slides from National Telecommunications and Information Administration's presentation on Federal spectrum management.

295

THE ENERGY GAP IN NUCLEAR MATTER  

E-Print Network (OSTI)

W-7405-eng-48 THE ENERGY GAP IN NUCLEAR MATTER V. J. Emery31, 1960 .po THE ENERGY GAP IN NUCLEAR HNrTEh V. J. ? :merysingle-particle energy in nuclear matter. The internucleon

Emery, V.J.

2008-01-01T23:59:59.000Z

296

Quark matter conductivity in strong magnetic background  

SciTech Connect

Applying the ideas and methods of condensed matter physics we calculate the quantum conductivity of quark matter in magnetic field. In strong field quantum conductivity is proportional to the square root of the field.

Kerbikov, B. O., E-mail: borisk@itep.ru [Institute for Theoretical and Experimental Physics (Russian Federation)

2012-06-15T23:59:59.000Z

297

Cold quark matter in compact stars  

Science Conference Proceedings (OSTI)

We used an equation of state for the cold quark matter to the study of properties of quark stars. We also discuss the absolute stability of quark matter and compute the mass-radius relation for self-bound stars.

Franzon, B.; Fogaca, D. A.; Navarra, F. S. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil); Horvath, J. E. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao, 1226, 05508-090, Sao Paulo, SP (Brazil)

2013-03-25T23:59:59.000Z

298

Semi-annihilation of dark matter  

E-Print Network (OSTI)

We show that the thermal relic abundance of dark matter can be affected by a new type of reaction: semi-annihilation. Semi-annihilation takes the schematic form ..., where psi i are stable dark matter particles and phi is ...

D’Eramo, Francesco

299

Dark matter axions and caustic rings  

SciTech Connect

This report contains discussions on the following topics: the strong CP problem; dark matter axions; the cavity detector of galactic halo axions; and caustic rings in the density distribution of cold dark matter halos.

Sikivie, P.

1997-11-01T23:59:59.000Z

300

The Electron Injection Spectrum Determined by Anomalous Excesses in Cosmic Ray, Gamma Ray, and Microwave Signals  

E-Print Network (OSTI)

Recent cosmic ray, gamma ray, and microwave signals observed by Fermi, PAMELA, and WMAP indicate an unexpected primary source of e+e- at 10-1000 GeV. We fit these data to "standard backgrounds" plus a new source, assumed to be a separable function of position and energy. For the spatial part, we consider three cases: annihilating dark matter, decaying dark matter, and pulsars. In each case, we use GALPROP to inject energy in log-spaced energy bins and compute the expected cosmic-ray and photon signals for each bin. We then fit a linear combination of energy bins, plus backgrounds, to the data. We use a non-parametric fit, with no prior constraints on the spectrum except smoothness and non-negativity. In addition, we consider arbitrary modifications to the energy spectrum of the "ordinary" primary source function, fixing its spatial part, finding this alone to be inadequate to explain the PAMELA or WMAP signals. We explore variations in the fits due to choice of magnetic field, primary electron injection index, spatial profiles, propagation parameters, and fit regularization method. Dark matter annihilation fits well, where our fit finds a mass of ~1 TeV and a boost factor times energy fraction of ~70. While it is possible for dark matter decay and pulsars to fit the data, unconventionally high magnetic fields and radiation densities are required near the Galactic Center to counter the relative shallowness of the assumed spatial profiles. We also fit to linear combinations of these three scenarios, though the fit is much less constrained.

Tongyan Lin; Douglas P. Finkbeiner; Gregory Dobler

2010-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Neutron Condensed Matter Science Staff Directory  

Science Conference Proceedings (OSTI)

Neutron Condensed Matter Science Staff Directory. Dr. Dan Neumann, Group Leader, 301-975-5252. ... Macromolecular and Microstructural Sciences. ...

2013-04-01T23:59:59.000Z

302

Light-matter Interactions in Semiconductor Nanostructures  

Science Conference Proceedings (OSTI)

Light-matter interactions in Semiconductor Nanostructures. ... We investigate the interaction of light with semiconductor-based nanostructures. ...

2012-05-30T23:59:59.000Z

303

Quantum Nature of Light and Matter  

Science Conference Proceedings (OSTI)

Quantum Nature of Light and Matter. to explore fundamental aspects of the quantum nature of light and its interaction with ...

2012-05-30T23:59:59.000Z

304

Parallel Electric Field Spectrum of Solar Wind Turbulence  

E-Print Network (OSTI)

By searching through more than 10 satellite-years of THEMIS and Cluster data, three reliable examples of parallel electric field turbulence in the undisturbed solar wind have been found. The perpendicular and parallel electric field spectra in these examples have similar shapes and amplitudes, even at large scales (frequencies below the ion gyroscale) where Alfvenic turbulence with no parallel electric field component is thought to dominate. The spectra of the parallel electric field fluctuations are power laws with exponents near -5/3 below the ion scales (~ 0.1 Hz), and with a flattening of the spectrum in the vicinity of this frequency. At small scales (above a few Hz), the spectra are steeper than -5/3 with values in the range of -2.1 to -2.8. These steeper slopes are consistent with expectations for kinetic Alfven turbulence, although their amplitude relative to the perpendicular fluctuations is larger than expected.

Mozer, F S

2013-01-01T23:59:59.000Z

305

Quantum Hamiltonians with Quasi-Ballistic Dynamics and Point Spectrum  

E-Print Network (OSTI)

Consider the family of Schr\\"odinger operators (and also its Dirac version) on $\\ell^2(\\mathbb{Z})$ or $\\ell^2(\\mathbb{N})$ \\[ H^W_{\\omega,S}=\\Delta + \\lambda F(S^n\\omega) + W, \\quad \\omega\\in\\Omega, \\] where $S$ is a transformation on (compact metric) $\\Omega$, $F$ a real Lipschitz function and $W$ a (sufficiently fast) power-decaying perturbation. Under certain conditions it is shown that $H^W_{\\omega,S}$ presents quasi-ballistic dynamics for $\\omega$ in a dense $G_{\\delta}$ set. Applications include potentials generated by rotations of the torus with analytic condition on $F$, doubling map, Axiom A dynamical systems and the Anderson model. If $W$ is a rank one perturbation, examples of $H^W_{\\omega,S}$ with quasi-ballistic dynamics and point spectrum are also presented.

Cesar R. de Oliveira; Roberto A. Prado

2007-01-04T23:59:59.000Z

306

Magnetization of neutron star matter  

E-Print Network (OSTI)

The magnetization of neutron star matter in magnetic fields is studied by employing the FSUGold interaction. It is found that the magnetic susceptibilities of the charged particles (proton, electron and muon) can be larger than that of neutron. The effects of the anomalous magnetic moments (AMM) of each component on the magnetic susceptibility are examined in detail. It is found that the proton and electron AMM affect their respective magnetic susceptibility evidently in strong magnetic fields. In addition, they are the protons instead of the electrons that contribute most significantly to the magnetization of the neutron star matter in a relative weak magnetic field, and the induced magnetic field due to the magnetization can be appear to be very large. Finally, the effect of the density-dependent symmetry energy on the magnetization is discussed.

Dong, Jianmin; Gu, Jianzhong

2013-01-01T23:59:59.000Z

307

Pump Systems Matter Mission and Vision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

issionofPumpSystemsMatter.pdf More Documents & Publications Overview of Pump Systems Matter Hydraulic Institute Member Benefits Course Overview Pump Systems Matter Optimization...

308

Neutrino Opacities in Nuclear Matter  

E-Print Network (OSTI)

Neutrino-matter cross sections and interaction rates are central to the core-collapse supernova phenomenon and, very likely, to the viability of the explosion mechanism itself. In this paper, we describe the major neutrino scattering, absorption, and production processes that together influence the outcome of core collapse and the cooling of protoneutron stars. One focus is on energy redistribution and many-body physics, but our major goal is to provide a useful resource for those interested in supernova neutrino microphysics.

Adam Burrows; Sanjay Reddy; Todd A. Thompson

2004-04-21T23:59:59.000Z

309

Dark Matter and Dark Energy  

E-Print Network (OSTI)

This is a short review, aimed at a general audience, of several current subjects of research in cosmology. The topics discussed include the cosmic microwave background (CMB), with particular emphasis on its relevance for testing inflation; dark matter, with a brief review of astrophysical evidence and more emphasis on particle candidates; and cosmic acceleration and some of the ideas that have been put forward to explain it. A glossary of technical terms and acronyms is provided.

Marc Kamionkowski

2007-06-20T23:59:59.000Z

310

Dark Matter and Dark Energy  

E-Print Network (OSTI)

This is a short review, aimed at a general audience, of several current subjects of research in cosmology. The topics discussed include the cosmic microwave background (CMB), with particular emphasis on its relevance for testing inflation; dark matter, with a brief review of astrophysical evidence and more emphasis on particle candidates; and cosmic acceleration and some of the ideas that have been put forward to explain it. A glossary of technical terms and acronyms is provided.

Kamionkowski, Marc

2007-01-01T23:59:59.000Z

311

Burbank Water and Power - Solar Water Heater Rebate Program ...  

Open Energy Info (EERE)

Burbank Water and Power - Solar Water Heater Rebate Program (California) No revision has been approved for this page. It is currently under review by our subject matter experts. No...

312

Decoupling Dark Energy from Matter  

E-Print Network (OSTI)

We examine the embedding of dark energy in high energy models based upon supergravity and extend the usual phenomenological setting comprising an observable sector and a hidden supersymmetry breaking sector by including a third sector leading to the acceleration of the expansion of the universe. We find that gravitational constraints on the non-existence of a fifth force naturally imply that the dark energy sector must possess an approximate shift symmetry. When exact, the shift symmetry provides an example of a dark energy sector with a runaway potential and a nearly massless dark energy field whose coupling to matter is very weak, contrary to the usual lore that dark energy fields must couple strongly to matter and lead to gravitational inconsistencies. Moreover, the shape of the potential is stable under one-loop radiative corrections. When the shift symmetry is slightly broken by higher order terms in the Kähler potential, the coupling to matter remains small. However, the cosmological dynamics are largely affected by the shift symmetry breaking operators leading to the appearance of a minimum of the scalar potential such that dark energy behaves like an effective cosmological constant from very early on

Carsten Van De Bruck; Jérôme Martin; et al.

2009-01-01T23:59:59.000Z

313

Available Technologies: Full-Spectrum Semiconducting Material ...  

APPLICATIONS OF TECHNOLOGY: Concentrator solar cells; Solar farms and power plants; Communications satellites; Space exploration ; ADVANTAGES: Cost effective, single ...

314

Tailoring the Neutron Spectrum from a 14-MeV Neutron Generator to Approximate a Spontaneous-Fission Spectrum  

SciTech Connect

Many applications of neutrons for non-invasive measurements began with isotopic sources such as AmBe or Cf-252. Political factors have rendered AmBe undesirable in the United States and other countries, and the supply of Cf-252 is limited and significantly increasing in price every few years. Compact and low-power deuterium-tritium (DT) electronic neutron generators can often provide sufficient flux, but the 14-MeV neutron spectrum is much more energetic (harder) than an isotopic neutron source. A series of MCNP simulations were run to examine the extent to which the 14-MeV DT neutron spectrum could be softened through the use of high-Z and low-Z materials. Some potential concepts of operation require a portable neutron generator system, so the additional weight of extra materials is also a trade-off parameter. Using a reference distance of 30 cm from the source, the average neutron energy can be lowered to be less than that of either AmBe or Cf-252, while obtaining an increase in flux at the reference distance compared to a bare neutron generator. This paper discusses the types and amounts of materials used, the resulting neutron spectra, neutron flux levels, and associated photon production.

James Simpson; David Chichester

2011-06-01T23:59:59.000Z

315

On Determining the Spectrum of Primordial Inhomogeneity from the COBE DMR Sky Maps: II. Results of Two Year Data Analysis  

E-Print Network (OSTI)

A new technique of Fourier analysis on a cut sky (Gorski, 1994) has been applied to the two year COBE DMR sky maps. The Bayesian power spectrum estimation results are consistent with the Harrison-Zel'dovich n=1 model. The maximum likelihood estimates of the parameters of the power spectrum of primordial perturbations are n=1.22 (1.02) and Q_{rms-PS}=17 (20) uK including (excluding) the quadrupole anisotropy. The marginal likelihood function on n renders n=1.10 \\pm 0.32 (0.87 \\pm 0.36).

K. M. Gorski; G. Hinshaw; A. J. Banday; C. L. Bennett; E. L. Wright; A. Kogut; G. F. Smoot; P. Lubin

1994-03-31T23:59:59.000Z

316

Cosmic Ray Spectrum in Supernova Remnant Shocks  

E-Print Network (OSTI)

We perform kinetic simulations of diffusive shock acceleration (DSA) in Type Ia supernova remnants (SNRs) expanding into a uniform interstellar medium (ISM). Bohm-like diffusion assumed, and simple models for Alfvenic drift and dissipation are adopted. Phenomenological models for thermal leakage injection are considered as well. We find that the preshock gas temperature is the primary parameter that governs the cosmic ray (CR) acceleration efficiency and energy spectrum, while the CR injection rate is a secondary parameter. For SNRs in the warm ISM, if the injection fraction is larger than 10^{-4}, the DSA is efficient enough to convert more than 20 % of the SN explosion energy into CRs and the accelerated CR spectrum exhibits a concave curvature flattening to E^{-1.6}. Such a flat source spectrum near the knee energy, however, may not be reconciled with the CR spectrum observed at Earth. On the other hand, SNRs in the hot ISM, with an injection fraction smaller than 10^{-4}, are inefficient accelerators with...

Kang, Hyesung

2010-01-01T23:59:59.000Z

317

The problem of big bang matter vs. anti-matter symmetry  

Science Conference Proceedings (OSTI)

The Big Bang was symmetrical in the particles and radiation emitted from its singularity source, which implies its resulting in equal amounts of matter and anti-matter and their prompt mutual annihilation. But that did not take place. The favored explanation ... Keywords: anti-matter, big bang, gamma ray bursts, matter, mutual annihilation, universe

Roger Ellman

2011-02-01T23:59:59.000Z

318

Spectrum Fatigue Lifetime and Residual Strength for Fiberglass Laminates  

SciTech Connect

This report addresses the effects of spectrum loading on lifetime and residual strength of a typical fiberglass laminate configuration used in wind turbine blade construction. Over 1100 tests have been run on laboratory specimens under a variety of load sequences. Repeated block loading at two or more load levels, either tensile-tensile, compressive-compressive, or reversing, as well as more random standard spectra have been studied. Data have been obtained for residual strength at various stages of the lifetime. Several lifetime prediction theories have been applied to the results. The repeated block loading data show lifetimes that are usually shorter than predicted by the most widely used linear damage accumulation theory, Miner's sum. Actual lifetimes are in the range of 10 to 20 percent of predicted lifetime in many cases. Linear and nonlinear residual strength models tend to fit the data better than Miner's sum, with the nonlinear providing a better fit of the two. Direct tests of residual strength at various fractions of the lifetime are consistent with the residual strength models. Load sequencing effects are found to be insignificant. The more a spectrum deviates from constant amplitude, the more sensitive predictions are to the damage law used. The nonlinear model provided improved correlation with test data for a modified standard wind turbine spectrum. When a single, relatively high load cycle was removed, all models provided similar, though somewhat non-conservative correlation with the experimental results. Predictions for the full spectrum, including tensile and compressive loads were slightly non-conservative relative to the experimental data, and accurately captured the trend with varying maximum load. The nonlinear residual strength based prediction with a power law S-N curve extrapolation provided the best fit to the data in most cases. The selection of the constant amplitude fatigue regression model becomes important at the lower stress, higher cycle loading cases. The residual strength models may provide a more accurate estimate of blade lifetime than Miner's rule for some loads spectra. They have the added advantage of providing an estimate of current blade strength throughout the service life.

WAHL, NEIL K.; MANDELL, JOHN F.; SAMBORSKY, DANIEL D.

2002-03-01T23:59:59.000Z

319

TeV scale dark matter and electroweak radiative corrections  

SciTech Connect

Recent anomalies in cosmic rays data, namely, from the PAMELA Collaboration, can be interpreted in terms of TeV scale decaying/annihilating dark matter. We analyze the impact of radiative corrections coming from the electroweak sector of the standard model on the spectrum of the final products at the interaction point. As an example, we consider virtual one loop corrections and real gauge bosons emission in the case of a very heavy vector boson annihilating into fermions. We find electroweak corrections that are relevant, but not as big as sometimes found in the literature; we relate this mismatch to the issue of gauge invariance. At scales much higher than the symmetry breaking scale, one loop electroweak effects are so big that eventually higher orders/resummations have to be considered: we advocate for the inclusion of these effects in parton shower Monte Carlo models aiming at the description of TeV scale physics.

Ciafaloni, Paolo; Urbano, Alfredo [INFN - Sezione di Lecce and Universita del Salento, Via per Arnesano, I-73100 Lecce (Italy)

2010-08-15T23:59:59.000Z

320

Power Electronics  

Energy.gov (U.S. Department of Energy (DOE))

Power electronics (PE) play a critical role in transforming the current electric grid into the next-generation grid.  PE enable utilities to deliver power to their customers effectively while...

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains,...

322

Power Supplies  

Science Conference Proceedings (OSTI)

Figure: ...Fig. 5 Typical medium-frequency induction power supply incorporating (a) a parallel inverter and (b) a series inverter...

323

Condensed Matter Physics & Materials Science Department, Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

Presetations Presetations Homepage | Contacts "How can we make an isotropic high-temperature superconductor?," Seminar at Condensed Matter Physics Department, (Brookhaven National Laboratory, Upton, NY, November 27 2007). PDF "Enhancement of Jc in thick MOD and BaF2 coatings through the structure improvement " DOE "Superconductivity for Power Systems" Annual Peer Review, (Arlington, VA, August 7-9 2007). PDF "Texture Development in 2-3 μm Thick YBCO Films Synthesized by BaF2 and MOD Processes on Metal RABiTS(tm) " Materials Research Society Spring Meeting, (San Francisco, CA, April 20 2007). PDF "Films and Crystals: Search for the Perfect Structure. ," Seminar at Condensed Matter Physics Department, (Brookhaven National Laboratory, Upton, NY, March 12 2007). PDF

324

Power supply  

DOE Patents (OSTI)

A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

Yakymyshyn, Christopher Paul (Seminole, FL); Hamilton, Pamela Jane (Seminole, FL); Brubaker, Michael Allen (Loveland, CO)

2007-12-04T23:59:59.000Z

325

Policy Matters Ohio | Open Energy Information  

Open Energy Info (EERE)

Matters Ohio Matters Ohio Jump to: navigation, search Name Policy Matters Ohio Address 3631 Perkins Avenue - Suite 4C-East Place Cleveland, Ohio Zip 44114 Website http://www.policymattersohio.o References Policy Matters Ohio[1] LinkedIn Connections This article is a stub. You can help OpenEI by expanding it. Policy Matters Ohio is an organization based in Cleveland, Ohio. References ↑ "Policy Matters Ohio" Retrieved from "http://en.openei.org/w/index.php?title=Policy_Matters_Ohio&oldid=367666" Categories: Policy Organizations Clean Energy Organizations Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

326

Energy Matters LLC | Open Energy Information  

Open Energy Info (EERE)

Matters LLC Matters LLC Jump to: navigation, search Name Energy Matters LLC Place Santa Rosa, California Zip 95402 Sector Renewable Energy Product Energy Matters specialises in software tools for the renewable energy industries. References Energy Matters LLC[1] Solar-Estimate.org[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Energy Matters LLC is a company located in Santa Rosa, California . Solarestimate.gif Solar-Estimate.org Energy Matters created the solar estimator, a useful tool to analyze the benefits of a solar or wind system installation in your home or business. The estimator takes into account your region, average utility bills, and the system you are installing, and calculates a 25-year timeline for you to analyze the potential cost savings on energy.

327

Conversion of electron spectrum associated with fission into the antineutrino spectrum  

E-Print Network (OSTI)

The accuracy of the procedure that converts the experimentally determined electron spectrum associated with fission of the nuclear fuels ^{235}U, ^{239}Pu, ^{241}Pu, and ^{238}U into the $\\bar{\

Petr Vogel

2007-08-03T23:59:59.000Z

328

Conversion of electron spectrum associated with fission into the antineutrino spectrum  

E-Print Network (OSTI)

The accuracy of the procedure that converts the experimentally determined electron spectrum associated with fission of the nuclear fuels ^{235}U, ^{239}Pu, ^{241}Pu, and ^{238}U into the $\\bar{\

Vogel, Petr

2007-01-01T23:59:59.000Z

329

Why Japan's Electricity Crisis Matters  

NLE Websites -- All DOE Office Websites (Extended Search)

Japan has switched to older oil and gas-fired power plants, leading to a jump in oil and LNG imports and putting pressure on international oil prices. Conservation must also help...

330

EXTRAGALACTIC DARK MATTER AND DIRECT DETECTION EXPERIMENTS  

SciTech Connect

Recent astronomical data strongly suggest that a significant part of the dark matter content of the Local Group and Virgo Supercluster is not incorporated into the galaxy halos and forms diffuse components of these galaxy clusters. A portion of the particles from these components may penetrate the Milky Way and make an extragalactic contribution to the total dark matter containment of our Galaxy. We find that the particles of the diffuse component of the Local Group are apt to contribute {approx}12% to the total dark matter density near Earth. The particles of the extragalactic dark matter stand out because of their high speed ({approx}600 km s{sup -1}), i.e., they are much faster than the galactic dark matter. In addition, their speed distribution is very narrow ({approx}20 km s{sup -1}). The particles have an isotropic velocity distribution (perhaps, in contrast to the galactic dark matter). The extragalactic dark matter should provide a significant contribution to the direct detection signal. If the detector is sensitive only to the fast particles (v > 450 km s{sup -1}), then the signal may even dominate. The density of other possible types of the extragalactic dark matter (for instance, of the diffuse component of the Virgo Supercluster) should be relatively small and comparable with the average dark matter density of the universe. However, these particles can generate anomaly high-energy collisions in direct dark matter detectors.

Baushev, A. N., E-mail: baushev@gmail.com [DESY, D-15738 Zeuthen (Germany); Institut fuer Physik und Astronomie, Universitaet Potsdam, D-14476 Potsdam-Golm (Germany)

2013-07-10T23:59:59.000Z

331

X-ray power density spectra of black hole binaries : a new deadtime model for the RXTE PCA  

E-Print Network (OSTI)

The power density spectrum is an essential tool for determining the frequency content of X-ray radiation from astronomical sources. For neutron star systems, power density spectra reveal coherent oscillations for those ...

Wei, Dennis

2006-01-01T23:59:59.000Z

332

Isospin-asymmetric nuclear matter  

E-Print Network (OSTI)

This study uses classical molecular dynamics to simulate infinite nuclear matter and study the effect of isospin asymmetry on bulk properties such as energy per nucleon, pressure, saturation density, compressibility and symmetry energy. The simulations are performed on systems embedded in periodic boundary conditions with densities and temperatures in the ranges $\\rho$=0.02 to 0.2 fm$^{-3}$ and T = 1, 2, 3, 4 and 5 MeV, and with isospin content of $x=Z/A$=0.3, 0.4 and 0.5. The results indicate that symmetric and asymmetric matter are self-bound at some temperatures and exhibit phase transitions from a liquid phase to a liquid-gas mixture. The main effect of isospin asymmetry is found to be a reduction of the equilibrium densities, a softening of the compressibility and a disappearance of the liquid-gas phase transition. A procedure leading to the evaluation of the symmetry energy and its variation with the temperature was devised, implemented and compared to mean field theory results.

J. A. López; E. Ramírez-Homs; R. González; R. Ravelo

2013-11-24T23:59:59.000Z

333

Observation of the submillimeter cosmic background spectrum  

SciTech Connect

An experimental measurement of the spectrum of the submillimeter cosmic background radiation is described. The experiment consists of measuring the night sky emission at an altitude of 39 km, correcting for the atmospheric molecular line emission, and placing limits on the contamination from sources of continuum radiation such as the apparatus itself and the earth. The observations were made on 24 July 1974 using a fully calibrated liquid-helium-cooled balloon- borne spectrophotometer. Important features of the apparatus include a cooled antenna, a polarizing interferometer, and a germanium bolometric detector. The characterization of the spectrophotometer includes the large angle response and emission of the antenna. The calibration of the instrument and corrections to the observed sky spectrum are based on measurements made during the flight. A simple model of the molecular line emission is used to determine the atmospheric contribution. The resulting spectrum covers the frequency range from 4 to 17 cm$sup -1$ and establishes that the cosmic background radiation follows the high frequency quantum cutoff for a 3K blackbody. A blackbody temperature of 2.99/sub -.$sub 14$/$sup +$.$sup 07$/K is deduced from our data. The present status of the cosmic background observations, which span more than three decades in frequency, is analyzed and it is concluded that they are all consistent with a blackbody temperature of 2.90 +- .04K (+- 1 SIGMA). This firmly supports the Big Bang cosmological model of the universe. (auth)

Woody, D.P.

1975-11-13T23:59:59.000Z

334

Putting Economic Power In Distributed Power t  

U.S. Energy Information Administration (EIA)

Putting Economic Power in Distributed Power. A distributed electricity generation system, often called distributed power, usually consists of ...

335

Soft Matter Group, Condensed Matter Physics & Materials Science Department,  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Information (pdf) Research Information (pdf) Publications Seminars Journal Club Staff Information Other Information Basic Energy Sciences Directorate Related Sites BNL Site Index Can't View PDFs? Soft Matter Group Confinement and Template Directed Assembly in Chemical and Biomolecular Materials We use synchrotron x-ray scattering, scanning probe and optical microscopy techniques to study fundamental properties of complex fluids, simple liquids, macromolecular assemblies, polymers, and biomolecular materials under confinement and on templates. The challenges are: To understand liquids under nano-confinement. How templates and confinement can be used to direct the assembly. To understand the fundamental interactions which give rise to similar self-assembly behavior for a wide variety of systems.

336

Publications, Soft Matter Group, Condensed Matter Physics & Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 2011 Unifying interfacial self-assembly and surface freezing, B.M. Ocko, H. Hlaing, P.N. Jepsen, S. Kewalramani, A. Tkachenko, D. Pontoni, H. Reichert and M. Deutsch. Phys. Rev. Lett. 106, 137801 (2011) Reversible uptake of water on NaCl nanoparticles at relative humidity below deliquescence point observed by noncontact environmental atomic force microscopy, D.A. Bruzewicz, A. Checco, B.M. Ocko, E.R. Lewis, R.L. McGraw and S.E. Schwartz. J. Chem. Phys. 134, 044702 (2011) Systematic approach to electrostatically induced 2D crystallization of nanoparticles at liquid interfaces, S. Kewalramani, S.T. Wang, Y. Lin, H.G. Nguyen, Q. Wang, M. Fukuto and L. Yang. Soft Matter 7, 939-945 (2011)

337

Baryon destruction by asymmetric dark matter  

SciTech Connect

We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10{sup 29}-10{sup 32} yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.

Davoudiasl, Hooman [Department of Physics, Brookhaven National Laboratory, Upton, New York 11973 (United States); Morrissey, David E.; Tulin, Sean [Theory Group, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Sigurdson, Kris [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada)

2011-11-01T23:59:59.000Z

338

The Cosmology of Composite Inelastic Dark Matter  

SciTech Connect

Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark hadrons results in several qualitatively different configurations of the resulting dark matter composition depending on the relative mass scales in the system.

Spier Moreira Alves, Daniele; Behbahani, Siavosh R.; /SLAC /Stanford U., ITP; Schuster, Philip; Wacker, Jay G.; /SLAC

2011-08-19T23:59:59.000Z

339

Department of Energy to Host Spectrum Policy Seminar for the...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy to Host Spectrum Policy Seminar for the Utility Sector on December 8, 2010 Department of Energy to Host Spectrum Policy Seminar for the Utility Sector on...

340

A platform for dynamic spectrum access network experimentation  

Science Conference Proceedings (OSTI)

The purpose of this paper is to describe a novel and sophisticated platform for dynamic spectrum access experimentation. The platform comprises, software, hardware and dedicated spectrum. The platform has been designed with experimentation in mind and ...

L. E. Doyle; K. Nolan; T. K. Forde; P. Argryoudis; P. Sutton; D. Sarath; G. Baldwin; M. Ammann

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Enhancing spectrum utilization through cooperation and cognition in wireless systems  

E-Print Network (OSTI)

We have seen a proliferation of wireless technologies and devices in recent years. The resulting explosion of wireless demand has put immense pressure on available spectrum. Improving spectrum utilization is therefore ...

Rahul, Hariharan Shankar, 1975-

2013-01-01T23:59:59.000Z

342

The High Energy Gamma-Ray Background as a Probe of the Dark Matter in the Galactic Halo  

E-Print Network (OSTI)

We present constraints on the density of halo dark matter candidates within the solar circle based on the anisotropy in the high energy gamma-ray background. The known galactic components of the gamma-ray background, in particular the inverse Compton component, have been estimated more accurately. We find the spectrum of the residual emission, after subtracting the galactic component is inconsistent with emission from some of the proposed dark matter candidates. We derive upper limits of 10^8 M_sun for the mass of diffuse gas and 3*10^9 pc^(-3) for the number density of primordial black holes contributing to the gamma-ray background.

R. Chary; E. L. Wright

1998-11-20T23:59:59.000Z

343

TASI 2008 Lectures on Dark Matter  

SciTech Connect

Based on lectures given at the 2008 Theoretical Advanced Study Institute (TASI), I review here some aspects of the phenomenology of particle dark matter, including the process of thermal freeze-out in the early universe, and the direct and indirect detection of WIMPs. I also describe some of the most popular particle candidates for dark matter and summarize the current status of the quest to discover dark matter's particle identity.

Hooper, Dan; /Fermilab /Chicago U., Astron. Astrophys. Ctr.

2009-01-01T23:59:59.000Z

344

Dark Matter Jets at the LHC  

SciTech Connect

We argue that dark matter particles which have strong interactions with the Standard Model particles are not excluded by current astrophysical constraints. These dark matter particles have unique signatures at colliders; instead of missing energy, the dark matter particles produce jets. We propose a new search strategy for such strongly interacting particles by looking for a signal of two trackless jets. We show that suitable cuts can plausibly allow us to find these signals at the LHC even in early data.

Bai, Yang; /SLAC; Rajaraman, Arvind; /UC, Irvine

2012-03-28T23:59:59.000Z

345

Power Marketing  

NLE Websites -- All DOE Office Websites (Extended Search)

Certificate Solicitations Benefit Review Energy Services Rates and Repayment WindHydro Integration Feasibility Study Send correspondence to: Power Marketing Manager Western...

346

Section on Prospects for Dark Matter Detection of the White Paper on the Status and Future of Ground-Based TeV Gamma-Ray Astronomy  

E-Print Network (OSTI)

This is a report on the findings of the dark matter science working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper was commissioned by the American Physical Society, and the full white paper can be found on astro-ph (arXiv:0810.0444). This detailed section discusses the prospects for dark matter detection with future gamma-ray experiments, and the complementarity of gamma-ray measurements with other indirect, direct or accelerator-based searches. We conclude that any comprehensive search for dark matter should include gamma-ray observations, both to identify the dark matter particle (through the charac- teristics of the gamma-ray spectrum) and to measure the distribution of dark matter in galactic halos.

Buckley, J; Bertone, G; Byrum, K; Fegan, S; Ferrer, F; Gondolo, P; Hall, J; Hooper, D; Horan, D; Koushiappas, S; Krawczynski, H; Le Bohec, S; Profumo, S; Silk, J; Tait, T; Vasilev, V; Wagner, R; Wakely, S; Wood, M; Zaharijas, G

2008-01-01T23:59:59.000Z

347

Section on Prospects for Dark Matter Detection of the White Paper on the Status and Future of Ground-Based TeV Gamma-Ray Astronomy  

E-Print Network (OSTI)

This is a report on the findings of the dark matter science working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper was commissioned by the American Physical Society, and the full white paper can be found on astro-ph (arXiv:0810.0444). This detailed section discusses the prospects for dark matter detection with future gamma-ray experiments, and the complementarity of gamma-ray measurements with other indirect, direct or accelerator-based searches. We conclude that any comprehensive search for dark matter should include gamma-ray observations, both to identify the dark matter particle (through the charac- teristics of the gamma-ray spectrum) and to measure the distribution of dark matter in galactic halos.

J. Buckley; E. A. Baltz; G. Bertone; K. Byrum; S. Fegan; F. Ferrer; P. Gondolo; J. Hall; D. Hooper; D. Horan; S. Koushiappas; H. Krawczynski; S. LeBohec; S. Profumo; J. Silk; T. Tait; V. Vassiliev; R. Wagner; S. Wakely; M. Wood; G. Zaharijas

2008-12-03T23:59:59.000Z

348

Section on prospects for dark matter detection of the white paper on the status and future of ground-based TeV gamma-ray astronomy.  

SciTech Connect

This is a report on the findings of the dark matter science working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper was commissioned by the American Physical Society, and the full white paper can be found on astro-ph (arXiv:0810.0444). This detailed section discusses the prospects for dark matter detection with future gamma-ray experiments, and the complementarity of gamma-ray measurements with other indirect, direct or accelerator-based searches. We conclude that any comprehensive search for dark matter should include gamma-ray observations, both to identify the dark matter particle (through the characteristics of the gamma-ray spectrum) and to measure the distribution of dark matter in galactic halos.

Byrum, K.; Horan, D.; Tait, T.; Wanger, R.; Zaharijas, G.; Buckley , J.; Baltz, E. A.; Bertone, G.; Dingus, B.; Fegan, S.; Ferrer, F.; Gondolo, P.; Hall, J.; Hooper, D.; Horan, D.; Koushiappas, S.; Krawczynksi, H.; LeBohec, S.; Pohl, M.; Profumo, S.; Silk , J; Vassilev, V.; Wood , M.; Wakely, S.; High Energy Physics; FNAL; Univ. of St. Louis; Stanford Univ.; Insti. d' Astrophysique; LANL; Univ. of California; Washington Univ.; Univ. of Utah; Brown Univ.; Oxford Univ.; Iowa State Univ.; Univ. of Chicago

2009-05-13T23:59:59.000Z

349

Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change December 5, 2008 - 4:58pm Addthis The U.S. is committed to working together with China to tackle current energy challenges the world faces, including cultivating sufficient investment, the development and deployment of new energy technologies, and addressing greenhouse gas emissions from producing and using energy. Our cooperation spans power generation, efficient buildings, sustainable transportation, emissions-free nuclear power, and clean fossil fuels. The U.S. and China are the world's largest energy consumers and are

350

Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S. and China Actions Matter for Global Energy Demand, S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change December 5, 2008 - 4:58pm Addthis The U.S. is committed to working together with China to tackle current energy challenges the world faces, including cultivating sufficient investment, the development and deployment of new energy technologies, and addressing greenhouse gas emissions from producing and using energy. Our cooperation spans power generation, efficient buildings, sustainable transportation, emissions-free nuclear power, and clean fossil fuels. The U.S. and China are the world's largest energy consumers and are

351

PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS  

E-Print Network (OSTI)

University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

Stocker, H.

2012-01-01T23:59:59.000Z

352

Phase-Coherent Amplification of Matter Waves  

Science Conference Proceedings (OSTI)

... in optical pulsed-dye laser amplifiers that are not well aligned. ... Superradiance is based on matter-wave bosonic stimulation, and thus the probability ...

2010-07-12T23:59:59.000Z

353

THE ENERGY GAP IN NUCLEAR MATTER  

E-Print Network (OSTI)

energy gap for nuclear matter with a vieVi to gaining some ins ight into the possible results of extending the theory

Emery, V.J.

2008-01-01T23:59:59.000Z

354

Some Practical Applications of Dark Matter Research  

E-Print Network (OSTI)

Two practical spin-offs from the development of cryogenic dark matter detectors are presented. One in materials research, the other in biology.

Stodolsky, L

2008-01-01T23:59:59.000Z

355

Multiscale Materials Modeling of Condensed Matter - TMS  

Science Conference Proceedings (OSTI)

Nov 29, 2007 ... The following presentations from MMM 2007, the International Max-Planck Workshop on Multiscale Materials Modeling of Condensed Matter, ...

356

Consistent matter couplings for Plebanski gravity  

SciTech Connect

We develop a scheme for the minimal coupling of all standard types of tensor and spinor field matter to Plebanski gravity. This theory is a geometric reformulation of vacuum general relativity in terms of two-form frames and connection one-forms, and provides a covariant basis for various quantization approaches. Using the spinor formalism we prove the consistency of the newly proposed matter coupling by demonstrating the full equivalence of Plebanski gravity plus matter to Einstein-Cartan gravity. As a by-product we also show the consistency of some previous suggestions for matter actions.

Tennie, Felix; Wohlfarth, Mattias N. R. [Zentrum fuer Mathematische Physik und II. Institut fuer Theoretische Physik, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

2010-11-15T23:59:59.000Z

357

Quantum Condensates in Nuclear Matter: Problems  

E-Print Network (OSTI)

In connection with the contribution "Quantum Condensates in Nuclear Matter" some problems are given to become more familiar with the techniques of many-particle physics.

G. Ropke; D. Zablocki

2010-01-11T23:59:59.000Z

358

Dark Energy and Dark Matter Models  

E-Print Network (OSTI)

We revisit the problems of dark energy and dark matter and several models designed to explain them, in the light of some latest findings.

Sidharth, Burra G

2013-01-01T23:59:59.000Z

359

Dark Energy and Dark Matter Models  

E-Print Network (OSTI)

We revisit the problems of dark energy and dark matter and several models designed to explain them, in the light of some latest findings.

Burra G. Sidharth

2013-03-14T23:59:59.000Z

360

Course Overview Pump Systems Matter Optimization | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Course Overview Pump Systems Matter Optimization Attendees of the "Pump Systems Optimization" one-day course will gain valuable new skills to help them improve...

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Does Management Matter? Evidence from India  

E-Print Network (OSTI)

DOES MANAGEMENT MATTER? EVIDENCE FROM INDIA Nicholas Bloombadly managed? Our experiment does not directly answer thisworks, imagine a plant that does not record quality defects.

Bloom, Nicholas; Eifert, Benn; Mahajan, Aprajit; McKenzie, David; Roberts, John

2012-01-01T23:59:59.000Z

362

The XENON Dark Matter Search  

SciTech Connect

The XENON experiment will search for Weakly Interacting Massive Particles (WIMPS), a leading candidate for the dark matter content of the Universe. The XENON detector uses the simultaneous measurement of ionization and scintillation in liquid xenon to distinguish between nuclear recoils and background electronic interactions. Ionization electrons are extracted into the xenon vapor where they produce a large proportional scintillation signal in a grid assembly. Both prompt and proportional scintillation light are detected by PMT arrays on the top and bottom of the active liquid xenon volume. The distribution of proportional scintillation light in the top PMT array can be used to achieve xy position resolution, while the ionization drift time gives position resolution in the z direction. This allows the definition of a low-background fiducial volume. I describe the results of the R and D phase of this project before providing a status update on the XENON10 phase.

McKinsey, D. N. [Department of Physics, Yale University, New Haven, Connecticut 06520 (United States)

2006-11-17T23:59:59.000Z

363

Singlet-Doublet Dark Matter  

Science Conference Proceedings (OSTI)

In light of recent data from direct detection experiments and the Large Hadron Collider, we explore models of dark matter in which an SU(2){sub L} doublet is mixed with a Standard Model singlet. We impose a thermal history. If the new particles are fermions, this model is already constrained due to null results from XENON100. We comment on remaining regions of parameter space and assess prospects for future discovery. We do the same for the model where the new particles are scalars, which at present is less constrained. Much of the remaining parameter space for both models will be probed by the next generation of direct detection experiments. For the fermion model, DeepCore may also play an important role.

Cohen, Timothy; /SLAC /Michigan U., MCTP; Kearney, John; Pierce, Aaron; /Michigan U., MCTP; Tucker-Smith, David; /Williams Coll.

2012-02-15T23:59:59.000Z

364

High accuracy power spectra including baryonic physics in dynamical Dark Energy models  

E-Print Network (OSTI)

The next generation mass probes will obtain information on non--linear power spectra P(k,z) and their evolution, allowing us to investigate the nature of Dark Energy. To exploit such data we need high precision simulations, extending at least up to scales of k\\simeq 10 h^-1 Mpc, where the effects of baryons can no longer be neglected. In this paper, we present a series of large scale hydrodynamical simulations for LCDM and dynamical Dark Energy (dDE) models, in which the equation of state parameter is z-dependent. The simulations include gas cooling, star formation and Supernovae feedback. They closely approximate the observed star formation rate and the observationally derived star/Dark Matter mass ratio in collapsed systems. Baryon dynamics cause spectral shifts exceeding 1% at k > 2-3 hMpc^-1 compared to pure n-body simulations in the LCDM simulations. This agrees with previous studies, although we find a smaller effect (~50%) on the power spectrum amplitude at higher k's. dDE exhibits similar behavior, ev...

Casarini, Luciano; Bonometto, Silvio A; Stinson, Greg S

2010-01-01T23:59:59.000Z

365

Cascade and Damping of Alfvén-Cyclotron Fluctuations: Application to Solar Wind Turbulence Spectrum  

E-Print Network (OSTI)

With the diffusion approximation, we study the cascade and damping of Alfv\\'{e}n-cyclotron fluctuations in solar plasmas numerically. Motivated by wave-wave couplings and nonlinear effects, we test several forms of the diffusion tensor. For a general locally anisotropic and inhomogeneous diffusion tensor in the wave vector space, the turbulence spectrum in the inertial range can be fitted with power-laws with the power-law index varying with the wave propagation direction. For several locally isotropic but inhomogeneous diffusion coefficients, the steady-state turbulence spectra are nearly isotropic in the absence of damping and can be fitted by a single power-law function. However, the energy flux is strongly polarized due to the inhomogeneity that leads to an anisotropic cascade. Including the anisotropic thermal damping, the turbulence spectrum cuts off at the wave numbers, where the damping rates become comparable to the cascade rates. The combined anisotropic effects of cascade and damping make this cutoff wave number dependent on the wave propagation direction, and the propagation direction integrated turbulence spectrum resembles a broken power-law, which cuts off at the maximum of the cutoff wave numbers or the $^4$He cyclotron frequency. Taking into account the Doppler effects, the model can naturally reproduce the broken power-law wave spectra observed in the solar wind and predicts that a higher break frequency is aways accompanied with a greater spectral index change that may be caused by the increase of the Alfv\\'{e}n Mach number, the reciprocal of the plasma beta, and/or the angle between the solar wind velocity and the mean magnetic field. These predictions can be tested by future observations.

Yan Wei Jiang; Siming Liu; Vahé Petrosian; Christopher L. Fryer

2008-02-07T23:59:59.000Z

366

Nonextensive theory of dark matter and gas density profiles  

E-Print Network (OSTI)

Pronounced core-halo patterns of dark matter and gas density profiles, observed in relaxed galaxies and clusters, were hitherto fitted by empirical power-laws. On the other hand, similar features are well known from astrophysical plasma environments, subject to long-range interactions, modeled in the context of nonextensive entropy generalization. We link nonextensive statistics to the problem of density distributions in large-scale structures and provide fundamentally derived density profiles, representing accurately the characteristics of both, dark matter and hot plasma distributions, as observed or generated in simulations. The bifurcation of the density distribution into a kinetic dark matter and thermodynamic gas branch turns out as natural consequence of the theory and is controlled by a single parameter kappa, measuring physically the degree of coupling within the system. Consequently, it is proposed to favor nonextensive distributions, derived from the fundamental physical context of entropy generalization and accounting for nonlocality and long-range interactions in gravitationally coupled systems, when modeling observed density profiles of astrophysical structures.

M. P. Leubner

2006-02-27T23:59:59.000Z

367

Milli-Biology Programmable Matter  

E-Print Network (OSTI)

moteins to smaller sizes led to the invention of electropermanent actuators, in which a hard magnet biases a softer magnet, so that its hysteresis loop passes through the origin. A conventional electromechanical motor is maximally inefficient at low RPM because power is wasted as heat in the coils, requiring

Ishii, Hiroshi

368

Spectrum tailoring of the neutron energy spectrum in the context of delayed neutron detection  

Science Conference Proceedings (OSTI)

For the purpose of measuring plutonium mass in spent fuel, a delayed neutron instrument is of particular interest since, if properly designed, the delayed neutron signal from {sup 235}U is significantly stronger than the signature from {sup 239}Pu or {sup 241}Pu. A key factor in properly designing a delayed neutron instrument is to minimize the fission of {sup 238}U. This minimization is achieved by keeping the interrogating neutron spectrum below {approx} 1 MeV. In the context of spent fuel measurements it is desirable to use a 14 MeV (deuterium and tritium) neutron generator for economic reasons. Spectrum tailoring is the term used to describe the inclusion of material between the 14 MeV neutrons and the interrogated object that lower the neutron energy through nuclear reactions and moderation. This report quantifies the utility of different material combination for spectrum tailoring.

Koehler, William E [Los Alamos National Laboratory; Tobin, Steve J [Los Alamos National Laboratory; Sandoval, Nathan P [Los Alamos National Laboratory; Fensin, Mike L [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

369

ADAPTIVE FULL-SPECTRUM SOLOR ENERGY SYSTEMS  

DOE Green Energy (OSTI)

This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports solar light from a paraboloidal dish concentrator to a luminaire via a large core polymer fiber optic. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of solar lighting and electric lighting. A benchmark prototype system has been developed to evaluate the HSL system. Sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. A secondary mirror consisting of eight planar-segmented mirrors directs the visible part of the spectrum to eight fibers (receiver) and subsequently to eight luminaires. This results in about 8,200 lumens incident at each fiber tip. Each fiber can illuminate about 16.7 m{sup 2} (180 ft{sup 2}) of office space. The IR spectrum is directed to a thermophotovoltaic (TPV) array to produce electricity. During this reporting period, the project team made advancements in the design of the second generation (Alpha) system. For the Alpha system, the eight individual 12 mm fibers have been replaced with a centralized bundle of 3 mm fibers. The TRNSYS Full-Spectrum Solar Energy System model has been updated and new components have been added. The TPV array and nonimaging device have been tested and progress has been made in the fiber transmission models. A test plan was developed for both the high-lumen tests and the study to determine the non-energy benefits of daylighting. The photobioreactor team also made major advancements in the testing of model scale and bench top lab-scale systems.

Byard D. Wood

2004-04-01T23:59:59.000Z

370

Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade association promoting solar energy as a clean source of electricity, and provides a comprehensive resource for additional information. DOE's Office of Energy Efficiency and Renewable Energy is also a comprehensive resource for more information on renewable energy.

371

Power system  

DOE Patents (OSTI)

A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

Hickam, Christopher Dale (Glasford, IL)

2008-03-18T23:59:59.000Z

372

Bilinear control of discrete spectrum Schrödinger operators  

E-Print Network (OSTI)

The bilinear control problem of the Schr\\"odinger equation $i\\frac{\\partial}{\\partial t}\\psi(t)$ $=(A+u(t) B)\\psi(t)$, where $u(t)$ is the control function, is investigated through topological irreducibility of the set $\\mathfrak{M}=\\{e^{-it (A+u B)}, u\\in \\mathbb{R}, t>0\\}$ of bounded operators. This allows to prove the approximate controllability of such systems when the uncontrolled Hamiltonian $A$ has a simple discrete spectrum and under an appropriate assumption on $B$.

Kais Ammari; Zied Ammari

2010-04-30T23:59:59.000Z

373

Full Spectrum Light Therapy Full spectrum light bulbs are said to not only improve mood, but also  

E-Print Network (OSTI)

Full Spectrum Light Therapy Full spectrum light bulbs are said to not only improve mood, but also spectrum light bulbs produce light that is seen by the human eye in a bluish-white tint. Where is full energy, learning ability, and behavior. Light therapy mimics outdoor light and causes a biochemical

Bates, Rebecca A.

374

EPRI Power Transformer Guidebook Development: The Copper Book  

Science Conference Proceedings (OSTI)

Utilities are losing many of their subject matter experts due to retirement and downsizing. This is particularly true in the case of power transformers, so there is now a critical need for a comprehensive transformer reference book geared toward utility engineers. In 2007, the Electric Power Research Institute (EPRI) published the technical update report Transformer Guidebook Design (1013799). That report ...

2012-12-13T23:59:59.000Z

375

Chiral thermodynamics of dense hadronic matter  

Science Conference Proceedings (OSTI)

We discuss phases of hot and dense hadronic matter using chiral Lagrangians. A two-flavored parity doublet model constrained by the nuclear matter ground state predicts chiral symmetry restoration. The model thermodynamics is shown within the mean-field approximation. A field-theoretical constraint on possible phases from the anomaly matching is also discussed.

Sasaki, C., E-mail: sasaki@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies (Germany)

2012-05-15T23:59:59.000Z

376

Advanced particulate matter control apparatus and methods  

DOE Patents (OSTI)

Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

Miller, Stanley J. (Grand Forks, ND); Zhuang, Ye (Grand Forks, ND); Almlie, Jay C. (East Grand Forks, MN)

2012-01-10T23:59:59.000Z

377

VVER-440 dosimetry and neutron spectrum benchmark  

SciTech Connect

Light Water Reactor (LWR) benchmark experiments performed in the United States under the Surveillance Dosimetry Improvement Program (SDIP), in general, reported measured reaction rates and not neutron flux spectrum. The VVER-440 benchmark experiments, using a combination of spherical hydrogen-filled proportional counters and a stilbene scintillator detector, were measurements that provided a direct verification of the transport neutron flux spectrum. The original SAILOR cross-section library from ENDF/B-IV were used, except that the iron, hydrogen, and oxygen values from ENDF/B-VI were inserted. A linear-least-squares analysis showed that the average difference between calculations and measurements below 10 MeV was (a) less than 6% at the surveillance position; (b) less than 5% at the pressure vessel (PV) inner surface; (c) less than 6% at 1/3 thickness into the PV (1/3 T); (d) less than 17% at 2/3 thickness into the PV (2/3 T); and (e) less than 24% at the PV outer surface.

Sajot, E. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Kam, F.B.K. [Oak Ridge National Lab., TN (United States)

1993-11-01T23:59:59.000Z

378

Area spectrum of the Schwarzschild black hole  

E-Print Network (OSTI)

We consider a Hamiltonian theory of spherically symmetric vacuum Einstein gravity under Kruskal-like boundary conditions in variables associated with the Einstein-Rosen wormhole throat. The configuration variable in the reduced classical theory is the radius of the throat, in a foliation that is frozen at the left hand side infinity but asymptotically Minkowski at the right hand side infinity, and such that the proper time at the throat agrees with the right hand side Minkowski time. The classical Hamiltonian is numerically equal to the Schwarzschild mass. Within a class of Hamiltonian quantizations, we show that the spectrum of the Hamiltonian operator is discrete and bounded below, and can be made positive definite. The large eigenvalues behave asymptotically as~\\sqrt{2k}, where k is an integer. The resulting area spectrum agrees with that proposed by Bekenstein and Mukhanov. Analogous results hold in the presence of a negative cosmological constant and electric charge. The classical input that led to the q...

Louko, J; Louko, Jorma; Makela, Jarmo

1996-01-01T23:59:59.000Z

379

Area spectrum of the Schwarzschild black hole  

E-Print Network (OSTI)

We consider a Hamiltonian theory of spherically symmetric vacuum Einstein gravity under Kruskal-like boundary conditions in variables associated with the Einstein-Rosen wormhole throat. The configuration variable in the reduced classical theory is the radius of the throat, in a foliation that is frozen at the left hand side infinity but asymptotically Minkowski at the right hand side infinity, and such that the proper time at the throat agrees with the right hand side Minkowski time. The classical Hamiltonian is numerically equal to the Schwarzschild mass. Within a class of Hamiltonian quantizations, we show that the spectrum of the Hamiltonian operator is discrete and bounded below, and can be made positive definite. The large eigenvalues behave asymptotically as~$\\sqrt{2k}$, where $k$ is an integer. The resulting area spectrum agrees with that proposed by Bekenstein and others. Analogous results hold in the presence of a negative cosmological constant and electric charge. The classical input that led to the quantum results is discussed.

Jorma Louko; Jarmo Makela

1996-05-27T23:59:59.000Z

380

Biology and Soft Matter | Neutron Sciences | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology and Soft Matter Biology and Soft Matter SHARE Biology and Soft Matter This is a time of unprecedented opportunity for using neutrons in biological and soft matter research. The US Department of Energy (DOE) has invested in two forefront neutron user facilities, the accelerator-based Spallation Neutron Source (SNS) and the reactor-based High Flux Isotope Reactor (HFIR), at Oak Ridge National Laboratory (ORNL). Researchers have access to new instrumentation on some of the world's most intense neutron beam lines for studying the structure, function, and dynamics of complex systems. We anticipate that soft matter and biological sciences of tomorrow will require understanding, predicting, and manipulating complex systems to produce the new materials and products required to meet our nation's

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Dark matter chaos in the Solar System  

E-Print Network (OSTI)

We study the capture of galactic dark matter particles in the Solar System produced by rotation of Jupiter. It is shown that the capture cross section is much larger than the area of Jupiter orbit being inversely diverging at small particle energy. We show that the dynamics of captured particles is chaotic and is well described by a simple symplectic dark map. This dark map description allows to simulate the scattering and dynamics of $10^{14}$ dark matter particles during the life time of the Solar System and to determine dark matter density profile as a function of distance from the Sun. The mass of captured dark matter in the radius of Neptune orbit is estimated to be $2 \\cdot 10^{15} g$. The radial density of captured dark matter is found to be approximately constant behind Jupiter orbit being similar to the density profile found in galaxies.

J. Lages; D. L. Shepelyansky

2012-11-05T23:59:59.000Z

382

Dark Matter Studies Entrain Nuclear Physics  

E-Print Network (OSTI)

We review theoretically well-motivated dark-matter candidates, and pathways to their discovery, in the light of recent results from collider physics, astrophysics, and cosmology. Taken in aggregate, these encourage broader thinking in regards to possible dark-matter candidates --- dark-matter need not be made of "WIMPs," i.e., elementary particles with weak-scale masses and interactions. Facilities dedicated to nuclear physics are well-poised to investigate certain non-WIMP models. In parallel to this, developments in observational cosmology permit probes of the relativistic energy density at early epochs and thus provide new ways to constrain dark-matter models, provided nuclear physics inputs are sufficiently well-known. The emerging confluence of accelerator, astrophysical, and cosmological constraints permit searches for dark-matter candidates in a greater range of masses and interaction strengths than heretofore possible.

Susan Gardner; George Fuller

2013-03-19T23:59:59.000Z

383

Wind Sea and Swell Separation of 1D Wave Spectrum by a Spectrum Integration Method  

Science Conference Proceedings (OSTI)

In an earlier paper by Wang and Hwang, a wave steepness method was introduced to separate the wind sea and swell of the 1D wave spectrum without relying on external information, such as the wind speed. Later, the method was found to produce the ...

Paul A. Hwang; Francisco J. Ocampo-Torres; Héctor García-Nava

2012-01-01T23:59:59.000Z

384

Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Projects Power Projects Contact SN Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates You are here: SN Home page > About SNR Power Projects Central Valley: In California's Central Valley, 18 dams create reservoirs that can store 13 million acre-feet of water. The project's 615 miles of canals irrigate an area 400 miles long and 45 miles wide--almost one third of California. Powerplants at the dams have an installed capacity of 2,099 megawatts and provide enough energy for 650,000 people. Transmission lines total about 865 circuit-miles. Washoe: This project in west-central Nevada and east-central California was designed to improve the regulation of runoff from the Truckee and Carson river systems and to provide supplemental irrigation water and drainage, as well as water for municipal, industrial and fishery use. The project's Stampede Powerplant has a maximum capacity of 4 MW.

385

Does It Matter Who Scouts?  

E-Print Network (OSTI)

Scouting is the most widely used integrated pest management (IPM) technique. It has been argued that only independent crop consultants provide unbiased scouting information. In contrast, chemical dealers inflate scouting reports and/or reduce economic thresholds in order to increase pesticide sales while farmers may use excessively low treatment thresholds due to risk aversion and/or overestimation of pest pressure.. Since the majority of scouting is done by farmers and chemical dealer employees, it follows that scouting may not be a very effective means of reducing reliance on chemical pesticides. This study applies an implicit demand formulation of the Lichtenberg-Zilberman damage abatement model to data from a survey of Maryland field crop growers to examine differences in pesticide demand between growers using scouts trained and supervised by extension and those using chemical dealer employees or scouting themselves. Our results give partial support to those skeptical of the quality of scouting by farmers themselves and by consultants working for chemical dealers. We found that soybean growers using extension trained scouts had significantly lower pesticide demand than those using chemical dealer employees or scouting themselves. However, we found no significant differences in the pesticide demands for alfalfa, corn, and small grains. Since soybeans in Maryland are substantially more pesticide-intensive than corn, alfalfa, or small grains, these results suggest that it does matter who scouts when there is scope for substantial savings in pesticides.

Erik Lichtenberg; Ayesha Velderman Berlind

2001-01-01T23:59:59.000Z

386

SOLAR CONSTRAINTS ON ASYMMETRIC DARK MATTER  

SciTech Connect

The dark matter content of the universe is likely to be a mixture of matter and antimatter, perhaps comparable to the measured asymmetric mixture of baryons and antibaryons. During the early stages of the universe, the dark matter particles are produced in a process similar to baryogenesis, and dark matter freezeout depends on the dark matter asymmetry and the annihilation cross section (s-wave and p-wave annihilation channels) of particles and antiparticles. In these {eta}-parameterized asymmetric dark matter ({eta}ADM) models, the dark matter particles have an annihilation cross section close to the weak interaction cross section, and a value of dark matter asymmetry {eta} close to the baryon asymmetry {eta}{sub B}. Furthermore, we assume that dark matter scattering of baryons, namely, the spin-independent scattering cross section, is of the same order as the range of values suggested by several theoretical particle physics models used to explain the current unexplained events reported in the DAMA/LIBRA, CoGeNT, and CRESST experiments. Here, we constrain {eta}ADM by investigating the impact of such a type of dark matter on the evolution of the Sun, namely, the flux of solar neutrinos and helioseismology. We find that dark matter particles with a mass smaller than 15 GeV, a spin-independent scattering cross section on baryons of the order of a picobarn, and an {eta}-asymmetry with a value in the interval 10{sup -12}-10{sup -10}, would induce a change in solar neutrino fluxes in disagreement with current neutrino flux measurements. This result is also confirmed by helioseismology data. A natural consequence of this model is suppressed annihilation, thereby reducing the tension between indirect and direct dark matter detection experiments, but the model also allows a greatly enhanced annihilation cross section. All the cosmological {eta}ADM scenarios that we discuss have a relic dark matter density {Omega}h {sup 2} and baryon asymmetry {eta}{sub B} in agreement with the current WMAP measured values, {Omega}{sub DM} h {sup 2} = 0.1109 {+-} 0.0056 and {eta}{sub B} = 0.88 Multiplication-Sign 10{sup -10}.

Lopes, Ilidio [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silk, Joseph, E-mail: ilidio.lopes@ist.utl.pt, E-mail: silk@astro.ox.ac.uk [Institut d'Astrophysique de Paris, F-75014 Paris (France)

2012-10-01T23:59:59.000Z

387

Analytic Perturbation Theory and Renormalization Analysis of Matter Coupled to Quantized Radiation  

E-Print Network (OSTI)

For a large class of quantum mechanical models of matter and radiation we develop an analytic perturbation theory for non-degenerate ground states. This theory is applicable, for example, to models of matter with static nuclei and non-relativistic electrons that are coupled to the UV-cutoff quantized radiation field in the dipole approximation. If the lowest point of the energy spectrum is a non-degenerate eigenvalue of the Hamiltonian, we show that this eigenvalue is an analytic function of the nuclear coordinates and of $\\alpha^{3/2}$, $\\alpha$ being the fine structure constant. A suitably chosen ground state vector depends analytically on $\\alpha^{3/2}$ and it is twice continuously differentiable with respect to the nuclear coordinates.

Marcel Griesemer; David Hasler

2008-01-29T23:59:59.000Z

388

Two Component Dark Matters in S_4 x Z_2 Flavor Symmetric Extra U(1) Model  

E-Print Network (OSTI)

We study cosmic-ray anomaly observed by PAMELA based on E_6 inspired extra U(1) model with S_4 x Z_2 flavor symmetry. In our model, the lightest flavon has very long lifetime of O(10^{18)) second which is longer than the age of the universe, but not long enough to explain the PAMELA result ~ O(10^{26}) sec. Such a situation could be avoidable by considering that the flavon is not the dominant component of dark matters and the dominant one is the lightest neutralino. With appropriate parameter set, density parameter of dark matter and over-abundance of positron flux in cosmic-ray are realized at the same time. There is interesting correlation between spectrum of positron flux and V_{MNS}. No excess of anti-proton in cosmic-ray suggests that sfermions are heavier than 4 TeV and the masses of the light Higgs bosons are degenerated.

Daikoku, Yasuhiro; Toma, Takashi

2011-01-01T23:59:59.000Z

389

Two Component Dark Matters in S_4 x Z_2 Flavor Symmetric Extra U(1) Model  

E-Print Network (OSTI)

We study cosmic-ray anomaly observed by PAMELA based on E_6 inspired extra U(1) model with S_4 x Z_2 flavor symmetry. In our model, the lightest flavon has very long lifetime of O(10^{18)) second which is longer than the age of the universe, but not long enough to explain the PAMELA result ~ O(10^{26}) sec. Such a situation could be avoidable by considering that the flavon is not the dominant component of dark matters and the dominant one is the lightest neutralino. With appropriate parameter set, density parameter of dark matter and over-abundance of positron flux in cosmic-ray are realized at the same time. There is interesting correlation between spectrum of positron flux and V_{MNS}. No excess of anti-proton in cosmic-ray suggests that sfermions are heavier than 4 TeV and the masses of the light Higgs bosons are degenerated.

Yasuhiro Daikoku; Hiroshi Okada; Takashi Toma

2011-06-23T23:59:59.000Z

390

astro-ph/0212275 Dark Group: Dark Energy and Dark Matter  

E-Print Network (OSTI)

We study the possibility that a dark group, a gauge group with particles interacting with the standard model particles only via gravity, is responsible for containing the dark energy and dark matter required by present day observations. We show that it is indeed possible and we determine the constrains for the dark group. The non-perturbative effects generated by a strong gauge coupling constant can de determined and a scalar potential for the dark meson fields is generated parameterizing the dark energy. On the other hand it is the massive particles, e.g. dark baryons, of the dark gauge group that give the corresponding dark matter. The mass of the dark particles is of the order of the condensation scale ?c and the temperature is 4-5 times smaller then the photon’s temperature. The dark matter is of the warm matter type and it gives good fit to structure formation. The only parameters of the model are the number of particles of the dark group. The conditions to not introduce any fine tuning of the energy density at the condensation scale plus the CMB spectrum constrains the condensation scale to 0.2 eV dark matter with mass m = 42eV, a temperature TDM = T?/4.85 and a free streaming scale ?fs = 1.6Mpc with a contain mass M = 4 × 10 11 M ? (M ? is the solar mass). The dark energy has an equation of state parameter today wo = ?0.9 and the model agrees well with the CMB data. The cosmological observations are pushing the condensation scale to an epoch close to radiation and matter equality and this late time phase transition is the reason why the universe is accelerating at present time. 1

A. De La Macorra

2002-01-01T23:59:59.000Z

391

Spectrum of gravitational radiation from primordial turbulence  

Science Conference Proceedings (OSTI)

Energy injection into the early universe can induce turbulent motions of the primordial plasma, which in turn act as a source for gravitational radiation. Earlier work computed the amplitude and characteristic frequency of the relic gravitational wave background, as a function of the total energy injected and the stirring scale of the turbulence. This paper computes the frequency spectrum of relic gravitational radiation from a turbulent source of the stationary Kolmogoroff form which acts for a given duration, making no other approximations. We also show that the limit of long source wavelengths, commonly employed in aeroacoustic problems, is an excellent approximation. The gravitational waves from cosmological turbulence around the electroweak energy scale will be detectable by future space-based laser interferometers for a substantial range of turbulence parameters.

Gogoberidze, Grigol [Centre for Plasma Astrophysics, K.U. Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); National Abastumani Astrophysical Observatory, 2A Kazbegi Ave, GE-0160 Tbilisi (Georgia); Kahniashvili, Tina [Center for Cosmology and Particle Physics, New York University, 4 Washington Plaza, New York, New York 10003 (United States); National Abastumani Astrophysical Observatory, 2A Kazbegi Ave, GE-0160 Tbilisi (Georgia); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, Pennsylvania 15260 (United States)

2007-10-15T23:59:59.000Z

392

Automated mass spectrum generation for new physics  

E-Print Network (OSTI)

We describe an extension of the FeynRules package dedicated to the automatic generation of the mass spectrum associated with any Lagrangian-based quantum field theory. After introducing a simplified way to implement particle mixings, we present a new class of FeynRules functions allowing both for the analytical computation of all the model mass matrices and for the generation of a C++ package, dubbed ASperGe. This program can then be further employed for a numerical evaluation of the rotation matrices necessary to diagonalize the field basis. We illustrate these features in the context of the Two-Higgs-Doublet Model, the Minimal Left-Right Symmetric Standard Model and the Minimal Supersymmetric Standard Model.

Adam Alloul; Jorgen D'Hondt; Karen De Causmaecker; Benjamin Fuks; Michel Rausch de Traubenberg

2013-01-24T23:59:59.000Z

393

The TeV Energy Spectrum of Mrk 421 Measured in A High Flaring State  

E-Print Network (OSTI)

The BL Lac object (blazar) Mrk 421 was observed during its outburst in April 2004 with the Whipple 10 m telescope for a total of about 24.5 hours. The measured gamma-ray rate varied substantially over the range from 4 to 10 gamma's/min and eventually exceeded the steady gamma-ray rate of the Crab Nebula (standard candle) by a factor of 3. The overall significance of the gamma-ray signal exceeded 70 sigma and the total number of excess events was more than 10,000. The signal light curve does not show any particular variability pattern. This unique Mrk 421 outburst enabled the measurement of a high quality spectrum of very high-energy gamma rays in a high state of emission. This spectrum is a power-law and it extends beyond 10 TeV.

A. Konopelko; W. Cui; C. Duke; J. P. Finley

2007-08-28T23:59:59.000Z

394

SPECTRUM analysis of multispectral imagery in conjunction with wavelet/KLT data compression  

SciTech Connect

The data analysis program, SPECTRUM, is used for fusion, visualization, and classification of multi-spectral imagery. The raw data used in this study is Landsat Thematic Mapper (TM) 7-channel imagery, with 8 bits of dynamic range per channel. To facilitate data transmission and storage, a compression algorithm is proposed based on spatial wavelet transform coding and KLT decomposition of interchannel spectral vectors, followed by adaptive optimal multiband scalar quantization. The performance of SPECTRUM clustering and visualization is evaluated on compressed multispectral data. 8-bit visualizations of 56-bit data show little visible distortion at 50:1 compression and graceful degradation at higher compression ratios. Two TM images were processed in this experiment: a 1024 x 1024-pixel scene of the region surrounding the Chernobyl power plant, taken a few months before the reactor malfunction, and a 2048 x 2048 image of Moscow and surrounding countryside.

Bradley, J.N.; Brislawn, C.M.

1993-12-01T23:59:59.000Z

395

Run-time Modeling and Estimation of Operating System Power Consumption  

E-Print Network (OSTI)

software power evaluation, as well as power management (e.g. dynamic thermal control and equal energy of a commercial OS across a wide spectrum of applications to understand OS energy profiles and then proposes to track run- time OS energy profiles, the proposed routine level OS power model offers superior accuracy

John, Lizy Kurian

396

VBR-0002 - In the Matter of Westinghouse Savannah River Company...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the Complainant. vbr0002.pdf More Documents & Publications VBH-0002 - In the Matter of Don W. Beckwith VWD-0006 - In the Matter of Lucy B. Smith VBH-0056 - In the Matter of Jean...

397

TBH-0075 - In the Matter of Richard L. Rieckenberg | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications TBD-0073 - In the Matter of Richard L. Rieckenberg TBD-0075 -In the Matter of Jonathan Strausbaugh TBH-0057 - In the Matter of Frederick L. Higgs...

398

BABAR Constrains Dark-Matter Photon and Higgs  

NLE Websites -- All DOE Office Websites (Extended Search)

Constrains Dark-Matter Photon and Higgs The majority of matter in the universe is "dark matter" that does not interact with light. Since it cannot be seen directly, its existence...

399

Green Power Network: Green Power Marketing  

NLE Websites -- All DOE Office Websites (Extended Search)

to main content U.S. Department of Energy Energy Efficiency and Renewable Energy Green Power Network About the GPN Green Power Markets Buying Green Power Onsite Renewable...

400

Power Plant Baghouse Survey 2011  

Science Conference Proceedings (OSTI)

The requirement to reduce stack particulate matter (PM) emissions is one of the key challenges for coal-fired power plants, in light of the proposed Maximum Achievable Control Technology (MACT) ruling for hazardous air pollutants (HAPs) issued by the U.S. Environmental Protection Agency on March 16, 2011. The proposed MACT ruling may require that total PM, including condensable and filterable PM, be maintained at 0.03 lb/MMBtu. A final HAPs ruling is expected in December 2011. As particulate emission reg...

2011-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The variable X-ray spectrum of Markarian 766 - I. Principal components analysis  

E-Print Network (OSTI)

Aims: We analyse a long XMM-Newton spectrum of the narrow-line Seyfert 1 galaxy Mrk 766, using the marked spectral variability on timescales >20ks to separate components in the X-ray spectrum. Methods: Principal components analysis is used to identify distinct emission components in the X-ray spectrum, possible alternative physical models for those components are then compared statistically. Results: The source spectral variability is well-explained by additive variations, with smaller extra contributions most likely arising from variable absorption. The principal varying component, eigenvector one, is found to have a steep (photon index 2.4) power-law shape, affected by a low column of ionised absorption that leads to the appearance of a soft excess. Eigenvector one varies by a factor 10 in amplitude on time-scales of days and appears to have broad ionised Fe K-alpha emission associated with it: the width of the ionised line is consistent with an origin at about 100 gravitational radii. There is also a strong component of near-constant emission that dominates in the low state, whose spectrum is extremely hard above 1 keV, with a soft excess at lower energies, and with a strong edge at Fe K but remarkably little Fe K-alpha emission. Although this component may be explained as relativistically-blurred reflection from the inner accretion disc, we suggest that its spectrum and lack of variability may alternatively be explained as either (i) ionised reflection from an extended region, possibly a disc wind, or (ii) a signature of absorption by a disc wind with a variable covering fraction. Absorption features in the low state may indicate the presence of an outflow.

L. Miller; T. J. Turner; J. N. Reeves; I. M. George; S. B. Kraemer; B. Wingert

2006-11-21T23:59:59.000Z

402

Searching for Spurious Solar and Sky Lines in the Fermi-LAT Spectrum  

E-Print Network (OSTI)

We search for a unified instrumental explanation of the spectral features seen near $E_\\gamma=130$ GeV in photons collected by Fermi-LAT from the galactic center and from the Earth's limb. We report for the first time a similar feature in photons originating from the vicinity of the Sun, and examine the instrumental characteristics of this Solar feature. To test an instrumental hypothesis, we identify the range of photon incident angles where most of the peak photons are observed in these three spectral features. An examination of the spectrum of photons from the rest of the sky with this characteristic angular range reveals a hint of a spectral feature near $E_\\gamma=130$ GeV. These results cast further doubt on the dark-matter-annihilation interpretation of the galactic center peak.

Daniel Whiteson

2013-02-02T23:59:59.000Z

403

Spin--wave spectrum of an amorphous ferromagnet  

SciTech Connect

The spin-wave spectruin of an amorphous Heisenberg ferromagnet is calculated by a diagrammatic expansion making use of a transformation due to Taylor and Wu Phys. Rev., B2: 1752 (1970). The upper limit of the spectrum is found to occur at frequencies below that of the corresponding crystalline system, while the low-frequency part of the spectrum is enhanced. Internal van Hove singularities are absent in the spin-wave spectrum of the amorphous ferromagnet. (auth)

Gubernatis, J.E.; Taylor, P.L.

1973-01-01T23:59:59.000Z

404

Power inverters  

DOE Patents (OSTI)

Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

Miller, David H. (Redondo Beach, CA); Korich, Mark D. (Chino Hills, CA); Smith, Gregory S. (Woodland Hills, CA)

2011-11-15T23:59:59.000Z

405

Neutrons in Soft Matter Science | Education | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Complex Materials on Mesoscopic Scales Neutron in Soft Matter Science flyer The new cyber-enabled collaborative graduate course "Neutrons in Soft Matter Science: Complex...

406

Environment/Health/Safety (EHS): Subject Matter Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Subject Matter Contacts as of June 2012 Subject Matter Contacts Category Primary Secondary Ext. CellPager Aboveground Storage Tanks (Petroleum) Robert Fox 7327 425-0451 Activity...

407

Overview of Pump Systems Matter | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PumpSystemsMatter.pdf More Documents & Publications Summary of 2011 Accomplishments HI & PSM Course Overview Pump Systems Matter Optimization Hydraulic Institute Member Benefits...

408

The Particle Adventure | What is the world made of? | Matter...  

NLE Websites -- All DOE Office Websites (Extended Search)

is electrically negative. Gravity affects matter and antimatter the same way because gravity is not a charged property and a matter particle has the same mass as its...

409

VBZ-0014 - In the Matter of Sandia Corporation | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 - In the Matter of Sandia Corporation VBZ-0014 - In the Matter of Sandia Corporation This determination will consider a Motion to Dismiss that Sandia Corporation (Sandia)...

410

VBZ-0013 - In the Matter of Sandia Corporation | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 - In the Matter of Sandia Corporation VBZ-0013 - In the Matter of Sandia Corporation This determination will consider a Motion to Dismiss that Sandia Corporation (Sandia)...

411

EPA's Science Matters Newsletter Puts Spotlight on Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

EPA's Science Matters Newsletter Puts Spotlight on Climate Change Print E-mail EPA's Science Matters Newsletter Puts Spotlight on Climate Change Friday, July 26, 2013 Featured by...

412

Does Policy Matter? On Governments' Attempts to Control Unwanted Migration  

E-Print Network (OSTI)

of California, San Diego CCIS Does Policy Matter? OnPaper 112 December 2004 Does Policy Matter? On Governments’geographic proximity does not guarantee the establishment of

Thielemann, Eiko

2004-01-01T23:59:59.000Z

413

Explaining Corporate Environmental Performance: How Does Regulation Matter?  

E-Print Network (OSTI)

Environmental Performance: How Does Regulation Matter?How and to what extent does regulation matter in shapingof social control, and how does it interact with those

Kagan, Robert A.; Gunningham, Neil; Thornton, Dorothy

2005-01-01T23:59:59.000Z

414

ARM - Publications: Science Team Meeting Documents: Solar spectrum...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar spectrum: Uncertainties between current models and implications for atmospheric radiation modeling and remote sensing Trishchenko, Alexander Canada Centre for Remote Sensing...

415

Auditory pathway responses to parametrized vowels in autism spectrum disorders  

E-Print Network (OSTI)

Autism spectrum disorder (ASD) is characterized by many behavioral symptoms, including delays in social and communicative development. A cluster of symptoms concentrate on speech and language development, especially ...

Bullock, Bennett (Bennett Charles)

2010-01-01T23:59:59.000Z

416

Structural mechanics of fast spectrum nuclear reactor cores  

NLE Websites -- All DOE Office Websites (Extended Search)

mechanics of fast spectrum nuclear reactor cores A fast reactor core is composed of a closely packed hexagonal arrangement of fuel, control, blanket , and shielding assemblies....

417

Energy Spectrum of Ultracold Atoms in a Synthetic Magnetic ...  

Science Conference Proceedings (OSTI)

... turning on a magnetic field makes the electron's energies generate a ... The scientists wittily named the energy spectrum the "Hofstadter moth." In this ...

2010-12-13T23:59:59.000Z

418

A Spectrum Of Potentially Diamondiferous Lamproites And Minettes...  

Open Energy Info (EERE)

Jharia Coalfield, Eastern India Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Spectrum Of Potentially Diamondiferous Lamproites And Minettes...

419

Nanophotonics for tailoring light-matter interaction/  

E-Print Network (OSTI)

In this thesis, we will theoretically explore three nanophotonics phenomena which enable strong light-matter interaction. The first phenomenon is plasmonic resonance, where the surface plasmon mode at metal and dielectric ...

Qiu, Wenjun

2013-01-01T23:59:59.000Z

420

Ultrafast Spectroscopy of Warm Dense Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Spectroscopy of Warm Dense Matter Print Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme temperatures and pressures, WDM tends to be drastically transient and thus difficult to study in the laboratory. Now, researchers have set up ultrafast x-ray absorption spectroscopy at the ALS to measure the electronic structure of WDMs, demonstrating that fast-changing electron temperatures of matter under extreme conditions can be determined with picosecond resolution.

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

BNL | QCD Matter, Big Bang Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

QCD Matter QCD Matter image Physicist Paul Sorensen next to the STAR detector at Brookhaven's Relativistic Heavy Ion Collider Exploring Matter at the Dawn of Time Brookhaven Lab leads the world in exploring how the matter that makes up atomic nuclei behaved just after the Big Bang. At that time, more than 13 billion years ago, there were no protons and neutrons-just a sea of "free" quarks and gluons, fundamental particles whose interactions are governed by nature's strongest force and described by the theory of quantum chromodynamics (QCD). More than 1,000 scientists from around the nation and the world come to Brookhaven to recreate this "quark-gluon plasma" by accelerating heavy ions (atoms stripped of their electrons) to nearly the speed of light and smashing them together at the Lab's

422

Pump Systems Matter Mission and Vision:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pump Systems Matter Mission and Vision: Pump Systems Matter Mission and Vision: Pump Systems Matter(tm) (PSM) places a primary focus on pump systems education and outreach and addresses energy savings and total cost of pump ownership. Vision: Pump Systems Matter initiative assists North American pump users gain a more competitive business advantage through strategic, broad-based energy management and pump system performance optimization. Mission: To provide the marketplace with tools and collaborative opportunities to integrate pump system performance optimization and efficient energy management practices into normal business operations. Essential Elements: * Build awareness of the benefits of systems optimization and pump system life cycle cost at the management, production and technical levels of companies throughout the supply chain.

423

Energy Matters Mailbag | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Matters Mailbag Energy Matters Mailbag Energy Matters Mailbag July 8, 2011 - 6:21pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Editor's Note: Want to know more about Energy? Whether your seeking tips for saving money, insight on a scientific concept or more details on our policies we invite you to submit your questions via e-mail, Facebook or Twitter for possible inclusion in future editions of our mailbag series. During last week's edition of Energy Matters, Dr. Arun Majumdar discussed what we as a Department are doing to help diversify our energy portfolio, foster new technologies and break our reliance on foreign oil. He also responded to a variety of questions on the subject submitted via e-mail and by our followers on Facebook and Twitter.

424

Energy Matters Mailbag | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Matters Mailbag Matters Mailbag Energy Matters Mailbag July 8, 2011 - 6:21pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Editor's Note: Want to know more about Energy? Whether your seeking tips for saving money, insight on a scientific concept or more details on our policies we invite you to submit your questions via e-mail, Facebook or Twitter for possible inclusion in future editions of our mailbag series. During last week's edition of Energy Matters, Dr. Arun Majumdar discussed what we as a Department are doing to help diversify our energy portfolio, foster new technologies and break our reliance on foreign oil. He also responded to a variety of questions on the subject submitted via e-mail and by our followers on Facebook and Twitter.

425

An Introduction to Soft Matter Materials  

Science Conference Proceedings (OSTI)

research world, soft matter materials didn't step into the light as a specific ..... http:/ /www.doitpoms.ac.uk/tlnlib/anisotr opylliguidcrystalsp. hp. 131 http://www.

426

Antigravitation, Dark Energy, Dark Matter - Alternative Solution  

E-Print Network (OSTI)

Collisional damping of gravitational waves in the Newtonian matter is investigated. The generalized theory of Landau damping is applied to the gravitational physical systems in the context of the plasma gravitational analogy.

Alexeev, Boris V

2009-01-01T23:59:59.000Z

427

Antigravitation, Dark Energy, Dark Matter - Alternative Solution  

E-Print Network (OSTI)

Collisional damping of gravitational waves in the Newtonian matter is investigated. The generalized theory of Landau damping is applied to the gravitational physical systems in the context of the plasma gravitational analogy.

Boris V. Alexeev

2009-08-15T23:59:59.000Z

428

The crystallography of three flavor quark matter  

E-Print Network (OSTI)

The nature of cold three-flavor quark matter at the large (but not asymptotic) densities relevant to neutron star phenomenology is not resolved. The gapless CFL phase, which was previously believed to have the lowest free ...

Sharma, Rishi, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

429

Light Dark Matter Annihilations into Two Photons  

E-Print Network (OSTI)

We compute the pair annihilation cross section of light (spin-0) dark matter particles into two photons and discuss the detectability of the monochromatic line associated with these annihilations.

C. Boehm; J. Orloff; P. Salati

2006-07-19T23:59:59.000Z

430

ALS Reveals New State of Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

a new state of matter embodied by "topological insulators," materials that conduct electricity only on their surfaces. First identified at the ALS in 2007 by a Princeton team led...

431

Condensed Matter Physics & Materials Science Department, Brookhaven...  

NLE Websites -- All DOE Office Websites (Extended Search)

Qiang Li Condensed Matter Physics and Materials Science Department Brookhaven National Laboratory Upton, New York 11973-5000 (631) 344-4490 qiangli@bnl.gov Education: Iowa State...

432

Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Right. Power Smart. Efficient Computer Power Supplies and Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. March 10, 2009 - 6:00am Addthis John Lippert Power supplies convert the AC power that you get from your electric company into the DC power consumed by most electronics, including your computer. We expect our power supplies to be safe, reliable, and durable. If they meet those criteria, then they're all alike, except for cost, right? Well, not exactly. You see, there's one other important feature that sets them apart: efficiency. And I don't know about you, but I believe waste is bad. For me, high efficiency is one important feature that's needed for something to be high quality. So isn't it ridiculous that most power

433

Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Right. Power Smart. Efficient Computer Power Supplies and Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. March 10, 2009 - 6:00am Addthis John Lippert Power supplies convert the AC power that you get from your electric company into the DC power consumed by most electronics, including your computer. We expect our power supplies to be safe, reliable, and durable. If they meet those criteria, then they're all alike, except for cost, right? Well, not exactly. You see, there's one other important feature that sets them apart: efficiency. And I don't know about you, but I believe waste is bad. For me, high efficiency is one important feature that's needed for something to be high quality. So isn't it ridiculous that most power

434

Initial exploration of 21-cm cosmology with imaging and power spectra from the Murchison Widefield Array  

E-Print Network (OSTI)

The Murchison Widefield Array (MWA) is a new low-frequency radio array under construction in Western Australia with a primary goal of measuring the power spectrum of the 21-cm signal from neutral hydrogen during the Epoch ...

Williams, Christopher Leigh

2012-01-01T23:59:59.000Z

435

The C-4 Dark Matter Experiment  

Science Conference Proceedings (OSTI)

Abstract We describe the experimental design of C-4, an expansion of the CoGeNT dark matter search to four identical detectors each approximately three times the mass of the p-type point contact (PPC) germanium diode presently taking data at the Soudan Underground Laboratory. Expected reductions of radioactive backgrounds and energy threshold are discussed, including an estimate of the additional sensitivity to low-mass dark matter candidates to be obtained with this search.

Bonicalzi, Ricco; Collar, J. I.; Colaresi, J.; Fast, James E.; Fields, N.; Fuller, Erin S.; Hai, M.; Hossbach, Todd W.; Kos, Marek S.; Orrell, John L.; Overman, Cory T.; Reid, Douglas J.; VanDevender, Brent A.; Wiseman, Clinton G.; Yocum, K. M.

2013-06-01T23:59:59.000Z

436

From nuclear matter to Neutron Stars  

E-Print Network (OSTI)

Neutron stars are the most dense objects in the observable Universe and conventionally one uses nuclear theory to obtain the equation of state (EOS) of dense hadronic matter and the global properties of these stars. In this work, we review various aspects of nuclear matter within an effective Chiral model and interlink fundamental quantities both from nuclear saturation as well as vacuum properties and correlate it with the star properties.

T. K. Jha

2009-02-02T23:59:59.000Z

437

PSH-12-0083 - In the Matter of In the Matter of Personnel Security Hearing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83 - In the Matter of In the Matter of Personnel Security 83 - In the Matter of In the Matter of Personnel Security Hearing PSH-12-0083 - In the Matter of In the Matter of Personnel Security Hearing On November 14, 2012, an OHA Hearing Officer issued a decision in which he concluded that an individual's security clearance should be restored. A Local Security Office suspended the individual's security clearance for failing to comply with rules regarding the handling of classified information and conduct within limited access areas and for failing to report such non-compliance. This behavior raised security concerns under Criteria G and L. After conducting a hearing and evaluating the documentary and testimonial evidence, the Hearing Officer found that the individual had presented sufficient evidence to resolve these security

438

Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News  

E-Print Network (OSTI)

Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News TUESDAY 25 MAY, 2010 | | Solar Power To Help Convert Carbon Dioxide Into Fuel by Energy Matters Microbiologist Derek Lovley dioxide into transportation fuels, with the help of special micro-organisms and solar power. The team

Lovley, Derek

439

Measuring the dark matter equation of state  

E-Print Network (OSTI)

The nature of the dominant component of galaxies and clusters remains unknown. While the astrophysics community supports the cold dark matter (CDM) paradigm as a clue factor in the current cosmological model, no direct CDM detections have been performed. Faber and Visser 2006 have suggested a simple method for measuring the dark matter equation of state that combines kinematic and gravitational lensing data to test the widely adopted assumption of pressureless dark matter. Following this formalism, we have measured the dark matter equation of state for first time using improved techniques. We have found that the value of the equation of state parameter is consistent with pressureless dark matter within the errors. Nevertheless, the measured value is lower than expected because typically the masses determined with lensing are larger than those obtained through kinematic methods. We have tested our techniques using simulations and we have also analyzed possible sources of error that could invalidate or mimic our results. In the light of this result, we can now suggest that the understanding of the nature of dark matter requires a complete general relativistic analysis.

Ana Laura Serra; Mariano Javier de León Domínguez Romero

2011-03-28T23:59:59.000Z

440

Power Supplies  

Science Conference Proceedings (OSTI)

Table 2   Characteristics of the four major power sources for induction heating...state 180 Hz to 50 kHz 1 kW to 2 MW 75â??95 No standby current; high efficiency; no moving parts;

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation  

E-Print Network (OSTI)

Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density

Bertschinger, Edmund

442

FIA-12-0013 - In the Matter of Another Way BPA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 - In the Matter of Another Way BPA 3 - In the Matter of Another Way BPA FIA-12-0013 - In the Matter of Another Way BPA OHA issued a decision denying FOIA Appeals filed by Another Way BPA, relating to a request which it filed for records regarding the I-5 Corridor Reinforcement Project. In March 2012, the DOE's Bonneville Power Administration issued three determinations in response to Another Way BPA's requests. In the determinations, BPA indicated that it located some documents responsive to Another Way BPA's requests and released the documents with information withheld pursuant to FOIA Exemptions 5 and 6. Another Way BPA appealed each determination, challenging the adequacy of BPA's searches, and the applicability of Exemption 5. On appeal, OHA determined that, although BPA's searches did not yield the volume of

443

VEE-0091 - In the Matter of Jefferson Smurfit Corp. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 - In the Matter of Jefferson Smurfit Corp. 1 - In the Matter of Jefferson Smurfit Corp. VEE-0091 - In the Matter of Jefferson Smurfit Corp. This Decision decides the merits of five Applications for Exception filed with the Office of Hearings and Appeals (OHA) of the U.S. Department of Energy (DOE) under the provisions of 10 C.F.R. § 1003.20. See infra Appendix. These Applications concern annual revenues and sales data pertaining to each firm's sale of electricity that the DOE Energy Information Administration (EIA) collects through Form EIA-861, "Annual Electric Power Industry Report." EIA publishes this data, by state, in firm-specific form. The present exception request seeks to have the Applicants' data withheld as confidential. In their Applications for Exception, the Applicants incorporated an Application for Stay to prevent release of some of the

444

Collaborating for a "Perfect" Scan of Nuclear Matter | Brookhaven and the  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaborating for a "Perfect" Scan of Nuclear Matter Collaborating for a "Perfect" Scan of Nuclear Matter RHIC & LHC The Perfect Liquid The Critical Point superconducting magnets Superconducting magnets of the Large Hadron Collider (left) and Brookhaven's Relativistic Heavy Ion Collider (right). As the finishing touches are put on the world's most powerful particle accelerator in Switzerland, and plans for others pop up across the globe, Brookhaven's Relativistic Heavy Ion Collider (RHIC) continues to exploit its unique ability to explore the surprising features of matter bound by the strongest of Nature&'s forces. Although RHIC's overall mission is quite different from other machines on the horizon, new scientific facilities are incorporating heavy ion capabilities similar to RHIC. This healthy

445

VEE-0092 - In the Matter of Cargill, Incorporated. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 - In the Matter of Cargill, Incorporated. 2 - In the Matter of Cargill, Incorporated. VEE-0092 - In the Matter of Cargill, Incorporated. This Decision decides the merits of five Applications for Exception filed with the Office of Hearings and Appeals (OHA) of the U.S. Department of Energy (DOE) under the provisions of 10 C.F.R. § 1003.20. See infra Appendix. These Applications concern annual revenues and sales data pertaining to each firm's sale of electricity that the DOE Energy Information Administration (EIA) collects through Form EIA-861, "Annual Electric Power Industry Report." EIA publishes this data, by state, in firm-specific form. The present exception request seeks to have the Applicants' data withheld as confidential. In their Applications for Exception, the Applicants incorporated an Application for Stay to prevent release of some of the

446

FIA-12-0040 - In the Matter of Idaho Conservation League | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 - In the Matter of Idaho Conservation League 0 - In the Matter of Idaho Conservation League FIA-12-0040 - In the Matter of Idaho Conservation League On August 16, 2012, the Office of Hearings and Appeals (OHA) issued a decision granting in part an appeal from a Freedom of Information Act (FOIA) determination issued by the Department of Energy's Bonneville Power Administration (BPA). The Idaho Conservation League (Appellant) submitted a FOIA request to BPA seeking the Project file for the Albeni Falls Dam Flexible Winter Operations Environmental Assessment. In a Determination Letter, BPA issued a response to the Appellant's FOIA request, releasing 17 documents in their entirety, releasing one partially redacted document, withholding two documents as non-responsive, withholding 25 documents in their entirety under Exemptions 5 and 6 and providing a

447

FIA-12-0040 - In the Matter of: Idaho Conservation League | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 - In the Matter of: Idaho Conservation League 0 - In the Matter of: Idaho Conservation League FIA-12-0040 - In the Matter of: Idaho Conservation League The Office of Hearings and Appeals (OHA) issued a decision granting in part an appeal from a Freedom of Information Act (FOIA) determination issued by the Department of Energy's Bonneville Power Administration (BPA). The Idaho Conservation League (Appellant) submitted a FOIA request to BPA seeking the Project file for the Albeni Falls Dam Flexible Winter Operations Environmental Assessment. In a Determination Letter, BPA issued a response to the Appellant's FOIA request, releasing 17 documents in their entirety, releasing one partially redacted document, withholding two documents as non-responsive, withholding 25 documents in their entirety under Exemptions 5 and 6 and providing a list of the electronic file names

448

FIA-12-0014 - In the Matter of Another Way BPA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 - In the Matter of Another Way BPA 4 - In the Matter of Another Way BPA FIA-12-0014 - In the Matter of Another Way BPA OHA issued a decision denying FOIA Appeals filed by Another Way BPA, relating to a request which it filed for records regarding the I-5 Corridor Reinforcement Project. In March 2012, the DOE's Bonneville Power Administration issued three determinations in response to Another Way BPA's requests. In the determinations, BPA indicated that it located some documents responsive to Another Way BPA's requests and released the documents with information withheld pursuant to FOIA Exemptions 5 and 6. Another Way BPA appealed each determination, challenging the adequacy of BPA's searches, and the applicability of Exemption 5. On appeal, OHA determined that, although BPA's searches did not yield the volume of

449

FIA-12-0012 - In the Matter of Another Way BPA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 - In the Matter of Another Way BPA 2 - In the Matter of Another Way BPA FIA-12-0012 - In the Matter of Another Way BPA OHA issued a decision denying FOIA Appeals filed by Another Way BPA, relating to a request which it filed for records regarding the I-5 Corridor Reinforcement Project. In March 2012, the DOE's Bonneville Power Administration issued three determinations in response to Another Way BPA's requests. In the determinations, BPA indicated that it located some documents responsive to Another Way BPA's requests and released the documents with information withheld pursuant to FOIA Exemptions 5 and 6. Another Way BPA appealed each determination, challenging the adequacy of BPA's searches, and the applicability of Exemption 5. On appeal, OHA determined that, although BPA's searches did not yield the volume of

450

VEE-0088 - In the Matter of CPKelco Cogeneration, et al. | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

88 - In the Matter of CPKelco Cogeneration, et al. 88 - In the Matter of CPKelco Cogeneration, et al. VEE-0088 - In the Matter of CPKelco Cogeneration, et al. This Decision decides the merits of five Applications for Exception filed with the Office of Hearings and Appeals (OHA) of the U.S. Department of Energy (DOE) under the provisions of 10 C.F.R. § 1003.20. See infra Appendix. These Applications concern annual revenues and sales data pertaining to each firm's sale of electricity that the DOE Energy Information Administration (EIA) collects through Form EIA-861, "Annual Electric Power Industry Report." EIA publishes this data, by state, in firm-specific form. The present exception request seeks to have the Applicants' data withheld as confidential. In their Applications for Exception, the Applicants

451

VEE-0090 - In the Matter of Smurfitt Stone Container Corp. | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

90 - In the Matter of Smurfitt Stone Container Corp. 90 - In the Matter of Smurfitt Stone Container Corp. VEE-0090 - In the Matter of Smurfitt Stone Container Corp. This Decision decides the merits of five Applications for Exception filed with the Office of Hearings and Appeals (OHA) of the U.S. Department of Energy (DOE) under the provisions of 10 C.F.R. § 1003.20. See infra Appendix. These Applications concern annual revenues and sales data pertaining to each firm's sale of electricity that the DOE Energy Information Administration (EIA) collects through Form EIA-861, "Annual Electric Power Industry Report." EIA publishes this data, by state, in firm-specific form. The present exception request seeks to have the Applicants' data withheld as confidential. In their Applications for Exception, the Applicants

452

THE ROTATIONAL SPECTRUM OF HCl{sup +}  

SciTech Connect

The rotational spectrum of the radical ion HCl{sup +} has been detected at high resolution in the laboratory, confirming the identification reported in the accompanying Letter by De Luca et al., in diffuse clouds toward W31C and W49N. Three rotational transitions, one in the ground-state {sup 2}{Pi}{sub 3/2} ladder and two in the {sup 2}{Pi}{sub 1/2} ladder (643 cm{sup -1} above ground), were observed in a microwave discharge of He and HCl. Well-resolved chlorine hyperfine structure and {Lambda}-doubling, and the detection of lines of H{sup 37}Cl{sup +} at precisely the expected isotopic shift, provide conclusive evidence for the laboratory identification. Detection of rotational transitions in the {sup 2}{Pi}{sub 1/2} ladder of HCl{sup +} for the first time allows an experimental determination of the individual hyperfine coupling constants of chlorine and yields a precise value of eQq{sub 2}. The spectroscopic constants obtained by fitting a Hamiltonian simultaneously to our data and more than 8000 optical transitions are so precise that they allow us to calculate the frequencies of the {sup 2}{Pi}{sub 3/2} J = 5/2 - 3/2 transition observed in space to within 0.2 km s{sup -1}, and indeed, those of the strongest rotational transitions below 7.5 THz, to better than 1 km s{sup -1}.

Gupta, H.; Drouin, B. J.; Pearson, J. C., E-mail: Harshal.Gupta@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

2012-06-01T23:59:59.000Z

453

Apparatus for synthesis of a solar spectrum  

DOE Patents (OSTI)

This invention is comprised of a xenon arc lamp and a tungsten filament lamp provide light beams that together contain all the wavelengths required to accurately simulate a solar spectrum. Suitable filter apparatus selectively direct visible and ultraviolet light from the xenon arc lamp into two legs of a trifurcated randomized fiber optic cable. Infrared light selectively filtered from the tungsten filament lamp is directed into the third leg of the fiber optic cable. The individual optic fibers from the three legs are brought together in a random fashion into a single output leg. The output beam emanating from the output leg of the trifurcated randomized fiber optic cable is extremely uniform and contains wavelengths from each of the individual filtered light beams. This uniform output beam passes through suitable collimation apparatus before striking the surface of the solar cell being tested. Adjustable aperture apparatus located between the lamps and the input legs of the trifurcated fiber optic cable and can be selectively adjusted to limit the amount of light entering each leg thereby providing a means of ``fine tuning`` or precisely adjusting the spectral content of the output beam. Finally, On adjustable aperture apparatus may also be placed in the output beam to adjust the intensity of the output beam without changing the spectral content and distribution of the output beam.

Sopori, B.L.

1991-03-15T23:59:59.000Z

454

Apparatus for synthesis of a solar spectrum  

DOE Patents (OSTI)

A xenon arc lamp and a tungsten filament lamp provide light beams that together contain all the wavelengths required to accurately simulate a solar spectrum. Suitable filter apparatus selectively direct visible and ultraviolet light from the xenon arc lamp into two legs of a trifurcated randomized fiber optic cable. Infrared light selectively filtered from the tungsten filament lamp is directed into the third leg of the fiber optic cable. The individual optic fibers from the three legs are brought together in a random fashion into a single output leg. The output beam emanating from the output leg of the trifurcated randomized fiber optic cable is extremely uniform and contains wavelengths from each of the individual filtered light beams. This uniform output beam passes through suitable collimation apparatus before striking the surface of the solar cell being tested. Adjustable aperture apparatus located between the lamps and the input legs of the trifurcated fiber optic cable can be selectively adjusted to limit the amount of light entering each leg, thereby providing a means of "fine tuning" or precisely adjusting the spectral content of the output beam. Finally, an adjustable aperture apparatus may also be placed in the output beam to adjust the intensity of the output beam without changing the spectral content and distribution of the output beam.

Sopori, Bhushan L. (Denver, CO)

1993-01-01T23:59:59.000Z

455

Apparatus for synthesis of a solar spectrum  

DOE Patents (OSTI)

This invention is comprised of a xenon arc lamp and a tungsten filament lamp provide light beams that together contain all the wavelengths required to accurately simulate a solar spectrum. Suitable filter apparatus selectively direct visible and ultraviolet light from the xenon arc lamp into two legs of a trifurcated randomized fiber optic cable. Infrared light selectively filtered from the tungsten filament lamp is directed into the third leg of the fiber optic cable. The individual optic fibers from the three legs are brought together in a random fashion into a single output leg. The output beam emanating from the output leg of the trifurcated randomized fiber optic cable is extremely uniform and contains wavelengths from each of the individual filtered light beams. This uniform output beam passes through suitable collimation apparatus before striking the surface of the solar cell being tested. Adjustable aperture apparatus located between the lamps and the input legs of the trifurcated fiber optic cable and can be selectively adjusted to limit the amount of light entering each leg thereby providing a means of fine tuning'' or precisely adjusting the spectral content of the output beam. Finally, On adjustable aperture apparatus may also be placed in the output beam to adjust the intensity of the output beam without changing the spectral content and distribution of the output beam.

Sopori, B.L.

1991-03-15T23:59:59.000Z

456

The Helium spectrum in erupting solar prominences  

E-Print Network (OSTI)

Even quiescent solar prominences may become active and sometimes erupt. These events are occasionally linked to coronal mass ejections. However we know very little about the plasma properties during the activation and eruption processes. We present new computations of the helium line profiles emitted by an eruptive prominence. The prominence is modelled as a plane-parallel slab standing vertically above the solar surface and moving upward as a solid body. The helium spectrum is computed with a non local thermodynamic equilibrium radiative transfer code. The effect of Doppler dimming / brightening is investigated in the resonance lines of He I and He II formed in the EUV, as well as on the He I 10830 A and 5876 A lines. We focus on the line profile properties and the resulting integrated intensities. It is shown that the helium lines are very sensitive to Doppler dimming effects. We also study the effect of frequency redistribution in the formation mechanisms of the resonance lines and find that it is necessary to use partial redistribution in frequency for the resonance lines.

Nicolas Labrosse; Pierre Gouttebroze; Jean-Claude Vial

2006-09-18T23:59:59.000Z

457

Performance of Primary Users in Spectrum Sharing Cognitive Radio Environment  

Science Conference Proceedings (OSTI)

This paper investigates the performance of the primary user in a multiuser cognitive radio environment. Using spectrum sharing method, multiple cognitive users compete to share a channel dedicated to the primary user in order to transmit their data to ... Keywords: Bit error rate, Channel capacity, Cognitive communications, Outage probability, Spectrum sharing, User scheduling

Abdallah K. Farraj; Eman M. Hammad

2013-02-01T23:59:59.000Z

458

Is allowing trading enough? Making secondary markets in spectrum work  

Science Conference Proceedings (OSTI)

The debate on spectrum reforms has mostly focused on the choice between a property rights and a commons regime. This article argues that moving to a property right system requires careful attention to details in order to avoid that ''micro'' rather than ... Keywords: Efficiency, Impediments, Licence variations, Spectrum, Trading

Pietro Crocioni

2009-09-01T23:59:59.000Z

459

Modeling of combustion noise spectrum from turbulent premixed flames  

E-Print Network (OSTI)

Modeling of combustion noise spectrum from turbulent premixed flames Y. Liu, A. P. Dowling, T. D, Nantes, France 2321 #12;Turbulent combustion processes generate sound radiation due to temporal changes, this temporal correlation and its role in the modeling of combustion noise spectrum are studied by analyzing

Paris-Sud XI, Université de

460

Supporting Dynamic Spectrum Access in Heterogeneous LTE+ Networks  

SciTech Connect

As early as 2014, mobile network operators’ spectral capac- ity is expected to be overwhelmed by the demand brought on by new devices and applications. With Long Term Evo- lution Advanced (LTE+) networks likely as the future one world 4G standard, network operators may need to deploy a Dynamic Spectrum Access (DSA) overlay in Heterogeneous Networks (HetNets) to extend coverage, increase spectrum efficiency, and increase the capacity of these networks. In this paper, we propose three new management frameworks for DSA in an LTE+ HetNet: Spectrum Accountability Client, Cell Spectrum Management, and Domain Spectrum Man- agement. For these spectrum management frameworks, we define protocol interfaces and operational signaling scenar- ios to support cooperative sensing, spectrum lease manage- ment, and alarm scenarios for rule adjustment. We also quan- tify, through integer programs, the benefits of using DSA in an LTE+ HetNet, that can opportunistically reuse vacant TV and GSM spectrum. Using integer programs, we consider a topology using Geographic Information System data from the Blacksburg, VA metro area to assess the realistic benefits of DSA in an LTE+ HetNet.

Luiz A. DaSilva; Ryan E. Irwin; Mike Benonis

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter power spectrum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DISTRIBUTED COGNITIVE MAC FOR ENERGY-CONSTRAINED OPPORTUNISTIC SPECTRUM ACCESS  

E-Print Network (OSTI)

DISTRIBUTED COGNITIVE MAC FOR ENERGY-CONSTRAINED OPPORTUNISTIC SPECTRUM ACCESS Yunxia Chen, Qing@arl.army.mil ABSTRACT We address the design of distributed cognitive medium ac- cess control (MAC) protocols for opportunistic spectrum access (OSA) under an energy constraint on the secondary users. The objective

Islam, M. Saif

462

Spread spectrum based cooperative communication transceiver on FPGA platform  

Science Conference Proceedings (OSTI)

In this paper we describe the implementation of a spread spectrum based cooperative relaying on an FPGA platform. We focus on a network comprising one source, one or more relays, and one destination. Once the source's message is received by the relays, ... Keywords: FPGA, cognitive radio, cooperative communication, rake receiver, spread spectrum

Babak AzimiSadjadi, Satya Prakash Ponnaluri, Ali Namazi, Siddharth Gaddam, Daniel McCarthy, Paul J. Oleski

463

A Similarity Theory of the Tropospheric Turbulence Energy Spectrum  

Science Conference Proceedings (OSTI)

A three-range model is proposed for the energy spectrum of tropospheric turbulence in which the range-I spectrum is governed by the cascade of eddy enstrophy, that of range-II by the cascade of eddy kinetic energy, and that of range-III by ...

F. A. Gifford

1988-04-01T23:59:59.000Z

464

Online Pricing of Secondary Spectrum Access with Unknown Demand Function  

E-Print Network (OSTI)

-of-the-day arrival rate trends. The simulations showed that AMTP closely tracks the time-varying optimal price1 Online Pricing of Secondary Spectrum Access with Unknown Demand Function Huseyin Mutlu, Murat while SUs are admitted and priced according to current availability of excess spectrum. The average rate

Starobinski, David

465

Power superconducting power transmission cable  

DOE Patents (OSTI)

The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

Ashworth, Stephen P. (Cambridge, GB)

2003-01-01T23:59:59.000Z

466

Nuclear Power  

E-Print Network (OSTI)

The world of the twenty first century is an energy consuming society. Due to increasing population and living standards, each year the world requires more energy and new efficient systems for delivering it. Furthermore, the new systems must be inherently safe and environmentally benign. These realities of today's world are among the reasons that lead to serious interest in deploying nuclear power as a sustainable energy source. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. The goal of the book is to show the current state-of-the-art in the covered technical areas as well as to demonstrate how general engineering principles and methods can be applied to nuclear power systems.

Tsvetkov, Pavel

2010-08-01T23:59:59.000Z

467

What's in the Cage Matters in Iron Antimonide Thermoelectric Materials |  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Experiments on Cement Yield Concrete Results Novel Experiments on Cement Yield Concrete Results Watching a Glycine Riboswitch "Switch" Polyamorphism in a Metallic Glass Under Pressure, Vanadium Won't Turn Down the Volume New Nanoscale Engineering Breakthrough Points to Hydrogen-Powered Vehicles Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed What's in the Cage Matters in Iron Antimonide Thermoelectric Materials MARCH 29, 2007 Bookmark and Share Crystal structure of EuFe4Sb12 showing the cage confined Eu atoms (red) and Fe atoms (brown) surrounded by Sb tilted octahedral (Sb atoms are not shown). Thermoelectric materials such as iron antimonide have drawn intense interest because they offer a pollution-free source of electricity and a

468

Power supply  

SciTech Connect

An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.

Hart, Edward J. (Albuquerque, NM); Leeman, James E. (Albuquerque, NM); MacDougall, Hugh R. (Albuquerque, NM); Marron, John J. (Albuquerque, NM); Smith, Calvin C. (Amarillo, TX)

1976-01-01T23:59:59.000Z

469

Power Search  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: Find a Car Home > Power Search You are here: Find a Car Home > Power Search Power Search Expand any feature by selecting its title bar. Choose as many or as few features as you like. Model Year From: 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985 1984 To: 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985 1984 MSRP Under $15,000 $15,000-$20,000 $20,000-$25,000 $25,000-$30,000 $30,000-$35,000 $35,000-$40,000 $40,000-$45,000 $45,000-$50,000 $50,000-$55,000 $55,000-$60,000 $60,000-$65,000 $65,000-$70,000 $70,000-$75,000 $75,000-$80,000 $80,000-$85,000 Over $85,000 - OR - Minimum: Select... $5,000 $6,000 $7,000 $8,000 $9,000 $10,000 $11,000

470

QUARK MATTER IN MASSIVE COMPACT STARS  

SciTech Connect

The recent observation of the pulsar PSR J1614-2230 with a mass of 1.97 {+-} 0.04 M{sub sun} gives a strong constraint on the quark and nuclear matter equations of state (EoS). We explore the parameter ranges for a parameterized EoS for quark stars. We find that strange stars, made of absolutely stable strange quark matter, comply with the new constraint only if effects from the strong coupling constant and color-superconductivity are taken into account. Hybrid stars, compact stars with a quark matter core and a hadronic outer layer, can be as massive as 2 M{sub sun}, but only for a significantly limited range of parameters. We demonstrate that the appearance of quark matter in massive stars crucially depends on the stiffness of the nuclear matter EoS. We show that the masses of hybrid stars stay below the ones of hadronic and pure quark stars, due to the softening of the EoS at the quark-hadron phase transition.

Weissenborn, Simon; Pagliara, Giuseppe; Schaffner-Bielich, Juergen [Institute for Theoretical Physics, Ruprecht-Karls University, 69120 Heidelberg (Germany); Sagert, Irina [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Hempel, Matthias [Department of Physics, University of Basel, 4056 Basel (Switzerland)

2011-10-10T23:59:59.000Z

471

Unravelling the Dark Matter - Dark Energy Paradigm  

E-Print Network (OSTI)

The standard LambdaCDM model of cosmology is usually understood to arise from demanding that the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric satisfy the General Relativity dynamics for spacetime metrics. The FLRW data-based dominant parameter values, Omega_Lambda=0.73 and Omega_m=0.27 for the dark energy and dark matter+matter, respectively, are then determined by fitting the supernova red-shift data. However in the pressure-less flat-space case the LambdaCDM model is most easily derived from Newtonian gravity, and which was based on the special case of planetary motion in the solar system. Not surprisingly when extended to galactic rotations and cosmology Newtonian dynamics is found to be wanting, and the fix-up involves introducing dark matter and dark energy, as shown herein. However a different theory of gravity leads to a different account of galactic rotations and cosmology, and does not require dark matter nor dark energy to fit the supernova data. It is shown that fitting the LambdaCDM model to this new model, and so independently of the actual supernova data, requires the LambdaCDM model parameters to be those given above. Hence we conclude that dark energy and dark matter are no more than mathematical artifacts to fix-up limitations of Newtonian gravity. Various other data are also briefly reviewed to illustrate other successful tests of this new theory of gravity.

Reginald T Cahill

2009-01-26T23:59:59.000Z

472

Crosstalk Compensation for a Rapid, Higher Resolution Impedance Spectrum Measurement  

DOE Green Energy (OSTI)

Batteries and other energy storage devices are playing larger roles in various industries (e.g., military, automotive, electric utilities, etc.) as the U.S. seeks to reduce its dependence on foreign energy resources. As such, there exists a significant need for accurate, robust state-of-health assessment techniques. Present techniques tend to focus on simple, passive monitoring of voltage and current at a given ambient temperature. However, this approach has the disadvantage of ignoring key elements of health, that is, changes in resistance grow